
Three Primality Tests and Maple Implementation

by

Renee M. Canfield

(Under the direction of Robert Rumely)

Abstract

This paper discusses three well known primality tests: the Solovay-Strassen probabilistic test, the

Miller test based on the ERH, and the AKS deterministic test. Details for the proofs of correctness

are given. In addition, Maple code has been written to implement the tests and to count the number

of steps executed for numbers of various sizes. Analysis of steps counted between the three tests is

given along with least squares fitting of the data.

Index words: Primality Test, Miller, Monte-Carlo, AKS, ERH



Three Primality Tests and Maple Implementation

by

Renee M. Canfield

B.S., Kent State University, 2006

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Arts

Athens, Georgia

2008



c© 2008

Renee M. Canfield

All Rights Reserved



Three Primality Tests and Maple Implementation

by

Renee M. Canfield

Approved:

Major Professor: Robert Rumely

Committee: Leonard Chastkofsky

Dino Lorenzini

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

May 2008



Table of Contents

Page

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 A Fast Monte-Carlo Test for Primality . . . . . . . . . . . . . . . . . . . . 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Error probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Running Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Riemann’s Hypothesis and Tests for Primality . . . . . . . . . . . . . . . . 9

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Outline of the Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Composite Numbers n satisfying λ′(n) ∤ n − 1 . . . . . . . . . . . . . . 11

3.5 Composite Numbers n satisfying λ′(n)|n − 1 . . . . . . . . . . . . . . . 13

3.6 Modification to the Miller Algorithm . . . . . . . . . . . . . . . . . 19

4 Primes is in P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 The Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Notation and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 The Algorithm and Proof of its Correctness . . . . . . . . . . . . 25

4.5 Running Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iv



v

5 Analysis of Maple Calculations . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Key to Thesis Calculations in Spreadsheets . . . . . . . . . . . . . 31

5.2 Observations from Maple Data . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Least Squares Fitting to Data . . . . . . . . . . . . . . . . . . . . . . 34

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Appendix

A Maple Procedures for the Three Primality Tests . . . . . . . . . . . . . . 40

A.1 Monte-Carlo test by Solovay and Strassen . . . . . . . . . . . . . . 40

A.2 Modified Gary Miller test . . . . . . . . . . . . . . . . . . . . . . . . 43

A.3 AKS Algorithm by Agrawal, Kayal and Saxena . . . . . . . . . . . 46

B Maple Procedures used as Subroutines in Primality Tests . . . . . . . . . 49

B.1 Powering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.2 Powering Algorithm with no Modulus . . . . . . . . . . . . . . . . . 49

B.3 Powering Algorithm for Polynomials using powmod . . . . . . . . 50

B.4 Greatest Common Divisor . . . . . . . . . . . . . . . . . . . . . . . . . 51

B.5 Jacobi symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

C Maple Calculations with Three Primality Tests . . . . . . . . . . . . . . . 53

D Maple Least Squares Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

D.1 Maple code for least squares fitting . . . . . . . . . . . . . . . . . 63

D.2 Prime Numbers Least Squares Plots and Lines . . . . . . . . . . . . 63

D.3 Carmichael Numbers Least Squares Plots and Lines . . . . . . . . 65

D.4 Composite Numbers Least Squares Plots and Lines . . . . . . . . . 67

D.5 Perfect Power Numbers Least Squares Plots and Lines . . . . . . 69



List of Figures

2.1 Jacobi Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Definition of the Miller Algorithm for Primality Testing . . . . . . . . . . . . . . . . 11

3.2 Modification of the Miller Algorithm for Primality Testing . . . . . . . . . . . . . . . 20

4.1 AKS Algorithm for Primality Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

D.1 Monte-Carlo Least Squares with Primes . . . . . . . . . . . . . . . . . . . . . . . . . 63

D.2 Miller Least Squares with Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

D.3 AKS Least Squares with Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

D.4 Monte-Carlo composite2 outputted Least Squares with Carmichaels . . . . . . . . . 65

D.5 Monte-Carlo composite3 outputted Least Squares with Carmichaels . . . . . . . . . 65

D.6 Miller Least Squares with Carmichaels . . . . . . . . . . . . . . . . . . . . . . . . . . 66

D.7 AKS Least Squares with Carmichaels . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

D.8 Monte-Carlo Least Squares with Composites . . . . . . . . . . . . . . . . . . . . . . 67

D.9 Miller Least Squares with Composites . . . . . . . . . . . . . . . . . . . . . . . . . . 67

D.10 AKS Least Squares with Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

D.11 Monte-Carlo composite1 outputted Least Squares with Perfect Powers . . . . . . . . 69

D.12 Monte-Carlo composite2 outputted Least Squares with Perfect Powers . . . . . . . . 69

D.13 Miller Least Squares with Perfect Powers . . . . . . . . . . . . . . . . . . . . . . . . 70

D.14 AKS Least Squares with Perfect Powers . . . . . . . . . . . . . . . . . . . . . . . . . 70

vi



List of Tables

5.1 Exponent A Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Coefficient B Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

C.1 Prime Number Calculations I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C.2 Prime Number Calculations II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

C.3 Prime Number Calculations III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

C.4 Carmichael Number Calculations I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

C.5 Carmichael Number Calculations II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

C.6 Carmichael Number Calculations III . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

C.7 Composite Number Calculations I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

C.8 Composite Number Calculations II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

C.9 Perfect Power Number Calculations I . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

C.10 Perfect Power Number Calculations II . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vii



Chapter 1

Introduction

The interest in primality testing has grown rapidly in the past two decades. This is due largely to the

introduction of public-key cryptography which is used for encryption of electronic correspondence.

The security of this type of cyrptography relies on the difficulty involved in factoring very large

numbers which in turn requires knowledge of whether these large numbers are prime or composite

to begin with.

There are two types of primality tests: deterministic and probabilistic. Deterministic tests

determine with absolute certainty whether a number is prime while the latter can possibly identify

a composite number as prime, but not vice versa. If a number passes a probabilistic primality test, it

is only referred to as probably prime. If it is actually composite, then it is said to be a pseudoprime.

The most common pseudoprime is a Fermat pseudoprime which satisfies Fermat’s Little Theorem.

The search for a good primality test may very well be one of the oldest issues in

mathematics. One of the simplest and well known is the Seive of Eratosthenes. Eratosthenes,

a Greek mathematician who lived circa 200 B.C., developed a primality test based on the fact that

if a number n is composite, then all of its factors must be ≤ √
n. First make a list of all integers

2, 3, . . . ,m where m ≤ √
n. Then circle 2 and cross off all the multiples of two on the list. Then

circle 3 and cross off its multiples. Continue this process, each time advancing to the least integer

that is not crossed off, circling that integer, and crossing off its multiples. Then test to see if any

of the circled numbers divide n. If the list of circled numbers is exhausted and no divisor is found,

then n must be prime. This algorithm is fairly straightforward and easy to implement, but is by

no means efficient. If we were to use it on a number with only 20 digits, we would need to first find

all the primes up to 1010,which is about 450 million numbers. At the rate of finding one prime per

second, we would be working for a little over 14 years, even before dividing them into our 20 digit

number (McGregor-Dorsey [8]).
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A property that almost gives an efficient test is Fermat’s Little Theorem: for any prime p and

any a, p ∤ a, we have ap−1 ≡ 1 (mod p). So given a pair (a, n), we can check this equivalence using

repeated squaring. What keeps this from being a correct primality test is that many composite

numbers n called Carmichael numbers satisfy the Fermat congruence. Nevertheless, Fermat’s Little

Theorem still became the basis for many efficient primality tests.

The first test mentioned in this paper was developed by Solovay and Strassen in 1974. It is a

randomized (hence the name Monte-Carlo) polynomial-time algorithm using the property that for

a prime number n,
(

a
n

)

≡ a
n−1

2 (mod n) for every a where
(

a
n

)

is the Jacobi symbol.

The second test described in this paper was developed in 1975 by Gary Miller. It uses a property

based on Fermat’s Little Theorem to obtain a deterministic polynomial-time algorithm using the

Extended Riemann Hypothesis (ERH). Soon afterwards, his test was modified by Rabin to yield an

unconditional but randomized polynomial-time algorithm.

In 1983, Adleman, Pomerance and Rumely achieved a breakthrough by creating a deterministic

algorithm for primality that runs in (log n)O(log log log n) time, whereas all the previous tests of this

type ran in exponential time. And in 1986, Goldwasser and Kilian proposed a randomized algorithm

based on elliptic curves running in expected polynomial-time on almost all inputs. Adleman and

Huang modified their algorithm to obtain a similar algorithm that runs in expected polynomial-time

on all inputs.

The overall goal in finding a desirable primality test leads to an unconditional deterministic

polynomial-time algorithm, the final test discussed this paper. Agrawal, Kayal and Saxena, three

mathematicians from India, created an algorithm in 2002 that runs in O ˜ (log
21
2 n) time. Their

test relies on the fact that n is prime iff (X + a)n ≡ Xn + a (mod n). To keep this efficient, they

reduced the number of coefficients to compute on the left side of the congruence by reducing both

sides modulo a polynomial of the form Xr − 1 for an appropriately chosen r. Some composite n′s

may satisfy the equivalence for a few values of a and r. Thus they also showed for the well chosen

r, if the equivalence is satisfied for an appropriate number of a′s, then n must be a prime power.

Adding a binary search for prime powers, we conclude that n must be prime. Because the number

of a′s and the value of r are both bounded by a polynomial in log n, they gave us a deterministic

polynomial-time algorithm for testing primality.
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This paper is a synopsis of three different papers: A Fast Monte-Carlo Test for Primality by

Solovay and Strassen [12], Riemann’s Hypothesis and Tests for Primality by Gary Miller [9] and

Primes is in P by Agrawal, Kayal and Saxena [2]. In that order, I read each paper and filled in

missing details to the proofs presented in the papers.

Along with the work done reading the papers and understanding proofs, I began to implement

the primality tests in Maple. I wrote my own code following the written algorithms in the papers.

It was sometimes difficult to write nested loops because the details cannot be found in the papers

themselves. I studied multiple resources to get familiar with creating code. Once the code was

working, i.e. correctly declared whether a number was prime or composite, I started to break down

the code even further. I wrote multiple subroutines, sometimes borrowing suggestions from sources

like Dietzfelbinger [6]. To expand upon the analysis of the tests, I used Maple to count the steps

executed among various sizes and types of inputs for n. Breaking down subroutines added to the

accuracy of this step counting. Some computations were left to the Maple but most were broken

down. The code and explanations of step counting can be found in the Appendices A and B.

Overall, the Miller test was hardest to implement in Maple because of the nested loops. The

Monte-Carlo test was the easiest to code, and I added some additional code to try to catch

Carmichael numbers before the congruence Solovay and Strassen suggested as the basis of their

test. Other than that, I adhered to the algorithms given. A larger computer with more memory

would have been helpful for my calculations because even a number of size 107 sometimes took

up to 15 hours on my home computer in the AKS test. This is a note to anyone who might try

calculations on their own with my code.

As a student with no experience in statistics, I added some amateur least squares fitting analysis

to my data recorded to see if I could find any linear relationships. Much to my delight, the

relationship explained in Section 5.3 between the number tested for primality n and the steps

counted in the algorithms was there. It would be interesting to see if a quadratic relationship is

present or perhaps some other nonlinear model fit if someone were to continue my work. In order

to do this with my code, the problem with my AKS test of the numbers being too large in context

would have to be corrected. The analysis is ready to work with larger numbers in the Monte-Carlo

and Miller tests.



Chapter 2

A Fast Monte-Carlo Test for Primality

2.1 Introduction

Let n be an odd integer. Our first test, called a Monte-Carlo test because of the random sampling

of the variable a from the set {2, . . . , n − 1}, is based on the modular equivalence of the residue

e := a
n−1

2 (mod n) where −1 ≤ e ≤ n − 2 and the Jacobi symbol j := ( a
n) (mod n) for a and n

relatively prime (Solovay, Strassen [12]). Euler proved that if n is an odd prime and a ∈ Z then

e ≡ j (mod n). For a given a, there is ≥ 1/2 chance that a is a witness to the compositeness of

n and < 1/2 chance that n will falsely pass the test as a composite number posing as a prime.

So if the congruence holds for ⌊log2 n⌋ choices of a, then we can reasonably assume n is probably

prime. The chance of n falsely passing the test is < 1/n because the probability of the algorithm

failing is 2−k, where k is the number of a′s tested. If at any time we find a nontrivial gcd(a, n) or

e 6= j (mod n) then n is composite. This test was the easiest of all three tests to implement in

Maple mostly because of its comparative length. The only difficulty was making sure the random

a did not duplicate itself for the smaller n′s tested. This was remedied using the intersection and

union of sets. The cost of this procedure is O(log3 n) binary operations or 6 log n muliprecision

operations per value of a.

2.2 Notation.

In this paper we assume the length of n is log2 n and we denote this by log n omitting the subscript.

4
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Definition 2.2.1. We say an algorithm tests primality in O(f(n)) steps if there exists a

deterministic Turing machine (assuming a bit model for arithmetic) which implements this

algorithm, and this machine correctly indicates whether n is prime or composite in less than

C · f(n) steps, for some constant C.

We know the Jacobi symbol is a generalization of the Legendre symbol
(

a
p

)

for p ≥ 3 prime

and any integer a. This test by Solovay and Strassen uses the fact that a
p−1
2 ≡

(

a
p

)

(mod p). Euler

proved this in the lemma below by showing a
p−1
2 equals 1 if a is a quadratic residue modulo p and

-1 if a is a nonresidue modulo p matching the definition for the Legendre symbol
(

a
p

)

.

Lemma 2.2.2. (Wojciechowski [15]) Let p be an odd prime number and a an integer such that

gcd(a, p) = 1. Then:

a
p−1
2 =















1, if a is a quadratic residue modulo p,

−1, if a is a nonresidue modulo p.

(2.1)

Proof. Let x = a
p−1
2 . Then x2 ≡ ap−1 ≡ 1 (mod p) by Fermat’s Little Theorem, so x = ±1.

Suppose a is a quadratic residue so there exists a b such that b2 ≡ a (mod p). Then we have

x ≡ a
p−1
2 ≡ (b2)

p−1
2 ≡ bp−1 ≡ 1 (mod p)

again using Fermat’s Little Theorem at the end.

Now suppose a is a nonresidue modulo p. Since there are at most p−1
2 roots of the equivalence

z
p−1
2 (mod p) and there are p−1

2 quadratic residues modulo p (because p is an odd prime), the

only roots of the equivalence are the quadratic residues modulo p. Since a is not one of those, and

a
p−1
2 ≡ ±1 (mod p), x must be equal to -1 modulo p.

2.3 Error probability.

We now investigate the correctness of this algorithm (Solovay, Strassen [12]).

Lemma 2.3.1. If n is composite at most 1
2 of the numbers from 1 to n−1 will lead to the procedure

incorrectly concluding n is prime.
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Proof. If n is prime the procedure will reach a correct decision so assume n is composite. Let

G = {a + (n) : a ∈ Z & gcd(a, n) = 1 & a
n−1

2 ≡
(a

n

)

(mod n)}

be a subgroup of Z∗
n.

If G 6= Z∗
n then because the order of a subgroup divides the order of the group, the order of

G will be at most n−1
2 so at most 1

2 of the numbers from 1 to n − 1 will lead to the procedure

concluding n is prime.

Let us assume that the congruence holds and

a
n−1

2 ≡
(a

n

)

(mod n) (2.2)

for all a ∈ Z relatively prime to n. If n = pe where p is prime, then from (2.2) we get

ape−1 ≡ 1 (mod pe)

as long as a is not divisible by p. Because Z∗
pe is cyclic of order φ(n) = pe−1(p − 1) we get

pe−1(p − 1)|pe − 1

which implies e ≤ 1. This cannot happen because n is composite so n is not a power of a prime

and must look like n = rs with gcd(r, s) = 1. Let us first suppose that n is square free. Equation

(2.2) implies that

a
n−1

2 ≡ ±1 (mod n) (2.3)

for a such that gcd(a, n) = 1. We will prove that in fact

a
n−1

2 ≡ 1 (mod n) (2.4)

for a relatively prime to n.

Assume the opposite and there is an a such that a
n−1

2 ≡ −1 (mod n). Since gcd(r, s) = 1 the

Chinese remainder theorem says we can find a b such that b ≡ 1 (mod r) and b ≡ a (mod s).

Raising both sides of the congruences to the power n−1
2 we get

b
n−1

2 ≡ 1 (mod r), b
n−1

2 ≡ −1 (mod s).



7

This contradicts (2.3) again by the Chinese remainder theorem. Thus (2.4) must be true and because

we assumed (2.2), these two equations imply that

(a

n

)

≡ 1

for all a relatively prime to n. This is impossible because n is a square free composite.

Now suppose that n is not square free and say n = peq where p is an odd prime, e > 1, and q is

relatively prime to p. It follows from (2.2) that an−1 ≡ 1 (mod n) for all a such that gcd(a, n) = 1.

By the Chinese remainder theorem, an−1 ≡ 1 (mod pe) for all a such that gcd(a, p) = 1. Then these

two congruences imply that pe−1(p − 1)|n − 1 while e > 1 because the order of Z∗
pe is φ(pe). But,

p|n and pe−1(p− 1)|n− 1 cannot both be true. Thus, (2.2) is not true for all a ∈ Z relatively prime

to n so |G| ≤ n−1
2 (Solovay, Strassen [13]).

2.4 Running Time

For this test, we not only talk about bit operations for running time but also multiprecision

operations, meaning an arithmetic operation or a divison with remainder of two numbers < n2

(Knuth [7]). We first must compute gcd(a, n) using the Euclidean algorithm. To do this efficiently,

we write d := a and n in binary. From here, we run the Euclidean algorithm to find the gcd(d, n).

We want to first write n = q1d + d1, but instead of doing a division to find q1, d1 we perform

the subtraction n − 2c1d where multiplying d by 2c1 allows us to ‘line up’ our subtraction. We

continue to subtract 2cjd, j ≥ 1 and eventually we get d1 < d and q1 = 2c1 + 2c2 + . . . + 2cl for

some l. Once we have n = q1d + d1, our next step is to write d = q2d1 + d2. We repeat the previous

step until we find d2 < d1 and q2 = sum of powers of 2. Continuing this process which involves

subsequent subtractions, at each step we have dk = qk+2dk+1 + dk+2 where dk+2 < dk+1. The

process terminates when we get dk = 0 somewhere and then dk−1 = gcd(d, n). At each subtraction

we reduce the length of our dk by at least 1 so at most there are log n subtractions. And each

subtraction involves subtracting two numbers of length log n so overall this procedure takes time

O(log2 n). See (Knuth [7]) for an explanation of the gcd computation in 1.5 log n multiprecision

operations.
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Computing e can be done by 1.25 log n multiplications each followed by a reduction mod n

so altogether 2.25 log n multiprecision operations. On the other hand with bit operations, there

are potentially O(log n) steps in the powering algorithm to compute a(n−1)/2 (mod n). Each step

requires multiplying two numbers of length log n and dividing by n to get the remainder mod n.

Both multiplying and dividing can be done in O(log2 n) steps. Then accumulating the partial

products in the powering algorithm, there are O(log n) steps multiplying two numbers of O(log n)

which is O(log2 n) steps. Overall, the computation takes time O(log3 n).

We compute j using the law of reciprocity for Jacobi symbols which is about a hard as a

gcd computation (Dietzfelbinger [6]). Consider the following algorithm for the Jacobi symbol

computation:

Let a ∈ Z and n ≥ 3 and odd integer.

0 Let x := a mod n, y := n, s := 1.

1 While x ≥ 2 do
2 While x ≡ 0 mod 4 do x := x/4; end do;
3 If x ≡ 0 mod 2 then
4 If y mod 8 ∈ 3, 5 then s := −s; end if;
5 x := x/2;
6 end if;
7 If x = 1 then break; end if;
8 If x mod 4 ≡ y mod 4 ≡ 3 then s := −s; end if;
9 (x, y) := (y mod x, x);
10 end do;
11 end do;
12 return s · x;

Figure 2.1: Jacobi Symbol

Dividing a number x given in binary by 2 or by 4 amounts to dropping one or two trailing 0′s.

Determining the remainder of x and y modulo 4 or modulo 8 amounts to looking at the last two

or three bits of y. So the only costly operations we find in this algorithm are the divisions with

remainder in lines 0 and 9. This we know has running time O(log2n). This makes the computation

of the Jacobi symbol comparable to the Euclidean Algorithm (Dietzfelbinger [6]).

Thus, altogether we get a total number of 6 log n multiprecision operations or O(log3n) steps

in binary operations per a.



Chapter 3

Riemann’s Hypothesis and Tests for Primality

3.1 Introduction

The second primality test is due to Gary Miller. Unconditionally, it has been proved to run

in O(n.134) steps. Assuming the ERH(Extended Riemann Hypothesis), the test runs faster at

O(log4 n log log log n) steps, i.e. in polynomial time. The test relies on the existence of a small

quadratic nonresidue and is based on Fermat’s Little Theorem. We want to use the converse of this

famous theorem which can be difficult because a quadratic nonresidue may not be readily available

to use as a witness to the compositeness of n. Another problem we encounter is the existence of

Carmichael numbers which satisfy Fermat’s congruence but are actually composite numbers.

Programming the simplified version of the algorithm by Miller (Figure 3.1) was not too difficult.

But the largest loop in the modification of the algorithm by Miller (Figure 3.2) was particularly

hard to work with and was by far the hardest to implement in Maple of the primality tests. This

is due to the last few composite statements which are present to find nontrivial square roots of 1

modulo n. The goal of this section will be to prove the following two theorems (Miller [9]):

Theorem 3.1.1. There exists an algorithm which tests primality in O(n.134) steps.

Assuming the ERH leads us to the second theorem:

Theorem 3.1.2. (ERH) There exists an algorithm which tests primality in O(log4 n log log log n)

steps.

The difficulty in proving the two theorems is showing there exists a “small” quadratic

nonresidue. The proof of Theorem 3.1.1 uses a result of Burgess, which in turn depends upon

Weil’s proof of the Riemann Hypothesis over finite fields. The proof of Theorem 3.1.2 uses

Ankeny’s bound for the size of the first quadratic nonresidue, assuming the Extended Riemann

Hypothesis.

9
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3.2 Notation and Definitions

We assume that the n we test for primality is always odd because we can easily test for divisibility

by 2. We let p, q vary over odd primes. The exact power of 2 dividing n will be denoted by #2(n),

i.e. #2(n) = max{K : 2K |n}.

Definition 3.2.1. Let n = pv1
1 · · · pvm

m be the prime factorization of the odd number n. We then

use the following three functions throughout the rest of this chapter to prove the two theorems:

(i) φ(n) = pv1−1
1 (p1 − 1) · · · pvm−1

m (pm − 1) (Euler′s φ − function),

(ii) λ(n) = lcm{pv1−1
1 (p1 − 1), . . . , pvm−1

m (pm − 1)} (The Carmichael λ − function),

(iii) λ′(n) = lcm{p1 − 1, . . . , pm − 1}.

Definition 3.2.2. For p prime we can choose a generator of the cyclic group Z∗
p, say b. Then for

a 6= 0 mod p we define the index of a mod p to be indp(a) = min{m : bm ≡ a (mod p)}, noting

this value is dependent upon our generator. We also say a is a qth residue mod p if there exists b

with bq ≡ a (mod p).

3.3 Outline of the Proofs

Recall that Fermat proved for n = p, a prime, and gcd(a, p) = 1, the following congruence holds:

ap−1 ≡ 1 (mod p).

If we could find an a, 1 < a < n, so an−1 6= 1 (mod n), then n would have to be composite. As

described in the introduction, such an a need not exist (because of the existence of Carmichael

numbers), and even if such an a exists it may be very large. We remedy this using the definitions

in (3.2.1).

Theorem 3.3.1. (Carmichael [5]) For a given integer n, Fermat’s Congruence an−1 ≡ 1 mod n

holds for all a with gcd(a, n) = 1 if and only if λ(n)|n − 1.

For example, the composite number 561 = 3 · 11 · 17 meets the conditions of Theorem (3.3.1)

because λ(n) = lcm{2, 10, 16} = 80|560. Then the gcd(a, 561) = 1 implies a560 ≡ 1 (mod 561) for
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all a ∈ N coprime to 561. In order to find a rigorous primality test, we will need to test a stronger

condition than Fermat’s congruence. If n is composite, we want to quickly find a witness for its

compositeness. Instead of using Theorem (3.3.1) we are going to group composite numbers into

two sets according to whether λ′(n) ∤ n − 1 or λ′(n)|n − 1 (Miller [9]).

Let f be a computable function on the natural numbers. For input n > 1:

(1) Check if n is a perfect power, i.e. n = ms where s ≥ 2.
If n is a perfect power, output “composite” and halt.

(2) Carry out steps (i)-(iii) for each a ≤ f(n).
If at any stage (i),(ii), or (iii) holds output “composite” and halt:

(i) a|n,
(ii) an−1 6= 1 mod n,

(iii) gcd((a
n−1

2k mod n) − 1, n) 6= 1, n for some k, 1 ≤ k ≤ #2(n − 1).

(3) Output ”prime” and halt.

Figure 3.1: Definition of the Miller Algorithm for Primality Testing

Note. Miller’s algorithm in Figure 3.1 is a simplified version of the algorithm needed for Theorem

(3.1.2). This version gives an algorithm for testing primality in O(log5 n log2(log n)) steps assuming

ERH. Before proving the Theorems (3.1.1) and (3.1.2) we develop the theory needed to define f

and show there is an a ≤ f(n) which works.

3.4 Composite Numbers n satisfying λ′(n) ∤ n − 1

Lemma 3.4.1. If λ′(n) ∤ n − 1, then there exist primes p, q such that:

(1) p|n, p − 1 ∤ n − 1, qm|p − 1, qm ∤ n − 1 for some integer m ≥ 1;

(2) if a is any qth nonresidue mod p then an−1 6= 1 mod n.

Proof. Let q1, . . . , qm be the distinct prime divisors of n. Since λ′(n) = lcm{q1−1, . . . , qm−1} ∤ n−1

by assumption, we must have qi − 1 ∤ n − 1 for some i. Set p = qi, giving p|n and p − 1 ∤ n − 1 as
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in (1). Since p − 1 ∤ n − 1, there exists a prime q and an integer m ≥ 1 such that qm|p − 1 and

qm ∤ n − 1. This proves condition (1).

Suppose condition (2) is false and an−1 ≡ 1 (mod n). Let p be as above. Since p|n,

an−1 ≡ 1 (mod p). (3.1)

Let b be a generator mod p; then by (3.1) we have b(indp(a))(n−1) ≡ 1 (mod p). Since

bm ≡ 1 (mod p) implies p − 1|m we have

p − 1|(indp(a))(n − 1). (3.2)

Now a is a qth nonresidue mod p, so q ∤ indp(a). Thus

q ∤ indp(a) and qm|p − 1. (3.3)

Applying (3.3) to (3.2) gives qm|n − 1, which is a contradiction to condition (1).

Definition 3.4.2. Given a prime p and a prime q such that q ∤ p − 1, let N(p, q) be the least a

such that a is a qth nonresidue modulo p. Necessarily N(p, q) is prime.

Proof. Suppose a = N(p, q) is not prime and factors as a = p1 · · · pr. Then if each of the pi, 1 ≤ i ≤ r

are qth residues mod p with bq
i ≡ pi mod p then (bi · · · br)

q ≡ (p1 · · · pr) ≡ a mod p so n is also a

qth residue modulo p. Taking the contrapositive, the fact that each pi < a means that if a is a qth

nonresidue modulo p, then there must be some prime factor pj, 1 ≤ j ≤ r such that pj is a qth

nonresidue modulo p which is smaller than a. So N(p, q) must be prime.

Theorem 3.4.3. (Ankeny [3])(ERH) N(p, q) = O(log2 p).

Using Ankeny’s Theorem (3.4.3) and Lemma (3.4.1) we know that if λ′(n) ∤ n − 1 then there

exists an a ≤ O(log2 n) such that an−1 6= 1 (mod n).
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3.5 Composite Numbers n satisfying λ′(n)|n − 1

Definition 3.5.1. (Miller [9]) Let q1, . . . , qm be the distinct prime divisors of n. By the definition

of λ′(n) we know that #2(λ
′(n)) = max(#2(q1 − 1), . . . ,#2(qm − 1)). We classify n as “Type A”

or “Type B” according to the following conditions:

Type A : if for some 1 ≤ j ≤ m, #2(λ
′(n)) > #2(qj − 1),

Type B : if #2(λ
′(n)) = #2(q1 − 1) = · · · = #2(qm − 1).

To motivate the next few lemmas, consider a composite number n = pq, where p, q are primes,

and suppose we have a number m so

m ≡ 1 mod q and m ≡ −1 mod p. (3.4)

The first congruence implies q|m−1 and the second m 6= 1 (mod n). This gives us gcd(m−1, n) = q

so if we could compute this m in (3.4) efficiently, we would quickly know a divisor of n. The next

three lemmas develop a strategy to finding such an m.

Lemma 3.5.2. Let n be an odd composite number of type A, and let the primes p, q be such that p|n

and q|n, with #2(λ
′(n)) = #2(p−1) > #2(q−1). Assume further that 0 < a < n satisfies

(

a
p

)

= −1,

where
(

a
p

)

is the Jacobi symbol. Then either a has a nontrivial GCD with n or (a
λ′(n)

2 mod n) − 1

has a nontrivial GCD with n.

Proof. Suppose a has a trivial GCD with n. Because 1 < a < n we must have gcd(a, n) = 1. Since

q − 1|λ′(n) and #2(q − 1) < #2(λ
′(n)), we know q − 1|

(

λ′(n)
2

)

. Thus,

a
λ′(n)

2 ≡ 1 mod q (3.5)

by Fermat’s Little Theorem.

Since p − 1|λ′(n), again by Fermat we have (a
λ′(n)

2 )2 ≡ 1 mod p so a
λ′(n)

2 ≡ ±1 mod p.

Suppose a
λ′(n)

2 ≡ 1 mod p. Then p − 1|(indpa)(λ′(n)
2 ) which implies that indpa is even because

#2(λ
′(n)) = #2(p − 1). However, if

(

a
p

)

= −1 and g is a generator of Z∗
p with gk ≡ a mod p, then

considering Jacobi symbols we get
(

a
p

)

=
(

gk

p

)

=
(

g
p

)k
= (−1)k. Note

(

g
p

)

= −1 or otherwise all

of {1, . . . , p − 1} would be quadratic residues mod p when only half of them are. This argument
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implies indpa is odd. This is an obvious contradiction so it must be true that

a
λ′(n)

2 ≡ −1 mod p. (3.6)

Combining (3.5) and (3.6) we get gcd((a
λ′(n)

2 mod n)−1, n) 6= 1, n, so we must have a nontrivial

divisor of n.

Lemma 3.5.3. If p|n, λ′(n)|m and k = #2

[

m
λ′(n)

]

+ 1, then a
λ′(n)

2 ≡ a
m

2k mod p.

Proof. Assuming aλ′(n) ≡ 1 mod p, we have a
λ′(n)

2 ≡ ±1 mod p. Consider the two cases separately:

1. If a
λ′(n)

2 ≡ 1 mod p, then λ′(n)|m implies λ′(n) · c = m for some c. Then

m

2k
=

λ′(n) · c
2k

=
λ′(n) · c

2
#2

[

m

λ′(n)

]

+1
=

λ′(n) · c

2 · 2#2

[

m

λ′(n)

]

so
(

λ′(n)
2

)

|
(

m
2k

)

giving us a
m

2k ≡ 1 mod p.

2. If instead a
λ′(n)

2 ≡ −1 mod p note that:

a
m

2k ≡ (a
λ′(n)

2 )
m

λ′(n)2k−1 ≡ (−1)
m

λ′(n)2k−1 mod p.

Since k − 1 = #2

[

m
λ′(n)

]

, m
λ′(n)2k−1 is odd. Hence, a

m

2k ≡ −1 ≡ a
λ′(n)

2 mod p.

From Lemmas (3.5.2) and (3.5.3) we see that if n is a type A composite number, λ′(n)|n − 1

and a = N(p, 2), then either a or gcd((a
n−1

2 mod n) − 1, n) is a nontrivial divisor of n. For type B

composite numbers we need more information.

Lemma 3.5.4. Let n be an odd composite number with at least two distinct prime divisors, say p

and q. Further suppose n is type B and 1 < a < n satisfies
(

a
pq

)

= −1, where
(

a
pq

)

is the Jacobi

symbol. Then, either a has a nontrivial GCD with n or (a
λ′(n)

2 mod n) − 1 has a nontrivial GCD

with n.

Proof. As in the proof of Lemma (3.5.2) we assume that a has a trivial GCD with n, thus

gcd(a, n) = 1. WLOG, assume
(

a
p

)

= −1 and
(

a
q

)

= 1. Using arguments similar to those in

(3.5.2), we can show a
λ′(n)

2 ≡ −1 mod p and a
λ′(n)

2 ≡ 1 mod q. The rest of the argument follows

from the proof of Lemma 3.5.2.
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Definition 3.5.5. Let p and q be distinct primes. Define N(pq) to be the least a for which
(

a
pq

)

6= 1,

where
(

a
pq

)

is the Jacobi symbol. Again N(pq) is prime.

Theorem 3.5.6. (Ankeny [3])(ERH) N(pq) = O(log2(pq)).

Proof of Theorem 3.1.2. (Miller [9]) Here we refer to the simplified version of the algorithm by

Miller in Figure 3.1. By Ankeny’s Theorems (3.4.3) and (3.5.6) which are dependent upon the ERH,

there is a number c ≥ 1 such that for all pairs of distinct primes p, q

N(p, q) ≤ c(log2 p) and N(pq) ≤ c(log2(pq)).

Consider Af where f(n) = c(log2 n).

Analysis of Running Time of the Miller algorithm in Figure 3.1 :

(1) The algorithm first checks to see if n is a perfect power. If n = bk, then the least b could

be is 2 so the biggest k occurs when b = 2. Then k ≤ ⌊log n⌋ ∼= log n. Thus there are O(log n)

exponents to consider. For each of these exponents s = 1, 2, . . . , ⌊log(n)⌋, we do a binary search to

find if there is a base b for which bs = n. There will be log n steps in each such search. To compute

bs we use repeated squaring and multiply two binary numbers of s ≤ log n digits which can be

performed in O(log2 n) steps. Thus, this first step takes O(log4 n) steps.

(2) The algorithm next checks (i),(ii), and (iii) for f(n) different values of a.

Check(i) involves division of two numbers of binary length O(log n). This division can be carried

out by a sequence of shifts and binary subtractions. As explained in the running time of the gcd in

Chapter 2 there are at most O(log n) shifts and O(log n) subtractions of bits for each digit in the

quotient. At the end we compare the remainder with 0 to see if they are equal or not. Overall, this

check takes O(log2 n) steps.

Check(ii) involves verifying Fermat’s Congruence. There are potentially O(log n) steps in the

powering algorithm to compute an−1 (mod n). Each step requires multiplying two numbers of



16

length log n and dividing by n to get the remainder mod n. Both multiplying and dividing can be

done in O(log2 n) steps and this procedure we denote M(|n|) where |n| = log n. Then accumulating

the partial products in the powering algorithm, there are O(log n) steps multiplying two numbers

of O(log n) which is again M(|n|). Comparing with 1 mod n takes merely O(log n) time. Thus, in

all the check takes O(log n · M(|n|)) steps.

Check(iii) again uses the powering algorithm to see if we can find a number which has a

nontrivial gcd with n, by computing (a
n−1

2k mod n)− 1 for some k such that 1 ≤ k ≤ #2(n− 1). In

particular k ≤ log n. It is necessary to do the computation for at most log n different values of k.

As in check (ii) we know the computation of a
n−1

2k mod n takes O(log n ·M(|n|)) steps. Subtracting

1 from this value adds a negligible O(log n).

All that remains is the computation of the greatest common divisor. Overall this procedure takes

time O(log2 n) as described in Chapter 2. So far, we have O((((log n) ·M(|n|))+ (log2 n)) · (log n)).

Now because multiplication takes at least log n steps, the check takes at most O((log2 n) · M(|n|))

steps.

So the Miller algorithm in Figure 3.1 runs in O((log4 n) · M(|n|)) steps (assuming the ERH)

because check (iii) dominates the running time of this algorithm and we must perform the step 2(iii)

in the algorithm for potentially f(n) = O(log2 n) number of a′s. If we use the Schonhage-Strassen

algorithm ([11]) for multiplying binary numbers, M(|n|) = O(log n log log n log log log n) so we

get O(log5 n log log n log log log n) steps.

Correctness of the Miller algorithm:

If n is prime, then Miller algorithm will declare n is prime, so we only need to show that it

recognizes composite n. If n is composite, then one of the following three conditions holds:

(1) n is a prime power,

(2) λ′(n) ∤ n − 1,

(3) λ′(n)|n − 1 and n is not a prime power.



17

Case 1. If n is a prime power, then it is clearly a perfect power and the algorithm in Figure 3.1

will indicate n is composite in step 1 of the algorithm.

Case 2. If λ′(n) ∤ n−1, then by Lemma 3.4.1 there exist primes p and q such that if a = N(p, q),

then an−1 6= 1 mod n. We only need to note that N(p, q) ≤ f(n), which follows by Theorem 3.4.3

and our choice of f .

Case 3. If λ′(n)|n − 1 and n is not a prime power:

(A) Suppose n is a type A composite number. Then by Lemmas 3.5.2 and 3.5.3 we can choose

p and k, (k ≤ #2(n−1)) such that if a = N(p, 2) then either a|n or gcd((a
n−1

2k mod n)−1, n) 6= 1, n.

Since N(p, q) ≤ f(n), n will be declared composite by either step 2(i) or step 2(ii).

(B) On the other hand, suppose n is a type B composite number. Then by Lemmas 3.5.4

and 3.5.3 and n not being a perfect power, we can choose p, q, and k ≥ #2(n − 1) such that if

a = N(pq) then either a|n or gcd((a
n−1

2k mod n) − 1, n) 6= 1, n. Since N(pq) ≤ f(n) by Theorem

3.5.6, the algorithm will indicate n is composite.

In order to prove Theorem 3.1.1 we use the following result due to Burgess:

Theorem 3.5.7. (Burgess [4])

N(p, q) = O(p
1

4
√

e
+ǫ

) for any ǫ > 0,

N(pq) = O((pq)
1

4
√

e
+ǫ

) for any ǫ > 0.

Proof of Theorem 3.1.1. (Miller [9]) Put l = 4(2.71)
1
2 < 4

√
e, noting that l ∼= 6.58483. By the

above theorem, we can choose a number c ≥ 1 such that for all pairs of distinct primes p, q,

N(p, q) ≤ c · p 1
l and N(pq) ≤ c · (pq)

1
l .

Consider the simplified version of the Miller algorithm, again from Figure 3.1, where

f(n) = ⌈cn 1
l+1 ⌉ ≤ ⌈cn.133⌉. We use l + 1 in the exponent’s denominator because we want to

prove our algorithm tests primality in O(n.134) steps and 1
l > .134 whereas 1

l+1 < .134. Using the

size of f(n) and looking back at the proof of Theorem 3.1.2, we see that the Miller algorithm runs

in O(n.133 · log n log log n log log log n) steps. We can absorb everything but the n.133 into n.001 by
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increasing the implied constant so we indeed have this algorithm running in O(n.134) steps. Hence

we only need to show that it tests primality.

As before, if n is prime, the algorithm declares it prime. So we assume n is composite. Then n

must fit into one of the following three cases:

Case 1. n is a prime power.

This case follows, as it did in the proof of Theorem 3.1.2, by step 1 of the algorithm.

Case 2. n has a divisor ≤ f(n).

This case was also explored in the previous proof and n is declared composite in step 2(i) of the

algorithm.

Case 3. λ′(n) ∤ n − 1 and n has no divisor ≤ f(n).

By Lemma 3.4.1 there are primes p, q so that if a = N(p, q) then an−1 6= 1 mod n so we just need

to make sure that a = N(p, q) ≤ f(n) and that a was indeed tested in step 2. We have

a ≤ ⌈cp 1
l ⌉ (3.7)

from the theorem above involving the size of N(p, q). If n = p · a were true for some a and p with

p > n
f(n) , then n

a > n
f(n) , hence a ≤ f(n). Thus there is an a with 1 < a ≤ f(n) for which a|n which

has been ruled out by Step 2(i) of the algorithm. It follows that for each prime dividing n, we have

p ≤ n

f(n)
, i.e., p ≤ ⌈

(

1

c

)

n
l

l+1 ⌉. (3.8)

Substituting (3.8) into (3.7), we have

a ≤ ⌈n 1
l+1 ⌉ ≤ f(n), since c ≥ 1.

(Subcase 3A) Suppose n is a type A composite number. As in Case 3A of the proof of

Theorem 3.1.2, it is necessary to show a = N(p, 2) ≤ f(n) where p|n. Because equations (3.7) and

(3.8) hold, we get the result a ≤ f(n) by the work above.
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(Subcase 3B) Assume n is a type B composite number. Since n is not a prime power it

has at least two distinct prime divisors, say p, q. Again, we must show that N(pq) ≤ f(n) which

follows if we can show pq ≤ n
f(n) .

Claim 3.5.8. (Carmichael [5]) n 6= pq.

Proof. Suppose n = pq where p < q. Then pq − 1 = ((p− 1) + 1)((q − 1) + 1)− 1 = (p− 1)(q − 1) +

(q − 1) + (p − 1). And q − 1|pq − 1 since λ′(n)|n − 1. This implies that q − 1|p − 1. Hence q ≤ p

must be true contradicting p < q.

Thus, n = pqr where r 6= 1. Since r|n, we have r ≥ f(n) because we have already tested whether

a|n for all a ≤ f(n). Hence pq = n
r ≤ n

f(n) and we have

N(pq) ≤ c(pq)
1
l ≤ c

(

n

f(n)

)
1
l

= c

(

n

⌈cn 1
l+1 ⌉

)
1
l

=
(

n
l

l+1

)
1
l

= n
1

l+1 = f(n).

3.6 Modification to the Miller Algorithm

In Figure 3.2, a modified version of the Miller algorithm is given. It speeds up the process by only

testing prime numbers ≤ f(n) instead of all numbers ≤ f(n) in step 2. Why is this correct? In step

2(i) if a|n, then for some prime dividing a, we also have p|n. If we find that an−1 6= 1 mod n in

step 2(ii), the Chinese remainder theorem proves there must be some p|a such that pn−1 6= 1 mod n.

Lastly in step 2(iii), we see that if we find a nontrivial divisor of n, then for some prime q , we

have q|n and q|a
n−1

2k − 1. Recall that Lemma (3.5.2) says if n is type A and pq|n, where

#2(p − 1) > #2(q − 1), then if 0 < a < n is such that
(

a
p

)

= −1, (where
(

a
p

)

is the Jacobi

symbol), either gcd(a, n) 6= 1, n or gcd((a
λ′(n)

2 mod n) − 1, n) 6= 1, n. Suppose a(≤ f(n)) factors

as a = p1 · · · pm where pj are prime for j ∈ {1, . . . ,m}. Then
(

a
p

)

=
(

p1

p

)

· · ·
(

pm

p

)

= −1 implies



20

Amend the Miller algorithm as follows:

(1) If n is a perfect power, output “composite” and halt.

(2) Compute p1, . . . , pm where pi is the ith prime number and m is so that
pm ≤ f(n) < pm+1. Compute Q,S so that n − 1 = Q2S and Q is odd.
Let i = 1 and proceed to (ii). Denote pi by a throughout.

(i) If i < m set i to i + 1. If i = m then output “prime” and halt.
(ii) If a|n then output “composite” and halt.

Compute aQ mod n, aQ2 mod n, . . . , aQ2S
= an−1 mod n.

(iii) If aQ2S 6= 1 mod n then output “composite” and halt.
(iv) If aQ ≡ 1 mod n go to (i).

Set J = max(J : aQ2J 6= 1 mod n).

(v) If aQ2J ≡ −1 mod n go to (i).
(vi) Output “composite” and halt.

Figure 3.2: Modification of the Miller Algorithm for Primality Testing

(

pi

p

)

= −1 for some i, 1 ≤ i ≤ m. Thus, we can use this pi instead of a.

If n is instead of type B, then Lemma (3.5.4) says for distinct prime divisors p, q with

#2(p − 1) = #2(q − 1) and for 0 < a < n, supposing
(

a
pq

)

= −1, then either gcd(a, n) 6= 1, n or

gcd((a
λ′(n)

2 mod n) − 1, n) 6= 1, n. Again we assume a factors into primes as a = p1 · · · pm. Then
(

a
pq

)

=
(

p1

pq

)

· · ·
(

pm

pq

)

= −1 implies
(

pi

pq

)

= −1 for some i, 1 ≤ i ≤ m as long as pi 6= p, q. Then we

can use this pi instead of a. If pi = p or pi = q then we have found a divisor of n by dividing pi into n.

Since the number of primes ≤ f(n) is O
(

f(n)
logf(n)

)

by the prime number theorem, we get an

upper bound of O(log5 n log log log n) steps for Theorem 3.1.2.

As before in the proof of Theorem 3.1.2, which used the simplified version of the Miller

algorithm in Figure 3.1, the running time of the modified Miller algorithm in Figure 3.2 is
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dominated by step 2. Assume f is as before and now the modified algorithm computes the following:

(1) the first m primes, which takes O((f(n))3) by the näıve sieve method. This method can

be executed with an array A [2 . . . f(n)], initializing each value A[k] = 1. Then we can use a loop

from k = 2 to k =
√

f(n). In each run of the loop we let i = 2k and have an inside loop: while

i ≤ f(n) do A[i] := 0, i := i + k. The first loop is näıvely bounded by
√

f(n) binary steps and the

inside loop is näıvely bounded by f(n) steps, so we get O((f(n))3) steps.

(2) an−1 (mod n) where a varies over the first m primes. We do this by repeated squaring

beginning with aQ (mod n). There are log n squarings and each multiplication takes O(M |n|) steps

as discussed before. Thus because there are O
(

f(n)
log(f(n))

)

primes ≤ f(n) the running time of the

modified Miller algorithm is O(m log n M(|n|)) = O(log4 n log log log n).

To show the modified Miller algorithm tests primality we only need to reconsider Case 3:

Case 3. λ′(n)|n − 1 and n is not a prime power.

(A) Suppose n is a type A composite number with #2(λ
′(n)) = #2(p − 1) > #2(q − 1)

and p, q|n. Let a = N(p, 2) so a is prime. We need to show either step (ii),(iii), or (vi) outputs

“composite” for this particular a in this modification to the Miller algorithm. Suppose a ∤ n and

an−1 ≡ 1 mod n, i.e. our n has passed through the first two determinations of compositeness in

steps (ii) and (iii). Let us see in this case that the algorithm reaches step (vi).

Suppose aQ ≡ 1 mod n. Then aQ ≡ 1 mod p since p|n. Now p is odd and
(

a
p

)

= −1, where
(

a
p

)

is the Jacobi symbol, so we have

1 =

(

1

p

)

=

(

aQ

p

)

=

(

a

p

)Q

= (−1)Q

which implies that Q must be even. This is an obvious contradiction to Q being odd. Thus

aQ 6= 1 mod n so the modified Miller algorithm will reach step (v). By Lemmas (3.5.2) and

(3.5.3), we know there exists a k such that aQ2k ≡ 1 mod q and aQ2k ≡ −1 mod p. Suppose

aQ2J ≡ −1 mod n so aQ2J ≡ −1 mod p and mod q, where J is defined in the modified algorithm.

Then aQ2k ≡ aQ2J ≡ −1 mod p implies k = J . But we have aQ2k ≡ 1 mod q and aQ2J ≡ −1 mod q
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implies k > J on the other hand. This is a contradiction to the maximality of J so aQ2J 6= −1 mod n.

Thus the algorithm now reaches step (vi).

(B) Suppose n is a type B composite number. The proof follows the argument of Case A.



Chapter 4

Primes is in P

4.1 Introduction

In the third test, we look at an unconditional deterministic polynomial-time algorithm for primality

testing due to Agrawal, Kayal and Saxena. Given an odd integer n, we can determine if it is prime

based upon the fact that (X + a)n ≡ (Xn + a) (mod n) if and only if n is prime. Using this

congruence as a primality test is rather inefficient if we search for a′s that make this congruence

fail, because as n gets larger we must compute n coefficients on the left-hand side. The beauty

of this algorithm is that the authors found a way around this computation by instead computing

(X + a)n ≡ (Xn + a) (mod Xr − 1, n) for an appropriately chosen r. We then show it is sufficient

to test ⌊2√r · log n⌋ + 1 many a′s to conclude n is a prime power. Lastly, we show that n is not a

prime power so it must be prime. The only difficulty that I found in programming this algorithm

was finding the crucial r so the order of n modulo r is greater than 4 log2 n. To cut down on the

cost of this procedure we use repeated squaring to compute the left-hand side and the cost amounts

to O˜(log
21
2 n). This notation is defined in Section 4.3.

4.2 The Idea

This test is based on the following lemma which generalizes Fermat’s Little Theorem.

Lemma 4.2.1. (Agrawal, Kayal and Saxena [2]) Let a ∈ Z, n ∈ N, n ≥ 2, and gcd(a, n) = 1.

Then n is prime if and only if

(X + a)n ≡ (Xn + a) mod n.

Proof. For 0 < i < n, the coefficient of Xi in ((X + a)n − (Xn + a)) is
(n

i

)

an−i.

Suppose n is prime. Then the binomial coefficients are all divisible by n so
(n

i

)

≡ 0 (mod n) for

23
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1 ≤ i ≤ n − 1, while an ≡ a mod n by Fermat’s Little Theorem, and the congruence holds. Now

suppose n is composite and q is one prime factor where qk‖n. Note that the binomial coefficient
(n

q

)

= n!
q!(n−q)! = n(n−1)···(n−q+1)

1···q . We know qk‖n in the numerator but q is prime and does not

divide any of the other numbers in the numerator. Also q‖q! so the order of q in
(

n
q

)

is k − 1 and

thus qk ∤
(n

q

)

. Now the gcd(a, n) = 1 so gcd(a, q) = 1 and q ∤ an−q. Hence the coefficient of Xq is
(n

q

)

an−q 6= 0 (mod qk) and thus
(n

q

)

an−q 6= 0 (mod n). This means that ((X + a)n − (Xn + a)) 6= 0

in Zn.

4.3 Notation and Preliminaries

The Class P refers to all problems solvable in polynomial time, i.e. the class of sets accepted by

deterministic polynomial-time Turing machines. Thus, the title Primes is in P of the AKS paper

says we can determine primality using the AKS test in polynomial time. The Class NP refers to

all problems that are verifiable in polynomial time given a non-deterministic algorithm.

Zn is the ring of integers modulo n. Fp denotes the finite field with p elements, where p is a

prime. Remember that if p is prime, and h(X) is a polynomial of degree d and irreducible in Fp, then

Fp [X] /(h(X)) is a finite field of order pd. The notation f(X) = g(X) (mod h(X), n) represents

the equation f(X) = g(X) in the ring Zn [X] /(h(X)).

We will use the symbol O˜(t(n)) for O(t(n) · poly(log t(n))), where t(n) is any function on n.

As an example, O˜(logk n) = O(logk n · poly(log log n)) = O(logk+ε n) for any ε > 0. We continue

to use log for base 2 logarithm, and ln for natural logarithm.

Given r ∈ N, a ∈ Z with gcd(a, r) = 1, the the order of a modulo r is the smallest number k

such that ak ≡ 1 (mod r), denoted or(a). We let φ(r) denote Euler’s totient function and notice

that or(a)|φ(r) for any a, gcd(a, r) = 1.

Lemma 4.3.1. Let LCM(m) denote the lcm of the first m numbers. For m ≥ 7:

LCM(m) ≥ 2m.

See (Radhakrishnan, Telikepalli and Vinay [10]) for a proof.
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Input: integer n > 1.

1. If (n = ab for a ∈ N and b > 1), output COMPOSITE.
2. Find the smallest r such that or(n) > 4 log2 n.
3. If 1 < gcd(a, n) < n for some a ≤ r, output COMPOSITE.
4. If n ≤ r, output PRIME.
5. For a = 1 to ⌊2√r log n⌋ + 1 do

if ((X + a)n 6= Xn + a(modXr − 1, n)), output COMPOSITE.
6. Output PRIME.

Figure 4.1: AKS Algorithm for Primality Testing

4.4 The Algorithm and Proof of its Correctness

Theorem 4.4.1. The algorithm above returns PRIME if and only if n is prime.

In order to prove this theorem we need a sequence of lemmas; the first one is trivial.

Lemma 4.4.2. If n is prime, the algorithm returns PRIME.

Proof. If n is prime, then steps 1 and 3 can never return COMPOSITE. By Lemma 4.2.1, the for

loop cannot return COMPOSITE either. Thus the algorithm will determine n is PRIME in either

step 4 or 6.

The converse of Lemma 4.4.2 requires more work. If the algorithm returns PRIME in step 4

then n must be prime since step 3 would have otherwise found a nontrivial factor of n. So we only

need to consider the case when the algorithm declares n PRIME in step 6. We assume this from

now on.

The algorithm has two main steps, 2 and 5. We first prove the existence and bound the number

r in

(X + a)n ≡ (Xn + a) (mod Xr − 1, n). (4.1)

Lemma 4.4.3. (Tou, Alexander [14]) There exists an r ≤ ⌈16 log5 n⌉ such that or(n) > 4 log2 n

for n ≥ 2.
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Proof. Let r1, r2, . . . , rt be all the numbers such that ri ≤ ⌈16 log5 n⌉ and ori
(n) ≤ 4 log2 n. We

need to prove that {r1, r2, . . . , rt} 6= {1, 2, . . . , ⌈16 log5 n⌉}. For each ri, by assumption

nj ≡ 1 (mod ri), for some j ≤ 4 log2 n.

This implies that ri|nj − 1 for some j ≤ 4 log2 n. Then we have

ri|
⌊4 log2 n⌋
∏

j=1

(nj − 1) <

⌊4 log2 n⌋
∏

j=1

(nj)

= n{
∑⌊4 log2 n⌋

j=1 (j)}

= n{
⌊4 log2 n⌋(⌊4 log2 n⌋+1)

2
}

< n{
⌊4 log2 n⌋(⌊4 log2 n⌋+⌊4 log2 n⌋)

2
}

= n⌊4 log2 n⌋2

≤ n16 log4 n

= 216 log5 n (as n = 2log n).

Now suppose by contradiction that the r′is are all the numbers ≤ ⌈16 log5 n⌉,

i.e. r1 = 1, r2 = 2, . . . , rt = ⌈16 log5 n⌉. Then 1, 2, . . . , ⌈16 log5 n⌉ all divide a number strictly smaller

than 216 log5 n. But Lemma 4.3.1 says the least common multiple of the first ⌈16 log5 n⌉ numbers is

at least 2⌈16 log5 n⌉. This is a contradiction. Therefore, there exists a number r ≤ ⌈16 log5 n⌉ such

that or(n) > 4 log2 n.

Let us assume that n is a composite number and the algorithm outputs PRIME in step 6.

We will show this leads to a contradiction, thus proving the other direction of Theorem 4.4.1. Let

l = ⌊2√r log n⌋ + 1. Because n passes all the congruences in step 5, we know that

for a = 1, 2, . . . , l, (X + a)n ≡ Xn + a (mod Xr − 1, n). (4.2)

In the above identity we may replace n in the modulus by any divisor of n. Let p be one such

prime divisor. Then instead we have

for a = 1, 2, . . . , l, (X + a)n ≡ Xn + a (mod Xr − 1, p). (4.3)
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Since p is prime, we always have

for a = 1, 2, . . . , l, (X + a)p ≡ Xp + a (mod Xr − 1, p). (4.4)

In (4.3) and (4.4) the numbers n and p satisfy similar identities (Radhakrishnan, Telikepalli

and Vinay [10]). The AKS creators name these introspective numbers. To continue our proof of

correctness, we will show that introspective numbers are multiplicative.

Claim 4.4.4. (Agrawal,Kayal and Saxena [2]) Suppose

(X + a)m1 ≡ Xm1 + a (mod Xr − 1, p)

(X + a)m2 ≡ Xm2 + a (mod Xr − 1, p).

Then, (X + a)m1m2 ≡ Xm1m2 + a (mod Xr − 1, p).

Proof. (Radhakrishnan, Telikepalli and Vinay [10]) The second assumption says that

(X + a)m2 − (Xm2 + a) = (Xr − 1)g(X) (mod p), for some polynomial g(X). Substituting

Xm1 for X in this identity, we get

(Xm1 + a)m2 − (Xm1m2 + a) = (Xm1r − 1)g(Xm1 ) (mod p).

Since (Xr − 1)|(Xm1r − 1), this gives us

(Xm1 + a)m2 ≡ (Xm1m2 + a) (mod Xr − 1, p).

Using this and the first assumption in the claim, we obtain

(X + a)m1m2 ≡ (Xm1 + a)m2 ≡ (Xm1m2 + a) (mod Xr − 1, p).

Now starting with (4.3) and (4.4) and using the claim we just proved, we see that for each m

of the form pinj (i, j ≥ 0) we have

(X + a)m ≡ Xm + a (mod Xr − 1, p), for a = 1, 2, . . . , l.

(The case i, j = 0 corresponding to m = 1 is trivially true.)
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Consider the list L = (pinj : 0 ≤ i, j ≤ ⌊
√

t⌋) where t is the order of the subgroup G of Z∗
r,

generated by p and n taken modulo r. All the elements have size at most n2
√

t. Each element in L

taken modulo r lands in the subgroup G, but |L| = (⌊
√

t⌋ + 1)2 > t = |G|. So we must have two

numbers that are congruent modulo r; call them m1 = pi1nj1 and m2 = pi2nj2 = m1 + kr, where

we assume m1 < m2 and (i1, j1) 6= (i2, j2). From here on, we concentrate on these two numbers

congruent modulo r. Note we have (X+a)m2 ≡ Xm1+kr+a ≡ Xm1 +a ≡ (X+a)m1 (mod Xr−1, p)

since Xr ≡ 1 (mod Xr − 1). Thus,

for a = 1, 2, . . . , l, (X + a)m1 ≡ (X + a)m2 (mod Xr − 1, p). (4.5)

Claim 4.4.5. (Agrawal, Kayal and Saxena [2]) m1 = m2.

Assuming this claim, we see that pi1nj1 = pi2nj2. Since we assumed that (i1, j1) 6= (i2, j2) and

p is prime, n must be a power of p. That is, n = ps for some s. If s ≥ 2, the algorithm would

have output COMPOSITE in step 1 contradicting our assumption that it declared n to be PRIME.

Then s = 1 is the only option contradicting our other assumption that n is composite. Thus if the

algorithm outputs PRIME, then n is prime proving the algorithm is accurate. We now prove Claim

4.4.5.

Proof of Claim 4.4.5. (Radhakrishnan, Telikepalli and Vinay [10]) This proof uses the elementary

fact that in a field, a non-zero polynomial of degree d has at most d roots. Consider the polynomial

b(Z) = Zm1 −Zm2. If we can show b(Z) has more roots than its degree d = max{m1,m2} in some

field, then b(Z) ≡ 0 and thus m1 = m2.

Moving to a Field: To start, we must move from the ring Fp [X] /(Xr − 1) to a field. Let ω be a

primitive rth root of unity. By (4.5) we can write

for a = 1, 2, . . . , l, (ω + a)m1 = (ω + a)m2 (4.6)

in the field Fp(ω), making (ω + a) a root of b(Z). Note that if e1, e2 are roots of b(Z), then

b(e1e2) = (e1e2)
m1 − (e1e2)

m2 = em1
1 em1

2 − em2
1 em2

2 = 0 because em1
1 = em2

1 and em1
2 = em2

2 . So e1e2

is also a root. This implies that each element of the form
∏l

a=1(ω + a)αa , αa ≥ 0 is a root of b(Z)

as well.
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Here t = |G| ≤ r − 1 because G is a subgroup of Z∗
r. Put l′ := ⌊2

√
t log n⌋+ 1 ≤ l, and consider

the set

S = {
l′
∏

a=1

(ω + a)αa |αa ∈ {0, 1}}.

Each element of S is a root of b(Z). We claim that S has 2l′ elements, implying b(Z) has at least

2l′ roots in the field Fp(ω). If this is so, then since m1,m2 ≤ n2⌊
√

t⌋ while 2l′ > n2⌊
√

t⌋, b(Z) would

have more roots than its degree proving b(Z) = Zm1 − Zm2 ≡ 0 and m1 = m2.

Roots of b(Z): Each element in S is found by substituting ω for X in a polynomial of

the form
∏l′

a=1(X + a)αa ∈ Fp [X]. In step 3 of the algorithm, which our n is assumed to have

passed, we have seen n has no small divisors so neither does p. Thus l′ < t ≤ r − 1 < r < p so

each X + a, a = 1, . . . , l′ is distinct in Fp [X]. Since the elements of Fp [X] factor uniquely into

irreducible factors, we get different polynomials from different products. We want to show that

different products g(X) =
∏l′

a=1(X +a)αa yield different g(ω) =
∏l′

a=1(ω +a)αa in Fp(ω). By Claim

4.4.4, g(X)m = g(Xm) (mod Xr − 1, p) for each g(X) of the form above, and m = pinj. Hence

g(ω)m = g(ωm) in Fp(ω) for each such m.

If g1(X) and g2(X) have the specified form and g1(ω) = g2(ω), then g1(ω
m) = g2(ω

m). Thus,

each ωm (m = nipj , i, j ≥ 0) is a root of g1(X)−g2(X) in Fp [X]. The number of distinct values ωm

is the same as the number of distinct residues modulo r generated by nipj, because ω is a primitive

rth root of unity. This means that g1(X) − g2(X) has at least t roots in Fp(ω), while the degree of

each polynomial is at most l′. Because t ≥ or(n) > 4 log2 n, we have l′ < t, so g1(X) − g2(X) ≡ 0

must be true in Fp [X]. Thus, we get the distinct elements in Fp(ω) we were searching for upon

substituting ω for X. In summary, we have proved S has 2l′ distinct elements which are distinct

roots of b(Z) in Fp(ω). So b(Z) ≡ 0 and m1 = m2.

4.5 Running Time Analysis

(Agrawal, Kayal and Saxena [2]) To calculate the time complexity of this algorithm, we use the fact

that addition, multiplication, and division operations between two m bit numbers can be performed

in time O˜(m). These operations on two degree d polynomials with coefficients at most m bits can
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be done in time O˜(d ·m) steps. Recall that the symbol O˜(t(n)) stands for O(t(n) ·poly(log t(n))).

Here t(n) is any function on n and O(t(n)) means there exists a Turing machine which correctly

indicates whether n is prime or composite in less than C · t(n) steps, for some constant C.

Theorem 4.5.1. The asymptotic time complexity of the algorithm is O˜(log
21
2 n).

Proof. The first step in this algorithm determines whether or not n is a prime power. As in the

Miller running time analysis, there are O(log n) possible exponents to consider and log n steps in

each binary search for each exponent. To compute bs we use repeated squaring and multiply two

binary numbers of s ≤ log n digits which we said would be performed in O ˜ (log n) time. Thus,

step 1 of the algorithm takes O˜(log3 n) time.

In step 2, we look for the least number r for which or(n) > 4 log2 n. This is done by trying

successive values of r and testing if nk 6= 1 (mod r) for every k ≤ 4 log2 n. For a particular r, this

involves at most O(log2 n) multiplications modulo r and so will take time O ˜ (log2 n log r). By

Lemma 4.4.3, we know we only have to test O(log5 n) different r′s so the total time complexity for

step 2 is O˜(log7 n).

Step 3 involves the computation of greatest common divisors of r numbers. Each gcd

computation takes time O(log2 n) (as explained in Chapter 2) so altogether this step takes

time O(r log2 n) = O(log7 n). Step 4 only requires comparing two numbers of approximate size

log n so it takes time O(log n).

In step 5, we must verify ⌊2√r log n⌋ + 1 equations. Each equation requires O(log n)

multiplications of degree r polynomials with coefficients of size O(log n). So each equation is

verified in time O ˜ (r log2 n) steps by above. Thus, the time of step 5 is O ˜ (r
√

r log3 n) =

O ˜ (r
3
2 log3 n) = O ˜ (log

21
2 n). This time is dominant compared to the others so it becomes the

time complexity of the algorithm.



Chapter 5

Analysis of Maple Calculations

5.1 Key to Thesis Calculations in Spreadsheets

*c=composite

Monte-Carlo test:

c1= nontrivial gcd with n

c2= nontrivial square root of 1 mod n

c3= if e<>j mod n

Probably prime= n is probably prime after a reasonable number of a’s tested

Gary Miller test:

c1= n is a perfect power

c2= nontrivial divisor of n

c3= prime[a] fails Fermat test

c4= prime[a]^Q (mod n) gives a nontrivial square root of 1 mod n

c5= d is a nontrivial square root of 1 mod n

c6= prime[a]^(Q*2^(S-1)) is a nontrivial square root of 1 mod n

prime= after all primes have been tested in the while loop, n must be prime

AKS test:

c1= n is a perfect power

c2= nontrivial gcd with n

c3= nontrivial gcd with n

c4= (X+a)^n<>X^n+a mod n

prime1= if r>=n

prime2= the equality holds in c4 for all a from 1 to L

5.2 Observations from Maple Data

I recorded data from my Maple procedures in excel spreadsheets and they can be found in Appendix

C. There are multiple outputs and step counts for the Monte-Carlo test by Solovay and Strassen

due to the randomness of the selection of the number a. Four different types of numbers n were

tested: Prime, Carmichael, Composite and Perfect Power. So when I refer to composite below, it

31
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does not include Carmichael numbers or Perfect Powers unless indicated. The key to the outputs

are above for reference.

5.2.1 Monte-Carlo test by Solovay and Strassen

As the size of our number tested increased, we were less likely to find a nontrivial gcd with n because

the factors are larger and 2 . . . n−1 is a larger range of numbers from a[b] to be chosen from. When

we reach composite2 in this test, we are attempting to find Carmichael numbers because prime

numbers have no nontrivial square roots of 1. As our n gets larger though, it seemed to be less

likely that we would catch our Carmichael numbers here. But overall, most of our composite and

Carmichael numbers return composite2.

In this test, we have no specific output for a perfect power as we do in the other two tests. Our

perfect powers tested never outputted anything but composite1 or composite2, i.e. a nontrivial gcd

with n or a nontrivial square root of 1 respectively. For a k − digit perfect power, the size of the

steps taken to output composite2 is between (k − 1) · 102 and (k + 1) · 102.

All but one composite number strictly outputted composite2 in this test. This may be due

to the size of the factors because there are only two of them. The one number, 5287, which

output composite1 had a factor 17 which is comparably small. This test was efficient with most

computations finishing in less than one minute. The problem is, of course, that we can only conclude

our number is probably prime when we want to be sure it is. This leads us to the next test.

5.2.2 Modified Gary Miller test

Each composite number outputted composite3 because they failed the Fermat conguence, all with

the prime number 2 as the base a. This was expected because the prime factors of the composites are

all ≥ 17 so we do not quickly find a divisor. Also, Carmichaels falsely pass the Fermat congruence,

but ordinary composite numbers usually fail right away.

The number of steps taken by the prime numbers were significantly larger than that of the

composites because of the large nested loops at the end of the test. There is a smaller gap between

the steps executed for the primes and the Carmichael numbers, although the primes still dominate.
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Carmichael numbers never output composite3 because pseudoprimes pass the Fermat test. We

never even found a small divisor for these numbers because even though the prime factors are small

for small n, we find a nontrivial square root of 1 modulo n with base prime equal to 2 or 3. We

tested numbers up to size 1011 (12 digits) and surprisingly only 4 of the Carmichals had to pass to

the second prime 3 to discover a nontrivial square root of 1 modulo n. With this said, this code is

extremely efficient as all these results were found within seconds.

5.2.3 AKS test by Agrawal, Kayal and Saxena

Overall, this test had the most steps executed for our numbers tested. This is undoubtably due to

the large loop our input may enter to see if (X + a)n ≡ Xn + a (mod Xr − 1, n) for a = 1, . . . , L

where L was in the hundreds. Only among the Carmichael numbers did we see more steps taken in

the Miller test than AKS for some smaller values of n. The steps for perfect powers were only 10

less than that of the Miller test due to some additional initialization steps before the perfect power

loop.

Once I reached a number of size 109 (10 digits), I only have two results from my AKS test for

Carmichael numbers because of an error I was unable to fix. The error was: in (quo/poly) integer too

large in context. The test was hung up inside of the large loop mentioned in the above paragraph.

For the Carmichael numbers calculated, they always outputted composite2 with a nontrivial divisor

of n found less than or equal to the number r such that or(n) > log2 n and r ≤ ⌈log5 n⌉. So because

Carmichael numbers have at least 3 prime factors, they must be small enough so gcd(p, n) = p and

thus output composite2.

At about size 106 (7 digits), we can be confident our composite n will enter the large loop

in the AKS test. Because we had to stop testing n of size up to 108 we found that each of our

numbers entering this loop had a = 1 being a witness to compositenss and were quickly returned

as composite4.

For prime numbers n of the size we have tested, r ≥ n is unlikely so in order to declare n prime,

it must reach prime2 after the large loop. So AKS gives us the largest number of steps taken by our

prime numbers. Again, we ran into the problem of testing these numbers at about size 109 because

of the previous error.
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One last remark is that the loop involving the local variable b in the AKS test was

unnecessary. I only realized this after my results indicated none of my numbers output

composite3. I reviewed my code and noticed this was the same test used to output composite2.

This test becomes inefficient due to the large loop size at the end and the potential errors. We

accept a slower time here than the other two tests though because it is deterministic in polynomial

time. This is in contrast to the probabilistic Monte-Carlo test and the Miller test which relies on

the ERH to get the desirable polynomial running time.

5.3 Least Squares Fitting to Data

In addition to the observations of the data from the various tests, I also attempted to find a

relationship between the numbers tested for primality and the steps counted. I assumed there was

a relationship between the number of steps yi and a constant times a power of the size of our number

tested, log ni = xi. Then yi = B·xA
i so log yi = A(log xi)+(log B) or log yi = A(log(log ni))+(log B).

Thus, on the x-axis I plotted c := log(log ni) and on the y-axis, d := log yi. I decided to partition

the numbers for this analysis, not according to size, but according to the type of number: Prime,

Carmichael, Composite or Perfect Power. For each type of number, I found a linear relationship

between log(log ni) and log yi where yi was the number of steps in MC, Miller or AKS test. Thus,

each different type of number has at least three results for the least squares fitting, possibly more

than one corresponding to the different outputs in the Monte-Carlo test. The code, plots and the

line that best fit can be found in Appendix D. After doing least squares fitting in Maple, I found

the linear relationship I was looking for.

In order to transfer excel data directly to Maple, save the excel spreadsheet as a text file. Then

import the data into a Maple spreadsheet. From there, copy and paste any columns of data needed

into an execution group in Maple. It outputs it as a MATRIX so change it to Vector. Then inside

the code, the Vector is converted to a list by deleting the brackets so it can be used inside of the

least squares commands in Maple. This seems to be the easiest way to eliminate retyping the data

in Maple.
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Below are tables with the data from the least squares fitting bringing the constants A and B

together from the different tests and types of numbers. We want to compare these results with the

numbers given in the theory.

A Monte-Carlo Miller AKS

Prime 1.981111085 2.582225342 3.800596559

Carmichael .7370043274(c2) 2.154580094 6.346981687

1.356391454(c3)

Composite .9449063256(c2) 2.161482390 7.435119388

Perfect Power .7217244200(c1) 1.031988969 1.037511555

.9802826885(c2)

Table 5.1: Exponent A Values

B Monte-Carlo Miller AKS

Prime 106.5709497 251.8478759 199.3310786

Carmichael 160.3028603(c2) 143.8936999 .005449041142

29.05648189(c3)

Composite 54.58766607(c2) 140.0118675 .006039838378

Perfect Power 10.05210029(c1) 119.7964082 117.3495868

49.78768807(c2)

Table 5.2: Coefficient B Values

The exponent A given in the theory was about 4 for the Monte-Carlo test once we test log n

different a′s, 4 for the Miller test and 21
2 for the AKS test. The exponents A observed above are all

less than what we expected; in some cases, much smaller. This may be due to the fact that our step

counting was not dependent upon the size of our inputs or has underestimated what we believe

Maple is actually computing.

For each test, I looked back at the most costly computation to see how the exponents of

log n differ from the given ones in the theory as a result of my counting conventions. In the

Monte-Carlo test, the modular exponentiation was most costly. There are potentially O(log n)

steps in the powering algorithm to compute a
n−1

2 mod n. Each step requires multiplying two

numbers and dividing by n to get a remainder modulo n. While counting steps in my code, I

considered mulitplying, dividing and reducing a number modulo n as single steps. So overall, this

computation only takes O(log n) steps. When we complete this for log n values of a, we get a

running time of O(log2 n) steps instead of the given O(log4 n) in the theory.
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In the Miller test, we go back to the second step and find another modular exponentiation,

this time computing an−1 mod n where a varies over the first m primes. Again we used repeated

squaring and there are O(log n) of these each counted as 1 step. So because there are O
(

f(n)
log f(n)

)

primes less than or equal to f(n), we get a running time of O(log3 n). This is in contrast with the

exponent of 4 in the theory.

Finally, in the AKS test we look to the largest loop for our complexity. We must verify

⌊2√r log n⌋ + 1 equations. Each equation requires O(log n) multiplications of degree r

polynomials. In contrast to the theory, my code does not take into account the size of the

coefficients and the PApoly depends on log n and not r when we use the powmod command. This

would give us a running time of O ˜(L · log n · log n) = O ˜ (log
11
2 n). This is smaller than the 21

2

exponent in the theory.

The three new exponents are closer to the actual results we obtained. The largest A found in

the Monte-Carlo and Miller tests corresponds to the prime numbers. We expect these to be the

most accurate because the primes must run through the largest loops before outputting prime. For

the AKS test though, composites give the largest A. The r values for the primes and composites

are close, but the Carmichaels give much smaller values of r. This affects the size of the largest

loop in the test which only the primes will have to run completely through.

I went back to my code to find a reason for the exponents observed. What I found is that even

though the primes have the most steps executed, the majority of those steps actually occur before

the large complex loop. The step counts for the composite numbers are larger before entering this

loop than those of the prime numbers and the primes do not accumulate as many steps as expected

inside the loop. What I believe throws the data off is the lack of a subroutine written for the

powmod command in Maple. I think there are not enough steps accounted for in the complexity

of this Maple command. Had there been an original procedure written for this, I believe the prime

number step counts would have been much higher and the exponent would have surpassed that of

the composites and Carmichaels. I am still unsure as to why the Carmichael exponent is so much

larger than the prime exponent.

As for the value of B, we get the largest values from the Miller and AKS tests with prime

numbers. We expect this. Only in the Monte-Carlo test, the Carmichael numbers give a slightly
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larger coefficient B than the primes. This I believe is due to the choice of random a′s. If none of

them show n is composite, we have to keep cycling through the test and the coefficient B builds

up. We must keep in mind that if a number does not enter the most complex part of these tests,

we expect the A and B to be smaller than the theoretical values.
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Appendix A

Maple Procedures for the Three Primality Tests

Note. There are some step counting conventions I used that affect the results I obtained. I broke a

lot of procedures down and wrote my own, but some things I left to Maple and have consequently

been added as a single count to the total. I did not write a procedure for k() = rand(2..n − 1) so

this was counted as one step. Any return or print steps were not needed for the computation so I

left them out of the count. Trunc or floor involves some extra bit operations, but were only counted

as one step for my analysis. Computing a logarithm, placing a value in a set (as in the Monte-Carlo

test) and creating an array were all counted as single steps. Also, there was no subroutine written

for the Maple powmod command.

Lines beginning with # denote comments in Maple. In the Monte-Carlo test, I only tested at

most log2(n) choices of a. Also, in the Miller test the size of f(n) was not explicit, so I have used

10 · log2(n) in my calculations. Any subroutines used in these procedures can be found in Appendix

B.

A.1 Monte-Carlo test by Solovay and Strassen

with(numtheory):

MC:=proc(n)

local a,b,e,j,s,t,k;

global count;

#a is the number inbetween 2 and n-1 we are testing to see if a&^(n-1)/2

#and the jacobi(a/n) are equal mod n;b is the index of a; e=a[b]&^(n-1)/2 mod n;

#j=jacobi(a[b],n); s is the set of all a[b] up until the most recent;

#t is the set of just the last a[b];

#k=rand(2..(n-1));count counts the steps executed in the algorithm

a[0]:=1;

40
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b:=1;

count:=2;

#here we take account of the simple cases n=1 and n=2;

#otherwise we set a random value to a[1]

if n=1 then

count:=count+1;

print(count);

return "neither";

elif n=2 then

count:=count+2;

print(count);

return "prime";

else k:=rand(2..(n-1));

a[b]:=k();

count:=count+5;

end if;

#we initialize our set s simply as a[1] and t as 1 because we know

#a[b] can never equal one because it is not a number in k=rand(2..(n-1));

#this will help us run through the if-then below when we check

#the intersection of s and t

s:={a[1]};

t:={1};

count:=count+4;

#we don’t want to test n different numbers for a so we test

#evalf(trunc(log[2](n)) different a’s dependent upon n

while b<=evalf(trunc(log[2](n))) do

count:=count+3;

#if we find a nontrivial gcd, then obviously n has a

#nontrivial factor and is composite

if gr(a[b],n)<>1 then

count:=count+1;

print(count);

return "composite1";

#test for compositeness of a^((n-1)/2)<>+-1 because a prime number

#has no nontrivial perfect squares

elif (PA(a[b],(n-1)/2,n))<>1 and (PA(a[b],(n-1)/2,n))<>(n-1) then

count:=count+4;

print(count);

return "composite2";

#if not and s intersect t is empty then we have found a new a[b] and

#so we see if e=j mod n or not
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#we do this so we’re not testing the same a[b] over and over again for smaller n

elif gr(a[b],n)=1 and (s intersect t = {}) then

count:=count+4;

count:=count+5;

e:=PA(a[b],(n-1)/2,n);

count:=count+1;

j:=jac(a[b],n);

count:=count+1;

#if e<>j mod n then n must be composite because for prime n,

#this is an equivalence

if (e mod n)<>(j mod n) then

count:=count+3;

print(count);

return "composite3";

end if;

count:=count+3;

#we move onto the next b, we randomly generate a[b],

#add the last t we had to the set s,

#and then change t to be the new value of a[b]

b:=b+1; a[b]:=k();

s:=s union t;

t:={a[b]};

count:=count+8;

#if s intersect t is not empty then we want a new value for a[b] so as

#not to repeat any previous calculations for smaller n

#again we set t={a[b]} so we can check the intersection with the new value a[b]

elif gr(a[b],n)=1 and (s intersect t <> {}) then

count:=count+5;

count:=count+9;

a[b]:=k();

t:={a[b]};

count:=count+4;

end if;

end do;

count:=count+3;

#if we don’t find n to be composite then we can only say probably

#prime because we’ve only tested a select number of a’s

print(count);

print ("probably prime");

end proc;
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A.2 Modified Gary Miller test

ModMiller:=proc(n)

local j,k,UB,LB,i,r,f,S,N,Q,x,a,b,m,prime,numprime;

global count;

#j=power of a prime we are testing to see if n is a perfect power of,

#k=prime that n might be a perfect power of; UB=upper bound on the intervals

#we are cutting in half for our binary search for a perfect power, LB=lower bound

#i,r=indexes in the array of n; f(=f(n))=upper bound on the a’s that could be

#witnesses to the compositeness of n; S=the max number of 2’s that divide n-1;

#Q=(n-1)/2^(S); N=n-1,prime[]=lists of primes; a=index of m; b=index of prime

#x=the various powers of S in the exponent of our primes[a] we’re testing in the

#largest part of the test; numprime=number of primes we find <=f

count:=0;

#we need to make sure that f<n

if (trunc(10*((log(n))^2)))>=n then

count:=count+5;

f:=n-1;

count:=count+2;

else count:=count+5;

f:=trunc(10*((log(n))^2));

count:=count+5;

end if;

#first step is to test if n is a perfect power; if so we output composite

for j from 2 to floor(evalf(log[2](n))) do

LB:=1;

UB:=n;

count:=count+2;

while (UB-LB)>1 do

k:=floor((LB+UB)/2);

count:=count+6;

if (PAnomod(k,j))>n then

count:=count+1;

UB:=k;

count:=count+1;

elif (PAnomod(k,j))<n then

count:=count+2;

LB:=k;

count:=count+1;

else

count:=count+2;

count:=count+(j-1);

print(count);

return "composite1";

end if;
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end do;

count:=count+2;

end do;

count:=count+(floor(evalf(log[2](n)))-1);

#if n is not a perfect power, then we start the largest part of the test

#we begin by using the Sieve of Eratosthenes to compute all the primes <=f(=f(n))

#whenever m[b]=0, then b is a prime

m:=array(2..f);

count:=count+2;

for r from 2 to f do

m[r]:=0;

count:=count+1;

end do;

count:=count+(f-1);

#this assigns the number its smallest prime divisor or 0 if it is prime itself

r:=2;

count:=count+1;

while r^2<=f do

count:=count+2;

if m[r]=0 then

i:=r^2;

count:=count+2;

while i<=f do

count:=count+1;

if m[i]=0

then m[i]:=r; count:=count+1;

end if;

count:=count+1;

i:=i+r;

end do;

count:=count+1;

end if;

count:=count+1;

r:=r+1;

count:=count+2;

end do;

count:=count+2;

#find S,Q such that n-1=Q*2^(S)

S:=0;

N:=n-1;

count:=count+3;

while (N mod 2)=0 do

count:=count+2;
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N:=N/2;

S:=S+1;

count:=count+4;

end do;

count:=count+2;

Q:=(n-1)/(PAnomod(2,S));

count:=count+3;

#from all m[b] above, we extract just the prime numbers (when m[b]=0)

#to get a table of primes <=f(n)

numprime:=0;

count:=count+1;

for b from 2 to f do

if m[b]=0 then

prime[numprime]:=b;

numprime:=numprime+1;

count:=count+3;

end if;

count:=count+1;

end do;

count:=count+(f-1);

#here we start the largest part of the test once we have

#found all the primes<=f(=f(n))

a:=0;

count:=count+1;

while a<=numprime do

count:=count+1;

#a starts at 0 and numprime starts at 1,

#so once a=numprime we have already tested all the primes <=f

if a=numprime then count:=count+1; return "prime";

#this tests if prime[a] divides n

elif (n mod prime[a])=0 then count:=count+3;

return "composite2";

#this is the Fermat test

elif (PA(prime[a],n-1,n))<>1 then count:=count+4;

return "composite3";

#here we compute prime[a]^Q mod n and start looking for

#nontrivial square roots of 1 mod n

else d:=PA(prime[a],Q,n); count:=count+5;

#if S=1, then 1<=x<=S-1=0 doesn’t make sense,

#so we make extra steps for a number where S=1

#here, if d=1 or d=n-1 then so do all the squares afterward so we

#just go to our next prime[a]

if S=1 and (d=1 or d=n-1) then a:=a+1; count:=count+8;

#if not, then because Q*2=n-1 and prime[a]=1 so if d<>1 and d<>n-1,

#then d is a nontrivial square root of 1 and n is composite
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elif S=1 and (d<>1 and d<>n-1) then count:=count+12;

return "composite4";

#again, here we find no information so we move onto our next prime[a]

elif S>=2 and (d=1 or d=n-1) then a:=a+1; count:=count+20;

#because S>=2 we begin to compute d,d^2,d^4...

#looking for nontrivial square roots of 1 mod n

elif S>=2 then x:=1; count:=count+20;

while 1<=x and x<=S-1 do count:=count+4;

d:=PA(d,2,n); count:=count+1;

#no information is obtained

#so we break this while loop and move onto our next prime[a]

if d=n-1 then a:=a+1; count:=count+4; break;

#the last number was not n-1 or 1 so d=1 gives us a nontrivial square root of 1

elif d=1 then count:=count+3; return "composite5";

#once we reach x=S-1 and d<>1 and d<>n-1,

#we know prime[a] passes the Fermat test so d is a nontrivial square root of 1

elif x=S-1 then count:=count+5; return "composite6";

else x:=x+1; count:=count+7;

end if;

end do;

count:=count+4;

end if;

end if;

end do;

count:=count+1;

end proc;

A.3 AKS Algorithm by Agrawal, Kayal and Saxena

with(numtheory):

AKS:=proc(n)

local j,LB,UB,k,r,L,i,a,b,c;

global count;

#j is our power in the perfect power test with k our base; LB=lower

#bound on the intervals; UB=upper bound;

#r is the smallest positive integer such that the order of n mod r

#is larger than log[2](n)^2 and i is the exponent tested in the loop

#we use b such that 2<=b<=r to see if we can find a nontrivial divisor of n;

#a is the constant coefficient tested in the main loop between 1 and r;

#c=n^i mod r;

count:=0;

#first step is to test if n is a perfect power; if so we output composite

for j from 2 to floor(evalf(log[2](n))) do

LB:=1;

UB:=n;
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count:=count+2;

while (UB-LB)>1 do

k:=floor((LB+UB)/2);

count:=count+6;

if (PAnomod(k,j))>n then

count:=count+1;

UB:=k;

count:=count+1;

elif (PAnomod(k,j))<n then

count:=count+2;

LB:=k;

count:=count+1;

else

count:=count+2;

count:=count+(j-1);

print(count);

return "composite1";

end if;

end do;

count:=count+2;

end do;

count:=count+(floor(evalf(log[2](n)))-1);

#now we want to find the smallest r such that the order of n mod r is

#larger than log[2](n)^2;

#r is as above and i is the power we raise n to to see if n^i=1 mod r;

#Because i<=trunc((log[2](n))^2), if we cycle through all the i’s

#then we have found such an r

r:=2;

i:=1;

count:=count+2;

while i<=trunc((log[2](n))^2) do

count:=count+4;

#nontrivial gcd with n gives us a divisor of n so it is composite

if gr(r,n)<>1 and gr(r,n)<>n then

count:=count+3;

print(count);

return "composite2";

elif r>=n then

count:=count+4;

print(count);

return "prime1";

else

count:=count+4;

if (PA(n,i,r) mod r)=1 then
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count:=count+2;

r:=r+1;

i:=1;

count:=count+3;

elif (PA(n,i,r) mod r) <>1 then

count:=count+4;

i:=i+1;

count:=count+2;

end if;

end if;

end do;

count:=count+4;

#here we look for a nontrivial divisor of n

#After reviewing the calculations, this loop I found to be

#redundant of the test for composite2 so it may be left out.

for b from 2 to r do

if gr(b,n)<>1 and gr(b,n)<>n then

count:=count+3;

count:=count+(b-1);

print(count);

return "composite3";

end if;

count:=count+3;

end do;

count:=count+(r-1);

L:=trunc(sqrt(phi(r))*log(n));

print(L);

count:=count+5;

#this is the longest part of the AKS test;

#we can determine compositeness of n here because if n is prime

#then (X+a)^n=X^n+a (mod(X^r-1),n) for all a

for a from 1 to L do

if (PApoly(X+a,n,r,n))<>(PApoly(X^n+a,1,r,n)) then

count:=count+1;

count:=count+a;

print(count,a);

return "composite4";

end if;

count:=count+1;

end do;

count:=count+L;

#if we don’t find compositeness of n in the loop above, our n must be prime

print(count);

print(prime2);

end proc;



Appendix B

Maple Procedures used as Subroutines in Primality Tests

B.1 Powering Algorithm

PA:=proc(a,k,n)

#computes a^k mod n

local pow, prod, b, i;

global count;

pow:=a;

i:=k;

prod:=1;

count:=count+3;

while i>0 do

b:=i-2*floor(i/2);

count:=count+6;

if b=1 then

prod:=prod*pow mod n;

count:=count+3;

end if;

count:=count+1;

pow:=(pow)^2 mod n;

i:=floor(i/2);

count:=count+6;

end do;

count:=count+1;

prod;

end proc;

B.2 Powering Algorithm with no Modulus

PAnomod:=proc(a,k)

#computes a^k with no modulus

local pow, prod, b, i;

global count;

pow:=a;

i:=k;

49
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prod:=1;

count:=count+3;

while i>0 do

b:=i-2*floor(i/2);

count:=count+6;

if b=1 then

prod:=prod*pow;

count:=count+2;

end if;

count:=count+1;

pow:=(pow)^2;

i:=floor(i/2);

count:=count+5;

end do;

count:=count+1;

prod

end proc;

B.3 Powering Algorithm for Polynomials using powmod

PApoly:=proc(f,k,r,n)

#computes f(x)^k mod(x^r-1,n)

local pow, prod, b, i;

global count;

pow:=f;

i:=k;

prod:=1;

count:=count+3;

while i>0 do

b:=i-2*floor(i/2);

count:=count+6;

if b=1 then

prod:=(powmod(prod*pow,1,X^r-1,X)) mod n;

count:=count+5;

end if;

count:=count+1;

pow:=(powmod(pow,2,X^r-1,X)) mod n;

count:=count+5;

i:=floor(i/2);

count:=count+3;

end do;

count:=count+1;

prod

end proc;
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B.4 Greatest Common Divisor

gr:=proc(n,m)

#computes gcd(n,m)

local a,b;

global count;

if abs(n)>=abs(m)

then count:=count+3; a:=abs(n); b:=abs(m);

count:=count+4;

else count:=count+3; b:=abs(n); a:=abs(m); count:=count+4;

end if;

while b>0 do

count:=count+1;

(a,b):=(b,a mod b);

count:=count+3;

end do;

count:=count+1;

a

end proc;

B.5 Jacobi symbol

jac:=proc(a,n)

#computes the Jacobi symbol (a/n)

local b,c,s;

global count;

b:=a mod n;

c:=n;

s:=1;

count:=count+4;

while b>=2 do

count:=count+1;

while (b mod 4)=0 do

count:=count+2;

b:=b/4;

count:=count+2;

end do;

count:=count+2;

if (b mod 2)=0 then
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if (c mod 8)=3 or (c mod 8)=5 then

s:=-s;

count:=count+2;

end if;

count:=count+5;

b:=b/2;

count:=count+2;

end if;

count:=count+2;

count:=count+1;

if b=1 then break;

end if;

if (b mod 4)=3 and (c mod 4)=3 then

s:=-s; count:=count+2;

end if;

count:=count+5;

(b,c):=(c mod b, b);

count:=count+3;

end do;

count:=count+1;

s*b

end proc;



Appendix C

Maple Calculations with Three Primality Tests

n Test Digits Step Count Output

4603 MC 4 7630;7059;7830;7613;7668 probably prime

Miller 64331 prime

AKS 678972 prime2

8147 MC 4 7976;8043;8122;8488;7763 probably prime

Miller 71696 prime

AKS 858483 prime2

59239 MC 5 11714;10546;11716;12325;12980 probably prime

Miller 119763 prime

AKS 2005525 prime2

72949 MC 5 12162;13071;13422;13451;13284 probably prime

Miller 133217 prime

AKS 1850955 prime2

486133 MC 6 16214;16702;17250;16509;17749 probably prime

Miller 195180 prime

AKS 3480552 prime2

920393 MC 6 18586;17699;18018;19717;16907 probably prime

Miller 219360 prime

AKS 4061589 prime2

2313827 MC 7 22153;22271;21290;22452;21766 probably prime

Miller 254347 prime

AKS 5240332 prime2

4203187 MC 7 23596;23055;24445;25197;23695 probably prime

Miller 274614 prime

AKS 5752296 prime2

Table C.1: Prime Number Calculations I
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n Test Digits Step Count Output

9373031 MC 7 26877;26241;26561;25985;26089 probably prime

Miller 318828 prime

AKS 7111292 prime2

22823263 MC 8 26894;29654;29055;28802;29619 probably prime

Miller 367211 prime

AKS 8594656 prime2

72823249 MC 8 35340;33309;35644;33684;35363 probably prime

Miller 468626 prime

AKS 10627276 prime2

82823263 MC 8 32868;34113;32890;33915;35644 probably prime

Miller 451922 prime

AKS 15079889 prime2

96896249 MC 8 33296;32823;32939;35898;34409 probably prime

Miller 471191 prime

AKS 11671429 prime2

124910491 MC 9 34144;34577;34420;35230;35887 probably prime

Miller 475961 prime

AKS 13619385 prime2

191454331 MC 9 35458;37763;37362;36844;37633 probably prime

Miller 504592 prime

AKS 15542547 prime2

346884011 MC 9 39202;39291;39333;39537;39905 probably prime

Miller 541166 prime

AKS 16659513 prime2

592559147 MC 9 42697;40420;40982;42919;39133 probably prime

Miller 583524 prime

AKS 20680662 prime2

Table C.2: Prime Number Calculations II
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n Test Digits Step Count Output

2147483647 MC 10 49191;47690;50934;49582;49883 probably prime

Miller 726428 prime

6781252727 MC 10 52104;51673;50245;51658;50127 probably prime

Miller 778190 prime

8371854217 MC 10 50349;50431;50436;51086;53282 probably prime

Miller 808268 prime

9586739249 MC 10 49731;51595;55257;55650;54779 probably prime

Miller 852989 prime

13346629577 MC 11 54844;56055;54869;52436;52471 probably prime

Miller 870905 prime

20574592273 MC 11 56425;60602;57698;53404;57569 probably prime

Miller 934420 prime

33247518979 MC 11 57574;57732;57055;58263;58561 probably prime

Miller 929573 prime

62710792723 MC 11 61557;62655;62148;59082;62429 probably prime

Miller 985628 prime

120234043603 MC 12 64997;62593;64716;65470;63904 probably prime

Miller 1075864 prime

242113332463 MC 12 66900;65437;68113;67239;69616 probably prime

Miller 1145493 prime

598267465151 MC 12 75585;74468;73301;77310;73263 probably prime

Miller 1271340 prime

999991632797 MC 12 77420;75567;74111;72225;76158 probably prime

Miller 1329191 prime

Table C.3: Prime Number Calculations III
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n Test Digits Factors Step Count Output

2821 MC 4 7, 13, 31 368;483;47;1816;549 c2;c1;c1;c2;c3

Miller 12454 c6; prime=2

AKS 7047 c2

6601 MC 4 7, 23, 41 562;578;59;406;414 c3;c1;c1;c2;c2

Miller 15713 c5; prime=2

AKS 9044 c2

29341 MC 5 13, 37, 61 43;1337;1311;482;482 c1;c2;c2;c2;c2

Miller 22215 c5; prime=3

AKS 13678 c2

46657 MC 5 13, 37, 97 588;596;729;1349;698 c3;c3;c3;c3;c3

Miller 23699 c5; prime=2

AKS 15961 c2

334153 MC 6 19, 43, 409 825;592;2159;596;596 c3;c2;c2;c2;c2

Miller 34621 c5; prime=2

AKS 23473 c2

512461 MC 6 13, 61, 271 1340;1356;620;721;786 c2;c2;c2;c3;c3

Miller 36437 c6; prime=2

AKS 35755 c2

6733693 MC 7 109, 163, 379 918;969;778;766;1779 c3;c3;c2;c2;c2

Miller 54604 c6; prime=2

AKS 214662 c2

53711113 MC 8 157, 313, 1093 1078;2165;816;796;2832 c3;c3;c2;c2;c2

Miller 72104 c5; prime=3

AKS 629268 c2

84350561 MC 8 107, 743, 1061 2070;5674;1098;2170;1081 c3;c3;c3;c3;c3

Miller 75598 c5; prime=2

AKS 227235 c2

96895441 MC 8 109, 433, 2053 2997;3389;828;1974;1171 c2;c1;c2;c2;c3

Miller 75825 c5; prime=2

AKS 274960 c2

Table C.4: Carmichael Number Calculations I
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n Test Digits Factors Step Count Output

114910489 MC 9 127, 659, 1373 1089;1169;1218;2228;2391 c3;c3;c3;c3;c1

Miller 77234 c5; prime=2

AKS 311869 c2

171454321 MC 9 163, 811, 1297 2061;3228;1077;75;878 c2;c2;c3;c1;c2

Miller 81752 c5; prime=2

AKS 624792 c2

221884001 MC 9 131, 521, 3251 1042;3476;4485;2345;3620 c3;c3;c3;c3;c3

Miller 83849 c5; prime=2

AKS 374094 c2

492559141 MC 9 367, 733, 1831 928;2154;1232;1275;1178 c2;c2;c3;c3;c3

Miller 91191 c6; prime=2

AKS 2736045 c2

863984881 MC 9 307, 613, 4591 1280;3800;1254;1275;1297 c1;c3;c3;c3;c3

Miller 96890 c5; prime=2

AKS 1754577 c2

1260332137 MC 10 163, 487, 15877 5128;3800;1300;1241;1265 c3;c3;c3;c3;c3

Miller 100920 c5; prime=2

AKS 680245 c2

5781222721 MC 10 1033, 1549, 3613 1314;1330;1358;1361;1404 c3;c3;c3;c3;c3

Miller 116947 c5; prime=2

AKS 23366636 c2

8251854001 MC 10 1301, 1951, 3251 4089;2727;1397;2787;1372 c3;c3;c3;c3;c3

Miller 120332 c5; prime=2

8652633601 MC 10 1249, 2081, 3329 1336;2788;2792;5390;2764 c3;c3;c3;c3;c3

Miller 123306 c5; prime=2

9086767201 MC 10 1201, 1801, 4201 1368;1314;3958;2725;4012 c3;c3;c3;c3;c3

Miller 123137 c5; prime=2

Table C.5: Carmichael Number Calculations II
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n Test Digits Factors Step Count Output

11346205609 MC 11 1237, 2473, 3709 1438;2378;1050;2468;1384 c3;c2;c2;c2;c3

Miller 125323 c5; prime=2

12456671569 MC 11 1013, 3037, 4049 1392;1064;1080;1341;1064 c3;c2;c2;c3;c2

Miller 125543 c5; prime=2

14313548881 MC 11 1061, 3181, 4241 2481;1423;1084;2524;2446 c2;c3;c2;c2;c2

Miller 127735 c5; prime=2

16157879263 MC 11 1667, 2143, 4523 1064;1104;1104;1076;1080 c2;c2;c2;c2;c2

Miller 128381 c4; prime=2

23224518901 MC 11 1901, 3301, 3701 1078;1074;2523;3024;1090 c2;c2;c2;c2;c2

Miller 134549 c6; prime=3

40999665001 MC 11 1021, 3001, 13381 1507;2580;2673;1108;1520 c3;c2;c2;c2;c3

Miller 142177 c5; prime=3

56718791641 MC 11 1237, 2473, 18541 1550;1134;2649;1380;2845 c3;c2;c2;c3;c3

Miller 144512 c5; prime=2

73543985857 MC 11 1453, 4357, 11617 2889;2853;2931;4652;1469 c3;c3;c3;c3;c3

Miller 150214 c5; prime=3

100264053529 MC 12 2557, 5113, 7669 2699;4070;1439;6046;2665 c2;c2;c3;c3;c2

Miller 151681 c5; prime=2

136368172081 MC 12 1657, 3313, 24841 4559;1142;3028;3036;1146 c3;c2;c3;c3;c2

Miller 154444 c5; prime=2

172113632461 MC 12 2791, 5023, 12277 3142;1204;1184;1160;2765 c3;c2;c2;c2;c2

Miller 159577 c6; prime=2

342267565249 MC 12 3019, 7043, 16097 3205;3278;3128;1630;1605 c3;c3;c3;c3;c3

Miller 168992 c5; prime=2

635681188801 MC 12 1009, 20161, 31249 1220;1608;1220;1216;1212 c2;c3;c2;c2;c2

Miller 178092 c5; prime=2

846891632791 MC 12 1667, 4999, 101627 1230;1234;2894;1270;1246 c2;c2;c2;c2;c2

Miller 182262 c4; prime=2

Table C.6: Carmichael Number Calculations III
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n Test Digits Factors Step Count Output

5287 MC 4 7, 311 410;43;406;410;398 c2;c1;c2;c2;c2

Miller 14601 c3; prime=2

AKS 12424 c2

9211 MC 4 61, 151 454;450;454;458;454 c2;c2;c2;c2;c2

Miller 16787 c3; prime=2

AKS 77827 c2

37327 MC 5 163, 229 528;500;504;516;516 c2;c2;c2;c2;c2

Miller 22887 c3; prime=2

AKS 682745 c2

61133 MC 5 133, 541 540;516;508;532;524 c2;c2;c2;c2;c2

Miller 24476 c3; prime=2

AKS 309116 c2

226679 MC 6 419, 541 596;600;576;572;604 c2;c2;c2;c2;c2

Miller 31601 c3; prime=2

AKS 3197817 c4; a=1

604033 MC 6 137, 4409 624;632;624;620;628 c2;c2;c2;c2;c2

Miller 38232 c3; prime=2

AKS 466649 c2

3029053 MC 7 1321, 2293 698;702;678;706;690 c2;c2;c2;c2;c2

Miller 47957 c3; prime=2

AKS 6017736 c4; a=1

5510053 MC 7 1543, 3571 736;724;704;728;704 c2;c2;c2;c2;c2

Miller 52676 c3; prime=2

AKS 6256482 c4; a=1

7023449 MC 7 1997, 3517 738;722;702;734;726 c2;c2;c2;c2;c2

Miller 54420 c3; prime=2

AKS 6471654 c4; a=1

Table C.7: Composite Number Calculations I
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n Test Digits Factors Step Count Output

10000043 MC 8 4787, 2089 750;754;738;738;754 c2;c2;c2;c2;c2

Miller 57434 c3; prime=2

AKS 7799329 c4; a=1

67029583 MC 8 20269, 3307 838;854;854;862;838 c2;c2;c2;c2;c2

Miller 71624 c3; prime=2

AKS 13899043 c4; a=1

90028349 MC 8 1013, 88873 878;862;862;878;894 c2;c2;c2;c2;c2

Miller 75252 c3; prime=2

AKS 13892277 c4; a=1

115710557 MC 9 5039, 22963 884;840;868;872;864 c2;c2;c2;c2;c2

Miller 77059 c3; prime=2

AKS 14670758 c4; a=1

281894243 MC 9 116341, 2423 918;934;898;890;922 c2;c2;c2;c2;c2

Miller 86520 c3; prime=2

AKS 17080632 c4; a=1

723001537 MC 9 161999, 4463 914;930;918;930;922 c2;c2;c2;c2;c2

Miller 94709 c3; prime=2

AKS 23327888 c4; a=1

900924397 MC 9 91159, 9883 940;960;968;960;976 c2;c2;c2;c2;c2

Miller 97025 c3; prime=2

AKS 19824094 c4; a=1

Table C.8: Composite Number Calculations II
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n Test Digits Factors Step Count Output

1000 MC 4 10 47;43;324;39;31 c1;c1;c2;c1;c1

Miller 978 c1

AKS 968 c1

6859 MC 4 19 432;43;416;436;420 c2;c1;c2;c2;c2

Miller 1256 c1

AKS 1246 c1

12167 MC 5 23 460;464;59;456;464 c2;c2;c1;c2;c2

Miller 1329 c1

AKS 1319 c1

85184 MC 5 44 536;59;532;59;71 c2;c1;c2;c1;c1

Miller 1384 c1

AKS 1374 c1

157464 MC 6 54 568;568;47;55;75 c2;c2;c1;c1;c1

Miller 1599 c1

AKS 1589 c1

830584 MC 6 94 656;63;644;652;79 c2;c1;c2;c2;c1

Miller 1992 c1

AKS 1982 c1

1000000 MC 7 100 616;71;59;636;51 c2;c1;c1;c2;c1

Miller 896 c1

AKS 886 c1

8120601 MC 7 201 63;744;772;83;724 c1;c2;c2;c1;c2

Miller 2060 c1

AKS 2050 c1

32768000 MC 8 320 840;75;856;828;832 c2;c1;c2;c2;c2

Miller 2347 c1

AKS 2337 c1

79507000 MC 8 430 870;866;55;850;67 c2;c2;c1;c2;c1

Miller 2633 c1

AKS 2623 c1

Table C.9: Perfect Power Number Calculations I
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n Test Digits Factors Step Count Output

341532099 MC 9 699 936;111;952;896;924 c2;c1;c2;c2;c2

Miller 2572 c1

AKS 2562 c1

611960049 MC 9 849 103;940;912;960;95 c1;c2;c2;c2;c1

Miller 2763 c1

AKS 2753 c1

3716672149 MC 10 1549 1024;1012;1020;1044;1036 c2;c2;c2;c2;c2

Miller 2987 c1

AKS 2977 c1

7483530816 MC 10 1956 1072;95;1072;83;87 c2;c1;c2;c1;c1

Miller 3004 c1

AKS 2994 c1

32768000000 MC 11 3200 1140;99;119;99;1156 c2;c1;c1;c1;c2

Miller 3206 c1

AKS 3196 c1

84027672000 MC 11 4380 99;99;1162;115;95 c1;c1;c2;c1;c1

Miller 3463 c1

AKS 3453 c1

494725990429 MC 12 7909 1226;91;1270;1246;1230 c2;c1;c2;c2;c2

Miller 3693 c1

AKS 3683 c1

710687513024 MC 12 8924 1282;1278;127;1258;1270 c2;c2;c1;c2;c2

Miller 3934 c1

AKS 3924 c1

Table C.10: Perfect Power Number Calculations II



Appendix D

Maple Least Squares Fitting

D.1 Maple code for least squares fitting

LSQ:=proc(x,y)

local X,Y,data,dataplot,lsqcurve,f;

X:=convert(x,list);

Y:=convert(y,list);

data:=X,Y;

dataplot:=scatterplot(data,symbol=cross,symbolsize=14,color=black):

f:=fit[leastsquare[[c,d],d=a*c+b,{a,b}]]([data]);

lsqcurve:=plot(rhs(f),c=0..3.5,color=gold):

print(f);

display(lsqcurve,dataplot);

end proc:

D.2 Prime Numbers Least Squares Plots and Lines

Figure D.1: Monte-Carlo Least Squares with Primes

d = 1.981111085 ∗ c + 4.668810958

A = 1.981111085

B = e4.668810958 ≈ 106.5709497
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Figure D.2: Miller Least Squares with Primes

d = 2.582225342 ∗ c + 5.528825238

A = 2.582225342

B = e5.528825238 ≈ 251.8478759

Figure D.3: AKS Least Squares with Primes

d = 3.800596559 ∗ c + 5.294967154

A = 3.800596559

B = e5.294967154 ≈ 199.3310786
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D.3 Carmichael Numbers Least Squares Plots and Lines

Figure D.4: Monte-Carlo composite2 outputted Least Squares with Carmichaels

d = .7370043274 ∗ c + 5.077064903

A = .7370043274

B = e5.077064903 ≈ 160.3028603

Figure D.5: Monte-Carlo composite3 outputted Least Squares with Carmichaels

d = 1.356391454 ∗ c + 3.369241587

A = 1.356391454

B = e3.369241587 ≈ 29.05648189
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Figure D.6: Miller Least Squares with Carmichaels

d = 2.154580094 ∗ c + 4.969074832

A = 2.154580094

B = e4.969074832 ≈ 143.8936999

Figure D.7: AKS Least Squares with Carmichaels

d = 6.346981687 ∗ c − 5.212315623

A = 6.346981687

B = e−5.212315623 ≈ .005449041142
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D.4 Composite Numbers Least Squares Plots and Lines

Figure D.8: Monte-Carlo Least Squares with Composites

d = .9449063256 ∗ c + 3.999807961

A = .9449063256

B = e3.999807961 ≈ 54.58766607

Figure D.9: Miller Least Squares with Composites

d = 2.161482390 ∗ c + 4.941727187

A = 2.161482390

B = e4.941727187 ≈ 140.0118675
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Figure D.10: AKS Least Squares with Composites

d = 7.435119388 ∗ c − 5.109378026

A = 7.435119388

B = e−5.109378026 ≈ .006039838378
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D.5 Perfect Power Numbers Least Squares Plots and Lines

Figure D.11: Monte-Carlo composite1 outputted Least Squares with Perfect Powers

d = .7217244200 ∗ c + 2.307781597

A = .7217244200

B = e2.307781597 ≈ 10.05210029

Figure D.12: Monte-Carlo composite2 outputted Least Squares with Perfect Powers

d = .9802826885 ∗ c + 3.907767726

A = .9802826885

B = e3.907767726 ≈ 49.78768807
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Figure D.13: Miller Least Squares with Perfect Powers

d = 1.031988969 ∗ c + 4.785793704

A = 1.031988969

B = e4.785793704 ≈ 119.7964082

Figure D.14: AKS Least Squares with Perfect Powers

d = 1.037511555 ∗ c + 4.765157401

A = 1.037511555

B = e4.765157401 ≈ 117.3495868


