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ABSTRACT 

 The development of neoplastic cells is hypothesized to be the result of cells responding to 

a stressful microenvironment such as chronic hypoxia, increased ROS and persistent immune 

attacks. Distinct levels of oxidative stress, estimated by gene markers in ROS-generating 

processes, are found to explain well the differences in disease incidences rates associated with 

different cancer types in different regions of the world. Further, increased levels of ROS could 

force the cells to induce higher antioxidant synthesis. This process could compete for sulfur 

resources with SAM synthesis used for DNA methylation, and eventually lead to a globally 

reduced level of DNA methylation.  In metastatic cancer, oxidized cholesterol and its further 

metabolized derivatives are found to be a key driver of the explosive growth of post-metastatic 

cancers. My work suggests that it is the change in the O2 level between the metastasized and the 

primary sites, i.e., from O2 poor to O2 rich, that leads to the substantially increased uptake and de 

novo synthesis of cholesterol as well as oxidation and further metabolism of cholesterol towards 

the production of oxysterol and steroidal hormones, all powerful growth signals. 

To understand how various stress types may drive the unique biology of cancer, we need to study 

cancer tissues rather than cancer cell line data since the former contains all the relevant 



information but the latter does not. Compared to the cell-based omic data, observed tissue-based 

gene-expression data are the results of gene-expression levels summed over all cell types, such 

as cancer cells, multiple immune cell types, fat cells, and normal cells in the tissues. A novel 

algorithm for de-convoluting tissue-based data to the cell-type specific contributions is 

developed based on the following information: (1) genes in each cell type are expressed in a 

coordinated manner, specifically they are grouped into pathways whose genes are co-expressed; 

and (2) different cell types tend to have different sets of pathways activated.  
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CHAPTER 1 

INTRODUCTION 

Overall goal of my thesis: characterizing cellular stresses that drive cancer development 

The most popular theory about cancer and cancer drivers in the past 40 years is the genomic 

mutation theory of cancer. The first discoveries of oncogenes by Bishop and Varmus [1] and 

tumor-suppressor genes by Knudson [2] have had enormous impact on how cancer has been 

studied in the past four decades. Various driver models have been proposed based on identified 

oncogenes and tumor-suppressor genes such as the Philadelphia chromosome for chronic 

myelogenous leukemia [3] and APC gene mutations for colon cancer [4]. As of now, hundreds of 

oncogenes and tumor-suppressor genes have been identified for a variety of cancers [5], which 

has fueled the idea of cancer being many different diseases and hence the need for personalized 

treatments. Yet, our ability to cure cancer has not improved substantially in the past four 

decades, cancer-related mortality rates being 200 per 100,000 people in 1975 versus 180 in 2009 

[6], a mere 10% decrease. This seems to point to one possible and unfortunate reality: the root 

causes of cancer may not have been correctly identified, and the current treatments may have 

been mostly targeted at late developmental events after the disease has evolved substantially and 

divergently from the root causes.  

The goal of my thesis project is to understand the issues of cancer initiation, development and 

metastasis from the viewpoint that the ever-changing and stressful microenvironment are the 

ultimate driver of cancer initiation, and its interactions with cancer cells further propel cancer 

cells to develop, become more malignant, metastasize and lead to human death. 



 

2 

Cancer takes place when normal cells are put under unusual conditions such as hypoxia [7], 

possibly induced by chronic inflammation [8], or elevated reactive oxygen species (ROS) [9] 

within localized tissue micro-environments. These conditions, if not causing cell death, would 

lead to abnormal cellular responses for which cell division may represent the most feasible way 

for cells to alleviate the pressure for survival [10]. The development of neoplastic cells is the 

result of cells responding to the stressful microenvironment such as chronic hypoxia, increased 

ROS, acidity, ECM stress and persistent inflammation. On the other hand, as the neoplastic cells 

continue to evolve by changing their metabolism to adapt to the challenging microenvironment, 

they make their environment increasingly more stressful as a side-product of their altered 

metabolism. Three examples are utilized to demonstrate the interactions. 

Hypoxia. During chronic hypoxia with oxygen deprivation, there is a switch between the two 

energy metabolism methods for ATP production: from oxidative phosphorylation to glycolysis. 

Since glycolysis is much less efficient for ATP production, cancer cells are forced to increase 

uptake of glucose to make up for the less efficient energy production, however, there is an 

intrinsic mismatch between increased glucose influx and the capacity of the glycolysis system. 

As a result large amount of glucose and its derivatives are accumulated in the cells, which forms 

mounting pressure for the cells to evolve to remove the accumulation or die. Cell division is 

believed to be the most feasible way to remove the accumulated glucose derivatives, and would 

continue as long as the hypoxic condition and metabolite accumulation persist.  

Oxidative stress. Previous studies have found that cancer cells tend to have increased ROS 

levels compared to normal cells, possibly due to the combination of increased metabolic 

activities, re-oxygenation and mitochondrial malfunction. When the ROS level exceeds the 

antioxidant capacities, the cells become oxidatively stressed. A number of biological processes 
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are known to respond to the ROS increase to protect the cells. Specifically, ROS can regulate 

directly or indirectly the activities of some important proteins such as those involved in GPR 

signaling, apoptosis, angiogenesis, immune response and general stress response. Specifically 

this list includes ATM, ERKs,  HSF1, JAK,  JNKs, NFκB, PI3K, PKC (protein kinase C), PLCγ1 

(phospholipase C-γ1) and STAT, indicating the global impact of ROS-induced stress, many of 

which will lead to changes in a range of metabolic activities, hence further altering the cellular 

and extracellular environments. The current knowledge is that moderately increased ROS is 

beneficial to the growth of cancer cells while substantially elevated ROS may drive cancers to 

metastasize [11].  

Acidity. It is known that cancer cells tend to create an acidic pericellular environment by 

releasing higher-than-normal quantities of lactic acid as a result of their altered glucose 

metabolism, initially induced by their hypoxic environment. As a result, the altered 

microenvironment induces further changes, and a recent study  has established that lactic 

acidosis in the pericellular space does not only provide a competitive advantage to cancer cells 

over neighboring normal cells, but also serves as a protector and facilitator for cancer cells to 

overcome some challenges that the hostile environment imposes on them [12], including evading 

apoptosis, facilitating invasion and metastasis, reducing immune cells’ effectiveness and so on. 

The same phenomenon can be said about other micro-environmental changes, such as stresses 

from ECM composition and immune surveillance. 

In summary, the evolving cells change the micro- and intracellular environments as side-

products of their altered metabolism, which may further drive the evolving cells to become 

increasingly more malignant, forming a vicious cycle. In light of this, when we study cancer, we 
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need to take multiple factors into consideration such as (i) hypoxia, (ii) ROS, (iii) acidity, (iv) the 

composition of the local stroma, and (v) the composition of immune environment.  

What has been done in my thesis project 

My thesis studied the impact of micro-environmental stress on different stages of cancer 

development, including cancer initiation, primary cancer and metastatic cancer, which are all based 

on analyses of tissue expression data, shown in Figure 1.1. The overall theme of my thesis project 

is: even though different micro-environment stress could exert their effects on pre-cancrous and 

cancerous cells through various forms, the path human cells take to become more and more 

malignant is always a vicious cycle of micro-environment stress pushing cancer celles to evolve 

and cancer cells overcome stress by altering the micro-environment. 

I. Oxidative stress, metabolic rate and primary cancer incidences 

We wrote a rebuttal letter to a 2015 publication of Tomasetti and Vogelstein [13, 14], which 

proposes that random mutations arising during DNA replication in normal, noncancerous stem 

cells are key contributors to cancer, based on their observation that there is a strong and positive 

correlation between the total number of stem cell divisions and the lifetime cancer risk in a 

tissue. According to the International Agency for Research on Cancer (IARC) database, Vol-X 

[15], the variations of cancer risks for different human body parts is large. Moreover, the 

database also contains cancer risks data of same cancer types for 284 distinct regions in 69 

countries spreading five continents, and it is noted that the variations within different populations 

for the same cancer types are also very significant. We consider that: their observation suggests 

that there is a baseline cancer-risk level for each tissue type, which is determined by the biology 

of the tissue. What is more interesting is why for the same cancer type, populations from 

different parts of the world should vary so much. 
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Our analyses revealed that (1) a combination of basal metabolic rate and oxidative stress level in 

a tissue offers a more plausible explanation of the lifetime risk of cancers than their model; and 

(2) somatic mutations may be predominantly selected to serve as facilitators rather than primary 

drivers of cancer formation. 

II. Oxidative stress, nucleotide synthesis and DNA hypo-methylation 

While gene-expression markers can be used to detect stresses, they tend to be too sensitive to 

other cellular conditions, hence hard to use as reliable predictors for specific stresses, particularly 

stress levels. Epigenomic markers, such as DNA methylation levels associated with specific 

genes, are substantially more stable, and it has been well established that (micro)environmental 

stresses can leave marks in epigenomic patterns. In fact, it has been observed that while the 

promoter regions of protein-encoding genes in cancer genomes tend to have increased 

methylation levels, the overall level of DNA methylation in cancer tends to have decreased, in a 

variety of cancer types, including colon, liver, gastric, ovarian, breast, thyroid, and lung cancer 

[16-19]. Certain cancers can have over 50% reduction vs. their normal controls as observed, 

including human primary GBMs and glioma cell lines [20]. It has been speculated that such 

reduced levels of global DNA methylation might have been selected to increase opportunities for 

the host cancer cells to overcome or to adapt to specific stresses encountered as reduced 

methylations generally imply increased gene expressions [21]. 

Currently, some  hypothesis try to explain the reason of global DNA hypomethylation in cancer. 

With dietary methyl (folate, choline, and methionine ) deficiency intakes, there are not enough 

preformed methyl groups to meet the total need for DNA methylation and DNA synthesis, which 

causes hepatic steatosis, cirrhosis, even hepatic tumorigenesis [22]. Additional methyl groups are 

synthesized de novo via the one-carbon folate pool. Among folate pool, 5,10-
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methylenetetrahydrofolate is preferentially directed toward de novo thymidylate biosynthesis at 

the expense of homocysteine remethylation during folate deficiency [23]. So, DNA methylation 

would be sacrificed.  

We have identified (1) a possible determinant for global DNA methylation in cancer cells, and 

(2) a relationship between levels of DNA methylation, nucleotide synthesis and intracellular 

oxidative stress in cells. We developed a system of kinetic equations to capture the metabolic 

relations among DNA methylation, nucleotide synthesis, and anti-oxidative stress response, 

including their competitions for methyl and sulfur groups, based on known information about 

one-carbon metabolism and trans-sulfuration pathways. We observed a kinetic-based regulatory 

mechanism that controls reaction rates of the three competing processes when their shared 

resources are limited, particularly when the nucleotide synthesis rates or oxidative states are 

high. The combination of this regulatory mechanism and the need for rapid nucleotide synthesis, 

as well as high production of glutathione dictated by cancer-driving forces, led to the nearly 

universal observations of reduced global DNA methylation in cancer. Our model provides a 

natural explanation for differential global DNA methylation levels across cancer types and 

support the observation that more malignant cancers tend to exhibit reduced DNA methylation 

levels. Insights obtained from this work provide useful information about the complexities of 

cancer due to interplays among competing, dynamic biological processes. 

III. Oxygen stress, metastatic cancer and cholesterol metabolism 

Metastases exhibit progression patterns differently than their primary counterparts, growing 

substantially faster after dormancy[24, 25]. They respond poorly to existing drugs and are 

responsible for +90% of all cancer-associated mortalities [26]. While metastasis represents the 

deadliest stage, little is understood about its unique biology[27, 28]. To date, what drives the 
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explosive growth of a metastatic cancer and why metastases do not respond to drugs in manners 

similar to their primary counterparts is unknown. For example, metastatic cancer patients whose 

primary tumors show complete response to neoadjuvant chemotherapy still have poor outcomes 

[29]. Metastatic cancer studies focus predominantly on how primary cancer cells leave their 

disease sites, intravasate blood vessels, and extravasate blood vessel to colonize a new location 

[27, 28]. While recent genome analyses indicate parallel evolution of primary and metastatic 

tumors [30], mechanistic insights into how these evolutionary processes impart metastasis-site 

specific growth have yet to be gained. As with primary tumor cells, metastatic cancer cells must 

adapt to the environment of the organ to which they spread. For example, primary cancer sites 

are generally hypoxic [31] whereas metastatic sites tend to be blood- and O2-rich. In addition, 

immune cells at the primary sites have co-evolved with the cancer from its onset, and are 

involved throughout a cancer’s development [32], referred to as tumor-associated immune cells 

whereas metastatic cells are new to the local immune cells, which act more aggressively towards 

them.  

Cholesterol is the major ingredient of cell membrane biosynthesis. De Novo synthesis via the 

mevalonate pathway and uptake via various lipoproteins are the two routes for cells to obtain 

cholesterol. Links between cholesterol and cancer have previously been reported in the literature, 

such as: (i) epidemiology studies that found connections between blood cholesterol levels and 

cancer mortality rates [33]; (ii) studies that observed increased cellular cholesterol levels in a few 

(primary) cancer types, such as breast cancer [34] and prostate cancer [35]; and (iii) studies that 

link dysregulation or mutations of cholesterol-metabolism genes to cancer occurrence [36]. A 

few recent cancer-epidemiology studies have detected correlations between long-term usage of 

cholesterol-lowering drugs such as statins and reduced cancer-associated mortalities [37]. 
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Mechanistic studies on this relationship only start to emerge in the past few years. For example, 

function-losing mutations in ABCA1, the main exporter for cholesterol efflux, are found to be 

associated with increased cancer occurrences, specifically in colon [38]. One study suggests that 

the increased membrane-cholesterol level is associated with the activation of the kinase Akt, a 

regulator of apoptosis, and hence increases the chances of cancer cells survivals [39]. While 

published studies have detected links between cholesterol and cancer progression, no model or 

understanding has been reported regarding how cholesterol contributes to the explosive growth 

of metastatic cancers (vs the corresponding primary cancers) except that cholesterol is used to 

make cell membranes, to the best of our knowledge.  

Evolutionary studies strongly suggest that cholesterol (or sterols in general) has co-emerged with 

O2 during the early evolution around 2.5 - 3 billion years ago as a “seal” between phospholipids 

in cell membranes to prevent the toxic O2 from entering into anaerobic cells [40]. Recent studies 

have revealed that (a) membrane cholesterol serves as an O2 sensor and  a possible regulator of 

O2-entry into the cells by serving as a membrane barrier against O2 and reactive oxygen species 

(ROS) [40]; (b) a higher membrane cholesterol-phospholipid ratio gives rise to lower O2 

permeability of cellular membranes [41]; and (c) the plasma membrane-cholesterol levels are 

found negatively correlated with the amount of changes in cellular O2 levels of red blood cells 

when the blood- O2 level changes [42].  

We have identified that the altered O2 level in primary cancer sites vs. metastatic cancer sites 

represents a key stress that the newly migrated cancer cells must overcome. Specifically, primary 

cancers tend to be in a hypoxic environment [31], hence their cells have adapted to such 

environment after years of residence there. Once these cells must escape such an environment and 

enter new blood-rich, hence O2 rich environment, substantial changes must be made for adaptation.  
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My thesis research has identified and characterized oxidized and further metabolized cholesterol 

derivatives as a key driver of the explosive growth of post-metastatic cancers. This represents the 

first study on elucidation of drivers of metastatic cancers. My study strongly suggests that it is the 

change in the O2 level between the metastasized and the primary sites, i.e., from O2 poor to O2 rich, 

that leads to the substantially increased uptake and de novo synthesis of cholesterol as well as 

oxidation and further metabolism of cholesterol towards the production of oxysterol and steroidal 

hormones, all powerful growth signals.  

IV. De-convolution of tissue-based gene-expression data  

To understand what stresses may drive the unique biology of metastatic cancers, we need to study 

cancer tissue rather than cancer cell line data since the former contains all the relevant information 

but the latter does not. Compared to the cell-based omic data, tissue-based omic data are 

substantially information richer but analyses of such data also raised very challenging 

computational issues, namely, observed gene-expression data are the results of gene-expression 

levels summed over all cell types, such as cancer cells, multiple immune cell types, fat cells, and 

normal cells in the tissues. Given is a matrix X of measured expression data (or profiles) (row for 

genes and column for samples) of M (human) genes from K cell types over N samples. A 

deconvolution problem is to estimate S and P so that the total error ϵ  is minimized with X%×' =

S%×) ∙ P)×' + ϵ,-s.t.: ./0 = 1, ./0 ≥ 0; -5 = 1,… , 7,8
09:  and S being a signature matrix of gene 

expression data of each cell type and P the proportion of the cell type in the mixture. 

A few algorithms have been developed to estimate S and P [43-47]. Some assume that either S or 

P is known a priori[43, 48-57]. In addition, it is generally assumed that S: 1) consists of only cell-

type specific genes[43, 52-57] or 2) has a constant expression level or simple variations for each 

component gene across different tissue samples[54, 58, 59]. Furthermore, it is often assumed that 
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the to-be-de-convoluted tissue data consists of cancer and one additional cell type[58, 60-62]. 

These are too restrictive for modeling or solving an actual tissue-based data deconvolution problem 

consisting of a multiple cell types that cover most of the human genes. We have checked all 

published algorithms; and found that none are capable to derive for > 2 cell types the detailed gene 

expression profiles for each cell type for individual tissues; and they all miss one key element: co-

expressions among genes in the same pathway are not guaranteed.  

I have developed a novel algorithm for de-convoluting tissue-based data to the cell-type specific 

contributions based on the following information: (1) genes in each cell type are expressed in 

coordinated manners, specifically they are grouped into pathways whose genes are co-expressed; 

and (2) different cell types tend to have different sets of pathways activated. From these insights, 

my algorithm is pathway-centric rather than gene-centric as in virtually all de-convolution 

algorithms. The challenge in this problem formulation lies in that our current knowledge about 

what pathways are expressed in which cell type is very limited. I have employed a powerful bi-

clustering technique developed in our lab to discover such pathways through systematic analyses 

of bi-clustering results of gene-expression data of each cell type using clean cell-line based data. 

This involves enormous amount of very challenging analysis work.  

The structure of my thesis 

In Chapter 2, we examined the levels of oxidative stress in different organs of the different 

populations around the world based on our oxidative stress predictor, and discovered the 

variance of cancer incidences associated with different cancer types and within different 

population groups could be well explained by the basal metabolic rate intrinsic to different 

organs and the basal level of oxidative stress associated with different populations in the world; 

in Chapter 3, we built a mathematical model for DNA methylation associated pathways, the one-
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carbon and trans-sulfurration pathways, and found that hypomethylation in cancer cells is 

resulted from competitions of methyl/sulfur sources between DNA methylation reaction and the 

nucleotide synthesis/anti-oxidation pathways; in Chapter 4, we conducted a comprehensive study 

on metastatic cancers in comparison with primary cancers, and discovered highly consistent up-

regulation of cholesterol metabolism in metastatic cancers, which is a defense mechanism of for 

the oxygen-rich environment in the metastatic site, and it turned out cholesterol metabolism 

could triger metastatic cancer proliferation; in Chapter 5, we developed a novel computational 

tool for tumor tissue sample deconvolution, aiming to decompose the expression profile 

measured on a tissue into the sum of expression profiles of its component cells, without losing 

the sample specificity of these component cells; Chapter 6 is a concluding chapter. 
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Figure 1.1: An outline of what was done in my thesis project.  
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CHAPTER 2 

SOMATIC MUTATIONS MAY NOT BE THE PRIMARY DRIVERS OF CANCER 

FORMATION 
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cancer formation. Int. J. Cancer, 137: 2762–2765. doi:10.1002/ijc.29639. Reprinted here with 
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Abstract 

Tomasetti and Vogelstein recently published two articles in Science proposing that random 

mutations arising during DNA replication in normal, noncancerous stem cells are key 

contributors to cancer, based on their observation that there is a strong and positive correlation 

between the total number of stem cell divisions and the lifetime cancer risk in a tissue. Our 

recent analyses of their and additional data revealed that there is a fundamental disconnection 

between their observation and their conclusion. In addition, our data suggest that (1) a 

combination of basal metabolic rate and oxidative stress level in a tissue offers a more plausible 

explanation of the lifetime risk of cancers than their model; and (2) somatic mutations may be 

predominantly selected to serve as facilitators rather than primary drivers of cancer formation. 

Results 

Tomasetti and Vogelstein recently published two articles in Science [13, 14], proposing that 

“The majority [of cancer] is due to ... random mutations arising during DNA replication in 

normal, noncancerous stem cells”, “[which are] responsible for either initiating the process of 

tumorigenesis or for driving tumor progression”. They then postulate that “This [their proposal] 

is important not only for understanding the disease but also for designing strategies to limit the 

mortality it causes.” These statements were made based on their observation that there is a strong 

and positive correlation between the total number of stem cell divisions and the lifetime cancer 

risk in a tissue. We consider that: (1) there is a fundamental disconnection between their 

observation and their conclusion; hence their above statements are not supported by their data; 

and (2) their reports may offer a good opportunity for the research community to have a serious 

debate regarding the true roles played by somatic mutations in the formation of sporadic cancers, 

as the current knowledge about cancer versus mutation is predominantly derived based on cell 
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rather than cancer tissue studies [63]; and knowledge gained from tissue repair studies suggest 

that cell proliferation in a tissue needs more than just mitogenic/growth signals [64].  

There is an alternative and more plausible explanation of their main observation. Tomasetti and 

Vogelstein made an interesting observation regarding a correlation between the number of cell 

divisions and the lifetime cancer risk in a tissue. This suggests that there is a baseline cancer-risk 

level for each tissue type, which is determined by the biology of the tissue. However it represents 

too much of a leap to suggest, without any supporting data, that it is the replicative mutations 

associated with cell divisions that are responsible for the lifetime cancer risk of a tissue. The only 

(indirect) support for their claim is the somatic mutation theory of cancer [65, 66]. While it has 

been a belief held by many that cancer arises solely as a result of genomic mutations, to the best 

of our knowledge there have not been any published data demonstrating that a sporadic human 

cancer can be initiated by somatic mutations alone. Actually, there is an alternative and more 

plausible explanation of their observation.  

We have examined the basal metabolic rate versus the lifetime cancer risk of a tissue type, and 

found that they have much stronger correlation, as shown in Figure 2.1, than the correlation 

observed by Tomasetti and Vogelstein. Furthermore, the level of oxidative stress, estimated 

based on expression levels of some oxidative-stress response genes in datasets unrelated to the 

current study, explains very well the variations in lifetime cancer risk across different countries. 

Our model, based on tissue metabolic rate and oxidative stress level, achieves R< = 0.96 over 13 

leading cancer types in 21 countries (see Supplementary Material), in comparison with their 

model having R< = 0.65 on their data.  

In the gerontological literature, it has long-been proffered that the onset and/or rate of aging have 

metabolic rate and/or oxidative stress as two key contributors [67, 68], hence (as aging 
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encompasses a large proportion of the instances of cell death in the life of mature humans), we 

hypothesize that metabolic rate and/or oxidative stress are key contributors to the total number of 

cell deaths in a tissue, which is the same as the number of cell divisions for maintaining tissue 

homeostasis in Tomasetti and Vogelstein’s study. We posit that it is the combination of the basal 

metabolic rate and oxidative stress level of a tissue that determine both the rate of aging (hence 

the total number of cell divisions) and the lifetime cancer risk. From this perspective, their 

observation is not a causal but rather a statistical correlation between two events with common 

causes.  

Contributions from environmental factors are hidden and averaged out in their analysis. It is far 

from being clear from the information provided in [13] why their ERS (extra risk score) can be 

used to separate replicative mutations from environment-induced mutations (or damages). Our 

data in Figure 2.1 suggest that the average level of oxidative stress, which affects DNA mutation 

rates, plays an essential role in the level of the baseline cancer risk for each country considered. 

Yet, the average level of oxidative stress of an organ varies across different countries (see 

Supplementary Material), strongly suggesting that environment plays a role in the basal level of 

oxidative stress and hence the baseline cancer risk of a tissue. It is also noteworthy that the 

correlation shown in [13] is between the average cancer risk and the number of cell divisions, 

which has largely removed contributions from environmental factors. Figure 2.2 here shows that 

the lifetime risk of each cancer type has a large variation across 284 regions of 69 countries in 

the world, which we can reasonably assume is largely due to environmental factors [69], 

knowing that different higher eukaryotes, hence different human ethnic groups, all have highly 

similar mutation rates arising from DNA replications [70]. We have examined cancer risks in 

three countries and one territory (Brazil, Costa Rica, Cuba, and Puerto Rico) having quite 
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different risk levels across multiple cancer types. It was found that the correlation between the 

lifetime cancer risk and the number of cell divisions in each tissue (vs cancer) type as used in 

[13] is considerably lower than that reported in [13] in each of the four locations, at 0.481, 0.448, 

0.416 and 0.496, respectively. Although we do not know to what degree the population of any of 

these three countries or one territory share genetic background with the population of the U.S.A., 

we only argue that the high correlation between stem cell division rate and lifetime cancer 

incidence rate published for the U.S.A. population in [13] doesn’t hold in any of these four 

locations. These data suggest that variations in cancer risks, which can be as large as 100 times 

the means for some cancer types such as melanoma or ALL (see Figure 2.2) in some countries, 

could not be explained by the numbers of the basal cell divisions; instead the basal level of 

oxidative stress, with contributions from the environment, offers a much stronger explanation.  

Driver or facilitator: roles played by somatic mutations in cancer formation: Our disagreement 

with [13, 14] is rooted at a rather fundamental level, i.e., regarding the fundamental roles played 

by somatic mutations, due to both replication infidelities and induced damages possibly coupled 

with errors introduced through DNA repair, in cancer formation. While mutations driving cancer 

has been a popular view in the past few decades, it has not been convincingly established in 

cancer tissues. Published studies regarding oncogenic mutations versus cell proliferation have 

been predominantly conducted using cultured cells or mouse models that do not capture the 

fundamental micro-environmental stresses, including oxidative stresses that can lead to DNA 

damages [71]. While such models are highly useful for studying mechanistic issues, they may 

not necessarily be the best or even a correct way to study root causes of a cancer since oncogenic 

mutations alone cannot activate cell proliferation in a tissue environment as discussed below. 

Regarding the actual roles played by somatic mutations in evolution, a recent study on bacterial 
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co-evolution with their antagonistic phage may shed useful lights here [72]. The study 

convincingly established that it is environmental stresses that lead to increased mutations and 

hence increased opportunities for the host to gain a competitive advantage and/or survival 

through selection of certain mutations.  Here the ultimate driving force of cellular evolution 

comes from the need for competitive fitness or survival via stress adaptation through mutation 

selection. That is: mutation selection serves as a vehicle for better fitness and/or survival. This is 

in line with Darwin’s Theory of Evolution.  

Our recent analyses of omic data collected on precancerous and early cancerous colon tissues 

suggest that cancer evolution follows the same evolutionary principle. Specifically we noted that 

a substantial fraction of mutations is in genes associated with extracellular matrix (ECM) in 

precancerous tissues [73] (see Supplementary Material). In parallel, we have also observed that 

the precancerous tissues tend to have active synthesis of hyaluronic acids (HAs), as well as their 

extracellular release and fragmentation, possibly triggered by hypoxic and inflammatory 

conditions coupled with plentiful G6P induced by increased glycolytic activities and metabolic 

congestions along the glycolytic pathway under a hypoxic condition [74]. It has been well 

established that short HAs are key signals for tissue repair [75], including signals for cell cycle 

control, cell growth and survival, and angiogenesis, which are normally released from a damaged 

ECM but here are produced due to a persistent abnormal condition.  

By integrating these two types of data, we proposed a model for explaining the observed 

mutations in ECM genes in (pre)cancerous tissues [73]. That is: under persistent hypoxic and 

inflammatory conditions, the underlying epithelial cells are accumulated with glucose 

metabolites, leading to congestion of their glycolytic pathway, a stressful state. These conditions 

trigger the production, release and fragmentation of HAs, and hence the activation of some but 
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not all players involved in the tissue repair machinery. This puts the relevant cells in a partially 

activated state for tissue repair, another stressful condition, waiting for the additional players to 

join. The ECM mutations, possibly selected in response to this stress, may represent these 

awaited players. It has been established that tissue repair, like in tissue development and 

remodeling, requires changing the ECM structure from being flexible, needed for their normal 

functions, to very rigid through altering its protein composition as the effect of growth factors 

can increase by 100-fold when such a change is made [76]. Together, the combination of the 

partially activated tissue repair system and ECM mutations gives rise to the activation of the HA 

fragments-induced tissue repair system, enabling cell proliferation, driven by adaptation to the 

aforementioned stresses.  

It is worth noting that oncogenic mutations alone cannot activate cell proliferation in a tissue 

environment since that requires signals more than growth factors (or equivalently oncogenic 

mutations), such as signals to ECM [64]. We posit that this HA-enabled tissue repair, which 

enables cell proliferation, will continue as long as the hypoxic and inflammatory condition does 

not change, possibly in an intermittent manner due to the randomness in mutation occurrences 

and HA fragmentation patterns. This process may become more efficient once some oncogenic 

mutations take place and are selected. It is noteworthy that numerous proto-oncogenes are 

regulated by HAs, including MYC and HSF [74, 77]. This is further supported by our recent 

analyses of cancer tissue genomic and transcriptomic data focused on the detailed functional 

gains and losses by key cancer-associated genes, including TP53 and MYC, which revealed that 

before the mutations are selected, the relevant functional gains or losses by them tend to have 

already been accomplished through functional inhibition and/or enhancement (manuscript in 

preparation). Hence we posit that it is essential to have mutations in ECM related genes for a 
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cancer to develop in a non-growing tissue. A main point learned here is that somatic mutations 

tend to serve as facilitators rather than primary drivers of the evolution of sporadic cancers.  

A key message of this letter is that there could be an alternative and more plausible explanation 

of Tomasetti and Vogelstein’s observation, as well as of the general roles played by somatic 

mutations in cancer formation.  

Materials and Methods  

A.! Data used in our study 

All the cancer epidemiological data are obtained from the IARC database, Vol-X [15], which 

covers 284 distinct regions in 69 countries spreading five continents. The lifetime cancer risk is 

estimated for a person with a lifespan of 80 years based on the methods given in Chapter 7 of [78]. 

For each cancer type, the median is used if data from multiple regions are available for a country. 

To combine data from both male and female, an average is taken assuming that the two populations 

have the same sizes, except for testicular germ cell cancer and ovarian germ cell which usually 

occur only in male or female. The cancer types marked with “*” in Table S2.2 do not have their 

lifetime cancer risk readily available from IACR, and are thus estimated based on the closest and 

available cancer type that covers them and their proportions in the superclass cancer type as 

reported in [13].  

To estimate the percentage of all cancer incidences by the 31 types used in the original paper, we 

have used the total number of cancer incidents in the USA in 2003-2007 along the ratio of each 

cancer type (or its superclass cancer type when the data are not available for a specific cancer type 

such as Duodenum adenocarcinoma) out of all the cancer incidences based on data given in IARC, 

Vol-X [15] .  Overall the 31 cancer types cover not more than 45% of all cancer incidents. As a 

comparison, our cancer-occurrence variation analysis covers 21 cancer types in the IARC database 
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(Vol-X) while our causal analysis on cancers covers 13 leading cancer types with gene-expression 

data available in at least two countries, namely bladder carcinoma, breast carcinoma, colorectal 

carcinoma, esophagus carcinoma, renal cell carcinoma, hepatocellular carcinoma, lung 

adenocarcinoma, melanoma, pancreatic adenocarcinoma, prostate adenocarcinoma, osteosarcoma 

and thyroid carcinoma, which cover 72% of all cancer incidences.  

B.! Correlations between the number of cell divisions and cancer risk  

We have examined 21 cancer types, all the cancer types studied in [13] with publicly available 

cancer risk data for all five countries: Brazil, Costa Rica, Cuba, Puerto Rico and the USA in the 

IARC database [15], namely acute myeloid leukemia, chronic lymphoid leukemia, colorectal 

adenocarcinoma, duodenum adenocarcinoma, esophageal squamous cell carcinoma, gallbladder 

non-papillary adenocarcinoma, glioblastoma, head and neck squamous cell carcinoma, 

hepatocellular carcinoma, lung adenocarcinoma (smokers and non-smokers), medulloblastoma, 

medullary thyroid carcinoma, melanoma,  osteosarcoma, ovarian germ cell cancer, pancreatic 

ductal adenocarcinoma, pancreatic endocrine carcinoma, small intestinal adenocarcinoma, 

testicular germ cell cancer and thyroid papillary follicular carcinoma. Table S2.2 shows the risks 

for the 21 cancer types in four countries. The correlation coefficient between the risks across the 

21 cancer types and the total number of stem cell divisions in each of the four countries (Brazil, 

Costa Rica, Cuba, Puerto Rico) are 0.481, 0.448, 0.416 and 0.496, respectively.   

C.! Gene expression data analyzed 

A total of 57 sets of microarray data from the GEO database [79] are used to predict the basal 

glucose metabolic rates and the basal oxidative stress in a tissue type across 13 (normal) tissue 

types . That is 9 cancer types shared with Tomasetti and Vogelstein’s analysis, plus bladder, breast, 

kidney and prostate. Overall, these data consist of 884 normal tissue samples as detailed in Table 
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S2.3. All the data were measured using Affymetrix Human Genome U133 Plus 2.0 Array and 

processed by RMA normalization method using the “affy” package in R with default parameter 

setting. The RMA processed gene expression is then normalized by the total gene expression level 

of each sample.  

D.! Estimation of oxidative stress level in a tissue  

We have developed a computational method to predict the oxidative stress level for a specified 

tissue based on the gene expression data measured using Affymetrix Human Genome U133 Plus 

2.0 Array in case-controlled experiments. Specifically, we have collected 31 gene-expression 

datasets consisting of 294 samples with known oxidative stress levels and 219 control samples as 

the training data to train a predictor using a logistic model, for the level of oxidative stress in a 

tissue. Each dataset is processed and normalized by the same procedure as described in the 

previous section.  The detailed information of the training data is given in Table S2.4. 136 

oxidative-stress response genes (covered by 268 probes) are selected as the discerning features to 

develop the predictor, which consist of genes annotated to be “response to oxidative stress” by GO 

[80] and “reductases” from literature [81].  

The predictor is trained using logistic regression with variable selection using L1 regularization 

on the probes. R package “glmnet” is applied to train the predictor and the parameters is selected 

by highest prediction accuracy under 10-fold cross validation. At the end, 69 probes of 52 genes 

are selected and used in the final model, which achieves 88.96% prediction accuracy under 10-

fold cross validation. Detailed parameters of the model are given in the Table S2.5.  

This predictor is used to estimate the oxidative stress level of the normal tissue samples in the 

current study, which has not overlap with the training data.  
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E.! Correlations between oxidative stress levels and cancer risks for 13 leading cancer 

types  

Figure S2.1 (a – l) show correlations between the estimated oxidative stress levels and the lifetime 

risks of 13 leading cancers in the world with publicly available gene-expression data, namely 

bladder carcinoma, breast carcinoma, colorectal carcinoma, esophagus carcinoma, renal cell 

carcinoma, hepatocellular carcinoma, lung adenocarcinoma, melanoma, pancreatic 

adenocarcinoma, prostate adenocarcinoma, osteosarcoma and thyroid carcinoma. The figure 

shows high correlations between the lifetime e risks and predicted oxidative stress levels across 

different countries for each cancer type.  

F.! An integrated model to explain cancer risk 

We have developed a model that combines the (normalized) gene-expression level of PFKL and 

the predicted oxidative stress level to explain the observed cancer risks as follows:  

CRBC = α ∗ PFKB + βC ∗ POBC + γ + εBC-, 5 = LMNLOP-QRSO-5NTOU, V = LWXNQPR-5NTOU 

where CR, PFK and PO are the cumulative risk, gene expression level of PFKL and predicted 

oxidative stress, α, βC-and-γ are regression parameters, i and j are cancer type and country, and εBC 

is the error term for the regression model following iid Gaussian, respectively. The three 

parameters are trained using a regression analysis based on the 13 cancer types: bladder, breast, 

colon, esophagus, head and neck, kidney, liver, lung, pancreatic, prostate, and thyroid cancer and 

melanoma and osteosarcoma, which represent the largest set with available epidemiology and gene 

expression data. Our regression model achieves R< = 0.96 in fitting the cumulative risk of the 13 

cancer types that is considerably higher than R< = 0.65 in Tomasetti and Vogelstain’s regression 

model, with detailed parameters α, βC-and-γ given in Table S2.6.  
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G.! Functional enrichment analysis of the somatic mutations in precancerous colon and 

colorectal cancer 

We have conducted a pathway enrichment analysis by somatic mutations in two datasets in the 

public domain. The first data set is a sequenced exome dataset of 24 human (pre)cancerous colon 

samples [82], consisting of 1 polyp with 4 mutations, 8 mild and small adenoma samples harboring 

272 mutations, 8 severe and large adenoma samples having 344 mutations and 3 adenocarcinoma 

samples with 198 mutations; and the second dataset covering 131 colon cancer samples (none 

hyper-mutated) in TCGA [83], consisting of 18 stage-1 samples with a total of 1,439 mutations, 

47 stage-2 samples with 3,683 mutations, 43 stage-3 samples harboring 3,657 mutations and 23 

stage-4 samples having 2,061 mutations. We carried out the following pathway/gene set 

enrichment analysis. We count each mutation once if it is observed in at least one sample in each 

disease stage; and then conduct a pathway enrichment analysis by the hypergeometric test in 

DAVID functional annotation tool [84] against KEGG [85], BIOCART [86] and REACTOME 

[87] databases. A pathway/gene set is considered as enriched by mutations if the p-value for 

enrichment is < 0.05.  We have noted that the gene-sets/pathways associated with cell adhesion 

and extracellular matrix are significantly enriched throughout all stages of tissues examined here. 

A detailed list of enriched pathways is listed in Table S2.7. 
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Figures 

 

Figure 2.1: Correlation between lifetime cancer risks and basal metabolic rates, along with 

correlations between variations in risk of each cancer type across different countries and the 

estimated oxidative stress level in a tissue. All 13 high prevalence cancers for which gene 

expression data for Pfkl and the oxidative stress-responsive genes that we utilized in our analysis 

were publicly available are examined here, and they cover 72% of all cancer incidences, versus 

45% as covered in [13]. The x-axis for the large box is the gene-expression level of PFKL, the 

rate-limiting enzyme of glycolysis pathway, used to approximate the glucose metabolic rate, and 

the y-axis is the average lifetime risk (log10 scale) of cancer for a tissue as in [13] while the x-

axis in each inside box is the estimated oxidative stress level and the y-axis is the same as in [1]. 

All data used throughout this letter are provided in the Supplementary Material. 
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Figure 2.2: Each boxplot shows the distribution of lifetime risks across 284 regions in the world 

for 21 (solid green) cancer types. The y-axis represents the lifetime risk and the x-axis denotes 

the number of cell divisions as used in [13], in log10 scale. All the green dots are the same as the 

dots in Figure 2.1 of [13], and the regression line is based on the original data for the 31 cancer 

types. 
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Figure S2.1: In each panel, the x-axis is the (average) predicted oxidative stress level in normal 

tissues where the relevant cancer type occur; and the y-axis is the lifetime risk of a cancer type. 

The dots represent all the countries with both cancer occurrence rates and the relevant gene-

expression data available in the IARC and GEO databases. PCC is Pearson correlation coefficient. 

In (l), the risk of basal cell carcinoma and melanoma is normalized by using the risk / number of 

normal cells as given in [13] .  

Tables 

Table S2.1. Four countries with similar race distributions to that of the USA. 

Brazil 
48.43% white; 43.80% brown, 6.84%  black; 0.58% Asian; and 

0.28 Amerindian [88] 

Costa Rica 
65.8% white; 13.65% mestizo; 9.03% immigrants; 6.72% mulatto; 2.40% 

Amerindian; 1.03% black; 0.21% Asian [89] 
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Cuba 72% white, 20% black and 8% native American. [90] 

Puerto Rico 75.8% white;12.4% black; 0.2% Asian [91] 

USA 
77.7% white; 13.2% black; 5.3% Asian; 1.2% as American Indian and 

Alaska Native [92] 

 

Table S2.2. The lifetime risks (in log10 scale) of 21 cancer types in four countries with similar 

genetic backgrounds to that of the USA. 

 Brazil  Costa Rica  Cuba  Puerto Rico  

Acute myeloid leukemia -2.655 -2.893 -3.172 -2.826 

Chronic lymphocytic leukemia -2.883 -3.092 -3.161 -2.944 

Colorectal adenocarcinoma -1.594 -1.703 -1.611 -1.401 

Duodenum adenocarcinoma* -3.570 -3.768 -3.871 -3.786 

Esophageal squamous cell carcinoma -2.287 -2.993 -2.786 -2.580 

Gallbladder nonpapillary 

adenocarcinoma -2.736 -2.772 -3.175 -3.170 

Glioblastoma* -2.307 -2.568 -2.373 -2.608 

Head neck squamous cell carcinoma -1.759 -2.296 -2.019 -2.018 

Hepatocellular carcinoma -2.873 -2.896 -3.056 -2.568 

Lung adnocarcinoma nonsmokers * -3.402 -3.833 -3.580 -3.584 

Lung adenocarcinoma smokers * -2.108 -2.568 -2.304 -2.316 
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Medulloblastoma -3.907 -3.945 -3.922 -4.261 

Melanoma -2.273 -2.469 -2.660 -2.641 

Osteosarcoma -3.537 -3.863 -3.316 -3.781 

Ovarian germ cell -3.714 -3.454 -3.561 -3.583 

Pancreatic ductal adenocarcinoma* -2.210 -2.185 -2.225 -2.330 

Pancreatic endocrine  islet cell 

carcinoma* -4.056 -4.031 -4.071 -4.176 

Small intestine adenocarcinoma* -3.224 -3.421 -3.524 -3.439 

Testicular germ cell cancer -3.160 -2.665 -3.494 -2.757 

Thyroid papillary follicular carcinoma -2.195 -2.171 -2.397 -2.089 

Thyroid medullary carcinoma -3.682 -3.778 -4.262 -3.832 

 

Table S2.3: “Sample size” represents the number of tissue samples. “Accumulated risk” is 

calculated based on cancer occurrence rates calculated using the formula used in Tomasetti and 

Vogelstein’s analysis. “Oxidative stress” is calculated using the model developed in the 

following section.   

GEO 

accession 

number 

Country 
Tissue 

type 
Sample  

Cumu risk 

(%) 

Cumu risk 

(log10) 

Average 

predicted 

oxidative 

stress level 

GSE11783 Switzerland bladder 6 1.49 -1.8268 -1.2635 

GSE30522 USA bladder 2 1.36 -1.8665 -5.3666 

GSE7476 Spain bladder 3 1.64 -1.7852 -0.6505 
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GSE20711 Canada breast 2 8.63 -1.064 -7.3728 

GSE26457 USA breast 42 10.13 -0.9944 -5.0013 

GSE30010 USA breast 107 10.13 -0.9944 -5.2755 

GSE26457 USA breast 71 10.13 -0.9944 -5.387 

GSE26910 Italy breast 4 9.45 -1.0246 -8.332 

GSE29431 Spain breast 9 6.8 -1.1675 -7.9668 

GSE54002 Singapore breast 16 6.94 -1.1586 -9.9986 

GSE5764 
Czech 

Republic 

breast/ 

lobular 
10 7.76 -1.1101 -8.813 

GSE5764 
Czech 

Republic 

breast 

(ductal) 
10 7.76 -1.1101 -10.6242 

GSE14526 Japan colon 1 3.72 -1.4295 -7.5042 

GSE19963 Portugal colon 4 3.78 -1.4225 -6.6172 

GSE20916 Poland colon 44 3.27 -1.4855 -9.2452 

GSE4107 Singapore colon 1 3.94 -1.4045 -6.2599 

GSE33113 Netherland colon 6 4.8 -1.3188 -6.5836 

GSE41328 USA colon 10 2.81 -1.5513 -10.5123 

GSE4183 Hungary colon 8 5.04 -1.2976 -5.0975 

GSE9254 Australia colon 19 4.44 -1.3526 -7.2539 

GSE23194 Italy colon 12 4.06 -1.3915 -7.3701 

GSE26886 Germany esophagus 19 0.4 -2.3979 -10.7126 

GSE45670 China esophagus 10 1.4 -1.8539 -5.6589 
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GSE29330 USA 
head and 

neck 
5 1.28 -1.8928 -5.3003 

GSE6791 USA 
head and 

neck 
9 1.28 -1.8928 -3.6784 

GSE11045 USA kidney 3 1.39 -1.857 -6.434 

GSE11151 Netherland kidney 3 1.04 -1.983 -6.5987 

GSE12606 Germany kidney 1 1.27 -1.8962 -6.8596 

GSE9489 Switzerland kidney 13 0.74 -2.1308 -7.8584 

GSE13471 USA liver 5 0.73 -2.1367 -6.824 

GSE23343 Japan liver 7 1.08 -1.9666 -4.8958 

GSE24042 China liver 2 2.37 -1.6253 -0.0823 

GSE38663 USA liver (hcv) 14 7.1 -1.1487 -0.1776 

GSE6222 Taiwan liver 2 3.29 -1.4828 0.3553 

GSE10799 Germany lung 3 3.42 -1.466 -8.219 

GSE18842 Spain lung 45 3.75 -1.426 -4.1123 

GSE19804 Taiwan lung 60 3.06 -1.5143 -6.6337 

GSE30219 France lung 14 4.25 -1.3716 -6.2804 

GSE19667 USA lung 48 4.79 -1.3197 -7.6654 

GSE19722 USA lung 18 4.79 -1.3197 -6.5581 

GSE19722 USA 
lung 

(smoker) 
28 86.22 -0.0644 -3.1144 

GSE16515 USA pancreatic 16 0.89 -2.0506 -5.4516 

GSE15471 Romania pancreatic 39 0.96 -2.0177 -7.3675 
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GSE19278 UK pancreatic 7 0.73 -2.1367 -8.8038 

GSE19650 Japan pancreatic 8 0.97 -2.0132 -4.5748 

GSE26910 Italy prostate 6 8.81 -1.055 -5.2922 

GSE3325 USA prostate 5 12.45 -0.9048 -3.8101 

GSE55945 USA prostate 7 12.45 -0.9048 -3.7625 

GSE45016 Japan prostate 1 3.7 -1.4318 -5.7809 

GSE17679 Finland muscle 5 0.087 -3.0605 -11.9753 

GSE34111 UK muscle 6 0.083 -3.0809 -14.9432 

GSE7014 USA muscle 6 0.12 -2.9208 -10.7408 

GSE15605 USA 
normal 

skin 
16 30 -0.5229 -6.3149 

GSE7553 USA 
melanocyt

e 
4 2.03 -1.6925 -2.5187 

GSE33630 Belgium thyroid 45 0.58 -2.2366 -9.2088 

GSE53157 Poland thyroid 3 0.33 -2.4815 -11.9548 

GSE6004 USA thyroid 4 1.29 -1.8894 -5.8687 

 

Table S2.4: Training data used for the oxidative stress predictor including cells treated with 

different levels of oxidative stress and non-cancerous diseases with distinct oxidative stress levels 

[93]. 

GEO accession number Data description (Disease data) 
Data description (Normal 

data) 

GSE5339 Oxidative stress treatment Normal control 
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GSE10896 Oxidative stress treatment Normal control 

GSE13931 Oxidative stress treatment Normal control 

GSE32169 Oxidative stress treatment Normal control 

GSE39156 Oxidative stress treatment Normal control 

GSE39843 Oxidative stress treatment Normal control 

GSE16759 Alzheimer's disease parietal lobe Healthy parietal lobe 

GSE28146 Alzheimer's disease gray matter Healthy gray matter 

GSE29652 Alzheimer's disease astrocyte Healthy astrocyte 

GSE4757 
Alzheimer's disease entorhinal 

cortex 

Healthy entorhinal cortex 

GSE5281 Alzheimer's disease cortex types Healthy cortex types 

GSE53890 Alzheimer's disease frontal cortex Healthy frontal cortex 

GSE13396 Asthma bronchial epithelial cells 
Healthy bronchial epithelial 

cells 

GSE31773 Asthma immune cells Healthy immune cells 

GSE7368 Asthma bronchial epithelial cells 
Healthy bronchial 

epithelial cells 

GSE39843 Cystic fibrosis airway  non-cystic fibrosis airway 

GSE22459 Fibrosis in kidney transplants Healthy control 

GSE38783 
Hypertension stress on endothelial 

cell 

Normal control 

GSE24206 Idiopathic pulmonary fibrosis lung Healthy control 
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GSE44723 
Idiopathic pulmonary fibrosis 

fibroblast 

Healthy fibroblast 

GSE22255 
Ischemic stroke peripheral blood 

mononuclear cells 

Healthy peripheral blood 

mononuclear cells 

GSE20141 Parkinson's disease SNpc neurons Healthy SNpc neurons 

GSE20146 
Parkinson's disease globus pallidus 

interna  

Healthy globus pallidus 

interna 

GSE20153 
Parkinson's disease EBV 

transformed cell lines 

Control group EBV 

transformed cell lines 

GSE30792 
Parkinson's disease pluripotent 

stem cell 

Control group pluripotent 

stem cell 

GSE7621 Parkinson's disease substantia nigra Healthy substantia nigra 

GSE28133 Retinal detachment Healthy control 

GSE34748 Kidney transplant inflammation Healthy control 

GSE7392 
Kidney transplant interstitial 

fibrosis 

Healthy control 

GSE27390 Rheumatoid arthritis Osteoarthritis 

GSE36700 Rheumatoid arthritis Osteoarthritis 

 

Table S2.5: Contributions by the 69 probes of 52 selected genes in the final logistic model for 

oxidative stress prediction.  

Gene/Probe ID Coefficient Gene/Probe ID Coefficient 

Intercept 24.05149 NADSYN1_218840_s_at 1.488477 
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AKR1C1_1562102_at 0.351456 NAPRT1_226707_at -0.46092 

AKR1C1_244266_at 1.177194 NMNAT1_229852_at -0.9353 

AKR1C4_210558_at 1.576839 NMNAT2_1556029_s_at -0.94922 

ALDH1A1_212224_at -0.97542 NMNAT2_1562818_at -0.38317 

ALDH1L1_205208_at 0.551058 NMNAT2_209755_at 0.067021 

ALDH1L1_215798_at -0.4525 NMNAT3_228090_at -1.43924 

ALDH1L2_1556841_a_at -1.05907 NMNAT3_243738_at -0.75224 

ALDH9A1_201612_at 2.169183 NMRK1_1562761_at 0.420759 

ART1_1570480_s_at 0.069599 NMRK1_219147_s_at 0.128116 

ART3_210147_at 0.130363 NT5C_1557303_at -0.67363 

BLVRA_203771_s_at -0.22258 NT5C1B_1554368_at -1.36855 

CAT_215573_at -2.52956 NT5C2_236703_at -1.96505 

CBR1_209213_at 1.747679 NT5E_1553995_a_at -0.62639 

CYB5R1_1560043_at -0.04199 PARP10_228669_x_at -0.64716 

CYB5R1_202263_at -1.81661 PARP10_229350_x_at -1.41537 

CYB5R3_1554574_a_at 1.868582 PARP8_244008_at 0.28909 

CYB5R3_201885_s_at 0.165056 PARP9_223220_s_at 2.177023 

CYBB_203923_s_at 0.334607 PGD_1560942_at -0.09484 

CYBB_217431_x_at -0.13617 PGD_1560943_s_at -0.79528 

CYBB_233538_s_at -0.40776 PRDX2_201006_at 1.048308 

CYP2R1_207786_at -1.38472 PRDX3_201619_at -1.45927 

CYP39A1_1553977_a_at 0.700801 PRDX6_200844_s_at -2.92782 

CYP4F8_210576_at -0.64903 PRDX6_200845_s_at -0.50028 
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CYP51A1_216607_s_at -3.26464 RDH14_222203_s_at -3.3689 

DHCR7_201790_s_at 2.360105 SIRT6_219613_s_at -1.2108 

GMPR2_217990_at -1.84715 SIRT6_233179_x_at -6.54817 

GPX2_202831_at 0.2228 SOD2_215078_at 0.357994 

GPX2_239595_at 0.045779 TNKS_216695_s_at 0.014178 

GPX3_214091_s_at 0.380668 TNKS2_222563_s_at -1.01799 

HMGCR_202540_s_at -0.45943 TNKS2_241909_at -0.65438 

IDH1_242956_at 0.663588 TXNRD1_201266_at 3.428549 

IDO1_210029_at 2.483813 TXNRD2_211177_s_at -0.00349 

LPO_210682_at -0.82915 TXNRD3_221906_at -1.58521 

MTHFR_239035_at -2.88469 TXNRD3_59631_at -0.36024 

 

Table S2.6. Parameters of the estimated model.  

 

 

Coefficients Value 

γ -15.478 

α 8.741 

βC:-Bladder 0.4376 

βC:-Breast 0.1302 

βC:-Colon 0.1844 

βC:-Esophagus 0.2473 
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βC:-Head-and-Neck NA 

βC:-Kidney 0.2828 

βC:-Liver 0.3549 

βC:-Lung 0.197 

βC:Melanoma NA 

βC:-Pancreatic 0.2964 

βC:-Prostate 0.2282 

βC:-Osteosarcoma 0.2366 

βC:-Thyroid 0.234 
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Table S2.7. Functional groups and pathways significantly enriched (p-value < 0.01) with mutations in precancerous and cancerous colon 

tissues at different stages. 

adenoma (small) cell adhesion; fibronectins; cell motion; morphogenesis; glycoproteins; extracellular matrix; ECM-
receptor interaction; cell cycle 

adenoma (large) glycoproteins; cell adhesion; fibronectin; EGF-like genes; ABC transporters; cadherin; extracellular 
matrix; actin-binding 

colon cancer of dataset 1 
cell adhesion; glycoprotein; extracellular matrix; immunoglobulin subtype; cell membrane; EGF-like 
genes; fibrinogen C terminal; differentiation; von Willebrand factor; laminin G; ECM receptor 
interaction 

colon cancer (stage 1) 

glycoprotein; cell adhesion; ion transport; EGF-like region; plasma membrane; cell morphogenesis; 
fibronectin; cytoskeleton; cadherin; immunoglobulin; laminin; endometrial cnancer; extracellular 
matrix; collagen’ cytoskeleton organization; morphogenesis; cell junction organization; complement 
control 

colon cancer (stage 2) 

glycoprotein; cell adhesion; ionic channel’ plasma membrane; EGF-like region; ion-binding; ATP-
binding; extracellular matrix; fibronectin; laminin; synapse; guanyl nucleotide exchange factor; 
immunoglobulin subtype; motor protein; cell morphogenesis; ank-repeat; cytoskeletal part; cell 
motion; actin cytoskeleton; embryonic development 
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Colon cancer (stage 3) 

glycoprotein; cell adhesion; fibronectin; immunoglobulin I-set; plasma membrane; ionic channel; 
EGF-like region; ion-binding; extracellular matrix; neuron differentiation; cell morphogenesis 
involved in differentiation; ATP-binding; cytoskeleton; laminin; microtubule; glutamate receptor 
activity; synapse; motor protein; detection of abiotic stimulus; calcium ion transport; tyrosine-
specific protein kinase 

colon cancer (stage 4) 

glycoprotein; cell adhesion; EGF-like region; fibronectin; ATP-binding; plasma membrane; 
immunoglobulin; extracellular matrix; ion-transport; metal ion binding; transmission of nerve 
impulse; neuron differentiation; cytoskeletal part; sarcomere; muscle cell differentiation; leucine-rich 
repeat; laminin G; cell motion; triple helix and collagen; dynein heavy chain; calmoduling binding; 
dendrite; tyrosine protein kinase active site; GTPase binding. 
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CHAPTER 3 

COMPETITION REGULATION AMONG DNA MEHTYLATION, NUCLEOTIDE 

SYNTHESIS AND ANTI-OXIDATION IN CANCER VS. NORMAL TISSUES  
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Abstract 

Global DNA hypo-methylation is observed in many cancer types. We present a computational 

study of genome-scale DNA methylation in 16 cancer types. Two issues are investigated: (1) the 

possible determinant of the global level of DNA methylation in cancer cells, and (2) the 

relationship between the DNA methylation level and the nucleotide-synthesis rate as well as the 

intracellular level of oxidative stress. We have developed a system of kinetic equations to capture 

the metabolic relations among DNA methylation, nucleotide synthesis, and anti-oxidative stress 

response, including their competition for methyl and sulfur groups, based on known information 

about the one-carbon metabolism and the trans-sulfuration pathway. Our main findings are: (i) 

there is a kinetic-based regulatory mechanism that controls the reaction rates of the three 

competing processes when their shared resources are limited, particularly when the nucleotide-

synthesis rates and/or the oxidative states are high as generally the case in cancer; and (ii) it is the 

combination of this regulatory mechanism and the need for rapid nucleotide synthesis, as well as 

high production of glutathione dictated by cancer-driving forces, that leads to the nearly universal 

observation that cancers have reduced global-scale DNA methylation. Our model provides a 

natural explanation of why certain cancers have reduced global DNA methylation levels while 

others do not and why reduced DNA methylation levels tend to be associated with more malignant 

cancers.  The novel insights obtained from this work provide useful information about the 

complexities of cancer due to interplay among competing, dynamic biological processes.   

Introduction 

It has been widely observed that cancer genomes tend to have increased DNA methylation levels 

in the promoter regions of their protein-encoding genes, but intriguingly their global methylation 

levels (including promoter and non-promoter regions) tend to decrease in comparison with normal 
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tissue cells. This has been observed in a variety of cancer types, including colon, liver, gastric, 

ovarian, breast, thyroid, and lung cancer [16-19]. Certain cancers can have over 50% reduction vs. 

their normal controls as observed in human primary GBMs and glioma cell lines [20]. It has been 

speculated that such reduced levels of global DNA methylation might have been selected to 

increase opportunities for the host cancer cells to overcome or to adapt to specific stresses 

encountered as reduced methylations generally imply increased gene expression [21].  

A number of studies have been published aiming to explain the possible causes for the altered 

DNA methylation levels in cancer, predominantly with a focus on tumor suppressor genes. A 

popular view has been that increased methylation in the promoter regions of such genes will keep 

the expression of these genes low, hence enabling the survival of the cancerous host cells [94, 95]. 

A few studies have suggested possible causes of the reduced global DNA methylation in cancer 

[96]. One proposal is that dietary deficiency in methyl carriers (folate and methionine) could be a 

reason [22, 95] as insufficient methyl groups in diet have been linked to hepatic steatosis, cirrhosis, 

and even hepatic tumorigenesis [22]. It was speculated that methyl-carrying molecules entering 

one-carbon metabolism might be preferentially directed towards de novo synthesis of thymidylate 

needed for nucleotide synthesis at the expense of homocysteine re-methylation, hence resulting in 

reduced global DNA methylation during folate deficiency [23]. It is noteworthy that the one-

carbon metabolism has three exits: the folate cycle, the methionine cycle and the transsulfuration 

pathway with the latter going to the production of glutathione (GSH), the main antioxidant in 

human cells. Since cancer cells generally have high oxidative states, they tend to produce more 

GSH molecules for anti-oxidation and survival, therefore fewer homocysteine molecules will be 

directed towards DNA methylation compared to normal controls, hence resulting in reduced global 

DNA methylation as another proposal suggests [97]. All these proposals suggest that the reduced 
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DNA methylation may be the result of competition among several processes, including nucleotide 

synthesis and anti-oxidation, for their shared resources but they are all speculative without a 

detailed mechanistic understanding that offers a reliable explanation of why other processes may 

outcompete DNA methylation and how this may be regulated.   

We present here a computational study to address both the why and the how questions through (i) 

quantitative analyses of the well-established competitive relations among the three aforementioned 

processes using a set of ordinary differential equations; and (ii) an integrative analysis of 

epigenomic and transcriptomic data of cancer vs. control tissues of 16 cancer types to derive cancer 

type specific relations between DNA methylation and its competing processes. Specifically, we 

answer: (1) what may have caused the reduced level of global DNA methylation in cancer? And 

(2) why are the global DNA methylation levels distinct across different cancer types?  

We first introduce some basics of the metabolic pathways under study. S-adenosyl methionine 

(SAM) is the most essential compound for DNA methylation, which consists of a sulfur-containing 

group and a methyl group. The sulfur-containing group comes from amino acid methionine, and 

the methyl group is from amino acid serine carried by folate. While DNA methylation consumes 

methyl groups, the sulfur-containing group is recycled back to methionine or converted to a GSH 

precursor. Figure 3.1 shows the detailed pathways for the methionine, folate and GSH metabolisms 

and their relations, through which metabolites S-adenosylhomocysteine (SAH), SAM, methionine 

and Hcy can be inter-converted. Since folate and GSH pathways do not interact directly (Figure 

3.1), we study them separately and call the sub-system consisting of the folate and methionine 

pathways as F-M and the other with GSH and methionine pathways as G-M. Throughout the paper, 

we use transsulfuration pathway, anti-oxidation system and GSH pathways interchangeably. In 

addition, DNA methylation means global level DNA methylation, unless otherwise specified. 
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Materials and Methods 

Data 

DNA methylation data measured using HumanMehtylation450 arrays for 14 cancer types and 40 

bisulfide sequencing data for eight cancer types are retrieved from the TCGA database. We have 

also used RNA-seq based gene expression data for 14 cancer types from the TCGA database. Six 

of these have all three data types available and the numbers of samples available for these three 

data types are summarized in Supplementary Table S3.3.1. 

Method for estimating array-based DNA methylation level  

The methylation array data (the HumanMehtylation450) we used cover ~485,000 CpG probes. 

These probes fall uniquely into one of the six categories: TSS1500, TSS200, 5’ UTR, first exon, 

gene body, and 3’ UTR, as summarized in Supplementary Table S3.2. Approximately half of the 

CpG probes are in more than one category. We have estimated each sample’s total methylation 

level in each of the six CpG categories by summarizing the beta values of all the CpG islands that 

are located in each of each category, where a beta value is defined as the ratio between the 

methylated probe intensity and the overall intensity (sum of methylated and un-methylated probe 

intensities).  

Method for estimating sequence-based DNA methylation level  

For bisulfide sequencing data, we estimated the total methylation level of the CpG regions located 

in both gene regions and the LINE-1 regions in the genomes of 39 cancer patients the same way 

as in [98]. The total methylation level in genes is estimated by averaging the methylation levels 

across all CpG sites that are located within gene bodies. The total methylation level of gene 

promoter region is estimated by averaging the methylation levels across CpG sites that are located 

within 2Kb upstream of gene’s transcription starting site. The total methylation level of the LINE-
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1 elements is estimated by averaging the methylation levels across all CpG sites that are located 

within LINE1 elements across the whole genome.  

Building equations for each reaction in nucleotide synthesis, DNA methylation and GSH 

synthesis 

For each mono- or bi-substrate reaction under consideration (Figure 3.1), we built a reaction 

equation based on its kinetics defined by the Michaelis-Menten equation [99], where reaction rate 

! can be written as: 

! =
!#$%[']

(*# + ['])
 

or 

! =
!#$% '- '.

(*#,- + '- )(*#,. + ['.])
 

Reactions with non-standard forms are taken from [99] and detailed in Supplementary Table S3.3. 

All the model parameters, !#$% and *#,0are collected from [99] (see Supplementary Table S3.4).  

We have noted that the F-M-G system falls into the category of stiff systems [100] as the 

concentrations of different molecular species differ by several orders of magnitudes. Numerical 

solvers to such ODEs tend to perform poorly on such systems. We have applied the following 

strategy in an iterative manner by alternatively working on the F-M and G-M systems separately 

to derive a solution to the F-M-G system, which takes advantage of the fact that there is a natural 

separation in time scales for the two sub-systems and neither of them is a stiff system.  

We started by determining the initial values for the 15 molecular species used in the whole system. 

By analytically solving for the steady-state concentrations in the F, M, G systems individually 

using MATLAB function “solve”, we noted that 10 of the 15 species could be represented as 

analytical functions of the rest five. Though it was not likely that we could represent the steady 
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state concentrations of all the 15 species using one less variable (i.e. four variables), these reduced 

number of variables are primarily for reducing the search space for initial values and ease of 

computation, and theoretically shouldn’t affect the identification of the steady state concentrations. 

We now define the steady-state concentrations of these five species in normal tissues as 1-2, 1.2, 

13
2, 142, 152. We will search the vicinity of each of these values, specifically %6

7

-2
, %6

7

5
,0182, 5182, and 

10182 for 50 ≥ ;0 ≥ 1. For each of the 55 combinations of initial values, we calculate the 

corresponding values of the 10 dependent variables, and then do the following:  

1.! Solve the F-M system in steady state by treating the variables in the G system as 

constants using their current solutions; 

2.! Update the current solution to variables in the F-M system based on the solution derived 

in (1); 

3.! Solve the G system in steady state by treating the variables in F-M system as constants 

using their current solutions; 

4.! Update current solution to variables in the G system based on the solution derived in 

(3); 

5.! Repeat Steps 2-4 until the first derivatives of all the 15 variables, defined as 

=>? @ABCAD@A
EF

, as well as their relative changes, defined as =>? @ABCAD@A
@A

, are within a pre-specified 

threshold, 0.01.  

The convergence of the algorithm for finding steady state concentrations of the F-M-G system is 

established in Methods and Materials. 

Relevant enzymes in F-M-G system and marker genes for estimating the levels of folate, 

serine, cysteine, and methionine 
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We have used known marker genes and their expression levels for estimating the level of each 

metabolite and enzyme used in our ordinary differential equations and analysis. Specifically, we 

have done the following, with detailed gene list given in Supplementary Table S3.5: 

1.! For folate, we have used expression of genes, FPGS, GGH, SLC19A1, encoding the folate 

homeostasis mediators as a measure for its concentration [101]; 

2.! Transporters of amino acids cysteine, serine and methionine are taken from [102]. 

Estimating the expression level of a group of genes in a common pathway 

Obtaining an overall expression of a group of genes on multiple samples, G, is to find a one-

dimension representation, H, for G, which could be formulated as an optimization problem 

min
L,M

N O, H = ||G − OHR||S 

which is the largest eigen-value of the matrix  

18
R18

T

8U-

 

where 18 is the row vector of X. Note O serves as an ancillary variable in here. 

Proof: 

N O, H = (18 − O8HR) 18 − O8HR R

T

8U-

= (1818
R − 2O8HR18

R + O8.HRH)
T

8U-

 

WN O, H
W O8

= −2HR18
R + 2O8HRH 

Let XY Z,E

X Z6
= 0, we have O8∗ =

E]%6
]

E]E
 . We replace N O, H  with O8∗ 

 

N O, H = (1818
R −

HR18
R18H

HRH
)

T

8U-
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To minimize N O, H  is equivalent to maximizing 

HR18
R18H

HRH

T

8U-

 

And that would be the eigenvector corresponding to the largest eigen-value of the matrix  

18
R18

T

8U-

 

Proof of convergence of the algorithm 

Let 1 denotes the six species in folate cycle, ^0denotes the four species in methionine cycle, and 

_ for the five species in glutathione cycle.  The kinetic equation then has the form  

                             E%
�F
= ` 1, ^, _ , Ea

EF
= b 1, ^, _ , Ec

EF
= d 1, ^, _ = d ^, _ .    

The last equality holds because 1 does only affect the d through ^. It is because of this special 

form that allows us to introduce the iterative methods to solve the steady state of the stiff system 

with a give initial condition.  

Define functions N, ℎ, g in such ways that 1h = N _h , ^h = ℎ _h  are analytical solutions to the 

F-M system in the following by treating _ = _h 

` 1, ^, _h = 0 

b 1, ^, _h = 0 

and similarly _"= g ^h  is analytical solution to the following system by treating ^ = ^h 

d ^, _ = 0 
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The original problem of finding 1∗, ^∗, _∗ such that ` 1∗, ^∗, _∗ = 0,b 1∗, ^∗, _∗ =

0, d ^∗, _∗ = 0 boils down to find _′ such that _h = g ℎ _h  , where N, ℎ are functions 

defined in the context above. The proof is as below. 

Let  _h be such that  _h = g ℎ _h , and let 1h = N _h , ^h = ℎ _h , _"= g ^h  

Note that _"= g ^h = g ℎ _h = _h, we then  know that 

` 1h, ^h, _h = 0 

b 1h, ^h, _h = 0 

d ^h, _h = d ^h, _" = 0 

which means such derived 1h, ^h, _h is solution to the system. It is easy to show that stationary 

point of the system 1∗, ^∗, _∗ also satisfies the condition that _∗ = g N _∗ . 

In each iteration step in our algorithm of looking for stationary points of the F-M-G system, we 

start by looking for 1h, ^h such that for given initial value _′ 

` 1h, ^h, _h = 0 

b 1h, ^h, _h = 0 

The next step is for solved ^h, look for 0_" such that  

d ^′, 0_" = 0 

As shown above, the iterative process is equivalent as iteratively looking for the fixed point of 

g(ℎ(_)). Since function g(ℎ(_)) satisfies the assumptions in Banach Fixed Point Theorem and 

based on this theorem, we know that the iterative methods of looking for fixed points of0g(ℎ(_)) 

could converge, which means that our iterative method of looking for the F-M-G system’s 

stationary point would converge too. 
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Results 

Reduced global DNA methylation in cancer vs. normal control 

We have examined DNA methylation data of 5,219 tissue samples of cancer vs. control tissues of 

16 cancer types, out of which 5,179 samples are measured using the array technology and 40 

samples measured using the bi-sulfide sequencing technology. The two datasets each cover 

different cancer types, with the array and sequencing data covering 14 and 8 cancers types, 

respectively, giving rise to a total of 16 distinct cancer types (see Materials and Methods). The 

array data consist of methylation data of 486,428 CpG islands, covering 99% of RefSeq genes, 

with an average of 17 CpG sites per gene distributed across its entire promoter region (i.e., 

TSS1500, TSS200, 5’ UTR, and the first exon) and the gene body regions (i.e., gene body and the 

3’ UTR). The total methylation levels of promoter and gene body regions’ CpG islands across 

different cancers are summarized in Supplementary Figure S3.1. Details regarding how the 

methylation level of each CpG category is estimated can be found in the Materials and Methods 

section.  

We noted that cancer tissues tend to have significantly increased methylation levels in promoter 

regions (Figure S3.3.1A) and substantially reduced methylation in gene bodies (Figure S3.1B), 

which account for more than 80% of the CpG islands considered here. Analyses of bisulfide 

sequencing-based methylation data gives rise to the same conclusion that gene bodies tend to be 

hypo-methylated (Figure S3.1C) and promoter regions have increased methylation levels. In 

addition, we have also done similar analyses on DNA methylation in transposable elements, 

specifically LINE-1, which is accepted as a reliable measure for estimating the DNA methylation 

level at the genome scale [103]; and observed similar decrease in the methylation level in this 
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region (Figure S3.1D). We noted that among the 16 cancer types under study, two cancer types 

PRAD and BRCA have increased levels of methylations than their matching normal tissues. 

In the following sections, we built mathematical models to study the detailed reasons and 

associated mechanisms for the observed hypo-methylation at the global scale in cancer. The units 

for concentration and time are uM and hr respectively. 

The methionine cycle: dependencies of DNA methylation on folate and transsulfuration 

pathways 

We have built a system of kinetic equations based on the known pathway models shown in Figure 

3.1, to describe the reaction rates associated with 15 key molecular species in the folate, methionine 

and GSH (F-M-G) cycles, which consists of 24 enzyme-catalyzed reactions and four transporters, 

shown in Table 3.1 with detailed information of how each reaction equation is derived given in 

Supplementary Table S3.3.  

We have examined the relationship between the DNA-methylation level and each of its four 

parameters, namely the levels of folate, serine, cysteine and methionine uptakes, respectively, 

according to this system of equations with all the four parameters having their values sampled 

from the normal ranges of their respective physiological values collected from [99]. Specifically, 

we have derived the numerical solutions of the fixed points of this system of equations for each 

combination of the parameter values uniformly sampled from the given ranges, using the 

MATLAB ode solver (see Materials and Methods). Figure 3.2 shows the level of the DNA 

methylation as a function of the levels of folate and serine concentrations (A-C) and as a function 

of the levels of cysteine and methionine concentrations (D-F).  

We have observed that as the levels of serine (a methyl donor) and folate (a methyl carrier) 

increase, the DNA methylation level goes up; and as the level of methionine (a sulfur donor) 
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increases, the DNA methylation level goes up similarly. It is noteworthy that changes in the rate 

of cysteine uptake do not have a significant impact on the DNA methylation rate, since it goes into 

the downstream of the methionine cycle and it does not directly contribute to the sulfur supply for 

SAM used in DNA methylation. Here, the DNA-methylation rate, nucleotide synthesis rate and 

GSH synthesis rate are estimated as the reaction velocities catalyzed by enzymes DNMT, TS and 

GS, respectively (see Supplementary Table S3.3); the total methyl and the sulfur levels are 

estimated as the sum of concentrations of all metabolites that carry methyl and sulfur groups, 

respectively. 

This analysis confirms that our system of equations captures the intuition that the level of DNA 

methylation should be an increasing function of the levels of methyl and sulfurs, provided by folate 

and serine, and methionine, respectively. In the following sections, we will study how this 

relationship is affected by other processes when they compete for methyl and sulfurs. 

The F-M system: a model of competition for methyl between nucleotide synthesis and DNA 

methylation 

As the ultimate donor of methyl, serine reacts with THF to generate 5,10-methylene-THF, during 

which methyl in serine is converted to a methylene group. Then this methylene group will go to 

one of three places: (1) as the methyl group of dTMP by the reaction catalyzed by thymidylate 

synthase (TS); (2) as the methyl group of 5mTHF catalyzed by MTHFR and ultimately for DNA 

methylation; and (3) to THF or 1,10-CH=THF. In our differential equations representing the F-M 

system, we have used the (steady state) levels of 5mTHF and DHF as estimates for the levels of 

methyl groups going to DNA methylation and nucleotide synthesis, respectively, since they are 

the immediate downstream metabolites of 5,10-methylene-THF going into the two processes. 
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Here, we address the following question: when competing for methyl groups between DNA 

methylation and nucleotide synthesis, does one process have an encoded priority over the other?   

We have assessed whether the two processes may have a competitive relationship as defined by 

our differential equations under a condition that nucleotide synthesis must be done at a rapid rate 

to mimic the typical situation in cancer. Specifically, we have checked how the DNA methylation 

rate changes when the rate coefficient !#$%0of TS increases, with TS being the key enzyme leading 

to nucleotide synthesis.  

Figure 3.3 shows that as the need for nucleotide synthesis goes up, reflected by TS’s !#$% value, 

methyl groups going to DNA methylation decreases (Figure 3.3A) while those going into 

nucleotide synthesis increase (Figure 3.3B). So do the DNA methylation rate (Figure 3.3C) and 

the nucleotide synthesis rate (Figure 3.3D), respectively. More specifically, as !#$%  increase from 

the low to the high end of its normal range, methyl going to DNA methylation is decreased by 

4.8% while that going to nucleotide synthesis is increased by 40.6%. Correspondingly, the DNA 

methylation rate is decreased by 0.5% while the nucleotide synthesis rate is increased by 36.5%. 

We predict that this is the result of a regulatory mechanism which controls the competition between 

the two processes.  

To elucidate this regulatory mechanism, we have conducted the following analysis focused on 

three enzymes SHMT, TS and MTHFR forming a Y shaped branch structure in the folate cycle 

with SHMT catalyzing the reaction leading to 5,10-m THF, which then branches out to nucleotide 

synthesis catalyzed by TS and to methionine cycle by MTHFR (see Figure 3.1). In cancer tissues, 

the expression level and hence the !#$% of TS tend to increase substantially. We first examined the 

reaction rate constants of the three enzymes: !#$%= 5200 uM/hr and *#0= 600 uM for SHMT; 

!#$%= 5000 uM/hr and *#0= 6.3 uM for TS; and !#$%= 5300 uM/hr and *#0= 50 uM for MTHFR. 
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Hence, the reaction rate of TS is close to two orders of magnitude higher than that of SHMT, ~91 

times higher to be more exact, which will increase as the !#$% of TS increases. We also noted that 

the substantial increase in the !#$% of TS as done in the above illustrative example leads to only 

2.9% increase in the concentration of THF (see Supplementary Table S3.6), indicating that the 

increase in the reaction rate of SHMT is limited by this number, regardless of the level of increase 

in the serine supply. Because of the tiny increase in this reaction rate, we assume, for the simplicity 

of discussion, that the rate remains unchanged. This immediately implies that the increased 

reaction rate of TS will take away a portion of the flux to 5mTHF to meet the need of the increased 

TS reaction rate; and the higher the TS reaction rate is increased, the higher proportion of the flux 

to 5mTHF will be diverted towards the reaction catalyzed by TS, hence more  reduced level of 

DNA methylation.  

In sum, it is the combination of the reaction rate constants in the folate cycle, particularly of three 

enzymes SHMT, TS and MTHFR along with their relative expression levels that play the key 

regulatory role in governing the competition for methyl groups between nucleotide synthesis and 

DNA methylation.  

The G-M system: a sulfur-redistribution model: redox balance vs. DNA methylation 

SAM serves a unique role in the system under study, as it not only contains a methyl group but 

also a sulfur group that carries the methyl molecule. As discussed earlier, the sulfur group in 

homocysteine can be recycled back to the methionine cycle and further to SAM, or it can go to the 

GSH metabolic pathway, indicating that DNA methylation also needs to compete with the GSH 

pathway for sulfur, in addition to its competition with nucleotide synthesis. This pathway starts 

with a reaction between homocysteine and serine (Figure 3.1), leading to the generation of 

cystathionine that is then cleaved by cystathionine lyase to generate α-ketobutyrate and cysteine, 
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which is then used for GSH production. Here we study how GSH production and DNA methylation 

may compete for sulfur, which ultimately affects the level of DNA methylation. Similar to the 

previous section, we use the (steady state) levels of two immediate downstream metabolites, 

methionine and cystathionine, respectively, to estimate the level of sulfurs going to DNA 

methylation and GSH synthesis, respectively. 

We have examined how the two processes change their activity levels as the level of intracellular 

H2O2 goes up, where H2O2 is used to represent the oxidative state since it is the most abundant 

reactive oxygen species (ROS) in cancer in general [104]. Generally, as the H2O2 level goes up, 

the host cells will increase their GSH production to naturalize the excess H2O2 to keep the oxidative 

stress under control, which will consume sulfurs. Here, we show how an increased demand for 

sulfur by GSH production affects the level of DNA methylation. We have observed as the need 

for anti-oxidation and hence GSH synthesis goes up (reflected by the H2O2 level), sulfurs going to 

DNA methylation decrease (Figure 3.3E) while sulfurs going to GSH production increase (Figure 

3.3F). So do the DNA methylation rate (Figure 3.3G) and GSH synthesis rate (Figure 3.3H). More 

specifically, sulfur going to DNA methylation is decreased by 13.6% and those to GSH production 

is increased by 6.2%. Correspondingly, DNA methylation rate is decreased by 1.9% and the GSH 

synthesis rate is increased by 2.6%. As in the previous section, we predict that this is the result of 

a regulatory mechanism that controls the flux of sulfur to different branches when they are limited.  

We have conducted an analysis similar to that in the previous section on four enzymes: SAHH, 

BHMS, MS and CBS (Figure 3.1), which play key roles in the regulatory mechanism under 

investigation. As before, we noted: !#$%= 320 uM/hr and *#0= 6.5 uM for SAHH; !#$%= 2160 

uM/hr and *#0= 12 uM for BHMT;0!#$%= 500 uM/hr and *#0= 1 uM for MS; and !#$%= 700000 

uM/hr and *#0= 1000 uM for CBS. From the above example, we observed: as the H2O2 level goes 
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up to the high end we set, the Hcy concentration goes up by 6% (see Supplementary Table S3.6). 

For the simplicity of discussion, we assume that there is no change in the Hcy concentration 

considering its tiny increase. All these reveal that the reaction rate of CBS goes up substantially 

and the Hcy flux into MET will go down. Knowing that the reaction rate of CBS is significantly 

higher than those of BHMT and MS based on their rate constants, we predict that the Hcy flux into 

MET and hence SAM will go down substantially, which is consistent with the observed change of 

MET in the above example, as detailed in Supplementary Table S3.6. In addition, H2O2 is known 

to have an inhibitory role on MS and BHMT (Figure 3.1). Hence the reaction rates of both MS and 

BHMT will go down as the H2O2 level goes up. 

Based on the above, our prediction of the regulatory mechanism is: when the H2O2 concentration 

is not too high, its inhibitory roles on MS and BHMT will slow down the flux towards DNA 

methylation, leading to the accumulation of Hcy. As the H2O2 concentration further goes up, Hcy 

concentration continues to increase. Once the Hcy concentration is close to or exceeds the  

*#0value of CBS, the enzyme will instantly dump all the Hcy into the GSH synthesis pathway due 

to the very high reaction velocity of CBS. Overall, it is the combination of the reaction constants 

of the methionine cycle, particularly those of the four enzymes discussed here and the inhibitory 

role of H2O2 that controls the competition between DNA methylation and GSH synthesis.  

We have also conducted a simulation analysis of the F-G-M system as a whole by systematically 

going through each of the 117 kinetic parameters encoded in the system by individually changing 

the value of each parameter, specifically through multiplying its default value by 0.1, 0.2, 0.5, 0.6, 

0.8, 1.0, 1.2, 1.5, 1.6, 1.8, 2, respectively. The goal is to determine which of these parameters are 

most impactful on the competition under study. As expected, the kinetic parameters associated 

with DNMT and the uptake of folate, serine and methionine, respectively, are the most impactful, 
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all resulting in at least 10% change in the DNA methylation level through the above parameter 

manipulation. Interestingly, other most impactful parameters are those associated with MTHFR, 

MS, CBS and BHMT, which are at the core positions of the whole system, where redistributions of 

methyl and sulfur happen, each of which leads to at least 5% change in the level of DNA 

methylation.  

In sum, our analyses revealed that there are regulatory mechanisms, largely encoded in the relative 

levels of their enzymes’ reaction rate constants, that determine how the three processes compete 

for two shared resources: methyl and sulfurs.  

We have previously demonstrated that the rate of nucleotide synthesis in cancer is dictated by the 

level of cytosolic Fenton reactions, which also largely determines the level of oxidative stress 

[105] while the level of cytosolic Fenton reactions is predominantly determined by concentrations 

of H2O2 and iron, for whose accumulation chronic inflammation is largely responsible [106]. 

Hence we predict that the observed genome-scale hypo-methylation in cancer is the result of these 

encoded regulatory mechanisms and the urgent need for rapid nucleotide synthesis and GSH 

synthesis, dictated by the level of Fenton reactions.  

With this established framework, we address why different types of cancers may have different 

levels of global DNA methylation using cancer tissue gene-expression data.  

Cancer specific DNA methylation  

To understand why different cancer types may have different levels of hypo-methylation vs. their 

normal controls, we have conducted cancer-specific analyses of the integrated model of the above 

three subsystems, collectively referred to as the F-M-G system, through applying the observed 

gene-expression levels of the relevant enzymes, normalized with respect to their corresponding 

normal controls. Supplementary Figure S3.2 shows differentially expressed genes across the F-M-
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G system. Note that for cases where multiple genes encoding one enzyme or transporter, we 

estimated the integrated expression level of the gene group as a whole, using a method given in  

Materials and Methods. 

We have developed a model for predicting the DNA-methylation level of a given cancer tissue 

based on the expression levels of selected enzymes in the F-M-G system. We used the Michaelis-

Menten equation to capture how the reaction velocity V depends upon the concentrations of the 

main substrate S and the catalyzing enzyme E: 

! =
!#$% '
*# + '

=
kl$F[m] '
*# + '

 

Here, we can reasonably assume that the relevant reaction rate constant *# for each enzyme is the 

same across different cancer types. Hence, the rate of each reaction under consideration is entirely 

determined by ' 0and m . The cancer specific enzyme concentration m  would be that of normal 

condition multiplied by the fold change in the enzyme’s gene expression levels in cancer vs. control 

tissues. For each cancer type, we estimated an “average” fold-change in expression levels of genes 

encoding the relevant enzymes/transporters between cancer and control samples, as described in 

Materials and Methods. Figure S3.2 shows changes in concentrations of the relevant enzymes 

and transporters across different cancers vs. corresponding controls. Clearly, so estimated enzyme 

concentrations will give rise to different steady-state concentrations of each metabolite and 

reaction rates, as shown in the 4th column of Table 3.2.   

Our cancer specific DNA methylation prediction is calculated for ten cancer types, which have 

both methylation array data and RNA-Seq gene-expression data for cancer and control samples. 

For each cancer type, we have estimated the steady-state concentrations of all the relevant 

metabolites, particularly the DNA-methylation level using the reaction rate catalyzed by enzyme 

DNMT. As shown in Table 3.2, our predictions of the DNA methylation levels are highly 
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consistent with the experimental data in the eight cancer types considered. For the two cancer types 

where our predictions are not consistent with experimental data, namely BRCA and THCA, we 

believe that the reason for the hypo-methylation prediction in BRCA and hyper-methylation for 

THCA is due to the possibility that certain factors that may also contribute to DNA methylation 

are not included in our model.  

We have then studied how DNA methylation levels differ when patients have different levels of 

GSH synthesis and nucleotide synthesis rates. The analysis is done on the same ten cancer types 

as above. We noted that samples with higher nucleotide synthesis or GSH synthesis levels tend to 

have lower DNA methylation rates, consistent with our model that DNA methylation is at an 

inferior position when competing for shared resources with nucleotide synthesis and GSH 

synthesis. This is the case for seven out of ten cancer types but not for KIRC, PRAD and THCA 

as shown in Table 3.3. These three cancer types clearly warrant further studies in order to 

understand why they behave differently from the other seven cancer types.  Note that the levels of 

GSH synthesis and nucleotide synthesis are estimated using genes involved in glutathione 

synthesis and RNA polymerases pathways, respectively, with details given in Materials and 

Methods. 

We further studied whether DNA methylation is indeed competing with nucleotide synthesis and 

anti-oxidation system for methyl and sulfur. Particularly, we are interested in the relationships 

between DNA methylation and nucleotide synthesis/anti-oxidation capacity when methyl/sulfur is 

limited. To accomplish this, we have introduced a measure of the average methyl/sulfur 

availability: the ratio between nucleotide synthesis/anti-oxidation capacity and methyl/methionine 

availability with the property: the lower the ratio is, the lower the average availability of 

methyl/methionine is for the nucleotide synthesis/anti-oxidation capacity. For methyl compound, 
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we have observed significant correlations between DNA methylation and nucleotide synthesis in 

those samples with high and low average methyl availability, respectively; and similarly for sulfur, 

we have also observed significant correlations between DNA methylation and anti-oxidant 

capacity in those samples with high and low average sulfur availability, respectively. Here, the 

levels of methyl and methionine, anti-oxidation capacity and nucleotide synthesis are estimated 

using genes involved in folate and methionine transporters (Supplementary Table S3.5), 

glutathione synthesis and RNA polymerases pathways, respectively, with details given in 

Materials and Methods.  

As shown in Table 3.4, when the average methyl availability is low, most cancer types showed 

significant negative correlations (p-value cutoff: 0.05) between DNA methylation and nucleotide 

synthesis, except for KIRC, PRAD and THCA; and when the average sulfur availability is low, 

most cancer types showed significant negative correlations (p-value < 0.05) between DNA 

methylation and the anti-oxidant capacity, except for BRCA, KIRC, PRAD and THCA. These data 

strongly suggest competitive relations between DNA methylation and nucleotide synthesis/anti-

oxidation capacity for methyl and sulfur. It has also explained: (1) why our prediction of the 

methylation level in BRCA is not accurate shown in Table 3.2; and (2) why the DNA methylation 

levels do not depend on nucleotide synthesis or anti-oxidation capacity as shown in Table 3.4, as 

methyl and sulfur may be not limited resources in these cancer types, i.e., not rate-liming factor in 

the cancerous cell division; and DNA methylation does not need to compete for the two resources 

with other processes. We have also noticed that even when the average methyl/sulfur availability 

is high, the negative correlations are also significant (p-value < 0.05) for some cancer types. Hence, 

we posit that even though the average availability of methyl/sulfur is high in thee samples 
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compared to other samples, these resources are still limited with respect to their cell division rates 

dictated by cytosolic Fenton reactions (see Discussion), and hence competitions are still there. 

Discussion 

We have previously developed a model proposing that Fenton reactions, Fe2+ + H2O2 -> Fe3+ + 

OH- + !OH, in cytosol and mitochondria may represent key drivers of cancer initiation and 

progression at a more basic level than the previously proposed drivers such as genomic mutation 

[107], epigenomic alteration [108] and metabolic reprogramming [109]. Fenton reactions have 

been found to take place when concentrations of Fe2+ and H2O2 are sufficiently high in the same 

location without involvement of any enzyme. When there are plentiful reducing elements near the 

reaction sites, such as sulfur, NADH or superoxide, Fe3+ can be reduced to Fe2+, hence enabling 

the reaction to continue indefinitely, which is also referred to as the Harbor-Weiss reaction [110]. 

Then the reaction can be rewritten as: O.D + H.O. →0∙ OH + OHD + O.with Fe2+ as a catalyst since 

it is not consumed by the (continuous) reaction; and superoxide as the reducing element as our 

analysis revealed that O.D is the most commonly used reducing element in cancer [111]. We have 

demonstrated statistically that all cancers in the TCGA database have Fenton reactions in their 

cytosol, mitochondria and extracellular matrix and space [112]. An important implication of this 

model is that cytosolic Fenton reactions drive de novo nucleotide synthesis (and glycolytic ATP 

production) to produce net protons (H+) at rates comparable to those of OHD-producing Fenton 

reactions, hence keeping intracellular pH stable. More specifically, it is the rates of cytosolic 

Fenton reactions that dictate the rate of nucleotide synthesis and hence the rates of DNA synthesis 

and cell division in cancer. 

This model, in conjunction with the discovery made here, strongly suggests that there is an encoded 

regulatory mechanism that determines the winners in competition for methyl and sulfurs when 
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they are of limited availability, and it offers a natural explanation of why cancers in general have 

reduced genome-scale DNA methylation as well as why different cancers tend to have distinct 

levels of global DNA methylation, hence addressing an important and open question in cancer 

biology.  

In addition, we have also provided an explanation as why certain cancers tend to have more 

reduced DNA methylations, i.e., those with higher levels of nucleotide synthesis and oxidative 

stresses, hence having established that the global DNA methylation level could be used as a 

predictor for more aggressive cancer types.  

Further extension of the current study will include detailed metabolisms of serine, methionine and 

H2O2 to make the model more realistic: concentrations of the latter compounds are presently 

treated as input parameters, rather than treating them in a more realistic manner via explicitly 

modeling the ways that they are actually brought into cancer cells. In addition, the observation on 

BRCA and THCA were that the global methylation levels in their tumor samples do not differ 

significantly from their normal samples, while our model predicts that BRCA is hypo-methylated, 

and THCA is hyper-methylated. We believe that these discrepancies are due to the assumption in 

our model that only two factors contribute to the global DNA methylation level, namely the 

competitions for sulfur and for methyl groups with two other processes. Careful inspection of the 

data in Table 3.4 revealed that the global methylation levels have no significant negative 

correlation with neither of the two competing processes, namely nucleotide synthesis and anti-

oxidation system in BRCA and THCA, suggesting that other factors, such as hormones, may also 

affect the global methylation level of DNA. We examined the global methylation levels of different 

subtypes of breast cancer, and noted that triple-negative breast cancers (free of hormone 

regulation) are significantly hypo-methylated in tumor (p-value= 0.0129), consistent with our 
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model prediction. This suggests one possible direction for further development of our model in the 

future. We believe that our study here offers a good example for studying complex, non-linear 

relationships among multiple players involved in specific biological processes, leading to novel 

understanding about previously made perplexing observations, and can be applied to study a suite 

of such problems in cancer research.  
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Figures: 

 

Figure 3.1: The one-carbon metabolic pathway (adapted from [99]) consisting of the folate, the 

methionine and the transsulphuration pathways. All the reaction substrates are in upright letters 

and the catalyzing enzymes are in italics. Substrates in purple, green and red represent metabolite 

variables in three subsystems in our model, and all the other substrates are treated as constants. 

Metabolites in light blue are those that could activate or inhibit certain reactions. bMET and bCYS 

represent methionine and cysteine up-taken from the blood circulation, respectively. 
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Figure 3.2: Under normal cytosolic conditions, the DNA methylation rate (A), nucleotide 

synthesis rate (B) and methyl concentration (C) (z-axis) in steady states as a function of the serine 

(x-axis) and folate (y-axis) concentrations, respectively; and DNA methylation rate (D), GSH 

synthesis rate (E) and total sulfur concentration (F) (z-axis) as a function of the cysteine (x-axis) 

and methionine (y-axis) influx from blood circulation, respectively. 
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Figure 3.3: (A) The level of 5mTHF (y-axis), reflecting the level of methyl going to DNA 

methylation as a function of the TS’s !#$% value (x-axis); (B) The level of DHF (y-axis), reflecting 

the level of methyl going to nucleotide synthesis as a function of the TS’s !#$% value (x-axis); (C) 

the DNA methylation rate (y-axis) as a function of the TS’s !#$% value;  (D) the nucleotide 

synthesis rate (y-axis) as a function of the TS’s !#$% value; (E) The level of methionine (y-axis), 

representing the level of sulfur going to DNA methylation as a function of the H2O2 concentration 

(x-axis); (F) The level of cystathionine (y-axis), reflecting the level of sulfur going to GSH 

synthesis as a function of the H2O2 concentration (x-axis); (G) The DNA methylation rate (y-axis) 

as a function of the H2O2 concentration; (H) The GSH synthesis rate (y-axis) as a function of the 

H2O2 concentration.  
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Supplementary Figure S3.1: (A) Boxplots of the methylation levels in CpG islands in gene 

promoter regions for 14 cancer types (all array data), with orange and green boxplots for samples 

of cancer and control tissues, respectively; (B) Boxplots of the methylation levels of CpG islands 

located inside gene bodies for 14 cancer types; (C) Boxplots of the average methylation levels of 

CpG islands in gene body regions for eight cancer types (all sequencing data); and (D) Boxplots 

of the average methylation levels of CpG islands in LINE-1 regions for eight cancer types. Note 
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that for bi-sulfide sequencing data shown in (C) and (D), the normal control group has only one 

sample for each cancer type, thus the boxplots look like a black and thick line.  

 

 

 

Supplementary Figure S3.2: Differential expression of the relevant enzymes and transporters 

(with suffix “_T”). Genes (groups) are on the x-axis, and cancer types are on the y-axis. “1” and “-

1” represent significant up- and down-regulation of the relevant enzymes in cancer samples 

compared with normal control samples, and “0” indicates no significant changes between cancer 

and normal controls. Entries with missing numbers indicate missing data.  

 

Tables: 

Table 3.1: Reaction rates associated with all the metabolites involved in folate, methionine and 

GSH metabolisms, with the detailed information for each rate along with an explanation, given in 

Supplementary Table S3.3.  
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Table 3.2: Cancer specific DNA methylation: observed vs. predicted levels. Column 2 is the 

observed DNA methylation level changes calculated using methylation array data with p-values 

of hyper-, no change or hypo-methylation shown in the third column. Columns 4 and 5 are 

predicted steady-state DNA methylation levels for cancer and control tissues, where a cancer type 

is predicted to have hypo-methylation if the predicted level of DNA methylation is lower in cancer 

compared to that in controls. A prediction is considered to be consistent with experimental data if 

they both show hypo- or hyper-DNA methylation.  
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Cancer  

type 

Observed 

methylation 

changes p-value 

Predicted 

cancer (öM/

hr) 

Predicted 

control (öM/

hr) 

    

BLCA 
Hypo 1.33E-08 81.95 94.71 

    

BRCA 
No change 5.13E-01 90.27 94.71 

    

COAD 
Hypo 2.51E-02 86.99 94.71 

    

HNSC 
Hypo 8.39E-04 89.61 94.71 

    KIRC Hypo 7.25E-13 82.48 94.71 

    LIHC Hypo 5.10E-13 85.76 94.71 

    

LUAD 
Hypo 4.11E-02 92.59 94.71 

    

LUSC 
Hypo 7.63E-11 85.09 94.71 

    

PRAD 
Hyper 1.00E-04 99.83 94.71 

    

THCA 
No change 9.13E-02 106.49 94.71 
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Table 3.3: Comparisons of DNA methylation levels between samples with different levels of anti-

oxidation and nucleotide synthesis rates for 10 cancer types. The second column shows p-values 

of Wilcoxin tests for the null hypothesis that DNA methylation levels of patient samples with high 

GSH synthesis rate is lower than those with relatively lower GSH synthesis activities; the third 

columns shows p-values of Wilcoxin tests for the null hypothesis that the DNA methylation levels 

of patient samples with high nucleotide synthesis rate is lower than those with relatively lower 

nucleotide synthesis rates. 

Cancer type Anti-oxidation Nucleotide synthesis 

BLCA 2.86E-03 1.25E-03 

BRCA 1.62E-01 5.54E-02 

COAD 2.60E-02 1.21E-02 

HNSC 2.44E-04 1.38E-05 

KIRC 9.58E-01 5.97E-01 

LIHC 1.68E-01 9.69E-06 

LUAD 8.40E-04 6.65E-05 

LUSC 1.40E-02 2.90E-05 

PRAD 5.98E-01 6.94E-01 

THCA 1.00E+00 9.34E-01 

 

Table 3.4: The significances of observed negative correlations between: (1) DNA methylation and 

nucleotide synthesis when high (Methyl_H) and low (Methyl_L) level of methyl is available; and 

(2) DNA methylation and anti-oxidation capacity when high (Sulfur_H) and low (Sulfur_L) level 

of sulfur is available. Significant negative correlations (p-value < 0.05) are marked bold. 
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 Methyl_H Methyl_L Sulfur_H Sulfur_L 

BLCA 5.50E-05 5.26E-03 8.45E-02 2.20E-02 

BRCA 4.02E-01 1.96E-02 2.47E-01 2.10E-01 

COAD 6.21E-01 3.14E-04 1.03E-01 2.89E-03 

HNSC 6.00E-04 2.25E-05 1.62E-01 1.10E-02 

KIRC 4.69E-01 7.26E-01 9.99E-01 5.14E-01 

LIHC 5.63E-04 2.84E-05 9.32E-01 5.00E-02 

LUAD 1.02E-01 3.51E-05 1.15E-02 2.08E-04 

LUSC 1.59E-06 1.08E-03 1.18E-01 1.36E-02 

PRAD 6.90E-01 4.73E-01 9.64E-02 1.82E-01 

THCA 9.10E-01 9.60E-01 9.41E-01 9.97E-01 

 

 

Table S3.1: The numbers of cancer and control tissue samples with DNA methylation data, 

measured using bisulfide array or sequencing, along with RNA-seq gene expression data of cancer 

vs. control samplers, used in this study. Blanks indicate that the data type is missing. 

 Methylation Gene expression 
Cancer Array Sequencing 
BLCA 21/259 1/6 19/408 
BRCA 96/745 1/5 113/1095 
COAD 38/290 1/2 41/285 
HNSC 50/517  44/520 
KIRC 160/301  72/533 
KIRP 45/182  32/290 
LIHC 50/204  50/371 
LUAD 32/452 1/5 59/515 
LUSC 42/359 1/4 51/501 
PRAD 49/340  52/497 
THCA 56/508  59/505 
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UCEC  1/5 24/176 
READ 7/96 1/2  
STAD  1/4 33/238 
ESCA 15/165  13/184 
PAAD 9/91   
Total 670/4509 7/33 616/5696 

 

 

 

Table S3.2: The numbers of CpG probes falling into six types of regions. 

TSS1500 TSS200 1stExon Body 5'UTR 3'UTR 

56,194 44,572 8,745 148,013 24,912 15,379 
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Table S3.3: Table for rate functions 
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!3"< )*2, , )*,  !-./,3"< )*2,
0-,3"<,89:; + [)*2,]

−
!-./,3"< )*,

0-,3"<,89; + [)*,]
 

 
!AK F*, , *:) = Q , )*2,  

[V F*, *:) = Q − [:[)*2,] 
 

!3"9;= )*2, , ?@>'* , C@& , C@*  !-./,3"9;= )*2, ?@>'*
0-,3"9;=,89:; + )*2, 0-,3"9;=,AB<49 + ?@>'*

(
10

10 + C@&
) 

!3# 5_F*, , *)I  !-./,3# 5_F*, *)I
0-,3#,`-"9; + 5_F*, 0-,3#,98P + *)I

(
aa*:Q: + 0b
*:Q: + 0b

) 

!c93" *)I , dDF , C@& , C@* , [*:Q:]  
efW.WW:V #B3 h #B9 eW.WW:V∗VW:.j

!-./,c93" *)I [dDF]
0-,c93",98P + [*)I] 0-,c93",cK" + [dDF]

(
aa*:Q: + 0b
*:Q: + 0b

) 

!3B"Y &DF , C@& , [GCG]  !-./,3B"Y &DF
0-,3B"Y,3K" + &DF

(0.23 + 0.8efW.WW:j #B3 )(
0b + 66.71
0b + [GCG]

) 

 
!3B"YYY &DF , C@& , [GCG]  !-./,3B"YYY &DF V.:V

0-,3B"YYY,3K" + &DF V.:V (1 +
7.2 C@& :

0.: + C@& :)(
0b + 66.71
0b + [GCG]

) 
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!NA3" C@& , GHI , C@* , 5_F*,  !-./,NA3" C@& GHI
0-,NA3",#B3 + C@& 0-,NA3",NOP + GHI

(
1

1 + C@*
0b

)(
4.8

0.35 + [5_F*,]
) 

!<A3" C@& , C@*  !-./,<A3" C@&
0-,<A3",#B3 + C@&

 

!#B99 C@* , *)I  !-./,#B99,J C@*
0-,#B99,#B9 + C@*

−
!-./,#B99,M *)I

0-,#B99,98P + *)I
 

!8c# *)I , C@& , C@* , CDE , *:Q: , aa*:Q:  !-./,8c# *)I CDE
0-,8c#,98P + *)I 0-,8c#,#K= + CDE

(
1.086 C@& + C@* :

30: + C@& + C@* :)(
*:Q: + 0.
aa*:Q: + 0.

p) 

 
!8"NO )IF  !-./,8"NO )IF

0-,8"NO + [)IF]
 

!N8# )IC , GH% , GC* , GH) , *:Q: , aa*:Q:  !-./,N8# )IC GH% − GH)
0q

0-,N8#,8P# + )IC 0-,N8#,NO2 + GH% + 0-,N8#,NO2 )IC GC*
0b

+ GH)
0r

+ GC*
0b

(
aa*:Q: + 0.
*:Q: + 0.

) 

 
!N# GHI , GH) , GC*  !-./,N#( GHI GH) − GC*

0q
)

0-,N#,NOP + GHI 0-,N#,NO8 + GH) + GC*
0r

 

!N4s GC* , *:Q:  !-./,N4s GC* *:Q:
0-,N4s,N#9 + [GC*] 0-,N4s,9tRt + [*:Q:]

 

!N= GCG , ?@>'*  !-./,N= GCG ?@>'*
0-,N=,N#N + [GCG] 0-,N=,AB<49 + [?@>'*]

 

GSH export !q9N#9 GC*
0q9N#9 + GC*

+
!qON#9 GC* u

0qON#9 + GC* u 

GSH decay $:[GCG] 
GSSG export !q9N#N GCG

0q9N#N + GCG
+

!qON#N GCG
0qON#N + GCG

 

GSSG decay $V[GCG] 
Methionine exchange with blood !v3K" w&DF

0v3K" + w&DF
− [3K"[&DF] 

Cystein exchange with blood !v8P# )IC
0v8P# + w)IC

−
0.35 )IC :

200
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Table S3.4: Table for all the rate parameters. 

enzymes'
Parame

ter'

metaboli

tes'
Model'

fold'

chan

ge'

BLC

A'

BRC

A'

COA

D'

HNS

C'
KICH' KIRC' KIRP' LIHC'

LUA

D'

LUS

C'

PRA

D'

THC

A'

UCE

C'

TS'
Km,DU

MP'
dUMP' 6.3' VC1'

1.02

24'

1.01

43'

1.00

53'

1.00

99'

1.00

00'

1.02

26'

1.02

55'

1.02

26'

1.02

20'

1.02

98'

1.00

00'

1.02

67'

1.05

46'

TS' Km,2cf' Ch2RTHF' 14' '              

TS' Vmax' ' 5000' '              

DHFR' Km,dhf' DHF' 0.5' VC2'
1.00

60'

1.00

14'

1.00

86'

1.00

00'

0.97

49'

0.99

63'

0.99

10'

0.99

44'

1.00

84'

1.01

28'

1.00

32'

1.00

00'

1.02

97'

DHFR'
Km,NA

DPH'
NADPH' 4' '              

DHFR' Vmax' ' 2000' '              

SHMT' Km,ser' serine' 600' VC3'
1.00

00'

0.99

36'

0.99

64'

0.98

58'

0.91

02'

0.99

60'

1.00

00'

0.98

60'

1.00

24'

1.00

15'

0.99

60'

0.99

82'

1.01

76'

SHMT' Km,thf' THF' 50' '              
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SHMT' cVmax' ' 5200' '              

SHMT' Km,gly' glycine' 10000' '              

SHMT' Km,2cf' CH2RTHF' 3200' '              

SHMT' cVmax' '
15000

000'
'              

cFTS' Km,thf' THF' 3' VC4'
1.01

09'

0.99

92'

1.01

89'

1.00

82'

1.00

00'

1.00

00'

1.00

59'

0.99

65'

1.00

65'

1.00

88'

1.00

44'

1.00

70'

1.01

83'

cFTS' Km,coo' HCOOH' 43' '              

cFTS' Vmax' ' 3900' '              

FTD' Km,10f' 10fRTHF' 20' VC5'
0.96

76'

0.92

55'

0.95

91'

0.93

44'

1.00

00'

0.98

94'

0.97

95'

0.98

86'

1.00

00'

1.01

54'

0.99

62'

0.96

64'

0.96

25'

FTD' cVmax' ' 500' '              

PGT' Km,10f' 10fRTHF' 4.9' VC6'
1.00

55'

1.00

15'

1.01

14'

1.00

28'

0.98

28'

0.99

80'

1.00

00'

1.00

22'

1.00

78'

1.00

97'

1.00

29'

0.99

92'

1.01

37'

PGT'
Km,GA

R'
GAR' 520' '              

PGT' Vmax' ' 24300' '              
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AICART' Km,10f' 10fRTHF' 5.9' VC7'
1.00

38'

1.00

47'

1.01

10'

1.00

53'

0.97

84'

0.99

87'

1.00

58'

1.00

62'

1.01

15'

1.00

87'

1.00

14'

1.00

96'

1.01

28'

AICART' Km,aic' AICAR' 100' '              

AICART' Vmax' ' 55000' '              

MTCH' Km,1cf' CHRTHF' 250' VC8'
1.00

62'

1.00

18'

1.01

23'

1.00

36'

1.00

00'

0.99

83'

0.99

73'

0.98

72'

1.00

80'

1.01

08'

1.00

62'

1.00

24'

1.01

76'

MTCH' cVmax' '
50000

0'
'              

MTCH' Km,10f' 10fRTHF' 100' '              

MTCH' Vmax' ' 20000' '              

MTD' Km,2cf' Ch2RTHF' 2' VC9'
1.00

62'

1.00

18'

1.01

23'

1.00

36'

1.00

00'

0.99

83'

0.99

73'

0.98

72'

1.00

80'

1.01

08'

1.00

62'

1.00

24'

1.01

76'

MTD' cVmax' ' 80000' '              

MTD' Km,1cf' CHRTHF' 10' '              

MTD' Vmax' '
60000

0'
'              
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NE'
k1,thf,h

cho'
THF' 0.03' '              

NE' ' HCHO' '               

NE' k2,2cf' CH2RTHF' 22' '              

MTHFR' Km,2cf' CH2RTHF' 50'
VC1

1'

0.98

89'

1.00

00'

0.99

03'

0.99

38'

0.98

56'

1.00

29'

1.00

00'

1.00

78'

0.99

41'

0.98

60'

1.00

58'

1.00

40'

0.99

37'

MTHFR'
Km,NA

DPH'
NADPH' 16' '              

MTHFR' Vmax' ' 5300' '              

MS' Km,hcy' HCY' 1'
VC1

2'

0.99

12'

0.99

79'

1.00

68'

1.00

48'

0.99

46'

0.99

78'

0.99

30'

1.00

60'

0.99

83'

0.99

58'

0.99

54'

0.99

69'

0.98

24'

MS' Km,5mf' 5mRTHF' 25' '              

MS' Vmax' ' 500' '              

BHMT' Km,hcy' HCY' 12'
VC1

3'

1.00

00'

1.00

00'

1.00

00'

1.00

00'

0.74

71'

0.99

57'

0.94

57'

0.97

29'

1.00

00'

1.00

00'

1.00

00'

1.00

00'

1.00

00'

BHMT' Km,bet' BET' 100' '              

BHMT' Vmax' ' 2160' '              
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MATI' Km,met'
methioni

ne'
41'

VC1

4'

1.00

00'

1.00

00'

1.00

00'

0.96

98'

1.00

00'

1.00

00'

1.00

00'

0.98

50'

1.00

00'

1.02

22'

1.00

00'

1.00

00'

1.06

60'

MATI' Vmax' ' 260' '              

MATIII' Km,met'
methioni

ne'
300'

VC1

5'

1.00

00'

1.00

00'

1.00

00'

0.96

98'

1.00

00'

1.00

00'

1.00

00'

0.98

50'

1.00

00'

1.02

22'

1.00

00'

1.00

00'

1.06

60'

MATIII' Vmax' ' 220' '              

GNMT'
Km,sa

m'
SAM' 32'

VC1

6'

1.00

00'

1.00

00'

1.00

00'

1.00

00'

1.00

00'

1.00

00'

1.00

00'

0.96

86'

1.00

00'

1.00

00'

1.00

00'

0.96

56'

1.00

00'

GNMT' Km,gly' glycine' 130' '              

GNMT' Vmax' ' 245' '              

DNMT'
Km,sa

m'
SAM' 1.4'

VC1

7'

1.01

58'

1.00

61'

1.01

20'

1.01

10'

0.99

36'

1.00

39'

1.00

83'

1.01

66'

1.01

19'

1.01

57'

1.00

37'

1.00

20'

1.02

97'

DNMT' Vmax' ' 180' '              

SAHH' Km,sah' SAH' 6.5'
VC1

8'

1.00

67'

1.00

41'

1.01

29'

1.00

00'

0.98

52'

0.99

84'

0.99

47'

1.00

00'

1.00

78'

1.01

26'

1.00

20'

1.00

09'

1.01

31'

SAHH' Vmax' ' 320' '              

SAHH' Km,hcy' HCY' 150' '              
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SAHH' Vmax' ' 4530' '              

CBS' Km,hcy' HCY' 1000'
VC1

9'

1.01

51'

1.00

88'

0.98

45'

1.02

97'

0.91

86'

0.99

17'

1.02

00'

0.98

89'

1.00

74'

1.01

23'

1.00

90'

0.99

68'

1.03

56'

CBS' Km,ser' serine' 2000' '              

CBS' Vmax' '
70000

0'
'              

CTGL' Km,cyt'
cystathio

nine'
500'

VC2

0'

1.00

00'

0.99

52'

0.98

93'

1.00

00'

0.96

11'

0.97

01'

0.95

70'

0.97

97'

1.01

25'

1.00

00'

1.00

25'

0.97

17'

1.02

79'

CTGL' Vmax' ' 1500' '              

GCS' Km,cys' cystein' 100'
VC2

1'

1.00

00'

0.99

67'

1.00

31'

1.00

00'

1.00

00'

1.00

00'

1.00

00'

0.99

54'

1.00

75'

1.01

92'

0.99

63'

0.99

58'

1.00

00'

GCS' Km,glu'
glutamin

e'
1900' '              

GCS' Vmax' ' 3600' '              

GS' Km,gly' glycine' 300'
VC2

2'

1.00

69'

1.00

33'

1.00

28'

1.00

26'

1.01

03'

1.00

00'

1.01

30'

1.00

17'

1.00

73'

1.01

03'

1.00

00'

1.00

57'

1.01

71'

GS' Km,glc' glutRcys' 22' '              
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GS' Vmax' ' 5400' '              

GPX' Km,gsh' GSH' 1330'
VC2

3'

1.00

00'

0.99

42'

1.00

00'

0.99

63'

1.00

00'

1.00

06'

1.00

00'

1.00

00'

1.00

00'

1.00

52'

0.99

27'

1.00

09'

1.00

64'

GPX'
Km,H2

O2'
H2O2' 0.09' '              

GPX' Vmax' ' 4500' '              

GR' Km,gsg' GSSG' 107'
VC2

4'

0.99

24'

1.00

36'

0.99

21'

0.99

08'

1.00

75'

0.99

13'

0.99

22'

0.99

67'

1.00

43'

1.00

74'

0.99

56'

1.00

00'

1.01

46'

GR'
Km,NA

DPH'
NADPH' 10.4' '              

GR' Vmax' ' 8925' '              
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Table S3.5: The list of genes encoding all the enzymes and folate and amino acids transporters, 

used for model estimation. 

Catalyzing 

enzymes 

TS TYMS 

DHFR DHFR 

SHMT SHMT1 

FTS MTHFD1, MTHFD1L 

FTD ALDH1L1 

PGT GART 

AICART ATIC 

MTCH MTHFD1, MTHFD2, MTHFD2L 

MTD MTHFD1, MTHFD2, MTHFD2L 

MTHFR MTHFR 

MS MTR 

BHMT BHMT 

MAT-I MAT1A 

MAT-III MAT1A 

GNMT GNMT 

DNMT DNMT1, DNMT3A, DNMT3B 

SAHH AHCY 

CBS CBS 

CTGL CTH 

GCL GCLC, GCLM 

GS GSS 
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GPX GPX1, GPX2, GPX3, GPX4, GPX5, GPX6, GPX7, GPX8 

GR GSR 

Transporters 

Serine SLC1A4, SLC1A5, SLC7A10, SLC3A2, SLC7A11, 

SLC6A14, SLC38A2, SLC6A18, SLC6A19, SLC38A4, 

SLC7A7, SLC3A2, SLC38A2, SLC43A1, SLC6A15, 

NTT73, SLC6A18 

Methionine  SLC7A5, SLC38A1, SLC43A2, SLC7A5, SLC3A2, 

SLC7A6, SLC3A2, SLC7A7, SLC3A2, SLC38A2, 

SLC43A1, SLC6A15, NTT73, SLC6A18, SLC38A4 

Cystein  SLC1A1,SLC1A4,SLC1A5,SLC7A10,SLC7A11,SLC3A2,S

LC38A1,SLC6A14,SLC7A7,SLC3A2,SLC7A8,SLC3A1,SL

C7A9,SLC38A2,SLC6A19,SLC6A18,SLC38A4 

Folate  FPGS,  GGH, SLC19A1 
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Table S3.6: Table for all the simulation data. 

Vmax_T

S(

nulcotid

e(

synthesi

s(rate(

DNA(

methylatio

n(rate( 5mTHF(

5,10?

m?THF(

5,10?

CH=TH

F( 10fTHF( THF( DHF( H( M( SAH( SAM(

4500( 137.234( 157.611( 2.299( 0.585( 0.314( 4.064( 7.698( 0.040( 1.248( 48.486( 19.940( 9.856(

4700( 142.504( 157.539( 2.288( 0.581( 0.312( 4.054( 7.722( 0.042( 1.250( 48.478( 19.949( 9.819(

4900( 147.713( 157.467( 2.276( 0.578( 0.311( 4.045( 7.746( 0.043( 1.251( 48.470( 19.957( 9.783(

5000( 150.295( 157.431( 2.271( 0.576( 0.310( 4.041( 7.758( 0.044( 1.251( 48.466( 19.962( 9.766(

5100( 152.863( 157.395( 2.265( 0.574( 0.309( 4.037( 7.770( 0.045( 1.252( 48.463( 19.966( 9.748(

5300( 157.954( 157.324( 2.254( 0.571( 0.308( 4.028( 7.793( 0.047( 1.253( 48.455( 19.974( 9.713(

5500( 162.988( 157.253( 2.243( 0.568( 0.307( 4.019( 7.816( 0.048( 1.255( 48.447( 19.983( 9.678(

5700( 167.965( 157.182( 2.232( 0.564( 0.305( 4.010( 7.838( 0.050( 1.256( 48.439( 19.991( 9.644(

5900( 172.887( 157.112( 2.221( 0.561( 0.304( 4.001( 7.861( 0.051( 1.257( 48.432( 19.999( 9.610(

6100( 177.754( 157.041( 2.210( 0.558( 0.302( 3.993( 7.883( 0.053( 1.258( 48.424( 20.008( 9.576(
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6300( 182.567( 156.972( 2.200( 0.555( 0.301( 3.984( 7.905( 0.055( 1.259( 48.417( 20.016( 9.543(

6500( 187.328( 156.902( 2.189( 0.551( 0.300( 3.976( 7.927( 0.056( 1.260( 48.409( 20.024( 9.510(

 

 

H2O2(

nucleotide(

synthesis(

rate(

DNA(

methylation(

rate( H( M( SAH( SAM( CT( Cys( GC( GSH( GSSG(

0.011( 149.142( 157.093( 1.265( 47.734( 19.386( 9.601( 36.583( 126.698( 8.468( 1160.400( 39.892(

0.012( 147.991( 156.769( 1.278( 47.041( 18.866( 9.448( 36.849( 115.084( 8.519( 1153.925( 44.025(

0.013( 146.841( 156.457( 1.289( 46.385( 18.392( 9.304( 37.101( 105.196( 8.559( 1126.223( 47.578(

0.014( 145.692( 156.155( 1.300( 45.764( 17.958( 9.168( 37.340( 96.748( 8.592( 1087.565( 50.652(

0.015( 144.545( 155.862( 1.309( 45.175( 17.559( 9.040( 37.567( 89.490( 8.619( 1044.380( 53.339(

0.016( 143.398( 155.577( 1.318( 44.618( 17.191( 8.918( 37.782( 83.208( 8.641( 1000.396( 55.712(
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CHAPTER 4 

CHOLESTEROL AND CYP ENZYMES: A POWERFUL COMBINATION FOR DRIVING 

CELL PROLIFERATION IN METASTATIC CANCER  

Introduction 

Metastatic cancer is clinically known to grow substantially faster with significantly decreased 

volume doubling time compared to its primary counterpart [24, 25]; and it responds poorly to the 

currently available treatment regiments designed predominantly for primary cancers. 

Unfortunately, very little is known of why metastatic cancers tend to behave this way. The question 

to be addressed is whether metastatic cancers may have additional drivers in addition to what 

drives primary cancers possess. Here we propose a model that links accelerated cell proliferation 

of metastatic (vs corresponding primary) cancers to oxidized cholesterols and further metabolized 

products.  

Links between cholesterol and cancer have previously been reported in the literature, such as: (i) 

epidemiology studies that found connections between blood cholesterol levels and cancer mortality 

rates [33]; (ii) studies that observed increased cellular cholesterol levels in a few (primary) cancer 

types, such as breast cancer [34] and prostate cancer [35]; and (iii) studies that link dysregulation 

or mutations of cholesterol-metabolism genes to cancer occurrence [36]. A few recent cancer-

epidemiology studies have detected correlations between long-term usage of cholesterol-lowering 

drugs such as statins and reduced cancer-associated mortalities [37]. Mechanistic studies on this 

relationship only have started to emerge in the past few years. For example, function-losing 

mutations in ABCA1, the main exporter for cholesterol efflux, are found to be associated with 
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increased cancer occurrences, specifically in colon [38]. One study suggests that the increased 

membrane-cholesterol level is associated with the activation of the kinase Akt, a regulator of 

apoptosis, and hence increases the chance of cancer cells survival [39]. 

While published studies have detected links between cholesterol and cancer progression, no model 

or understanding has been reported regarding how cholesterol contributes to the explosive growth 

of metastatic cancers (vs the corresponding primary cancers) except that cholesterol is used to 

make cell membranes, to the best of our knowledge. Our preliminary data have provided strong 

evidence for a possible causal relationship between the increased (oxidized) cholesterol level and 

accelerated cell proliferation of metastatic cancers. And this evidence ties very well with the 

general understanding about the relationship between O2 and cholesterol.  

Evolutionary studies strongly suggest that cholesterol (or sterols in general) has co-emerged with 

O2 during the early evolution around 2.5 - 3 billion years ago as a “seal” between phospholipids 

in cell membranes to prevent the toxic O2 from entering into anaerobic cells [40]. Recent studies 

have revealed that (a) membrane cholesterol serves as an O2 sensor and  a possible regulator of 

O2-entry into the cells by serving as a membrane barrier against O2 and reactive oxygen species 

(ROS) [40]; (b) a higher membrane cholesterol-phospholipid ratio gives rise to lower O2 

permeability of cellular membranes [41]; and (c) the plasma membrane-cholesterol levels are 

found negatively correlated with the amount of changes in cellular O2 levels of red blood cells 

when the blood- O2 level changes [42]. These studies suggest that while cholesterol has evolved 

numerous functions in human cells, its original function as an O2 barrier in cell membrane, as 

suggested by the evolutionary studies, may have been kept, and possibly play a major role in cell 

proliferation of metastatic cancers as our study has shown. 
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Results 

The purpose of this study is to gain a general understanding about the distinct driving forces of 

metastatic cancer in comparison with the corresponding primary cancer. To accomplish this, we 

have collected 20 sets of microarray-based transcriptomic data of metastatic and corresponding 

primary cancers from a public database (see Supplementary Table S4.1). These data cover 980 

tissue samples of 12 primary-metastatic cancer combinations, namely breast-to-bone metastases; 

prostate-to-bone metastases; breast-to-brain metastases; breast-to-liver, colon-to-liver, pancreas-

to-liver and prostate-to-liver metastases; and bone-to-lung, breast-to-lung, colon-to-lung, kidney-

to-lung and pancreas-to-lung metastases. The first question addressed is: are there genes/gene sets 

significantly up-regulated in metastatic versus the corresponding primary cancers? This leads to 

the identification of dozens of genes (gene sets) involved in cholesterol uptake, synthesis and 

metabolism towards the production of oxysterols, bile acids and steroid hormones. This initial 

result led us to ask and address the two main questions of the paper: (i) what drives metastatic 

cancers to increase their cholesterol influx, and (ii) what consequence does the increased flux of 

cholesterol have in metastatic cancers? The following provides our analysis results related to these 

two questions.  

Throughout this paper, we utilized one-sided t test for differential gene expression, and Gene Set 

Enrichment Analysis (GSEA) procedure for gene set enrichment analysis [113]. Considering that 

most of the collected datasets have relatively small sample sizes (see Supplementary Table S4.1), 

we utilized a meta-analysis approach [114], which combines the analysis results over all the 20 

datasets using Fisher’s method, for both differential expression analysis and gene set enrichment 

analysis, and is adjusted for false discovery rate (FDR) (See Supplementary Methods and 

Materials).  
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O2-Level Difference between Metastatic and Primary Sites: Stresses and Responses 

Metastatic cancers tend to have higher O2 level and stronger oxidative stress response: We have 

estimated the O2 level and the level of responses to oxidative stresses in metastatic vs 

corresponding primary cancers, based on expression data of the relevant marker genes.  

Hypoxia is a key characteristic of primary cancers, and it plays a pivotal role in tumorigenesis 

[115-117]. We noted that HIF1α is down-regulated moderately (p-value=0.2) in metastatic versus 

primary cancers. In addition, HIF1AN, an inhibitor of HIF1A, is significantly up-regulated (p-

value=1.19E-5) in metastatic cancers (in comparison with corresponding primary cancers). We 

also examined gene sets whose proteins utilize oxygen, namely “biological oxidation”, “oxygen 

and reactive oxygen species metabolic process” and “oxidoreductase activity” in the Msigdb 

database [113] , and found that all three sets of genes are significantly up-regulated with p-values 

0, 0 and 3.01E-5, respectively. These together strongly suggest an increased O2 level [118] in 

metastatic cancers vs corresponding primary cancers. The detailed list of all the genes discussed 

throughout this section is given in Supplementary Table S4.2. 

In addition, multiple antioxidant enzymes are up-regulated in metastatic cancers. Specifically, 

SOD1-3 (superoxide dismutases) are known to catalyze the conversion of superoxide (O2−) to 

hydrogen peroxide (H2O2) and O2, where H2O2 can be further converted to water by CAT (catalase) 

and GPX1-5 (glutathione peroxidases). Glutathione (GSH) is the key thiol-based redox buffer, and 

glutamate cysteine ligase (encoded by GCLC and GCLM) is the main (rate-limiting) synthesis 

enzyme. SOD1, SOD2, GCLC and GPX3 are all significantly up-regulated (with p-values = 0.037, 

1.7E-3, 0.024, 1.06E-9, respectively), and the detailed statistical significance values of the other 

genes mentioned here can be found in Supplementary Table S4.2. Based on these observations, we 
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posit that metastatic cancers have reduced capacities for coping with O2, due to their extended 

residence in their primary and hypoxic sites, possibly having lost some of such capacities.  

Evidences suggest cellular membrane damages: Two lines of evidence suggest that metastatic 

cancers generally have damaged cell membranes: (i) genes in response to membrane damages are 

up-regulated; and (ii) the catabolism of the oxidized products of phospholipids, a key component 

of cell membrane, is up-regulated.  

It is known that O2 can oxidize membrane cholesterol (and phospholipids) in an oxidative 

microenvironment through lipid peroxidation, leading to continuous membrane damage and loss 

of membrane cholesterol [119, 120]. Lipid peroxidation can take place autonomously or can be 

catalyzed by lipoxygenases such as ALOX15, ALOX15B, ALOX12 and ALOX5 [121]. We noted 

that ALOX5 is up-regulated in metastatic cancers significantly with p-value 3.68E-4, while the 

other three genes are not changed significantly. In addition, arachidonic acid and linoleic acid 

metabolism are both significantly up-regulated with p-values 0 and 7.84E-7, respectively, which 

are known products of oxidation-induced membrane-phospholipid catabolism[122, 123].   

PON1 of the paraoxonase family plays a protective role against membrane peroxidation by a joint 

activity with HDL (high-density lipoprotein) for membrane repair [124]; and PON2 is known to 

be able to counteract lipid peroxidation on plasma membrane [125]. The anti-oxidation property 

of the last member of this family, PON3, is usually applied on lipoproteins [125], though. It has 

been established that increased abundance of 4-hydroxy-2-nonenal (HNE), the most studied lipid-

peroxidation product [126], can significantly increase the protein levels of the SQSTM1, HMOX1 

and PRDX1 genes [127]. Here we indeed observe that PON1, PON2, PON3, SQSTM1, HMOX1 

all show significant up-regulation with p-values 9.62E-10, 2.13E-4, 1.31E-11, 1.00E-9, 1.07E-7, 

respectively, strongly suggesting active oxidation activities of plasma membrane in metastatic 
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cancer sites. The strong correlation between O2-sensing genes and membrane damage-related 

genes are observed, and could be found in Supplementary Table S4.3. 

Increased expression of cholesterol uptake and/or synthesis genes: The most striking observation 

made on the 20 datasets is that genes responsible for obtaining cholesterol through either de novo 

biosynthesis or uptake from circulation of cholesterol-carrying lipoprotein particles are 

significantly up-regulated in metastatic cancers, revealing that metastatic cancer cells have 

increased needs for cholesterol.  

Four types of cholesterol-carrying lipoprotein particles, namely high, low and very low-density 

lipoproteins (HDL, LDL and VLDL) and chylomicrons have been observed and extensively 

studied. Each of these particles carries different amounts of cholesterol: 5% in chylomicron, 25% 

in VLDL, 47% in HDL and 61% in LDL [128], respectively. Cholesterol in HDL and oxidized 

LDL can be transported into cells from circulation via the scavenger receptor class B1 (SRB1) 

[129]; LDL and chylomicron via low-density lipoprotein receptor (LDLR) and low-density 

lipoprotein receptor-related protein 5 (LRP5); and VLDLs via VLDLRs. CD36 can uptake HDLs, 

(oxidized) LDLs and VLDLs [130]. SRB1, LDLR, CD36 and LRP5 are significantly up-regulated 

with p-values 2.04E-13, 5.01E-5, 2.68E-6 and 1.50E-5, respectively. Gene sets related to 

chylomicron transport and cholesterol biosynthesis are both up-regulated with p-values 0 and 

0.006, respectively. 

SREBP has been established as the main regulator of cholesterol biosynthesis and LDLR- and 

SRB1-based cholesterol uptake [131]. The protein has two encoding genes SREBF-1 and SREBF-

2. Previous studies have shown that oxidative stress can regulate SREBP in human, and O2 can 

regulate it in fission yeast[132, 133], although no studies have confirmed that O2 can directly 

regulate SREBP in human. Another study has demonstrated that toxins-induced membrane damage 
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can induce the activation of SREBFs, as a way to activate membrane biogenesis [134]. Another 

regulator of the cholesterol-carrying lipoprotein receptors is PDZK1 (PDZ domain containing 1), 

whose activation prevents the degradation of SRB1 [135]. It has been found that PDZK1 can be 

regulated by estrogen receptor α, ESR1 [136] and by PPARA (the peroxisome proliferator-

activated receptor α) [137], which are both active in metastatic cancers as shown later. SREBF1 is 

not significantly changed, but SREBF2 and PDZK1 are up-regulated in metastatic cancers with p-

values 5.66E-3 and 6.85E-7, respectively. Overall, metastatic cancers have up-regulated SREBP2 

and PDZK1, possibly due to increased O2 level and/or oxidative stress, leading to an increased 

uptake of cholesterol-carrying lipoproteins, as well as biosynthesis of cholesterol as shown earlier. 

Furthermore, our analyses revealed strong statistical correlation between the aforementioned 

regulators and cholesterol influx genes. In addition, strong positive correlations are observed 

between the oxygen-sensing and membrane damage response genes and cholesterol influx 

regulators, as detailed in Supplementary Table S4.3.  

To provide further evidence that there is indeed an increased influx of cholesterol, we noted that 

numerous genes relevant to cholesterol efflux are up-regulated. Note that excess cellular 

cholesterol can be either converted to cholesteryl esters by acyl-coenzyme A:cholesterol 

acyltransferase SOAT1 and SOAT2 or removed via cholesterol efflux through ATP-binding 

cassette (ABC) exporters such as ABCA1 [138]. In addition, bile-acid synthesis represents another 

key exit for excess cholesterol, in which ABCB11 and SLC10A1 serve as two bile-acid exporters 

[139]. Here ABCB11, SLC10A1, ABCA1 are significantly up-regulated with p-values 5.58E-11, 

8.23E-4, 4.76E-9, respectively, and the bile-acid synthesis and metabolism pathways are both 

significantly up-regulated (see Supplementary Table S4.2 for p-values).  
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These data strongly suggest that (1) metastatic cancers in general have elevated (steady state) 

cholesterol levels and increased cholesterol flux (both influx and efflux) in comparison with their 

primary counterparts; and (2) substantial portions of the arriving cholesterols are not used by the 

cells. Based on all this information, we posit that membrane damage is a key reason for the 

continuous influx of new cholesterol via uptake or synthesis, a process possibly regulated by 

SREBP and some by PDZK1.  

 

A Powerful Combination of Cholesterol and CYPs for Cell Proliferation: a Side-Effect of 

Cell Survival 

Increased expression of CYP (and other cholesterol metabolic) genes as a defense against 

increased O2: In addition to the antioxidants mentioned in the previous sections, CYPs represent 

another large class of enzymes that can consume cellular O2 by oxidizing cholesterol s[140]. For 

example, a number of CYP genes are known to oxidize cholesterol to a variety of biochemically 

active oxysterols, including CYP3A4,5,7 and CYP27A1 [120], where the class of the CYP3A 

enzymes are known to produce 4β-OHC using cholesterol as substrates [141, 142], and CYP27A1 

to produce 27-OHC [143].  Another class of CYP genes are steroidogenic, which are responsible 

for steroid hormone syntheses [144], such as CYP11 (CYP11A1, CYP11B1, CYP11B2), CYP17A1, 

CYP19A1 and CYP21A2. The correspondence between CYP genes and oxysterols are summarized 

in Supplementary Table S4.4. 

Our data analyses revealed that CYP3A4,5,7 and CYP27A1 are all significantly up-regulated with 

p-values = 3.78E-18, 3.66E-13, 7.91E-4, 2.46E-14, respectively. For steroidogenic CYPs, 

CYP21A2 is significantly up-regulated with p-value 3.72E-3, while the others are not significantly 

changed.  
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A number of genes are known to be involved in further metabolism of oxysterols towards 

steroidogenic products that can directly bind with and activate various nuclear receptors (NRs) or 

even growth factor receptors. Specifically, HSD3B1 (hydroxy-delta-5-steroid dehydrogenase 3β) 

and HSD3B2, both being able to metabolize various oxysterols to progesterone, testosterone and 

other steroidogenic metabolites, respectively, are up-regulated in metastatic cancers. 

HSD17B1,3,7, in conjunction with HSD3B1-2, play key roles in steroidogenesis. SRD5A1-2 

(steroid-5α-reductase) are responsible for converting testosterone into androgen, a more potent 

growth hormone with higher binding affinity with the androgen receptor, are also up-regulated 

(See Supplementary Table S4.2 for significance values). The steroid hormone pathway is also 

significantly up-regulated with p-value 0.005. Statistical correlation between oxygen-sensing 

genes and CYPs are outlined in Supplementary Table S4.3. 

To verify that cholesterols are indeed brought into the relevant compartments of metastatic cancer 

cells and metabolized, we have examined a number of genes relevant to intracellular transportation 

of cholesterols. Earlier discussion has shown that the increased cholesterol influx has activated the 

bile-acid synthesis pathway in endoplasmic reticulum (ER). Mitochondria represent the main 

organelle where cholesterol is oxidized to oxysterols and further metabolized to steroid hormones. 

A prerequisite for these productions is the transport of cholesterol into mitochondria inner 

membrane. StAR (or STARD1, steroidogenic acute regulatory protein) is one such transporter. A 

number of STARD genes (StAR-related lipid transfer protein in late endosome), close relatives of 

StAR such as STARD3 and STARD6, are also capable of moving cholesterol from the outer to the 

inner membrane of mitochondria [145, 146]. STARD3 is significantly up-regulated in metastatic 

cancers with p-value 7.16E-4. In addition, it is known that STARD1 can be activated by oxidative 

stress [147]. Hence we postulate that the other STARD genes may also be up-regulated and 
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activated by oxidative stress. And again, the statistical correlations between oxygen sensing related 

genes and STARD genes are significantly positive (see Supplementary Table S4.3), suggesting a 

possible causal relationship. 

Increased expression of nuclear receptors imply their increased activation: Both CYP genes and 

their enzymatic products have close functional relationships with various NRs. On one hand, NRs, 

serving as transcription factors, can regulate key processes related to cholesterol homeostasis 

[148]. For example, it has been shown that cholesterol accumulation can trigger the up-regulation 

of CYP27A1 through the regulation by PPAR (peroxisome-proliferator-activated receptor) [149], 

even though the details of how an up-regulated CYP27A1 leads to the production of 27-OHC are 

not well understood yet[150]. In addition,  NR5A1 (steroidogenic factor 1) is known to positively 

regulate the steroidogenic CYPs [151]. On the other side, the metabolic products of some CYPs 

can serve as ligands of NRs and activate them as transcription factors upon binding. Generally, the 

activation of an expressed NR requires the binding with its (cognate) ligand(s), leading to its 

dimerization, homo- or hetero-dimers, and then translocation to the nucleus to execute its function 

as a transcription regulator. Steroid hormones are potent ligands for steroid hormone receptors 

PGR, ER, AR and ESRRA [152]. Some of the hydroxyl-cholesterols, such as 22(R)-OHC and 27-

OHC, are known to be able to activate NR5A1 [153] and ESR1 [154]. 27-OHC can also bind with 

and activate LXR, ESR1 and PGR [155, 156]. Bile acids are known to be able to activate FXR, 

whose physiological function is a bile-acid sensor that prevents intracellular over-accumulation of 

bile acids and stimulates its export [157]. In addition, 4β-OHC, the product of CYP3A, can activate 

LXR upon binding [158]. Supplementary Table S4.5 summarizes the known relationships between 

cholesterol metabolites and NRs; and statistical associations between NRs and various CYPs could 

be found in Supplementary Table S4.3. 
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LXRα (liver X receptor, encoded by NR1H3), FXR (farnesoid X receptor, encoded by NR1H4), 

ESR1-2 (estrogen receptor 1 and 2), AR, NR5A1 and PPARA,D,G are among the overly-expressed 

NR genes in metastatic cancers, with p-values 2.38E-7, 1.16E-6, 2.51E-8, 4.11E-4, 1.85E-11, 

1.16E-6, 8.05E-6, 5.81E-4 and 8.52E-3, respectively. While the observed up-regulation of NR 

genes does not directly imply the activation of their protein products, the increased production of 

oxysterols and steroidogenic products as discussed in the previous Section, in conjunction with 

our quantitative metabolic profiling on 27-OHC (see Figure 4.1), offer a strong indirect evidence. 

Increased expression of growth factor receptors and cell cycle genes imply increased proliferation 

rates: The regulatory relationships between NRs (and some cholesterol metabolites) and growth 

factor receptors are presented in Table 4.1, and the statistical correlations between the NRs and 

their regulated GFs/GFRs, as well as those between the growth factors and their receptors, are 

described in Supplementary Table S4.3.   

Activated growth factor/receptors such as EGFR, HER2, ERBB3 can directly trigger cell growth 

[159]. Other growth factor receptors such as FGFR1 and FGFR3 can enhance cell proliferation 

[160-162]. TERT (telomerase) is known to enable cells’ immortality [163]; and MET has been 

recognized as a proto-oncogene [164]. We have examined the expression levels changes of these 

genes along with cell cycle genes, and found them to be all up-regulated in metastatic cancers with 

the detailed p-values given in Supplementary Table S4.2. In addition, the cell cycle pathway is 

significantly up-regulated with p-value 0. All these suggest accelerated cell proliferation in 

metastatic vs corresponding primary cancers in general. 

A Driver Model for Accelerated Cell Proliferation 

We have developed a model for accelerated cell proliferation in metastatic vs corresponding 

primary cancers, based on observations presented above, along with some experimental validation 
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in support of the model. A key assumption here is that migrated cancer cells have reduced 

capacities for coping with O2, whose levels are higher in the metastatic vs the corresponding 

primary sites. Hence their migrations to the new locations led to the oxidized and therefore 

damaged plasma membranes of the metastatic cells. In response to the damaged cell membranes 

due to lipid peroxidation as well as to increased cellular O2 levels, the affected cells increase their 

influx of cholesterol needed for membrane repair and up-regulate their antioxidant enzymes, 

particularly CYPs, for consumption of O2; some of the arriving cholesterol is moved to 

mitochondria (or ER) and oxidized to oxysterols (or bile acid) either by CYP enzymes or through 

auto-oxidation, and some further metabolized into steroidogenic products; the resulted oxysterols, 

bile acids and steroidogenic products will activate a variety of NRs as transcription factors, which 

further induce a series of growth-related activities, including the activation of growth factor 

receptors, TERT, and increased rates of cell cycle, hence cell proliferation. 27-OHC and bile acids 

are even able to activate growth factor/receptors directly. This process continues as long as lipid 

peroxidation and cholesterol influx (and efflux) continue at a certain level throughout the entire 

development of a metastatic cancer.  

Figure 4.2 shows our driver model for accelerated cell proliferation of metastatic cancers, 

comprised of 11 steps, each supported by known functional relationships among genes at the two 

ends of each link, their correlated expression patterns and/or published findings. The correlation 

coefficients between observations at the two ends of each link in Figure 4.2 are calculated and 

detailed in Figure 4.3 and Supplementary Table S4.3. Specifically, Figure 4.3 shows the correlation 

coefficients between each pair of functionally linked gene sets in metastatic versus primary cancer 

tissues in each of the examined dataset. It is clear that each predicted functional link in our model 

fits the metastatic cancer data better than the primary cancers, hence providing an indication of the 
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overall quality of our model. The detailed correlation data, generated using a meta-analysis over 

all the 20 datasets of the paired gene sets, are given in Table S4.3. 

One key remaining issue about the driver model is: can we rule out the possibility that the 

increased cholesterol uptake or synthesis is induced to support of the increased need for making 

more cell membranes by the accelerated cell proliferation of the metastatic cancers? To answer 

this question, we have calculated the statistical correlations between cholesterol uptake/synthesis 

genes and cell-proliferation genes, and compared them with those between the cholesterol 

uptake/synthesis genes and genes responsive to membrane damages. The rationale is that both cell 

proliferation and membrane damage can lead to the increase in cholesterol influx, and a 

comparison between the two sets of statistical correlations could provide information about which 

of these two causes are predominantly responsible for the observed increase in cholesterol influx.  

We have compared the correlations between three groups of genes in both primary and metastatic 

cancer samples: genes involved in cholesterol synthesis and uptake (CL), genes involved in 

membrane damage response (MDR), and DNA polymerases and checkpoint regulators involved 

in cell cycle [165] (CYCLE) (see Supplementary Methods and Materials for detailed gene lists), 

and found that the correlations between CL and MD is significantly higher than the correlations 

between CL and CYCLE with p-value =0.04 in metastatic cancers while the correlations between 

CL and MD is lower than the correlations between CL and CYCLE with p-value 0.13 in primary 

cancers. Here, the significance for a derived correlation between the expression data of two gene 

sets is calculated as the significance of the Spearman correlation between the first principle 

components of the two gene expression submatrices containing the relevant genes [166]. To 

compare the significance values for CL vs MDR and values for CL vs CYCLE, a non-parametric 

one-sided Wilcox test is conducted (See Supplementary Methods and Materials). Our analyses 
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revealed that while increased cholesterol influx in primary cancers (versus corresponding normal 

controls) is largely due to cell proliferation, the increase in metastatic cancers is predominantly 

due to continuous cell-membrane damages, which represents a fundamental difference between 

primary and metastatic cancers. 

To support our model, we have carried out limited experimental validation as given in the 

following.  

Increased cell proliferation when treated with HDL cholesterol: SW620 [167], a metastatic cancer 

cell is used to examine if HDL cholesterol may have any effect on the growth of a metastatic 

cancer. The cell population, cultured in cholesterol-containing HDL medium, was split equally 

into two halves along with the evenly split medium and one of culture contains cells with SRB1 

siRNA treatment (see Supplementary Methods and Materials for details of siRNA transfection). 

Figure 4.4 shows the growth curves of the two cell populations, revealing approximately 43% 

reduction in growth rate by the cells with SRB1 interference RNAs, hence providing supporting 

evidence that HDL cholesterol, up-taken via SBR1, plays a key role in the accelerated growth of 

metastatic cancer.  

Metabolic profiling shows increased oxysterols in metastatic versus primary cancers: Knowing 

that CYP27A1 is up-regulated in metastatic cancers, we have examined through metabolomic 

analyses if its product, 27-OHC, and indeed shows increased abundances in metastatic versus 

primary cancer tissue samples. Specifically, we have measured the quantities of 27-OHC in 

primary colon and gastric cancer versus their matching normal tissues, liver metastases along 

with primary liver cancer and matching normal tissues, respectively. Figure 4.1 shows the 

measured quantities of 27-OHC in three pooled samples: five primary colon versus matching 

normal colon tissues, five primary gastric versus matching normal gastric tissues, and five 
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metastatic liver cancers (from colon and breast cancers) along with five  primary liver versus five 

matching normal liver tissues (see Supplementary Table S4.6). IRB approval is obtained 

regarding the use of human subjects. Clearly, the quantity of 27-OHC is about one order of 

magnitude higher in metastatic cancer tissues than those in primary and normal tissues. The 

observed changes in oxidized cholesterol metabolites are highly consistent with the observed 

expression changes of the relevant genes, hence providing a strong supporting evidence for the 

validity of our gene-expression data-based model prediction.  

Concluding Remarks 

It has been established that higher membrane cholesterol-phospholipid ratios give rise to lower O2 

permeability of the (plasma) cellular membrane [41]. In addition, it has been shown that high 

membrane cholesterol content can result in deficiency of oxidative phosphorylation in 

mitochondria [168]. These strongly indicate that membrane cholesterol serves as a defense against 

O2 entry into the cells, which was proposed to be the original function of cholesterol (or sterol in 

general) when it first emerged some two billion years ago by an evolutionary biology study [40].  

 Based on this information, we speculate that the membrane cholesterol level of human cells is O2-

level dependent in cancer, as suggested previously for normal cells [41]. We infer that primary 

cancer cells may have lost some of their membrane cholesterols and maintain lower membrane 

cholesterol contents since these cells have been in hypoxic environments for an extended time 

before they metastasize to new locations. After having been in such environments for long, their 

cellular metabolisms may have partially evolved to become less O2-dependent and even possibly 

anaerobic. When moving to a blood-rich and hence O2-rich location, these cells may need to 

quickly increase their membrane cholesterol level as well as their antioxidant defenses against the 

increased O2. This may represent the initial driver for increased need for cholesterol, which is 
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consistent with established knowledge that oxidative stress can lead to accumulation of cholesterol 

[132]. Then the cell membrane of metastatic cancers goes through continuous lipid peroxidation, 

membrane damage and loss of cholesterol. This may be the key reason for the continuous need for 

additional cholesterol. We hypothesize that SREBP may be the initial trigger of cholesterol influx 

in response to O2-level increase in human.  

We have, for the first time, proposed a driver model for the accelerated cell proliferation of 

metastatic cancers compared to the corresponding primary cancers, in which oxidized cholesterol 

has a key role.  Ultimately it is the increased influx of cholesterol, largely induced by the increased 

O2 level and associated membrane damage that accelerate the growth of such cancer cells. This 

model is based on 20 sets of transcriptomic data covering 12 types of 980 cancer tissues and 

validated experimentally on its key steps. Based on the diversity of the metastatic cancer types and 

the large sample size studied here, we suggest that this model is applicable to metastatic cancer in 

general. The new insights gained and information derived here not only offer fundamentally novel 

understanding about metastatic cancers but could also lead to new directions in terms of 

developing new and more effective drugs for intervention of metastatic cancers and slowing down 

their explosive growth.  

Methods and materials 

Cell lines and culture: SW620 is lymph node metastasis of colon cancer and is in stock in Dr. 

Yuan Yuan’s lab. The  SW620 cells were cultivated at 37� in an atmosphere of 95% air and 5% 

CO2 with RPMI-1640 medium (Gibco) supplemented with 10% fetal bovine serum, 100 units/ml 

penicillin, 100 mg/ml streptomycin, and 20 mM L-glutamine.  

Antibodies: All antibodies used in this study, including anti-SRB1, anti-EGFR and anti-p-EGFR, 

are purchased from Abcam Inc. (Cambridge, MA, USA).  
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In vitro cell growth assay: The SW620 cells were prepared at a concentration of 1 × 104 cells/uL. 

Aliquots (100 uL) were dispensed into 96-well plates. They were incubated for 12, 24, 36 or 48 

hours, and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was 

performed by adding 20 ml of MTT (5 mg/ml; Promega) for 4 hours. Then supernatants were 

removed. A total of 150 ml of dimethylsulfoxide (Sigma, St Louis, Missouri, USA) was added to 

each well. Fifteen minutes later, the absorbance value (optical density (OD)) of each well was 

measured at 490 nm with a microplate reader. All experiments were repeated three times. 

Small interfering RNA transfections: The SW620 cells were seeded at a density of 3×105 cells/well 

in 6-well plates. After 24 hours, cells were transfected with standard small interfering RNA 

(siRNA) with 3’-overhangs using Lipofectamine 2000 reagent according to the manufacturer’s 

protocols. The SRB1 siRNA sequence used was: CCA UGA CCC UGA AGC UCA U. The control 

sequence used was: AAT TCT CCG AAC GTG TCA CGT. SRB1 and control siRNAs were 

produced from Genechem Co. (Shanghai, China). Gene silencing effect was verified by 

Immunoblotting (see Figure S4.1).  

Tissue collection and storage: All tissues used in this study were put into a liquid nitrogen tank 

within 30 minutes of resection from the patients, and were then put into a freezer at -80°C for long 

term storage. Informed consent on sample collection and use in the study was obtained from 

patients.  

Quantitative metabolic profiling of 27-OHC on human cancer tissues: The tissue samples were 

weighed and each sample was placed in a 10mL EP tube. Hydrolysis was performed by adding 

1mL of 1M KOH in ethanol to each tube, followed by ultrasound 1min and placement in a water 

bath at 60°C for 40min. Following hydrolysis 1mL ultrapure water and 3mL hexane were added 

to each sample, the tubes were capped and the samples were vortexed for 1min and shaken for 
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10min. Samples were centrifuged at 3,500 rpm for 5 min at room temperature. The supernatant 

was transferred to a 10mL glass tube and set aside. Each sample was extracted with 3 mL hexane 

again. The supernatant was transferred to the 10mL glass tube with the initial sample, and then 

dried under nitrogen. Prior to GC-MS analysis, 27-hydroxycholesterol was converted to TMS 

ether. The residue was dissolved with 200 µL 99:1 TMCS:BSTFA and derived at 60 � for 30min.  

GC-MS was performed using a Shimadzu GCMS-QP2010 instrument equipped with an HP-5ms 

column (30 m × 0.25 mm inner diameter, 0.25µm phase thickness; Agilent J&W). The gas 

chromatography program was 180 °C for 1 min, followed by a temperature gradient of 20 °C/min 

to 290 °C and a final elution at 290 °C for 13.5 min. Helium was used as the carrier gas at a 

constant flow rate of 1 mL/min.27-hydroxycholesterol was monitored in selected ion monitoring 

(SIM) mode and ion used for quantitation was m/z 456 [169]. The linearity was within the 

concentration range of 100-30000ng/mL. 

Gene expression data: All transcriptomic data used in this study was collected from the GEO 

database [170]. Initially, a total of 37 sets of genome-scale transcriptomic data of metastatic cancer 

and corresponding primary cancer tissues were retrieved. The following criteria were then applied 

to select quality datasets for our analysis: (1) each dataset must consist of at least five samples of 

metastatic cancers and five samples of primary cancers to ensure statistical significance of our 

analyses; (2) each dataset must have an associated publication in a scientific journal; and (3) the 

dataset must include specific information of which organ the metastases are located. After applying 

these rules, 20 datasets are retained and used in our analyses (see Supplementary Table S4.1). It is 

worth-noting that data normalization has been done by the GEO Dataset contributors and the 

normalizations procedures by each contributor might be different, since these datasets come from 

various platforms. Platforms, normalization methods and references for all the datasets can be 
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found in Supplementary Table S4.1. After retrieving these datasets, log2 transformations are 

ensured to stand for the normality assumption of gene expression data distributions. Additional 11 

datasets with only metastatic cancer samples are also retrieved from the same source, considering 

the relatively small sizes of the existing metastatic cancer sample sets used above. These data are 

not used in differential gene expression analysis or GSEA, and used solely to compare the 

correlations of cholesterol influx genes with cell cycle genes as well as with membrane-damage 

response genes. 

Western Blot. After cell treatments, cells were extracted and protein was quantified as described 

previously [171]. Aliquots (50 µg) of each lysate were separated by electrophoresis on SDS-PAGE 

gels and transferred to nitrocellulose membranes. Membranes  were blocked with 5% non-fat milk 

in TBST (10 mM Tris-HCl pH 7.4, 100 mM NaCl, 0.5% Tween-20) for 2 h at room temperature 

and incubated overnight at 4 °C in 5% non-fat milk in TBST containing primary antibodies: rabbit 

anti-scavenger receptor type B-1 (anti-SRB1; Abcam), rabbit anti-EGFR (anti-EGFR; Cell 

Signaling), rabbit anti-phospho-EGFR (anti–p-EGFR Tyr1068; Cell Signaling), and rabbit anti-β-

actin (sc-1616-R; Santa Cruz). After the appropriate secondary antibodies were added for 30 min 

at room temperature, the proteins were detected with enhanced chemiluminescence reagent 

(SuperSignal Western Pico Chemiluminescent Substrate; Pierce, USA) and visualized with the 

Electrophoresis Gel Imaging Analysis System (DNR Bio-Imaging Systems, Israel). 

Differential gene-expression analysis: One-sided t test was used to test the hypothesis: if a gene 

expression is up-regulated (p1) or down-regulated (p2) between metastatic versus the 

corresponding primary cancer samples in each dataset. Then, for each gene, Fisher’s method [114] 

is applied to combine, respectively, the p1 and p2 values. For cases where a gene has multiple 

probes, the probe with the highest fold-change is used in our analysis. To control the false 
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discovery rate, the Holm method [172] is used. All the statistical analyses are done using R. A total 

of 2,122 genes are found to be significantly up-regulated and 2,409 genes down-regulated in 

metastatic cancers (vs corresponding primary cancers) using 0.01 as significance cut-off, among 

all 19,983 human genes we examined. 

Gene set enrichment analysis: The GSEA approach is utilized for gene set enrichment analysis, 

and the p-values for positive and negative enrichments are combined using Fisher’s method, and 

p-values are all adjusted for FDR. In total, 2,963 gene sets are retrieved from the Molecular 

Signatures Database under the c2, c5 and c6 collection [173].  

Co-expression analysis: The correlations shown in Figure 4.3 are calculated for pairs of gene 

groups as follows: for the two groups of genes at the two ends of each functional link in Figure 

4.2, only the significantly up-regulated genes (significance threshold = 0.05) in metastatic 

samples compared with primary samples are considered. Then the correlation matrices for the 

two subsets are calculated in primary and metastatic cancer samples respectively, and the highest 

correlations in the matrices are deemed as the correlations between the two set of genes in 

primary and metastatic cancer samples correspondingly. If the sizes of metastatic cancer samples 

and primary cancer samples are different for a dataset, we will sample the larger set so the same 

number of samples will be randomly selected from both sets. To avoid accidental biases, we will 

conduct the sampling 500 times for each uneven sample sets and use the median of the 500 

correlation coefficients as the final correlation between the two gene sets in the larger set. The 

correlation between two genes’ expression patterns is calculated as follows. Pearson correlation 

coefficient (PCC) is obtained for each gene pair, and Fisher’s z transformation of the PCC is 

standardized with respect to the standard deviation (divided by !
"#$, with N being the sample 

size), which gives rise to an approximate normal distribution. Then these distributions are added 
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over the 20 datasets under consideration. A pair of genes is deemed to be co-expressed over the 

20 datasets if the aforementioned sum is greater than 0 tested using one-sided test. This process 

is repeated for each gene pair, and the final p-values for all the tests are adjusted for multiple 

testing.  

Compare correlations across gene groups: In each of the 20 datasets, we compared the 

correlations between three groups of genes in both primary and metastatic cancer samples: genes 

involved in cholesterol synthesis and uptake (all genes in gene set 

“REACTOME_CHOLESTEROL_BIOSYNTHESIS” plus SCARB1, LDLR, VLDLR, LRP5, 

CD36), denoted by CL; genes involved in membrane damage response (HIF1A, HIF1AN, 

HMOX1, ALOX15, ALOX15B, ALOX12, ALOX5, PON1, PON2, SQSTM1), denoted by MDR; 

and DNA polymerases and checkpoints involved in cell cycle (POLA1, POLA2, POLB, POLD1, 

POLD2, POLD3, POLD4, POLE2, POLE3, POLE4, POLG, POLG2, POLI, POLK, POLL, 

POLM, POLN, POLQ, POLE, CCNA2, CCND1, CCND2, CCNE1, CCNE2, CCNB1, CDK1, 

CDK4, CDK3), denote by CYCLE. We have tested the hypothesis: “the correlation between the 

first principle components of the expression matrices of the two gene groups is not 0”, on the 

primary samples and metastatic samples in each dataset, respectively. We also used datasets 

containing only metastatic cancer samples, considering that sample sizes of the metastatic cancer 

datasets are relatively small. Then the resulting p-values of the correlations between CL and MD 

and those between CL and CYCLE are compared to assess which correlation is more significant.
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Figures 

 

Figure 4.1:  The abundances of 27-OHC in, from left to right, normal and primary colon cancer 

tissues; normal and primary gastric cancer tissues; and normal, primary liver cancer and liver 

metastases tissues.  
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Figure 4.2: An oxidized cholesterol-based driver model for the accelerated cell proliferation of 

metastatic cancers. The numbers in the parentheses serve as step labels in the diagram. The arrows 

in bold are supported by both literature and correlation analysis; the thin arrows are supported by 

literature; and the dashed arrows are only supported by correlation analysis.  
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Figure 4.3: A heat-map of correlation coefficients for all functional links in Figure 4.2 calculated 

for both primary and metastatic cancer samples in 20 datasets. The y-axis of the figure represents 

the 20 pairs of primary and metastatic cancer datasets, with each pair represented by two 

consecutive rows, the first for primary and the second for corresponding metastatic cancers. The 

eight columns from left to right are correlation coefficients for links (1,2), (2,3), (1,3), (3,4), (1,6), 

(7,8) and (8,9), respectively. 
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Figure 4.4: Proliferation rates of SW620 cells with SRB1 siRNA (cube line) versus non-specific 

siRNA (diamond line) measured at 1, 12, 24, 36 and 48 hour after the treatment. 
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Figure S4.1: SRB1, phosphorylated EGFR, EGFR and Actin protein abundance comparisons, from 

left to right, under condition ranging from non-targeted siRNA, SRB1 siRNA 10nM and 20nM. 

 

Tables 

Table 4.1: Known relationships between NRs/cholesterol metabolites and growth (related) 

factors/receptors or pathways. 

NR/cholesterol 

metabolites 

Growth-related 

proteins activated 
References 

LXR FGF19, FGFR1-4  [161, 174-176] 

FXR 
FGF19, FGF21, 

FGFR1-4 
 [161, 174-178] 
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ER 

EGFR, HGF, MET, 

TERT (telomerase), 

cell cycle 

[164, 179-187] 

AR 

EGFR, ERBB2, 

ERBB3, TERT,  cell 

cycle 

[179-182, 185, 186, 188] 

PGR 
EGFR, ERBB2, 

ERBB3 
[189] 

ESRRA ERBB2 [190] 

27-OHC ERBB2 [191] 

bile acids EGFR [192] 
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Table S4.1:  Detailed information about the datasets used in our analysis and model building. From 21-31, datasets are used only for 

comparing the correlation of cholesterol influx with cell proliferation and with membrane damage response genes, since they contain 

only metastatic site samples and they have relatively large sample sizes. 

ID Dataset Metastatic 

cancer type 

# 

Primary 

cancer 

samples 

# 

Metastat

ic cancer 

samples 

Platform 

technology 

Normalizatio

n method 

Referenc

e 

1 GSE26338/GPL

887 

breast->bone 35 5 Agilent 

Technologies 

DNA 

microarrays 

 

Lowess  [193] 

2 GSE32269 prostate -> bone 22 29 Affymetrix 

Human Genome 

U133A Array 

 

MAS5 [194] 
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3 GSE26338/GPL

1390 

breast -> brain 201 8 Agilent 

Technologies 

DNA 

microarrays 

 

Lowess  [193] 

4 GSE26338/GPL

5325 

breast -> brain 19 9 Agilent 

Technologies 

DNA 

microarrays 

 

Lowess  [193] 

5 GSE43837 breast->brain 19 19 Affymetrix 

Human X3P 

Array 

MAS5 [195] 

6 GSE26338/GPL

5325 

breast -> liver 19 5 Agilent 

Technologies 

Lowess  [193] 
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DNA 

microarrays 

 

7 GSE14297 colon -> liver 18 18 Illumina 

Sentrix-6 V2 

BeadChips 

 

Variance 

stabilization 

and spline 

normalization 

 

[196] 

8 GSE41258 colon -> liver 186 47 Affymetrix 

Human Genome 

U133A Array 

MAS 5 

 

[197] 

9 GSE62322/GPL

96 

colon -> liver 20 19 Affymetrix 

Human Genome 

U133A Array 

MAS 5 [198] 
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10 GSE62322/GPL

97 

colon -> liver 20 19 Affymetrix 

Human Genome 

U133B Array 

MAS 5 [198] 

11 GSE6988 colon -> liver 53 29 Human 17K 

cDNA-

GeneTrack 

 

GenePix 4.1 

software  

 

[199] 

12 GSE34153 pancreas->liver 14 20 Agilent-014850 

Whole Human 

Genome 

Microarray 

4x44K G4112F 

 

Lowess 

normalization 

 

[200] 

13 GSE42952 pancreas -> liver 12 7 Affymetrix 

Human Genome 

RMA 

 

[201] 
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U133 Plus 2.0 

Array 

 

14 GSE6752 prostate -> liver 10 5 GE 

Healthcare/Am

ersham 

Biosciences 

CodeLink™ 

UniSet Human 

20K I Bioarray 

 

CodeLink  [202] 

15 GSE8511 prostate -> liver 12 6 Agilent-012391 

Whole Human 

Genome Oligo 

Microarray 

G4112A 

linear-lowess  [203] 
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16 GSE14359 bone->lung 10 8 [HG-U133A] 

Affymetrix 

Human Genome 

U133A Array 

 

MAS5 

 

[204] 

17 GSE26338/GPL

1390 

breast -> lung 201 6 Agilent 

Technologies 

DNA 

microarrays 

 

Lowess  [193] 

18 GSE41258 colon -> lung 186 20 Affymetrix 

Human Genome 

U133A Array 

MAS 5 [197] 

19 GSE22541 kidney->lung 

 

24 24 Affymetrix 

Human Genome 

RMA 

 

[205] 
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U133 Plus 2.0 

Array 

 

20 GSE34153 pancreas->lung 14 8 Agilent-014850 

Whole Human 

Genome 

Microarray 

4x44K G4112F 

 

Lowess  

 

[200] 

21 GSE14017 breast->bone 0 10 Affymetrix 

Human Genome 

U133 Plus 2.0 

 

RMA 

 

[206] 

22 GSE14018 breast->bone 0 10 Affymetrix 

Human Genome 

U133 Plus 2.0 

RMA 

 

[206] 
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23 GSE46141 breast->bone 0 5 Rosetta/Merck 

Human RSTA 

Custom 

Affymetrix 2.0 

microarray 

 

RMA 

 

[207] 

24 GSE56493 breast->bone 0 5 Rosetta/Merck 

Human RSTA 

Custom 

Affymetrix 2.0 

microarray 

 

RMA 

 

[208] 

25 GSE14017 breast->brain 0 15 Affymetrix 

Human Genome 

U133 Plus 2.0 

RMA 

 

[206] 
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26 GSE14018 breast->brain 0 15 Affymetrix 

Human Genome 

U133 Plus 2.0 

 

RMA 

 

[206] 

27 GSE14018 breast->liver 0 5 Affymetrix 

Human Genome 

U133 Plus 2.0 

 

RMA 

 

[206] 

28 GSE14018 breast->lung 0 16 Affymetrix 

Human Genome 

U133A Array 

 

RMA 

 

[206] 

29 GSE20565 breast->ovary 0 35 Affymetrix 

Human Genome 

GCRMA 

 

[209] 
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U133 Plus 2.0 

Array 

 

30 GSE46141 breast->liver 0 16 Rosetta/Merck 

Human RSTA 

Custom 

Affymetrix 2.0 

microarray 

 

RMA 

 

[207] 

31 GSE56493 breast->liver 0 27 Rosetta/Merck 

Human RSTA 

Custom 

Affymetrix 2.0 

microarray 

 

RMA 

 

[208] 
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Table S4.2: Significance values for gene-expression changes and gene set enrichment analysis 

discussed in the main text. The first column is categories of the genes and gene sets, and the 

second column is gene symbols or gene set names from Msigdb [113]. The third column is the 

(meta) p-value for testing the hypotheses “Gene expression is increased in metastatic vs primary 

site or gene set is positively enriched”, and the fourth column is the (meta) p-value for testing the 

hypotheses “Gene expression is decreased in metastatic vs primary site or gene set is negatively 

enriched”. All the p-values are adjusted for FDR using the Holm method [172] (see 

Supplementary Methods and Materials). CL: cholesterol. 

  Gene Symbol/Gene set name p-val(up) 
pval(down

) 

Oxygen 

and ROS 

HIF1A 1.00E+00 2.03E-01 

HIF1AN 1.19E-05 1.00E+00 

REACTOME_BIOLOGICAL_OXIDATIONS 0.00E+00 9.66E-01 

OXYGEN_AND_REACTIVE_OXYGEN_SPEC

IES_METABOLIC_PROCESS 
0.00E+00 8.89E-01 

OXIDOREDUCTASE_ACTIVITY_GO_001670

5 
3.01E-05 9.79E-01 

SOD1 3.73E-02 1.00E+00 

SOD2 1.71E-03 1.35E-01 

SOD3 1.00E+00 2.75E-02 

CAT 8.46E-02 6.56E-01 
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GPX1 1.00E+00 1.00E+00 

GPX2 1.00E+00 1.00E+00 

GPX3 1.06E-09 1.00E+00 

GPX4 1.00E+00 1.00E+00 

GPX5 1.00E+00 1.00E+00 

GCLC 2.41E-02 1.00E+00 

GCLM 1.00E+00 1.00E+00 

Membrane 

damage 

response 

ALOX15 1.00E+00 1.00E+00 

ALOX15B 1.00E+00 1.00E+00 

ALOX12 1.00E+00 1.00E+00 

ALOX5 3.69E-04 1.00E+00 

KEGG_ARACHIDONIC_ACID_METABOLIS

M 
0.00E+00 9.95E-01 

KEGG_LINOLEIC_ACID_METABOLISM 7.84E-07 1.00E+00 

PON1 9.62E-10 1.00E+00 

PON2 2.13E-04 1.00E+00 

PON3 1.31E-11 1.00E+00 

SQSTM1 1.00E-09 1.00E+00 

HMOX1 1.07E-07 1.00E+00 

CL influx 

SCARB1 2.04E-13 1.00E+00 

LDLR 5.01E-05 2.00E-05 

LRP5 1.50E-05 1.00E+00 
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CD36 2.68E-06 3.23E-03 

REACTOME_CHOLESTEROL_BIOSYNTHES

IS 
6.28E-03 9.73E-01 

REACTOME_CHYLOMICRON_MEDIATED_

LIPID_TRANSPORT 
0.00E+00 1.00E+00 

HMGCR 1.00E+00 1.93E-09 

CL flux 

regulator 

SREBF1 1.00E+00 1.00E+00 

SREBF2 5.66E-03 1.00E+00 

PDZK1 6.85E-07 1.00E+00 

CL efflux 

ABCB11 5.58E-11 1.00E+00 

SLC10A1 8.24E-04 1.00E+00 

ABCA1 4.76E-09 1.00E+00 

CL 

oxidation 

KEGG_PRIMARY_BILE_ACID_BIOSYNTHE

SIS 
1.98E-03 4.16E-01 

REACTOME_BILE_ACID_AND_BILE_SALT

_METABOLISM 
1.05E-05 8.81E-01 

CYP3A4 3.78E-18 1.00E+00 

CYP3A5 3.66E-13 1.00E+00 

CYP3A7 7.91E-04 1.00E+00 

CYP27A1 2.46E-14 1.00E+00 

CYP11A1 1.00E+00 1.00E+00 

CYP11B1 1.00E+00 1.00E+00 
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CYP11B2 3.10E-01 1.00E+00 

CYP17A1 1.80E-01 1.00E+00 

CYP19A1 1.00E+00 1.00E+00 

CYP21A2 3.72E-03 1.00E+00 

HSD3B1 1.00E+00 1.00E+00 

HSD3B2 1.00E+00 1.00E+00 

HSD17B1 1.00E+00 2.97E-03 

HSD17B3 1.00E+00 1.00E+00 

HSD17B7 1.57E-02 1.00E+00 

SRD5A1 8.60E-03 1.00E+00 

SRD5A11 8.60E-03 1.00E+00 

KEGG_STEROID_HORMONE_BIOSYNTHES

IS 
7.88E-06 9.01E-01 

CL 

intracellul

ar flux 

STAR 1.00E+00 1.00E+00 

STARD3 7.17E-04 1.00E+00 

STARD6 1.00E+00 1.00E+00 

Nuclear 

receptor 

PGR 1.00E+00 1.00E+00 

ESR1 2.51E-08 1.98E-07 

ESR2 4.12E-04 1.66E-07 

AR 1.85E-11 1.00E+00 

ESRRA 1.85E-01 1.00E+00 

NR5A1 1.16E-06 1.00E+00 
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NR1H2 1.00E+00 1.00E+00 

NR1H3 2.38E-07 1.00E+00 

NR1H4 2.50E-06 1.00E+00 

Cell 

proliferati

on and cell 

cycle 

FGF19 1.00E+00 1.00E+00 

FGF21 7.04E-05 1.00E+00 

FGFR1 5.50E-07 4.03E-17 

FGFR2 3.81E-01 8.61E-06 

FGFR3 2.61E-01 1.05E-01 

FGFR4 3.49E-01 1.00E+00 

EGFR 3.86E-08 1.00E+00 

ERBB2 1.00E+00 1.00E+00 

ERBB3 1.01E-05 1.00E+00 

TERT 3.95E-04 1.00E+00 

CELL_CYCLE_PROCESS 0.00E+00 1.96E-01 

HGF 1.02E-03 1.00E+00 

MET 1.70E-05 1.00E+00 

 

 

Table S4.3: The statistical significance of correlations between gene expression. The first column 

is the names of categories of genes and gene sets that correlations are calculated for; the next two 

columns are corresponding key genes, and the fourth column is (meta) p-value for testing the 

hypothesis “correlation is significantly positive”, and the fifth column is the FDR adjusted p-value 

using the Holm method (See Methods and Materials). 
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Gene/gene 

set 1 

Gene/gene 

set 2 
p-value 

p-

value(adjusted) 

Cholesterol 

influx regulator 

and cholesterol 

influx genes 

SREBF1 MSMO1 4.04E-02 1.00E+00 

SREBF1 CYP51A1 8.04E-02 1.00E+00 

SREBF2 MSMO1 4.87E-05 4.82E-03 

SREBF2 CYP51A1 9.53E-09 1.32E-06 

SREBF1 SCARB1 2.73E-11 4.36E-09 

SREBF1 LDLR 1.07E-11 1.72E-09 

SREBF1 LRP5 2.75E-04 2.47E-02 

SREBF1 CD36 7.77E-02 1.00E+00 

SREBF2 SCARB1 4.58E-07 5.86E-05 

SREBF2 LDLR 7.79E-11 1.23E-08 

SREBF2 LRP5 1.02E-09 1.50E-07 

SREBF2 CD36 1.32E-05 1.40E-03 

PDZK1 SCARB1 9.68E-11 1.52E-08 

Membrane 

damage 

response genes 

and cholesterol 

influx regulators 

PON1 SREBF1 2.77E-04 2.47E-02 

PON1 SREBF2 1.05E-03 8.06E-02 

PON1 PDZK1 2.12E-29 3.87E-27 

PON2 SREBF1 8.68E-03 5.38E-01 

PON2 SREBF2 1.05E-03 8.06E-02 

PON2 PDZK1 7.69E-06 8.68E-04 

PON3 SREBF1 1.03E-01 1.00E+00 
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PON3 SREBF2 6.27E-02 1.00E+00 

PON3 PDZK1 4.72E-18 8.35E-16 

SQSTM1 SREBF1 1.64E-06 2.00E-04 

SQSTM1 SREBF2 1.37E-09 2.01E-07 

SQSTM1 PDZK1 1.95E-10 2.99E-08 

HMOX1 SREBF1 3.33E-01 1.00E+00 

HMOX1 SREBF2 1.17E-01 1.00E+00 

HMOX1 PDZK1 1.13E-07 1.49E-05 

PRDX1 SREBF1 2.27E-01 1.00E+00 

PRDX1 SREBF2 2.90E-03 1.97E-01 

PRDX1 PDZK1 1.35E-02 7.53E-01 

ALOX15 SREBF1 2.33E-02 1.00E+00 

ALOX15 SREBF2 1.78E-03 1.24E-01 

ALOX15 PDZK1 1.44E-01 1.00E+00 

ALOX15B SREBF1 1.12E-02 6.51E-01 

ALOX15B SREBF2 5.81E-07 7.38E-05 

ALOX15B PDZK1 1.85E-04 1.70E-02 

ALOX12 SREBF1 4.06E-01 1.00E+00 

ALOX12 SREBF2 1.30E-02 7.41E-01 

ALOX12 PDZK1 1.50E-09 2.20E-07 

ALOX5 SREBF1 3.10E-04 2.73E-02 

ALOX5 SREBF2 7.34E-04 5.87E-02 
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ALOX5 PDZK1 3.21E-09 4.56E-07 

NR and growth 

factors/receptors 

ESR1 EGFR 7.90E-21 1.42E-18 

ESR1 HGF 7.21E-28 1.31E-25 

ESR1 MET 5.45E-15 9.42E-13 

ESR1 TERT 1.37E-10 2.12E-08 

ESR2 EGFR 1.84E-18 3.28E-16 

ESR2 HGF 3.25E-15 5.66E-13 

ESR2 MET 3.70E-19 6.63E-17 

ESR2 TERT 5.08E-06 5.84E-04 

AR EGFR 1.35E-10 2.10E-08 

AR ERBB2 7.87E-09 1.10E-06 

AR ERBB3 2.07E-04 1.89E-02 

AR TERT 6.29E-02 1.00E+00 

PGR EGFR 8.52E-06 9.46E-04 

PGR ERBB2 1.20E-05 1.29E-03 

PGR ERBB3 1.33E-04 1.25E-02 

ESRRA ERBB2 9.24E-12 1.50E-09 

NR1H2 FGF19 1.07E-05 1.16E-03 

NR1H2 FGFR1 4.34E-08 5.91E-06 

NR1H2 FGFR2 9.03E-05 8.76E-03 

NR1H2 FGFR3 5.84E-07 7.38E-05 

NR1H2 FGFR4 5.13E-14 8.62E-12 
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NR1H3 FGF19 2.64E-01 1.00E+00 

NR1H3 FGFR1 2.12E-09 3.07E-07 

NR1H3 FGFR2 1.26E-05 1.35E-03 

NR1H3 FGFR3 4.82E-05 4.82E-03 

NR1H3 FGFR4 1.15E-01 1.00E+00 

NR1H4 FGF19 3.71E-01 1.00E+00 

NR1H4 FGF21 4.97E-12 8.10E-10 

NR1H4 FGFR1 8.04E-06 9.00E-04 

NR1H4 FGFR2 2.94E-10 4.44E-08 

NR1H4 FGFR3 1.73E-05 1.82E-03 

NR1H4 FGFR4 2.48E-02 1.00E+00 

Cholesterol 

metabolites and 

NRs 

ABCA1 EGFR 6.47E-15 1.11E-12 

ABCG1 EGFR 2.72E-05 2.83E-03 

ABCG5 EGFR 6.42E-07 8.02E-05 

ABCB11 EGFR 7.40E-17 1.30E-14 

SLC10A1 EGFR 2.39E-12 3.92E-10 

CYP27A1 ERBB2 2.65E-01 1.00E+00 

CYP27A1 NR1H2 7.00E-03 4.41E-01 

CYP27A1 NR1H3 1.77E-12 2.93E-10 

CYP27A1 ESR1 4.41E-24 7.98E-22 

CYP3A4 NR1H2 1.61E-07 2.10E-05 

CYP3A4 NR1H3 2.80E-05 2.88E-03 
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CYP3A5 NR1H2 3.13E-06 3.73E-04 

CYP3A5 NR1H3 4.54E-06 5.26E-04 

CYP3A7 NR1H2 8.26E-04 6.45E-02 

CYP3A7 NR1H3 4.89E-08 6.60E-06 

CYP11A1 ESR1 9.60E-15 1.64E-12 

CYP11A1 NR1H2 1.37E-03 9.88E-02 

CYP11A1 NR1H3 6.20E-02 1.00E+00 

GFs and 

corresponding 

GFRs 

HGF MET 4.77E-14 8.06E-12 

FGF19 FGFR1 1.04E-02 6.21E-01 

FGF19 FGFR2 5.82E-02 1.00E+00 

FGF19 FGFR3 1.31E-01 1.00E+00 

FGF19 FGFR4 6.73E-07 8.34E-05 

FGF21 FGFR1 4.03E-06 4.71E-04 

FGF21 FGFR2 1.36E-06 1.67E-04 

FGF21 FGFR3 1.27E-04 1.20E-02 

FGF21 FGFR4 3.19E-03 2.14E-01 

Membrane 

damage 

response genes 

and cholesterol 

influx genes 

PON1 SCARB1 2.38E-14 4.04E-12 

PON1 LDLR 3.57E-09 5.03E-07 

PON1 LRP5 7.54E-06 8.59E-04 

PON2 SCARB1 2.75E-09 3.96E-07 

PON2 LDLR 1.98E-07 2.57E-05 

PON2 LRP5 1.12E-03 8.29E-02 
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PON3 SCARB1 1.27E-12 2.10E-10 

PON3 LDLR 1.66E-10 2.56E-08 

PON3 LRP5 3.60E-05 3.68E-03 

SQSTM1 SCARB1 3.03E-10 4.55E-08 

SQSTM1 LDLR 9.51E-14 1.59E-11 

SQSTM1 LRP5 3.57E-07 4.60E-05 

PON1 MSMO1 3.41E-04 2.93E-02 

PON1 CYP51A1 3.54E-04 3.01E-02 

PON2 MSMO1 1.09E-08 1.50E-06 

PON2 CYP51A1 2.88E-10 4.38E-08 

PON3 MSMO1 2.62E-06 3.17E-04 

PON3 CYP51A1 3.64E-06 4.29E-04 

SQSTM1 MSMO1 2.01E-02 1.00E+00 

SQSTM1 CYP51A1 2.86E-09 4.09E-07 

O2 level and 

membrane 

damage 

response genes 

HIF1AN PON1 2.85E-06 3.42E-04 

HIF1AN PON2 2.04E-03 1.41E-01 

HIF1AN PON3 3.52E-02 1.00E+00 

HIF1AN SQSTM1 4.89E-11 7.78E-09 

HIF1AN HMOX1 2.13E-02 1.00E+00 

HIF1AN PRDX1 6.10E-01 1.00E+00 

HIF1AN ALOX15 8.40E-05 8.23E-03 

HIF1AN ALOX15B 1.06E-02 6.27E-01 
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HIF1AN ALOX12 4.92E-04 4.04E-02 

HIF1AN ALOX5 7.62E-08 1.01E-05 

  

HIF1AN SREBF1 2.79E-01 1.00E+00 

HIF1AN SREBF2 6.50E-04 5.27E-02 

HIF1AN PDZK1 1.63E-02 8.95E-01 

O2 level and 

cholesterol 

intracellular 

transporters 

HIF1AN STAR 1.09E-03 8.14E-02 

HIF1AN STARD3 1.34E-03 9.81E-02 

HIF1AN STARD6 9.29E-05 8.92E-03 

O2 level and 

CYP genes 

HIF1AN CYP11A1 7.33E-04 5.87E-02 

HIF1AN CYP3A4 7.72E-16 1.35E-13 

HIF1AN CYP3A5 1.78E-04 1.66E-02 

HIF1AN CYP3A7 9.27E-03 5.66E-01 

HIF1AN CYP27A1 4.75E-02 1.00E+00 

HIF1AN CYP11B1 3.73E-04 3.14E-02 

HIF1AN CYP11B2 5.81E-08 7.79E-06 

HIF1AN CYP17A1 3.10E-04 2.73E-02 

HIF1AN CYP19A1 4.46E-04 3.70E-02 

HIF1AN CYP21A2 1.62E-03 1.15E-01 

 

 

Table S4.4: Oxidized cholesterol products and associated genes. 
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Oxidized cholesterol 

metabolites 

Catalyzing enzymes/pathway 

27-OHC CYP27A1 

Steroid hormones steroid hormone synthesis 

pathway 

22-OHC CYP11A1 

4β-OHC CYP3A4,5,7 

Bile acids Bile acid synthesis pathway 

 

Table S4.5: Known relationships between cholesterol metabolites and NRs.  

CYP gene or product Relationship NRs 

27-OHC activates ESR1, LXR 

CYP27A1 is regulated by PPAR, cholesterol  

22(R)-OHC activates ESR1, LXR 

CYP11A1, CYP17A1, CYP19A1, CYP21A2 are regulated by  NR5A1 

4β-OHC activates LXR 

CYP3A4,5,7 are regulated by unknown 

bile acid  activates FXR 

bile-acid producing CYPs are regulated by FXR 

steroid hormone  activates ER, AR, PGR 

steroidogenic CYPs are regulated by NR5A1 
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Table S4.6: Clinical information of tissue samples for quantitative metabolic profiling. 

Disease ID Gender Age 

liver metastase from colon W0598 M 50 

liver metastase from colon G0504 M 60 

liver metastase from breast G0270 F 54 

liver metastase from colon W0225 M 43 

liver metastase from colon G0480 M 64 

primary liver cancer G0004 M 46 

primary liver cancer G0018 M 53 

primary liver cancer G0014 F 61 

primary liver cancer G0008 M 55 

primary liver cancer G0005 M 60 

Primary gastric cancer W0388 F 56 

Primary gastric cancer W0415 F 64 

Primary gastric cancer W0392 M 38 

Primary gastric cancer W0390 M 54 

Primary gastric cancer W0417 M 41 

primary colon cancer W0424 M 70 

primary colon cancer W0399 F 82 

primary colon cancer W0427 M 55 

primary colon cancer W0422 F 58 

primary colon cancer W0400 F 62 
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CHAPTER 5 

DEVELOPMENT OF A DECONVOLUTION ALGORITHM FOR TISSUE-BASED GENE 

EXPRESSION DATA 

Introduction 

Traditionally, cancer research has been mostly conducted on cancer cell lines cultured in man-

made environments. While large amounts of data have been published about such studies, their 

true relevance to cancer biology remains largely unknown, at least for certain aspects of cancer 

biology. For example, autophagy has been widely considered to have key roles in cancer 

development based on cancer cell line studies [210]. Our recent analyses of cancer tissue gene-

expression data clearly showed that macro-autophagy, the most studied autophagy in cancer, is 

consistently repressed in cancer tissues across 11 cancer types [211]; in comparison, it is up-

regulated in cancer cell lines when treated with nutrient deprivation and/or metabolic stress 

conditions [212, 213]. Examples like this strongly suggest the necessity in studying cancer tissues 

in addition to cancer cell lines in order to understand the real biology of cancer. Actually, it has 

been well established that it is essential to study the microenvironment where cancer cells originate 

and evolve [214, 215], which consists of multiple types of immune, stromal cells, fat, endothelial 

and blood cells along with the extracellular matrix (ECM). It is this environment that dictates how 

a disease evolves. 

Tissue data provide substantially more information than cell-line data and offer new opportunities 

to study cancer biology and evolution in its actual microenvironment, when multiple tissue 

samples of the same cancer type are analyzed together. However, it is very challenging to do 
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information discovery from tissue data because of their compositional complexity – each dataset 

represents a mixture of gene-expression data from multiple cell types. Hence, meaningful tissue-

data analyses require to first sort out the detailed contributions to the observed tissue-level data by 

different cell types, like experimentally using laser-directed microdissection to put cells of 

different types into separate bins. Once such data are de-convoluted, one can start addressing issues 

concerning specific genes and pathways in certain cell types and interactions among different cell 

types. For example, one can possibly rigorously examine the Warburg effect in cancer tissue cells 

by asking: “Do some cancers utilize the electron transport chain to produce ATPs in addition to 

glycolysis?” or “Are there (fundamental) differences between the Warburg effect observed in 

cancer tissue cells and normal proliferating cells as answers to this question have been 

conflicting?” These issues can be examined only when gene-expression levels are accurately 

estimated for each involved cell type. Actually, tissue data deconvolution is not only very useful, 

but also necessary for correct data interpretation. For example, different cancer tissues may have 

varying proportions of cancer cells, which makes direct comparison between expression levels of 

individual genes in two tissues challenging without data deconvolution.  

A number of large databases for cancer tissue omic data have been developed. Among them, 

TCGA is the most comprehensive [216]. It currently consists of 34 cancer types and 11,000+ tissue 

samples, having for each transcriptomic, genomic, epigenomic and some proteomic data. 

Numerous studies of TCGA data have been published [217], but the majority of them treat the 

tissue data as coming from a single source rather than multiple ones. While such studies have 

revealed useful information, analyses of tissue data without proper deconvolution will be limited 

to cell type-specific genes or may lead to questionable results. The reality is: while cancer tissue 

data are rapidly generated, analysis capabilities of such data fall far behind. 



 

144 

The computational challenge in solving the tissue data deconvolution problem stems from the 

reality: each cell type has a very large number of complex relations among its expressed genes and 

pathways, which are preserved under different conditions. To make deconvolution results 

meaningful, some or many of these relations, e.g., co-expression among functionally closely 

related genes, must be captured and enforced in a deconvolution problem formulation. This, as one 

can imagine, is a daunting task.  

Classical methods of profile deconvolution assume that a mixed profile is a linear combination of 

a predetermined number of pure constituent profiles. Written in matrix form, the measured mixed 

profiles X are a product of S, a matrix of gene expression profiles of each constituent, weighted 

by the fractions P of each cell type in the mixture, and a de-convolution problem is defined as to 

estimate S and P so that the total error ϵ  is minimized with X%×' = S%×) ∙ P)×' + ϵ, s.t.: 

,-. = 1, ,-. ≥ 0; 45 = 1,… , 7.9
.:;  Different algorithms use different methods of deconvolution. 

Estimating both signature and proportion matrix is a very loosely constrained problem, which 

requires assumptions on the structures of the gene expression matrix [43-47]. Some assume that 

the fractions, X, are known, and (average) cell type expression profiles are derived [48-51]. Others 

derive cell type uniquely express genes and/or cell type specific expression profiles to estimate the 

cell type proportions matrix P [43, 52-57, 218]. These approaches do not bring insight into the 

cancer patient-specific variations, as they assume that all tumor sample share a constant expression 

profiles, up to varying component abundances. Methods to derive patient-specific expression 

profiles were developed, which requires input of matched/unmatched normal tissue expression 

profiles, and assumes there is only one component in addition to tumor cells, called “normal”, are 

within the tumor tissue [58, 60-62], however, no knowledge regarding the immune cells are 

derived.  
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Model setup 

There are a few serious issues with the current deconvolution formulation: (i) it requires that each 

gene in each cell type has a constant expression across all tissues under consideration, which is 

clearly too restrictive and unrealistic; (ii) no information is included to enforce any co-relations 

among genes in the same cell type; (iii) none of the algorithms attempted to deal with the special 

challenges in de-convoluting cancer tissue data as mentioned earlier. Some authors have limited 

their deconvolution algorithms to specialized applications, such as assessing the purity of cancer 

tissues [219]. It will represent a major step forward if a highly effective deconvolution technique 

becomes available that can tease out contributions by different cell types in tissue-based RNA data.   

 Our developed deconvolution tool overcame all theaw limitations, as it is capable of 1) deriving 

cell type proportions and expression profiles simultaneously; 2) deriving cancer patient specific 

expression profiles for all the cell types; 3) covering major types of immune cells; with the only 

input as any number of mixture tissue expression.  

We have collected a large amount of gene expression data for the following cell types as our 

traning data: B-cell, breast, colon, dendritic cell, endothelial, fibroblast, liver, macrophage, 

neutrophil and T-cell, measured using Affymetrix U133 Plus 2.0 Array, which are retrieved from 

GEO [220], totaling 406, 513, 745, 410, 638, 398, 341,412, 477, and 445 samples, respectively. 

Over 20,000 gene sets retrieved from Msigdb [113], covering ~20,000 genes, are used in our study. 

All expression data are normalized using MAS5, log2 transformed, and quantile-normalized. The 

pipeline of our method includes the following steps: 1) estimating the number of uniquely 

expressed genes for each cell type; 2) detecting cell type specific pathways; 3) their expression 

signatures; 4) inferring the cell type proportions; 5) deconvolution of cell specific contribution of 

a tissue sample. 
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Estimating the numbers of expressed and uniquely expressed genes in each cell type: We estimated 

which genes are typically expressed in each of the ten cell types using the above data. For each 

gene in each cell type, we fit a bimodal Gaussian mixture model against the density distribution of 

the gene’s expression. Samples falling under the peak with smaller mean values are considered as 

not expressing the gene. Genes are considered not expressed in a cell type if < 25% of the samples 

of the cell type express the gene.  An expressed gene is considered as unique to a cell type if the 

majority (> 75%) of the samples of the cell type express the gene and < 25% of the samples of the 

other cell types express the gene. The numbers of uniquely expressed genes in the  cell types are 

given as the first number in the parenthesis following each cell type: B-cell (72, 1446), breast (67, 

1687), colon (40, 1680), dendritic cell (9, 1465), endothelial (39, 1557), fibroblast (134, 1236), 

liver (317, 1549), macrophage (15, 1319), neutrophil (19, 456) and T-cell (83, 1650). 

Detecting cell-type specific pathways: We have examined each of the ~20,000 gene sets in Msigdb, 

and if (subset of) genes in a set are expressed and co-expressed for a cell type, this (subset of) 

genes are considered as this cell type’s specific co-expressed gene cluster, this their co-expression 

signatures are derived using sparse non-negative matrix factorization. The procedure is performed 

on all cell types for all the gene sets, and we identified all of the pathways specific to each cell 

type, listed as the second number inside the above parentheses. Hence, pathways refer to such gene 

clusters throughout the paper. 

Estimating the expression signature of each pathway:  Given a certain cell type, for each of its 

specific pathway, we fit the expression matrix (genes in row, samples in column) of its genes with 

two non-negative rank 1 matrices, and call the matrix on the left as signature for this pathway. 

Binding all the signatures into a large matrix, which each column containing the expression 

signature for one pathway, and locations in the column where genes do not belong to the pathway 
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are set as zero. As pathways inevitably overlap, the signature for genes who occur in multiple 

pathways are not accurate. We solved this problem with fine tuning the signature matrix by 

performing a hierarchical alternative least square (HALS) matrix decomposition on the training 

expression matrix for the cell type [221], using the “coarse” signature matrix as initial point. HALS 

adopts a column-wise updating scheme, which fits well into our problem, as for each iteration, it 

would be very convenient to keep the zero valued elements in the old signature matrix as zero in 

the updated signature matrix. 

Inference of proportions of individual cell types in a cell mixture: The proportions of individual 

cell types in a cell mixture can be estimated using the expression levels of genes uniquely 

expressed in each cell type. The challenge lies in that the observed expression levels for such genes 

have two contributions: expression levels of the genes in each cell type and the proportions of the 

cell type in the cell mixture. Hence, we need to have a way to decouple the two. For each cell type, 

we are able to find a number of uniquely expressed genes whose expression fall within a narrow 

range; and hence their total expression in the mixture offer a reliable measure for estimating the 

proportion of each cell type. Specifically, an expression matrix comprised of the mean expression 

values of all such unique genes for each cell type is constructed. Then, the problem of estimating 

the proportion of each cell type in a mixture can be formulated as to find a solution <-, 5 = 1,… , 7  

that minimizes the following sparse non-negative least square regression problem: where =>×;are 

the expression data for all the ? cell type-specific low-variability genes in a given mixture; @-A, 5 =

1,…7; B = 1,… , C-, is the mean expression value of the Bth gene in the 5th cell type; and <-, 5 =

1,… , 7, is the proportion of the 5th cell type in the mixture, D is regularization parameter, which 

is selected by cross-validation.  



 

148 

argmin
KL

=>×; −

@;;
⋮

@;OP
⋯

0
⋮
0

⋮ ⋱ ⋮
0
⋮
0

⋯

@S;
⋮

@SOT

<;
⋮
<S

U

+ D |<.|

S

.:;

, W. X. <. = 1

S

.:;

, <. ≥ 0 

 

Deconvolution of cell specific contribution of a tissue sample: Given a vector of summed 

expression levels for Y genes from ten cell types, the de-convolution problem is defined as to 

estimate4{[.-}4so that the following is minimized:  
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where _.- = {_.-A, B = 1,…Y} is the signature of the 5th pathway in cell type X. It has non-zero 

values only in rows that correspond to genes in the pathway; <. is the estimated proportion of cell 

type X in the mixture; and [.- is the expression level of the 5th pathway in cell type X. D, c1,…,c7 

are group lasso regularization parameters. Group lasso penalizes the coefficients for the same cell 

type on a group level, meaning the entire group (cell type) may drop out of the model. This is 

suitable to remove cell types not present in the tissue.  

Simulation study 

Assessment of the performance of deconvolution algorithm. One thousand simulated mixture 

sample expression are generated as follows. For each mixture sample, ten expression datasets each 

from the ten aforementioned cell types were randomly selected from the corresponding GEO 

datasets along with a proportion vector <-, 5 = 1,… ,10 generated 

using <;, … , <;e ~C5g5hℎj@X(10). For each gene m, its expression in a mixture is determined by 

n m = <-n- m +4ϵo,
;e
-:;  where n- m  is the expression level of m in cell type i, and ϵo is an 
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additive error following a Gaussian distribution. Figure 5. 1 shows the actual versus the predicted 

proportions for the nine cell types, highlighting the quality of the de-convolution algorithm. Figure 

5. 2 shows for six mixture samples, the expression profiles of cell type breast before and after 

deconvolution, where the actual proportions of breast cells vary from 0.3-0.8. Overall, the median 

correlations between the deconvoluted and actual expression across all the genes are all above 

0.85.  

Discussion 

There are two challenges with the current formulation: 1) more convincing validation methods are 

needed; 2) it cannot handle newly emerged pathways/subtypes. Clearly, the current method 

validation purely depends on simulation data, which has the linear structure as we assumed in the 

model. Validation on real bio-specimens are needed. 

New pathways may emerge to contribute to tissue-based data due to multiple reasons: (i) genomic 

mutations, (ii) epigenomic alteration, and (iii) abnormal conditions that may trigger unusual 

pathways. The reason that our cell-line based study missed a pathway is that it was not included 

in the master list. We will infer new pathways based on co-expression patterns among genes in the 

residual matrix. For a given set of such co-expressed genes in the residual matrix, we assess if they 

belong to one or a few missing pathways through bi-clustering analysis across all gene-expression 

data for each relevant cell type using cell line data first. We predict each maximal bi-cluster as a 

candidate pathway if it covers a substantial fraction of all the cell-line experimental conditions in 

the relevant gene-expression datasets under study and has sufficiently high statistical significance 

(both parameters to be determined), using our in-house and widely used bi-clustering tool QUBIC 

[222]. For each predicted new pathway (i.e., a cluster identified via bi-clustering analysis), we 

derive its signature using the procedure outlined in Preliminary Study. Then we check if some 
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residuals still have significant co-expression patterns, and continue the above till no such residuals 

left or no further improvements can be made. If it was the latter, we conclude that the missing 

pathways are not detectable using the cell-line data, and will conduct a similar bi-clustering 

analysis over tissue-based data under study. The main difference is that (1) only cell types that 

account for major proportions in the tissues may have their co-expressed genes detectable via 

tissue-based clustering; and (2) we need to predict which cell types each missing pathway may 

belong. For (1), only cancer cell or 1 - 2 cell types that are most strongly associated with cancer 

cells are considered, as discussed earlier. For (2), we assign each predicted pathway to cell types 

if the genes show the strongest correlation with other genes of the cell types. 

Conclusion 

Direct interpretation of tissue-based gene-expression data without sorting out the actual expression 

levels of each gene in each cell type could lead to incorrect results, particularly missing subtle but 

important changes and interplay among different cell types. Thus, we developed an algorithm for 

deconvolution of tissue-based gene-expression data to cell type-specific contributions for each 

gene.  The informational basis of our planned algorithm is: each cell type (a) expresses a unique 

set of genes; and (b) has a unique combination of expressed pathways, each of which defines a 

condition-independent covariance among the expression levels of its participating genes. The 

current formulation deconvolution method enables us to answer a lot of interesting cancer biology 

questions, which otherwise are not approachable. To name a few, do cancer tissues of the same 

type but different grades, going from un-differentiated to highly differentiated, tend to have the 

proportion of any specific cell type going up or down monotonically; Do such tissues tend to have 

the expression levels of specific pathways in a specific cell type going up or down monotonically; 

Do such tissues tend to have co-expression levels among specific pathways intracellularly going 
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up or down monotonically; Do such tissues tend to have co-expression levels among specific 

pathways across different cell types going up or down monotonically. All these questions can be 

answered straightforwardly once the deconvolution results are available.  
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Figures 

 

 

Figure 5.1: Predicted (x-axis) vs. actual (y-axis) proportions of cell types across 100 simulated 

mixtures. 
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Figure 5.2: The tissue specific expression profiles of breast cell components with different levels 

of abundances. The x-axis represents the true expression profiles of breast cells in tissues, while 

y-axis the deconvoluted profiles. 
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CHAPTER 6 

CONCLUSIONS 

In the past six years, my research has covered the following areas: (1) elucidation of key drivers 

of post-metastatic cancer evolution [223]; (2) modeling of complex behaviors of competing 

processes in cancer tissues [224]; (3) development and application of effective algorithms for de-

convoluting tissue-based gene-expression data to cell-type specific contributions [225]; (4) 

derivation of novel roles of elevated mRNA expressions and DNA methylation in cancer cell 

survival [226, 227]; and (5) development of a causal framework for assessing the functional roles 

played by somatic mutations in cancer development [228]. In addition, I have been involved in 

multiple projects as a contributing author, including (i) elucidation of functional roles of micro-

environmental stresses in cancer initiation and progression [31, 47, 229, 230]; (ii) 

characterizations of aberrations in different stages of cancer [231, 232]; (iii) cancer biomarker 

identification [233]; (iv) genomic mutation annotations in gastric cancer [234]; and (v) 

development of pipeline for RNA-Seq data processing [235, 236]. There have been two tracks 

for my research: one focused on development of quantitative techniques essential to solving 

general and challenging cancer biology questions; and one focused on addressing important 

cancer biology questions, through data mining and quantitative modeling. The advantage of this 

two-track approach includes: (i) having a good understanding about key cancer biology problems 

will guide me to focus on the most important tool development problems; and (ii) working 

directly on cancer biology problems will enable me to work directly with cancer biologists.  
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Three important biological questions are examined through data mining for my thesis projects. 

First of all, we discovered that: (1) a combination of basal metabolic rate and oxidative stress 

level in a tissue well explained the variations of lifetime risk of cancers of different types across 

different populations; and (2) somatic mutations may be predominantly selected to serve as 

facilitators rather than primary drivers of cancer formation. Secondly, we identified (1) a 

possible determinant for global DNA methylation in cancer cells, and (2) competitive 

relationship between DNA methylation and nucleotide synthesis for methyl resource, and 

competitive relationship between DNA methylation and intracellular oxidative stress for sulfur 

resource in cancer cells. Thirdly, we have identified that the altered O2 level in primary cancer 

sites vs. metastatic cancer sites represents a key stress that the newly migrated cancer cells must 

overcome and cholesterol is selected by the metastatic cancer cells as oxygen barrier, and the 

oxidation derivatives of which is a key driver for the explosive growth of post-metastatic 

cancers.  

A novel computational tool to enable the study of cancer microenvironment using tissue 

expresson data is developed. Our algorithm for de-convoluting tissue-based data to the cell-type 

specific contributions are based on the following information: (1) genes in each cell type are 

expressed in coordinated manners, specifically they are grouped into pathways whose genes are 

co-expressed; and (2) different cell types tend to have different sets of pathways activated.  
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