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Abstract

Intraflagellar transport (IFT) is essential for the construction of cilia and flagella in eukary-

otic cells and plays a critical role in the transport of protein cargo to and from the cell

body. Protein molecules involved in IFT are observed to travel at different velocities. These

velocities are computed using spatio-temporal maps called kymographs. Kymographs are

single images that represent the 3D microscopy images of intracellular motion as 2D time

series data. In vivo microscopy imaging typically results in the generation of noisy kymo-

graphs which are difficult to analyze. Existing techniques for IFT velocity measurement

entail manual detection of IFT trails on the kymographs, followed by computation of the

IFT velocities via determination the slope of each IFT trail. Since manual kymograph anal-

ysis is laborious, time consuming and error prone, an automated algorithm to extract IFT

trails and determine the IFT velocities in kymographs with minimal manual intervention is

a valuable tool for biologists. To this end, we propose a machine learning-based approach to

the analysis of kymographs that segments and delineates the IFT trails, and computes the

IFT protein velocities. In the proposed approach, the kymograph image is preprocessed to

suppress noise and identify potential IFT trail pixels. The potential IFT trail pixels are



further characterized using Gabor wavelet transform (GWT) and curvelet transform (CT)

features. A Support Vector Machine (SVM) is used to classify the potential IFT trail pixels

into three IFT trail categories followed by the extraction of continuous IFT trajectories and

the computation of the IFT velocity associated with each IFT trajectory. Experimental

results show the advantages of the proposed approach in terms of accuracy and greatly

reduced processing time for kymograph analysis.

Index words: Kymographs, Intraflagellar transport (IFT), Support Vector Machines,
Classification, Gabor Features, Curvelet Features
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Chapter 1

INTRODUCTION

Flagella and cilia are appendages or organelles that protrude from the cell body of certain

prokaryotic and eukaryotic cells and are associated with cell motility and cellular sensory

functions [2]. Flagella and cilia are known to be sensitive to the chemical composition and

temperature of the extracellular environment and perform important physiological roles in

chemical sensation, signal transduction, and control of cell growth [3]. In the current scientific

understanding, flagella and cilia are sensory cellular antennae that coordinate a large number

of cellular signaling pathways that control the division, motility and differentiation of cells [4].

The inner core of cilia and flagella comprises of a microtubule-based cytoskeletal structure

called the axoneme. The axonemal cytoskeleton provides a scaffolding for molecular motor

proteins that enable intraflagellar transport (IFT), a process by which proteins are conveyed

up and down the microtubules [5]. IFT describes the bi-directional movement of protein

particles, that are made up of several individual proteins, along the doublet microtubules of

the flagellar axoneme. IFT proteins are primarily concentrated at the base of the flagellum

or cilium. Anterograde transport denotes the movement of the IFT protein particles away

from the cell body and towards the tip of the flagellum or cilium where they are assembled,

whereas retrograde transport represents movement of the protein particles, that represent
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Figure 1.1: Intraflagellar Transport in Flagella and Cilia

turnover products, from the tip of the flagellum or cilium back towards the cell body or cell

center.

Other than assisting in cargo transport to and from the cell body, the IFT machinery

is also critical for the formation and maintenance of a healthy flagellum or cilium. In fact,

an axoneme with defective IFT machinery is observed to slowly shrink in the absence of

replacement protein subunits. On account of its importance in genesis and maintenance of

functional cilia and flagella, defective IFT machinery has been implicated in several diseases

associated with malfunctioning, non-functioning or absent cilia (i.e., ciliopathy) such as

polycystic kidney disease [6], polycystic liver disease [7], congenital heart disease [8] and

retinal degeneration [9], among others.

Usually there are several IFT protein molecules moving along the microtubules of the

flagellar axoneme resulting in the generation of multiple protein particle trajectories along
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the same path. A formal study of the dynamics of these protein particles is of particular

importance to cellular biologists, since it allows for quantification the velocity, frequency

and volume of protein transport between the cell body and its environment. Time lapse mi-

croscopy (TLM) is a commonly used technique for dynamic imaging of the IFT phenomenon.

The TLM videos are typically captured at a rate of 10 frames/second (fps) and magnification

of 9.2 pixels/micron using a Total Internal Reflection Fluorescence (TIRF) microscope [10].

The IFT proteins are infused with a fluorescent marker to improve their visibility and enable

their tracking in the TLM video with greater ease and accuracy. There have been many

different types of fluorescent markers described in the research literature; with the green

fluorescent protein (GFP) being one of the most commonly used [11]. However, the GFP

marker has been observed to result in weak or low-intensity IFT protein trails in the TLM

videos, prompting the recent popularity of the mNeonGreen-IFT54 fluorescent marker [12]

which has been observed to result in more prominent trails.

The TLM video stream is converted to a kymograph which is a single static image that

provides a 2D graphical representation of the spatial position of a particle, moving along a

well defined path, over time. In our case, the particle of interest is the IFT protein particle

and the well defined path is the axis of the flagellum or cilium. One of the axes (the y-axis

in our case) in the kymograph represents the spatial displacement of the particle along the

Figure 1.2: Comparison of kymographs obtained using two fluorescent markers: (a)
mNeonGreen-IFT54 marker and (b) green fluorescent protein (GFP) marker.
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axis of the flagellum or cilium whereas the other axis (i.e, the x-axis) in the kymograph

represents time. Figure 1.2 shows two kymographs; one obtained using the mNeonGreen-

IFT54 marker and other using the GFP marker. As is evident, the trails in the kymograph

obtained using the mNeonGreen-IFT54 marker are more prominent than the ones in the

kymograph obtained using the GFP marker. The slanted trails (with non-zero slope values)

in the kymograph represent moving particles whereas stationary particles are denoted by

horizontal trails in the kymograph. The slope of a trail in the kymograph represents the

velocity at which the corresponding IFT protein particle moves along the axis of the flagellum

or cilium.

In this paper we propose an automated method to extract multiple IFT protein particle

trajectories from a single kymograph image. These trajectories are observed to be along

both directions of the flagellar or ciliary axis; i.e., anterograde and retrograde [13]. In

the proposed method we aim for reliable and automated tracking of multiple IFT protein

particles in the presence of several cross-points in the kymograph space. Cross-points are

points where anterograde and retrograde trails cross over each other. There is a general

paucity of automated methods for kymograph analysis in the biological research literature.

Moreover, there have been very few instances of machine learning-based techniques used for

automated kymograph analysis.

In this paper we exploit the Gabor wavelet transform (GWT) [14] and the curvelet

transform (CT) [15] (which is a generalization of the wavelet transform) to characterize the

pixels potentially belonging to the trails of IFT protein particles experiencing anterograde

and retrograde motion. A support vector machine (SVM) is trained for classifying these trails

into three distinct classes namely anterograde motion, retrograde motion and background

(which includes stationary IFT particles, IFT particles exhibiting random motion on account

of diffusion and noisy artifacts) followed by the computation of anterograde and retrograde

velocities of the corresponding IFT particles.
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In summary, the pipeline of the proposed method comprises of three main components:

(a) prepossessing of the noisy kymograph and extraction of potential IFT trail pixels (b)

characterization of the potential IFT trail pixels using the GWT and CT features (c) training

of an SVM-based classifier to categorize the extracted IFT trail pixels into the aforementioned

three distinct classes (d) SVM- based classification of extracted IFT trail pixels in the test

image (e) computer-assisted extraction of spatially contiguous IFT particle trajectories from

the classified trails and computation of the velocity of each of these trajectories.

The outline of the remainder of the paper is as follows: In Chapter 2 we review the

state-of-the-art methods for automated analysis of kymographs. In Chapter 3 we provide

a detailed description of the proposed method. We present and discuss the experimental

results in Chapter 4. Finally, in Chapter 5, we present the conclusions with an outline of

the directions for future work.
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Chapter 2

LITERATURE REVIEW

Manual analysis of kymographs is not only labor intensive but also requires a biologist’s

expertise for proper interpretation of the kymograph data. The significance of automating

the process of kymograph analysis has been realized by the research community in cellular

biology. Manual kymograph analysis has been observed to be error prone or at least subjec-

tive; in that weaker kymograph trails could be identified as valid IFT particle trajectories or

not depending on the observer. The goal of automation is to put kymograph analysis on a

strict objective basis.

In recent years there have been several methods proposed in the research literature to

automate the analysis of kymographs. However, most algorithms in the literature have not

proven to be very effective when dealing with noisy kymographs generated from in vivo

TLM videos. The TLM videos are captured at a relatively fast rate of 10 fps which results

in the creation of kymographs with very low signal to noise ratio (SNR). As mentioned

previously, the kymographs, in general, encapsulate both, anterograde and retrograde trans-

port. Anterograde IFT particles are typically larger (i.e., consist of more proteins) and travel

slower compared to the retrograde IFT particles. Consequently, anterograde trials on the

kymographs are typically more prominent than the weaker and sometimes hard to discern
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retrograde trails.

The ImageJ plugin described in [16] is a Radon transform-based algorithm for automated

kymograph analysis [17]. The Radon transform is generalization of the Hough transform [18]

which is a popular technique to detect lines or linear features in an image. This approach

works well when detecting prominent and non-fragmented straight lines along a single direc-

tion of the image. However, the kymographs we need to analyze contain particles displaying

bidirectional movement which leads to the presence of several faint lines criss-crossing one

another. This plugin fails to work on kymographs of such nature. The automated IFT

velocity measurement technique proposed by Welzel et al. [19], which also uses the Hough

transform to detect relevant IFT trails, is observed to work well on noise-free kymographs

with very well defined IFT trails but is seen to be ineffective for analysis of low-SNR kymo-

graphs for the same reasons as the ImageJ plugin [16]. Nair et al. [20] present a kymograph

analysis technique wherein a linear discriminant analysis (LDA)-based classifier is used to

generate a probability map to delineate the IFT trails. The generated probability map gives

the probability of each image pixel belonging to a trail but does not classify the pixel as

belonging to an anterograde or retrograde trail. LDA is a generative classifier and is more

suitable for binary classification (i.e., trail vs. non-trail), whereas our goal is to separate the

trails into different classes based on their direction. Thus, this technique fails to detect most

of the retrograde IFT trails in a low-SNR kymograph dataset such as ours.

A very recent paper by Mangeol et al. [21] describes the working of two tools; the first

tool called KymographClear is used generate kymographs from the TLM videos whereas the

second tool called KymographDirect is used to analyze these kymographs. The drawback

of the analysis tool, KymographDirect, is that it lacks generality and can only be used to

analyze kymographs generated by the first tool, KymographClear. In fact, KymographDirect

is observed to not work on most existing kymographs generated using other techniques such

as the ImageJ plugin [16]. The KymogaphDirect tool also failed to detect many trails due
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to extensive processing of the kymograph image by KymographClear, which resulted in the

removal of many relevant trails from the raw kymograph image.

The method proposed by Mukherjee et al. [22] is a semi-automated technique for IFT

trail detection that is based on a voting algorithm. Their technique is not well equipped

for analysis of kymographs that have a high trail density arising from dense IFT particle

traffic. Since their technique relies on a pixel neighborhood-based voting mechanism, many

irrelevant trails that are essentially background noise, are misclassified as IFT trails. This

limits the capability of their technique to analyze kymographs that contain noisy artifacts

due to the presence of immobile protein particles and particles undergoing diffusion. The

techniques based on Steger’s curvilinear edge detection algorithm described in [1] and [23]

are also observed not to work well on kymographs with IFT trails displaying low intensity

values and noisy artifacts. The techniques described in these papers lay emphasis on a seed-

based, region growing method. In situations where the IFT trails in the kymograph are very

close to one another, two or more IFT trails are labeled as a single trail on account of the

region growing algorithm. If the seeds for the relevant IFT trails are not initialized properly,

the resulting detected trails are often noisy.

The proposed automated kymograph analysis technique presented in this paper addresses

the primary challenges faced by cellular biologists, i.e., (a) identification of IFT trails corre-

sponding to anterograde and retrograde transport in the presence of noisy artifacts arising

from immobile protein particles and particles undergoing diffusion, (b) separation of antero-

grade and retrograde trails, (c) reduction in time taken to analyze kymograph images and

(d) elimination of edge distortion introduced during manual tracing of IFT trails.
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Chapter 3

PROPOSED SYSTEM FOR

AUTOMATED KYMOGRAPH

ANALYSIS

3.1 SYSTEM OVERVIEW

The proposed system, depicted in Figure 3.1, consists of a pipeline for segmentation and

classification of kymograph images into three different types of trails: (a) anterograde trails,

(b) retrograde trails and, (c) stationary trails and/or background folllowed by the computa-

tion of the particle velocities for the anterograde and retrograde trails. The ImageJ package

is first used to generate kymographs from the TLM video streams. The kymograph images

are generated with time along the x-axis and distance along the y-axis. The kymograph

images are subject to contrast enhancement to increase the visibility of faint trails followed

by segmentation and delineation of potential IFT trail pixels. The potential IFT trail pixels

within the enhanced kymograph images characterized using the Gabor wavelet transform

(GWT) and curvelet transform (CT) features. The extracted features in manually labeled
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kymograph images are used to train a support vector machine (SVM)-based classifier to

classify the potential IFT trail pixels into the three aforementioned categories. During the

testing phase, the segmented kymograph image is fed to the SVM classifier and the potential

IFT pixels are classified into the three aforementioned categories. In the subsequent postpro-

cessing phase, the results of the classification are used to extract continuous IFT trajectories

in the kymograph image and compute the velocity associated with each IFT trajectory in

the anterograde and retrograde category.

Figure 3.1: System Overview

3.1.1 FEATURE EXTRACTION

Feature extraction is the most important step in any automated classification system. In the

proposed system, two different types of features, i.e., the Gabor wavelet transform (GWT)

and the Curvelet transform (CT), are used to characterize the potential IFT trail pixels.

These features are used to model two SVM-based classifiers and the results compared to
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existing machine learning techniques from the research literature.

GABOR WAVELET TRANSFORM

The Gabor wavelet transform (GWT), which captures the properties of orientation selec-

tivity, spatial localization and optimal localization in the space and frequency domains, has

been extensively and successfully used in various computer vision and image processing ap-

plications [14]. The frequency characteristics and orientation representations of the GWT

have been observed to be quite similar to those of human visual system and have been found

to be well suited for texture representation and texture discrimination. The GWT-based

features directly from the gray-level images has been successful and widely been applied to

texture segmentation. The default GWT kernel is given by:

ψ=kµ,v
σ2 e

(−k2
µ,vz

2/2σ2)[eikµ,vz − e−σ2/2]

(3.1)

Where: µ and v define the orientation and the scale of the Gabor filters, z = (x, y) and

kµ,v is defined as following form:

kµ,v = kve
iφu

(3.2)

where, kv = kmax/f v and φu = πµ/8, kmax is the maximum frequency, and f is the spacing

factor between kernels in the frequency domain. Usually σ = 2π, kmax = π/2 and f =
√

2.

In this paper, µ ∈ [0, 1... ,7] and v ∈ [1, 2, 3, 4].

The Gabor wavelet representation of a kymograph image is obtained by performing a
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convolution between the image and a family of Gabor filters as described by Eq(3). The

convolution of image I(z) and a Gabor filter ψµ,v(z) can be defined as follows:

Fµ,v(z) = I(z) ∗ ψµ,vz

(3.3)

Where z = (x, y), * denotes the convolution operator, and Fµ,v(z) is the Gabor filter response

of the image with orientation µ and scale v.

Figure 3.2: (a) An ensemble of Gabor wavelets (1.5 octave bandwidth). (b) Gabor wavelet
coverage of the spatial frequency plane. Each ellipse shows the half-amplitude bandwidth
contour dilated by a factor of 2, covering almost the complete support of a wavelet.

In this work, the number of orientations of the GWT is set to 8 and the number of scales

is set to 5. The GWT kernel is oriented at two different directions for extracting the trails

in the two different directions. An orientation of 45◦ is chosen for the anterograde trails and

an orientation of 135◦ is chosen for the retrograde trails.
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Figure 3.3: (a) The magnitude of the GWT representation. (b) The phase of the GWT
representation.

CURVELET TRANSFORM

The basic idea behind the Curvelet transform (CT) is to represent a curve as a superposi-

tion of functions of various lengths and widths obeying the scaling parabolic law: width ∼=

(length)2. Figure 3.4 shows the CT frequency tiling which called the Second Dyadic De-

composition (SDD). The length of the localizing windows (colored blue) is doubled at every

other dyadic sub-band. The CT in continuous domain is defined using coronae and rotations

as shown in Figure 3.4(a). Since the discrete input data is defined on a Cartesian grid, the
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Curvelet transform in the discrete domain is more conveniently described using concentric

squares and shears instead of concentric circles and rotations, as shown in Figure 3.4(b).

The frequency plane is partitioned using radial (circles and squares) and angular (rotations

and shears) divisions. Different scales are obtained by radial division; the smallest scale

defines the finest resolution while the largest scale defines the coarsest resolution. Angular

division divides each scale into different orientation; the maximum number of orientations

was found at the finest resolution and the lesser number of orientations was found at coarsest

resolution.

Figure 3.4: Curvelet transform frequency Tiling (a):Continuous Domain. (b): Discrete
Domain

The CT can be regarded as an extension of the traditional wavelet transform. The CT is

designed to represent edges and other singularities along curves much more efficiently than

the traditional wavelet transform which good at representing point singularities. Figure 3.5

shows edge representation of a curve obtained using the traditional wavelet transform and

the CT. As can be noted, it takes several wavelet coefficients to accurately represent such a

curve whereas the CT needs much fewer coefficients, i.e, the wavelet transform needs three,

six, and twelve coefficients, whereas the CT needs one, two, and four coefficients for the
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largest, intermediate, and smallest values of the scale parameter, respectively.

Figure 3.5: Edge Representations

The wrapping implementation of the curvelet transform [7] relies on the computation of

the coefficient c(j,l,k) in the Fourier domain as:

c(i,j,k) =
∫
f(ω)Uj(S−1

Θl )ei<b,ω>dω (3.4)

where Uj(S−1
Θl ) ) is a smooth frequency window which is supported on a parallelepipedal

region, where the matrix SΘl is a shear matrix of angle Θl and b ' (k12−j, k22−j/2) with

k = (k1, k2). In practice, the frequency domain is tiled with a set of oriented smooth

windows Uj,l called wedges. The wedge-based decomposition results in an coronization of

the frequency domain based on concentric squares and shears which are slightly overlapping

as shown in Figure 3.4(a).
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3.1.2 CLASSIFICATION

SUPPORT VECTOR MACHINE

The classifier used in this approach is the Support Vector Machine (SVM).The SVM is based

on statistical learning theory and aims to determine the locations of linear decision bound-

aries that produce the optimal separation of classes [24]. The SVM generates a hyperplane

between two sets of data for classification. In the case of a two-class pattern recognition

problem where the classes are linearly separable, the SVM selects from among the infinite

number of linear decision boundaries the one that minimizes the generalization error. Thus,

the selected decision boundary will be one that leaves the greatest margin between the two

classes, where margin is defined as the sum of the distances to the hyperplane from the clos-

est points (or feature vectors) corresponding to the samples from the two classes [24]. This

problem of maximizing the margin can be solved using standard Quadratic Programming

(QP) optimization techniques. The data points or feature vectors that are closest to the

hyperplane are used to measure the margin; hence these data points are termed as support

vectors. Consequently, the number of support vectors is small compared to the total number

of data points [24]. Thus the SVM can be regarded as a learning machine that classifies data

by shaping a set of support vectors [25].

If the two classes under consideration are not linearly separable, the SVM tries to find

the hyperplane that maximizes the margin while, at the same time, minimizing a quantity

proportional to the number of misclassification errors. The trade-off between the margin

maximization and misclassification error minimization is controlled by a user-defined con-

stant [24]. The SVM can also be extended to handle non-linear decision surfaces. Boser

et al. [26] propose a method for projecting the input data onto a high-dimensional feature

space using kernel functions [24] and formulating a linear classification problem in that high-

dimensional feature space. A primary benefit of the SVM is the low expected probability of
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generalization errors [27]. Moreover, once the data is classified into two classes, an appropri-

ate optimizing algorithm can be used if needed for feature identification, depending on the

application [24].

The data is mainly linear and is represented in a discriminative manner, which justifies

our choice of using an SVM classifier. The feature vectors are of high dimensionality and

SVMs are known to work better than most classifiers when dealing with feature vectors of

higher dimensionality

Figure 3.6: SVM hyperplane separating the data points.

The SVM was initially designed for binary (two-class) problems. When dealing with

multiple classes, an appropriate multi-class method is needed. Vapnik [24] has suggested

a one-against-all strategy based on comparing one class with all the other classes taken

together. This strategy generates n classifiers, where n is the number of classes. The

final output is the class that corresponds to the SVM with the largest margin, as defined

above. For a multi-class problem one has to determine n hyperplanes. Thus, the one-

against-all(OAA) strategy requires the solution of n QP optimization problems, each of

which separates one class from the remaining classes. Since the aim of the proposed approach
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involves classifying into 3 classes, the problem is one of multi-class classification. Multi-class

classification problems (where n > 2) are commonly decomposed into a series of binary

problems such that the standard SVM can be directly applied. The one-against-all strategy

is applied for classification where to get an n-class classifier, we construct a set of binary

classifiers f1, f2, . . . , fn, each trained to separate one class from rest and then combine them

to obtain multi-class classification.

The initial formulation of the one-against-all method required unanimity among all

SVMs: a data point would be classified under a certain class if and only if that class’s

SVM accepted it and all other classes’ SVMs rejected it. While accurate for tightly clustered

classes, this method leaves regions of the feature space undecided where more than one class

accepts or all classes reject. We have implemented a continuous OAA. It involves using the

continuous values of SVM decision functions rather than simply their signs. The class of a

data point is whichever class has a decision function with highest value, regardless of sign.

This appears to be the most common method for multiclass SVM classification in use today.

Figure 3.7: Continuous OAA
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TRAINING PROCEDURE

For training the SVM model, we first specify the type of features we want to use to build

the model. All slanted lines aligned between 100◦ - 170◦ are marked as retrograde trails, all

slanted lines aligned between 10◦ - 80◦ are marked as anterograde trails, all horizontal trails

which represent stationary particles and vertical trails which could result from a flash applied

during making the videos, are marked as negative instances along with anything that can be

classified as background noise. The feature images for training are derived in the following

manner: We first hand-draw the trails for each of the classes on the kymograph. The regions

hand-drawn are the pixels of interest. The pixel values from the original kymograph are

superimposed at these pixel locations in a separate image and the GWT features [28] or

CT features, depending on the SVM classifier being trained, are computed at these pixel

locations for each individual trail. Figure 3.8 and Figure 3.9 depict the extraction of training

set for GWT features and CT features respectively. The training set consists of 100 examples

for each of the 3 categories (i.e., 300 training examples in total).

Figure 3.8: Feature Image Creation-Gabor Features for anterograde trails

TESTING PROCEDURE

Segmentation of the test image is performed in the following manner for each of the two

SVM classifiers:

19



Figure 3.9: Feature Image Creation-Curvelet Features for retrograde trails

GWT feature-based SVM: The default GWT kernel is oriented at π/2. In order to

extract edges in the specific directions needed for our purpose, the GWT kernel is oriented

at 45◦ to extract anterograde trails and is convolved with the input kymograph image to

obtain a resulting GWT image with edges in that direction. Similarly when the GWT kernel

is oriented at 135◦ and convolved with the original image, it results in a GWT image with

the retrograde trails. The angles of orientation of the GWT kernel are decided by computing

the maximum likelihood of the angular orientation for each class from the training set.

CT feature-based SVM:

The Curvelet transform (CT) has been used in the past for the separation of bidirectional

trails in a kymograph [29]. We have implemented a similar approach for the segmentation

of a test image. We have implemented the CT scheme in MATLAB (The MathWorks) using

CurveLab (http://www.curvelet.org) for the fast discrete CT. The steps of the scheme are

discussed in greater detail.

The capability of the CT to extract directional edge features[30] at different orientations

is exploited for segmenting edge features from a kymograph image. The CT provides details

such as spectral information successfully at different orientations with reduced complexity.

Curvelet decomposition using real coefficients and the wrapping function method is used
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because of its reduced complexity and faster computation. Curvelet transform decomposes

the image in different direction and frequencies in the curvelet domain. As each CT coefficient

cjlk is associated with a particular location (the index k) and a particular direction (the

index l), it is easy to use the CT coefficients to extract a field describing the directions

and locations of major features in the image by the following procedure. We first select

a number of CT levels {j1, . . . , jP}, depending on the size of the image features we are

interested in, typically the width of the edges. The selected levels are usually determined

by trial and error, but it is generally better to include more than one level, as edges may

vary in width and leave traces on several levels. Each selected level, ji, is associated with a

grid Gp = {(k1, k2)|0 ≤ k1 < Ki
1, 0 ≤ k2 < Ki

2} of size Ki
1 ×Ki

2, determined by the discrete

CT. Each curvelet coefficient cjlk is associated with a direction determined by the index l.

Since the number of directions varies with the curvelet level, with the number of directions

doubling with every second level, the coefficients on coarser levels need to be mapped to

all directions on the finest selected level that they overlap with. Now, for each direction l

and location k = (k1, k2) on the finest level jp, we sum up the magnitudes of the curvelet

coefficients. Having computed the magnitude, Mlk, we can now compute the major direction

l0(k) at each grid point by:

l0(k) = arg max
l
Mlk (3.5)

where k ∈ Gp and define the field Ψ(k) = (Ψ1(k),Ψ2(k)), k ∈ Gp as:

Ψ(k) = (Ml0k · cos θl0 ,Ml0k · sin θl0) (3.6)

where θl0 is the angle associated with the direction l0, by the definition of the discrete

curvelet transform. The angle θl0 is taken along the valleys of the curvelets, meaning that

the direction of the field Ψ(k) will be along the edges in the image.
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The directions chosen for the purpose of segmentation in the proposed system were l =

{0, 1, 4, 5} (i.e., capturing edges that occur in the first and third quadrants) for anterograde

trails and l = {2, 3, 6, 7} (i.e., capturing edges that occur in the second and fourth quadrants)

for retrograde trails where l ∈ {0, 1, . . . , 7}. The reason for selecting these quadrants is that

all the anterograde trails in the training set occur in the first and third quadrants and all

the retrograde trails lie in the second and fourth quadrants.

The post segmentation results after CT is applied to extract edges in different directions

is shown in Figure 3.10

Figure 3.10: Post Segmentation Results using the Curvelet Transform (a) Raw Kymograph
(b) Anterograde Trails (c) Retrograde Trails

Post Segmentation

After segmenting the IFT trails in the test image, each trail is fed to the respective SVM

classifier and the classifier assigns it to one of the three aforementioned classes. All the

IFT trails belonging to a certain class are mapped onto a separate image. Three images

are generated after this step, one image for each trail class. Only the first two classes;

anterograde and retrograde are of interest to us, so from here on we only deal with the two

images containing the anterograde and retrograde trails. Next, the Sobel edge operator [31]

is applied on these two images to enhance the trails. The Sobel operator masks are assigned

values such that the gradients along the x and y directions are estimated properly, this

ensures the enhancement of the trails in the required directions. The two images that are
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received as outputs of this process are then mapped onto the original kymograph for each of

the classifiers (see Figure 4.1 & 4.2).

3.1.3 POST-PROCESSING

While comparing the post classification results, we see that the Gabor SVM detects a

few more trails along the retrograde path, but they are staggered or detached whereas for

Curvelet SVM detects fully attached trails. We perform some post processing on the Gabor

SVM results to join the detached line segments.

The post-processing algorithm is used to join detached line segments along the same

projected path and perform line fitting along each of the trails. After fitting line segments

along each trail, the velocity of the trails are calculated. Figures 4.3and 4.4 show results

after joining the staggering line segments and fitting a line segment along each trail. To

join the staggering line fragments, we refer to the method used in [22] (Figure 4.3). First

the two line segments are traced out independently and then they are lined up together if it

is indicated that they belong to the same trajectory. Checking if two line segments belong

to the same trajectory is based on relative orientation between two segments and relative

distance between their end points. The orientation measure, θ , is defined as

θ = θa + θb (3.7)

where θa and θb are angles between the two line segments and the line joining the line

segments and the connecting line. The relative distance between the two line segments is

given by

d/(la + lb) (3.8)

where the lengths of the two line segments are denoted by la and lb, snd d represents the

distance between them. If θ < Tσ and d/(la + lb) > Td where the threshold values Tσ and Td
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are 0.5 and 0.2, respectively, then la and lb are connected. Figure 4.4 shows the final results

after post processing.

3.1.4 VELOCITY-CALCULATION

We use polynomial regression, a form of linear regression to calculate the velocity of each

detected trail. Linear regression[32] is the most basic and commonly used predictive analysis.

Regression estimates are used to describe data and to explain the relationship between one

dependent variable and one or more independent variables. At the center of the regression

analysis is the task of fitting a single line through a scatter plot. Polynomial regression

is a form of linear regression in which the relationship between the independent variable x

and the dependent variable y is modelled as an nth degree polynomial 3.11. Polynomial

regression is considered to be a special case of multiple linear regression. We implement this

approach in matlab using the polyfit function.

Figure 3.11: Regression analysis
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Chapter 4

RESULTS

The main aim of our proposed methods is to reduce the time taken by biologists to manually

analyze kymographs. A major aspect of this work is to train a classification model which

takes in a test image and classifies the different trails into three different classes. The

confusion matrices for GWT-based SVM classification and CT-based SVM classification are

given in Tables 4.1 and 4.2. It is observed that the misclassification rate is very low especially

for the retrograde and negative (stationary particles and background) IFT trails, in both

cases. The misclassification rate is relatively higher for anterograde IFT trails in the case

of GWT-SVM classification and is observed to mainly occur for very small trails which are

mistaken as retrograde trails. However, the misclassification rate is still very low. Figures 4.5

and 4.6 show the velocity measure for each trail that is classified as anterograde or retrograde

respectively. The average velocity over all anterograde trails is measured as 1.85µm/sec

and average velocity over all retrograde trails is given by 3.37µm/sec when the trails are

identified by the Gabor SVM. The average velocity over all anterograde trails is measured as

1.72µm/sec and average velocity over all retrograde trails is given by 3.29µm/sec when the

trails are identified by the Curvelet SVM. When calculated manually, the average anterograde

velocity is 1.75µm/sec and the average retrograde velocity is 3.13µm/sec, bringing the mean
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error to 0.03µm/sec and 0.16µm/sec for anterogrades and retrogrades respectively for the CT-

SVM detected trails and 0.10µm and 0.20µm for anterogrades and retrogrades respectively

for GWT- SVM detected trails.

We extend our experiments to calculate the average velocity for 10 kymographs using

both approaches and notice that the error remains considerably less when compared with

the manually calculated average velocity of the kymographs.Figures: 4.9, 4.10, 4.11 and

4.12.

Figure 4.1: Post Classification Results Using the GWT (a) Raw Kymograph (b) Anterograde
Trails (c) Retrograde Trails

Figure 4.2: Post Classification Results Using the CT (a) Raw Kymograph (b) Anterograde
Trails (c) Retrograde Trails

We compare our approaches with the approach discussed in [20]. In their approach,

they train an LDA classifier to generate a probability map which shows the probability of

each pixel belonging to a trail. They use Gabor filtered images and Frangi vesselness [33]
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Figure 4.3: Post Classification Results (a) Orientation Measure (b) Distance Measure

Figure 4.4: After Post-processing and Line-fitting is Performed on the Gabor SVM results
(a) Raw Kymograph (b) Retrograde (c) Anterograde

measure to first enhance the trails. Then they hand-draw pixel values of interest from these

images and label them as positive pixels and all other pixels are labeled as negative pixels.

These are then used to train an LDA classifier and generate a probabilty map displaying

the probability of each pixel belonging to a trail. We implemented their approach on our

data set and observed that it did well for the anterograde IFT trails but not so well for the

retrograde ones (Figure 4.13). Next, from Figure 4.13, we trace fragmented line segments

along the same projected path for both the LDA generated probability map and the SVM

classified results. The number of trails detected by each is shown in Table 4.3. If we consider

the manual analysis as the baseline method, we see from the table that the SVM classifiers

detect many more trails than the LDA classifier, which does not perform poorly with the

anterograde trails but fails to detect most of the retrograde trails.
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Table 4.1: Confusion Matrix After Classification: GWT-based SVM
Confusion Matrix After GWT-based SVM Classification

Class Anterograde Retrograde Negative
Anterograde 0.70 0.20 0.10
Retrograde 0.02 0.97 0.01
Negative 0.00 0.04 0.96

Table 4.2: Confusion Matrix After Classification: CT-based SVM
Confusion Matrix After Curvelet SVM Classification

Class Anterograde Retrograde Negative
Anterograde 0.86 0.04 0.10
Retrograde 0.12 0.82 0.06
Negative 0.02 0.00 0.98

Number of Trails Detected
Method Used Anterograde Retrograde
Manual(Baseline) 32 31
LDA 25 12
SVM (GWT) 31 35
SVM (CT) 32 33

Table 4.3: Number of Trails Detected by Each Method

Average Localization Error σ
Method Used x-axis y-axis
SVM (GWT): Anterograde 0.69 0.23
SVM (GWT): Retrograde 0.28 0.52
SVM (CT): Anterograde 0.45 0.21
SVM (CT): Retrograde 0.18 0.08

Table 4.4: Average Localization Error: In Terms of Number of Pixels
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Figure 4.14 compares the manually detected lines with the SVM detected lines in both

cases, i.e., the GWT-SVM and the CT-SVM. The green lines show the manually detected

lines and the purple lines show the lines detected by each approach. It is observed that most

lines are detected because of the pixel overlaps shown.The Gaussian filter applied to form the

Gabor images smooths out the edge. We apply non-maxima suppression to the GWT-SVM

classified image before comparing the classifier detected trails detected with the manually

detected trails. Figure 4.14(a). Table4.4 shows average number of pixels by which the trails

detected by each classifier are off from the manually traced trails along the x and y axes. It

is a measure for the average localization error in terms of the number of pixels.

The time taken to identify the trails in a kymograph manually, varies depending on the

clarity of the kymographs. For a kymograph with very clear trails it usually takes around

3-5 minutes for trail detection whereas for weaker kymographs it can take anywhere between

10-15 minutes to detect the trails of a single kymograph. The proposed algorithm takes on

an average 98 seconds for the classification, post-processing and velocity estimation for each

kymograph. Figure 4.18 shows the trails detected by our algorithm for a relatively weaker

kymograph, that is when the trails cannot easily be distinguished from the noisy background

by the naked human eye. Figure 4.18(b) shows the retrograde trails detected by the proposed

algorithm. The lines are faint enough that they can easily be missed while trying to analyze

the kymograph manually. Figure 4.19 shows the probability map generated when the LDA

classifier from [20] is applied on the weak kymograph. It detects most of the anterograde

IFT trails but once again fails to detect the retrograde ones.

We applied the proposed algorithm on the kymograph from [1] and the number of edges

detected are significantly higher compared to the number of edges detected by the algorithm

proposed in their paper as shown in Figure 4.15 and Figure 4.16. Figure 4.17 shows results

to detect anterograde trails using Hough transform and our approach. The method proposed

in [34] once again fails while trying to process noisy kymographs.
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Figure 4.5: (a) Velocity for each identified anterograde trail(Gabor SVM) (b) Velocity for
each identified retrograde trail(GaborSVM)

Figure 4.6: (a) Velocity for each identified anterograde trail(Curvelet SVM) (b) Velocity for
each identified retrograde trail(Curvelet SVM)
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Figure 4.7: (a) Histogram showing velocity measure GWT-SVM detected trails: Anterograde
(b) Histogram showing velocity measure GWT-SVM detected trails: Retrograde

Figure 4.8: (a) Histogram showing velocity measure CT-SVM detected trails: Anterograde
(b) Histogram showing velocity measure CT-SVM detected trails: Retrograde
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Figure 4.9: Average Anterograde Particle Velocity of Ten Kymographs(GWT-SVM) (a) Blue
bar represents manually calculated velocity (b) Yellow bar represents manually calculated
velocity

Figure 4.10: Average Anterograde Particle Velocity of Ten Kymographs(GWT-SVM) (a)
Blue bar represents manually calculated velocity (b) Yellow bar represents manually calcu-
lated velocity
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Figure 4.11: Average Anterograde Particle Velocity of Ten Kymographs(CT-SVM) (a) Blue
bar represents manually calculated velocity (b) Yellow bar represents manually calculated
velocity

Figure 4.12: Average Retrograde Particle Velocity of Ten Kymographs(CT-SVM) (a) Blue
bar represents manually calculated velocity (b) Yellow bar represents manually calculated
velocity
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Figure 4.13: (a) Raw Kymograph (b) Probability Map: LDA classifier (c) Retrograde Trails:
Gabor SVM Classifier+ Post- processing(Proposed Method) (d) Anterograde Trails: Ga-
bor SVM Classifier+ Post- processing(Proposed Method) (e) Retrograde Trails: Curvelet
SVM Classifier(Proposed Method) (f) Anterograde Trails: Curvelet SVM Classifier(Proposed
Method)

Figure 4.14: (a) Gabor SVM (b) Curvelet SVM
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Figure 4.15: [b] Raw kymograph from [1] [a] shows result of our proposed method: Gabor
SVM on [1] [c] shows result of [b]. The red lines depict the lines detected by the algorithms
and the blue lines show the missed out lines.

Figure 4.16: [b] Raw kymograph from [1] [a] shows result of our proposed method: Curvelet
SVM on [1] [c] shows result of [b]. The red lines depict the lines detected by the algorithms
and the blue lines show the missed out lines.
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Figure 4.17: [a] Raw kymograph [b]Hough tranform to detect anterograde trails. Red lines
are the trails detected [c]. The green lines depict the anterograde lines detected by our
algorithm: GWT-based SVM before post processing.

Figure 4.18: (a) Weak Kymograph(Raw) (b) Anterograde Trails: Gabor SVM Classi-
fier(Proposed Method) (c) Retrograde Trails: Gabor SVM Classifier(Proposed Method)

Figure 4.19: (a) Weak Kymograph(Raw) (b) Probability Map: LDA classifier
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Chapter 5

SUMMARY AND CONCLUSIONS

The main aim of our proposed approach is to automate the analysis of kymographs and

document movements and transport as they occur in axons, in cilia, and other cell extensions

(filopodia etc.). The immediate goal is extraction of particle velocities from large data sets

in a reproducible manner and calculating the frequencies of anterograde and retrograde

particles. Our algorithm involves training two SVM classifiers to classify the different types

of trails, segment a test image to classify the different trails in three different groups and

calculate the velocity of these trails. Our algorithm works well for kymographs with very clear

trajectories and also for kymographs where the trails cannot be easily detected. It reduces

human effort and gives continuous instantaneous velocities even when there are multiple

anterograde and retrograde trails which cross each other, hence increasing the complexity.

Our future work will include calculating parameters other than the velocity of the trails, like

the run length, pause time and pause frequency. There are also instances where two trails

merge, this is when the two molecules combined to form one trail. Calculating the diffused

velocity of the merged molecule from this trail is also going to be a significant contribution

to our future work.
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