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Abstract

Ransomware is defined as a type of malware program that infects, locks or takes control

of the users system and demands ransom from the user to undo the damage. Ransomware

detection is an important factor in security of computer systems. However, Zero-day attacks

and polymorphic viruses are not easily detected by signature-based methods. As a result,

need for machine learning based detection arises. The purpose of this work is to determine

result of feature selection on classification methods when used on top of cuckoo sandbox.

Classification algorithms like k-Nearest-Neighnours, Naive Bayes, Support Vector Machines

and Random Forest were evaluated. The dataset for this study consisted over 1584 ran-

somware samples of 11 different ransomware families. Cuckoo sandbox is used to run these

samples and see their real time behavior. This work demonstrated the improvement in accu-

racy obtained using mutual information criteria for feature selection.

Index words: Security, Computer Security, Ransomware, Ransomware Classification,
Windows Ransomware
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Chapter 1

Introduction

While the diversity of malware is increasing, anti-virus scanners cannot fulfill the needs of

protection, resulting in millions of hosts being attacked. According to Kaspersky Labs (2016),

6 563 145 different hosts were attacked, and 4 000 000 unique malware objects were detected

in 2015. In turn, Juniper Research (2016) predicts the cost of data breaches to increase to

$2.1 trillion globally by 2019.

High availability of anti-detection techniques, as well as ability to buy malware on the black

market result in the opportunity to become an attacker for anyone, not depending on the skill

level. Current studies show that more and more attacks are being issued by script-kiddies

or are automated(Aliyev 2010). Also, current static and dynamic methods do not provide

efficient detection, especially when dealing with zero-day attacks. For this reason, machine

learning-based techniques can be used.

In this project we will try to develop proof of concept for the machine learning based malware

classification based on cuckoo sandbox. Cuckoo Sandbox will be utilized for the extraction

of ransomware sample features. This features will be used as an input for the machine

learning algorithms. The goal is to determine which machine learning algorithm accurately

distinguishes the ransomware families with low error rate. The study conducted will allow

building an additional detection module to cuckoo sandbox. However, the implementation

of this module is beyond the scope of this project.
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1.1 What is Ransomware ?

Ransomware is a type of malware that prevents or limits users from accessing their system,

either by locking the system’s screen or by locking the user’s files unless a ransom is paid.

Modern ransomware families like crypto-ransomware encrypt certain files on infected systems

and forces users to pay the ransom through online payment methods to get a decryption key.

It is one among many types of attacks organizations have struggled to deal with over the last

few years. Ransomware gains access to a business or individual’s servers and encrypts the

data. Hackers demand a ransom, typically something that is affordable which an organization

pays, rather than going through the potentially arduous and more expensive processes of

recovering the data through infrastructure safeguards.Two Major classes of ransomware are

Locker-ransomware, it locks the victim out of the operating system making it impossible

to access the desktop and files but does not encrypt the files. The second one, crypto-

ransomware: which encrypts files on the system and forces user to pay a ransom in order to

regain access to the data.

1.2 The Problem

Cybersecurity, also referred to as information technology security, focuses on protecting com-

puters, networks, programs and data from unintended or unauthorized access, change or

destruction. One of the most problematic element of cybersecurity is the quick and con-

stantly evolving nature of security risks. Number of attack perpetrators have always been

bigger than the number of people trying to protect against attacks.

Several companies discovered that fighting for protection was becoming an ever increasing

exercise. The biggest security infrastructure firms like Symantec, MacAfee, Palo Alto, check-

point, etc. united to work in common initiatives, such as developing web apps against DoD

attacks (web apps not in the sense of website but in firewall web apps, also called next-

generation firewalls). One Important thing to pay attention over here is that they do not
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exchange their solutions, they exchange their attacks. This is called SecIntel Exchange.The

whole idea over here is to understand how attacks are done and what types of exploits are

there. However, this process is expensive and time-consuming. While a company has a team

of 10 people to protect, the world will have thousands of people trying to break it. Also,

signature based approaches that are commonly usedc do not provide enough opportunity to

learn and understand threats that can be used in implementing prevention mechanism. In

order to learn and understand malware behavior based techniques that implement dynamic

approach are possible solutions. Given such circumstances, it is desirable to have a system

classify new variants of malware quickly without the overhead of cost and time into families

so that prevention mechanisms can be developed.

1.3 Why Machine Learning

Machine Learning systems automatically learn programs from data. we don’t really code the

program, but it is inferred from the data. Just like trying to mimic how the brain learns.

Machine Learning algorithms can pick up the information collected quickly and give faster

results. The main benefit of Machine Learning algorithms is it will learn and predict based

on experience and results. It means initially if it takes 1 day to learn, next time it will take

20 hours and after that, it will take 12 hours and so on.

1.4 Why Behavior based approach

Signature based detection is an anti-malware approach that identifies the presence of malware

by matching its signature with the database of known signatures. However, it is susceptible

to evasions. Since the signatures are derived from known malwares, this signatures can be

easily evaded by code re-ordering and inserting no-ops. Also signature based attacks cannot

detect polymorphic malwares as the signatures of these new forms is not present in the

database.

Whitelisting is another malware detection technique which permits only approved software
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to install and run. But, this method creates a very strict and rigid rules about what software

can be downloaded and installed. It can create an annoying computer experience where users

are subjected to pop-up warnings constantly. It also limits users ability to easily download

and use new software. Further, whitelisted applications can be vulnerable. For e.g. if you

whitelist a browser then any malware that operate inside the browser will not be detected.

In fact, lot of malware inject themselves into the browser.

Behavior based anti-malware approach monitor behavior of the program to determine if

its malicious. Several type of behavior based detection exist. Common thing about these

techniques is that they make a decision based on the actual behavior. They do not have the

shortcoming of the signature based approaches but they do are susceptible to mimicry attacks

also false positives.Technical indicators revealed with nehavioral analysis can include domain

names, IP addresses, file path locations, registry keys, additional files located on the system

or network. Additionally, it will identify communication with an attacker-controlled external

server for command and control purposes or in an attempt to download additional malware

files. Behavioral Analysis can reveal features which can solve the problem more efficiently

with greater accuracy. Behavior based approach is more recent and more intelligent approach.

1.5 Our Proposal

We propose a system to identify most significant ransomware features based on their sandbox

execution and use them to detect ransomware families. After manually analyzing and reverse

engineering several known ransomware samples we concluded that the key features that could

be used to classify them into their families were Registry Key Operations, API stats, and

Dynamic link libraries.

1.6 Major Contributions

• We propose a framework to identify most significant ransomware dynamic features

and use them to classify ransomware. Mutual Information Criteria helps identify most
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relevant features among a large set of features without reducing the performance of

machine learning classifier.

• We evaluate the accuracy of K-Nearest Neighbour, Naive Bayes, Support Vector

Machine, and Random Forest. We found out that random forest classifier outperforms

Naive Bayes and it is competitive with respect to support vector machine (SVM).

Also, this algorithms are easy to train and adapt.
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Chapter 2

Background

Never before in the history of humankind have people across the world subjected to extortion

on a massive scale as they are today. In recent years, personal use of computers and the

internet has exploded and, along with this massive growth, cybercriminals have emerged to

feed off this burgeoning market, targeting innocent users with a wide range of malware. The

vast majority of these threats are aimed at directly or indirectly making money from the

victims. Today, ransomware has emerged as one of the most troublesome malware categories

of our time. There are two basic types of ransomware in circulation. The most common

type today is crypto ransomware, which aims to encrypt personal data and files. The other,

known as locker ransomware, is designed to lock the computer, preventing victims from using

it. Despite having similar objectives, the approaches taken by each type of ransomware are

quite different. In this research, we will try to some of this approaches.

2.1 Ransomware Evolution

The modern-day ransomware has evolved considerably since its origins 26 years ago with the

appearance of the AIDS Trojan. The AIDS Trojan was released into the unsuspecting world

through snail mail using 5 floppy disks in 1989. Despite the public being unprepared for this

new type of threat all those years ago, the AIDS Trojan was ultimately unsuccessful due to

a number of factors. Back then, few people used personal computers, the World Wide Web

was just an idea, and the internet was mostly used by experts in the field of science and

technology. The availability and strength of encryption technology was somewhat limited

at that time. Along with this, international payments were harder to process than they are
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today.The evolution of ransomware, particularly crypto ransomware, accelerated in recent

years.

Figure 2.1: Timeline of Ransomware Discovered in past 10 years.

Figure 2.1 shows just how many types of encrypting malware researchers have discovered

in the past 10 years. There are numerous variants for each type. It is difficult to map all the

existing ransomware out there because most of the ransomware attacks go unreported.

Ransomware install’s itself on user’s computer via several techniques.Table 2.1 shows

some Notable features of ransomware along with their family names and year. As we look at

the recent history of ransomware, it is useful to consider the overall picture of money payment

extortion threats over the past 10 years to get an idea of where modern-day ransomware

evolved from. Figure 2.2 shows how the market for extortion malware has been divided up
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Table 2.1: Ransomware and their Notable Features.

Name Year Notable Features
GPCoder 2005-2008 Spreads via emails; encrypts a large set of files
Archiveus 2006 First Ransomware to use RSA encryption
WinLock 2010 Blocks PCs by displaying a ransom message
Reveton 2012 Warning purportedly from a law enforcement agency
DirtyDecrypt 2013 Encrypts eight different file formats
CryptLocker 2013 Fetches a public key from the C & C
CryptoWall 2013 Requires TOR browser to make payments
Android Defender 2013 First Android locker-ransomware
TorDroid 2014 First Android crypto-ransomware
Critroni 2014 Similar to CryptoWall
TorrentLocker 2014 Stealthiness:indistinguishable from SSH connections
CTB-Locker 2014 Uses Elliptic Curve Cryptography, TOR and Bitcoins
CryptoWall 3.0 2015 Uses exclusively TOR for payment
TeslaCrypt 2015 Adds the option to pay with PayPal My Cash Cards
Hidden Tear 2015 Open source ransomware released for educational pur-

poses
Chimera 2015 Threatens to publish users personal files
CryptoWall 4.0 2015 Encrypts also filenames
Linux.Encoder.1 2015 Encrypts Linuxs home and website directories
DMA-Locker 2016 Comes with a decrypting feature built-in
PadCrypt 2016 Live Chat Support
Locky Ransomware 2016 Installed using malicious macro in a Word document
CTB-Locker for WebSites 2016 Targets Wordpress
KeRanger 2016 First ransomware for Apples Mac computers
Cerber 2016 Offered as RaaS ( & quote in Latin)
Samas 2016 Pentesting on JBOSS servers
Petya 2016 Overwrites MBT with its own loader and encrypts MFT
Rokku 2016 Use of QR code to facilitate payment
Jigsaw 2016 Press victims into paying ransom
CryptXXX 2016 Monitors mouse activities and evades sandboxed envi-

ronment
Mischa 2016 Installed when PETYA fails to gain administrative priv-

ileges
RAA 2016 Entirely written in Javascript
Satana 2016 Combines the features of PETYA and MISCHA
Stampado 2016 Promoted through aggressive advertising campaigns on

the Dark web
Fantom 2016 Uses a rogue Windows update screen
Cerber3 2016 Third iteration of the Cerber ransomware

8



each year since 2005. While each threat never disappeared entirely, its easy to identify how

preferences shifted from one type of extortion malware to another.

Figure 2.2: Percentage of new families of misleading apps, fake AV, locker ransomware and
crypto ransomware identified between 2005 and 2015.

2.2 Propagation

Carrying out digital extortion using ransomware is a carefully planned and executed process

for cybercriminals. Even a single weakness in the operation could cause the whole scheme to

fail. There are much more elements to a ransomware attack than just the malware.
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2.2.1 Spam email

email spam using social-engineering themes has been the method of choice for distributing all

types of malware including ransomware. Cybercriminals use a botnet to send the spam. These

cybercriminals may also offer a spamming service to other attackers for a fee. Sometimes .src

(Microsoft Windows Screensaver) files are disguised as .pdf with a fake icon, to lure victims

into opening it; in any case, a malware sample is downloaded, and this malware downloads

or drops the ransomware sample.

2.2.2 Downloaders & botnets

This method is one of a number of ways to distribute malware known as downloaders.

Once the downloader infects a computer, its job is to download secondary malware onto the

compromised system. The cybercriminals behind downloaders offer a malware-installation

service onto already compromised computers, at a price to other malware authors. Trojan

botnets have also been known to download ransomware onto computers they have infected.

This is usually done by cybercriminals as a final way of monetizing infected computers that

they control.

2.2.3 Malvertisement

Similarly, malicious advertisements known as malvertisments can get pushed onto legitimate

websites in order to redirect traffic to a site hosting an exploit kit. In one case, we even

observed unintentional cross-contamination as a result of a click-fraud malware infection,

where clicking on the malvertisment led to a ransomware infection. In both cases, cyber-

criminals can use real-time bidding to purchase traffic or ad space of interest that can allow

them to geographically target victims and operate without borders.
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2.2.4 Traffic distribution system (TDS)

A common method used by these distribution services is to buy redirected web traffic from

a Traffic Distribution Service (TDS) vendor and point it to a site hosting an exploit kit.

In a lot of cases, the redirected traffic originates from adult content-related websites. If the

exploit kit is successful in exploiting a vulnerability in the visiting victims computer, it can

lead to what is commonly referred to as the drive-by-download of malware.

2.2.5 Self-propagation

Some ransomware also contains functionality to spread. For example, on Android, there are

some samples that not only lock the device or encrypt files, but employ worm-like capabilities

to spread to all contacts within the devices address book by sending social-engineering SMS

messages.

2.3 Method of Payment

Over the years, the options and preferred methods of payment have changed as different

services became available. In 1989, the AIDS crypto ransomware Trojan demanded payment

by way of a check sent to a post office box in Panama.Since then, other payment methods

have been used by ransomware. These methods include money wire transfers and sending

premium-rate text messages to the attackers number, as seen in Trojan. Ransomlock in

2009. More recently, the use of payment voucher systems such as Paysafecard, MoneyPak,

UKash, CashU, and MoneXy have and are still being used by some ransomware threats.

The arrival of cryptocurrencies in the form of Bitcoins in 2009 shook up the money transfer

landscape.The increasingly widespread acceptance of bitcoins made it easier for victims to

purchase them to make ransom payments and then for the cybercriminals to convert them

back into hard cash later.
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2.3.1 Prefered Method of Payment

In general, we found that crypto ransomware tends to favor cryptocurrencies as the preferred

payment method whereas locker ransomware prefers to use payment voucher systems. A

possible reason for this is because of the way that the two different types of ransomware

work. Locker ransomware locks the computer leaving it largely unusable. Therefore it would

not be possible for victims to buy online currencies or access Bitcoin wallets using the

computer to make payment. If the computer is locked, it would be easier for victims to buy

payment vouchers from a local shop or outlet and then enter the payment code.

2.4 Machine Learning Algorithms

Here we give a theoretical background on machine learning methods.First, the overview of

the machine learning field is discussed, followed by the description of methods relevant to

this study.

2.4.1 Machine Learning Basics

The rapid development of data mining techniques and methods resulted in Machine Learning

forming a separate field of Computer Science. It can be viewed as a subclass of the Artificial

Intelligence field, where the main idea is the ability of a system (computer program, algo-

rithm, etc.) to learn from its own actions. It was firstly referred to as ”field of study that

gives computers the ability to learn without being explicitly programmed” by Arthur Samuel

in 1959. A more formal definition is given by T. Mitchell: ”A computer program is said to

learn 13 from experience E with respect to some class of tasks T and performance measure

P if its performance at tasks in T, as measured by P, improves with experience E.” (Mitchell

1997). The basic idea of any machine learning task is to train the model, based on some

algorithm, to perform a certain task: classification, clusterization, regression, etc. Training is

done based on the input dataset, and the model that is built is subsequently used to make

predictions. The output of such model depends on the initial task and the implementation.
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Possible applications are: given data about house attributes, such as room number, size, and

price, predict the price of the previously unknown house; based on two datasets with healthy

medical images and the ones with tumor, classify a pool of new images; cluster pictures of

animals to several clusters from an unsorted pool.

2.4.2 Supervised and Unsupervised Learning

Here we want to introduce the two machine learning approaches - supervised and unsuper-

vised learning. In Supervised Learning, learning is based on labeled data. In this case, we

have an initial dataset, where data samples are mapped to the correct outcome. The housing

prices case is an example of supervised learning: here we have an initial dataset with houses,

its attributes, and its prices. The model is trained on this dataset, where it knows the correct

results. Examples of supervised learning are regression and classification problems:

• Regression: Predict the value based on previous observations, i.e. values of the

samples from the training set Usually, we can say that if the output is a real number/is

continuous, then it is a regression problem.The main goal of regression algorithms is

the predict the discrete or a continuous value. In some cases, the predicted value can

be used to identify the linear relationship between the attributes. Suppose the increase

in the product advantage budget will increase the product sales. Based on the problem

difference regression algorithms can be used. some of the basic regression algorithms

are linear regression, polynomial regression etc.

• Classification: classification is the problem of identifying to which of a set of cate-

gories a new sample belongs, on the basis of a training set of data containing obser-

vations whose category membership is known. An example would be assigning a given

email into ”spam” or ”non-spam” classes or assigning a diagnosis to a given patient as

described by observed characteristics of the patient (gender, blood pressure, presence

or absence of certain symptoms, etc.).The main goal of classification is to predict the

target class (Yes/ No). If the trained model is for predicting any of two target classes.

13



It is known as binary classification. Considering the student profile to predict whether

the student will pass or fail. Considering the customer, transaction details to predict

whether he will buy the new product or not. These kind problems will be addressed

with binary classification. If we have to predict more the two target classes it is known

as multi-classification. Considering all subject details of a student to predict which

subject the student will score more. Identifying the object in an image. These kind

problems are known as multi-classification problems.

In contrast to Supervised Learning, in Unsupervised Learning, there is no initial labeling

of data. Here the goal is to find some pattern in the set of unsorted data, instead of predicting

some value. A common subclass of Unsupervised Learning is Clustering:

• Clustering: Finds the hidden patterns in the unlabeled data and separates it into

clusters according to similarity. An example can be the discovery of different customer

groups inside the customer base of the online shop.

2.4.3 KNN (K-Nearest Neighbours)

KNN can be used for both classification and regression predictive problems. However, it is

more widely used in classification problems in the industry. KNN algorithm is one of the

simplest classification algorithms. Even with such simplicity, it can give highly competitive

results.

Lets first start by establishing some definitions and notations. We will use x to denote a

feature (aka. predictor, attribute) and y to denote the target (aka. label, class) we are trying

to predict.KNN falls in the supervised learning family of algorithms. Informally, this means

that we are given a labeled dataset consisting of training observations (x, y) and would

like to capture the relationship between x and xy. More formally, our goal is to learn a

function h : X → Y so that given an unseen observation x, h(x) can confidently predict the

corresponding output y.

The value of k plays a crucial role in the prediction accuracy of the algorithm. However,
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selecting the k value is a non-trivial task. Smaller values of k will most likely result in lower

accuracy, especially in the datasets with much noise, since every instance of the training set

now has a higher weight during the decision process. Larger values of k lower the performance

of the algorithm. In addition to that, if the value is too high, the model can overfit, making the

class boundaries less distinct and resulting in lower accuracy again. As a general approach,

it is advised to select k using the formula below:

k =
√
x

In the classification setting, the K-nearest neighbor algorithm essentially boils down to

forming a majority vote between the K most similar instances to a given unseen observation.

Similarity is defined according to a distance metric between two data points. A popular choice

is the Euclidean distance given by d(x, x′) =
√

(x1 − x′
1)

2 + (x2 − x′
2)

2 + ... + (xn − x′
n)2 but

other measures can be more suitable for a given setting and include the Manhattan, Cheby-

shev and Hamming distance. More formally, given a positive integer K, an unseen observation

x and a similarity metric d, KNN classifier performs the following two steps:

• It runs through the whole dataset computing dd between x and each training observa-

tion. Well call the K points in the training data that are closest to x the set A. Note

that K is usually odd to prevent tie situations.

• It then estimates the conditional probability for each class, that is, the fraction of

points in A with that given class label. (Note I(x) is the indicator function which

evaluates to 1 when the argument x is true and 0 otherwise)

P (y = j|X = x) = 1
K

∑
i∈A I(yi = j)

The drawback of the KNN algorithm is the bad performance on the unevenly distributed

datasets. Thus, if one class vastly dominates the other ones, it is more likely to have more

neighbors of that class due to their large number, and, therefore, make incorrect predictions.
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2.4.4 Naive Bayes

It is a classification technique based on Bayes Theorem with an assumption of independence

among predictors. In simple terms, a Naive Bayes classifier assumes that the presence of a

particular feature in a class is unrelated to the presence of any other feature. For example,

a fruit may be considered to be an apple if it is red, round, and about 3 inches in diameter.

Even if these features depend on each other or upon the existence of the other features, all of

these properties independently contribute to the probability that this fruit is an apple and

that is why it is known as Naive. It can be used for both binary and multi-class classification

problems. The main point relies on the idea of treating each feature independently. Naive

Bayes method evaluates the probability of each feature independently, regardless of any

correlations, and makes the prediction based on the Bayes Theorem. That is why this method

is called naive in real-world problems features often have some level of correlation between

each other.

Naive Bayes model is easy to build and particularly useful for very large datasets. Along

with simplicity, Naive Bayes is known to outperform even highly sophisticated classification

methods.

To understand the algorithm of Naive Bayes, the concepts of class probabilities and

conditional probabilities should be introduced first.

• Class Probability: is a probability of a class in the dataset. In other words, if we

select a random item from the dataset, this is the probability of it belonging to a

certain class.

• Conditional Probability: is the probability of the feature value given the class.

1. Class probability is calculated simply as the number of samples in the class divided by

the total number of samples:

P (C) = count(instanceinC)
count(instanceinNtotal)
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2. Conditional probabilities are calculated as the frequency of each attribute value divided

by the frequency of instances of that class.

P (V |C) = count(instancewithV andC)
count(instancewithV )

3. Given the probabilities, we can calculate the probability of the instance belonging to

a class and therefore make decisions using the Bayes theorem:

P (A|B) = P (B|A)P (A)
P (B)

4. Probabilities of the item belonging to all classes are compared and the class with the

highest probability if selected as a result.

Bayes theorem provides a way of calculating posterior probability P (c|x) from P (c), P (x)

and P (x|c). Look at the equation below:

P (c|x) = P (x|c).P (c)
P (x)

P (c|x) = P (x1|c)xP (x2|c)x...xP (xn|c)xP (c)

• P (c|x) is the posterior probability of class (c, target) given predictor (x, attributes).

• P (c) is the prior probability of class.

• P (x|c) is the likelihood which is the probability of predictor given class.

• P (x) is the prior probability of predictor.

The advantages of using this method include its simplicity and easiness of understanding.

In addition to that, it performs well on the data sets with irrelevant features, since the proba-

bilities of them contributing to the output are low. Therefore they are not taken into account

when making predictions. Moreover, this algorithm usually results in a good performance in

terms of consumed resources, since it only needs to calculate the probabilities of the features

and classes, there is no need to find any coefficients like in other algorithms. As already men-

tioned, its main drawback is that each feature is treated independently, although in most

cases this cannot be true. (Bishop 2006).
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2.4.5 SVM (Support Vector Machine)

Support Vector Machine (SVM) is a supervised machine learning algorithm which can be

used for both classification or regression challenges. However, it is mostly used in classifica-

tion problems. In this algorithm, we plot each data item as a point in n-dimensional space

(where n is the number of features you have) with the value of each feature being the value

of a particular coordinate. Then, we perform classification by finding the hyperplane that

differentiates the two classes very well (look at the below snapshot).

Figure 2.3: Support Vector Machine Planes.

Intuitively, we understand that the further from the hyperplane our classes lie, the more

accurate predictions we can make. That is why, although multiple hyperplanes can be found

per problem, the goal of the SVM algorithm is to find such a hyperplane that would result

in the maximum margins.
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Support Vectors are simply the co-ordinates of individual observation. Support Vector

Machine is a frontier which best segregates the two classes (hyper-plane/ line).

The Algorithm can be described as follows:

1. We define X and Y as the input and output sets respectively. (x1, y1), ...(xm, ym) is

the training set.

2. Given x, we want to be able predict y. We can refer to this problem as to learning the

classifier y = f(x, a), where a is the parameter of the classification function.

3. F (x, a) can be learned by minimizing the training error of the function that learns on

training data. Here, L is the loss function, and Remp is referred to as empirical risk.

Remp(a) = 1
m

∑m
1 l(f(xi, a), yi) = Training Error

4. We are aiming at minimizing the overall risk, too. Here, P (x, y) is the joint distribution

function of x and y. R(a) =
∫
l(f(x, a), y)dp(x, y) = Test Error

5. We want to minimize the training error+complexity term. So we choose the set of

hyperplanes, So f(x) = (w, x) + b : 1
m

∑m
i=1 l(w.xi + b, yi) + ||w||2 subject to mini

|w.xi| = 1

SVMs are generally able to result in good accuracy, especially on clean datasets. More-

over, it is good with working with the high-dimensional datasets, also when the number of

dimensions is higher than the number of the samples. However, for large datasets with a lot

of noise or overlapping classes, it can be more effective. Also, with larger datasets training

time can be high. (Jing and Zhang 2010).

• pros :

– It works really well with clear margin of separation.

– It is effective in high dimensional spaces.
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– It is effective in cases where number of dimensions is greater than the number of

samples.

– It uses a subset of training points in the decision function (called support vectors),

so it is also memory efficient.

• cons:

– It doesnt perform well, when we have large data set because the required training

time is higher

– It also doesnt perform very well, when the data set has more noise i.e. target

classes are overlapping

– SVM doesnt directly provide probability estimates, these are calculated using an

expensive five-fold cross-validation. It is related SVC method of Python scikit-

learn library.

2.4.6 RFC (Random Forest Classifier)

Random forest algorithm is a supervised classification algorithm. As the name suggests, this

algorithm creates the forest with a number of trees.

In general, the more trees in the forest the more robust the forest looks like. In the same

way in the random forest classifier, the higher the number of trees in the forest gives the high

accuracy results. Decision tree concept is more to the rule-based system. Given the training

dataset with targets and features, the decision tree algorithm will come up with some set of

rules. The same set rules can be used to perform the prediction on the test dataset. Suppose

you would like to predict that your daughter will like the newly released animation movie or

not. To model the decision tree you will use the training dataset like the animated cartoon

characters your daughter liked in the past movies.

So once you pass the dataset with the target as your daughter will like the movie or not to

the decision tree classifier. The decision tree will start building the rules with the characters
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your daughter like as nodes and the targets like or not as the leaf nodes. By considering the

path from the root node to the leaf node. You can get the rules.

The simple rule could be if some x character is playing the leading role then your daughter

will like the movie. You can think few more rule based on this example. Then to predict

whether your daughter will like the movie or not. You just need to check the rules which are

created by the decision tree to predict whether your daughter will like the newly released

movie or not.In decision tree algorithm calculating these nodes and forming the rules will

happen using the information gain and Gini index calculations.In random forest algorithm,

Instead of using information gain or Gini index for calculating the root node, the process of

finding the root node and splitting the feature nodes will happen randomly. Will look about

in detail in the coming section.

Random Forest PseudoCode:

• Randomly select k features from total m features.

• Among the k features, calculate the node d using the best split point.

• Split the node into daughter nodes using the best split.

• Repeat 1 to 3 steps until l number of nodes has been reached.

• Build forest by repeating steps 1 to 4 for n number times to create n number of trees.

Random forest prediction pseudocode:

• Takes the test features and use the rules of each randomly created decision tree to

predict the oucome and stores the predicted outcome (target)

• Calculate the votes for each predicted target.

• Consider the high voted predicted target as the final prediction from the random forest

algorithm.
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To perform the prediction using the trained random forest algorithm we need to pass the

test features through the rules of each randomly created trees. Suppose lets say we formed

100 random decision trees to from the random forest.

Each random forest will predict different target (outcome) for the same test feature.

Then by considering each predicted target votes will be calculated. Suppose the 100 random

decision trees are prediction some 3 unique targets x, y, z then the votes of x is nothing

but out of 100 random decision tree how many trees prediction is x. Likewise for other 2

targets (y, z). If x is getting high votes. Lets say out of 100 random decision tree 60 trees are

predicting the target will be x. Then the final random forest returns the x as the predicted

target.

This concept of voting is known as majority voting.
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Chapter 3

Related Work

Never before in the history of human kind have people across the world been subjected to

extortion on a massive scale as they are today. In recent years, personal use of computers and

the internet has exploded and, along with this massive growth, cybercriminals have emerged

to feed off this burgeoning market, targeting innocent users with a wide range of malware.

The vast majority of these threats are aimed at directly or indirectly making money from the

victims. Today, ransomware has emerged as one of the most troublesome malware categories

of our time.

[20] This paper proposes a method to extract valuable features of windows PE files. They have

used information gain to calculate the frequencies of raw features and principal component

analysis to reduce the dimensionality of selected features. The architecture of this system has

three main modules, PE-Miner, feature selection and transformation and machine learning

algorithms. PE miner parses the PE tables of all executables to find out all PE header infor-

mation, DLL names, and API functions inside each DLL as raw features. Information Gain

value of each PE header, and calling frequency of each DLL and API function inside DLL

are computed and those raw features with Information Gain values and calling frequencies

greater than a threshold are selected then Principal Component Analysis is applied to fur-

ther transform and reduce the number of features. Finally, machine learning algorithm is

applied to the labelled feature vectors. The authors dataset consisted of 2,36,756 malicious

and 10,592 clean programs. In the final dataset the number of features included are 88 PE

header files, 130 DLL and 2453 API function features to train the system. Three classifica-

tion algorithms SVM, J48 and NB classifiers were used and the detection accuracy of J48
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outperformed the others with an accuracy of 99.6

[18] Shows how to perform behavioral analysis using dynamic approach. The author per-

forms experiment to learn and understand the current malware. The method is divided into

4 steps such as malware collection, behavior identification, custom behavior analysis and

statistical report. Experiment was performed at a higher learning institution that had more

than 4,000 network users. For malware collection the author used two tools Honey Clients

and Anum which ran on the network for 30 days in order to collect thousands of different

malware sample. In the Behavior Identification step two sandboxes, CWSandbox and Anubix

are used. Each sample is ran on both the sandboxes to get variants of malware behaviors.

In the custom behavior analysis all the collected malware samples are grouped in two main

groups, worm and Trojan and their types. There are 3 types of worm and 7 types of Trojans.

Total of 1073 samples were analyzed and manually classified in this experiment. No other

approach for classification was used.

[8] shows how ransomware have evolved considerably in the last few years both in terms

of features and spreading capabilities.The authors also pinpoint future directions of ran-

somware evolution, such as targeting the wearable market (the so-called ransomware).[2]

the authors propose a framework to automatically analyze malware behavior through ML.

In particular, the framework allows researchers to identify novel classes of malware having

similar behavior, and to assign labels to the newly discovered classes.In contrast to that, we

have shown the importance of feature selection to reduce the complexity of machine learning

algorithms without affecting the performance.

In [7] Authors have analyzed 15 different families by showing that large majority of samples

implement locking or encrypting techniques through naive techniques. The authors describe

simple techniques to detect and stop ransomware, such as monitoring abnormal file activities.

[21]In this paper the author tries to make use of different machine learning algorithms namely

Nave Bayes, k-Nearest Neighbor and j48 decision tree to detect zero-day malwares. The

paper sums up the results as: malware authors are easily able to fool the detection engine
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by applying obfuscation techniques. Identifying benign files as malware is becoming very

high, failing to detect obfuscated malware is high, current detection rate is decreasing and

current detectors are unable to detect zero-day attacks. The system unpacks the malware

and disassembles the binary executable to retrieve the assembly program. Then extracts

API calls and important machine-code features from assembly program. Then, maps the

API calls with MSDN library and analyze the malicious behavior to get the API sequence

from the binaries. After getting the API sequences from the binaries the signature database

is updated based on API calls. The extracted sequence is compared to a sequence in the

database and is passed through a similarity module to know if its malware or benign. The

signature database was made using existing malware datasets. They have gathered 51,223

malwares and 15,480 benign executables for the experiment. Experiments were performed

using 8 different machine learning algorithms. It does not need the API sequence of new

unseen malware as by finding out its similarity with malware sequences it is classified into

benign or malware.

[1]HelDroid is a system for recognizing Android ransomware using their typical character-

istic, such as functions to lock screen. The detection results for HelDroid are better due to

the fact that the sophistication, and variance, of ransomware for Android, is quite limited

with respect to that for Windows. [4] shows android malware classification using SVM and

conformal prediction.

[19] This paper discusses various anti-malware approaches and their disadvantages. Signa-

ture based detection is an anti-malware approach that identifies the presence of malware

by matching its signature with the database of known signatures. However, it is susceptible

to evasions. Since the signatures are derived from known malwares, this signatures can be

easily evaded by code re-ordering and inserting no-ops. Also signature based attacks cannot

detect polymorphic malwares as the signatures of these new forms is not present in the

database. Whitelisting is another malware detection technique which permits only approved

software to install and run. But, this method creates a very strict and rigid rules about what
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software can be downloaded and installed. It can create an annoying computer experience

where users are subjected to pop-up warnings constantly. It also limits users ability to easily

download and use new software. Further, whitelisted applications can be vulnerable. For

e.g. if you whitelist a browser then any malware that operate inside the browser will not be

detected. In fact, lot of malware inject themselves into the browser. Behavior based anti-

malware approach monitor behavior of the program to determine if its malicious. Several

type of behavior based detection exist. Common thing about these techniques is that they

make a decision based on the actual behavior. They do not have the shortcoming of the sig-

nature based approaches but they do are susceptible to mimicry attacks also false positives.

Behavior based approach is more recent and more intelligent approach.
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Chapter 4

Tracing Ransomware Behavior

In this Chapter we discuss how we generate the behavioral data used for classification

4.1 Cuckoo Sandbox

The study is based on and targeted to Cuckoo Sandbox. It is clear that to apply the machine

learning algorithms to any problem, it is essential to represent the data in some form. For

this purpose, Cuckoo Sandbox was used. The reports generated by the sandbox, describing

the behavioral data of each sample, were preprocessed, and malware features were extracted

from there. However, it is important to understand the functionality of the sandbox and

the structure of the reports first. Cuckoo Sandbox is the open-source malware analysis tool

that allows getting the detailed behavioral report of any file or URL in a matter of seconds.

According to Cuckoo Foundation (2015), currently, supported file formats include:

• Generic Windows executables

• DLL files

• PDF documents

• Microsoft Office documents

• URLs and HTML files

• PHP scripts

• CPL files
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• Visual Basic (VB) scripts

• ZIP files

• Java JAR

• Python files

• Almost anything else

Cuckoo has a highly customizable modular architecture, allowing it to be used both as a

standalone application as well as integrated into the larger frameworks. The main components

of Cuckoos infrastructure are a host machine (the management software) and a number of

guest machines (virtual or physical machines for analysis). Its operation scenario is quite

straight forward: as soon as the new file is submitted to the server, a virtual environment is

dynamically allocated for it, the file is executed, and all the actions performed in the system

are recorded.

4.2 Reports and Features

To apply machine learning algorithms to the problem, we need to figure out what kind

of data should be extracted and how it should be presented. Some works in the field are

utilizing string properties or file formats properties as a basis for feature representation. For

example, for Windows-based malware samples, the data contained in PE headers is often

used as a base for analysis. However, implementing format-specific feature extraction is not

the best solution, since formats of analyzed files can vary dramatically. (Hung 2011). Other

works rely on the so-called n-grams. Byte n-grams are overlapping substrings, collected in

a sliding-window fashion where the windows of fixed size slides one byte at a time. Word

n-grams and character n-grams are widely used in natural language processing, information

retrieval, and text mining. (Reddy and Pujari 2006). However, such approach has several

disadvantages. The major difficulty in considering byte n-grams as a feature is that the set
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of all byte n-grams obtained from the set of byte strings of malware as well as of the benign

programs is very large and it is not useful to apply classification techniques directly on these.

(Reddy and Pujari 2006). In addition to that, such approach limits the ability of detection of

polymorphic malware. In this case, the samples generating the same behavior will result in

different strings, and, therefore, different n-grams. Because of the above-mentioned reasons,

in this study, it is decided to rely on the actual behavior of the files, that is monitored by

the sandbox. Overall, we can identify the following features extracted by the sandbox:

• Files

• Registry Keys

• Mutexes

• Processes

• IP addresses and DNS queries

• API calls

Below we discuss which of them should be used:

• Files: The reports contain information about opened files, written files, and created

files. This kind of information is good in predicting the malware family since any

malware files trigger many modifications to the file systems. It can be used for the

quite accurate malware classification in most cases.

• Registry Keys: On Windows systems, the registry stores the low-level system settings

of the operation system and its applications. Any sample that is run on the system

triggers a high amount of the registry changes the Cuckoo reports can outline the

registry keys opened, read, written, deleted. The information on the registry modifica-

tions can be a good source of information on the system changes caused by malware

and can be used for malware detection.
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• Mutexes: The mutex stands for the Mutual Exclusion. This is a program object that

allows multiple threads to share the same resource. Every time a program is started, a

mutex with a unique name is created. Mutex names can be good identifiers of specific

malware samples. However, for the families, they cannot result in the accurate result

on a large scale, since the number of mutexes created per sample is dramatically lower

than the dataset. That is why the small change related to the bug or non-started

process would result in the dramatic change of the prediction results.

• Processes: Common identifier of the specific malware sample is the name of the

created process. However, very rarely it can be used for identification of the malware

family since in the common cases the process names are the same as the hash of the

sample. As an alternative, the malware sample can inject itself into the system process.

That is why this feature is bad for the family identification.

• IP addresses and DNS queries: Cuckoo provides information about the network

traffic in the PCAP format, from which the data about contacted IP addresses as well

as DNS queries can be extracted. This data accurately identifies the IP addresses of

the command and control servers of attackers and, therefore, can accurately identify

the malware family in most cases. However, often the attackers change the domain

names or IP addresses of their servers or spoof them. Therefore, it is unreliable to rely

solely on this kind of information.

• API calls: API stands for Application Programming Interface and refers to the set

of tools that provide an interface for communication between different software com-

ponents. API calls are recorded during the execution of the malware and refer to the

specific process. They outline everything happening to the operating system, including

the operations on the files, registry, mutexes, processes and other features mentioned

earlier. For example, API calls OpenFile, OpenFileEx, CreateFile, CopyFileEx, etc.

define the file operations, calls OpenMutex, CreateMutex and CreateMutexEx describe
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mutexes opened and created, etc. API call traces present the wide description of the

sample behavior, including all the properties mentioned above. In addition to that,

they include a wide set of distinct values. Moreover, they are simple to describe in

numeric format, and that is why they were chosen as features. Here, the feature set

will be defined by the number of unique API calls and the return codes.

4.3 System Overview

This system uses Cuckoo as its dynamic analysis component. In detail, we first dynamically

analyze the ransomware samples in a sanbox environmeent. After executing the sample

cuckoo generates a report from which we used the following features :

• Windows API calls (i.e., the traces of invocation of native functions and windows API

calls).

• Registry Key Operations (in particular which registry are read opened and written).

• Dll Files Used. (which Dll files are used).

• Extracted Stings

After the monitoring phase a feature selection algorithm is applied to select the most

relevant features. Finally these feature matrix is used in the SVM, Naive Bayse, KNN and

Ransom Forest Classifier which returns the family name.

4.4 Dataset

The ransomware samples in our dataset were downloaded from VirusShare a website that

maintains a continuously updated database of malware for several OSes. Table 5.2 reports

the full list of ransomware families used for our experiments.To analyze the samples we

used the Cuckoo Sandbox, a well-known tool to automate malware analysis. The dataset

consists of 1584 total ransomware samples. We tried to collect both old and new variants of
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Figure 4.1: SandBox Training and Analysis

windows ransomware. There are variations in AV vendors naming strategy, therefore, it was

not easy to get a common name for each ransomware family. So we used a software called

Auto Malware Labelling to get the labels for ransomware.

4.5 Sandbox

The System used during execution was Windows XP 32 bit with Microsoft office, adobe

viewer and some random word and images(.jpeg,.png) stored in different directories. We

used this version of Windows as its weaker security protections enables us to observe more

ransomware behavior. No other user application was currently running in the machine while

analyzing the malware and the system was not actively used by any other people. Before

we tested next ransomware sample we restored the state of the virtual machine back to the

original/safe state. We did not have network connectivity to the virtual machine and focused

mainly on host-based features.
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Figure 4.2: Number Of Ransomware

4.6 Preprocessing of Data

All the reports generated by the cuckoo sandbox were in JSON (JavaScript Object Notation)

format. The reports had a lot of data into it and we were particularly interested in certain

dynamic features. So these data had to be preprocessed. Figure 4.3 shows an example of how

the JSON file looked.

We build a feature parser that retrieved all these reports and generated a super label

which had all the API stats names, DLL files names and RegKey names from the 1584

ransomware sample.

Then we created a matrix with the column names as this SuperLabel and each row for each

ransomware sample with ’1’ denoting the presence of that feature in that report and ’0’

denoting the absence of that feature in that report.Table 4.1 shows the details and number
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Figure 4.3: Example of code used for API Labels extraction
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of features in the DataMatrix. After analyzing all the samples of ransomware total number

of feature we collected was 15,967. Out of this features top 1521 features belonged to the

following general category.

Table 4.1: Number Of Features and their details.

Feature Contained Deatils Total
Number

Api Files the traces of invocation of native functions and windows
API calls

246

Registry Key Operations which registry are read, opened, and written 475
Dll Files Used which DLL files are opened, read and written 650
Embedded Strings String used by the ransomware 150

Total 1521

Figure 5.1 shows how the JSON file is parsed to get the labels from all the JSON reports.

Since we have a huge number of feature it does not mean that all of them contribute to the

classification algorithm. As a result, we need to perform feature selection. Feature selection

enables us to reduce the number of features and build simple machine learning algorithms.

It also reduces the training time and increases accuracy considerably.

We consider only the presence or absence of that particular feature. Hence, for these

binary features, the Mutual Information criterion is a good method to select the most

relevant ones, since it allows us to quantify how much discrimination each feature adds to

the classifier. Considering that X and Y are two discrete random variables with a joint

probability mass function p(x, y) and marginal probability mass functions p(x) and p(y),

the Mutual Information MI(X, Y ) is defined as the relative entropy between the joint

distribution and the product of the marginal distribution :

MI(X, Y ) =
∑

x∈X
∑

y∈Y p(x, y) log p(x,y)
p(x).p(y)
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Figure 4.4: Example of Json report obtained from cuckoo sandbox
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Chapter 5

Evaluation

Here we discuss the experimental evaluation to access the accuracy to detect and classify

ransomware by measuring the performance and the detection rate of the classifier compared

to other machine learning techniques. We used recursive feature elimination to select the

most relevant features for all the algorithms.

Figure 5.1: f-score of algorithms without applying any feature selection algorithm.

5.1 Comparison with Feature Selection

We evaluated the performance of the 4 machine learning classifiers with the number of

features selected with the recursive feature elimination criteria. we explored between 50 and
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1500 features to see which combination performs better. For each value explored, we created

100 random splits of the whole dataset with 70% of the samples for training and 30% as test

samples.

Figure 5.2: f-score after applying feature selection algorithm with top 2000 features.

5.1 shows the f-score of all the algorithms without applying any feature selection algorithm

and 5.2 shows the f-score of all the algorithms after applying feature selection with top 2000

features. It can be observed that SVM and RFC are competitive with each other having

very good f-score of 0.84 and 0.87 respectively. Also in SVM algorithm we can see a great

improvment from 0.34 without feature selection to 0.84 with feature selection.

By looking at 5.2, it is also interesting to observe that the maximum f-score of the

algorithms is achieved for top 2000 features. Thus, adding more features to the classifiers

does not improve the accuracy. This result shows the importance of feature selection to reduce

the complexity of the machine learning algorithms without affecting the performance.

From the table 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 Accuracy of K nearest neighbor,

Naive Bayes, SVM and RFC without feature selection and with feture selection can be better
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compared. We can see that mulutual information criteria allows us to select important and

relevant features which results in accuracy to improve. The accuracy is significantly high for

SVM. But overall Random Forest classifier has the highest accuracy.

Class Name precision recall f1-score support
Cbtlocker 0.67 0.25 0.36 8
Crilock 0.57 0.28 0.37 72
Crypto Wall 0.25 0.28 0.26 18
Crypto locker 0.26 0.26 0.26 47
Cryptor 0.25 0.3 0.27 121
Kovter 0.6 0.25 0.35 24
Reveton 0.24 0.35 0.29 66
Trojan-ransom 0.3 0.32 0.31 136
Virlock 0.5 0.2 0.29 5
Weelsof 0.5 0.2 0.29 5
Zusy-ransomware 0.29 0.27 0.28 26
avg/total 0.34 0.3 0.3 528

Table 5.1: Precision, recall and f-score without feature selection of KNN

Class Name precision recall f1-score support
Cbtlocker 0.75 0.38 0.5 8
Crilock 0.78 0.5 0.61 72
Crypto Wall 0.41 0.39 0.4 18
Crypto locker 0.44 0.47 0.45 47
Cryptor 0.43 0.5 0.46 121
Kovter 0.73 0.46 0.56 24
Reveton 0.38 0.48 0.43 66
Trojan-ransom 0.51 0.54 0.52 136
Virlock 0.67 0.4 0.5 5
Weelsof 0.67 0.4 0.5 5
Zusy-ransomware 0.57 0.46 0.51 26
avg/total 0.52 0.49 0.5 528

Table 5.2: Precision, recall and f-score with feature selection of KNN

39



Class Name precision recall f1-score support
Cbtlocker 0.67 0.25 0.36 8
Crilock 0.58 0.29 0.39 72
Crypto Wall 0.21 0.22 0.22 18
Crypto locker 0.27 0.28 0.27 47
Cryptor 0.24 0.28 0.26 121
Kovter 0.56 0.21 0.3 24
Reveton 0.24 0.33 0.28 66
Trojan-ransom 0.28 0.32 0.3 136
Virlock 0.5 0.2 0.29 5
Weelsof 0.5 0.2 0.29 5
Zusy-ransomware 0.26 0.23 0.24 26
avg/total 0.33 0.29 0.29 528

Table 5.3: Precision, recall and f-score without feature selection of Naive Bayes

Class Name precision recall f1-score support
Cbtlocker 0.67 0.25 0.36 8
Crilock 0.64 0.42 0.5 72
Crypto Wall 0.38 0.33 0.35 18
Crypto locker 0.35 0.38 0.37 47
Cryptor 0.34 0.41 0.38 121
Kovter 0.69 0.38 0.49 24
Reveton 0.28 0.39 0.33 66
Trojan-ransom 0.42 0.43 0.42 136
Virlock 0.5 0.2 0.29 5
Weelsof 0.5 0.2 0.29 5
Zusy-ransomware 0.5 0.35 0.41 26
avg/total 0.43 0.4 0.4 528

Table 5.4: Precision, recall and f-score with feature selection of Naive Bayes
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Class Name precision recall f1-score support
Cbtlocker 0.67 0.25 0.36 8
Crilock 0.62 0.33 0.43 72
Crypto Wall 0.21 0.22 0.22 18
Crypto locker 0.29 0.30 0.29 47
Cryptor 0.31 0.35 0.33 121
Kovter 0.60 0.25 0.35 24
Reveton 0.27 0.38 0.32 66
Trojan-ransom 0.34 0.38 0.36 136
Virlock 0.50 0.20 0.29 5
Weelsof 0.50 0.20 0.29 5
Zusy-ransomware 0.29 0.27 0.28 26
avg / total 0.37 0.34 0.34 528

Table 5.5: Precision, recall and f-score without feature selection of SVM

Class Name precision recall f1-score support
Cbtlocker 1.00 0.50 0.67 8
Crilock 0.97 0.86 0.91 72
Crypto Wall 1.00 0.78 0.88 18
Crypto locker 0.75 0.85 0.80 47
Cryptor 0.74 0.87 0.80 121
Kovter 1.00 0.79 0.88 24
Reveton 0.90 0.83 0.87 66
Trojan-ransom 0.82 0.86 0.84 136
Virlock 1.00 0.60 0.75 5
Weelsof 1.00 0.80 0.89 5
Zusy-ransomware 1.00 0.81 0.89 26
avg / total 0.86 0.84 0.84 528

Table 5.6: Precision, recall and f-score with feature selection of SVM
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Class Name precision recall f1-score support
Cbtlocker 1.00 0.62 0.77 8
Crilock 0.90 0.65 0.76 72
Crypto Wall 1.00 0.61 0.76 18
Crypto locker 0.54 0.68 0.60 47
Cryptor 0.53 0.71 0.61 121
Kovter 1.00 0.62 0.77 24
Reveton 0.75 0.68 0.71 66
Trojan-ransom 0.69 0.72 0.70 136
Virlock 1.00 0.40 0.57 5
Weelsof 1.00 0.40 0.57 5
Zusy-ransomware 1.00 0.65 0.79 26
avg / total 0.73 0.68 0.69 528

Table 5.7: Precision, recall and f-score without feature selection of RFC

Class Name precision recall f1-score support
Cbtlocker 1.00 0.62 0.77 8
Crilock 0.95 0.88 0.91 72
Crypto Wall 1.00 0.83 0.91 18
Crypto locker 0.82 0.85 0.83 47
Cryptor 0.79 0.88 0.83 121
Kovter 1.00 0.83 0.91 24
Reveton 0.87 0.88 0.87 66
Trojan-ransom 0.85 0.89 0.87 136
Virlock 1.00 0.80 0.89 5
Weelsof 1.00 0.80 0.89 5
Zusy-ransomware 1.00 0.85 0.92 26
avg / total 0.87 0.87 0.87 528

Table 5.8: Precision, recall and f-score with feature selection of RFC
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Chapter 6

Limitations and Future Work

In our experiments, we have shown that even if the initial set of features was rather large

(around 31, 000), in the end only 2000 have been shown to be sufficient. One important

result that we were able to provide is that recursive feature elimination is very effective in

deriving the most important features. In particular, the registry key and API calls are the

two classes with most relevant features.

A first limitation concerns the analysis, and detection, of those samples of ransomware

that are silent for some time, or that wait for the user to do something. To mitigate this

ransomwares behavior, a solution is to inject some real, or script-generated, user actions into

the sandboxed environment. Finally, note that the dataset consists of 1584 working samples

of ransomware belonging to 11 different classes. We analyzed only those ransomware which

could run properly.

Dynamic Solution should take into account and reduce the time of feature analysis to be as

short as possible. Also should be able to distinguish between actions performed by legitimate

encryption software and a crypto-ransomware. In any case, we believe that dynamic analysis

is needed to improve the classification of ransomware.
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