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Abstract

The spanning k-tree for bounded k is a notion extended from the spanning tree of a graph,

which serves many applications ranging from network reliability to machine learning. k-

trees are intimately related to graphs of bounded tree width; problems involving k-trees

are potentially have efficient solutions. However, on given general graphs, the problem to

produce a maximum spanning k-tree (MSkT) is NP-hard, even for k = 2, and remains

intractable for many well-known restricted families of graphs.

This thesis investigates effective models derived from MSkT, where efficient algorithms

are designed to compute optimal and near optimal solutions with different objective func-

tions defined on the models. The development of the models is motivated by the increasing

real-world interests that seek answers about complex relations from given input data. This

research is of particular interest to coping with the computational intractability that rou-

tinely arises from problems in many emerging applications, such as bioinformatics, machine

learning, big data analytics, and social networks. The success of the models has been based

on non-conventional, non-trivial graph metrics that can well characterize many application

problems and can lead to efficient graph optimization algorithms.
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Chapter 1

Introduction

Treewidth is an important metric on graphs to measure the degree to which a graph is tree-

like. Stemming from the work in graph minors [Robertson and Seymour, 1986], treewidth

and its associated technical notion of tree decomposition have provided useful approaches to

cope with the computational intractability for a large number of graph-theoretic problems

[Arnborg, 1985; Arnborg and Lagergren, 1991; Bern et al., 1987; Bodlaender, 1988; Cour-

celle, 1990; Matousek and Thomas, 1992; Eppstein, 1999; Demaine and Hajiaghayi, 2008].

Typically, on input graphs of treewidth bounded by constant integer k ≥ 1 (along with a

tree decomposition), many NP-hard problems can be solved in polynomial O(nO(k)) or even

linear or quadratic time. However, rather than taking a graph of bounded treewidth as

input, graph problems formulated for more sophisticated applications are often required to

produce such a graph as output. One such problem is to take as input an unrestricted graph

and produce a spanning subgraph, called a spanning k-tree, as output.

A generalization of the tree concept [Beineke and Pippert, 1971; Rose, 1974], the notion of

k-tree is intimately related to graphs of bounded treewidth. In fact, a graph has treewidth at

most k if and only if it is a subgraph of a k-tree [Bodlaender, 1993]. The maximum spanning

k-tree (MSkT) problem seeks to produce a spanning k-tree that maximizes the total weight

of edges contained in the desired k-tree [Bern, 1987]. The problem MSkT models a wide

range of applications, including network deployment [Bern, 1987], communication reliability

[Cai and Maffray, 1993; Cai, 1995; Liao and Zhang, 2009], and statistical network learning

[Karger and Srebro, 2001; Srebro, 2001; Bradley and Guestrin, 2010]. However, MSkT is

NP-hard even for k = 2 [Bern, 1987; Cai and Maffray, 1993] and remains inherently hard for
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many constrained families of graphs [Cai and Maffray, 1993; Liao and Zhang, 2009] including,

for example, the families of split graphs, graphs with maximum degree at most 3k + 2, and

planar graphs (for k = 2).

Unlike the problems investigated in the past more than three decades, where computa-

tion was often based on given graphs of small tree width, newer, more challenging research

problems often seek to discover such graphs from large scale yet often unstructured data.

However, due to the immense space of possible graphs, discovering an optimal or near op-

timal graphs that can characterize seamlessly the input data is formidable even for tree

width ≤ 2. Therefore, beside the tree width, it is necessary to find constraints that can be

imposed on the graphs, where the constraints are from intrinsic properties with respect to

a specific problem. This thesis summarizes the studies of discovering tree width bounded

graphs, specifically, spanning k-tree graphs, with various constraints on the graphs. Some

of the constraints, such as single backbone constraint and multiple backbones constraint

are motivated by the characteristics of the problems in computational biology and machine

learning. While other constraints, e.g., spanning tree constraint, are obtained from analyzing

the existing real data.

This thesis begins by introducing the concept of k-tree on the family of backbone graphs

[Ding et al., 2016c], which contain a labeled Hamiltonian path that the produced maximum

spanning k-tree is required to include. Spanning k-trees on backbone graphs can ideally

model sophisticated yet tameable structures imposed on linear lists. We then examine the

special properties of spanning k-tree on the backbone graphs. Efficient algorithms and their

optimality are discussed in the following sections.

We also relate the graph theory of backbone k-trees to linguistic grammars [Ding et al.,

2014a]. Chapter 3 introduces a class of novel stochastic grammars, called stochastic k-tree

grammar (SkTG), for the analysis of context-sensitive languages. With the new grammar

rules, co-occurrences of distant terminals are characterized and recursively organized into

k-tree graphs. It is shown that probabilistic analysis of k-trees over strings are computable
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in polynomial time nO(k).

Chapter 4 introduces a method, based on backbone k-tree, to tackle a key step in the

RNA 3D structure prediction problem: the prediction of the nucleotide interactions that

constitute the desired 3D structure [Ding et al., 2015]. The backbone k-tree is adopted to

tightly constrain the nucleotide interaction relationships considered for RNA 3D structures.

It is shown that the new model makes it possible to efficiently compute the optimal set

of nucleotide interactions (including the non-canonical interactions in all recently revealed

families) from the query sequence along with known or predicted canonical basepairs. The

preliminary results indicate that in most cases the new method can predict with a high

accuracy the nucleotide interactions that constitute the 3D structure of the query sequence.

In the chapter that follows, we proceed to present our works for atomic-grain 3D struc-

ture prediction from single RNA sequence [Ding et al., 2016b]. Through modeling the RNA

3D structure as a collection of interconnected geometric motifs formed by selected quadru-

plets (4-cliques) of nucleotides. A two-step process is used in this work. Both canonical

and non-canonical interactions between nucleotides are first predicted using the method il-

lustrated in the earlier chapter and organized into a non-geometric 3-tree graph. Then a 3D

model is computed by optimally assigning to 4-cliques in the predicted graph with geometric

motifs identified from a knowledge base. Because both steps utilize exact graph-theoretic

algorithms, the new method proves quite effective. The preliminary results show the decent

performance of the method for 3D structure prediction on RNA sequences including those

of length beyond 100 nucleotides.

The last chapter of the thesis describes our preliminary work of using k-tree model to

learn Markov or Bayesian networks. We intend to address the under performance issue in

Markov/Bayesian network learning due to its computational intractability with the notion

of k-tree and its potentially efficient algorithms. The aims of this project also include the

investigation of the tractability for a class of problems associated with k-tree optimization

and the translation of learned networks of correlations into causal relationships. This thesis
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discusses the preliminary ideas of linking the k-tree model with network learning and gene

network learning for causality inference in cancer bioinformatics.
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Chapter 2

Maximum Spanning k-Trees on Backbone Graphs

In this chapter, we investigate efficient algorithms for MSkT on the family of graphs that

always contain a labeled Hamiltonian path (calledbackbone graphs). We tailor the problem

MSkT for such graphs to require the output spanning k-tree produced by MSkT algorithms

to contain the Hamiltonian path.

Spanning k-trees on backbone graphs can ideally model sophisticated yet tameable struc-

tures imposed on linear lists, such as neurocognitive linguistic sentences and bio-molecular

sequences, both of great interest in biomedical research. In particular, this current work is

initially motivated by an algorithmic need from research in bio-molecule 3D structure predic-

tion, one of the most challenging areas in bioinformatics where algorithm efficiency is still a

bottleneck toward deliverable solutions [Zhang, 2008; Roy and Zhang, 2012; Abual-Rub and

Abdullah, 2008; Istrail and Lam, 2009; Leontis and Westhof, 2012b; Rangwala and Karypis,

2010]. Nevertheless, the authors, it has recently been observed [Xu, 2005; Xu and Berger,

2005; Song et al., 2005; Xu et al., 2007; Huang et al., 2008b; Shareghi et al., 2012] that known

protein and RNA 3D structures in PDB [Berman et al., 2000a] overwhelmingly have small

treewidth in their interaction topology graphs. Thus MSkT on backbone graphs turns out to

be an appropriate model for building 3D molecular structures. In particular, given a molecule

sequence containing n residues, we can construct a (complete) graph of n vertices forming

a Hamiltonian path and edges for potential interactions among non-consecutive residues. A

yielded maximum spanning k-tree from such a complete graph consists of the backbone and

most plausible residue-residue interactions subject to the k-tree topology, which can be used

as a basis for a 3D construction (see Figure 2.1). Therefore, efficient algorithms for MSkT
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Figure 2.1: An illustration for the role of the (backbone) maximum spanning k-tree problem
in RNA tertiary structure prediction. (a) The tertiary structure of an RNA molecule example
(PDB ID: 1L2X) with 28 nucleotides; (b) a backbone graph for the RNA sequence, with edges
corresponding to residue-residue interactions in the known tertiary structure (all other possible
edges are not shown); (c) a maximum spanning partial k-tree, k = 3, found for the backbone
graph, represented in a tree topology of (k + 1)-cliques (see section 3); (d) 3D geometric model of
the maximum spanning k-tree with one tetrahedron for every 4-clique; and (e) with non-backbone
geometric lines removed, the folding of backbone is the predicted preliminary 3D structure (to be
refined).

on backbone graphs become significant to feasible 3D structure prediction from molecular

sequences.

In this chapter, we reveal several important properties possessed by spanning trees on

backbone graphs, which have allowed us to develop an efficient dynamic programming algo-

rithm for MSkT on backbone graphs. The time and space complexities of the algorithm are

O(k(k + 1)k+2nk+1) and O(2k+1nk), respectively. We further show evidence that the nk+1

factor in the time complexity is unlikely to be improved. First, we prove that, when the

objective function is sum of weights on (k + 1)-cliques in the k-tree, the problem remains

NP-hard and W[1]-hard, therefore excluding the parameterized tractability for MSkT on

backbone graphs. Second, reduction in the exponent k + 1 of nk+1 would meet with the
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barrier to improve the efficiency of context-free language parsing. On the other hand, we

point out that both the time and space complexities of our algorithm are suitable for its

implementation in many situations of the biological real world, where n ≤ 250 and k ≤ 4.

2.1 Preliminaries

Definition 2.1.1. [Beineke and Pippert, 1971] Let k ≥ 1 be an integer. A k-tree is a graph

that can be generated via the following recursive steps:

1. The clique Kk+1 is a k-tree (of k + 1 vertices);

2. Let G be a k-tree (of n vertices). Adding a new vertex to G forms a new Kk+1 (with

any k-clique Kk already existing in G) results in a k-tree (of n+ 1 vertices).

We note that the special case of k-tree when k = 1 is simply the tree under the usual

sense. In addition, according to [Bodlaender, 1993], a graph has tree width ≤ k if and only

if it is a subgraph of a k-tree.

Definition 2.1.2. Let G = (V,E) be a graph and k ≥ be an integer. A spanning k-tree of

G is a k-tree that is a spanning subgraph of G.

For k = 1, a spanning k-tree is a spanning tree under the usual sense. Like in the

spanning tree case, there may be many spanning k-trees for a given graph. Optimization

problems can be defined to find a spanning k-tree achieving the optimal value of some

objective function. For spanning k-trees, various objective functions may be formulated. The

traditional maximum spanning tree MST problem has its objective function as obj(T ) =∑
(u,v)∈T ω(u, v), the sum of edge weights ω(u, v) on the spanning tree T . We may consider

the sum to be defined based on how the tree can be formed:

obj(T ) = obj(T ′) + ω(x, y)
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where tree T is formed from tree T ′ and new vertex y that forms an edge with some vertex

x already in T ′. Because spanning tree is the special case of spanning k-tree when k = 1, we

generalize the idea of objective function for spanning k tree as follows.

Let k-tree G be formed from k-tree G′ and new vertex xk+1 that forms a (k + 1)-clique

with some k-clique {x1, x2, . . . , xk} already in G′. Then

obj(G) = obj(G′) + λ( E(x1, x2, . . . , xk, xk+1) ) (2.1)

where E(x1, x2, . . . , xk, xk+1) = 〈ω(x1, x2), ω(x1, x3), . . . , ω(xk, xk+1)〉, i.e., the m-tuple of

weights of all edges in the (k + 1)-clique {x1, x2, . . . , xk, xk+1}, for m = 1
2k(k + 1), and

λ is a function: ⋃∞m=1 Rm
≥0 → R≥0.

We do not restrict the class which the function λ in formula (2.1) belongs to, so it can

cover a wide ranges of problems involving spanning k-trees. For example, when k = 1 and

λ is set the identity function, formula (2.1) defines the objective function for the maximum

spanning tree problem.

In particular, the maximum spanning k-tree problem previously investigated in [Bern,

1987; Cai and Maffray, 1993; Srebro, 2001; Liao and Zhang, 2009] has the objective function

formulated by (1) with

λ(〈ω(x1, x2), ω(x1, x3), . . . , ω(xk, xk+1)〉) =
k∑
i=1

ω(xi, xk+1)

i.e., the total weight sum of all edges in the spanning k-tree.

In many applications however, the sum of “weights” of the (k + 1)-cliques contained in

a spanning k-tree may be more interesting. Such objective functions can be appropriate

for applications modeled by the spanning k-tree, because a real-world weight function on

a (k + 1)-clique may not simply be replaced with the sum of edge weights in the clique.

This is particularly true in the bio-molecule structure modeling for which interaction energy

functions tend to be multi-bodies instead of binary.
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Definition 2.1.3. Assume function λ : ⋃∞m=1 Rm
≥0 → R≥0. Then problem MSkTλ problem

is, given any integer k ≥ 1 and graph G = (V,E) with edge weight function ω : E → R≥0,

to find a spanning k-tree H = (V, F ) and F ⊆ E, which maximizes objective function∑
κ∈H λ(E(κ)) (where the notation κ ∈ H indicates that the (k + 1)-clique κ belongs to the

spanning k-tree H).

The earlier mentioned the maximum spanning k-tree problem MSkT investigated in

[Bern, 1987; Cai and Maffray, 1993; Srebro, 2001; Liao and Zhang, 2009] is MSkTλ problem

for a simple case of λ. It was proved NP-hard for every fixed k ≥ 2 [Bern, 1987], giving

strong evidences that the problems MSkTλ, for non-trivial functions λ, are not tractable

for any constant bound k ≥ 2 on general graphs. In this chapter, we investigate efficient

algorithms for MSkTλ on the family of graphs with a labelled Hamiltonian path, which are

of interest to biomedical informatics research.

Definition 2.1.4. A graph G = (V,E), where V = {1, 2, . . . , n}, is a backbone graph if

E = D ·∪ A, i.e., the edges are the disjoint union of two edge sets D and A, such that D =

{(i, i+ 1) : i = 1, 2, · · · , n−1}. And edge set D is called the backbone of G. Accordingly, the

edges in D and the edges in A are called backbone and non-backbone edges of G respectively.

We will also use the following terminologies in this chapter. A backbone k-tree is a

backbone graph that is a k-tree. A spanning k-tree on a backbone graph is a spanning k-tree

of the graph which contains the backbone. We tailor Definition 2.1.3 for backbone graphs to

require that the produced spanning k-trees to contain the backbone (i.e., the Hamiltonian

path).

Definition 2.1.5. Assume function λ : ⋃∞m=1 Rm
≥0 → R≥0. Problem MSkTλ on backbone

graphs (denoted as MSkTλ-b) is, given any integer k ≥ 1 and backbone graph G = (V,E)

with backbone D ⊆ E and edge weight function ω : E → R≥0, to find a spanning k-tree

H = (V, F ) and D ⊆ F ⊆ E, which maximizes objective function ∑κ∈H λ(E(κ)).
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2.2 Properties of Spanning k-Trees on Backbone Graphs

In this section, we reveal important properties of spanning k-trees, especially on backbone

graphs, which will facilitate our algorithm design for MSkTλ-b, i.e, problem MSkTλ on

backbone graphs.

We first introduce a representation for k-trees. Any k-tree generated by the recursive rules

given in section 2.1 can be represented as an ordered sequence of (k+1)-cliques κ0, κ1, ..., κm,

for m = n− k− 1, where κ0 is called the base (k+ 1)-clique of the k-tree. For j = 1, 2, ...,m,

clique κj is defined as

κj = κi \ {x} ∪ {y} for some i < j, x ∈ κi and for all l < j, where y /∈ κl (2.2)

In other words, clique κj is obtained from clique κi by replacing vertex x in clique κi

constructed earlier with a new vertex y. This construction will be denoted by κj = κi|xy . We

call κj a child of κi and κi the parent of κj. Similarly, we can also define an ancestor and an

descendant of a (k+ 1)-clique in the usual sense. It is not difficult to see the construction of

κj for j = 1, 2, . . . ,m given in (2.2) ensures that κj has exactly one parent. Furthermore, by

(2.2), no vertex can be used to create two different cliques; two different cliques containing

the same vertex must share a nearest common ancestor that also contains the vertex. Thus

we have

Proposition 2.2.1. Let κ0, κ1, ..., κm be a (k + 1)-clique sequence for any k-tree. Then

1. The parent-child relationships over the clique sequence defines a tree topology rooted

at κ0 with the other cliques being tree nodes;

2. For any pair of i 6= j, i, j = 0, 1, . . . ,m, κi ∩ κj ⊆ κ for every clique κ on the path

between κi and κj on the tree topology.
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We elaborate additional technical properties for (k + 1)-clique sequences. We define

Uκi
= {v ∈ κ : κ is a descendant of κi} ∪ κi,

i.e., the set of all vertices contained in descendants of κi. For the root clique κ0, Uκ0 =

{1, 2, · · · , n} obviously. Based on (2.2) and Proposition 2.2.1, we provide the following

additional technical observations.

Proposition 2.2.2. For any (k + 1)-clique κi in a (k + 1)-clique sequence of a k-tree ,

κj = κi|xy , where i < j, the following properties hold:

1. Uκj
( Uκi

;

2. y ∈ Uκi
and x /∈ Uκj

;

3. For every child clique κl of κi, if l 6= j, then y /∈ Uκl
.

Now we derive concepts and properties of k-trees on backbone graphs. We still use the

notion of (k + 1)-clique sequences to discuss corresponding k-trees.

Definition 2.2.1. Let κ be a (k+1)-clique in a (k+1)-clique sequence for a backbone k-tree

and v /∈ κ be a vertex in the k-tree. The stretch of v in κ is the maximal set of consecutive

vertices including v but none of the vertices in κ. We denote this set by stretch(κ, v).

In particular, if κ = {x1, x2, ..., xk+1} with x1 < x2 < ... < xk+1 and v /∈ κ, but xi < v <

xi+1 for some i, 0 ≤ i ≤ k+11. Then stretch(κ, v) = {xi+1, . . . , v−1 , v , v+1 , . . . , xi+1−1}.

We observe the following properties for stretches.

Proposition 2.2.3. Let κ = {x1, x2, ..., xk+1} with x1 < x2 < ... < xk+1 and u, v /∈ κ be

two different vertices with xi < v < xi+1 and xi < u < xi+1 for some i, 0 ≤ i ≤ k + 1. Then

1. stretch(κ, v) = stretch(κ, u);
1Technically, here we assume x0 = 0 and xk+2 = n+ 1.
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2. κ contains at most (k + 2) non-empty stretches.

Theorem 2.2.4. Let κ be any (k+ 1)-clique in a (k+ 1)-clique sequence for a k-tree . Then

∀v /∈ κ, stretch(κ, v) ( Uκ or stretch(κ, v) ∩ Uκ = ∅.

Proof. We will prove the theorem by considering two cases: (1) v ∈ Uκ, and (2) v /∈ Uκ

separately.

(1) Assume v ∈ Uκ. We prove by induction on integer δ ≥ 0 that for any w = v − δ, if

w ∈ stretch(κ, v), then w ∈ Uκ.

• Basis: δ = 0, i.e., w = v; by assumption v ∈ Uκ.

• Assumption: Assume that if w = v − δ ∈ stretch(κ, v), then w ∈ Uκ.

• Induction: Consider w′ = v − δ − 1 ∈ stretch(κ, v). We have w = w′ + 1 =

v − δ ∈ Uκ by the assumption. Since (w,w′) is a backbone edge in the k-tree,

there must be a clique κ′ such that (w,w′) ∈ κ′. If κ′ is the descendant of κ, then

w′ ∈ Uκ. Otherwise since w ∈ Uκ by the assumption, w is in some clique κ′′ which

is not a descendant of κ. But w must appear in every clique on the path from κ′′

to κ′ by Proposition 2.2.1, contradicting with the fact that it is not in κ.

Likewise, we can prove by an induction on integer δ ≥ 0 that for any w = v + δ, if

w ∈ stretch(κ, v), then w ∈ Uκ.

(2) Assume v /∈ Uκ. We prove by induction on integer δ ≥ 0 that for any w = v− δ, if w ∈

stretch(κ, v), then w /∈ Uκ.

• Basis: δ = 0 , i.e., w = v; by assumption v /∈ Uκ.

• Assumption: Assume that if w = v − δ ∈ stretch(κ, v), then w /∈ Uκ.

• Induction: Consider w′ = v − δ − 1 ∈ stretch(κ, v). Let w = w′ + 1 = v − δ;

thus w ∈ stretch(κ, v), w /∈ Uκ by the assumption. Since (w,w′) is a backbone

edge in the k-tree, there must be a clique κ′ such that (w,w′) ∈ κ′. κ′ cannot be
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a descendant of κ because of the assumption w /∈ Uκ. If w′ ∈ Uκ, we may assume

it is contained in clique κ′′, a descendant of κ. By Proposition 2.2.1, w′ must be

on every clique on the path from κ′ to κ′′, contradicting the fact that it is not in

κ.

Likewise, we can prove by induction on integer δ ≥ 0 that for any w = v + δ, if

w ∈ stretch(κ, v), then w /∈ Uκ.

Corollary 2.2.4.1. Let κ = {x1, x1, ..., xk+1} be any (k+1)-clique in a (k+1)-clique sequence

of a k-tree with x1 < x2 < ... < xk+1. If κ′ = κ|xi
y , for some i, 1 ≤ i ≤ k + 1, then

1. stretch(κ, y) ⊆ Uκ′ ; and

2. stretch(κ′, xi) ∩ Uκ′ = ∅.

Proof. (1) It follows the theorem 2.2.4 on account of y ∈ U ′κ by Proposition 2.2.2. (2) Because

xi /∈ Uκ′ , it follows the theorem 2.2.4.

Definition 2.2.2. Let κ be a (k + 1)-clique in some (k + 1)-clique sequence. Then the

Importable Set of κ is the set of vertices contained in the descendent cliques of κ, excluding

those vertices already in κ. We denote the importable set of κ by Iκ, i.e., Iκ = Uκ \ κ.

Proposition 2.2.5. Let κ be a (k + 1)-clique in some (k + 1)-clique sequence. Then

1. If κ′ = κ|xy then Iκ′ = Iκ \ stretch(κ′, x) \ {y};

2. If κ′ = κ|x1
y1 and κ′′ = κ|x2

y2 , for y1 6= y2, then Iκ′ ⊆ Iκ \ stretch(κ′, y2);

3. If κ′ = κ|x1
y1 and κ′′ = κ|x2

y2 , for y1 6= y2, then Iκ′ ∩ Iκ′′ = φ.

Lemma 2.2.6. Let κ0, κ1, ..., κm, where m = n − k − 1, be a (k + 1)-clique sequence of a

k-tree. Then Iκ0 consists of at most k + 2 disjoint non-empty sets of consecutive vertices

delimited by the k + 1 vertices in κ0. And Iκi
, for every i = 1, 2, . . . ,m, consists of at most

k + 1 disjoint non-empty sets of consecutive vertices.
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Proof. We assume κ0 = {x1, x2, · · · , xk+1} with x1 < x2 < · · · < xk+1. Since Iκ0 = Uκ0 \ κ0,

it is clear that the k + 1 vertices in κ0 separate Iκ0 into at most k + 2 disjoint non-empty

sets of consecutive vertices.

To prove Iκi
, for every i = 1, 2, . . . ,m, consists of at most k + 1 disjoint non-empty sets

of consecutive vertices, we use induction on the number of of steps S taken to produce κi

from the base clique κ0.

• Basis: S = 1. κi = κ0|xi
yi

. By Proposition 2.2.5, Iκi
= Iκ0 \ stretch(κ0, xi) \ {yi}. If

stretch(κ0, xi) is empty, the original number of disjoint sets of consecutive vertices in

Iκ0 is at most k; if stretch(κ0, xi) is not empty, its removal reduces the number to at

most k. Moreover, new vertex yi must fall in between xj−1 and xj for some j 6= i,

splitting stretch(κ0, yi) in Iκ0 into two, yielding at most k + 1 disjoints set in Iκi
.

• Assumption: Assume the claim holds for Iκi
for clique κi produced at step S or less.

• Induction: Let κj be any child of κi created at step S + 1, with κj = κi|
xj
yj . By

assumption, Iκi
consists of at most k + 1 disjoint sets of consecutive vertices. By

Proposition 2.2.5, Iκj
⊆ Iκi

\ stretch(κi, xj) \ {yj}. Similar to the proof of the basis,

removing xj causes the number of disjoint sets of consecutive vertices in Iκi
is at most

k. And introducing yj may separate a stretch into two and resulting in at most (k+ 1)

disjoint non-empty sets of consecutive vertices.

Theorem 2.2.7. Let κ be a (k+ 1)-clique in a (k+ 1)-clique sequence of a k-tree and v /∈ κ

be a vertex in the k-tree such that stretch(κ, v) 6= ∅ and stretch(κ, v) ( Uκ. If κ′ = κ|xi
yi

and

κ′′ = κ|xj
yj , where yi, yj ∈ stretch(κ, v), then yi = yj and xi = xj.

Proof. We assume κ = {x1, x2, · · · , xk+1} with x1 < x2 < · · · < xk+1. Without loss of

generality, we assume xt < yi ≤ yj < xt+1 for some 0 ≤ t ≤ k + 1. First, yi + 1 6= yj.

Otherwise, (yi, yj) is a backbone edge. By Proposition 2.2.2, yi is only in Uκ′ and yj is
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only in Uκ′′ which causes loss of the backbone edge (yi, yj). Also note that i, j /∈ {t, t + 1}.

This is because assume i = t (the proofs for other cases are similar), by Proposition 2.2.5,

Iκ′ = Iκ \ stretch(κ′, xi)\{yi} and Iκ′′ = Iκ \ stretch(κ′′, xj)\{yj}. Thus removing xi from κ

results in removing all the vertices before yi, which causes loss of the backbone edge (yi−1, yi)

in the k-tree. On the other hand, if yi + 1 < yj, there exists a vertex ym between yi and yj.

Since i, j /∈ {t, t + 1}, Iκ′ and Iκ′′ both contain ym, violating the condition Iκ′ ∩ Iκ′′ = ∅ in

Proposition 2.2.5. Thus we has proved yi = yj.

Now we have to have x1 = x2, otherwise yi would belong to two children κ′ and κ′′, but

not to κ, violating the second property in Proposition 2.2.1.

Theorem 2.2.8. Let κ0, κ1, ..., κm, where m = n− k − 1, be a (k + 1)-clique sequence of a

k-tree. Then root clique κ0 has at most (k + 2) children; and κi, for every i = 1, 2, . . . ,m,

has at most (k + 1) children.

Proof. By Lemma 2.2.6, there are at most (k + 2) disjoint non-empty sets of consecutive

vertices in Iκ0 and at most (k+ 1) disjoint non-empty sets of consecutive vertices in Iκi
(1 ≤

i ≤ m). By Theorem 2.2.7, for each such set, at most one child clique of κi (0 ≤ i ≤ m)

can be created through κi|xy by selecting some vertex x ∈ κi and some y from the importable

set.

2.3 Dynamic Programming Algorithm

In this section, we introduce a dynamic programming algorithm for the MSkTλ-b problem

on backbone graph, which runs in polynomial time O(nk+1) for every fixed k. We point out

that this is not to enumerate all (k + 1)-cliques to examine their parent-child relationships

since such method would incur another time factor of n to yield O(nk+2)-time complexity.

Our less straightforward algorithm comes from the following observation: every (k+1)-clique

in any (k + 1)-sequence of a k-tree can be obtained by adding a new vertex to an existing

k-clique. By the properties in Section 2.2, the resulted (k + 1)-clique has at most k + 2
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children. At the same time, the (k + 1)-clique consists of k + 1 number of k-cliques, from

which the children, each being a (k+1)-clique, can be formed independently and recursively.

We present some details in the following.

In the case of no confusion, κ = {x1, x2, · · · , xk} is used to represent a k-clique throughout

this section. By Proposition 2.2.3, κ has at most k + 1 stretches (of contiguous vertices)

delimited by the k vertices in κ. We use Aκ to denote the set of all non-empty stretches for

κ. For any subset S ⊆ Aκ, we denote U(S) = ⋃
s∈S s, i.e., the union of all stretches s in S.

For any vertex p ∈ U(S), we use κ⊗ {p} to denote the (k + 1)-clique formed by κ together

with p, which also results in at most k+2 stretches by splitting one of the stretches in S into

two with vertex p. We denote this set of stretches with [S, p]. At the same time, we define

κi = κ|xi
p for i = 1, 2, . . . , k and κk+1 = κ and let [κ, p] denote the set {κr | 1 ≤ r ≤ k + 1}.

We then define Φ(κ, S, p) = {φ |φ : [S, p]→ [κ, p]}.

Note that for all functions φ in Φ are actually constrained. That is, every stretch in [S, p]

can only be mapped to one of k− 1 k-cliques in [κ, p], except the first and the last stretches

which can be mapped to one of k k-cliques. To be specific, let κ⊗{p} = {x1, x2, · · · , xk+1},

with x1 < x2 < · · · < xk+1. Then any stretch with vertices in between xi and xi+1 can only

be mapped to some k-clique containing vertices xi and xj and the number of such k-cliques

is k − 1.

We formulate in the following the objective function with recurrences for the MSkTλ-b

problem, where function λ satisfying statement (1) in section 2. Let G = (V,E) be an input

backbone graph with V = {1, 2, . . . , n}. Then for any k-clique κ ⊆ V , subset of stretches

S ⊆ Aκ, and vertex p ∈ U(S), we define M(κ, S) to be the maximum objective function
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value of a k-tree rooted at (k + 1)-clique κ⊗ {p}, for some p ∈ U(S). Then we have

M(κ, S) = 0 if S = ∅ (2.3)

M(κ, S) = max
p∈U(S)

max
φ∈Φ(κ,S,p)

P (κ, S, p, φ) + λ(E(κ⊗ {p})) (2.4)

P (κ, S, p, φ) =
∑

1≤r≤k+1
κr∈[κ,p], φ−1(κr)6=∅

M(κr, φ−1(κr)), (2.5)

The goal of the algorithm is to seek to maximize the following function:

max
κ∈[n]k

M(κ,Aκ) (2.6)

where [n]k is the set of all k-cliques of vertices drawn from V = {1, 2, . . . , n}.

We now explain the algorithm with the recurrences (2.3)-(2.6). Our algorithm computes

the maximum weight of a spanning k-tree rooted at a (k + 1)-clique formed by some k-

clique. Recurrence (2.6) gives in the initial step by examining all k-cliques κ ∈ [n]k and

all the possible stretches that κ has. Formula (2.3) gives the empty stretch set (S = ∅) as

the terminating condition for the algorithm. Recurrences (2.4) and (2.5) provide details as

follows for how to compute M(κ, S), where S ⊆ Aκ.

For the considered k-clique κ with the allowed set S of stretches, every vertex p from

the allowed stretches in S is examined. Adding p to κ to form κ ⊗ {p} as a newly created

(k + 1)-clique for the sought spanning k-tree. The new (k + 1)-clique κ ⊗ {p} has the

weight contribution defined as λ(E(κ⊗ {p})). The new set of stretches [S, p] because of the

addition of p is the same as S, except the stretch in S, from which p was chosen, is split

into two by p. These new set of stretches are mapped by function φ to the newly created

k + 1 number of k-cliques κr, with each such clique using the stretches φ−1(κr) assigned by

φ to recursively and independently children (k + 1)-cliques for the sought spanning k-tree.

Recurrence (2.4) maximizes the weight of the spanning k-tree by considering all possible

vertices p and functions φ. Recurrence (2.5) branches the computation by independently
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computing based on every one of the k + 1 k-clique κr and sum the total weights in all

branches.

In the following paragraphs, we formally prove that the recurrences (2.3)-(2.6) are cor-

rect for problem MSkTλ-b (i.e., the problem of finding the maximum spanning k-tree on

backbone graphs).

Definition 2.3.1. Let (k + 1)-cliques κi, κj be two children of some (k + 1)-clique in the

tree topology of a spanning k-tree. κi and κj are identical siblings if |κi ∩ κj| = k.

Lemma 2.3.1. Any spanning k-tree G can be transformed into a k-tree G′ without identical

siblings, where G′ has the same weights as G.

Proof. The lemma holds naturally when G doesn’t have identical siblings. Assume G has

identical siblings. Let κi = {x1, · · · , xp, y1, xp+1, · · · , xk}, κj = {x1, · · · , xq, y2, xq+1, · · · , xk}

be two (k + 1)-cliques that are identical siblings in G, where κi ∩ κj = {x1, · · · , xk}. We

can transform the identical siblings relationship into parent child relationship by pruning

the k-subtree rooted at κj and connecting it to κi. To be specific, we have two steps:

1. Let κj = κi|y1
y2 , i.e., prune the k-subtree rooted at κj and make κi the parent of the κj;

2. Update the importable set of κi to Iκi
∪ Iκj

.

It is clear that above transformation preserves the weights. To achieve an k-tree G′ without

identical siblings, we apply above transformation on G level by level from root to leaves.

Note that at a certain level, the transformation can be applied multiple times until there is

no identical siblings.

Figure 2.2 illustrates (a) identical siblings in a ktree, and (b) transformation of the k-

tree to one without identical sibling. We note that constructing k-trees without identical

siblings allows a reduction in the search space. Our algorithm actually produces a maximum

spanning k-tree without identical siblings.
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Figure 2.2: An illustration on the transformation from a k-tree with identical siblings to a k-tree
without identical siblings: (a) a k-tree rooted at κ0, where κ1 and κ2 are identical siblings, κ3, κ4
and κ5 are identical siblings. (b) a k-tree without identical siblings which has the same weight as
(a). The binary number vector for each (k + 1)-clique is the bitmap for corresponding importable
set.

Lemma 2.3.2. The algorithm for MSkTλ-b examines all spanning k-trees without identical

siblings.

Proof. Let G be any spanning k-tree without identical siblings with base (k + 1)-clique

κ0 = {x1, x2, · · · , xk+1}. We will prove inductively that any (k + 1)-clique in G is produced

by the algorithm along the same tree topology of G. In particular, assume that (k+1)-clique

κi is produced by the algorithm, we will prove that every one of its children (k + 1)-cliques

(if they exist) are produced by the algorithm as well.

First, κ0 is produced as the root (k+1)-clique by our algorithm. This is because recurrence

(2.6) traverses all possible k-cliques κ ∈ [n]k. There must be one κ = κ0 \ {xi}, for some

1 ≤ i ≤ k+ 1, that is considered. The subsequent step with (2.4) can introduce xi as vertex

p to form the desired (k + 1)-clique κ⊗ {xi} = κ0 which is then produced by the algorithm.

Now we assume (k+1)-clique κi is produced by the algorithm, with importable set Iκi
. It
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has to go through recurrence (2.4) such that κi = κ⊗{p} for some k-clique κ and some vertex

p ∈ U(S), where S is the set of stretches associated with κ. It is clear that Iκi
= U([S, p]).

Let the children of κi be κi1 , κi2 , · · · , κij (1 ≤ j ≤ k + 1). Since G doesn’t have identical

siblings, each k-clique from {κi ∩ κi1 , κi ∩ κi2 , · · · , κi ∩ κij} must be unique. By recurrence

(2.4) and (2.5), the algorithm maximizes over all possible ways to map the stretches of κi

to the above k-cliques. In particular, for l = 1, 2, . . . , j, if (k + 1)-clique κil has importable

set Iil , through recurrence (2.5) the algorithm can assign the set of stretches Sil to k-clique

κi∩κil such that Iil = U([Sil , pil ]) where pil ∈ κil \κi that can be picked by recurrence (2.4).

And the algorithm produces (k + 1)-clique (κi ∩ κil)⊗ pil , i.e., κil , as a child of κi.

Again since G doesn’t have identical siblings, the k-clique from {κi∩κi1 , κi∩κi2 , · · · , κi∩

κij} are different. It is not difficult to see that the mapping functions in Φ guarantee all

three necessary conditions for importable sets stated in Proposition 2.2.5.

By Lemmas 2.3.1 and 2.3.2, we conclude

Theorem 2.3.3. The algorithm for problem MSkTλ-b computes answers correctly.

Finally, we analyze the running time of the algorithm. First, traversing all the k-cliques

in [n]k in recurrence (2.6) needs O(nk) time . And the first maximization over p in recur-

rence (2.4) takes O(n) time. Thus the polynomial running time on n is O(nk+1). For the

exponential factor on k, we count |Φ| for a fixed (k+ 1)-clique κ⊗{p} on all subset S ⊆ Ak.

When |S| = k+ 2, |Φ| = k2(k − 1)k; when |S| = k+ 1, |Φ| ≤
(
k+2
k+1

)
k2(k − 1)k−1; simiarly, we

can count |Φ| for other cases. So for a fixed (k + 1)-clique, we have

k2(k − 1)k +
(
k + 2
k + 1

)
k2(k − 1)k−1 + · · ·+

(
k + 2

1

)
k + 1 < (k + 1)(k+2)

The summation in recurrence (2.5) takes O(k) time. Therefore, the running time of the

algorithm is O(k(k+1)k+2nk+1). Also derived from the above analysis is the space complexity

O(2k+1nk).
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2.4 Optimality of Algorithm’s Time Complexity

We are interested in knowing if our developed algorithm for MSkTλ is optimal in the com-

putational complexity. In particular, we would like to know if there are polynomial time

algorithms for the problem, with a polynomial degree independent of k or a polynomial

degree d for some d < k + 1 (d may be a function of k). In this section, we show strong

evidence that these scenarios are unlikely.

We first prove that, problem MSkTλ-b remains NP-hard for a simple function λ. In

particular, we construct a reduction from the k-Clique problem to MSkTλ-b that essen-

tially preserves the parameter k. Since the former is W[1]-hard, our proof also implies

fixed-parameter intractability for the latter.

We define the following function λ : ⋃∞m=1 Rm
≥0 → R≥0 such that for any m ≥ 1 and

〈e1, e2, · · · , em〉 ∈ Rm
≥0,

λ(〈e1, e2, . . . , em〉) = 1 if and only if ei > 0, ∀i 1 ≤ i ≤ m

By definition 2.1.5, we obtain problem MSkTλ-b with the above defined function λ. We

formulate in the following the related canonical decision problem, where notation κ ∈ H is

to represent the statement that (k + 1)-clique κ belongs to k-tree H.

Problem Decision MSkTλ-b:

Input: integer k ≥ 1, graph G = (V,E) with backbone D ⊆ E, weight ω : E → R≥0, and

W > 0;

Question: Does G have a spanning k-tree H = (V, F ) such that ∑κ∈H λ
∗(E(κ)) ≥ W ?

Theorem 2.4.1. The problem Decision MSkTλ-b is NP-complete.

Proof. It is not difficult to see that in a polynomial time a certificate H encoding a spanning

k-tree can be checked to determine if the defined objective function value is at least W .

Therefore, the problem is in NP.
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The hardness is proved with a reduction from k-Clique. Given a graph G = (V,E),

where V = {v1, v2, . . . , vn} as an instance of k-Clique, we construct an instance of complete

backbone graph G′ = (V ′, E ′) as follows in polynomial time:

1. V ′ = {1, 2, . . . , n};

2. E ′ = {(i, j) : i < j and i, j = 1, 2, . . . , n};

3. backbone D = {(i, i+ 1) : i = 1, 2, . . . , n− 1};

4. weight function ω(i, j) = 1 if (xi, xj) ∈ E; ω(i, j) = 0 otherwise;

5. k′ = k − 1; W = 1.

For given k ≥ 3, if the constructed G′ has a spanning k′-tree H with objective function

value at least 1, where k′ = k − 1, the contribution of the value must have come from at

least one (k + 1)-clique in the spanning tree. Let this clique be {i1, i2, . . . , ik} in H. Since

the function λ on the clique has value 1 if and only if every one of the arguments of function

λ, i.e., weight ω(ih, il), for every h, l = 1, 2, . . . , k, is non-zero, Based on the construction of

G′, these arguments are indicators for edges among the vertex set {vi1 , vi2 , . . . , vik} in the

original graph G. Thus G has a clique of size k.

On the other hand, if G has a clique of size k, then G′ has a spanning k′-tree H of objective

function value ≥ W = 1. To see this, let the clique of size k in G be {vi1 , vi2 , · · · , vik}. Let

k-clique κ0 = {i1, i2, . . . , ik}. We show in the following that there is a spanning k-tree rooted

at κ0 for G′.

Without loss of generality, we assume i1 < i2 < · · · < ik in κ0. By section 3, κ0 can

have s non-empty stretches, for s ≤ k + 1. Then on backbone graph G′ a (k − 1)-tree

H rooted at κ0 with at most s branches can be constructed with each branch covering a

stretch. In particular, for every j = 0, 1, . . . , k, the jth stretch is {ij + 1, ij + 2, . . . , ij+1− 1}.

Let mj = ij+1 − ij − 1, the length of the jth stretch. If mj 6= 0, the jth stretch yields

a branch of k-cliques represented by the following k-clique sequence: κ0, κj1 , κj2 , . . . , κjmj
,
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where κj1 = κ0|
ij
ij+1, κj2 = κj1|

ij+1
ij+2, . . . , κjmj

= κjmj−1|
ij+mj−1
ij+mj

(note that ij +mj = ij+1 − 1).

Details of boundary cases j = 0 and j = k are only slightly different from the general case

and thus are omitted. H covers all backbone edges of G′ and is a spanning k-tree for G′. In

addition, since λ(κ0) = 1, the weight of this (k − 1)-tree is ≥ λ(κ0) ≥ W .

The proof of the above theorem constructs a reduction that is actually also a parameter-

preserving polynomial time reduction between the two parameterized problems. Because k-

clique is W[1]-complete [Downey and Fellows, 1995] and it cannot be solved in time f(k)no(k)

for any function f unless W[1]=FPT [Chen et al., 2006], we conclude

Corollary 2.4.1.1. Decision MSkTλ-b is W [1]-hard.

Theorem 2.4.2. Unless the W-hierarchy collapses, the MSkTλ-b problem cannot be solved

in time f(k)no(k) for any function f .

Efficient algorithms for exact computation of backbone MSkT are always desirable but

there may be some limitations beyond which what we can do. The MSkT problem is the core

parsing task for stochastic k-tree grammar (see Section 3) that include stochastic context-

free grammar (SCFG) as a special case (for k = 2). Optimal parsing for SCFG can be done

in O(n3) (e.g., via the CYK algorithm) and there seems to be just a little room for improving

the complexity. In particular, there are algorithms for parsing CFG in times O(n3/ log2 n)

and n3−ε for some ε > 0. The techniques of these two kinds of improved algorithms rely

heavily on the Four Russians algorithm [Aho et al., 1974] and a more advanced idea [Lee,

2002] for matrix multiplication, respectively. The matrix multiplication problem can be

done in time O(m2.376). We believe these ideas can be adopted to improve algorithms for

backbone maximum spanning k-tree problem to O(nk+1−δ) for some small δ > 0. We note

that we may not expect δ to be substantially large for the general case of k, since it would

imply much faster algorithms for matrix multiplication, which seems very unlikely [Lee,

2002]. Nevertheless, even if δ = 0.5, an algorithm for backbone maximum spanning k-tree
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of running time O(nk+1−δ) = O(nk+1/
√
n) is worth pursuing. In addition to its theoretical

merit, it will have
√
n times of speed up and memory reduction.
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Chapter 3

Stochastic k-Tree Grammar and Its Application in Biomolecular

Structure Modeling

Stochastic formal language systems, typically the stochastic context-free grammar (SCFG),

have been significantly valuable to various applications. Such a system essentially consists

of a finite set of rules that syntactically dictate generation of strings for a desired language.

Any generation process of a language string is a series of Chomsky rewriting rule applications

and thus yields a syntactic structure associated with (the terminal occurrences in) the string.

Because syntactic rules often are nondeterministic, there may be more than one syntactic

process to generate the same string [Salomaa, 1981; Hopcroft et al., 2007]. Stochastic versions

of such formal systems may be established by associating a probability distribution with the

rules. Compounding the probabilities of rules used in a generation process of a string gives

rise to the probability for the corresponding syntactic structure admitted by the string [Searls,

1993; Durbin et al., 1998]. Therefore, a stochastic language system defines a probability space

for all the syntactic structures admitted by the string. At the same time, it also defines a

probability space for all the strings in the language.

In addition to the apparent wide application in natural language processing [Lari and

Young, 1990; Jurafsky et al., 1995; Waters and MacDonald, 1997; Klein and Manning, 2003;

Sánchez et al., 2005; Antoine Rozenknop, 2006], SCFG has also been extensively adopted for

statistical analysis of biomolecular structures [Sakakibara et al., 1994; Durbin et al., 1998;

Chiang et al., 2006; Dill et al., 2007; Searls, 2010]. A biomolecule consists of a string of

linearly arranged residues that can spatially interact to fold the string into a 3D structure
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of biological significance. Interactions between residues are interpreted as co-occurrences

of lexical objects in each parsing of the string. SCFG can conveniently model nested and

parallel relationships of the interacting residues on a biomolecule. Figure 1 shows an RNA

molecule with parallel and nested canonical base parings (in gray, lighter lines) between

nucleotides, which is context-free. Indeed, SCFG has enabled the development of a number

of effective computer programs for the prediction of RNA secondary structure [Nawrocki

et al., 2009; Z. and L., 2004; Knudsen and Hein, 2003; Achawanantakun et al., 2010; Rivas

et al., 2012]. Such programs are also computationally efficient by taking the advantage of

dynamic programming algorithms permitted by context-free rules.

Nevertheless, SCFG cannot account for crossing interactions of a context-sensitive na-

ture, e.g., the interactions in Figure 1 denoted by both gray (lighter) and pink (darker) lines.

Since crossing, distant interactions are the signature of a biomolecule forming a tertiary

(3D) structure, adequate modeling of such interactions with a stochastic grammar would

have the potential for effective analysis and even prediction of biomolecular tertiary struc-

tures. Modeling context-sensitive languages with Chomsky context-sensitive grammars can

be inconvenient and may incur computational intractability [Martin et al., 1994; Hopcroft

et al., 2007]. Previous work in more constrained languages has studied mildly context-

sensitive grammars, typically the Tree-Adjoining Grammar [Joshi, 1985] and its equivalent

variants [Joshi and Vijay-Shanker, 1991; Vijay-Shanker and Weir, 1994], to model limited

cross-serial dependencies arising in natural language processing. There has been limited suc-

cess in the applications of such grammars in biomolecular structure modeling [Uemura et al.,

1999; Searls, 2010; Chiang et al., 2006]; they were mostly used for the characterization of lo-

cal, secondary structures. The global structure of a biomolecule involving cross relationships

between arbitrarily distant residues may be beyond limited cross-serial dependencies.

In this chapter, we introduce a novel stochastic grammar called stochastic k-tree grammar

(SkTG), for the analysis of context-sensitive languages. With succinct grammar rules, co-

occurrences of distant terminals are recursively characterized as k-trees. A k-tree is a chordal
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Figure 3.1: A single RNA molecule can fold back on itself to form secondary and tertiary struc-
tures through bio-residue interactions. (a) The secondary structure of tRNA (Phe of yeast, PDB id:
1EHZ)) consists of parallel and nested canonical base parings (gray, lighter connections) between
nucleotides, which is context-free. The tertiary structure formed with additional non-canonical
tertiary interactions (pink, darker connections) between nucleotides is context-sensitive. (b) Illus-
tration of the bio-residues interactions of the tRNA molecule in terms of co-occurrences of terminals
on a language string.

graph that does not contain cliques of size more than k + 1 as a graph minor [Patil, 1986;

Arnborg and Proskurowski, 1989]. For small values of k, k-trees are tree-like graphs; they are

adopted in this work to constrain crossing relationships of terminal occurrences on language

strings. Such constrained context-sensitivity has been discovered in biomolecular structures;

recent studies have revealed that graphs describing bio-residue interactions found in resolved

biomolecular 3D structures are actually (subgraphs of) k-trees, typically for k ≤ 4 [Xu and

Berger, 2006; Song et al., 2006; Xu et al., 2007; Huang et al., 2008a, 2010]. Therefore, the

new grammar SkTG offers a viable approach to statistical modeling, analysis, and prediction

of biomolecular tertiary structures.

Previous studies showed that statistical analysis problems over general k-trees are ex-

tremely difficult, in particular, NP-hard even for k = 2, excluding the possibility to feasibly

implement such a framework [Srebro, 2001; Zimand, 2004; Sergio Caracciolo et al., 2008].

However, with the linear chain of vertices constrained on k-trees, we are able to show, for
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Figure 3.2: (a) A generation of a 3-tree of 7 vertices by Definition 4.1.1. (b) A derivation of
string abcdefg with 3-tree grammar rules introduced in Definition 3.1.3, with the types of applied
grammar rules shown and the LHS of every applied rule underscored. The derivation also results
in an induced 3-tree, the same graph shown in (a).

the first time, that the k-tree parsing problem is solvable in polynomial-time for every fixed

value of k. In particular, we will show that SkTG makes it possible to define a probability

space for all k-treestructures admitted by any given language string. We will demonstrate

efficient dynamic programming algorithms for computing the most probable k-tree structure

for any given string. In this chapter, we will also discuss the application in the prediction of

biomolecular tertiary structures that has motivated this work.

3.1 k-trees and the k-tree Grammar

Definition 3.1.1. [Patil, 1986] Let integer k ≥ 1. The class of k-trees are defined with the

following inductive steps:

1. A k-tree of k + 1 vertices is a clique of k + 1 vertices;

2. A k-tree of n vertices, for n > k+1, is a graph consisting of a k-tree G of n−1 vertices

and a vertex v, which does not occur in G, such that v forms a new (k+ 1)-clique with

some size-k clique already in G.

Figure 3.2 (a) shows of a 3-tree with seven vertices. By Definition 4.1.1, the order in
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which 4-cliques formed is: initially {1, 2, 3, 6} (black edges), vertex 5 and blue edges added,

then vertex 7 and red edges added, and finally vertex 4 and green edges added.

3.1.1 The k-tree Grammar

Chomsky grammars derive a language sentence by series of rewritings on a single symbolic

string. Instead, our new grammar derives a language sentence by rewritings on multiple sym-

bolic strings, thus resulting in multiple symbolic strings. The language sentence generated

in such a derivation consists of the terminal symbols that occur in the resulting multiple

symbolic strings; the positional ordering of the derived terminals is completely determined

by the derivation.

Let Σ be an alphabet, N be the set of non-terminals, and ε be the empty string. We call

a symbolic string an m-alternating string, if it has the format X0a1X1 · · · amXm for some

m ≥ 0, such that Xi ∈ N ∪ {ε} for all 0 ≤ i ≤ m and ai ∈ Σ for all 1 ≤ i ≤ m.

Definition 3.1.2. Let α = X0a1X1 · · · amXm be an m-alternating string for some m ≥ 0.

Let ω be the substring Xiai+1 · · ·Xj in α, for some 0 ≤ i ≤ j ≤ m, and σ ∈ (N ∪ Σ)∗ be a

string. Then α|ωσ is the string obtained from α with the substring ω being substituted by σ.

For two non-overlapping substrings ω1 and ω2 in α, we use α|ω1,ω2
σ1,σ2 to denote the string

obtained from α with ω1 being replaced by σ1 and ω2 being replaced by σ2 at the same

time. We also allow aggregation ∀i to denote multiple simultaneous substitutions involving

all applicable indexes i. In particular, α|∀iXi
Yi

is the string obtained from α by replacing Xi

with Yi for every i

Definition 3.1.3. Let k ≥ 2 be a fixed integer. A k-tree grammar is a 6-tuple Γ =

(Σ,N ,R,M, I, S), where Σ is a finite alphabet, N is a set of nonterminals, S, I, and M are

the starting, importing and masking nonterminals in N , respectively, and R is a set of gram-

mar rules. Each rule has the format of α→ A, where α is either S or a (k + 1)-alternating

string and A is a subset of (k+1)-alternating strings, and has one of the following four types.
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(In the following we assume α = X0a1X1 · · · ak+1Xk+1, where ∀i = 1, · · · , k + 1, ai ∈ Σ, and

∀j = 0, · · · , k + 1, Xj ∈ N .)

1. S → {β}, for β = Y0b1Y1 · · · bk+1Yk+1, where ∀i = 1, · · · , k + 1, bi ∈ Σ, and ∀j =

0, 1, · · · , k + 1, Yj ∈ N − {M, I}.

2. α→ {β, γ}, where ∃s, 0 ≤ s ≤ k + 1, Xs 6= M , such that

(1) β = α|∀iXi
Yi

, γ = α|∀iXi
Zi

, Ys = I, and Zs = M .

(2) ∀i = 0, 1, · · · , k + 1, if Xi = M then Yi = Zi = M ; else either Yi = Xi and

Zi = M , or Yi = M and Zi = Xi.

3. α→ {β}, where ∃s, 0 ≤ s ≤ k + 1, Xs = I, and ∃t, 0 ≤ t ≤ k, t− s ≥ 1 or s− t > 1,

Xt = Xt+1 = M , such that β = α|Xs
Y aZ |

Xtat+1Xt+1
M , for some Y, Z ∈ N − {M, I} and

some a ∈ Σ.

4. α → {β}, such that β|∀iXi
Yi

and ∀i = 0, 1, · · · , k + 1, if Xi = M then Yi = M ; else

Yi = ε.

We note that rules of types (B) and (C) are tightly related by the importing nonterminal

I. In particular, a rule of type (C) can be used if and only if a related rule of type (B) has

been used.

Definition 3.1.4. Let Γ = (Σ,N ,R,M, I, S) be a k-tree grammar. Let set T ⊆ (Σ∪N )+.

Let α ∈ T , α→ A ∈ R, and define T ′ = T − {α} ∪ A. We say that T derives T ′ with rule

α → A and denote it by T ⇒α→A T ′ (or simply T ⇒ T ′ when the used rule is clear in the

context).

We call T ⇒∗ T ′ a derivation if and only if either T = T ′ or there are T ′′ and α → A

such that T ⇒α→A T ′′ and T ′′ ⇒∗ T ′ is a derivation.

Let T ⊆ (Σ ∪ N )+ be a subset. A terminal occurs in T if it occurs in some string

contained in T . Binary relation � on the set of all terminal occurrences in T is such that,
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for any two terminal occurrences ai and aj in T , ai � aj if and only if (a) ai = aj, or (b) ai

occurs to the left of aj in the same string, or (c) there is a terminal occurrence ah such that

ai occurs to the left of ah in the same string and ah � aj.

Theorem 3.1.1. Let T ⊆ (Σ ∪ N )+ be a subset and {S} ⇒∗ T be a derivation. Then the

binary relation � on the set of all terminal occurrences in T is a total order.

Proof. (Sketch) By induction on m, the number of terminal occurrences in T , where {S} ⇒

T .

Basis: m = k + 1. T can contain only one string and the last rule used must be of type

(D). Therefore, all the terminal occurrences are next to each other on the only string in T ,

thus forming the total order.

Assumption: for m terminal occurrences in T , the claim is true.

Induction: we assume that there are m+1 terminal occurrences in T . Let T1 be such that

{S} ⇒∗ T1 and T1 ⇒∗ T for which rule α → {β, γ} of type (B) and β → θ of type (C) are

used to introduce a new terminal occurrence a. Let L be the set of m terminal occurrences

in T1. By the assumption, the binary relation � on L is a total order. Note that terminal a

co-occurs with other k terminals in the same string θ. Without loss of generality, we assume

a occurs to the right of terminal occurrence b and to the left of terminal occurrence c. Then

b � a and a � c, and for any other terminal occurrence d ∈ L, either d � b or c � d, thus

either d � a or a � d by the definition of �. So the binary relationship � on set L ∪ {a} is

also a total order.

Definition 3.1.5. Let Γ = (Σ,N ,R,M, S) be a k-tree grammar and T ⊆ (Σ∪{M})+ such

that {S} ⇒∗ T . A string a1a2 · · · an ∈ Σ+, n ≥ 3, is the underlying string of T , if for every

1 ≤ i < n, substring aiai+1 occurs in some string in T . In addition, the language defined by

the grammar Γ is

L(Γ) = {s ∈ Σ+ : T ⊆ (Σ ∪ {M})+, {S} ⇒∗ T , and uls(T , s)}
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where predicate uls(T , s) asserts that s is the underlying string of T .

For example, Figure 2(b) shows a derivation of T that contains four symbolic strings, for

which the string abcdefg of 7 terminals is the underlying string.

3.1.2 Structure Space for Individual Strings

The introduced k-tree grammars are context-sensitive that can define crossing relationships

among terminals. Let subset T ⊆ (Σ∪N )+. We call two terminal occurrences syntactically

related if they appear in the same RHS of some rule used in some derivation {S} ⇒∗ T . We

characterize such relationships of terminal occurrences in T with notions of graphs.

Definition 3.1.6. Let Γ be a k-tree grammar. Let T ⊆ (Σ ∪N )+ be such that {S} ⇒∗ T .

The induced graph of T is a labeled graph GT = (V,E), in which vertices have one-to-one

correspondence (i.e., labeled) with the terminal occurrences in T and edges connect vertices

corresponding to syntactically related terminal occurrences. The structure space E(s) of any

given string s ∈ L(Γ) is defined as

E(s) = {GT : T ⊆ (Σ ∪ {M})+ and uls(T , s)}

For example, Figure 2(a) is the induced graph for the final set of four symbolic strings

in the derivation shown in Figure 2(b), for which abcdefg is the underlying string.

Definition 3.1.7. Let s = s1 · · · sn ∈ Σ+ be a string of length n. A (labeled) graph

G = (V,E), where V ⊆ {1, 2, · · · , n}, is faithful to s if

1. ∀ i ∈ V , vertex i is labeled with si; and

2. ∀ i, j ∈ V , if i < j and ¬∃ l ∈ V i < l < j, then (i, j) ∈ E.

Lemma 3.1.2. Let {S} ⇒∗ T ′ with the underlying string s = s1s2 · · · sn ∈ Σ+. Then for

any T such that {S} ⇒+ T ⇒∗ T ′, the induced graph of T is a faithful k-tree to string s.
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Proof. (Sketch) We prove by induction on l, the number of grammar rule applications in the

derivation {S} ⇒+ T to show the induced graph GT of T is both a k-tree and faithful to s.

l = 1. This is the case that rule {S} → {X0a1X1 · · · ak+1Xk+1} is first used. Thus GT ,

where T = {X0a1X1 · · · ak+1Xk+1}, consists of k + 1 vertices {i1, i2, · · · , ik+1} labeled with

terminal co-occurrences {a1, a2, · · · , ak+1}. GT is a (k + 1)-clique, thus a k-tree. It also is

faithful to s since it satisfies condition (b) as no vertices other than {i1, i2, · · · , ik+1} are

present.

We assume the lemma to be true for the case that fewer than l rules are applied. We

now prove it is also true for the case that l rules applied, l ≥ 2. Let T1 be such that

{S} ⇒∗ T1 ⇒∗ T and T1 ⇒∗ T be realized by either a rule of type (D) or a rule of type (B)

and then a rule of type (C).

In the case of a rule of type (D) used to realize T1 ⇒∗ T , no new terminal occurrences

are introduced to T . Thus GT1 = GT , proving the lemma by the assumption.

In the case of a combination of rules of types (B) and (C), one new vertex h, labeled with

the new terminal occurrence b in the RHS of the rule of type C, is introduced to GT . New

vertex h, along with the vertices labeled with a1, · · · , at, at+2, · · · , ak+1, forms a (k+1)-clique,

thus GT is a k-tree. In addition, let i and j be two vertices in GT such that i < j and there

is no vertex between them. If neither is labeled with the terminal occurrence b, they should

belong to GT1 as well. By the assumption they satisfy condition (b) of Definition 3.1.7. If i

(resp. j) is labeled with b, the rule of type (C) ensures that (h, i) (resp. (h, j)) is included

in the new (k + 1)-clique, thus in GT . Therefore, GT is a faithful k-tree to s.

Let {S} ⇒∗ T for which s, |s| = n, is the underlying string. Then by Lemma 3.1.2, GT is

a k-tree of n vertices faithful to s. According to Definition 3.1.6, edge (i, i+1) is in GT , for all

1 ≤ i ≤ n−1. Hence, GT contains the annotated Hamiltonian path {(i, i+1) : 1 ≤ i ≤ n−1}.

We thus have the following.

Theorem 3.1.3. Let Γ be a k-tree grammar and string s ∈ L(Γ). The structure space E(s)

is a set of k-trees, each containing the Hamiltonian path {(i, i + 1) : 1 ≤ i ≤ n− 1}, where
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n = |s|.

On the other hand, we are interested in such k-tree grammars that for every string s in

the defined language, the structure space E(s) contains all possible k-trees (of size n = |s|)

constrained by the annotated Hamiltonian path. In the following, we show that such k-

grammars do exist.

Recall Definition 4.1.1 for creating all possible k-trees. Let κ = {i1, i2, · · · , ik+1} be an

existing (k + 1)-clique, with i1 < i2 · · · < ik+1. We call any new (k + 1)-clique a child of κ if

it is formed by a newly introduced vertex along with exactly k vertices already in κ.

Lemma 3.1.4. Let κ = {i1, i2, · · · , ik+1} be an existing (k + 1)-clique. Then with the

Hamiltonian path constraint, κ can have at most k + 2 children.

Proof. (Sketch) A new (k + 1)-clique can be created by introducing a new vertex in one of

the k + 2 intervals (1, i1), (i1, i2), · · · , (ik+1, n) to connect to exactly k vertices in the clique

κ. Therefore, it suffices to show that, for each of the (k + 2) intervals, at most one new

(k + 1)-clique can be created.

Without loss of generality, assume two different new (k+1)-cliques κ1 and κ2 are created

with two new vertices h and l drawn from the same interval (ij, ij+1), respectively, where

ij < h < l < ij+1. Apparently (h, l) is not an edge. Nor can there be a path {(h, h+ 1), (h+

1, h + 2), · · · , (h + m, l)}, where h + m = l − 1, for any m ≥ 1. This is because a new

vertex between h and l will only be introduced as a part of descendant of either κ1 or κ2 but

not both. Therefore, there must be r, 0 ≤ r ≤ m, such that edge (h + r, h + r + 1) is not

accounted for as a part of the Hamiltonian path.

Theorem 3.1.5. Let k ≥ 2 be a fixed integer. There exists a k-tree grammar Γ such that

L(Γ) = Σ∗ and, for any given string s ∈ L(Γ) of length n, the structure space E(s) contains

all k-trees constrained by the Hamiltonian path {(i, i+ 1) : 1 ≤ i < n}.

Proof. (Sketch) It suffices to show that such a desired k-tree grammar has a finite number

of rules.
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Recall the four types of grammar rules given in Definition 3.1.3. Each rule {S} → {β}

of type (A) induces a (k + 1)-clique corresponding to the co-occurrence of k + 1 terminals

in β. Such rules can be at most O(|Σ|k+1|N |k+2) in number. Each rule α → {β, γ} of type

(B) and each rule β → ρ of type (C) work together to induce an additional (k + 1)-clique

from the (k + 1)-clique whose vertices are labeled with the k + 1 terminals that co-occurr

in α. As a result of the rule applications two symbolic strings are derived. One symbolic

string contains k existing terminals selected from those in α to co-occur with a new terminal

occurrence b, while the other symbolic string retains the co-occurrences of k + 1 terminals

in α but “masks off” the segment that introduces b. The latter symbolic string allows rules

of types (B) and (C) to be repeatedly applied to induce more (k + 1)-cliques from the

same terminal occurrences in α. By Lemma 3.1.4, rules of types (B) and (C) are bounded

by O(|Σ|k+2|N |k+4k2) in number. Finally, type (D) rules are used to terminate recursion

without deriving new terminal occurrence. They are bounded by O(|Σ|k+1|N |k+2) in number

as well.

3.2 Probability Computation with k-tree Grammars

3.2.1 Stochastic k-tree Grammars

Definition 3.2.1. A stochastic k-tree grammar (SkTG) is a pair (Γ, θ), where Γ = (Σ,N ,R,M,

I, S) is a k-tree grammar and θ is a function: R → [0, 1] such that for every α ∈ (Σ ∪N )+,

∑
α→A∈R

θ(α→ A) = 1

We interpret the probability model θ associated with grammar rules as follows. θ(S →

{β}) is the probability for co-occurrence of the k + 1 terminals in β. θ associated with all

such type (A) rules gives a probability distribution over all co-occurrences of k+1 terminals.

In addition, θ distributes probabilities between rules of type (B) and of type (D) to account
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for the expected number of co-occurrences of k + 1 terminals that share the same set of at

least k−1 terminal occurrences. θ(α→ β) of a type (C) rule is probability for co-occurrence

of the k + 1 terminals in β conditional on co-occurrence of the k + 1 terminals in α.

Definition 3.2.2. Let T ⊆ (Σ ∪ N )+ be such that {S} ⇒∗ T . Then the probability of

derivation {S} ⇒∗ T with (Γ, θ) is defined recursively as

Prob(T |Γ, θ) =
∑

r∈R, T ′⇒rT
Prob(T ′|Γ, θ)× θ(r)

with the base case Prob({S}|Γ, θ) = 1.

Definition 3.2.3. Let (Γ, θ) be a SkTG. Then for any given string s ∈ L(Γ), its probability

with (Γ, θ) is defined as

Prob(s|Γ, θ) =
∑

{S}⇒∗T , uls(T ,s)
Prob(T |Γ, θ)

Therefore, the probability of s under the model (Γ, θ) is computed as the sum of proba-

bilities of all derivations of s by the grammar. In other word, Prob(s|Γ, θ) is the likelihood

for the string s to possess at least one k-tree structure. We observe that

Proposition 3.2.1. Let (Γ, θ) be a SkTG, the strings in the language L(Γ) form a proba-

bilistic space, i.e., ∑
s∈L(Γ)

Prob(s|Γ, θ) = 1

Alternatively, it is of interest to know the most likely structure possessed by a given

string s. This then is to compute the maximum probability of a derivation {S} ⇒∗ T for

which s is the underlying string. Similar to the total probability computation, we can define

maximum probability recursively,

Let T ⊆ (Σ∪N )+ be such that {S} ⇒∗ T . Then the maximum probability of derivation
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{S} ⇒∗ T is defined recursively as

Maxp(T |Γ, θ) = max
r∈R, T ′⇒rT

Maxp(T ′|Γ, θ)× θ(r)

with the base case Maxp({S}|Γ, θ) = 1.

Definition 3.2.4. Let (Γ, θ) be a stochastic k-tree grammar. Then for every given string

s ∈ L(Γ), the maximum probability of a derivation for s is defined as

Maxp(s|Γ, θ) = max
{S}⇒∗T , uls(T ,s)

Maxp(T |Γ, θ)

And the most likely structure for s with (Γ, θ) is the induced graph GT � of the subset

T � ⊆ (Σ ∪ {M})+ decoded from Maxp(s|Γ, θ), where

T � = arg max
{S}⇒∗T , uls(T ,s)

Maxp(T |Γ, θ)

3.2.2 Dynamic Programming Algorithms

We now show probability computations with SkTG can be done efficiently. We outline

a dynamic programming strategy for computing the maximum probability function Maxp.

The computation for the total probability function is similar. Let s = s1 · · · sn, where si ∈ Σ,

for 1 ≤ i ≤ n, be a given terminal string.

Definition 3.2.5. Let α = X0a1X1 · · · ak+1Xk+1 ∈ (Σ ∪ N )+ be a symbolic string and

κ = (l1, l2, · · · , lk+1) be k + 1 ordered integers where 1 ≤ l1 < l2, · · · , lk+1 ≤ n. (α, κ) is a

consistent pair if

(1) ai = sli , 1 ≤ i ≤ k + 1, and

(2) For i = 0, 1, · · · , k + 1, Xi = ε iff li = li+1 − 1 (l0 =df 1 and lk+2 =df n).

Now given a pair (α, κ), we define function f(α, κ) to be the maximum probability for

a derivation {α} ⇒∗ T , where T ⊆ (Σ ∪ {M})+ for which s is the underlying string. Then
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function f can be recursively defined according to types of α and the types of rules α is

involved with in R.

1. α ∈ (Σ ∪ {M})+:

f(α, κ) =


1 (α, κ) is a consistent pair

0 otherwise

2. α ∈ (Σ ∪N )+ but α 6= S:

f(α, κ) = max
r∈R



f(β, κ)f(γ, κ)θ(r) r = α→ {β, γ}, type (B)

max
ls<h<ls+1,κ′=κ|

lt+1
h

f(β, κ′)θ(r) r = α→ {β}, type (C)

f(β, κ)θ(r) r = α→ {β}, type (D)

where for the case of r being a type (C) rule, s and t are known values given in

β = α|Xs
Y bZ |

Xtat+1Xt+1
M , satisfying (s − t) > 1 or (t − s) ≥ 1, and κ′ = κ|lt+1

h represents

the ordered set modified from κ by replacing lt+1 with h.

3. α = S:

f(S, κ) = max
S→{β}∈R

f(β, κ)θ(S → {β})

Theorem 3.2.2. Maxp(s|Γ, θ) = max
κ∈[n]k+1

f(S, κ), where [n]k+1 is the set of all combinations

of k + 1 integers in [n] = {1, 2, · · · , n}.

Proof. (Sketch) We prove by induction on the number m of rule applications in a process to

generate the string s with the maximum probability, where m ≥ 2. The base case m = 2

is obvious. The proof of inductive step examines all possible types of rules used in the last

step.

A dynamic programming algorithm can be implemented to compute function f(α, κ).
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This is to establish a table to store computed values of function f through the use of the

formulae provided above (the cases 1 through 3). The table has k + 2 dimensions, one for

all α’s in the grammar and the other k + 1 are for all κ’s, resulting in the O(nk+2|Γ|)-time

and O(nk+1|Γ|)-space complexities, respectively, for every fixed k.

3.3 Applications and Discussions

We have introduced the stochastic k-tree grammar (SkTG) for the purpose of modeling

context-sensitive yet tamable crossing co-occurrences of terminals. The recursive rules of

the new grammar permit association of probability distributions in a natural way. The

resulting dynamic programming algorithms for probability computation with SkTG are effi-

cient enough, with potential for statistical analysis of real-world structures. This work is in

progress in both application and further theoretical investigation.

3.3.1 Application in Biomolecular Structure Prediction

This work was initially motivated by the need in the analysis of biomolecules for tertiary

structure prediction. A biomolecular sequence, e.g., ribonucleic acid (RNA) or protein, is a

linear chain of residues interacting spatially to form a 3D structure functionally important

[Noller, 1984; Murzin et al., 1995]. One of the most desirable computational biology tasks

is to predict the tertiary structure from the sequence information only [J. et al., 2009; Y,

2008]. The newly introduced SkTG offers a viable approach to this task. We briefly outline

the application as follows.

Biomolecular sequences are natural strings definable over some finite alphabet Σ (e.g.,

Σ = {A, C, G, U} for nucleic acids). A class of biomolecular sequences can be defined as a

language with a SkTG in which grammar rules model statistically not only the sequential

composition but also structural composition of the sequences. The task of designing SkTGs,

much like that for SCFGs, is non-trivial and may often be based on experience. Equipping a
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Figure 3.3: Illustration of a tertiary structure prediction from BWYV (beet western yellows virus)
RNA molecule sequence (PDB ID: 1L2X) that contains 28 nucleotides, coaxial helices connected
with two loops, and an A-minor motif. Top of (a): Tertiary structure (drawn via pymol) and
details of nucleotide interactions (http://www.biomath.nyu.edu/motifs/); (b) The induced 3-tree
(containing desired interactions) corresponding to a derivation of the sequence with the maximum
probability. The 3-tree is presented in terms of the tree topology connecting the created 4-cliques
in the 3-tree. Bottom-left of (a): 3D representation of the 3-tree with one tetrahedron for every
4-clique; Bottom-right of (a): only backbone edges are kept from the tetrahedron representation,
serving as a preliminary structure prediction from the sequence. We note that more accurate
structural motif modeling of individual 4-cliques would allow more accurate prediction of the overall
tertiary structure.
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designed SkTG Γ with probability parameters θ may be done through learning from known

biomolecules (with or without known structures) (see next subsection for a briefly discussion).

With an SkTG (Γ, θ), using the dynamic programming algorithm (developed in section

3) we can compute the maximum probability of an induced k-tree, e.g., k = 3, from a given

query sequence. In such an application, every (k + 1)-clique κ in the desired k-tree may

potentially admit one of many possible configurations (i.e., all possible interaction topologies

along with permissible geometry shapes) for the k+ 1 residues in κ. Therefore, the dynamic

programming algorithm can be tailored to include the third argument Cκ in the probability

function f defined in section 4, where Cκ is the set of all possible configurations incurred

by (k + 1)-clique κ. The information about Cκ can often be obtained from known tertiary

structures of biomolecules as well. Figure 3.3 illustrates this approach used in a tertiary

structure prediction for a small RNA molecule.

3.3.2 Further Theoretical Issues

SkTG is a natural extension from SCFG; in particular, k-tree grammars, for k = 2, can

define all context-free languages. In addition, the outlined dynamic programming algorithm

(in section 3.2) to compute the maximum probability can be improved. In fact, in a related

work [Ding et al., 2013], the authors have developed an algorithm of time O(nk+1), for every

fixed value of k, for computing the maximum spanning k-tree that includes a designated

Hamiltonian path. On the other hand, due to the long standing barrier of O(n3) for parsing

context-free languages, this also suggests the time complexity upper bound O(nk+1) has

optimal order of growth in n for each k ≥ 2.

We further note that the above efficiency issue is closely related with the parameterized

complexity [Downey and Fellows, 1999] of the following problem: computing the maximum

probability of an input sentence to be produced by an input SkTG, for which k is considered

a variable parameter. By the above observation, such a problem is likely parameterized

intractable. Nevertheless, the interesting question remains whether an additional small pa-
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rameter (e.g., significant in applications) may be associated with such problems for further

improvement of computational efficiency.

Estimation of probability parameters θ for given k-tree grammars deserves more thor-

ough investigation and it is not within the scope of this chapter. However, we point out

that it is highly possible to develop efficient parameter estimation algorithms for SkTG.

This is because O(nk+1)-time algorithms may exist for computing the maximum and total

probabilities of given language strings. Much like the analogous algorithms for SCFG, these

algorithms can be used to re-estimate probability parameters θ given an initial parameter

θ0, through an EM algorithm.

Finally, we feel that future work is also needed to investigate the relationship between the

k-tree grammar and other grammars that already exist (e.g., the Tree-Adjoining Grammar

and its generalized versions [Joshi and Vijay-Shanker, 1991]) for constrained context-sensitive

languages.
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Chapter 4

RNA Nucleotide Interaction Prediction with Backbone k-Tree

Model

In the past decade, there have been many revelations of the importance of non-coding RNAs

to cellular regulatory functions and thus a growing interest in the computational prediction

of RNA 3D structure [Laing and Schlick, 2010; Leontis and Westhof, 2012a]. Nevertheless,

RNA 3D structure prediction from a single RNA sequence is a significant challenge. One

major unresolved issue is the immense space of tertiary conformations even for a short RNA

sequence. Existing methods usually employ random sampling algorithms for computation

feasibility, which assemble sampled tertiary motifs into native-like structures [Das and Baker,

2007; Ding et al., 2008; Jonikas et al., 2009; Parisien and Major, 2002; Popenda et al., 2012;

Sharma et al., 2008]. To reduce the chance to miss native structures, the assembly algorithms

have mostly been guided with constraining structural models. For example, MC-Fold/MC-

Sym [Parisien and Major, 2002] assumes the 3D structure consists of 4-nt cyclic tertiary

motifs constructible from the predicted secondary structure. Rosetta [Das and Baker, 2007;

Das et al., 2010] de novo assembles 3D structure from a database of 3-nt tertiary fragments.

Other methods follow samplings that preserve the secondary structure [Bida and Maher,

2012; Popenda et al., 2012; Reinharz et al., 2013]. However, these constraining models do

not necessarily ensure that native conformations are examined. The state-of-the-art methods

have yet to deliver the desired prediction accuracy for RNA sequences of lengths beyond 50

nucleotides [Laing and Schlick, 2010].

In this chapter, we introduce a novel method to predict nucleotide interactions from
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known or predicted canonical basepairs as a key step toward accurate prediction of 3D

structure. Accurate knowledge of the nucleotide interactions is crucial to predicting the 3D

structure of an RNA and subsequently predicting its functional roles. To predict nucleotide

interactions, our method is guided by a novel graph model called a backbone k-tree, for

small integer k, to globally constrain the nucleotide interaction relationships (NIRs) that

constitute the 3D structure. In such a k-tree graph, nucleotides are organized into groups of

size k + 1, such that NIRs are permitted only for nucleotides belonging to the same group

and groups are connected to each other with a tree topology (see section 2). This model

was inspired by our recent discovery of the small treewidth of the NIR graphs for more than

3,500 RNA chains extracted from 1,984 RNAs whose structure has been resolved (Figure

4.1). Treewidth is a graph metric, which indicates how much a graph is tree-like [Bodlaender

and Koster, 2010; Van Leeuwen, 1990]. We have been able to develop dynamic programming

(DP) algorithms with O(nk+1) time and space complexities, efficient for small k, to compute

the optimal backbone k-tree spanning over the nucleotides on the query sequence, given a

scoring function [Ding et al., 2014a, 2016a].
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Figure 4.1: Treewidth distribution of NIR graphs of more than 3,500 RNA chains from the
RNA Structure Atlas [Sarver et al., 2008]. The RNAs with treewidth larger than 18 are omitted
due to their very small number. These treewidths are actually upper bounds computed by an
approximation algorithm [Bodlaender and Koster, 2010]; it is likely that the exact treewidths of
the NIR graphs may be smaller.

To ensure that the computed optimal k-tree can actually yield the set of nucleotide in-
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teractions that constitutes the native 3D structure, our method proposes to identify detailed

patterns of nucleotide interactions for every group of k+ 1 nucleotides found in known RNA

3D structures and to score every such pattern. We consider nucleotide interactions from

the established geometric nomenclatures and families [Leontis and Westhof, 2001; Leontis

et al., 2002; Stombaugh et al., 2009], including base-base, base-phosphate, base-ribose [Zir-

bel et al., 2009; Zirbel, 2011], base-stacking interactions as well as the phosphodiester bonds

between two neighbouring nucleotides on the backbone. To test our method, we adopted

an improved 3-tree model, and pre-computed candidates of interaction patterns for every

group of 4 given nucleotides (see Figure A.1 in Appendix A). These annotated atom-level

interaction patterns have been extracted from resolved 3D structures of RNAs in the RNA

Structure Atlas [Sarver et al., 2008]. To avoid overfitting, only nucleotide interactions from

RNAs of length ≤ 100 nucleotides were selected. To score such patterns, we trained artificial

neural networks (ANNs) to compute the confidence of every admissible nucleotide interaction

pattern for every group of 4 given nucleotides. We filtered out unlikely interaction patterns

and kept only those with high confidences. With this 3-tree model, our algorithm efficiently

predicts an optimal set of nucleotide interactions from the query sequence (along with canon-

ical base pairs) within computational time O(n3). We have implemented the algorithm into

a program called BkTree as a part of a 3D structure prediction framework (Figure A.2 in

Appendix A).

We evaluated our methods through testing BkTree on two sets of data. First, the per-

formance of nucleotide interaction prediction was measured on a set of 43 RNAs of lengths

ranging from 26 to 128 nucleotides, a benchmark used by the survey of state-of-the-art 3D

structure prediction methods [Laing and Schlick, 2010]. The resolved, atom-level interactions

of these high resolution RNAs were extracted with FR3D [Sarver et al., 2008]. Sensitivi-

ties (STY), positive predictive values (PPV) and Matthews correlation coefficients (MCC)

[Laing and Schlick, 2010] of the nucleotide interactions predicted by BkTree were calculated

for these 43 RNAs. The overall performance was also compared with previous programs MC
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[Parisien and Major, 2002], Rosetta [Das and Baker, 2007], and NAST [Jonikas et al., 2009].

Second, performance of nucleotide interaction prediction was also evaluated by testing Bk-

Tree on a set of 13 single RNA chains from PDB [Berman et al., 2000b] of lengths between

100 and 200 nucleotides, whose nucleotide interaction patterns have not been extracted for

the construction of ANNs. These evaluations show that BkTree predicted nucleotide in-

teractions with high accuracies across the tested RNAs, including RNAs whose interaction

patterns were not used for training. Our method also impressively outperformed the other

methods on the overwhelming majority of the tested RNAs and showed a great potential for

handling RNAs beyond short lengths.

4.1 Model and Methods

In this work, we consider RNA nucleotide interactions of atomic-resolution of all known

types, Table A.1 in Appendix A summarizes these nucleotide interactions by their geometric

families.

We use notation 〈X, Y, t〉 for a type t interaction between nucleotides X and nucleotide

Y (from 5’ to 3’), where X, Y ∈ {A, C, G, U}. Let IXY = {〈X, Y, t〉 : t is an interaction type}

and I = ⋃
X,Y ∈{A,C,G,U}

IXY .

4.1.1 Backbone k-Tree Model

Let S = S1S2...Sn be an RNA sequence, in which Si ∈ {A,C,G, U}, for 1 ≤ i ≤ n. The

nucleotide interaction relation (NIR) model for the native structure of S is a pair 〈G;A〉,

where G = (V,E) is called the NIR graph of S with vertex set V = {1, 2, . . . , n}, and A is an

association such that for every pair i < j, A(i, j) ⊆ ISiSj
is the set of interactions between

nucleotides Si and Sj in the native structure and A(i, j) 6= ∅ implies (i, j) ∈ E. Note that

because of phosphodiester bonds between neighboring nucleotides, the NIR graph G always

contains the Hamiltonian path (i, i+ 1), i = 1, 2, . . . , n− 1; these edges are named backbone

46



edges.

In our recent investigation [Ding et al., 2014b,a], we constructed NIR graphs for all

RNAs whose 3D structures were known from RNA Structure Atlas [Reinharz et al., 2013].

We discovered that an overwhelming majority of these RNAs are of small treewidths (Figure

4.1). Theoretically, if a graph has treewidth bounded by k, any clique obtained by deleting

vertices and edges and contracting edges of the graph can contain at most k + 1 vertices

[Arnborg et al., 1990]. Thus the distribution of treewidths suggests that NIRs in the RNA

3D structures are in general not arbitrarily complex.

The concept of treewidth is closely related to, and may be better explained with the

notion of k-tree, which is central to this work.

Definition 4.1.1. [Patil, 1986] Let integer k ≥ 1. The class of k-trees are graphs defined by

the following inductive steps:

1. A k-tree of k + 1 vertices is a clique of k + 1 vertices;

2. A k-tree of n vertices, for n > k+1, is a graph consisting of a k-tree G of n−1 vertices

and a vertex v, which does not occur in G, such that v forms a (k + 1)-clique with

some k-clique already in G.

Figure A.3 (a) and (b) in Appendix A show a 3-tree of 7 vertices. It is well known that

for any k ≥ 1, a graph is of treewidth ≤ k if and only if it is a subgraph of some k-tree

[Arnborg and Proskurowski, 1989]. This also suggests that every graph of treewidth ≤ k can

be augmented with additional edges into a k-tree. Thus, given a NIR model 〈G;A〉, where

NIR graph G is of a treewidth ≤ k, one can augment G to a k-tree with additional edges,

and for each newly added edge (i, j), let A(i, j) = ∅. Since such k-trees contain all backbone

edges, they are called backbone k-trees.

Definition 4.1.2. A backbone k-tree model is a NIR model 〈G;A〉 in which NIR graph G is

a backbone k-tree.
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This allows us to conclude that for small values of k, backbone k-tree models exist for

an overwhelmingly majority of RNAs whose native structures are known. Figure A.3 (c) in

Appendix A shows a backbone 3-tree as the NIR graph for a short sequence consisting of 7

nucleotides.

To predict the set of nucleotide interactions from a query sequence S = S1S2, . . . Sn, we

propose to identify a backbone k-tree model 〈G;A〉, where G = (V,E) and A(i, j) ⊆ ISiSj

such that A(i, j) 6= ∅ =⇒ (i, j) ∈ E. To ensure the identified model actually corresponds to

the set of nucleotide interactions that constitute the native structure of the query sequence,

we will quantify nucleotide interactions for the optimization computation of such a backbone

k-tree model.

4.1.2 Quantification of Nucleotide Interactions

Definition 4.1.3. Let q be a (k + 1)-clique in a backbone k-tree of query sequence S.

An interaction pattern (ip) for clique q is a set A(q) of nucleotide interactions, for some

association A, such that A(q) = ∪i,j∈qA(i, j).

Given an ip A(q) for clique q, the subgraph of q induced by A(q), denoted with Hq,A(q) =

(q, Eq,A(q)), is such that (i, j) ∈ Eq,A(q) if and only if A(i, j) 6= ∅. Figure A.1 in Appendix A

illustrates the examples of a (k + 1)-clique q, two ips of q and their induced subgraphs.

Definition 4.1.4. Let q be a (k + 1)-clique in a backbone k-tree of query sequence S. The

confidence of a given ip A(q) for clique q is defined as

f(q, A(q), S) =
∑

(i,j)∈Eq,A(q), 〈Si,Sj ,t〉∈A(i,j)
c

(i,j),t
q,Hq,A(q)

(4.1)

where c(i,j),t
q,Hq,A(q)

is the confidence of interaction 〈Si, Sj, t〉 given q and the subgraph Hq,A(q)

induced by ip A(q).

In Section 4.2, we will introduce artificial neural networks (ANNs) that compute confi-
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dence c(i,j),t
q,Hq,A(q)

.

For every clique q, with P(q), we denote the finite set of all ips for q. In the practical

application, we may only include those ips in P(q) which have “high” confidences (e.g., above

certain threshold).

Definition 4.1.5. Let k be any fixed integer ≥ 2. The nucleotide interaction prediction

problem NIP(k) is, given an input query sequence S, to identify a backbone k-tree model

〈G∗;A∗〉, such that

(G∗;A∗) = arg max
〈G;A〉

{
∑

q in G,A(q)∈P(q)

f(q, A(q), S)} (4.2)

4.1.3 Overview of the Method

To solve the NIP(k) problem, our method consists of three major components.

1. Data repositories include NIPDB and NIPCTable. NIPDB is a database of all possible

interaction patterns. To build the database, we first extracted a set P(q) of nucleotide

interaction patterns for every (k + 1)-clique q, which were found in the known 3D

structures of RNAs with length ≤ 100 nucleotides. Then an unique identifier was

assigned to each such clique by taking into account both the nucletides and their

backbone distances. See Figure A.1 in Appendix A for examples.

NIPCTable is a matrix for compatibility between every pair of ips for two cliques

that share all but one vertex (nucleotide). To compute for the optimization problem

formulated with (2), for every two (k+1)-cliques q1 and q2 that are adjacent in the k-tree

G, A(q1) and A(q2) are required to be compatible in the sense that the two interaction

sets among the k common nucleotides of q1 and q2 are identical. The compatibility of

all pairs of ips in NIPDB forms a binary matrix. For the efficiency, the compatibility

can be precomputed before the prediction program is executed. The nucleotides in an

ip are ordered from 5′ to 3′. Given two ips I1 and I2 each with k + 1 nucleotides, we
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enumerate all (k + 1)2 ways of mapping k nucleotides of I1 to k nucleotides of I2. For

each of the mappings, if the selected two sets of k nucleotides are not identical, two ips

are not compatible; otherwise, we further verify the interactions among the two sets of

k nucleotides and the compatibility holds when they are identical.

2. A set of ANNs; each computes the confidence for a specific interaction between two

given nucleotides on the query sequence.

3. A dynamic programming algorithm that computes the solution to equation (4.2).

Given the query sequence S and the known or predicted canonical basepairs on S, our

method first employs ANNs to compute c(i,j),t
q,Hq,A(q)

, the confidence of the interaction 〈Si, Sj, t〉

in the interaction pattern A(q) for (k+1)-clique q that involves vertices i and j , where Hq,A(q)

is the subgraph induced by ip A(q). This is done for every pair of i < j, every interaction

type t, every (k+1)-clique q and every ip A(q) ∈ P(q) for q. Then it computes the confidence

score f(q, A(q), S) for every ip A(q) ∈ P(q) of every (k + 1)-clique q, using formula (4.1).

Afterward, it runs the dynamic programming algorithm to solve equation (4.2).

4.2 Algorithms

4.2.1 ANNs for Computing Interaction Confidence

We constructed ANNs that compute confidences of nucleotide interactions, one ANN for

every specific nucleotide interaction 〈Si, Sj, t〉 contained in a given specific interaction pattern

A(q) of a given (k + 1)-clique q. We use N (i,j),t
q,Hq,A(q)

to denote such an ANN and c
(i,j),t
q,Hq,A(q)

for

the confidence score that the ANN computes. Each ANN N (i,j),t
q,Hq,A(q)

consists of an input layer,

two hidden layers (with 8 and 16 nodes, respectively), and an output layer (Figure A.4 in

Appendix A). The output layer is a single unit producing a confidence value for interaction

〈Si, Sj, t〉. The input layer consists of input units representing the selected global and local

features shown in Table A.2 in Appendix A. The features included the sequence length and
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the distance between the involved nucleotides as well as neighboring nucleotide types. In

addition, we included the information of assumed canonical base pairs within the query

sequence.

We adopted conventional methods to construct and train each ANN [Mitchell, 1997],

typically the technique of back-propagation with gradient descent, using a fixed-size network.

The learning rate 0.03 were the values that yielded the best results for some representative

ANNs. The training data for the ANNs were from RNA Structure Atlas. We removed

all RNAs of lengths larger than 100 nucleotides and RNAs with missing nucleotides. This

resulted in a subset of 895 RNAs of single chains. Then all the (k + 1)-cliques q along with

their features of every RNA in the subset were enumerated to form a whole set T . Due

to different number of features, the number of (k + 1)-cliques associated with different q,

interaction pattern A(q), and subgraph Hq,A(q) in T vary considerably. As a result, for most

of the ANNs, only a small portion of 895 RNAs were used for training and testing. A 10-fold

cross validation was used to avoid over-fitting.

4.2.2 Algorithm for NIP(k) problem

Our algorithm solves the NIP(k) problem by producing a pair 〈G∗;A∗〉 satisfying equa-

tion (4.2) for the query sequence. In particular, the backbone k-tree G∗ constrains the

nucleotide interaction relationship topology, together with the association A∗ of nucleotide

patterns with all (k+ 1)-cliques in G∗, to achieve the maximum confidence score. The algo-

rithm maximizes the confidence score of a backbone k-tree spanning over the query sequence

nucleotides by a dynamic programming process. To derive recurrences for the dynamic

programming, we followed the basic process of creating k-trees given in Definition 1. The

inclusion of backbone edges in the k-trees disallows introducing edges in arbitrary order and

thus makes the search space much smaller. We briefly explain this algorithm in the following

paragraphs.

By interval [i..j], for i ≤ j, we mean the set of consecutive integers between i and j,
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inclusive. Two intervals [i..j] and [h..l] are non-overlapping if either j ≤ h or l ≤ i. Let the

query sequence be S of length n and q be a (k + 1)-clique formed by k + 1 vertices drawn

from {1, 2, . . . , n}. Let C be a set of non-overlapping intervals and A(q) ∈ P(q) be an ip

for clique q. We define function M(q, C,A(q), S) to be the maximum confidence of a k-tree

constructed beginning from clique q, which includes backbone edge (i, i + 1) for every pair

of integers i and i + 1 both contained in some interval in C. Then we obtain the following

recurrence:

M(q, C,A(q), S)

= max
x∈q, y 6∈q, y∈[i..j]∈C, p=q|xy

{ max
A(p)∈P(p),R(C1,C2),Q(A(p),A(q))

{M(p, C1, A(p), S)

+M(q, C2, A(q), S) + f(q, A(q), S)} } (4.3)

where abbreviations q|xy = q∪{y}\{x}, Q(A(p), A(q)) asserts that the chosen ip A(p) be compatible

with the ip A(q), and R(C1, C2) represents the choices of two sets of intervals, C1 and C2, which

satisfy the following constraints

1. {[i..y], [y..j]} ⊆ C1, {[w..x], [x..z]} ⊆ C2, for applicable w and z; and

2. C1 ∪ C2 = C ∪ {[i..y], [y..j]} \ {[i..j]}, and C1 ∩ C2 = ∅.

Recurrence (5.4) offers a bottom-up process to compute M(q, C,A(q), S). Intuitively, the idea

is to create a new clique p from q by introducing a new nucleotide vertex y. There may be one or

more sub-k-trees, some stemming from p while others from q (but not including vertex y). Since

these sub-k-trees will never join together again, interval sets are used to ensure backbone edges will

be properly created. In particular, the set of backbone edges in the k-tree corresponding to the

value of function M(q, C,A(q), S) contains only those edges between consecutive indexes specified

in the intervals in C. Initially, C may include intervals allowing all backbone edges.

The confidence score of the produced k-tree is computed as the sum of confidence scores of ips

chosen for all involved (k + 1)-cliques. The chosen ips need to be compatible across the cliques
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when they share nucleotide interactions or even just nucleotides. This is ensured by the assertion

Q(A(q), A(p)) by looking up table NIPCTable. In addition, any pattern of interactions between a

single nucleotide and multiple others has to exist in the structure database.

To complete the recurrence (5.4), we need the following base case:

M(q, C,A(q), S) = 0 if C = ∅

which will be first computed in a bottom-up dynamic programming strategy.

4.2.3 Improved Algorithms

Implementation of the above outlined dynamic programming algorithm would require O(nk+1)

memory space and O(nk+2) computation time for every fixed value of k. Following the same idea

but creating (k + 1)-cliques from k-cliques instead has lead to an improved algorithm, with a

few more sophisticated steps to navigate through k-cliques. The improved algorithm uses O(nk)

memory and O(nk+1) time for every fixed value of k [Ding et al., 2016a].

For k = 3, the time efficiency can be further improved to O(n3) with a constrained backbone

k-tree model that requires every (k + 1)-clique to contain at least one backbone edge (i, i + 1)

for some i. Testing has shown that the constrained backbone k-tree model did not weaken the

capability to account for sophisticated nucleotide interactions as the “standard” backbone k-tree

model. The constrained model may reduce biologically unfavorable interaction patterns, e.g., those

not involving locally related nucleotides.

4.2.4 Implementation

We have implemented the new method into a prototype system. The NIPDB database construction

was coded in Python, where the Prody package [Bakan et al., 2011] was adopted to search the RNA

Structure Atlas. NIPCTable, the matrix for ip consistence was developed using Python. Building

and training of all ANNs were realized with WEKA package [Hall et al., 2009] in nearly a month.

Programs were coded in Java to compute confidences of ips admissible for every (k + 1)-clique in

the query sequence.
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We implemented in C++ the dynamic programming algorithm into a program called BkTree

based on the constrained backbone 3-tree model. We ran the evaluation tests on a Red Hat 4.8.2-7

server with 4 Intel Quad core X5550 Xeon Processors, 2.66GHz 8M Cache and 70GB Memory. The

server runs nearly an hour for predicting a sequence of 100 nucletodies.

4.3 Performance Evaluation

4.3.1 Test Data

We implemented our method in the program BkTree. We evaluated our method through testing

BkTree on two sets of RNAs of high resolution structures. One was a list of 43 RNAs that had been

used as a benchmark set in the survey of state-of-the-art 3D structure prediction methods [Laing

and Schlick, 2010]. Eighteen of the RNA sequences are of length ≥ 50 nucleotides. In developing

the ANNs for computing interaction confidences, 7 of these RNAs were not included in set T . The

second set was 13 high resolution (3.5Å or better) single chain RNAs of lengths from 101 to 174

nucleotides, none of which was included in T .

Given the recent progress made in RNA secondary structure prediction [Laing and Schlick,

2010; Reinharz et al., 2013], we believe that canonical base pairs may be routinely predicted with

a fair accuracy. Therefore, we have allowed the program BkTree to accept known or predicted

canonical base pairs along with the query sequence as input. Note that the knowledge of canonical

base pairs does not necessarily imply the whole secondary structure, which is often a part of input

to most of the existing RNA 3D prediction methods. In our test, we extracted canonical base pairs

of a RNA from FR3D analyzed interactions [Sarver et al., 2008].

4.3.2 Overall Performance

We evaluated the quality of the predicted nucleotide interactions by the sensitivity (STY) and

positive predictive value (PPV) against the FR3D-analyzed interactions [Sarver et al., 2008]. In

order to take into account the effects of both true positive and false positive rates in one mea-

sure, the Matthews correlation coefficient (MCC), defined in [Laing and Schlick, 2010] as MCC
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:=
√

PPV× STY, was also calculated.

Figure A.5 in Appendix A summarizes the overall performance of BkTree on the benchmark

set. On a large majority of RNAs, the sensitivity is decently high. Note that the STY and PPV

calculations excluded the canonical base pairs. The sensitivity result indicates that our method

has a high accuracy in identifying non-canonical interactions that may be crucial to 3D structures.

This is true even for those longer RNAs. We further note that for the 7 RNAs that are not in T ,

BkTree also performed very well.

We point out that in Table A.5 in Appendix A almost all of the relatively low MCC values

(below 0.8) were caused by relatively low sensitivity (STY) values. These low sensitivity values

were due to that the backbone 3-tree is too weak to model RNAs of structures more complex than

helices and junctions, such as pseudoknots. This is evident by the column EdgeDiff, which is the

ratio of total number of edges in the NIR graph of the RNA to the number of edges that the

constrained 3-tree model is able to include. k-tree models, with higher k values, can include all

edges of the NIR graph and thus is expected improve the performance of prediction (see Section 5

for more discussions on how such k-tree models can be efficiently implemented).

4.3.3 Performance Comparison with Other Methods

We compared our program BkTree with the programs MC, Rosetta, and NAST on the capability

to predict nucleotide interactions. These other state-of-the-art methods had been surveyed and

evaluated in [Laing and Schlick, 2010] based on their ability to identify both base pairing and

base stacking interactions only. We removed base-phosphate and base-ribose interactions from our

prediction results. We incorporated the canonical base pairs into our results because these other

methods include all interactions from the input secondary structure.

Figure 4.2 shows the MCC plots for MC, Rosetta, NAST, and BkTree on the benchmark set

of RNAs. Data of RNAs failed by a program were not included in the calculation. We note that

for every RNA, these other programs produced more than one conformation so the results were

averaged for these comparisons. The figure demonstrates that BkTree overall outperformed the

other three programs in predicting non-canonical base pairing and base stacking interactions.
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Figure 4.2: Comparison of the MCC generated by MC, NAST, Rosetta and BkTree. The MCC
of the 43 RNAs are calculated by including canonical base pairs in the results and sorted by their
lengths. The plot was derived by merging the results obtained by BkTree and the data computed
in the survey (Laing, 2014; Laing and Schlick, 2010). In that survey, the 3D structure predictions
with the other 3 methods were based on resolved secondary structures and the secondary structures
were included in the calculations. Therefore, the canonical base pairs were also been added to the
prediction results by BkTree.

In addition, Table A.3 in Appendix A gives comparisons on average performance across the

43 RNAs between the four methods. In general, Bktree produced much better average results

than Rosetta and NAST, and comparable average results with MC, for which BkTree shows better

average STY value than MC, whereas MC gives better average PPV. On MCC values, BkTree had

an average over MC. On RNAs of length ≥ 50 nucleotides, BkTree maintained almost the same

average MCC as it did on the whole set.

4.3.4 Performance on long RNAs

We also evaluated performance of BkTree on 13 longer RNAs with diverse structures, including

riboswitches, pseudoknots, synthetic RNAs and RNAs containing multi-way junctions. These RNAs
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have lengths from 101 to 174 nucleotides and thus they were not included in the training data for

ANNs. Table A.4 in Appendix A shows that the performance on these long RNAs is comparable

to that of the 43 benchmark RNAs. In particular, the average MCC of the predictions is 0.787,

suggesting the capability of our method to predict nucleotide interactions for RNAs of lengths

beyond 100 nucleotides.

4.4 Discussions

Our method is a non-conventional framework to predict RNA nucleotide interactions (of all known

types) without simultaneous prediction of 3D structure. The underlying backbone k-tree model

drastically reduces the space of plausible nucleotide interaction relations, permitting not only ef-

ficient but also effective prediction of nucleotide interactions. The evaluation test results have

highlighted the potential of our method as a viable step toward accurate 3D structure prediction

of RNA sequences beyond short lengths.

Our work has taken advantage of the recent growth of knowledge in the rich, high-resolution

nucleotide interaction data. In particular, our method predicts the most plausible set of interac-

tions based on confidence scores of individual interactions computed with artificial neural networks

(ANNs). The neural networks were trained and tested with a small subset of single chain RNAs (all

of lengths ≤ 100 nucleotides) extracted from the established database RNA Structure Atlas. For

each ANN that computes an individual interaction, a 10-folds cross validation was used to avoid

overfitting. Indeed, test results on RNAs not in the training data, especially those of lengths > 100,

have apparently justified the rationale of the proposed confidence scores.

The evaluation tests have revealed that our method is robust in the sense that only choices of k

for the k-tree model may affect the prediction results. A careful look at Figure A.5 in Appendix A

shows that these RNAs are of more complex structures and their nucleotide interaction relationships

are actually beyond the capability of the backbone 3-tree model built in the program BkTree. In

particular, column EdgeDiff of Table 4 shows that all these seven RNAs have more than a few

edges in their NIR graphs which cannot be included by even the best backbone 3-tree model. For

example, the 3-tree model can miss 6 and 9 edges in the NIR graphs of the long RNAs 1LNG and
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1MFQ, respectively. These edges correspond to some important nucleotide interactions including

those between the hairpins of two helices in these two signal recognition particle RNAs. Failure

to predict these crossing interactions may result in considerably under performance in their 3D

models.

Therefore, backbone k-tree models, for k > 3 are expected to improve performance for RNAs

of complex structures. However, one major concern with such a model is the possibly impractical

complexity O(nk+1), for k ≥ 4, of implementation with the developed dynamic programming

algorithm. Our more recent study reveals that such obstacle can be surmounted by taking advantage

of some inherent properties of backbone k-trees constructed from known RNA structures. For

example, our survey on more than 600 RNAs with known 3D structures (data not shown) suggests

that in backbone 4-tree models of these RNAs 5-cliques are basically of two types. One type of

clique is that the 5 nucleotides can be partitioned into at most 3 groups, each containing vertices

close to each other on the backbone. The other type of clique models 4 ∼ 5 sporadic nucleotides as

a part of a tertiary motif connecting 3 or 4 small regions of the backbone. Both type of 5-cliques are

thus of number O(n3) in total, potentially leading to an O(n3)-time (and space) implementation

of the dynamic programming algorithm with the backbone 4-tree model for nucleotide interaction

prediction.

The implemented neural networks for interaction pattern scoring were designed and trained

exclusively for the constraint backbone 3-tree model. Thus to implement the backbone k-tree

model with a higher k, an updated knowledge-based scoring system is needed. Using the same idea

of the neural networks, due to the increased number of features, a feature selection scheme will

need to be developed. Then the neural networks have to be retrained.
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Chapter 5

RNA 3D Structure Prediction with Backbone k-Tree Model

Given the significant functional roles played by non-coding RNAs (ncRNAs), it is highly desirable

to develop software tools that can accurately predict RNA 3D structure [Laing and Schlick, 2010;

Leontis and Westhof, 2012a], especially from a single RNA sequence. There have been a number of

tools developed for this purpose [Das and Baker, 2007; Sharma et al., 2008; Ding et al., 2008; Jonikas

et al., 2009; Parisien and Major, 2002; Bida and Maher, 2012; Popenda et al., 2012; Reinharz et al.,

2013]. While the methods vary, most of the front-runners are based on de novo assembly of 3D

fragments into a full structure. Due to the immense space of 3D conformations, fragment assembly

based methods are often guided by a predicted (or known) secondary structure and/or enhanced

with sampling techniques.

In particular, Rosetta [Das and Baker, 2007; Das et al., 2010] de novo assembles 3D structure

from a database of local 3-nt tertiary fragments. MC-Fold/MC-Sym [Parisien and Major, 2002]

assumes the 3D structure consists of 4-nt cyclic tertiary motifs. Such enclosed loops are often parts

of helices and junctions in the predicted secondary structure and may not include other global,

more distant interactions that are critical to the overall conformation. The recent survey [Laing

and Schlick, 2010] shows that such a method failed to yield meaningful 3D models for more than

half of the RNAs in a benchmark of 43 RNAs, most of which contain 80 or fewer nucleotides.

The underperformance highlights the limit of the existing methods and the inherent difficulty in

computing native-like conformations from the immense 3D conformation space, even with the help

of sampling techniques or secondary structure constraints.

We have developed a non-conventional structure prediction method which proceeds in two

stages. First we predict the nucleotide interactions, then second, from these, we predict the full

3D structure. The nucleotide interactions are predicted using the backbone k-tree method [Ding
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et al., 2015] described in Chapter 4. In the backbone k-tree graph model, nucleotides are organized

into groups of size k+ 1 (e.g., quadruplets for k = 3), such that interactions are permitted only for

nucleotides belonging to the same group and groups are connected to each other with a tree topology.

This approach was motivated by our recent discovery [Ding et al., 2014a] that the nucleotide

interaction relationship graphs for RNA chains whose structure is known are overwhelmingly of

small tree width. The model considers all nucleotide interactions from the established geometric

nomenclatures and families [Leontis and Westhof, 2001; Leontis et al., 2002; Stombaugh et al.,

2009], including base-base, base-phosphate, base-ribose [Zirbel et al., 2009; Zirbel, 2011], base-

stacking interactions as well as the phosphodiester bonds between two neighbouring nucleotides on

the backbone.

Then upon the predicted backbone k-tree model, an optimal 3D model is computed by global

substantiation of all the groups k + 1 nucleotides with corresponding 3D motifs. These annotated

atom-grain motifs for interaction patterns were extracted from resolved 3D structures of RNAs in

the RNA Structure Atlas [Sarver et al., 2008]. In this chapter, we will present in detail the method

and algorithm for 3D modeling with the backbone k-tree model, once the nucleotide interactions

have been successfully predicted.

5.1 Model and Methods

Our method to predict an RNA 3D structure consists of two major steps (see Figure A.2 in Appendix

A). First, it predicts an optimal backbone k-tree model 〈G∗;A∗〉 such that

〈G∗;A∗〉 = arg max
〈G;A〉

{
∑
q∈G

f(q, A(q), S) } (5.1)

in which A∗ assigns a set of consistent ips, one for each clique in G∗. Section ?? will summarize

how to define scoring function f(q, A(q), S) and how to optimize the sum in equation (5.1) through

dynamic programming. The detailed description of the method for nucleotide interaction prediction

has appeared in Chapter 4 and our publication [Ding et al., 2015].

Second, based on the predicted backbone k-tree model 〈G∗;A∗〉, the method computes an

60



optimal 3D modeling

g∗ = arg min
g

∑
p,q∈G∗,N (p,q)

γ(g(A∗(p)), g(A∗(q))) (5.2)

where g assigns a geometric motif g(A∗(q)), called an ip-motif, to the interaction pattern A∗(q) for

clique q and predicate N (p, q) asserts that p and q are two cliques neighboring in graph G∗ (i.e.,

their corresponding nodes are neighboring in the tree topology).

Function γ quantifies the how well geometric motifs for interaction patterns of neighboring

cliques fit to each other. In Section 3 we will present the details for function δ and how to calculate

it. We will also show an algorithm to optimize the computation in equation (5.2) in linear time.

Our 3D modeling method is based on a predicted backbone 3-tree model (where k = 3 was

chosen in our implementation). Our method produces a most plausible set of geometric motifs

for the predicted interaction patterns and assemble the motifs into an optimal 3D model. In this

section, we describe the details of the 3D modeling method.

5.1.1 Geometric Motif Alignment

Given an interaction pattern (ip) for a quadruplet of nucleotides, a large number of ip-motifs can

be associated with the ip. In our development, we extracted ip-motifs from the known RNA 3D

structures through the use of software FR3D [Sarver et al., 2008]. Considering the number of

ip-motifs for every ip is usually large and the geometrical redundancy between these candidates,

we used an additional cluster step to group the geometry ip-motifs. In particular, we applied an

all-to-all geometry alignment to all candidates for each ip. The 0.5Å RMSD (root-mean-square-

deviation) cutoff value was adopted in the alignment, which means the RMSD values is not larger

than 0.5Å for every two geometry candidates in each group after clustering. Then we selected one

ip-motif candidate to represent each group. All ip-motif representatives were built into NIPGDB,

namely the nucleotide interaction pattern geometry database. Figure 5.2 shows two representative

motifs for the two ips in Figure 5.1, respectively.

The function γ(g(A∗(p)), g(A∗(q))) in equation (5.2) measures the geometric consistency be-

tween the two ip-motifs g(A∗(p)) and g(A∗(q)). The measurement was also realized by comput-
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Figure 5.1: (a) A 4-clique formed by quadruplet of nucleotides {G, A, C, C}, with gray edges
to indicate that interactions between every pair of nucleotides are possible, where the dark edge
indicates the known phosphodiester bond between the two cytosines neighboring on the backbone;
(b) and (c) two different interaction patterns (ips, found from the known 3D structures) that can
be assigned to the clique in (a), where BB represents the phosphodiester bond, s55 and s35 are
5’-5’ and 3’-5’stacking, respectively, the other interactions are all base-base, defined by the edges
of the triangle base model [Leontis et al., 2002]) participating in the interactions.

Figure 5.2: Two geometric motifs (ip-motis) (left and right) for the two interaction patterns (ips)
shown in Figure 5.1 (b) and (c), respectively. These two ip-motif formed by quadruplet {G132,
A178, C234, C235} and quadruplet {G180, A229, C232, C233}, respectively. Both are found in the known
structure of RNA 1NBS with 155 nts (the indexes starts from 86) from PDB; images were rendered
with UCSF Chimera.

ing the minimum RMSD value through a rigid superimposition on atoms common to both ip-

motifs. In particular, let x ⊆ p ∩ q be the 3 common nucleotides shared by cliques p and q. Let

g(A∗(p))|x ⊆ g(A∗(p)) and g(A∗(q))|x ⊆ g(A∗(p)) be the two respective subsets of 3D coordinates

of atoms that belong to the 3 nucleotides in x. The superimposition between these two subsets is

done by a transformation T that transforms g(A∗(p))|x to g(A∗(p))|Tx in the coordinate system of
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g(A∗(q))|x. Therefore, we defined

γ(g(A∗(p)), g(A∗(q))) = rmsd(g(A∗(p))|Tx , g(A∗(q))|x)

where function rmsd calculates the minimum value of RMSD for the superimposition. The align-

ment function rmsd used in this work is imported from Bio.PDB package (biopython.org/DIST/

docs/api/Bio.PDB-module.html), i.e., the Superimposer object, which was developed based on

the method of singular value decomposition (SVD).

In equation (5.2), the optimal 3D modeling is to minimize overall RMSD by identifying mutually

consistent ip-motifs, one for every ip in the predicted backbone 3-tree model. Because there may be

more than one ip-motif candidate for every ip, a naive examination of all ip-motif combinations for

all the ips would result in infeasible algorithms. Our work took advantage of the backbone 3-tree

topology and yielded a non-trivial linear time algorithm for optimal 3D modeling.

5.2 Optimization Algorithm

We assume that the tree topology is a rooted tree for the predicted backbone 3-tree graph G∗. Each

node in the tree corresponds uniquely to a 4-clique in the graph (see Figure ??); we will use words

“tree node” and “clique” interchangeably in this chapter. Let q be a 4-clique in G∗. We define C(q)

be the set of 4-cliques that are children of q in the tree topology. Then equation (5.2) is equivalent

to

g∗ = arg min
g

∑
q∈G∗

∑
p∈C(q)

γ(g(A∗(p)), g(A∗(q))) (5.3)

To describe a dynamic programming algorithm for the optimization computation desired by equa-

tion (5.2), we need to introduce additional notions. We assume 〈G∗;A∗〉 to be the predicted

backbone 3-tree model and g to be a choice of ip-motifs for all interaction patterns in the graph

model.

Definition 5.2.1. Let q be a 4-clique in G∗. The aggregate motif for ip A∗(q) based on g is defined
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recursively as

G(A∗(q)) = g(A∗(q)) ∪
⋃

p∈C(q), x⊆q∩p
G(A∗(p))|Tp

x

where Tp represents the transformation determined by ip motifs g(A∗(p)) and g(A∗(q)) and G(A∗(p))|Tp

x

is the transformed aggregate motif for ip A∗(p) which does not contain the atoms of nucleotides in

set x = p ∩ q.

Note that Definition 5.2.1 includes the base case that the aggregate motif for A∗(q) is simply

g(A∗(q)) when q is a leaf (i.e., C(q) = ∅) in the tree topology. Not only does the definition introduce

an explicit way to assemble a 3D model based on the choice g of ip-motifs, but also it suggests a

dynamic programming approach to identify a choice g∗ that minimizes the objective function.

Let M(q, A∗) to be minimum overall RMSD computed over all the ips in the subtree topology

rooted at node (clique) q. Then we obtained the following recurrence:

M(q, A∗) = min
g

∑
p∈C(q)

γ(g(A∗(p)), g(A∗(q))) +M(p,A∗) (5.4)

with base case: M(q, A∗) = 0 for leaf q.

Recurrence (4) with the base case has allowed us to develop a dynamic programing algorithm

to compute function M(q, A∗). For every clique q, the computation of M(q, A∗) yields an aggregate

motif as defined by Definition 5.2.1. The algorithm computes M(q, A∗) in a bottom-up fashion,

from leaf cliques to the root. The ultimate value of the optimization function is M(r,A∗), where

r is the root of the tree topology, with an identified set g∗ of ip-motifs for the ips in the given

(predicted) backbone 3-tree model 〈G∗;A∗〉. The optimal 3D model is G(A(r)) obtained based on

g∗.

As the number of cliques in the backbone 3-tree is proportional to the number n of nucleotides,

the algorithm runs in time O(ntm) where t is the time needed to transform a set of O(n) atom

coordinates, and m is the maximum number of ip-motifs for every ip.
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5.3 Performance Evaluation

5.3.1 Implementation

The 3D modeling stage of the pipeline was implemented in python into a program called BkTree3D.

We ran the evaluation tests on a Red Hat 4.8.2-7 server with 4 Intel Quad core X5550 Xeon

Processors, 2.66GHz 8M Cache and 70GB Memory.

5.3.2 Test Data

Our 3D structure prediction pipeline was evaluated with the same benchmark of 43 high-resolution

(3.4Å or higher) RNAs used in the survey [Laing and Schlick, 2010]. These RNAs, of which 18 are

with length ≥ 50 nucleotides, contain diverse structure complexities including hairpins, internal

loops, pseudoknots and multi-way junctions. The prediction results from our recent works [Ding

et al., 2015], including both predicted interactions tested with the same benchmark of RNAs and

the output 3-trees, were used directly as inputs to our 3D modeling programs. Note that for the

consistency purpose, we leave out an RNA (PDB ID: 2F8K) due to its recent updates in the PDB

database.

5.3.3 Overall Performance

We evaluated the quality of the predicted 3D structures with the RMSD values calculated against

their native structures. Since the RMSD does not account for local deviations, base-pairing and

base-stacking accuracies, we also calculated the Deformation Index, a measure that accounts for

both RMSD and Matthews correlation coefficient (MCC :=
√

PPV× STY), the quotient between

them, where STY and PPV stand for sensitivity and positive predictive value respectively.

We conducted 5 types of independent tests on the benchmark set to show the effectiveness of

our 3D modeling method. In the first test, the predicted interactions and backbone 3-trees from

our recent results [Ding et al., 2015] were used as inputs to BkTree3D. Figure A.9 in Appendix A

summarizes the overall performance. For small sequences (≤ 50 nucleotides) with simpler struc-
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tures (hairpins and internal loops), BkTree3D can predict accurately the 3D structures with the

average RMSD 1.94 Å. Noticeably, BkTree3D also produced decent results for the 3 sequences with

pseudoknots. In terms of long sequences (> 50 nucleotides), our method shows great potentials

to predict majority of the structures. In particular, 11 out of 18 sequences achieved RMSD values

below 10 Å.

By replacing the inputs from the predicted interactions with the resolved interactions in RNA

3D Atlas [Sarver et al., 2008] but using the same predicted backbone 3-trees, we performed the

second test for the purpose of evaluating our 3D modeling algorithm. The results, summarized in

Figure A.10 in Appendix A, show that the majority of the predicted structures have lower RMSD

values. In particular, 35 out of 42 RNAs achieved RMSD values below 5 Å. We can see from

Figure 5.4 the decreasing of the average RMSD value as compared to the first test, indicating that

accurate predictions of interactions are important to the 3D modeling stage.

In the third test, we applied a pre-processing step described in Section A.1 in Appendix A

on the predicted interactions before executing BkTree3D. Figure 5.4 shows that the preprocessing

steps permitted us to fix some of the predicted interactions and hence improved the results, where

the average RMSD values over all RNAs in the benchmark set dropped from 5.09 Å to 4.85 Å.

In the fourth test, we removed from the NIPGDB all ip-motifs obtained from the RNA that is

being predicted. The results are listed in Figure A.10 in Appendix A. As compared with the results

of the third test in Figure 5.4, only minor increasing of the RMSD values can be noticed.

BkTree3D is capable of generating multiple suboptimal solutions. In the last test, 5 structures

were generated for each of the RNA in the benchmark set. The results are listed in Figure A.11 in

Appendix A. Compared with the results with other 4 tests in Figure 5.4, the fifth test produces a

slightly higher average RMSD value.

5.3.4 Performance Comparison with Other Methods

We compare our 3D modeling program with the state-of-the-art structure prediction methods in-

cluding MC, Rosetta and a recently developed program called RNA-MoIP [Reinharz et al., 2013]

that preformed well on the long sequences with more than 50 nucleotides. We provide a compari-
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Figure 5.3: RMSD values generated by BkTree3D in the third test for the benchmark set of 42
RNAs sorted by their lengths.

Test 1 Test 2 Test 3 Test 4 Test 5
0

2

4

6 5.09
3.84

4.85 5.1 5.53

Av
er

ag
e

R
M

SD

Figure 5.4: Comparison of average RMSD values of 5 tests on the benchmark set of 42 RNAs.
In test5, the average RMSD of the 5 structures produced by BkTree3D is calculated first for every
RNA. Then the overall average is calculated using the averages of 42 RNAs.

son of the alignment between the predicted and native structures using the RMSD and DI metrics.

The comparison with MC and Rosetta is based on 4 representative structures chosen in [Laing and

Schlick, 2010] which typically contain two hairpins and two junctions. Since both MC and Rosetta

allow the prediction of multiple structures, we chose to use the best and the average values of their

solutions. Figure A.12 in Appendix A summarizes the comparisons with MC and Rosetta. For

every one of the 4 RNAs, the RMSD achieved by BkTree3D is significantly smaller than the best

values achieved by MC and Rosetta.

In Table 5.1, BkTree3D is compared with RNA-MoIP on 9 large RNAs that were used as the

benchmarks in evaluating RNA-MoIP, where their results were reported in [Reinharz et al., 2013].
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As RNA-MoIP has not been designed to predict pseudoknot, this set of RNAs is pseudoknot-

free and 8 of them have a 3-way junction with the other a 4-way junction. This is not an ideal

comparison as we have input to BkTree3D program the known canonical Watson-Crick base pairs

instead of the predicted secondary structure. The overall quality of the predicted structures is

comparable to the structures by RNA-MoIP. In particular, for 5 out of the 9 RNAs, our method

achieved an RMSD value much smaller than the minimum RMSD achieved by RNA-MoIP. On the

tRNA 2DU3, our RMSD is 2.993Å, very close to the average RMSD 2.91Å achieved by RNA-MoIP.

For a slightly longer RNA sequence 1LNG, our RMSD is slightly larger than the average RMSD

yielded by RNA-MoIP. Only on the longest sequence 1MFQ, our method performed worse than

RNA-MoIP.

Table 5.1: RMSD comparison between BkTree3D and RNA-MoIP. Boldface indicates the smaller
RMSD value of each RNA. ”-” indicates the RNA that RNA-MoIP failed on.

Length RNA-MoIP BkTree3DMin Avg SD
3E5C 53 - - - 1.716
1DK1 57 2.95 4.76 0.99 1.686
1MMS 58 5.66 7.65 0.86 2.864
2DU3 71 2.23 2.91 0.44 2.993
3D2G 77 5.34 7.35 1.34 7.162
2HOJ 79 3.19 7.19 2.31 2.564
2GDI 80 - - - 3.22
1LNG 97 2.73 6.30 1.91 7.959
1MFQ 128 9.07 14.34 5.01 21.33

5.4 Discussion and Conclusion

We have presented a non-conventional framework to predict RNA all-atom 3D structures by a two-

step process: nucleotide interaction prediction and 3D modeling. Both steps were built upon the

backbone k-tree model, which makes it possible to drastically reduce the space of 3D conformations

and permit efficient exact algorithms to calculate the optimal 3D structures. The evaluating results

have shown that utilizing the accurately predicted interactions from our recent results and coupling

a simple score scheme can yield predictions that outperform the state-of-the-art methods.
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The framework of two-step process offers operability and flexibility; in particular, the predicted

interaction interactions from the first step provide a scaffold to the 3D structure to be modeled,

enabling diagnostics and treatment before the second step for 3D modeling. Therefore, the inter-

action prediction can be critical to the accuracy of the 3D modeling. In particular, a single missing

long-distance interaction may cause a major conformation change in the predicted structure. For

example, as shown in Figure 5.5 a where the predicted 3D structure (blue) of a pseudoknot RNA is

superimposed to its native structure (green), the predicted 3D structure has two widely opened arms

due to a missing kiss-hairpin interaction. The gap can be narrowed down when the long-distance

interaction was added back to the predicted interactions (Figure 5.5b). Alternatively, a stacking

(s55) interaction inserted to both sides of the helix forming the hairpin loop forced both sides of

the helix twist closer to each other, leading to a smaller gap as well (Figure 5.5). Based on this

observation, we have introduced a pre-processing step that establishes a serial of knowledge-based

rules to modify the predicted interactions before the 3D modeling step. The pre-processing step

includes removing or replacing certain stacking interactions to achieve a more native-like backbone

spin. The proposed rules help to improve the result of 3D prediction in average (see Test 3 in

Figure 5.4). The details of the rules are discussed in the Appendix A. However, a potentially more

accurate method for nucleotide interaction prediction is through the use of backbone k-tree models,

for larger k (e.g., k = 4). The graph model of larger tree width can be robust enough to account for

all interactions in sophisticated structures such as kissing hairpins and other types of pseudoknots.

We would also like to note that the performance of the 3D modeling method for the longer

sequences (over 100 nucleotides) is relatively lower than that for shorter sequences. Besides the

choice of a larger parameter k, another future improvement of the prediction quality is to enrich

and refine the geometric motif database NIPGDB. In particular, the resolved RNAs that have been

selected for building the geometry motif database are currently limited to the length ≤ 100. More

resolved RNAs can be used to improve the effectiveness of NIPGDB. In addition, the database

works well in providing motifs candidates to “dense” interaction patterns where every nucleotide

has at least one interaction with at least one other nucleotide in the corresponding quadruplet.

However, our test results show that the prediction performance may drop when many quadruplets

are instantiated with less “dense” interaction patterns. Our most recent study reveals that such
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Figure 5.5: Comparison of predicted structures (blue) for 2QUS (69 nucleotides, pseudoknot)
superimposed to its native structure (green) using three different sets of interactions: (a) predicted
interactions from the first step of our pipeline (11.01Å); (b) resolved interactions from RNA 3D
Atlas (3.001Å); (c) predicted interactions with additional stacking (s55) inserted to both sides of
the helix forming the hairpin loop (5.58Å).

an issue can be addressed with smaller motifs extracted from the known structures with more

non-trivial calculations in the dynamic programming algorithm for 3D modeling. =
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Chapter 6

Bayesian Network Learning with k-tree Model

Bayesian network is a probabilistic model that represents random variables and their dependencies

with a directed acyclic graph. The most challenging task for Bayesian network learning from

data for complex domains is to optimize joint probability distribution functions for the random

variables. Because such the optimization is computational intractable [Chickering et al., 1994] and

the complexity remains even the network has bounded treewidth [Dagum and Luby, 1993]. It is well

known that the complexity of exact inference in a Bayesian network is associated with the treewidth

of the network [J. H. P. Kwisthout and van der Gaag, 2010]. Therefore, learning Bayesian network

with bounded treewidth has gained increasing attention recently due to its existence of efficient

inference. However, algorithms for Bayesian learning have resort to heuristics and approximation

methods [Daly and Aitken, 2011; Suzuki, 1999; Yuan and Malone, 2013]. Such algorithms cannot

guarantee the learning accuracy even with assumptions of tree-like topologies [Dasgupta, 1999]. As

a result, their performances vary significantly for different applications.

Our aim is to address the under performance issue in Bayesian network learning with the

notion of k-tree and its potentially efficient algorithms with meaningful constraints on the k-tree.

Our preliminary investigations (see Figure 6.1) shows that k-tree graph can ideally model the

topology of real-world complex systems. With the k-tree modeling, the Bayesian network learning

can be formulated as an optimization problem with objective function derived from the data.

We develop efficient algorithms by discovering and utilizing meaningful constraints from the data.

Actually, effective algorithms have been developed by forcing the Bayesian network to satisfy certain

conditions. For example, a simple yet effective algorithm is designed [Teyssier and Koller, 2012]

based on the observation that, given an ordering on the variables in the network, finding the optimal

Bayesian network is not NP-hard. In fact, this ordering constraint is equivalent to the backbone
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condition that has been adopted in developing the backbone k-tree model. We give the ordering

of the variables a simple name as backbone. Because the model is initially developed with the

motivations from the bio-molecular structure prediction problems, where a sequence of the bio-

molecules is known. However, for most of the real world application, determining an appropriate

ordering is itself a difficult problem. In this chapter, we explore some more general and practical

constraints that can be learning efficiently from the data. With the constraints, we are able to

develop efficient dynamic programming algorithms that compute the optimal solution based on a

score function.

Figure 6.1: Tree width upper bounds of 24 Bayesian networks of a wide variety of types, obtained
from Bayesian data repository www.bnlearn.com [Nagarajan et al., 2013]. The number beside the
name of each network is the total number of nodes in the network. The tree width upper bounds
were calculated with an approximation algorithm software tool [Bodlaender and Koster, 2010]; the
real tree widths are likely to be much smaller.

We plan to apply the effective Bayesian network learning methods, specifically k-tree model

with spanning tree constraint, to analyze the relations of Fenton reaction and cancer initialization

and growth. The analysis will be based on high throughput transcriptomics data collected from

real cancer tissue samples. Given a dataset, the objective is find Bayesian networks that include

the spanning tree to optimize a score function. As initial steps, we construct a Chow-Liu tree

[Chow and Liu, 1968] for each of the data set. By comparing the correlations that are included in

the Chow-Liu tree with the entire correlations, we find that some important correlations are not

included in the Chow-Liu tree due to the limitations of spanning tree, which indicates the necessity

of using an enhanced model, e.g., k-tree model to learn the networks. Our final goal is to build

a detailed causal network of genes related to cancer initiation and growth, which clearly indicates

the causal genes of the cancer-related activities.
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6.1 The Bayesian k-tree Model

For a set of random variables X = X1, X2, · · · , Xn of a complex system, out task is to identify

an “optimal” directed acyclic graph (DAG) G, whose nodes represent the random variables and

edges characterize the dependencies of the variables. Each edge of the DAG encode a parent-child

relationship Xi|Xpai , where Xpai is the parent set of variable Xi. The dependencies of the random

variables must satisfy Markov property, i.e., each Xi is independent of its non-descendants given

its parents Xpai . A Bayesian network defines a unique joint probability distribution over X as

P (X1, · · · , Xn) =
n∏
i=1

P (Xi|Xpai), (6.1)

where P (Xi|Xpai) is a conditional probability distribution of Xi given its parents in G.

A k-tree can be represented with the vertices in the order in which they are created. A creation

order of a k-tree G of n vertices is defined as

OG = Ck+1xk+1Ck+2xk+2 · · ·Cnxn, (6.2)

where Ci is k-clique in G, and Ci ⊆ {xk+1, · · · , xi−1} ∪j<i Cj , for all i = k + 1, · · · , n, such

that Ck+1 is created in step 1 of Definition 2.1.1 and xi is created by connecting to Ci in step 2 of

Definition 2.1.1. Figure 6.2 shows an example of 3-tree containing 10 vertices, its tree decomposition

representation, and a creation order of the 3-tree example.

Definition 6.1.1. Let k ≥ 1 be an integer. A Bayesian k-tree is a Bayesian network over n random

variables X1, · · · , Xn that has a k-tree of n vertices to represent the dependencies of the random

variables.

Proposition 6.1.1. Let X = x1, · · · , xn be random variables of a Bayesian k-tree G, with the

creation order OG = Ck+1xk+1Ck+2xk+2 · · ·Cnxn. Then the joint probability distribution function

of the corresponding Baysian network can be computed as

Q(X) = Q(x1, · · · , xn) = P (x1, · · · , xk)
n∏

i=k+1
P (xi|Ci) (6.3)
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Figure 6.2: Left: A 3-tree of 10 vertices; Right: a tree decomposition representation of the 3-tree;
Bottom: a creation order for the 3-tree example.

The proposition holds because Q(x1, · · · , xn) = P (x1, · · · , xn|OG) and P (x1, · · · , xn|OG) =

P (xn|x1, · · · , xn−1, OG)P (x1, · · · , xn−1|OG). The last equality holds for the reason that xn shares

edges only with vertices in Cn. Solving the recurrence gives equation.

6.1.1 Optimal Learning of Bayesian k-tree

Let Q be the Bayesian k-tree-constrained model. Then it can be considered an approximation of the

unconstrained Bayesian model P . The approximation can be measured using the Kullback-Leibler

divergence between two models [Kullback and Leibler, 1951; Lewis, 1959]

I(P,Q) =
∑
x

P (X) log P (X)
Q(X) ≥ 0 (6.4)

where the last equality holds if and only if P (x) = Q(x). The problem learning the optimal Markov

k-tree is the task to find model Q that minimizes the divergence.

Definition 6.1.2. The mutual information I(xi, xj) between two variables xi and xj is given by

I(xi, xj) =
∑
xi,xj

P (xi, xj) log( P (xi, xj)
P (xi)P (xj)

). (6.5)

It is well-known that I(xi, xj) is non-negative. And from the above definition, it is easy to
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derive I(xi, Ci) =
∑
xi,Ci

P (xi, Ci) log( P (xi,Ci)
P (xi)P (Ci))

Proposition 6.1.2. The maximization of
∑n
i=k+1 I(xi, Ci) yields an optimal Bayesian k-tree.

The proof the above is very similar to the proof of tree dependence is an optimum approximation

in [Chow and Liu, 1968].

6.1.2 Tree k-tree Model

In our previous investigations of using backbone k-tree model to predict RNA 3D structures, with

the natural order of the nucleotides of a RNA sequence, we can assume the vertices of the input

graph G are labeled with integers {1, 2, · · · , n}. The backbone k-tree model requires that all the

backbone edges {(i, i+ 1) : 1 ≤ i < n} are contained in both G and the objective spanning k-tree,

which makes it possible to compute the constrained spanning k-tree efficiently.

Definition 6.1.3. A condition for problem MSkT is a designated subgraph that are contained by

both the input graph and the output spanning k-tree.

Proposition 6.1.3. Under the backbone condition, the problem MSkT can be solved in time

O(nk+1), for every fixed k ≥ 1.

The above proposition has been justified in Chapter 2. Although the backbone condition makes

the developing of efficient algorithms possible, for most of the real world problems, determining an

appropriate ordering is itself a difficult problem. A natural extension of the backbone is a condition

with a constant number of backbones. Actually, it is not hard to show that if a constant number

of backbones are forced to be in both the input graph G and the output spanning k-tree, the

problem MSkT can be solved in time O(nk+1), for every fixed k ≥ 1. We are more interested in

the condition of a spanning tree, i.e., a spanning tree T is required to be included in both the input

graph and the spanning k-tree. An important advantage of the spanning tree condition is that

a meaningful spanning tree can be achieved efficiently using the famous greedy algorithms [Chow

and Liu, 1968]. Moreover, the spanning tree condition can be easily extended to spanning forest

condition. Generally,
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Definition 6.1.4. Let G be an arbitrary k-tree. A condition satisfied by G is called a genuine

condition if every (k + 1)-clique in G separates the condition (a subgraph) into more than one

connected nonempty component.

Proposition 6.1.4. Under a genuine condition, the problem MSkT can be solved in time O(nk+1)

for every fixed k ≥ 1.

For a spanning tree to be a genuine condition, the spanning tree must be split into more than one

connected component by an arbitrary k-clique. Therefore, the spanning tree cannot have degree

more than k. It is relatively simple to achieve a spanning tree from the application data. But

computing a spanning tree with bounded degree is NP-hard (can be reduced to Hamiltonian Path

problem easily). Therefore, heuristic algorithms may be needed to construct a spanning tree with

bounded degree. In the following section, we have applied the algorithm in [Chow and Liu, 1968] to

build a spanning tree from analysis of gene expression data for cancer research. As we found that,

the spanning tree for this real world application has small degree. And the degree can be further

reduced with the prior knowledge of the gene correlations.

6.2 Analysis of Gene Networks for Cancer Research

In the section, we apply the proposed methods on Bayesian k-tree learning for the studying of cancer

development. We work with researchers in the Computational Systems Biology Laboratory (CSBL)

at the University of Georgia on this project. Fenton reaction has long been believed associated to

the initiation and progression of multiple cancer types due to the production of highly oncogenic

metabolite named hydroxyl radical [Torti and Torti, 2013; Toyokuni, 2009]. However, there is lack

a detailed mechanism that how the Fenton reaction causes cancer. The preliminary studies by

CSBL raise a hypothesis that the oxidative stress may serve as a direct pressure that drives the

cell proliferation and cause the formation of cancer [Xu et al., 2014]. To the best of our knowledge,

there is no effective biological marker can be used to measure Fenton reaction in cancer patients,

and the highly micro-environment-dependent Fenton reaction cannot be reflected by cell or animal
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based models, which cause the difficulty to study this problem through experiment based methods.

Fe2+ +H2O2 → Fe3+ +HO ·+OH− (6.6)

Fe3+ +H2O2 → Fe2+ +HOO ·+H+ (6.7)

In this study, we aim to test the hypothesis by building a causal model between the Fenton

reaction related genes and cell proliferation and cancer associated genes by using high throughput

transcriptomics data collected from real cancer tissue samples. Our planned investigations will be

conducted on 15-20 types of sporadic cancers that have RNA-Seq data collected from more than 100

samples and available in TCGA database [Tomczak et al., 2015], including bladder urothelial carci-

noma, breast invasive carcinoma, cervical squamous cell carcinoma, endo-cervical adenocarcinoma,

colon adenocarcinoma, esophageal carcinoma, glioblastoma multiforme, head and neck squamous

cell carcinoma, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, liver hepa-

tocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, ovarian serous cystade-

nocarcinoma, pancreatic adenocarcinoma, prostate adenocarcinoma, rectum adenocarcinoma, skin

cutaneous melanoma, stomach adenocarcinoma, and thyroid carcinoma. The RNA-Seq data mea-

sures the gene expression level of around 20,000 genes encoded in human genome in each collected

sample that reflect the biological activities associated to the function of each gene.

The preliminary studies by CSBL also suggest that the Fenton reaction can be quantified by

using the gene expression level of 12 iron-sulfur clustering metabolism, 19 oxidative stress and 65

protein damage response genes, by which they have proved the Fenton reaction generally exists in

all of the selected cancer types [Xu et al., 2014]. We intend to construct causal models by linking

the Fenton reaction related genes against 20 cell proliferation marker genes and about 500 cancer

associated genes in each cancer type. Out final goal is to build a detailed causal model that explain

which cell proliferation or cancer associated genes are directly influenced by Fenton reaction in each

selected cancer type. The result cannot only increase our basic understanding of the roles of Fenton

reaction in cancer formation and progression but also can be applied in identification of biomarkers

or drug targets for anti-oxidant (hydroxyl radical) therapies in cancer treatment [Fuchs-Tarlovsky,

2013].
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6.2.1 Data Set

The data set, provided by the Computational Systems Biology Laboratory at the University of

Georgia, contains gene expression level of 12 iron-sulfur clustering metabolism, 19 oxidative stress,

65 protein damage response genes, 20 cell proliferation marker genes and about 400 cancer associ-

ated genes. The data set is filtered, normalized and discretized before being used to produce the

results in SectionpreResultsCancer,

6.2.2 Preliminary Results

We construct a spanning tree (see Figure 6.3) using kruskal’s algorithm with edge weight defined

as mutual information of two random variables [Chow and Liu, 1968]. Each node of the spanning

tree represents a gene that is colored by the pathway it belongs to. There are 6 different pathways:

Iron related genes, Oxidative stress, Nucleotide synthesis, Glycosaminoglycan, Lipid peroxidation,

Collagen. Though the learned tree structure is simple, it shows some important correlations that are

consistent to the our observations and hypothesis. For example, oxidative stress responsive gene is a

reactant of Fenton reaction. So they have strong correlations that can be recognized in the spanning

tree (green nodes and cyan nodes). Iron related genes (Iron containing proteins and synthesas) is

also a key reactant of Fenton reaction. Glycosaminoglycan, one kind of extracellular component,

is highly likely to be involved in Fenton reaction related biological process. Nucleotide synthesis,

one out come of Fenton reaction, is hoped to be driven by Fenton reaction. Lipid peroxidation

is unknown if is driven by Fenton reaction. Collagen, one kind of extracellular component, may

not be involved in Fenton reaction related biological process very much. It can be observed in the

spanning tree that the collagen genes are relatively independent with other genes.

However, by comparing the heat maps of all correlations and the correlations that are captured

in the learned spanning tree (see Figure 6.4 and Figure 6.5). We identify some meaningful correla-

tion regions that are included in the learned spanning tree. This may indicate a requirement of a

more powerful model, such as k-tree model, to capture all important collations.

We also notice that the largest degree of the learned spanning tree is 16. Though there are

only a very small number of nodes that have degrees close to 16, it may still be too large to use

78



tree k-tree model. We hope that we could analyze the learning spanning tree and remove some

redundant or unimportant correlations using the prior knowledge or the hypothesis to reduce the

degrees.

6.3 Causality Inference

A Bayesian network is model of dependencies of the random variables. However, the biologists are

more interested in understanding the flow of causality in the biological systems. For example, an

expression of a gene is an immediate cause of the expression of another gene. At first glance, we

would think there is no direct connection between correlation and causality. However, it has been

studied [Spirtes et al., 1989; Pearl and Verma, 1995; N et al., 2000] for years that when we can learn

a causal network. It is generally believed that it is very difficult to obtain a complete causality

network from data, but learning partial causality inference from data is possible. In the future,

we hope to use the learned multiple constrained Bayesian k-trees to derive partial causalities. An

inherent advantage of using Bayesian k-trees to study the causality network is that the dependencies

in Bayesian k-trees are depicted between a random variable xi and a clique Ci of random variables.

And the creating order of a Bayesian k-tree provides an effective way to model the dependencies.

We believe this will have a significant impact on predicted casual relationships from real data.
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Figure 6.3: A spanning tree learning from the data set. Tree nodes are colored by its pathways:
Iron related genes (green), Oxidative stress (cyan), Nucleotide synthesis (yellow), Glycosaminogly-
can (purple), Lipid peroxidation (blue), Collagen (red)
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Figure 6.4: Heat map for all correlations for the data set.
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Figure 6.5: Heat map for the correlations captured by the learned spanning tree.
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Appendix A

Supplementary Materials

Figure A.1: (a) An example of 4-clique q with nucleotides U4,A10,A42,C43, where 4, 10, 42, 43
are the indices of the nucleotides in the sequence. The identifier of q is UAAC001, where UAAC
are the ordered nucleotides, 0 (resp. 1) encodes the number of nucleotides between two nucleotides
along the backbone is larger than (resp. equal to) 0. Two possible interaction patterns (ips) for the
clique of identifier UAAC001 in (a), with interactions labeled between the nucleotides (see Table 1),
can be found by searching the identifier in the interaction patterns database NIPDB (see Section
2.3 in the main text). NIPDB has been established by extracting ips from the known RNAs of
length < 100 nucleotides, e.g., one of the sources of the ip in (b) is chain D of the tRNA (PDB ID:
2DU3) with PDB numbers {908, 914, 946, 947} for the 4 nucleotides. All extracted ips are grouped
according to their identifiers in NIPDB. (b) and (c) also show the subgraphs induced by two ips,
respectively, where each interaction induces one edge of the subgraph and if multiple interactions
induce the same edge, only one edge is shown.

A.1 Pre-processing Step

The predicted interaction can be critical to the accuracy of the 3D modeling. Based on Table A.10,

the predicted 3D structures using the resolved interactions are generally more accurately than those

using the predicted interactions. One of the major reasons is that the stacking interactions with
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Figure A.2: New framework for the RNA 3D structure prediction.

Table A.1: Categories, types and families of RNA nucleotide interactions (from 5’ to 3’), mostly
summarized from works (Leontis and Westhof, 2001; Leontis et al., 2002; Zirbel et al., 2009; Zirbel,
2011). It also includes the phosphodiester interaction between two neighboring nucleotides.

Categories Types (Interaction Families) Num.

Base pairs
cWW, tWW, cWH, tWH, cHW, tHW, cWS, 18tWS, cSW, tSW, cHH, tHH, cHS, tHS, cSH,
tSH, cSS, tSS

Base phosphates 0BPh, 1BPh, 2BPh, 3BPh, 4BPh, 5BPh, 6BPh, 107BPh, 8BPh, 9BPh

Base riboses 0BR, 1BR, 2BR, 3BR, 4BR, 5BR, 6BR, 7BR, 99BR
Base stackings s35, s53, s33, s55 4

Backbone-backbone phosphodiester(BB) 1

different facing conformations were treated as one type of stacking when we trained the neural

networks. As a result, the provided stacking facing conformation that might not always lead to the

correct prediction. Therefore, we have introduced a pre-processing step that establishes a serial of

knowledge-based rules to modify the predicted interactions before using them in the 3D modeling

step.

Figure A.8 show examples of four uncommon base stackings that cause uncommon shapes in the

modeled 3D structures. The pre-processing step solves the problem by removing or replacing certain
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Figure A.3: (a) 3-tree of 7 vertices by Definition 1, with the order of forming four 4-cliques: from
clique {1, 2, 3, 6} (black edges), vertex 5 and blue edges added, then vertex 7 and red edges added,
and finally vertex 4 and green edges added. (b) Illustration of the graph of (a) with a tree-topology
connecting the four 4-cliques. (c) A backbone 3-tree for sequence AUUGGCA, of the same topology
as shown in (a); backbone edges are in bold.

interactions and results in a more common backbone spin. More specifically, we introduced rules

including removing contiguous s53; removing s55 or s33 within 3 intervals; removing contiguous

interactions in cis or trans conformation and replacing contiguous s33 with s35. The proposed rules

help to improve the result of 3D prediction generally (see Fig. 6 in the main text).
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Table A.2: Features selected from a given (k + 1)-clique q and the subgraph Hq,A(q) for training
ANN N (i,j),t

q,Hq,A(q)
. CBP is an abbreviation for canonical base pair. A Component (Cp) is defined as

the maximal subsequence consisting of two or more nucleotides each involved in a CBP.

Feature Value Comments
Seq. length An integer Length of a training sequence containing q.
Distances k integers Distances between every two nucleotides in

the sequential order in q.

Number of Cps k integers
Number (one of {0, 1, 2, 3,−1}) of Cps on the
subsequence between every two nucleotides
in the sequential order. 3 means there are at
least 3 Cps; −1 means the two nucleotides
are neighboring nucleotides on the sequence.

Neighbor nts. k + 1 4-mers

One 4-mer (of letter A, C, G, U) for every
nucleotide in q, where the first two letters
and the last two letter of the 4-mer indicate
the two nts to the left and to the right of the
nucleotide, respectively, and letter N is used
when there is no neighbor.

Neighbor CBPs k + 1 4-mers

One 4-mer (of binary bits) for every nu-
cleotide in q, where the first two bits and the
last two bits of the 4-mer indicate the two nts
to the left and to the right of the nucleotide
are involved in CBPs, respectively, and letter
N is used when there is no neighbor.

Edge properties up to k(k+1)
2 integers

For every edge in the subgraph Hq,A(q) of q,
value 0 indicates both nts are involved in a
CBP; -1 (resp. +1) indicates exclusively left
(resp. right) nt is involved in a CBP; 2 indi-
cates either is near a CBP; and -2 indicates
both are far away (distant beyond 3 nts) from
a CBP.

Table A.3: Average performances of MC, Rosetta, NAST and BkTree, with results in two cate-
gories: average over all successfully resolved RNAs and average over all successfully resolved RNAs
of length > 50. The best performance data are displayed in bold.

All RNAs RNAs of length >50
Success/Total STY PPV MCC Success/Total STY PPV MCC

MC 21/43 80.7 86.2 0.8344 6/18 77.1 86.0 0.8145
Rosetta 43/43 62.8 80.3 0.7101 18/18 53.4 78.5 0.6474
NAST 30/43 44.5 68.2 0.5508 12/18 44.0 71.4 0.5604
BkTree 43/43 88.6 81.3 0.8482 18/18 86.0 82.7 0.8433
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Figure A.4: Structure of ANN N (i,j),t
q,Hq,A(q)

. For every feature listed in Table 2, there is a node in
the input layer for each value of the feature. The hidden layer is comprise of two layers with 8
nodes and 16 nodes respectively. The output layer is a single node representing the confidence of
interaction t on (Si, Sj).
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Figure A.5: Nucleotide interaction prediction results by BkTree on the benchmark set used in
the survey (Laing and Schlick, 2010). The number of canonical base pairs (CPBs) and number of
non-canonical interactions (NCIs) are listed. The STY, PPV and MCC were calculated, excluding
the canonical bases pairs used as a part of the input. Column 8 shows the edge difference (see
Section 2) for each of the RNAs. The data of the 7 RNAs displayed with the bold font are not in
set T .
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Table A.4: List of MCC values predicted using BkTree, excluding the canonical bases pairs used
as a part of the input, for 13 long RNAs.

PDB ID Len. # CBPs # NCIs MCC Structure complexity
1Z43 101 30 128 0.8549 3-way junction (SRP)
3SUX 101 30 121 0.7295 Pseudoknot, 3-way junction (Riboswitch)
3F2Y 109 31 135 0.7400 Pseudoknot, 4-way junction (Riboswitch)
1NBS 120 31 147 0.8117 4-way junction (Ribonuclease P RNA)
4KQY 120 39 138 0.7671 Pseudoknot (Riboswitch)
1L9A 126 37 146 0.8497 3-way junction (Synthetic RNA)
3NDB 136 43 174 0.8431 3-way junction (SRP)
2QBZ 153 47 204 0.7982 3-way junction (Synthetic RNA)
1U9S 155 50 205 0.7643 4-way junction (Synthetic RNA)
2R8S 159 45 204 0.7483 3-way junction
4ERL 161 55 219 0.8292 Pseudoknot, 5-way junction (Riboswitch)
4GXY 162 46 190 0.6666 4-way junction (Riboswitch)
3DIL 174 62 234 0.8337 Pseudoknot, 5-way junction (Riboswitch)

Figure A.6: List of performance values predicted using MC, Rosetta and BkTree on 4 represen-
tative RNAs chosen by (Laing and Schlick, 2010). The results generated by MC and Rosetta are
obtained from the survey paper (Laing, 2014; Laing and Schlick, 2010). We display the results of
each RNA in two categories, where the average and the best performances of up to five folds are
shown in the upper and lower category respectively. The highest values among the results of three
methods are displayed in bold.
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Figure A.7: Examples of predicted 3D models (blue) superimposed with respective native struc-
tures (green). The superimpositions in the frist row from left to right: 1DK1 (57 nucleotides, 3-way
junction, 1.029Å); 1MMS (58 nucleotides, 3-way junction, 2.032Å); 2QUS (69 nucleotides, pseudo-
knot, 9.864Å). The superimpositions in the second row from left to right: 2DU3 (71 nucleotides,
4-way junction, tRNA, 3.751Å); 3D2G (77 nucleotides, 3-way junction, riboswitch, 4.552Å), 1LNG
(97 nucleotides, 3-way junction, SRP, 10.862Å).
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Figure A.8: Examples of uncommon shapes of RNA backbone spins. Stacking interactions other
than s35 between neighboring nucleotides will force the backbone twist in a way that its torsion
angles are far off their average values.
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Figure A.9: RMSD and DI values of the prediction results by BkTree3D on the benchmark set
used in the survey (Laing and Schlick, 2010). The number of canonical base pairs (CPBs) and
number of non-canonical interactions (NCIs) are listed. The columns labeled STY, PPV, MCC
and EdgeDiff were from our recent results (Ding et al., 2015), where the predicted interactions
were used as inputs to BkTree3D. The data of the 7 RNAs displayed with the bold font are not
used in the training of the neural networks in the interaction prediction stage.
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Figure A.10: RMSD values from the results of three independent tests using BkTree3D on the
benchmark set used in the survey [Laing and Schlick, 2010]. The resolved interactions from RNA
3D Atlas were used as inputs to BkTree3D to produce the results in RMSD r column. For RMSD p
column, the predicted interactions were preprocessed before inputting to BkTree3D. In addition
to the preprocessing of the predicted interactions, the geometry candidates of a testing RNA were
removed from GDB before GDB was used by BkTree3D for the results in RMSD g column.
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Figure A.11: RMSD values of 5 top structures predicted by BkTree3D on the benchmark set used
in the survey (Laing and Schlick, 2010). The predicted interactions were preprocessed (see Section
X) before inputting to BkTree3D. The best and average results were also listed for each RNA.
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Figure A.12: List of performance values predicted using MC, Rosetta and BkTree3D on 4 rep-
resentative RNAs chosen by (Laing and Schlick, 2010). The results generated by MC and Rosetta
are obtained from the survey paper (Laing, 2014; Laing and Schlick, 2010). We display the results
of each RNA in two categories, where the average and the best performances of up to five folds are
shown in the upper and lower category respectively. STY, PPV and MCC values are calculated
based on the interaction prediction results of the first stage of the pipeline; RMSD and DI are from
the results of the 3D modeling stage. The highest values among the results of three methods are
displayed in bold.
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