
Supporting Open Science in Big Data Frameworks and
Data Science Education

by

Michael E. Cotterell

(Under the Direction of John A. Miller)

Abstract

As the prevalence of data grows throughout the Big Data era, so does a need to

provide and improve tools for the education and application of data-driven ana-

lytics and scientific investigation. The main contributions of this research can be

summarized as follows: i) We provide an overview of the open source ScalaTion

project, a big data framework that supports big data analytics, simulation mod-

eling, and functional data analysis. ii) We outline some of the Functional Data

support in ScalaTion, including a performance comparison for the evaluation of

B-spline basis functions that shows that our method is faster than some other

popular libraries. iii) To demonstrate how to provide lightweight big data frame-

work integration in open notebooks, we present the open source ScalaTion Kernel

project, a custom Jupyter kernel that enables ScalaTion support in Jupyter note-

books. iv) To demonstrate research using ScalaTion, we outline and evaluate a

tight clustering algorithm, written using ScalaTion, for the functional data anal-

ysis of time course omics data. v) To promote reproducibility in open science, we

present the Applied Open Data Science (AODS) project, a collection of customized

web applications for the hosting and sharing of open notebooks with ScalaTion

support. This project also includes shareable, executable, and modifiable exam-

ple notebooks that utilize ScalaTion to demonstrate various data science topics

as well as detailed documentation on how to easily reproduce the environment

in which the notebooks are hosted. Specifically, we propose and demonstrate,

via readily accessible examples, methods to facilitate openness and reproducibility

(both of results and infrastructure) in data science investigations using a big data

framework.

Index words: open science, open notebooks, big data frameworks, data
science, data science education

2

Supporting Open Science in Big Data Frameworks and
Data Science Education

by

Michael E. Cotterell

B.S., University of Georgia, 2011

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2017

© 2017

Michael E. Cotterell

All Rights Reserved

Supporting Open Science in Big Data Frameworks and
Data Science Education

by

Michael E. Cotterell

Approved:

Major Professor: John A. Miller

Committee: Maria Hybinette
Yi Hong
Thiab Taha

Electronic Version Approved:

Suzanne Barbour
Dean of the Graduate School
The University of Georgia
December 2017

Supporting Open Science in Big Data

Frameworks and Data Science Education

Michael E. Cotterell

December 2017

This dissertation is dedicated to my parents, John and Emily, and

to my Aunt and Uncle, Sheila and Jim.

v

Acknowledgments

I would like to thank all those who, over the years, have helped me progress towards

the completion of my doctoral degree. This includes my lab mates, Mustafa, Hao,

and Nick, as well as my colleague Xiaoxiao, who all contributed directly to different

aspects of my research. While too numerous to enumerate, this also includes the

other lab mates, close friends, family members, and lizard people (i.e., my Tuesday

trivia group) who helped keep me motivated towards the completion of my goals.

I would also like to thank Ping Ma for his guidance on the statistical aspects of

my dissertation, including functional data analysis.

I would like to thank my committee members, Maria Hybinette, Yi Hong, and

Thiab Taha for their guidance. Their wise and generous constructive criticism was

extremely helpful. Without their feedback, this dissertation would not have been

possible. I would like to especially thank my major professor, John A. Miller. He

served as my faculty advisor during my undergrad and suggested that I take a

directed study course under him. I did. That directed study was the catalyst that

propelled me toward research in computer science. In my opinion, John’s general

approach to problem solving and teaching is a healthy balance between pragmatism

vi

and practicality, both of which have been nothing less than inspirational. It has

been an honor and a privilege working with him.

vii

Contents

Acknowledgments vi

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Background & Challenges 5

2.1 Big Data . 5

2.2 Data Science . 6

2.3 Open Science . 6

2.4 Domain-Specific Language . 7

2.5 Big Data Frameworks . 8

2.6 Challenges in Data Science Education 9

3 ScalaTion 18

3.1 Abstract . 19

viii

3.2 Motivation and Significance . 19

3.3 Software Description . 20

3.4 Illustrative Examples . 22

3.5 Functional Data Analysis in ScalaTion 23

3.6 Impact . 34

3.7 Conclusions . 44

4 ScalaTion Kernel: Towards Open Notebook Support 46

4.1 Introduction . 46

4.2 ScalaTion Kernel for Jupyter . 48

4.3 Usage and Example . 53

4.4 Impact . 55

4.5 Conclusions . 55

5 ScalaTion Example: Functional Tight Clustering 58

5.1 Abstract . 59

5.2 Introduction . 59

5.3 Materials and Methods . 63

5.4 Results . 72

5.5 Discussion . 77

5.6 Acknowledgments . 80

6 Applied Open Data Science: Website & Example Notebooks 81

6.1 Introduction . 81

6.2 AODS Website & Projects . 83

ix

6.3 Example Notebooks . 94

6.4 Impact . 99

6.5 Conclusions . 102

7 Summary 103

Appendices 106

A Proposed Cyberinfrastructure Courses 106

A.1 CI for Data Science I (CI1) . 107

A.2 CI for Data Science II (CI2) . 109

A.3 Pedagogy and Additional Details 111

B Proposed Community Outreach Programs 116

B.1 Secondary School Program . 116

B.2 Data Science as a Community Service Program 117

B.3 Additional Details . 117

Bibliography 120

x

List of Figures

3.1 ScalaTion Module and Package Overview 20

3.2 Output of a Multiple Linear Regression Model in ScalaTion 23

3.3 Output of a Model for a Simple Biochemical Reaction 24

3.4 B-Spline Basis Function Overlapping Problem Decomposition . . . 31

3.5 B-Spline Basis Function Disjoint Problem Decomposition 31

3.6 B-Spline Basis Function Optimal Substructure Decomposition . . . 32

3.7 B-Spline Basis Evaluation Times for Φ(t) Orders 3 & 4 35

3.8 B-Spline Basis Evaluation Times for Φ(t) Orders 5 & 6 36

3.9 B-Spline Basis Evaluation Times (Log Scale) for Φ(t) Orders 3 & 4 37

3.10 B-Spline Basis Evaluation Times (Log Scale) for Φ(t) Orders 5 & 6 38

3.11 B-Spline Basis Evaluation Times for D2
tΦ(t) Orders 3 & 4 39

3.12 B-Spline Basis Evaluation Times for D2
tΦ(t) Orders 5 & 6 40

3.13 B-Spline Basis Evaluation Times (Log Scale) for D2
tΦ(t) Orders 3

& 4 . 41

3.14 B-Spline Basis Evaluation Times (Log Scale) for D2
tΦ(t) Orders 5

& 6 . 42

xi

3.15 Code Snippet from Regression.scala 45

4.1 Screenshot of ScalaTion Kernel available in Jupyter Notebook . . . 53

4.2 Screenshot of ScalaTion Kernel Info in Jupyter 54

4.3 ScalaTion Kernel Regression Example before Run 56

4.4 ScalaTion Kernel Regression Example after Run 57

5.1 Regression Spline Fit . 68

5.2 Outline of Functional Tight Clustering Algorithm 70

5.3 Heatmaps of Simulated Data with Increasing SNR 73

5.4 Box plots for Simulated Data . 75

5.5 Heatmap Comparison . 76

5.6 Heatmaps of the Standardized Gene Expression Cluster Results . . 78

6.1 Applied Open Data Science (AODS) JupyterHub 85

6.2 Longley’s Economic Regression Data Notebook 98

6.3 Clustering of Edgar Anderson’s Iris Data Notebook 99

6.4 Deriving Multiple Linear Regression Notebook 100

6.5 Regression Splines Notebook . 101

xii

List of Tables

2.1 Some Open Source Big Data Frameworks 10

2.2 Some Examples of Open and/or Accessible Big Data 12

5.1 Performance Comparison of Results 79

xiii

Chapter 1

Introduction

The recent proliferation of Big Data and open science initiatives brings with it a

need for the provision and improvement of tools for the education and application

of data-driven analytics and scientific investigation. This is evidenced by the

recent growth in Data Science positions in major corporations as well as recent

initiatives by the Computer Science Education (SIGCSE) community (e.g., “CS for

All”, etc.) and multiple programs supported by the National Science Foundation

(NSF) under their “Big Data” initiative portfolio1 (e.g., NRT, ITEST, S-STEM,

STEM+C, etc.).

Some important open research questions in data science education include:

How do you provide tools to support open science, big data, and reproducibility?

What computing infrastructure is available and how do you use it? How do you

make it easier for students and domain experts to do data science and big data

analytics? For each of these questions, we discuss current roadblocks and potential
1https://www.nsf.gov/cise/bigdata/

1

https://www.nsf.gov/cise/bigdata/
https://www.nsf.gov/cise/bigdata/

solutions. Specifically, we describe and exemplify how big data frameworks and

open science can be combined to help mitigate some of the problems related to

these questions. The main contributions of this research can be summarized as

follows:

• We provide an overview of the open source ScalaTion project, a big data

framework that supports big data analytics and simulation modeling.

• To demonstrate how to provide lightweight big data framework integration

in open notebooks, we present the open source ScalaTion Kernel project, a

custom Jupyter kernel that enables ScalaTion support in Jupyter notebooks.

• To demonstrate applied research using ScalaTion, we outline and evaluate a

tight clustering algorithm, written using ScalaTion, for the functional data

analysis of time course omics data.

• To promote reproducibility in open science, we present the Applied Open

Data Science (AODS) project, a collection of customized web applications

for the hosting and sharing of open notebooks with ScalaTion support. This

project also includes shareable, executable, and modifiable example note-

books that utilize ScalaTion to demonstrate various data science topics as

well as detailed documentation on how to easily reproduce the environment

in which the notebooks are hosted.

2

Document Features

Throughout this dissertation, various links to external online sources are included.

These links are clickable in the Portable Document Format (PDF) version of this

document. If the link URL is not displayed inline with the surrounding text, then

it is provided in a footnote on the same page. Some of the links refer to example

Jupyter notebooks that require the ScalaTion Kernel described in this disserta-

tion. A general description of Jupyter notebooks is provided in Chapter 2, and an

overview of the ScalaTion Kernel is provided in Chapter 4. If the reader wishes to

try out some of the notebooks without installing anything on their local machine,

then they should refer to Chapter 6 for information on how to use the applica-

tions and examples provided on the author’s Applied Open Data Science (AODS)

JupyterHub2 website. Interested readers are also encouraged to see Chapter 4 for

information on how to setup their own Jupyter installation with ScalaTion Kernel

support, either locally or as a containerized application.

Roadmap

The rest of this dissertation is organized as follows: some background material is

provided in Chapter 2 in order to motivate the research being presented and better

lead into the individual manuscripts; overviews of the ScalaTion and ScalaTion

Kernel projects are provided in Chapters 3 and 4, respectively; a tight clustering

algorithm, implemented using ScalaTion, is presented and evaluated in Chapter 5;

the Applied Open Data Science (AODS) project and example notebooks are pre-
2http://hub.aods.io/

3

http://hub.aods.io/
http://hub.aods.io/
http://hub.aods.io/

sented in Chapter 6; and Chapter 7 provides a brief summary of the entire work.

4

Chapter 2

Background & Challenges

In this section we present some background material related to the research. Em-

phasis will be placed, as needed, on details pertaining closely to the manuscripts

presented in this dissertation.

2.1 Big Data

The Oxford English Dictionary [2017] defines “big data” as “data of a very large

size, typically to the extent that its manipulation and management present signifi-

cant logistical challenges; (also) the branch of computing involving such data.” Al-

though originally coined by John Mashey in the 1990s [Steve Lohr, 2013], the term

now generally refers to any kind of large-sized data used with different analytics

techniques such as prediction, classification, clustering, etc. [Boyd and Crawford,

2011]. Recent surveys on the topic of big data are provided in Chen et al. [2014],

Sri and Anusha [2016], Khan et al. [2014], and Ward and Barker [2013].

5

2.2 Data Science

Hayashi [1998] defines “data science” as, “not only a synthetic concept to unify

statistics, data analysis, and their related methods but also comprises their results.”

The term generally refers to data-driven scientific investigation and its related

activities, an endeavor that has become more and more popular in recent years

due to the proliferation of Big Data [Provost and Fawcett, 2013; Dhar, 2013] and

Analytics [Waller and Fawcett, 2013]. A good introduction to data science can

be found in Hey et al. [2009]. Recent surveys in data science are provided in Cao

[2017] and Blum et al. [2016].

2.3 Open Science

The term “open science” refers to efforts being made by the greater scientific

community to make the activities involved in scientific investigations more accessi-

ble. This includes publicly accessible hosting of datasets, investigation procedures,

and results in a manner that enables, encourages, and promotes reproducibility.

Efforts include: i) making research articles publicly available for free via open

access [Nicholas et al., 2005; Laakso et al., 2011]; ii) the use of open source soft-

ware such as R [Ihaka and Gentleman, 1996], Spark [Zaharia et al., 2010], Sca-

laTion [Miller et al., 2010], and Python [Van Rossum and Drake, 2011]. iii) the

use of services that help facilitate open development such as GitHub [Dabbish

et al., 2012]; and iv) promoting reproducibility by making analyses available in

open notebook formats such as Jupyter [Ragan-Kelley et al., 2014]. With respect

6

to (i), adoption of the open access model by journals has increased recently due to

the National Science Foundation’s Public Access Plan, which requires that jour-

nal articles produced in relation to NSF-funded research be made freely available

for download, reading, and analysis within a year of publication [National Sci-

ence Foundation, 2015]. In an effort to promote the same kind of openness in

all academic research, regardless of funding, the Open Science Framework organi-

zation recently published, openly, their guidelines for transparency and openness

promotion (TOP) [Alter et al., 2016; Nosek et al., 2016] in journals, which re-

quires authors to properly cite and or make available the research data used in

their articles. Elsevier, one of the journal publishers that has adopted these guide-

lines, defines research data as, “the results of observations or experimentation that

validate research findings,”[Elsevier, 2017], including, “raw data, processed data,

software and algorithms.” Recently, there has also been an annual Open Science

in Big Data (OSBD) workshop1 at the IEEE Big Data Conference.

2.4 Domain-Specific Language

Deursen et al. [2000] defines “domain-specific languages” (DSLs) as, “programming

languages or executable specification languages that offer, through appropriate

notations and abstractions, expressive power focused on, and usually restricted to,

a particular problem domain.” The general idea behind DSLs is that they enable

programmers to write code that more closely resembles domain literature instead

of forcing then to fit a domain-specific problem or specification into a traditional
1https://osbd.github.io/

7

https://osbd.github.io/
https://osbd.github.io/
https://osbd.github.io/

programming paradigm [Hofer and Ostermann, 2010; Hofer et al., 2008]. For

example, consider the dot product operation on vectors from the domain of linear

algebra. The domain literature might use x · y to express the dot product of the

vectors x and y. Using the DSL provided by ScalaTion, a big data framework

for Scala described in Chapter 3, the code for the same dot product is written

as x dot y or, more concisely, as x · y by making use of a Unicode character

for the dot function. Unicode support in DSLs is a natural way to help express

domain-specific notations in programming [Cotterell et al., 2011b].

2.5 Big Data Frameworks

Consistent with the definition by Tekiner and Keane [2013], “big data frameworks”

are software libraries that enable applications to: i) aggregate and filter big data;

ii) generate and fit analytics and simulation models; and iii) organize and interpret

results. They usually have support for parallel and distributed operations, stream

processing, and a battery of different modeling techniques for predictive analyt-

ics, machine learning, data mining, and/or simulation. As some of these terms

are related and may be ambiguous to the reader, we provide a short definition for

each as follows: i) predictive analytics generally refers to predictive model develop-

ment (e.g., regression, time series, classification, clustering, etc.) and estimation,

usually for business purposes [Finlay, 2014]; ii) machine learning is data-driven

predictive analytics that can be either supervised (i.e., makes use of labeled data)

or unsupervised (i.e., uses unlabeled data) [Kohavi and Provost, 1998]; iii) data

8

mining usually refers to unsupervised machine learning techniques where the intent

produce inferences (e.g., patterns and relationships) about the data [Chakrabarti

et al., 2006]; and simulation refers to continuous and/or discrete-event represen-

tations of processes that incorporate knowledge about data inputs and how they

interact [Miller et al., 2013b]. Additionally, support for linear algebra operations,

relational queries, and graph-based queries is usually provided by big data frame-

works as well. A feature matrix for some popular open source big data frameworks

is presented in Table 2.1.

Among the popular big data frameworks presented in Table 2.1, many are

maintained by the American non-profit Apache Software Foundation2, notably

including Hadoop3 and Spark4. Hadoop is a collection of projects founded by

Doug Cutting and Mike Cafarella around 2006 that provide a MapReduce and

distributed file system implementation [Wang et al., 2014] as well as a platform

for cluster resource allocation and scheduling [Vavilapalli et al., 2013]. Spark,

originally developed at UC Berkley, is a framework for providing implicit sup-

port for parallel and distributed operations regardless of paradigm [Zaharia et al.,

2010]. Another interesting characteristic among the popular big data frameworks

is programming language support. After Java, the second most prevalent lan-

guage supported in Table 2.1 is Python. This is no surprise considering Python’s

recent growing popularity among data scientists [Puget, 2016]. The R program-

ming language, while also popular among data scientists, does not appear much
2https://www.apache.org/
3http://hadoop.apache.org/
4http://spark.apache.org/

9

https://www.apache.org/
http://hadoop.apache.org/
http://spark.apache.org/
https://www.apache.org/
http://hadoop.apache.org/
http://spark.apache.org/

Table 2.1: Some Open Source Big Data Frameworks

For each open source big data framework, various support and features are included.
Abbreviations: PAR = Parallel Operations; DOP = Distributed Operations; DDA = Dis-
tributed Data; STR = Stream Processing; RED = Dimensionality Reduction; REG = Re-
gressions; CLA = Classification; CLU = Clustering; SQL = SQL and/or Relational Algebra;
GRA = Graph Queries; TSF = Time Series; and SIM = Simulation. Languages: S = Scala;
J = Java; P = Python; R = R; C = C and/or C++; G = Go; and O = Other language
support. A framework must provide direct support and not merely facilitate implemen-
tation. Only currently maintained (as of November 2017) frameworks with open source
distribution licenses approved by the Open Source Initiative (OSI) are included in this
table.

Name Lang. PA
R

DO
P

DD
A

ST
R

RE
D

RE
G

CL
A

CL
U

SQ
L

GR
A

TS
F

SI
M

Accord.NET 3.8.0 O Y N N N N Y Y Y N N N N
Apache Drill 1.11 JCO Y Y Y Y N N N N Y N N N
Apache Flink 1.3.2 SJ Y Y Y Y N N N N Y N N N
Apache Giraph 1.2.0 J Y Y Y Y N N N N N Y N N
Apache Hadoop 2.8.2 J Y Y Y N N N N N Y N N N
Apache Hive 2.3.0 J Y Y Y Y N N N N Y N N N
Apache Impala 2.10 C Y Y N N N N N N Y N N N
Apache Mahout 0.13.0 SJO Y Y Y N Y N Y Y N N N N
Apache Pig 0.17.0 O Y N N Y N N N N Y N N N
Apache Samza 0.13 SJ Y Y N Y N N N N N N N N
Apache SINGA 1.1.0 JPC Y Y N N N Y Y Y N N N N
Apache Spark 2.1.2 SJPR Y Y Y Y Y Y Y Y Y Y N N
Apache Storm 1.0.5 J Y Y N Y N N N N Y N N N
Caffe 1.0 PC Y Y Y N N N Y N N N N N
DistributedR 1.2.0 R Y Y Y N Y Y Y Y N Y Y N
Google TensorFlow 1.4 JPCG Y Y Y Y Y Y Y Y N N Y N
Microsoft CNTK 2.2 JPCO Y Y N N N Y Y Y N N Y N
Neo4j 3.4.0 J Y N N Y N N N N N Y N N
ScalaTion 1.4 S Y N N Y Y Y Y Y Y Y Y Y
Theano 0.9 P Y N N Y Y N N N N N N N
Torch CO Y N N Y N N Y Y Y N N N
PyTorch P Y N N Y N N Y Y Y N N N

10

in Table 2.1. This suggests that there is either little developer interest in making

a big data framework for R, with DistributedR being a notable exception, or that

data scientists using R simply tend to make use of existing R packages.

2.6 Challenges in Data Science Education

In this section we present some challenges encountered in Data Science Education.

Emphasis will be placed, as needed, on details pertaining closely to the manuscripts

presented in this dissertation.

2.6.1 Storage and Access

The generation of big data, either by scientific investigation or by corporate data

collection, brings with it two related challenges with regard to its use in data

science curricula: i) How do you store the data?; and ii) How do you make the

data accessible for analytics?

Storage is one of the most cited challenges when dealing with big data, as

evidenced in [Chen and Zhang, 2014], [Katal et al., 2013], [Kaisler et al., 2013],

[Siddiqa et al., 2017], and [Marx, 2013]. Where can data science students and

instructors store their data? While recent advancements in nurturing the Nation’s

advanced cyberinfrastructure (discussed in Section 2.6.2) may eventually help mit-

igate the issue, this question still poses real-world logistical problems in the im-

plementation of data science curricula. One potential solution to this problem is

11

via the adoption of container clusters using platforms like Docker5 and Kuber-

netes6 [Bernstein, 2014]. Containers are similar to lightweight virtual machines,

except they usually virtualize at the operating system kernel’s user-space level in-

stead of at the hardware level [Merkel, 2014; Fink, 2014]. Container clusters are

clusters that are setup to deploy containers across the cluster’s infrastructure [Pahl

and Lee, 2015]. With container clusters, it should be possible for instructors and

researchers to deploy different configurations of containerized architectures at dif-

ferent scales. Consider a use case where a student or researcher wants to evaluate

the performance of a distributed algorithm. They can setup a container for the

evaluation experiment, test it locally, then deploy it to the container cluster in

order to actually see the speedup associated with distributed algorithms. Further-

more, they can adjust their containerized architecture to see the speedup (or lack

thereof) at different, reproducible, and readily available scales.

If instructors and students need to store their own big data, then one potential

solution is the use of open tools that provide distributed file systems. For exam-

ple, both the Dat Project13 and Apache HDFS/YARN [Vavilapalli et al., 2013]

are openly available, free for non-commercial use, and support a flexible array of

configurations. However, the use of distributed file systems does require access to
5https://www.docker.com/
6https://kubernetes.io/
7https://catalog.data.gov/dataset
8https://www.kaggle.com/datasets
9https://archive.ics.uci.edu/ml/index.php

10http://www.internationalgenome.org/data
11http://proteomics.ucsd.edu/ProteoSAFe/datasets.jsp
12https://cloud.google.com/bigquery/public-data/
13https://datproject.org

12

https://www.docker.com/
https://kubernetes.io/
https://kubernetes.io/
https://datproject.org
https://www.docker.com/
https://kubernetes.io/
https://catalog.data.gov/dataset
https://www.kaggle.com/datasets
https://archive.ics.uci.edu/ml/index.php
http://www.internationalgenome.org/data
http://proteomics.ucsd.edu/ProteoSAFe/datasets.jsp
https://cloud.google.com/bigquery/public-data/
https://datproject.org

Table 2.2: Some Examples of Open and/or Accessible Big Data

For each source, a short description, number of datasets, and general access URL is
provided. The number of datasets indicated is based on statistics gathered in early
November, 2017.

Source Description Datasets

Data.gov7 Federated U.S. government data. 197,993

Kaggle8 Open Data for Machine Learning. 1,261

UCI-ML Repository9 Machine Learning datasets. 394

1000 Genomes Proj.10 Human variation and genotype data. 2,504

Proteome eCommons11 Proteomics data. 8,037

Google BigQuery12 Varies. Terabytes

multiple computers and storage devices. Such a setup may not be feasible in some

situations. A better solution is to provide data science students and instructors

easier access to existing datasets. Some examples of open and/or accessible big

data are provided in Table 2.2. While all of the examples in this table constitute

open data, some differ with respect to their big data characterization. Some are

big in the quantity of datasets provided while others are big in actual file size.

Data from the 1000 Genomes Project actually falls into both of these character-

izations, coming in at more than 200 terabytes in size for 2,600 human genome

datasets [Clarke et al., 2012].

13

https://catalog.data.gov/dataset
https://www.kaggle.com/datasets
https://archive.ics.uci.edu/ml/index.php
http://www.internationalgenome.org/data
http://proteomics.ucsd.edu/ProteoSAFe/datasets.jsp
https://cloud.google.com/bigquery/public-data/

2.6.2 Cyberinfrastructure

Over the past decade, the United States has transitioned from a funding model

that encourages the creation and curation of individual computing resources for

facilitating the pursuit of scientific investigations to a model that, instead, en-

courages the use of a sustainable, national advanced cyberinfrastructure (CI),

broadly defined as the resources, tools, and services for advanced computation,

data handling, networking and security. This includes technologies that support

data science within a highly interoperable and collaborative ecosystem. The ad-

vancement of national, advanced CI is progressing, as evidenced by existing NSF

CI and research projects such as XSEDE [Towns et al., 2014], NanoHub [Klimeck

et al., 2008], CyVerse (formerly iPlant Collaborative [Goff et al., 2011]), LIGO [Al-

thouse et al., 1992], and NHERI DesignSafe [Rathje et al., 2017]. An important

challenges to address with regard to advanced CI how to incorporate it in data

science curricula.

There is clear evidence that training and development programs are needed,

as highlighted by the National Strategic Computing Initiative [Obama, 2015], the

National Academies’ report on Future Directions for NSF Advanced Computing

Infrastructure to Support U.S. Science and Engineering in 2017-2020 [National

Academies of Sciences, Engineering, and Medicine, 2016], and the Federal Big

Data Research and Development Strategic Plan [Beninson et al., 2016]. Although

infrastructure-specific training opportunities currently exist, they still suffer from

two key problems that unintentionally limit collective impact: (i) considerable

overlap exists in the training material for the different opportunities; and (ii)

14

while clearly defined and assessable, these training opportunities are often tailored

specifically to their specific infrastructure environments. These problems are real,

non-disjoint, and solvable in a way that complements these existing programs.

One potential solution to this challenge is the development of undergraduate

CI courses and integrative community outreach programs. While course devel-

opment would be primarily targeted at the undergraduate level, there would be

some natural overlap to the graduate level (e.g., Dual BS/MS and aspects of MS

programs) as well as to professionals seeking additional training. Each of these

proposed programs are outlined below:

• Course Development: We propose the development and adoption of two

courses, one undergraduate course and one graduate course, that focus on the

application of advanced CI to applied data science. The first course empha-

sizes training aspect so that students understand how to apply data science

investigations using advanced CI. The second course emphasizes algorithms,

paradigms, and performance metrics for advanced CI. Both courses are to be

developed with the idea of easily providing a partially or fully online compo-

nent as well as make use of modern pedagogical approaches when taught in

the classroom. A brief overview of each course, including details regarding

pedagogy, is provided in Appendix A.

• Integrative Community Outreach: One aspect of this proposal includes

two community outreach programs designed to raise awareness of data sci-

ence and CI in STEM+C at the undergraduate, graduate, secondary school,

and community levels. These programs will complement the other aspects of

15

this proposal by providing more avenues for experiential and service learn-

ing [Krusche et al., 2017; Derbinsky and Suresh, 2017]. The first program

complements new and existing high school after school programs by provid-

ing organizers with the ability to demonstrate concepts more easily through

the use of data science and CI. The second program emphasizes engagement

by undergraduate students by providing the tools necessary to facilitate the

integration of community service with applied data science projects. A brief

overview of each community outreach program is provided in Appendix B.

The programs outlined above would increase net collective impact by complement-

ing the existing arsenal of training and development opportunities. Additionally,

they will equip trainees with the preliminary knowledge needed to be successful in

the program complement as well as in the general application of advanced CI for

applied data science.

2.6.3 Reproducibility

Perhaps the most fundamental concept in science is falsifiability, that is, the idea

that results should always have a potential to be proven false. In order to facilitate

this, the results and methods of a scientific investigation should be reproducible.

One key challenge with regard to reproducibility in data science education is how

to disseminate results in a way that is readable, reproducible, and easily shareable.

While reproducibility has always been a critical aspect of scientific investigation,

a shocking lack of reproducible results in the literature for various disciplines has

surfaced in recent years [Aarts et al., 2015; Baker, 2016; Ioannidis, 2016; Aichner

16

et al., 2016; Camerer et al., 2016].

How do you make data science results and methods easy to share? One solution

is via open notebook science and open notebook formats such as Jupyter [Ragan-

Kelley et al., 2014]. Open notebook science has grown in popularity since the Na-

ture interview by Sanderson [2008] and the recent open science movement. With

open notebooks, students can easily modify and extend starter code, execute that

code, and incorporate notes to produce “computational narratives” that, if shared,

can be reproduced by others with the same notebook software. In the case of

Jupyter notebooks, this is all done via a web interface with an option for users

to download their notebooks locally if needed. Additionally, a local Jupyter in-

stallation can be used when the user does not have access to the instructional

server.

These ideas can be easily extended to data science investigations using big data

frameworks. With the current open access trend, research articles, while tradition-

ally published online in PDF format, are readily available in other formats such

as HTML. These articles could also be made available in open notebook formats.

At the the very least, research data and source code to replicate the investigation

should be included with research published scientific articles. As discussed in Sec-

tion 2.3, a growing number of scientific journal publishers now support the open

data initiatives by the National Science Foundation and the Open Science Frame-

work organization. These initiatives require authors to provide their research data

and source code in an effort to promote openness and reproducibility. The de-

tails on how to support the ScalaTion big data framework in Jupyter notebooks

17

is provided in Chapter 4. Example notebooks are provided in Chapter 6.

18

Chapter 3

ScalaTion

Michael E. Cotterell 1, Hao Peng 1, Nicholas Klepp 1, and John A. Miller 1. “Sca-

laTion”. 2017. [in preparation]

1Department of Computer Science, University of Georgia, Athens, GA, USA

19

3.1 Abstract

ScalaTion is a big data framework, written in Scala, that provides analytics tech-

niques for prediction, classification, clustering, dimensionality reduction, func-

tional data analysis, and simulation facilities for discrete-event simulation model-

ing. Major packages include support for serial and parallel execution of algorithms

for linear algebra, analytics, simulation, and optimization. The software is free and

open source under an MIT License.

3.2 Motivation and Significance

ScalaTion is motivated by the need to make big data analytics and simulation

modeling more approachable to a cross-section of users, including data scientists

and business analysts. Originally developed with expertise learned from the JSIM

project [Miller et al., 1997], ScalaTion is constantly evolving via applied research

in computer science and its use as an instructional tool for data science. To

the developers of ScalaTion, approachability means making it easier for users to

do the following: i) express and execute models via concise, readable, and well-

documented source code; ii) relate models to domain knowledge via domain-specific

language [Miller et al., 2010; Cotterell et al., 2011a]; and iii) combine modeling

techniques along a continuum from analytics to simulation modeling [Miller et al.,

2013a].

20

3.3 Software Description

3.3.1 Software Architecture

The module and top-level package structure for ScalaTion is presented in Fig-

ure 3.1. Section 3.3.2 describes the functionality provided by each module.

Figure 3.1: ScalaTion Module and Package Overview

21

3.3.2 Software Functionalities

As seen in Figure 3.1, ScalaTion consists of four modules (soon five), each con-

taining a collection of related packages and sub-packages written in Scala. Overall

functionality includes many techniques for prediction, classification, clustering, di-

mensionality reduction, functional data analysis, and simulation modeling. Major

packages include support for serial and parallel execution of implemented algo-

rithms. A description of each module, including major functionalities, follows: i)

The scalation_mathstat module provides comprehensive mathematical and sta-

tistical capabilities, including support linear algebra operations, random number

generation, and plotting. ii) The scalation_database module provides graph

analytics and two NoSQL main memory databases: a graph database system and

a columnar database system. iii) The scalation_modeling module provides sup-

port for the creation and analysis of analytics, optimization, and simulation mod-

els. iv) The soon to be added scalation_automod module will provide basic

support for various automated modeling techniques. v) The scalation_models

module provides a collection of sample models and applications facilitated by the

other modules. A complete description of the packages in each module is presented

in the developer documentation.

22

http://www.cs.uga.edu/~jam/scalation_1.3/README.html

3.4 Illustrative Examples

3.4.1 Example 1: Multiple Linear Regression

In this example, the AutoMPG_Regression object performs multiple linear regres-

sion on the AutoMPG dataset1 from the UCI Machine Learning Repository [Lich-

man, 2013]. The source code for this example is available in the apps.analytics

package in AutoMPG_Regression.scala2. Example output is provided in Fig-

ure 3.2.

3.4.2 Example 2: Simple Biochemical Reaction Model in

ScalaTion

In this example, the Reaction object models a simple biochemical reaction ac-

cording some ordinary differential equations (ODEs). A glycan will pick up a new

glycan residue to form another glycan. The reaction will be catalyzed by a pro-

tein enzyme. The source code for this example is available in the apps.activity

package in Reaction.scala3. Example output is given in Figure 3.3.
1http://archive.ics.uci.edu/ml/datasets/Auto+MPG
2http://cobweb.cs.uga.edu/~jam/scalation_1.3/scalation_models/src/main/scala/

apps/analytics/AutoMPG_Regression.scala
3http://www.cs.uga.edu/~jam/scalation_1.4/scalation_models/src/main/scala/

apps/activity/Reaction.scala

23

http://archive.ics.uci.edu/ml/datasets/Auto+MPG
http://cobweb.cs.uga.edu/~jam/scalation_1.3/scalation_models/src/main/scala/apps/analytics/AutoMPG_Regression.scala
http://www.cs.uga.edu/~jam/scalation_1.4/scalation_models/src/main/scala/apps/activity/Reaction.scala
http://archive.ics.uci.edu/ml/datasets/Auto+MPG
http://cobweb.cs.uga.edu/~jam/scalation_1.3/scalation_models/src/main/scala/apps/analytics/AutoMPG_Regression.scala
http://cobweb.cs.uga.edu/~jam/scalation_1.3/scalation_models/src/main/scala/apps/analytics/AutoMPG_Regression.scala
http://www.cs.uga.edu/~jam/scalation_1.4/scalation_models/src/main/scala/apps/activity/Reaction.scala
http://www.cs.uga.edu/~jam/scalation_1.4/scalation_models/src/main/scala/apps/activity/Reaction.scala

Figure 3.2: Output of a Multiple Linear Regression Model in ScalaTion

In addition to individual parameter estimates, other model diagnostics are
provided, including sum of squared error/residuals (SSE), standard error, co-
efficient of determination (R-Squared), etc.

> run-main apps.analytics.AutoMPG_Regression
[info] Running apps.analytics.AutoMPG_Regression
[info] model: y = b0 + b1*x1 + b2*x2 + b3*x3 + b4*x4 + b5*x5

+ b6*x6 + b7*x7
[info] b = VectorD(-17.2184, -0.493376, 0.0198956, -0.0169511,

-0.00647404, 0.0805758, 0.750773, 1.42614)
[info] Coefficients:
[info] | Estimate | StdErr | t value | Pr(>|t|)
[info] x0 | -17.218435 | 4.644294 | -3.7074 | 0.00021
[info] x1 | -0.493376 | 0.323282 | -1.5261 | 0.12697
[info] x2 | 0.019896 | 0.007515 | 2.6474 | 0.00811
[info] x3 | -0.016951 | 0.013787 | -1.2295 | 0.21888
[info] x4 | -0.006474 | 0.000652 | -9.9288 | 0.00000
[info] x5 | 0.080576 | 0.098845 | 0.8152 | 0.41497
[info] x6 | 0.750773 | 0.050973 | 14.7288 | NaN
[info] x7 | 1.426140 | 0.278136 | 5.1275 | 0.00000
[info]
[info] SSE: 4252.2125
[info] Residual stdErr: 3.3277 on 7 degrees of freedom
[info] R-Squared: 0.8215, Adjusted rSquared: 0.8182
[info] F-Statistic: 252.4280 on 7 and 384 DF
[info] AIC: 950.5017
[info] BIC: 982.2718

3.4.3 More Examples

More source code and executable examples are available in the apps4 package in

the scalation_models module.
4http://www.cs.uga.edu/~jam/scalation_1.4/scalation_models/src/main/scala/

apps/

24

http://www.cs.uga.edu/~jam/scalation_1.4/scalation_models/src/main/scala/apps/
http://www.cs.uga.edu/~jam/scalation_1.4/scalation_models/src/main/scala/apps/
http://www.cs.uga.edu/~jam/scalation_1.4/scalation_models/src/main/scala/apps/

Figure 3.3: Output of a Model for a Simple Biochemical Reaction

Each transition links to all of the incoming/outgoing places via true/false
arcs. Additionally, the model establishes a back link to the containing Petri
net.

3.5 Functional Data Analysis in ScalaTion

3.5.1 Introduction

Functional Data Analysis (FDA) is a rapidly growing area of analytics that aims

to treat data as continuous functions instead of discrete, sampled observations in

order to facilitate more elegant modeling. The appeal of this approach is captured

in four main ideas [Ramsay and Dalzell, 1991; Ramsay and Silverman, 2005]: n

• Frequency of Data: With the advent of Big Data [Nature, 2008], data

is being collected at a faster rate and in larger quantities than ever before.

Instead of treating data as discrete observations, the rate of data acquisi-

tion enables analysts to collect enough data to realistically reproduce the

25

underlying process as a function even with only a finite number of actual

observations available.

• Modeling Simplicity: Modeling can become simpler when the data is

treated as functions. For example, suppose the data being sampled is known

to correspond to some understood process. FDA allows the analyst to more

elegantly aggregate and compose the data by taking advantage of its func-

tional form.

• Functional Analysis: By treating data as functions, analysts can take ad-

vantage of existing methods from the field of Functional Analysis [Willem,

2013; Muscat, 2014], a branch of mathematics concerned with infinite-dimensional

vector spaces and mappings between them. In particular, it facilitates oper-

ations on Hilbert spaces.

• Structural Inference: Analysts can use the structure of the functions in

order to make inferences about the underlying process that produced the

functions [Ramsay and Dalzell, 1991], e.g., via a clustering analysis [Tarpey

and Kinateder, 2003]. This is incredibly applicable when the functions corre-

spond to differential equations describing part of a process. Such equations

can be combined with other equations to make understanding the process

potentially easier.

In all, it enables analysts to obtain a more wholistic model that embodies the

various relationships among the data. The seminal work in FDA is [Ramsay and

Silverman, 1997], which has been updated to a second edition in [Ramsay and

26

Silverman, 2005].

Related Work

Below is a list of other available software tools and packages that are explicitly

advertised as supporting FDA.

• R ‘fda’ Package [Ramsay et al., 2015]: This package and its included

examples are provided by the authors of [Ramsay and Silverman, 2005]. In

addition to the package manual, and introduction to the package is provided

in [Ramsay et al., 2009]. MATLAB and S-PLUS versions of this package are

available from http://www.psych.mcgill.ca/misc/fda/software.html.

• R ‘refund’ Package [Goldsmith et al., 2016]: This package includes meth-

ods for regression for functional data, including function-on-scalar, scalar-on-

function, and function-on-function regression models. Some of the functions

are applicable to image data.

• R ‘fdasrvf’ Package [Tucker, 2017]: This package performs alignment,

PCA, and modeling of multidimensional and unidimensional functions using

the square-root velocity framework [Srivastava et al., 2011] and [Tucker et al.,

2013]. This framework allows for elastic analysis of functional data through

phase and amplitude separation.

• R ‘fda.usc’ Package [Bande et al., 2016]: This package contains routines

for exploratory and descriptive analysis of functional data such as depth

27

http://www.psych.mcgill.ca/misc/fda/software.html

measurements, atypical curves detection, regression models, supervised clas-

sification, unsupervised classification and functional analysis of variance.

• R ‘funData’ Package [Happ, 2016]: This package provides classes for uni-

variate and multivariate functional and image data and utility functions.

• R ‘fds’ Package [Shang and Hyndman, 2013]: This package contains a list

of functional time series, sliced functional time series, and functional data

sets.

• R ‘rainbow’ Package [Shang and Hyndman, 2016]: This package functions

and data sets for functional data display and outlier detection.

• R ‘roahd’ Package [Tarabelloni et al., 2017]: This package a collection

of methods for the robust analysis of univariate and multivariate functional

data, possibly in high-dimensional cases, and hence with attention to com-

putational efficiency and simplicity of use.

• R ‘FDboost’ Package [Brockhaus et al., 2016]: This package contains sup-

port for functional regression models (e.g., scalar-on-function, function-on-

scalar and function-on-function regression models) that can be fitted by a

component-wise gradient boosting algorithm.

• R ‘fdapace’ Package [Dai et al., 2017]: This package provides implementa-

tions of various methods for performing FDA, FPCA, and Empirical Dynam-

ics. Its core contribution is an implementation of the Principal Analysis by

28

Conditional Estimation (PACE) algorithm for performing FPCA on sparsely

or densely sampled random trajectories and time courses.

• Python ‘fdasrsf’ Package [Tucker, 2013]: This package is designed to

implement the square root slope framework, a framework for separating

the phase and the amplitude variability in functional data [Tucker et al.,

2013], as well as functional principal component analysis (fPCA) [Srivas-

tava et al., 2011]. The latest version of this package is available from

https://pypi.python.org/pypi/fdasrsf/1.0.1.

ScalaTion

ScalaTion is a Scala-based library that serves a testbed for exploring a model-

ing continuum that includes Analytics, Simulation and Optimization. Recently,

support has been added for facilitating smoothing, functional regression, and func-

tional clustering. The modeling techniques supported include the following:

• Smoothing Spline Modeling

• Scalar-on-Function Regression Modeling

With respect to the estimation of Smoothing Spline models, ScalaTion supports

various factorization techniques, including Cholesky and LU factorization, in ad-

dition to the standard inverse when using the least squares solution. Currently,

the package supports the following basis functions for smoothing:

• B-Spline

29

https://pypi.python.org/pypi/fdasrsf/1.0.1

• Polynomial

• Fourier

• Radial

Since the use of B-Spline basis functions is popular in FDA, we have provided a

running time analysis and comparison with other packages in Section 3.5.2. Using

some of the facilities described above, ScalaTion will soon support the following

additional FDA techniques:

• Functional Clustering

• Functional Time Series

3.5.2 B-Spline Running Time Analysis and Evaluation

In this section, we describe two different ways to create the design matrix Φ and

second derivative matrix D2Φ for the estimation of a smoothing spline model.

Specifically, given an order k (degree k − 1) and non-decreasing input vector t =

[t0, t1, . . . , tn−1] of length n, we construct the matrix Φ = Φ(t). Each element of

the matrix is computed using Φi,j = φj(ti) where φj(t) is an order-k B-Spline basis

function parameterized with knot vector (t(k−1)
0 , t, t(k−1)

n−1) (i.e., a “clamped” version

of t). In a similar fashion, we construct the matrix D2Φ = D2Φ(t) where D2Φ(t)

denotes taking the second derivative of each φ(t) with respect to t and evaluating

it at each point provided in t.

We constructed Φ and D2Φ using four different methods: i) the bsplineS

function provided by R’s fda package; ii) the Bspline.collmat function provided

30

by Python’s bspline module; ii) a recursive implementation written in Scala using

ScalaTion; and iv) a dynamic programming implementation also written in Scala

using ScalaTion.

A quick glance at R’s bsplineS function in the fda package [Ramsay et al.,

2015] shows that it is calling an S-PLUS function called spline.des, which calls

some C programming language code. The source code is licensed under the GNU

General Public License and contains little inline documentation describing the

method being used. A cursory glance suggests that they may be using an im-

plementation that is similar to ScalaTion’s dynamic programming approach (ex-

plained later in this section), however, this is not clear from observations of their

implementation’s running time.

According to John T. Foster and Juha Jeronen, the author’s of Python’s

Bspline.collmat function, their implementation is a memoized version of the

recursive definition for B-Spline basis functions. The source code is licensed under

an MIT license and available on GitHub5.

The recursive implementation provided by ScalaTion simply follows the re-

cursive definition for the j-th order k B-spline basis function φj(t) as described

by [Patrikalakis and Maekawa, 2010]:

φj,k(t) = t− τj
τj+k−1 − τj

φj,k−1(t) + τj+k − t
τj+k − τj+1

φj+1,k−1(t) (3.1)

where
5https://github.com/johntfoster/bspline

31

https://github.com/johntfoster/bspline
https://github.com/johntfoster/bspline

φj,1(t) =

1 τj ≤ t < τj+1

0 otherwise.
(3.2)

Similarly, the first derivativeDφj,m(t) can be defined as [Patrikalakis and Maekawa,

2010; Piegl and Tiller, 1997]:

Dφj,k(t) = k − 1
τj+k−1 − τj

φj,k−1(t)− k − 1
τj+k − τj+1

φj+1,k−1(t). (3.3)

Other derivatives Dnφj,m(t) can be computed similarly by further differencing the

coefficients:

Dnφj,k(t) = k − 1
τj+k−1 − τj

Dn−1φj,k−1(t)− k − 1
τj+k − τj+1

Dn−1φj+1,k−1(t). (3.4)

A direct implementation of the recursive function is highly inefficient. As is

seen in the recursion tree presented in Figure 3.4, there are many overlapping

sub-problems that are re-evaluated in order to perform the desired evaluation. To

Figure 3.4: B-Spline Basis Function Overlapping Problem Decomposition

φ0,4 φ1,4 · · · φn−4−1,4

φ0,3 φ1,3 φ2,3 · · · φn−3−1,3

φ0,2 φ1,2 φ2,2 φ3,2 · · · φn−2−1,2

φ0,1 φ1,1 φ2,1 φ3,1 φ4,1 · · · φn−1−1,1

analyze the complexity of this approach, let’s examine Figure 3.5, which shows the

recursion tree with for a single order 4 B-spline basis function evaluation with its

32

sub-problems displayed disjoint (i.e., we explicitly show repeated sub-problems).

Let T (k) denote the number of floating point operations needed to evaluate a B-

Figure 3.5: B-Spline Basis Function Disjoint Problem Decomposition

φi,4

φi,3 φi+1,3

φi,2 φi+1,2 φi+2,2φi+1,2

φi+2,1φi+1,1φi+1,1φi,1 φi+2,1 φi+3,1 φi+3,1 φi+4,1

spline basis function of order k. Clearly, by the recursive definition of φj,k(t), we

have the following recurrence relation for T (n):

T (k) = 2T (k − 1) + Θ(1) = Θ(1) ·
k∑
i=1

2i−1 = Θ(2k + 1) = Θ(2k) (3.5)

Therefore, the number of floating point operations for evaluating all of the (n −

k + 1)-many basis functions for a particular input point is:

(n− k − 1) ·Θ(2k) = Θ(n2k − k2k − 2k)

= O(n2k), assuming k ≤ n.

(3.6)

As t often, and in our case precisely, contains Θ(n) input points, the construction

of Φ where Φi,j = φj(ti) requires Θ(n) ·O(n2k) = O(n22k) floating point operations

using this recursive formulation.

A better implementation involves dynamic programming. Consider the prob-

33

lem decomposition described in Figure 3.6, where all order k B-spline basis func-

tions are evaluated at an input point t [de Boor et al., 2001].. Here, a bottom-up

Figure 3.6: B-Spline Basis Function Optimal Substructure Decomposition

φ0,k φ1,k · · · φn−k−1,k

φ0,k−1 φ1,k−1 φ2,k−1 · · ·φn−(k−1)−1,k−1

φ0,1 φ1,1 φ2,1 φ3,1 · · · φn−(k−k)−1,1

approach is observed where each level represents the evaluations of the basis func-

tions for a particular order, starting at order 1. Evaluating the basis functions for

a particular level/order depends only on the optimal solution for the level/order

below. Assuming the first level/order is evaluated correctly, this constitutes an op-

timal substructure and satisfies the principle of optimality [Bellman, 1952]. This

dynamic programming approach requires k levels to evaluate all B-spline basis

functions of order k with n− (k − i)− 1 evaluations at level 1 ≤ i ≤ k. The total

number of floating point operations for evaluating a particular input point is:

Θ(1)
k∑
i=1

(n− (k − i)− 1) = Θ(1)
k∑
i=1

(n− k + i− 1)

= Θ(1)
[
k∑
i=1

n−
k∑
i=1

k +
k∑
i=1

i−
k∑
i=1

1
]

= Θ(1)(kn− k2 + k(k + 1)
2 − k)

= O(nk), assuming k ≤ n.

(3.7)

34

As t often, and in our case precisely, contains Θ(n) input points, the construction

of Φ where Φi,j = φj(ti) requires Θ(n) ·O(nk) = O(n2k) floating point operations

using this dynamic programming formulation.

Both the recursive and dynamic programming formulations were implemented

in ScalaTion. We observed their running times, along with R’s bsplineS func-

tion (from the fda package) and Python’s Bspline.collmat function (from the

bspline module), for different sized input vectors over 100 replications. These ob-

servations were conducted on a single node in the University of Georgia’s “sapelo”

cluster, running a 64-bit CentOS 6.5 distribution of the Linux operation system

with a 48 core AMD Opteron processor and 128GB of memory. Special care was

taken to minimize and or exclude the impact of garbage collection on timings by

observing each running each method separately for each knot vector configuration.

The average evaluation times for Φ = Φ(t) are provided in Figures 3.7 and 3.9

for orders 3 and 4 and Figures and Figures 3.8 and 3.10 for orders 5 and 6. The

average evaluation times for D2Φ = D2Φ(t) are provided in Figures 3.11 and 3.13

for orders 3 and 4 and Figures 3.12 and 3.14 for orders 5 and 6. As expected, the

recursive implementations are inefficient compared to the others. Across all obser-

vations, ScalaTion’s dynamic programming implementation performs the best.

Acknowledgments

This study was supported in part by resources and technical expertise from the

Georgia Advanced Computing Resource Center, a partnership between the Uni-

versity of Georgia’s Office of the Vice President for Research and Office of the Vice

35

Figure 3.7: B-Spline Basis Evaluation Times for Φ(t) Orders 3 & 4

Average evaluation times in milliseconds, over 100 replications, for Φ(t) across
different lengths of a uniformly-spaced, non-decreasing input vector t, assum-
ing the underlying knot vector is a clamped version of t.

(a) Order 3

50

100

150

200

100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

m
s
)

input points

R fda bsplineS
Python bspline.Bspline.collmat (Memoization)

ScalaTion B_Spline (Recursive)
ScalaTion B_Spline (DP)

(b) Order 4

50

100

150

200

250

100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

m
s
)

input points

R fda bsplineS
Python bspline.Bspline.collmat (Memoization)

ScalaTion B_Spline (Recursive)
ScalaTion B_Spline (DP)

36

Figure 3.8: B-Spline Basis Evaluation Times for Φ(t) Orders 5 & 6

Average evaluation times in milliseconds, over 100 replications, for Φ(t) across
different lengths of a uniformly-spaced, non-decreasing input vector t, assum-
ing the underlying knot vector is a clamped version of t.

(a) Order 5

50

100

150

200

250

300

350

100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

m
s
)

input points

R fda bsplineS
Python bspline.Bspline.collmat (Memoization)

ScalaTion B_Spline (Recursive)
ScalaTion B_Spline (DP)

(b) Order 6

100

200

300

400

500

600

100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

m
s
)

input points

R fda bsplineS
Python bspline.Bspline.collmat (Memoization)

ScalaTion B_Spline (Recursive)
ScalaTion B_Spline (DP)

37

Figure 3.9: B-Spline Basis Evaluation Times (Log Scale) for Φ(t) Orders 3 & 4

Average evaluation times in milliseconds (presented in log10-scale), over 100
replications, for Φ(t) across different lengths of a uniformly-spaced, non-
decreasing input vector t, assuming the underlying knot vector is a clamped
version of t.

(a) Order 3

1

10

100

1000

100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

m
s
)

[l
o
g
 s

c
a
le

]

input points

R fda bsplineS
Python bspline.Bspline.collmat (Memoization)

ScalaTion B_Spline (Recursive)
ScalaTion B_Spline (DP)

(b) Order 4

1

10

100

1000

100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

m
s
)

[l
o
g
 s

c
a
le

]

input points

R fda bsplineS
Python bspline.Bspline.collmat (Memoization)

ScalaTion B_Spline (Recursive)
ScalaTion B_Spline (DP)

38

Figure 3.10: B-Spline Basis Evaluation Times (Log Scale) for Φ(t) Orders 5 & 6

Average evaluation times in milliseconds (presented in log10-scale), over 100
replications, for Φ(t) across different lengths of a uniformly-spaced, non-
decreasing input vector t, assuming the underlying knot vector is a clamped
version of t.

(a) Order 5

1

10

100

1000

100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

m
s
)

[l
o
g
 s

c
a
le

]

input points

R fda bsplineS
Python bspline.Bspline.collmat (Memoization)

ScalaTion B_Spline (Recursive)
ScalaTion B_Spline (DP)

(b) Order 6

1

10

100

1000

100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

m
s
)

[l
o
g
 s

c
a
le

]

input points

R fda bsplineS
Python bspline.Bspline.collmat (Memoization)

ScalaTion B_Spline (Recursive)
ScalaTion B_Spline (DP)

39

Figure 3.11: B-Spline Basis Evaluation Times for D2
tΦ(t) Orders 3 & 4

Average evaluation times in milliseconds, over 100 replications, for D2
t Φ(t)

across different lengths of a uniformly-spaced, non-decreasing input vector t,
assuming the underlying knot vector is a clamped version of t.

(a) Order 3

50

100

150

200

100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

m
s
)

input points

R fda bsplineS
Python bspline.Bspline.collmat (Memoization)

ScalaTion B_Spline (Recursive)
ScalaTion B_Spline (DP)

(b) Order 4

100

200

300

400

500

600

100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

m
s
)

input points

R fda bsplineS
Python bspline.Bspline.collmat (Memoization)

ScalaTion B_Spline (Recursive)
ScalaTion B_Spline (DP)

40

Figure 3.12: B-Spline Basis Evaluation Times for D2
tΦ(t) Orders 5 & 6

Average evaluation times in milliseconds, over 100 replications, for D2
t Φ(t)

across different lengths of a uniformly-spaced, non-decreasing input vector t,
assuming the underlying knot vector is a clamped version of t.

(a) Order 5

0

500

1000

1500

2000

2500

100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

m
s
)

input points

R fda bsplineS
Python bspline.Bspline.collmat (Memoization)

ScalaTion B_Spline (Recursive)
ScalaTion B_Spline (DP)

(b) Order 6

0

1000

2000

3000

4000

5000

6000

7000

8000

100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

m
s
)

input points

R fda bsplineS
Python bspline.Bspline.collmat (Memoization)

ScalaTion B_Spline (Recursive)
ScalaTion B_Spline (DP)

41

Figure 3.13: B-Spline Basis Evaluation Times (Log Scale) for D2
tΦ(t) Orders 3 &

4

Average evaluation times in milliseconds (presented in log10-scale), over 100
replications, for D2

t Φ(t) across different lengths of a uniformly-spaced, non-
decreasing input vector t, assuming the underlying knot vector is a clamped
version of t.

(a) Order 3

1

10

100

1000

100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

m
s
)

[l
o
g
 s

c
a
le

]

input points

R fda bsplineS
Python bspline.Bspline.collmat (Memoization)

ScalaTion B_Spline (Recursive)
ScalaTion B_Spline (DP)

(b) Order 4

1

10

100

1000

100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

m
s
)

[l
o
g
 s

c
a
le

]

input points

R fda bsplineS
Python bspline.Bspline.collmat (Memoization)

ScalaTion B_Spline (Recursive)
ScalaTion B_Spline (DP)

42

Figure 3.14: B-Spline Basis Evaluation Times (Log Scale) for D2
tΦ(t) Orders 5 &

6

Average evaluation times in milliseconds (presented in log10-scale), over 100
replications, for D2

t Φ(t) across different lengths of a uniformly-spaced, non-
decreasing input vector t, assuming the underlying knot vector is a clamped
version of t.

(a) Order 5

1

10

100

1000

10000

100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

m
s
)

[l
o
g
 s

c
a
le

]

input points

R fda bsplineS
Python bspline.Bspline.collmat (Memoization)

ScalaTion B_Spline (Recursive)
ScalaTion B_Spline (DP)

(b) Order 6

1

10

100

1000

10000

100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

m
s
)

[l
o
g
 s

c
a
le

]

input points

R fda bsplineS
Python bspline.Bspline.collmat (Memoization)

ScalaTion B_Spline (Recursive)
ScalaTion B_Spline (DP)

43

President for Information Technology.

3.6 Impact

ScalaTion represents an excellent tool for making big data analytics more ap-

proachable. It allows users to express, execute, and connect together models

that are more concise and readable through well documented code and the use

of domain-specific language. For example, each class in the framework is not only

documented at the interface level with examples, it is also documented internally

in order to provide insight into the implementation details. Implementations make

use of domain-specific language, whenever possible, in order to promote domain

recognition and validation by those familiar with the particular domain. A good

example that illustrates both of these points can be seen in Regression.scala6,

where the source code and documentation for performing multiple linear regression

resides. As seen in Figure 3.15, the train function, which is used to estimate a

regression model’s coefficient vector, provides illustrative documentation for both

its function interface and implementation. Those familiar with matrix factoriza-

tion in the domain of linear algebra will recognize the use of various factorization

techniques for solving the regression’s set of linear equations. Most source code

files, including Regression.scala, also include test applications near the bottom

of the file that provide illustrative usage examples for the classes and functions

defined in the file.
6http://www.cs.uga.edu/~jam/scalation_1.4/scalation_modeling/src/main/scala/

scalation/analytics/Regression.scala

44

http://www.cs.uga.edu/~jam/scalation_1.4/scalation_modeling/src/main/scala/scalation/analytics/Regression.scala
http://www.cs.uga.edu/~jam/scalation_1.4/scalation_modeling/src/main/scala/scalation/analytics/Regression.scala
http://www.cs.uga.edu/~jam/scalation_1.4/scalation_modeling/src/main/scala/scalation/analytics/Regression.scala

Additionally, ScalaTion helps support previous and existing research in analyt-

ics. Some examples include: parallel, big data Bayesian Network classifiers with

efficient cross-validation are implemented using ScalaTion in [Peng et al., 2017];

simulation models, modeled using ScalaTion, for traffic flow and travel times are

discussed in [Bowman and Miller, 2016]; and support for semi-automated model

selection using ontologies and meta-learning is presented in [Nural et al., 2015]

and [Nural et al., 2017], respectively.

Furthermore, ScalaTion is also available for use in Jupyter [Ragan-Kelley et al.,

2014] notebooks via the ScalaTion Kernel project presented in Chapter 4, making it

appealing to data scientists and open science advocates due to Jupyter’s presence

in that space. As a result, users can create, share, and execute data science

investigations performed using ScalaTion that are stored on Jupyter notebooks.

Information on how to readily provide this support is described in Chapters 4

and 6.

3.7 Conclusions

In this paper, we presented ScalaTion, a big data framework that provides analytics

techniques for prediction, classification, clustering, dimensionality reduction, func-

tional data analysis, and simulation facilities for discrete-event simulation model-

ing. An overview of the framework’s general functionality and architecture was

presented, including illustrative examples. Furthermore, ScalaTion’s impact in a

variety of areas was also discussed.

45

Figure 3.15: Code Snippet from Regression.scala

This slightly modified (for space) code snippet from the
scalation.analytics package’s Regression class in ScalaTion’s modeling
module illustrates how the source code in ScalaTion is documented both
at the interface level, with examples, and the implementation level. Fur-
thermore, those familiar with matrix factorization in the domain of linear
algebra will recognize the various factorization techniques used to estimate
the model coefficients for a multiple linear regression, expressed concisely
using domain-specific (i.e., linear-algebra-specific) language.

//:::
/** Train the predictor by fitting the parameter vector
* (b-vector) in the multiple regression equation
* <p>
* yy = b dot x + e
* = [b_0, ... b_k] dot [1, x_1 , ... x_k] + e
* <p>
* using the ordinary least squares ’OLS’ method.
* @param yy the response vector
*/

def train (yy: VectoD)
{

b = technique match {
case QR => fac.solve (yy)
case Cholesky => fac.solve (x.t * yy)
case SVD => fac.solve (yy)
case LU => fac.solve (x.t * yy)
case _ => fac.solve (x.t * yy)

} // match
e = yy - x * b // compute residual/error vector e
diagnose (yy) // compute diagonostics

} // train

46

Chapter 4

ScalaTion Kernel: Towards Open

Notebook Support

4.1 Introduction

In this chapter, we discuss how to provide light-weight big data framework support

in open notebooks. Consider, for a moment, a data science investigation performed

using a big data framework and published in a peer reviewed research article.

Interested readers of the article may want to reproduce the authors’ results. In

the worst case scenario, the code, data, and infrastructure needed to reproduce

the results are either generally unavailable or requires restricted access. In the

best case scenario, everything is available from either the author’s or publisher’s

website. However, facilitating the best case scenario is sometimes tedious and

oftentimes impractical for investigators. To help mitigate this, we expand on

47

existing research that proposes the use of open notebooks for the dissemination of

data science investigations.

As interest in the open science movement has grown in recent years, so has

interest in interactive, open notebooks. [Shen, 2014] describes open notebooks as

interactive lab notebooks for computational work. They combine notes and code

in a format that permits sharing, modification, and easy execution. Users can run

the code to generate and compare results. Different programming languages and

frameworks are provided via “kernels”, modules that usually must be installed and

configured on the notebook platform being used.

The main contribution described in this chapter is providing support for the

ScalaTion [Miller et al., 2010] big data framework in open notebooks running

on Jupyter [Ragan-Kelley et al., 2014], an open source open notebook platform

written in Python. Details of the ScalaTion framework are provided in Chapter 3.

In this work, Scala language and ScalaTion framework support are provided via

our ScalaTion Kernel project, a Jupyter kernel discussed later in this chapter.

Our integration approach is minimal in order to make it easier for investigators

to adopt and adapt to their needs. While existing Jupyter kernels exist that

provide Scala language support, most either require extensive configuration, are

not maintained, or require configuration with the Spark1 framework. A general

list of available Jupyter kernels is provided here2.

There is also existing research discussions on the use of open notebooks for

research papers themselves. For example, in [Kluyver et al., 2016], the authors
1https://spark.apache.org
2https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

48

https://spark.apache.org
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://spark.apache.org
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

discuss many of the use cases for open notebook platforms like Jupyter, including

their use for academic papers. At the time their paper was written, they expressed

this use case as an achievable goal pending solutions to certain roadblocks. The

biggest problem they predicted is the integration of properly formatted academic

citations into the notebooks. While this is not a problem addressed by our work,

it is definitely an important aspect of open research articles that requires careful

consideration. Also, in [Gil et al., 2016], the authors discuss the importance of

computational provenance in research articles (i.e., the computational steps that

were taken to achieve a result). They suggest the use of open notebooks to doc-

ument and record the computational steps taken for part of an investigation or

analysis as well as the use of standards such as W3C PROV [Missier et al., 2013] to

facilitate integration of these records across different notebook platforms. While

this is closely related to our work, we focus more on the lightweight integration of

the ScalaTion big data framework.

The rest of this chapter is organized as follows: an overview of the Scala-

Tion Kernel project, including detailed installation instructions, is provided in

Section 4.2; some examples are introduced in Section 4.3; impact is discussed in

Section 4.4; and conclusions are given in Section 4.5.

4.2 ScalaTion Kernel for Jupyter

To help users incorporate ScalaTion into their Jupyter notebooks, we developed

the lightweight ScalaTion Kernel. It is lightweight in the sense that it allows

49

users to harness ScalaTion in a Jupyter notebook with minimal dependencies. It

uses the system or container’s Scala installation for the underlying read-evaluate-

print-loop (REPL), and it allows administrators to specify the local ScalaTion

distribution to be used. The actual kernel code is written in Python 3 using the

pexpect package, allowing it to interact with Scala’s interactive REPL. Although

the kernel is currently only written to interact with Scala’s REPL, the authors

anticipate that a similar approach could be taken with other REPLs (e.g., Java 9’s

JShell3) to provide big data framework support in other programming languages.

A

The ScalaTion Kernel project includes free and open source code, and is avail-

able at https://github.com/scalation/scalation_kernel . General instal-

lation instructions for the development version of the kernel are available there.

More detailed instructions are provided in the following subsection.

4.2.1 Installation Instructions

In this section, we describe three different ways to install and use ScalaTion Ker-

nel: i) system-wide installation instructions are provided in Section 4.2.1; ii) a

quick virtual environment installation option is described in Section 4.2.1; and iii)

instructions on how to deploy an installation as a containerized application using

Docker are provided in Section 4.2.2.
3https://docs.oracle.com/javase/9/jshell/introduction-jshell.htm

50

https://docs.oracle.com/javase/9/jshell/introduction-jshell.htm
https://github.com/scalation/scalation_kernel
https://docs.oracle.com/javase/9/jshell/introduction-jshell.htm

Dependencies

Most of the installation instructions assume that the following dependencies are

installed and available (i.e., they are on the executable path) on the system or

container that will run the software:

• Java ≥ 8

• Python ≥ 3.6.3

• Scala ≥ 2.12.4

Older versions of these dependencies may work, but they are untested by the

authors.

System-wide Installation

System-wide installation is currently available via the Python pip package. Priv-

ileged users can execute the following command to install ScalaTion Kernel from

PyPi4, the Python Package Index:

$ python3 -m pip install --upgrade pip

$ python3 -m pip install scalation_kernel

Then, assuming Jupyter is already installed, ScalaTion Kernel can be registered

for use with Jupyter using the following command:

$ python3 -m scalation_kernel.install

4https://pypi.python.org/pypi?:action=display&name=scalation-kernel

51

https://pypi.python.org/pypi?:action=display&name=scalation-kernel
https://pypi.python.org/pypi?:action=display&name=scalation-kernel

Now, when users on the system launch the system-wide Jupyter installation,

new and existing notebooks will have an option to use the ScalaTion Kernel, as

seen in Figures 4.1 & 4.2.

Quick Setup

In order to facilitate rapid setup, a quick setup script is provided with the devel-

opment version of ScalaTion Kernel that sets up an independent, virtual Jupyter

installation with support for the kernel. In addition to the dependencies listed ear-

lier, Git (≥ 2.14.2) and the Python virtualenv package (≥ 15.1.0) are required

for these quick setup instructions. This script has been tested on MacOS, Linux,

and Windows 10 (with Windows Subsystem for Linux) installations that satisfy

the dependencies described in the previous section. Currently, only ScalaTion 1.4

is supported for quick setup. To download and run the quick setup script, the user

can enter the following commands:

$ git clone https://github.com/scalation/scalation_kernel.git

$ cd scalation_kernel

$ bash quick_setup_1.4.sh

The first time the user executes this script, it may take some time as additional files

are downloaded from the Internet. After the script executes correctly, a Jupyter

installation will open in their default web browser with ScalaTion Kernel support.

If the user’s web browser does not open automatically, then the user should open

the URL provided in the script output using the browser of their choosing to open

the created Jupyter installation. If, at a later point in time, the user wishes to

52

reuse that same installation, then they need only run the quick setup script again.

Now, when Jupyter is launched within the current virtual environment, new and

existing notebooks will have an option to use the ScalaTion Kernel, as seen in

Figures 4.1 & 4.2.

4.2.2 Docker Container

ScalaTion Kernel is also available for easy deployment as a containerized applica-

tion using Docker5. The following instructions have been tested with the Docker

Community Edition (CE)6. These instructions do not require any of the depen-

dencies listed previously, since everything will be downloaded and setup inside

of a container. However, users will still need to download the ScalaTion Kernel

Dockerfile7 in order to build and launch the container image. This method has

been tested by users on MacOS, Linux, andWindows 10 (with Windows Subsystem

for Linux) installations with Docker CE installed. Currently, only ScalaTion 1.4

is supported for quick setup. Assuming the user downloaded the Dockerfile and

saved it in a directory called scalation_kernel, they can enter the following

commands to build the container image:

$ cd /path/to/scalation_kernel

$ docker build -t scalation_kernel .

Building the container image for the first time may take some time as additional

files are downloaded from the Internet. After the container image is built, the user
5https://www.docker.com/
6https://store.docker.com/search?offering=community&type=edition
7https://raw.githubusercontent.com/scalation/scalation_kernel/master/docker/

Dockerfile

53

https://www.docker.com/
https://store.docker.com/search?offering=community&type=edition
https://store.docker.com/search?offering=community&type=edition
https://raw.githubusercontent.com/scalation/scalation_kernel/master/docker/Dockerfile
https://www.docker.com/
https://store.docker.com/search?offering=community&type=edition
https://raw.githubusercontent.com/scalation/scalation_kernel/master/docker/Dockerfile
https://raw.githubusercontent.com/scalation/scalation_kernel/master/docker/Dockerfile

can run the image on the default Docker machine using the following command:

$ docker run -it --rm -p 8888:8888 scalation_kernel

Assuming everything went smoothly, the user should open the URL provided in

the terminal output using the browser of their choosing to open the containerized

Jupyter installation with ScalaTion Kernel support. Within the containerized

application, new and existing notebooks will have an option to use the ScalaTion

Kernel, as seen in Figures 4.1 & 4.2.

Figure 4.1: Screenshot of ScalaTion Kernel available in Jupyter Notebook

When the ScalaTion Kernel is installed, users can choose “ScalaTion” when creating a
new notebook.

4.3 Usage and Example

An example that illustrates the exploration of the Longley macroeconomic dataset

[Longley, 1967] using a multiple linear regression model is provided in Figures 4.3 & 4.4.

54

Figure 4.2: Screenshot of ScalaTion Kernel Info in Jupyter

When the ScalaTion Kernel is installed and being used by the current notebook, the
kernel information is available on the “About” page.

This notebook is also available here8. A collection of more example notebooks is

presented in Chapter 6. A user guide is available here9 from the project’s GitHub

repository.
8https://github.com/scalation/scalation_kernel/blob/master/notebooks/

regression.ipynb
9https://github.com/scalation/scalation_kernel/blob/master/docs/USER.md

55

https://github.com/scalation/scalation_kernel/blob/master/notebooks/regression.ipynb
https://github.com/scalation/scalation_kernel/blob/master/docs/USER.md
https://github.com/scalation/scalation_kernel/blob/master/notebooks/regression.ipynb
https://github.com/scalation/scalation_kernel/blob/master/notebooks/regression.ipynb
https://github.com/scalation/scalation_kernel/blob/master/docs/USER.md

4.4 Impact

ScalaTion Kernel represents an excellent complement to ScalaTion for making big

data analytics more approachable. It allows users to express, execute, and share

concise ScalaTion models using Jupyter notebooks. From a user perspective, the

package is easy to deploy in a variety of ways, which should encourage adoption by

both investigators wishing to disseminate their investigations and others wishing

to reproduce the results of those investigations. Furthermore, it enables users to

incorporate notes using Markdown10 and LATEX11 syntax, supporting both rich

formatted text and mathematical notations that complement the domain-specific

language facilities provided by ScalaTion.

4.5 Conclusions

In this chapter, we presented ScalaTion Kernel, a Jupyter kernel that enables

users to use Scala and ScalaTion in Jupyter notebooks. Installation instructions for

system-wide installations, virtual environment installations, and Docker containers

were provided. Detailed notebook examples are provided in Chapter 6.

Future work for this project includes providing installation support for other

popular package managers such as Anaconda12. Additionally, the authors would

like to provide basic plotting support for ScalaTion data types like vectors, matri-

ces, relations, etc.

10https://daringfireball.net/projects/markdown/syntax
11https://www.latex-project.org
12https://anaconda.org/

56

https://daringfireball.net/projects/markdown/syntax
https://www.latex-project.org
https://anaconda.org/
https://daringfireball.net/projects/markdown/syntax
https://www.latex-project.org
https://anaconda.org/

Figure 4.3: ScalaTion Kernel Regression Example before Run

Here we see an example of a Jupyter notebook in which students use the ScalaTion
Kernel to explore a dataset using a multiple linear regression model. This shows the
notebook before the code cells are executed using the kernel.

57

Figure 4.4: ScalaTion Kernel Regression Example after Run

Here we see an example of a Jupyter notebook in which students use the ScalaTion
Kernel to explore a dataset using a multiple linear regression model. This shows the
notebook after the code cells are executed using the kernel.

58

Chapter 5

ScalaTion Example: Functional

Tight Clustering

Michael E. Cotterell 1,3, Xiaoxiao Sun 2,3, Nicholas Klepp 1, Hao Peng 1, Wenxuan

Zhong 2, John A. Miller 1 and Ping Ma 2. “A Functional Data Approach to Tight

Clustering for Time Course Omics Data”. 2017. [in preparation]

1Department of Computer Science, University of Georgia, Athens, GA, USA,

2Department of Statistics, University of Georgia, Athens, GA, USA, and

3These authors contributed equally to this work.

59

5.1 Abstract

In this article, we propose the functional tight clustering method, an efficient al-

gorithm for the detection of most significant cluster patterns in time course omics

data. Unlike other tight clustering methods, ours allows for significant pattern de-

tection across all time points by modeling dependencies between the time points.

The filtering method used in the algorithm provides higher insensitivity to the

noise than the k-means based methods. In addition, the penalized method amelio-

rates issues with overfitting by imposing a complexity penalty on the model space.

Simulation and real-data examples are presented to investigate the empirical per-

formance of our functional data approach to tight clustering. Free and open source

Scala code is available in the ScalaTion ‘fda’ package.

5.2 Introduction

Over the past 20 years, studies of temporal omics data, such as time course datasets

generated by Chromatin ImmunoPrecipitation-sequencing (ChIP-Seq), Ribonu-

cleic acid-sequencing (RNA-Seq) and Bisulfite sequencing, have improved the un-

derstanding of the structure and dynamics of biological systems [Berger et al.,

2013]. Detecting a group of genes with similar expression patterns in temporal

omics data accurately and efficiently is important in discovering novel regulation

networks over the development of complex organisms [Graveley et al., 2011]. Clus-

tering, one way to detect the groups, is an unsupervised learning technique that

aims to group objects into “clusters” based on a similarity or distance metric. The

60

traditional clustering techniques, such as k-means, partitioning around medoids

(PAM), self-organizing maps (SOM), and hierarchical clustering [MacQueen et al.,

1967; Kaufman and Rousseeuw, 2009; Kohonen, 1990; Eisen et al., 1998], assign

the genes into different clusters based on some correlation or distance measures.

Although these methods have been applied in time course omics data success-

fully, they assume independence between different time points and thus omit the

temporal dependence in the time course data [Ma and Zhong, 2008].

To better consider the correlation structure of temporal data, some functional

methods treating the data as a path of a stochastic process have been proposed.

Those methods can mainly be classified into two groups, filtering methods and

adaptive methods. The filtering methods are two step approaches, which first

approximate the data using some basis functions such as B-splines and then cluster

the corresponding basis expansion coefficients [Abraham et al., 2003]. Instead of

clustering coefficients directly, the adaptive methods consider the coefficients as

random variables following a cluster-specific probability distribution [Jacques and

Preda, 2014].

Some exceptions to explicitly handling the correlation structure of temporal

data are reviewed below. In [Ma and Zhong, 2008], a mixed-effects model-based

approach for clustering is presented by Ma et al. that uses a rejection-controlled

expectation maximization (EM) algorithm with a smoothing spline-based penal-

ized HendersonâĂŹs likelihood function to fit the data, estimate model param-

eters, and identify cluster membership. Their approach works particularly well

when additional covariates are present in addition to fixed-effects functional data.

61

In [Futschik and Carlisle, 2005], a soft clustering technique is presented by Futschik

and Carlisle that avoids the need for a priori pre-filtering of microarray data. In-

stead of providing concrete cluster assignments, soft clustering techniques (e.g.,

techniques usually implemented using fuzzy c-means [Gath and Geva, 1989]) pro-

vide a probabilistic sense of cluster membership measured between 0 and 1. Ex-

isting soft clustering techniques perform well in the identification of stable clusters

at different levels of granularity, but can be improved when it comes to the iden-

tification of tight clusters.

None of the reviewed methods have been found to directly consider the pres-

ence of ubiquitously expressed and stimuli independent genes, commonly referred

to as housekeeping genes [Eisenberg and Levanon, 2013], in the data. In [McLach-

lan et al., 2002], McLachlan et al. address the task of clustering microarray gene

expression data on a very large number of genes from a much smaller number of

tissue samples according to a model-based approach. The authors test the rele-

vancy of each gene in the expression data using multi-component t mixture models,

after which any genes that are determined irrelevant for clustering purposes are

disregarded. In this way, housekeeping genes are discarded as irrelevant. However,

this method relies on a probabilistic assumption of the data distribution, which is

not satisfied for time course omics data in general except in the case of microarray

gene expression data. In [Tseng and Wong, 2005], a bootstrap approach for iden-

tifying stable homogeneous clusters called “tight clustering” is presented by Tseng

and Wong. This method produces tight and stable clusters without forcing all

62

points into clusters. The clusters are “tight” in the sense that they do not include

outliers (i.e., they have minimal sum-of-squared-error); they are “stable” in the

sense that the cluster membership tends to persist throughout multiple levels of

subsample-based clustering. However, this method is not explicitly designed for

time course data. Motivated by this method, in this article we propose an unsu-

pervised clustering method, which incorporates functional data analysis approach,

filtering methods, with the “tight clustering” algorithm proposed by Tseng and

Wong [Tseng and Wong, 2005] in order to model the correlation structure between

time points. We show that our functional tight clustering approach has three main

benefits:

1. De-noising; not sensitive to noise: Repeated sub-sampling and filter-

ing method based approach mitigate the potential affects of noisy data. In

particular, this helps alleviate the impact of housekeeping genes in datasets

that are analyzed for stimuli or regulatory reactions. In contrast with exist-

ing methods, our method works particularly well against housekeeping genes

exhibiting a low degree of congruency.

2. Low dimensional; more efficient: By using a regression spline fit of

the original time course data, our method can facilitate dimensionality re-

duction via lower order splines and knot vectors of reduced dimensionality.

Such dimensionality reduction can produce speedup in the clustering process

without sacrificing representation.

3. Robust to outliers: The use of repeated sub-sampling also minimizes the

63

effect outliers might have in the formation of clusters. This is because, by

their very nature, the same outliers are unlikely to be present in subsequent

subsamples of the dataset.

Both a simulation study and real-world use case are used to validate the identifica-

tion of clusters via our method as well as highlight the benefits mentioned above.

Overall, our results reveal that functional tight clustering is a suitable approach

for rapidly and accurately identifying tight and stable clusters in time course omics

data.

5.3 Materials and Methods

5.3.1 Data

Real Data

Understanding the mechanisms involved in the development of organisms is crucial

in developmental biology. Most of the research has focused on some model organ-

isms, such as Drosophila melanogaster (the common fruit fly) and Caenorhabditis

elegans (a type of transparent roundworm). In this paper, we applied the meth-

ods, functional tight clustering (ftclust) and tight clustering (tclust), to two

testing datasets from the modENCODE (Model Organism ENCyclopedia Of DNA

Elements) project [Celniker et al., 2009], which provides comprehensive transcrip-

tional profiling of D. melanogaster and C. elegans for different development stages

and tissues. The first testing dataset contains the gene expression levels (Frag-

64

ments Per Kilobase of transcript per Million mapped reads; FPKM) of about

44,000 genes for C. elegans. The RNA-seq datasets under 24 embryonic develop-

mental stages within 12 hours were used. The second testing dataset is from the

developmental study of D. melanogaster. The time course RNA-seq datasets used

in the paper include 12 embryonic samples collected every two hours within 24

hours. The expression levels (FPKM) of around 15,000 genes were profiled.

In real data, the true underlying cluster structure is unknown. To evaluate

the performance of the cluster methods based on some criteria, we first defined

six clusters for C. elegans and five clusters for D. melanogaster using the stage

associated genes reported in [Li et al., 2014]. We treated these stage associated

genes as clustered genes and the rest of the genes were scattered genes for D.

melanogaster. To reduce the computing time, we only randomly selected half of

all genes except the stage associated ones as the scattered genes for C. elegans.

Simulated Data

We simulated R = 8 clusters of gene expression values at 12 time points. The

cluster sizes nr were generated from 4p where p is distributed according to P (λ),

a Poisson distribution parameterized with λ = 10. In the i-th cluster, the gene

expression values

Xr
i (tj) =

H∑
h=1

(−1)(h+1)h−1Zihϑ1(tj, h), (5.1)

where j = 1, 2, · · · , 16, Zih is from the uniform distribution U(−3, 3), and ϑ1(t, h) =

1 if h = 1 and
√

2 cos((h − 1)πt) otherwise. We added random noise with mean

zero and variance σ2 to the gene expression values Xr
i (tj). The value of σ was

65

adjusted to deliver six levels of signal-to-noise ratio (SNR = 0.5, 1, 1.5, 2, 2.5, and

3). In addition to the gene expression variability, we added the scattered genes

to the clustered genes. The number of scattered genes was 25%, 50%, and 100%

of the number of clustered genes. The parameter H in Equation (5.1) adjusts

the roughness of the generated curves. We used H = 3 to generate 8 curves for

the clustered genes and H = 50 to generate the expression values of scattered

genes. Since the variation patterns over time were of primary interest and the

input for tight clustering and our method were scaled data, i.e., z-scores, we did

not transform the simulated data to positive values.

5.3.2 Smoothing Splines

Consider the expression levels in a column vector y for a gene at n time points

t = (t1, t2, . . . , tn). The model can be written in vector notation, as described

in [Ramsay and Silverman, 2005] and [Ma et al., 2006], as

y = x(t) + ε, (5.2)

where y ∈ <n is a column vector containing the response (e.g., expression level),

x is a “smoothed” function and ε ∈ <n is a column vector containing the errors.

In Figure 5.1, the “smoothed” function x is represented by the solid line and the

observed data y are in green circles. The idea is that the smoothed function x

is meant to reproduce the response vector y (before error) as closely as possi-

ble, assuming proper assumptions about the error distribution are made. This

66

is accomplished by representing x(t) as a linear combination of K-many basis

functions:

x(t) =
K∑
j=1

cjφj(t) = c · φ(t), (5.3)

where c = (c1, . . . , cK) is a vector of unknown coefficients to be estimated and

φ(t) = (φ1(t), . . . , φK(t)) denotes a vector of K-many basis functions that are

parameterized according to a non-decreasing “knot” vector τ ⊆ [t1, tn]. Similar

to [Ramsay and Silverman, 2005], let us define Φ ∈ <n×K as a design matrix

where Φi,j = φj(ti) for 1 ≤ j ≤ K and ti ∈ t. To estimate c, one approach is via

a penalized least squares criterion, expressed concisely in matrix form as

(y−Φc)′Ω−1(y−Φc) + nλPp(x), (5.4)

where Ω = Var[ε] is the variance of the error vector ε, λ is the penalty parameter,

and Pp(x) =
∫

[Dpx(t)]2dt is the penalty imposed on the p-th derivative of the

basis functions when estimating the coefficients of the spline function. The basis

functions that are chosen for x(t) depends on the nature of the response y. If y

is periodic, then a Fourier basis may be chosen [Ramsay and Silverman, 2005]. If

y is not periodic, then it is common to choose a B-spline basis [Patrikalakis and

Maekawa, 2010]. If the basis functions φ are B-spline basis functions of order m

(i.e., degree m− 1) parameterized according to a non-decreasing augmented knot

vector of the form τ = ([t1]m−1, t, [tn]m−1) and P2(x) is defined as a quadratic

penalty on the second derivatives of the basis functions, then the function x(t) is

known as a smoothing spline [Ramsay and Silverman, 2005]. In such a scenario,

67

we would use P2(x) for the penalty function, defined as

P2(x) =
∫

[D2
t x(t)]2dt = c′Qc (5.5)

where

Q =
∫

[D2
tφ(t)]2dt (5.6)

and D2
t denotes the differential operator that takes the second derivative with

respect to t. When it can be assumed that the residual vector ε ∼ i.i.d. N (µ, σ2),

then the conditional variance Ω = I (the identity matrix). Otherwise, Ω must be

estimated, usually in an iterative fashion, as is done in generalized least squares

[Kariya and Kurata, 2004].

Estimating Coefficients

When x(t) is a smoothing spline, the solution estimates ĉ that minimize the pe-

nalized least squares criterion in Equation (5.4) is

ĉ = (Φ′Ω−1Φ + λQ)−1Φ′Ω−1y. (5.7)

For the equally spaced time points or for equal knot vectors (e.g., with B-splines),

the basis functions are the same for each of the curves. Therefore, the smoothing

function x in Equation (5.3) is summarized by the estimated coefficients ĉ of

Equation (5.7).

68

Figure 5.1: Regression Spline Fit

A true function is shown in the solid line. Estimated fits for an arbitrary regression
spline (green lines), a least squares fit (dotted lines), and a smoothing spline (dashed
lines) are also shown. Raw data points are shown as green circles.

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4

t

y

69

Estimating Penalty Parameter

An improper selection of λ may result in the over-fitting problem, see faded lines

in Figure 5.1. We estimate the penalty parameter λ using the Generalized Cross-

Validation (GCV) method, as described in [Ramsay and Silverman, 2005; Craven

and Wahba, 1978], where the twice-discounted mean squared error criterion is

expressed as

GCV(λ) =
(

n

n− df(λ)

)(
SSE

n− df(λ)

)
(5.8)

where SSE = e · e denotes the sum of squared error and

df(λ) = trace [Φ(Φ′Ω−1Φ + λQ)−1Φ′Ω−1] (5.9)

is the effective degrees of freedom computed from eigenvalues of the symmetric

hat matrix (assuming P2(x) in Equation (5.5) is used for the penalty function).

An optimal estimate for λ can be obtained by minimizing Equation (5.8) using

either a line search or numerical optimization technique. We used the golden

section search method [Kiefer et al., 1953], which converges linearly toward an

ε-accurate solution with O(log 1/ε) calls to the objective function. In Figure 5.1,

the curve fitted by the smoothing splines with λ estimated by the GCV method

is shown as dashed lines. If a smaller estimated variance for the fitted model

is desired, then other potential criteria for choosing an optimal λ include the

Generalized Information Criterion (GIC) [Konoshi and Kitagawa, 1996], Modified

Akaike Information Criterion (mAIC) [Fujikoshi, 1997], and Generalized Bayesian

Information Criterion (GBIC) [Konishi et al., 2004].

70

5.3.3 Functional Tight Clustering

In the previous section, we showed that the smoothing functions can be summa-

rized by the estimated coefficients. Let ĉ(i) denote the estimated coefficients for

gene i where 1 ≤ i ≤ N . Then, to cluster the fitted curves, we partition the

N -many estimated coefficients Ĉ = (ĉ(1), · · · , ĉ(N))′. The unsupervised clustering

method, k-means, is implemented to divide Ĉ ∈ <N×K into k clusters. However,

due to the random nature of the algorithm it is not guaranteed that k-means clus-

tering will yield consistent, identical results each time the algorithm is run on the

same dataset. Even worse, the algorithm falls in a local optimum with poor initial

values [Hastie et al., 2009].

To address these problems, we propose using Tseng and Wong’s “tight cluster-

ing” (tclust) [Tseng and Wong, 2005], a re-sampling-based algorithm that handles

the aforementioned problems by only considering stable patterns that exist among

subsets of the data throughout multiple levels of clustering. An implementation

of their algorithm is available in the R tightClust package. The functional tight

clustering algorithm (ftclust), an extension for use with estimated functional

coefficient vectors, is outlined below.

In Figure 5.2, the outline of the functional tight clustering algorithm is pre-

sented. We take the estimated coefficient matrix Ĉ as the input and then search

the candidate tight clusters using the resampling method. The tight clusters are

identified if they are repeatedly shown for different k (the number of clusters).

71

1: Take a random sub-sample Ĉ∗ from the original coefficients matrix Ĉ. Given
the predefined k, calculate the cluster centers Z(Ĉ∗, k) = (Z1, · · · , Zk)′ using
the k-means clustering algorithm.

2: Based on the estimated cluster centers calculated above, for each of the
coefficient vectors ĉ(i), where i = 1, · · · , N , in the original matrix of
coefficients, assign the coefficient vector to the cluster that minimizes the
distance metric between the coefficient vector and the cluster center. The
resulting clustering is represented by an N by N co-membership matrix U,
where Uij = 1 representing ĉ(i) and ĉ(j) are in the same cluster, and Uij = 0
otherwise [Tibshirani and Walther, 2005].

3: Repeat independent random sub-sampling B times to calculate U(b), where
b = 1, · · · , B. Then the averaged co-membership matrix is
Ū = mean(U(1), · · · ,U(B)).

4: Search for a set of points L = {l1, · · · , lm} ⊂ {1, · · · , N} such that
Ūli,lj ≥ 1− δ, where δ is a constant close to 0. Order sets with this property
by size to obtain Lk1, Lk2, · · · . These L sets are candidates of tight clusters.

5: Apply steps 1–4 on the data Ĉ for k = k0, where k0 is a suitable predefined
starting value for the number of clusters. Choose the top q tight cluster
candidates, namely {Lk0,1, · · · , Lk0,q}. Let k = k0 + 1, k = k0 + 2, · · · , choose
the top q tight cluster candidates for each k. In this article, we set q = 7 as
suggested in [Tseng and Wong, 2005].

6: Stop when s(Lk′,c, L(k′+1),d) ≥ γ, where s(Li, Lj) = |Li ∩ Lj|/|Li ∪ Lj|, and
|L| is the size of set L. s(Li, Lj) = 1 if and only if sets Li and Lj are
identical. Here γ is a constant close to 1, k′ ≥ k0, and 0 ≤ c, d ≤ q. Identify
L(k′+1),d as a tight and stable cluster. Remove it from the whole data.

7: Decrease k0 by 1 and repeat steps 5 and 6 to identify the next tight cluster.
The cluster selection terminates when k0 is decreased to five or the target
number of clusters, T , is achieved.

Algorithm 1: Functional Tight Clustering Algorithm

72

Figure 5.2: Outline of Functional Tight Clustering Algorithm

Search tight cluster
candidates for 𝑘 = 𝑘0

Choose top 𝑞 tight clusters
{𝐿𝑘,1,⋯ , 𝐿𝑘,𝑞}

𝑠 𝐿𝑘′,𝑐, 𝐿(𝑘′+1),𝑑 ≥
𝛾 and
𝑘 ≠ 𝑘0

Remove 𝐿(𝑘′+1),𝑑 from

the data.

𝑘0 = 5 or 𝑇
is achieved.End

𝑘 = 𝑘 + 1

N
o

Yes

Yes

N
o

Decrease 𝑘0 by 1

5.3.4 ScalaTion Implementation

We have implemented ftclust, the Functional Tight Clustering algorithm, in Sca-

laTion [Miller et al., 2010], a Scala framework for exploring a modeling continuum

that includes analytics, simulation and optimization. The underlying algorithm

used to cluster the subsample coefficient matrix is the Hartigan-Wong k-means al-

gorithm [Hartigan and Wong, 1979]. Instead of the standard randomized seeding

technique, our implementation includes k-means++ initialization [Arthur and Vas-

silvitskii, 2007], a method that picks cluster centers with probability proportional

to their contribution to the overall optimization problem.

Further information about ScalaTion can be found at http://cobweb.cs.

uga.edu/~jam/scalation.html . The source code and instructions for our

73

http://cobweb.cs.uga.edu/~jam/scalation.html
http://cobweb.cs.uga.edu/~jam/scalation.html

functional tight clustering implementation can be found at https://github.com/

scalation/fda/tree/ftclust . The software is free and open source under an

MIT license.

5.4 Results

5.4.1 Simulation Results

In the simulation, we assessed the proposed method according to the weighted

Rand index [Thalamuthu et al., 2006], R∗. The heatmaps of the simulated exam-

ples are shown in Figure 5.3. As the signal to noise ration (SNR) increased, it was

much easier to extract signals from the noise. We applied the proposed method

(ftclust), the Mfuzz method (mfuzz), and the original tight clustering (tclust)

to the simulated datasets. We set the fuzzification parameter m = 1.25 for the

method mfuzz. We had 100 runs for each combination of different percentages of

scattered genes and SNRs. As seen in Figure 5.4, when the proportion of scat-

tered genes is more than 50%, the tclust method outperforms tclust method in

terms of R∗. The results also showed that regardless of the proportion of scattered

genes, the proposed method performed better than mfuzz and tclust in terms of

R∗ under different SNRs.

The clustering results for the ftclust and tclust when SNR = 1.5 and the

percentage of scattered genes is 50% are shown in Figure 5.5. Based on the cluster

labels shown on the left side of the heatmap, the proposed ftclust method pro-

vides a clear advantage over the original tclust method with respect to recovering

74

https://github.com/scalation/fda/tree/ftclust
https://github.com/scalation/fda/tree/ftclust

Figure 5.3: Heatmaps of Simulated Data with Increasing SNR

Simulated data with increasing SNR under the same random seed number. The clustered
genes in different clusters are divided by white horizontal lines.

SNR=0.5 SNR=1.5 SNR=2.5

∑𝑛𝑟

75

Figure 5.4: Box plots for Simulated Data

The box plots of R∗ under six different SNRs, based on 100 simulation runs. The box
plots from top to bottom panels respectively represent the R∗s for simulated datasets
with different proportions of scattered genes. Box plots with different colors represent
the results from different approaches.

Scattered Gene 25%

Scattered Gene 50%

Scattered Gene 100%

76

the true clusters. In the right two panels of Figure 5.5, only the clusters with the

percentages of overlapped genes between themselves and true clusters above 50%

are labeled.

5.4.2 Real Data Results

The number of clusters for the ftclust and tclust was set to 6 and 5 for the

data of C. elegans and D. melanogaster, respectively. The heatmaps of the stage

associated genes for C. elegans and D. melanogaster are shown in the top left

and bottom left panels of Figure 5.6. For C. elegans data, the R∗ of ftclust is

0.19 whereas the R∗ of tclust is 0.07. The cluster results for ftclust and tclust are

shown in the top middle and top right panels of Figure 5.6. It was clear to see that

the proposed method detected more stage associated genes. For D. melanogaster

data, the R∗s of ftclust and tclust are 0.18 and 0.01. The proposed method

identified 77.4% genes of the first stage associated cluster, which was the biggest

stage associated genes cluster. However, only 22.6% of them were detected by the

tclust. Such results are observed at the bottom of the middle and right panels

of Figure 5.6.

To reduce the impact of randomness, we applied ftclust and tclust to both

datasets 10 times. The comparison of the two methods is shown in Table 5.1. In

the table, the large standard deviations (SD) of R∗ was caused by two observations

where the proposed method happened to have too large or small R∗s. For instance,

the maximum value of R∗ for ftclust in C. elegans was 0.23, which brought large

variations in estimating standard deviation. In terms of all the other measures,

77

Figure 5.5: Heatmap Comparison

Heatmaps of the underlying true cluster structure, cluster results of the proposed
method, and cluster results of the original tight clustering. The purple + symbols and
yellow − symbols represent the cluster and scattered genes, respectively. The clustered
(left panel) or estimated clustered (middle and right panels) genes in different clusters
are divided by white horizontal lines. The true cluster labels and estimated ones are
shown on the left of each heatmap.

1

2

3

4

5
6

8

7

1

2

3

4

5
6

8

7

7

3

1

8

true ftclust tclust

78

Table 5.1: Performance Comparison of Results

The median and mean R∗ values over 10 runs are presented. The standard deviation
(SD) is also presented for each run.

ftclust Median Mean SD
C. elegans 0.13 0.11 0.08
D. melanogaster 0.15 0.12 0.06
tclust Median Mean SD
C. elegans 0.09 0.10 0.03
D. melanogaster 0.03 0.05 0.05

the proposed method clearly showed the advantage in terms of R∗. Since there

were true clustered genes in the pre-defined scattered genes, it was expected that

the estimated weighted Rand index would not be high. However, the ftclust

typically could have one estimated clusters including the predefined ones.

5.5 Discussion

We have presented the functional tight clustering method. Across different signal

to noise ratios and proportions of scattered genes, the ftclust method had the

best performance in terms of clustering accuracy.

The ftclust method can be applied to different kinds of time course omics

data, such as ChIP-seq and RNA-seq data. It can also potentially be applied to the

data over the spatial domain, such as genome and protein sequence coordinates.

79

Figure 5.6: Heatmaps of the Standardized Gene Expression Cluster Results

Top: heatmaps of the standardized gene expression levels, cluster results of ftclust,
cluster results of tclust for C. elegans data. Bottom: heatmaps of the standardized
gene expression levels, cluster results of ftclust, cluster results of tclust for D.
melanogaster data. The purple + symbols and yellow − symbols represent the
pre-defined stage associated cluster and scattered genes. The stage associated cluster
(left panel) or estimated cluster (middle and right panels) genes in different clusters are
divided by white horizontal lines.

80

For instance, in DNA methylation studies, the methylation levels observed across

the whole genome can also be treated as the function values over the spatial

domain.

When the time course omics data are collected sparsely and irregularly, the

methods for sparsely observed functional data [Yao et al., 2005] should be imple-

mented to estimate the coefficients matrix Ĉ. One obvious consideration is when

sampled functional data require different basis functions to fit each curve. Our

algorithm currently assumes each curve is fitted using the same set of basis func-

tions. In this case, working directly with the estimated coefficients is sufficient.

However, different basis functions can be accommodated using a generalized func-

tional distance metric in the underlying k-means routine. Such a metric between

the n-th derivatives of two functions f(t) = cf · φ(t) and g(t) = cg · ψ(t) can be

expressed as

δn,p(f, g) =
(∫
|Dn

t (cf · φ(t))−Dn
t (cg ·ψ(t))|pdt

)1/p

where φ and ψ are vectors containing the basis functions for f and g, respectively.

Given this formulation, δ0,1 and δ0,2 denote the standard L1 and L2 distance

metrics, respectively. Further investigation in this direction is surely needed to

accommodate time course omics datasets sampled at different rates.

81

5.6 Acknowledgments

Sun, Zhong, and Ma’s research was supported by U.S. National Science Founda-

tion under grants DMS-1440037, DMS-1440038, and DMS-1438957 and by U.S.

National Institute of Health under grants R01GM122080 and R01GM113242.

Conflict of interest statement.

None declared.

82

Chapter 6

Applied Open Data Science:

Website & Example Notebooks

6.1 Introduction

Two big problems in open science are accessibility and reproducibility. How do you

make data science investigations and methods available to others? How do you

make it easier for data scientists to share and verify results? While open notebook

platforms such as Jupyter1 and JupyterHub2 provide a partial solution, there is

still much room for improvement.

In this chapter, we propose the Applied Open Data Science (AODS) umbrella

of applications and guidelines as a way to improve on existing, open methods for

the dissemination of open notebooks. To demonstrate our methods, we provide
1https://jupyter.readthedocs.io/en/latest/
2https://jupyterhub.readthedocs.io/en/latest/

83

https://jupyter.readthedocs.io/en/latest/
https://jupyterhub.readthedocs.io/en/latest/
https://jupyter.readthedocs.io/en/latest/
https://jupyterhub.readthedocs.io/en/latest/

easily shareable, modifiable, and executable example notebooks with ScalaTion

Kernel support. Readers are actively encouraged to try the examples using the

JupyterHub installation provided on the author’s AODS website3. As this site

is provided primarily for the readers of this dissertation, only four users may

be logged in to this website simultaneously. Readers are also encouraged to see

Chapter 4 for information on how to setup their own Jupyter installation with

ScalaTion Kernel support, either locally or as a containerized application.

There are some known setups that are similar to what we describe in this

chapter. Fernández et al. [2016] outline the general infrastructure and benefits of

their JupyterHub installation at the European Spallation Source (ESS), including

an emphasis on their cloud storage integration and use of Docker containers for

Jupyter instances. Our approach differs in the provision of detailed documentation

that facilitates replication of our setup. Additionally, Milligan [2017] discusses the

Minnesota Supercomputing Institute’s initiative to provide an interactive high

performance computing (HPC) service using JupyterHub. Of particular interest

is the BatchSpawner module they implemented for batch job scheduling and job

profile configuration, now available as an officially supported Jupyter component.

Since our approach is minimal in the way it modifies JupyterHub, it should be

possible to use the BatchSpawner module with one of our JupyterHub installations.

There are also some existing projects that attempt to address some of the re-

search questions raised in this chapter. In particular, Jupyter’s Nbviewer4 project

provides a notebook rendering service that users can use to share previews of their
3http://aods.io/
4http://nbviewer.jupyter.org

84

http://aods.io/
http://nbviewer.jupyter.org
http://aods.io/
http://nbviewer.jupyter.org

notebooks and facilitate easy downloading to their local machines. However, un-

like our approach, this service does not currently facilitate directly uploading a

notebook to an existing Jupyter or JupyterHub installation. There is also the hub

share5 project, which provides a directory sharing service for users of a Jupyter-

Hub installation. However, this service is currently only available as a REST-like

service, which imposes a steep learning curve on many users.

The rest of this chapter is organized as follows: Section 6.2 provides a detailed

overview of the AODS project, including its guidelines and sub-projects; a list of

example notebooks using the ScalaTion big data framework that readers can view,

modify, and run is provided in Section 6.3; impact is discussed in Section 6.4; and

Section 6.5 presents conclusions and future work.

6.2 AODS Website & Projects

The AODS project website is currently composed of the AODS homepage as well as

subdomains that host live instances of the AODS JupyterHub and AODS Upload

projects. Each of these sub-projects are described in more detail in the following

subsections.

6.2.1 AODS Homepage

The AODS homepage, located at aods.io6, includes a short introduction to the

AODS Guidelines and sub-projects. The AODS Guidelines are a set of charac-
5https://github.com/jupyterhub/hubshare
6http://aods.io/

85

https://github.com/jupyterhub/hubshare
https://github.com/jupyterhub/hubshare
http://aods.io/
https://github.com/jupyterhub/hubshare
http://aods.io/

teristics that AODS projects must strive to adhere to. These guidelines provide

an expectation that materials related to each project be open, accessible, and re-

producible. In an effort to fulfill these characteristics for the homepage itself, all

of the homepage content hosted on aods.io is free and open source under a Cre-

ative Commons Attribution-ShareAlike (BY-SA) 4.07 license and available via the

aods-site8 repository on GitHub. For each of the AODS sub-projects, a brief

description of the software is provided as well as a link to the project’s repository

where source code and documentation can be found. Additionally, links to live test

installations of each project’s associated web application are provided in order to

demonstrate and stress the importance of openness and accessibility. The docu-

mentation provided for each project includes instructions on how to replicate the

test setup. The AODS homepage and associated web applications are currently

hosted using one or more Linode9 virtual server instances running the Ubuntu

17.10 distribution of Linux 4.13, a convenient setup that provides extensive infras-

tructure monitoring support.

6.2.2 AODS JupyterHub Project

The AODS JupyterHub project, hosted here10, is comprised primarily of a cus-

tomized JupyterHub application that supports: i) social authentication; ii) the

ScalaTion big data framework in Jupyter notebooks; and iii) providing new users

with example notebooks to help them get started. This project currently does
7https://creativecommons.org/licenses/by-sa/4.0/
8https://github.com/aods-io/aods-site
9https://www.linode.com/

10https://github.com/aods-io/aods-jupyterhub

86

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/aods-io/aods-site
https://www.linode.com/
https://github.com/aods-io/aods-jupyterhub
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/aods-io/aods-site
https://www.linode.com/
https://github.com/aods-io/aods-jupyterhub

not modify the JupyterHub code base. Instead, it comprises a set of detailed in-

structions on how to configure a JupyterHub installation so that it provides the

support described above and adheres to the AODS Guidelines. In the event that

changes to JupyterHub’s code base are needed in future to satisfy a project goal,

the maintainers of the project have made a commitment to send any such changes

back upstream to the main JupyterHub project.

Figure 6.1: Applied Open Data Science (AODS) JupyterHub

The hub.aods.io website is made available so that user can easily create and
execute notebooks with ScalaTion Kernel support as well as try the example notebooks
provided in Chapter 6.

As seen in Figure 6.1, a live, proof of concept test installation of the project’s

customized JupyterHub is available at hub.aods.io11, primarily targeted at read-
11http://hub.aods.io/

87

http://hub.aods.io/
http://hub.aods.io/
http://hub.aods.io/

ers of this dissertation. Users of the site can create, modify, and run notebooks

with ScalaTion big data framework support. The project documentation includes

detailed instructions on how to replicate the proof of concept installation. The

two primary goals of this project are i) to make replicating the test installation as

easy and as painless as possible; and ii) to not let modifications prevent the in-

clusion of existing contributions to the Jupyter and JupyterHub projects. Project

documentation is free and open source under a Creative Commons BY-SA 4.0

license.

Social authentication, sometimes referred to as social logins, was chosen as

the authentication method for AODS JupyterHub installations. Instead of forcing

users to create a separate login account for your application, social authentication

lets users authenticate using their existing personal accounts for various social

websites. Although social authentication is a definite compromise between pri-

vacy and convenience [Gafni and Nissim, 2014; Scott et al., 2016], the choice to

use the method was made primarily due to its prevalence among various data sci-

ence related websites (e.g., Kaggle12, Cross Validated13, etc.) and its application

in a recent research article related to big data [Madani et al., 2017]. Addition-

ally, administrators are still free to provide different levels of authorization to

their JupytHub installation, even if social authentication is configured. The rec-

ommended way of providing social authentication support in AODS JupyterHub

installations is using the OAuth 2.014 protocol. This protocol is recommended
12https://www.kaggle.com
13https://stats.stackexchange.com
14https://oauth.net/2/

88

https://www.kaggle.com
https://stats.stackexchange.com
https://oauth.net/2/
https://www.kaggle.com
https://stats.stackexchange.com
https://oauth.net/2/

for two reasons: i) it is an industry standard authorization protocol supported by

many popular social websites; and ii) it is cross-compatible with CAS15, a protocol

currently used by various academic institutions (e.g., the University of Georgia16).

In the AODS JupyterHub test installation, OAuth 2.0 support is provided

using the oauthenticator17 package. GitHub was chosen as the social website

for authentication since that is where the AODS JupyterHub project is hosted.

Administrators who wish to replicate the setup should install oauthenticator

according its package documentation, register an OAuth application on GitHub

by following the instructions found here18, then add and configure the following

settings in their JupyterHub installation’s jupyter_config.py file:

from oauthenticator.github import LocalGitHubOAuthenticator

c.JupyterHub.authenticator_class = LocalGitHubOAuthenticator

c.LocalGitHubOAuthenticator.oauth_callback_url = ’’

c.LocalGitHubOAuthenticator.client_id = ’’

c.LocalGitHubOAuthenticator.client_secret = ’’

c.LocalGitHubOAuthenticator.create_system_users = True

If configured correctly, users of the JupyterHub installation can now login using

their GitHub account. The first time they attempt to login, they will be prompted

by GitHub to authorize the application. In order to continue authenticating,

authorization must be granted. This authorization can be revoked at a later time
15https://apereo.github.io/cas/4.1.x/protocol/CAS-Protocol.html
16https://eits.uga.edu/access_and_security/cas/
17https://github.com/jupyterhub/oauthenticator
18https://developer.github.com/apps/building-integrations/

setting-up-and-registering-oauth-apps/registering-oauth-apps/

89

https://apereo.github.io/cas/4.1.x/protocol/CAS-Protocol.html
https://eits.uga.edu/access_and_security/cas/
https://github.com/jupyterhub/oauthenticator
https://developer.github.com/apps/building-integrations/setting-up-and-registering-oauth-apps/registering-oauth-apps/
https://apereo.github.io/cas/4.1.x/protocol/CAS-Protocol.html
https://eits.uga.edu/access_and_security/cas/
https://github.com/jupyterhub/oauthenticator
https://developer.github.com/apps/building-integrations/setting-up-and-registering-oauth-apps/registering-oauth-apps/
https://developer.github.com/apps/building-integrations/setting-up-and-registering-oauth-apps/registering-oauth-apps/

if the user desires.

Support for the ScalaTion big data framework is provided in the AODS Jupyter-

Hub test installation using the ScalaTion Kernel project. An overview of ScalaTion

Kernel and a set of various installation instructions are provided in Chapter 4.

In order to help users get started exploring data science investigations, the

AODS JupyterHub test installation also provides copies of the latest example

notebooks (described in Section 6.3) from the ScalaTion Kernel project (described

in Chapter 4). These notebooks are supplied during the user creation process via

a custom add_user.sh19 script, which is called the first time a user successfully

authenticates with the JupyterHub installation. When a user logins, they can find

the example notebooks in a directory called default-notebooks. Administrators

who wish to replicate this setup should first make sure that create_system_users

is set to True in jupyterhub_config.py for their chosen authenticator. Next,

they should download add_user.sh to the server, perhaps placing it in the same

directory as jupyterhub_config.py, and grant it execute permission (e.g., using

the chmod command). Then, they should add and configure the following setting

in their JupyterHub installation’s jupyterhub_config.py file:

c.LocalAuthenticator.add_user_cmd = [’/path/to/add_user.sh’]

Now, when new users successfully authenticate with the JupyterHub installation,

the add_user.sh script gets executed and copies of the example notebooks are

placed in default-notebooks under their home directory. By default, the script

places new users into a group called, “aodshub.” Administrators can edit the script
19https://github.com/aods-io/aods-jupyterhub/blob/master/add_user.sh

90

https://github.com/aods-io/aods-jupyterhub/blob/master/add_user.sh
https://github.com/aods-io/aods-jupyterhub/blob/master/add_user.sh

to change this behavior.

Lastly, the AODS JupyterHub test installation is served using the Nginx20

web server configured to pass external requests for hub.oads.io on port 80 to the

locally running installation running on port 8000 using a proxy. If an administrator

wishes to replicate this setup, then they can use an Nginx site configuration similar

to the following where hostname.tld refers to the external hostname that users

will use to access the installation:

server {

listen 80;

server_name hostname.tld;

location / {

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_pass http://127.0.0.1:8000;

}

location ~ /api/kernels/ {

proxy_pass http://127.0.0.1:8000;

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;
20http://nginx.org

91

http://nginx.org
http://nginx.org

proxy_http_version 1.1;

proxy_set_header Upgrade "websocket";

proxy_set_header Connection "Upgrade";

proxy_read_timeout 86400;

}

}

Although the AODS JupyterHub test installation does not use the Apache2 web

server, the project maintainers anticipate adding documentation to support it since

it is a popular option.

6.2.3 AODS Upload Project

The AODS Upload project, hosted here21, is comprised primarily of a web ap-

plication that facilitates the automatic uploading of notebooks to a JupyterHub

workspace. The web application supports: i) social authentication; ii) rendering

notebook previews; and iii) and linking a user directly to the uploaded notebook

in their JupyterHub workspace. Written in Python using the Django library, the

application is designed to perform a minimal set of operations while maintaining

a small footprint on the system. Its functionality and implementation are directly

motivated by and adhere to the AODS Guidelines. Project documentation is free

and open source under a Creative Commons BY-SA 4.0 license. Source code is

also free and open source under an MIT license.
21https://github.com/aods-io/aods-upload

92

https://github.com/aods-io/aods-upload
https://github.com/aods-io/aods-upload

A live, proof of concept test installation of the project’s web application is

available at upload.aods.io22, primarily targeted at readers of this dissertation.

When an authenticated user follows an AODS Upload link, they are presented

with a rendered preview of the notebook and asked to confirm the upload. Once

confirmed, the user is presented with the notebook’s filename, as saved in their

AODS workspace, as well as a convenient link to directly open the newly uploaded

notebook on the AODS JupyterHub test installation site. Currently, only notebook

links from locations in a configurable whitelist are supported. At the time of this

writing, the whitelist includes the following link prefixes:

• https://github.com/scalation/scalation_kernel/raw/

• http://www.cs.uga.edu/

The project documentation includes detailed instructions on how to replicate

the test installation. The primary goal of this project is provide users with an eas-

ier alternative to manually uploading notebooks to their JupyterHub workspace.

To that end, using the AODS Upload test installation, authenticated users can

use shareable AODS Upload links to preview and upload notebooks in a more

automated fashion, allowing them to avoid downloading a notebook’s .ipynb file

to their local machine as an intermediate step.

In order to complement the AODS JupyterHub project described in Section 6.2.2,

social authentication using OAuth 2.0 was chosen as the authentication method.

This support is provided using the social-auth-app-django23 package. GitHub
22http://upload.aods.io/
23https://github.com/python-social-auth/social-app-django

93

http://upload.aods.io/
https://github.com/python-social-auth/social-app-django
http://upload.aods.io/
https://github.com/python-social-auth/social-app-django

was chosen as the social website for authentication in order to match the service

used for the AODS JupyterHub test installation. Administrators who wish to

replicate the setup should install social-auth-app-django according its package

documentation, register an OAuth application on GitHub by following the instruc-

tions found here24, then add and configure the following settings in the project’s

upload_site/secret_settings.py file (which should be created if it does not

exist):

SECRET_SETTINGS_SOCIAL_AUTH_URL_NAMESPACE = ’social’

SECRET_SETTINGS_SOCIAL_AUTH_GITHUB_KEY = ’’

SECRET_SETTINGS_SOCIAL_AUTH_GITHUB_SECRET = ’’

If configured correctly, users with an account on the corresponding JupyterHub

installation can now login using their GitHub account. The default behavior of the

AODS Upload test installation is to not authorize authenticated users who have

not previously logged in to the corresponding AODS JupyterHub installation. This

decision was made to ensure that account creation on the server is handled by the

custom add_user.sh script provided by the AODS JupyterHub project.

Lastly, the AODS Upload test installation is deployed using the uWSGI25 pack-

age and served using the Nginx26 web server configured to pass external requests

for upload.oads.io on port 80 to the local uWSGI running on port 8888 using a

proxy. Below is an example that starts the web application locally on port 8888
24https://developer.github.com/apps/building-integrations/

setting-up-and-registering-oauth-apps/registering-oauth-apps/
25http://uwsgi-docs.readthedocs.io/en/latest/
26http://nginx.org

94

https://developer.github.com/apps/building-integrations/setting-up-and-registering-oauth-apps/registering-oauth-apps/
http://uwsgi-docs.readthedocs.io/en/latest/
http://nginx.org
https://developer.github.com/apps/building-integrations/setting-up-and-registering-oauth-apps/registering-oauth-apps/
https://developer.github.com/apps/building-integrations/setting-up-and-registering-oauth-apps/registering-oauth-apps/
http://uwsgi-docs.readthedocs.io/en/latest/
http://nginx.org

using uWSGI:

$ uwsgi --http :8888 \

--chdir /path/to/aods-upload/upload_site \

--wsgi-file /path/to/aods-upload/upload_site/upload_site/wsgi.py \

--virtualenv /path/to/aods-upload

If a user wishes to replicate the test setup, then they can use an Nginx site configu-

ration similar to the following where hostname.tld refers to the external hostname

that users will use to access the installation:

server {

listen 80;

server_name hostname.tld;

location /static/ {

alias /path/to/static/;

gzip_static on;

expires max;

add_header Cache-Control public;

}

location / {

proxy_set_header Host $host;

95

proxy_set_header X-Real-IP $remote_addr;

proxy_pass http://127.0.0.1:8000;

}

}

Although the AODS Upload test installation does not use the Apache2 web server,

the project maintainers anticipate adding documentation to support it since it is

a popular option.

6.3 Example Notebooks

In this section, we provide various example Jupyter notebooks that use the Scala-

Tion big data framework to perform a data science investigation or demonstrate

a topic related to data science. Readers are encouraged to use the AODS test

installations to explore the example notebooks described in this section. For new

and existing users of the AODS JupyterHub installation at hub.aods.io, this can

be done in a few different ways, as outlined below:

1. Default Notebooks: Users can navigate to the default-notebooks di-

rectory in their AODS workspace to see a list of the example notebooks

presented in this dissertation along with any additional example notebooks

hosted by the ScalaTion Kernel project. The notebooks in this directory

are personal copies of the example notebooks that were available during the

user’s account creation. As such, users should feel free to modify and execute

96

http://hub.aods.io/

them as they see fit.

2. AODS Upload Link: Users can use AODS Upload links, described earlier,

to upload notebooks directly to their AODS workspace. Each example note-

book described later in this section has a corresponding “upload” link that

is provided using the AODS Upload test installation at upload.aods.io.

After following an AODS Upload link and confirming the upload, the site

will provide the user with a link to directly access the uploaded notebook

within their AODS JupyterHub workspace.

3. Direct Download & Upload: Users can directly download notebooks to

their local machine, then upload it to their AODS workspace. Each example

notebook described later in this section has a corresponding “download” link

that is provided. Once a notebook is downloaded, users can upload it using

the “upload” button that is available in their AODS JupyterHub workspace.

4. Read Only: Users can view a rendered, read only preview of a notebook

using preview links. Each example notebook described later in this section

has a corresponding “view” link that is provided using the preview feature

of the the AODS Upload test installation at aods.io/preview/. While a

preview link will properly render previously saved output, it cannot be used

to run a notebook to generate new output.

Each of the methods described above demonstrates an open and accessible way

to explore a disseminated data science investigation. If readers wish to run the

notebooks on their own Jupyter installations, then should follow the instructions

97

http://upload.aods.io/
http://upload.aods.io/preview/

provided in Chapter 4 to install ScalaTion Kernel. The list of example notebooks

is provided below.

• Longley’s Economic Regression Data: Illustrates the exploration of

the Longley macroeconomic dataset [Longley, 1967] using a multiple linear

regression model. The dataset is provided in an open data format (i.e., CSV)

and downloaded directly from the Internet from within the notebook. The

investigator notes that this dataset is known to be highly collinear. Using

ScalaTion’s Regression class, a multiple linear regression model is trained

and model diagnostics are provided that support this claim. See Figure 6.2.

(view , download , upload)

• Clustering of Edgar Anderson’s Iris Data: Illustrates how to use

K-means clustering on Fisher’s and Anderson’s iris dataset [Becker et al.,

1988] to investigate the relationship between iris petal length and species.

The dataset is provided in an open data format (i.e., CSV) and down-

loaded directly from the Internet from within the notebook. The investi-

gator wants to explore the relationship between iris petal size (i.e., width

and height) and the three iris species provided in the dataset. Using Scala-

Tion’s KMeansPPClusterer class, petal sizes are clustered into three clusters.

The cluster assignments suggest to the investigator that a relationship be-

tween petal size and species does exist. See Figure 6.3.

(view , download , upload)

• Deriving Multiple Linear Regression: Illustrates how to derive and ap-

98

http://upload.aods.io/preview/https://github.com/scalation/scalation_kernel/raw/master/notebooks/regression.ipynb
https://github.com/scalation/scalation_kernel/raw/master/notebooks/regression.ipynb
http://upload.aods.io/https://github.com/scalation/scalation_kernel/raw/master/notebooks/regression.ipynb
http://upload.aods.io/preview/https://github.com/scalation/scalation_kernel/raw/master/notebooks/clustering.ipynb
https://github.com/scalation/scalation_kernel/raw/master/notebooks/clustering.ipynb
http://upload.aods.io/https://github.com/scalation/scalation_kernel/raw/master/notebooks/clustering.ipynb

ply the least squares solution for multiple linear regression. The investigator

begins by deriving the formula to estimate the coefficient vector in a multiple

linear regression that minimizes the sum of squared error using Markdown

and LATEX. To explore this derivation, a response vector is simulated using

a design matrix, a known coefficient vector, and random noise. Then, the

coefficient vector for a multiple linear regression model is estimated directly

using the derived method and used to produce a predicted response. The

notebook concludes with a derivation of the model’s residual sum of squared

error (SSE) using a domain-specific language. See Figure 6.4.

(view , download , upload)

• Regression Splines: Illustrates how to approximate a function for the

number (in thousands) of Australian residents over time from the austres

dataset [Brockwell and Davis, 2016] using a regression spline. The dataset is

provided in an open data format (i.e., CSV) and downloaded directly from

the Internet from within the notebook. First, the investigator gives a small

introduction to regression splines, then proceeds to work through the steps

to produce the approximated function using B-spline basis functions. This

notebook also demonstrates how to easily incorporate additional source code

into a notebook. See Figure 6.5.

(view , download , upload)

99

http://upload.aods.io/preview/https://github.com/scalation/scalation_kernel/raw/master/notebooks/regression2.ipynb
https://github.com/scalation/scalation_kernel/raw/master/notebooks/regression2.ipynb
http://upload.aods.io/https://github.com/scalation/scalation_kernel/raw/master/notebooks/regression2.ipynb
http://upload.aods.io/preview/https://github.com/scalation/scalation_kernel/raw/master/notebooks/spline.ipynb
https://github.com/scalation/scalation_kernel/raw/master/notebooks/spline.ipynb
http://upload.aods.io/https://github.com/scalation/scalation_kernel/raw/master/notebooks/spline.ipynb

Figure 6.2: Longley’s Economic Regression Data Notebook

Here we see an example of a Jupyter ScalaTion notebook which illustrates the
exploration of the Longley macroeconomic dataset [Longley, 1967] using a multiple
linear regression model.

100

Figure 6.3: Clustering of Edgar Anderson’s Iris Data Notebook

Here we see an example of a Jupyter ScalaTion notebook which illustrates how to use
K-means clustering on Fisher’s and Anderson’s iris dataset [Becker et al., 1988] to
investigate the relationship between iris petal length and species.

6.4 Impact

The AODS project and example notebooks showcase a method for disseminating

data science investigations and lessons that make use of a big data framework in a
101

Figure 6.4: Deriving Multiple Linear Regression Notebook

Here we see an example of a Jupyter ScalaTion notebook which illustrates how to
derive and apply the least squares solution for multiple linear regression.

way that is both relatively easy for investigators to provide and convenient to users

wishing to replicate investigation results or follow along with lessons. Specifically,

the AODS JupyterHub project presents a documented, minimal approach, with

102

Figure 6.5: Regression Splines Notebook

Here we see an example of a Jupyter ScalaTion notebook which illustrates how to
approximate a function for the number (in thousands) of Australian residents over time
from the austres dataset [Brockwell and Davis, 2016] using a regression spline.

an accompanying example deployment, that allows data science investigators and

educators to deploy a JupyterHub installation that supports a big data framework.

Furthermore, the AODS Upload project presents a documented, minimal way to

103

make this setup even more appealing and easier to use for end users by providing

an effective way for them to use links to automatically upload notebooks directly to

a supported JupyterHub workspace. Readers can confirm this effectiveness using

the “upload” links provided for each example notebook in Section 6.3.

6.5 Conclusions

In this chapter, we presented the Applied Open Data Science (AODS) project as

well as a set of example notebooks that utilize the ScalaTion big data framework.

Housed at aods.io, the AODS JupyterHub and AODS Upload projects demon-

strated how open and accessible support for open notebooks that make use of big

data frameworks can be provided. The implementations of these projects served

as a live test-bed for readers of this dissertation to explore the various example

notebooks that were provided.

Future work for the AODS project includes iterating on existing documenta-

tion so that it is easier to follow and supports different infrastructure scenarios.

Additionally, more example notebooks will be created to further demonstrate the

ideas conveyed in this dissertation.

104

http://aods.io/

Chapter 7

Summary

The work in this dissertation is motivated by the following open research questions

in data science education: How do you provide tools to support open science, big

data, and reproducibility? What computing infrastructure is available and how do

you use it? How do you make it easier for students and domain experts to do data

science and big data analytics? To that end, this work described and exemplified

how big data frameworks and open science can be combined to help mitigate some

of the problems related to these questions.

The main contributions of this research can be summarized as follows:

• We provided an overview of the open source ScalaTion project, a big data

framework that supports big data analytics and simulation modeling. We

present ScalaTion as an excellent tool for making big data analytics more

approachable by allowing users to express, execute, and connect together

models that are more concise and readable through well documented code

105

and the use of a domain-specific language. We also presented examples of

how ScalaTion helps support previous and existing research in analytics.

• To demonstrate how to provide lightweight big data framework integration

in open notebooks, we presented the open source ScalaTion Kernel project, a

custom Jupyter kernel that enables ScalaTion support in Jupyter notebooks.

We also discuss how the project’s minimal integration approach makes it

easier for others to reproduce Jupyter installations that include the kernel.

This was demonstrated through the provision of installation instructions for

multiple scenarios, including deployment in a Python virtual environment

and as a containerized application.

• To demonstrate research ScalaTion is used in, we outlined and evaluated a

tight clustering algorithm, written using ScalaTion, for the functional data

analysis of time course omics data. Across different signal to noise ratios and

proportions of simulated scattered genes, our method showed improvement

in terms of the weighted Rand index metric.

• To promote reproducibility in open science, we presented the Applied Open

Data Science (AODS) project, a collection of customized web applications

for the hosting and sharing of open notebooks with ScalaTion support. We

demonstrate the merit of this project by providing shareable, executable,

and modifiable example notebooks, directly accessible to readers of this dis-

sertation, that utilize ScalaTion to demonstrate various data science topics.

In conclusion, the research described and discussions presented in this dissertation

106

demonstrate potential solutions to some of the motivating questions posed above.

As demonstrated and discussed through various, live examples, these methods

would enable data science investigators and educators to provide a dissemination

environment that is reproducible at the level of individual investigations and at

the level of investigative infrastructure.

Future work related to this dissertation includes the submission of two grant

proposals related to advanced cyberinfrastructure education (one for course and

outreach development; the other for the development of a departmental con-

tainer cluster) and the continued development of the ScalaTion Kernel and AODS

projects.

107

Appendix A

Proposed Cyberinfrastructure

Courses

This appendix includes detailed information on proposed data science courses that

integrate the use of advanced cyberinfrastructure (CI). Much of the material here

is from a grant proposal principally authored by the dissertation author. This

appendix is organized as follows: i) an outline of the two proposed courses are

provided in Sections A.1 and A.2; and ii) pedagogical details are provided in

Section A.3

108

A.1 CI for Data Science I (CI1)

A.1.1 Course Description

CI includes technologies that support data science within a highly inter-operable

and collaborative ecosystem. Usually utilizing a “flipped” pedagogical approach

(described later), students in this course learn about the motivations and uses of

CI for data science-driven investigations via tutorials and an applied term project.

• This course emphasizes “Computation and Data Science for All” and is,

therefore, targeted at the broader STEM+C student community at a uni-

versity. Students should have experience with pre-calculus and statistics.

While some data science and programming experience is recommended, it

is not required. The topical outline for this course (included below) in-

cludes a number of broad topics designed to better prepare students for

infrastructure-specific training opportunities and should raise awareness of

advanced CI and its applications to applied data science. Actual usage of

advanced CI will be incorporated into coursework. Emphasis will also be

placed on open data science.

A.1.2 Topical Outline (estimated 37.5 contact hours)

• Computation and Data Science for All

– Introduction / History (1.00 hours)

– Third Pillar: Computation (1.25 hours)

109

– Fourth Pillar: Data-Driven Science (1.25 hours)

– Applications / Examples (1.00 hours)

– Ethics of Data Science (1.00 hours)

• Cyberinfrastructure (CI)

– Introduction / History (1.00 hours)

– Big Data (1.00 hours)

– Hardware Survey (1.00 hours)

– Software Survey (1.00 hours)

– Community Engagement (1.00 hours)

– Open Science Big Data (1.00 hours)

– Privacy and Security Considerations (1.00 hours)

• Basic Command Scripting

– Bash (1.25 hours)

– Python (1.25 hours)

– Scala (1.25 hours)

• Basic Command Scripting

– Introduction / History (1.25 hours)

– Map Reduce Paradigm (1.25 hours)

• Libraries for Distributed Computing

110

– Hadoop (1.25 hours)

– Spark (1.25 hours)

– Flink (1.25 hours)

– Others (1.25 hours)

• Collaboration

– Version Control Basics (1.25 hours)

– Team and Project Management (1.25 hours)

• Communication of Results

– Data Visualization Methods (1.00 hours)

– Technical Writing (1.00 hours)

• Term Project

– Proposal (2.00 hours)

– Milestone Demonstration [x2] (2.50 hours)

– Demonstration (1.00 hours)

A.2 CI for Data Science II (CI2)

A.2.1 Course Description

Usually utilizing a “flipped” pedagogical approach (described later), students in

this course learn about the motivation, implementation, and use of paradigms,

111

algorithms, and tools for advanced CI. Students will propose, implement, evaluate,

and demonstrate an applied term project emphasizing open science and the use of

advanced CI.

• This course is targeted at students who have taken CI1. Students should

have experience with calculus and programming. The topical outline for

this course (included below) includes a number of broad topics designed to

better prepare students for the implementation, execution, debugging, and

optimization of data science-related algorithms on advanced CI. Actual usage

of advanced CI will be incorporated into coursework. Emphasis will also be

placed on open data science.

A.2.2 Topical Outline (estimated 37.5 contact hours)

• Concepts for Cyberinfrastructure

– Open Science Big Data (e.g., Notebooks) (3.33 hours)

– Multicore CPU Programming (e.g., IPC, Threads, Actors) (3.33

hours)

– Multicore GPU Programming (e.g., CUDA) (3.33 hours)

– Distributed Storage and Memory (e.g., HDFS) (3.33 hours)

– MapReduce (e.g., Hadoop) (3.33 hours)

– Message Passing & Distributed Actors (e.g., MPI, Akka) (3.33 hours)

– Domain-Specific Language (e.g., Sawzall, Apache Pig, ScalaTion) (3.33

hours)

112

– Distributed Streams (e.g., Spark, Apache Flink) (3.33 hours)

• Performance and Profiling

– Performance Metrics (1.11 hours)

– Fault Tolerance (1.11 hours)

– Profiling (1.11 hours)

• Communication of Results

– Data Visualization Methods (1.00 hours)

– Technical Writing (1.00 hours)

• Term Project

– Proposal (2.00 hours)

– Milestone Demonstration [x2] (2.50 hours)

– Demonstration (1.00 hours)

A.3 Pedagogy and Additional Details

Both courses will be designed with the “flipped” pedagogical approach in mind.

With this approach, the typical lecture and assignment elements of the course

are reversed, emphasizing experiential and active learning Heyborne and Perrett

[2016]. Required readings and short video lectures are viewed by students at home

before the class session, while in-class time is devoted to active learning activi-

ties. The instructor serves a mentor for the students. Recently, many colleges

113

and universities have funded and developed programs involving flipped pedagogy.

For example, the PIs’ home institution, the University of Georgia, is currently

engaged in multiple flipped pedagogy programs in the Departments of Biochem-

istry & Molecular Biology, Chemistry, Computer Science, Genetics, Physics and

Astronomy, and Plant Biology. Preliminary evaluation suggests that students in

the flipped versions of these courses outperform their non-flipped counterparts,

on average, with respect to achieving expected learning outcomes. Examples of

flipped pedagogy programs at other institutions include Tune et al. [2013]; Schultz

et al. [2014]; Baepler et al. [2014]; Kong [2014]. Emphasis will also be placed on ex-

periential and service learning, where instruction emphasizes practical experience

in the material being taught instead of just theory Krusche et al. [2017]; Derbinsky

and Suresh [2017]. The PIs will work closely with UGA’s Office of the Vice Pres-

ident for Instruction in order to follow best practices and integrate experiential

and service learning into the pilot courses. Experiential learning is a high priority

objective at the institution level at UGA as well as in the Computer Science de-

partment. Specific avenues for experiential and service learning are outlined later

in this proposal.

In order to help promote open data science and active, guided learning, most

of the interactive tutorials in either course will be provided in an open notebook

format such as Jupyter Ragan-Kelley et al. [2014]. For example, with Jupyter

notebooks, the descriptions, methods, relevant code snippets, and student notes

for an assignment or lecture are all integrated in an easy to read and easy to

run computational narrative. With open notebooks, the course lectures, readings,

114

and activities will be provided in a way that is easily accessible and to the point,

facilitating investigation and reproducibility. Students can follow along with each

activity, modify and execute relevant code snippets, and incorporate their own

notes and results all within a notebook. A sample activity for each course is

briefly described below:

• CI1 Sample Activity - Big Data Sample Statistics: This activity

guides students through the collection of sample statistics (e.g., mean, vari-

ance, mode, min, max, etc.) for some big data dataset (e.g., in the petabyte

regime). An overview of the challenges faced in the collection of these sample

statistics is presented, including specific examples that students can try out

to see for themselves. Students are then asked to leverage advanced CI as

well as some of the open frameworks discussed in class to collect and present

the sample statistics.

• CI2 Sample Activity - Gene Expression Clustering: This activity

guides students through the clustering of timecourse omics data for gene ex-

pression levels collected from an RNA-seq experiment. An overview of the

different clustering techniques is presented, including starter code, so that

students can rapidly explore the differences between those techniques. Stu-

dents are then asked to optimize the running time for a clustering algorithm

(e.g., simple k-means) by extending it for multiple cores and then by making

it distributed. Use of advanced CI is required.

To make these activities more approachable, the use of domain-specific language

and open frameworks for analytics will be used. For any particular activity, the

115

activity description, starter code, as well as student modifications, results, and

notes will be collected in an open notebook format for easy access, assessment,

and reflection. The use of open notebooks like Jupyter have been shown to be

effective in Hu et al. [2017] as well as in the PIs’ home institution in some of

classes instructed by one of the Co-PIs.

When these courses are offered offline, active learning environments such as

computer labs and SCALE-UP Beichner et al. [2007] will be be used. For example,

with SCALE-UP the physical classroom environment is structured in a studio-like

fashion in order to facilitate active, collaborative learning. Additionally, we plan to

complement offline learning through the use of Peer Learning Assistants (PLAs).

Depending on the level of the course offering, PLAs are undergraduate or gradu-

ate teaching assistants who receive explicit pedagogical training either prior to or

during their assistantship. For example, the University of Georgia requires PLAs

to take FCID 3100, a course that, according to the UGA Bulletin, “introduces cur-

rent research findings on how people learn, reviews proven strategies for engaging

undergraduates in active learning in introductory STEM courses, and offers oppor-

tunities to model effective teaching practices with in-class group activities.” PLA

programs have been shown to be successful at many universities Blackwell et al.

[2017], including the University of Colorado Otero et al. [2010] and the University

of Georgia (the PIs’ home institution).

As the courses will be designed with the flipped pedagogy in mind, development

of online versions should be achievable with minimal effort. The same materials

provided for the offline version of these course will also be offered to the online

116

students, leaving online course development to the distribution and management of

the active learning activities in an online environment. The PIs will work closely

with UGA’s Office of Online Learning to develop the online versions of these

courses. Different strategies for effective online collaboration will be explored.

Both courses will involve term projects that are designed to increase net collec-

tive impact through experiential and service learning of the material. Students will

propose, implement, evaluate, and demonstrate an applied term project emphasiz-

ing applied data science and the use of advanced CI. Only proposals that include

a collaboration with a university research lab and or local community stakeholder

will be accepted. Furthermore, projects should make use of of open science tools

like Spark and ScalaTion. For example, ScalaTion is a free and open source frame-

work for exploring a modeling continuum that includes analytics, simulation and

optimization Miller et al. [2013b].

We anticipate that these courses will increase net collective impact by comple-

menting the existing arsenal of training and development opportunities. Students

who take these courses will be more prepared for infrastructure-specific training

opportunities, allowing the trainers of those opportunities to effectively focus their

efforts.

117

Appendix B

Proposed Community Outreach

Programs

This appendix includes information on proposed community outreach programs

that integrate the use of advanced cyberinfrastructure (CI) and complement the

courses described in Appendix A. Much of the material here is from a grant pro-

posal principally authored by the dissertation author. This appendix is organized

as follows: i) an outline of the two proposed community outreach programs are

provided in Sections B.1 and B.2; and ii) additional details are provided in Sec-

tion B.3

B.1 Secondary School Program

In this program, we propose complementing new and existing high school after

school, summer school, and summer camp programs by facilitating three key goals:

118

(i) raise awareness of data science and CI through exposure and engagement;

(ii) provide means and support for organizers and participants to provide said

engagement; and (iii) provide a means for assessing existing student exposure to

computer science and data science.

B.2 Data Science as a Community Service Pro-

gram

Here, we propose the preparation and continued development of a community

service program called “DSaaCS”, primarily designed to facilitate three key goals:

(i) connect undergraduate students and faculty with community stakeholders who

are in need; (ii) provide the tools and resources to help students aid community

stakeholders through the use of applied data science and advanced CI; and (iii)

raise community exposure to data science and advanced CI.

B.3 Additional Details

Specifically, this community outreach aspect of the proposal seeks to facilitate

the experiential and service learning requirement for projects in the CI1 and CI2

courses (detailed earlier in this proposal). Connecting students with community

stakeholders provides an effective means for experiential and service learning that

often results in the increase of practical experience and collective impact for all

parties involved; such connections also inform the instructors, ensuring that course

119

curriculum better suits the contemporary needs of stakeholders Bruhn and Camp

[2004]. This aspect of the proposal also complements existing NSF programs such

as STEM + Computing Partnerships (STEM+C) and Computer Science for All

(CS for All), which, among other things, seek to raise awareness, interest, skill,

and competency of data science in secondary schools.

How will we forge partnerships? In order to help better facilitate this com-

munity outreach aspect of the proposal, partnerships with local businesses and

community leaders will be forged. Currently, we have letters of support from the

following collaborators:

• ElevateCS: ElevateCS is an outreach program located in the Athens, GA

area. Their mission is to promote, improve, and empower Computer Sci-

ence/Technology education and those interested in it by providing resources,

events, and workshops via immersion. The PIs will collaborate with Ele-

vateCS for the proposed secondary school community outreach program.

• FourAthens: - Four Athens is a local Athens Technology Incubator that

takes in young start-ups and entrepreneurs and helps them acquire every-

thing they need to progress from inception stage to establishment of a vi-

able company. The PIs will collaborate with Four Athens for the proposed

DSaaCS program.

These partnerships are not explicitly for internship opportunities. Instead, it’s a

way for students to engage in experiential and service learning related to advanced

CI and applied data science. Ideally, students working with these partners will

120

be taking one of the courses described elsewhere in this proposal concurrently.

The role these partnerships will take is that of providing the connection between

students and local businesses and community leaders. No management overhead

would be required above facilitating these connections.

Opportunities also exist at the PIs’ home institution for greater exposure of

advanced CI and applied data science to high school students by allowing them to

work side-by-side with the students and faculty involved in the course development

and community outreach aspects of this proposal. For example, UGA’s Young

Dawgs program is a high school internship program designed to prepare high-

achieving high school juniors and seniors for post-secondary education and future

careers in their areas of interest. Students accepted into the program participate

in unpaid internships on campus–in placements throughout the university–as well

as in the community. In this case, students would be paired with other students

and faculty engaged in the principal activities of this proposal. The program is

open to students from public, private, and home schools. Students are required to

have a GPA of at least 3.7 in order to participate.

We anticipate that these community outreach programs will increase net collec-

tive impact by facilitating public-private and public-public partnerships relevant

to raising the awareness and education surrounding advanced CI, data science,

STEM+C, and CS For All. Additionally, students who participate in these com-

munity outreach programs will be more prepared for infrastructure-specific training

opportunities, allowing the trainers of those opportunities to effectively focus their

efforts.

121

Bibliography

Alexander A Aarts et al. Estimating the reproducibility of psychological science.

Science, 349(6251), 2015. ISSN 0036-8075. doi: 10.1126/science.aac4716. URL

http://science.sciencemag.org/content/349/6251/aac4716.

Christophe Abraham, Pierre-André Cornillon, ERIC Matzner-Løber, and Nicolas

Molinari. Unsupervised curve clustering using B-splines. Scandinavian Journal

of Statistics, 30(3):581–595, 2003.

Thomas Aichner, Paolo Coletti, Cipriano Forza, Urban Perkmann, and Alessio

Trentin. Effects of subcultural differences on country and product evaluations:

A replication study. Journal of Global Marketing, 29(3):115–127, mar 2016. doi:

10.1080/08911762.2015.1138012. URL https://doi.org/10.1080/08911762.

2015.1138012.

George Alter et al. Promoting an open research culture: The top guidelines for

journals. 2016.

William E. Althouse, Michael E. Zucker, and et al. Ligo: The laser in-

terferometer gravitational-wave observatory. Science, 256(5055):325, Apr 17

122

http://science.sciencemag.org/content/349/6251/aac4716
https://doi.org/10.1080/08911762.2015.1138012
https://doi.org/10.1080/08911762.2015.1138012

1992. URL http://proxy-remote.galib.uga.edu:80/login?url=https://

search.proquest.com/docview/213538223?accountid=14537. Copyright -

Copyright American Association for the Advancement of Science Apr 17, 1992;

Last updated - 2014-05-30; CODEN - SCIEAS.

David Arthur and Sergei Vassilvitskii. k-means++: the advantages of care-

ful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, pages 1027–1035, New Orleans, Louisiana,

2007. ISBN 9780898716245. URL http://dl.acm.org/citation.cfm?id=

1283494{&}CFID=921150079{&}CFTOKEN=36982346.

Paul Baepler, JD Walker, and Michelle Driessen. It’s not about seat time: Blend-

ing, flipping, and efficiency in active learning classrooms. Computers & Educa-

tion, 78:227–236, 2014.

Monya Baker. 1,500 scientists lift the lid on reproducibility. Nature, 533(7604):

452–454, 2016.

Manuel Febrero Bande, Manuel Oviedo, Pedo Galeano, Alicia Nieto, and Eduardo

Garcia-Portugues. Package ‘fda.usc’. The Comprehensive R Archive Network

(CRAN), 2016. URL https://stat.ethz.ch/CRAN/web/packages/fda.usc/

fda.usc.pdf. https://stat.ethz.ch/CRAN/web/packages/fda.usc/fda.usc.pdf.

Richard A Becker, John M Chambers, and Allan R Wilks. The new s language.

Pacific Grove, Ca.: Wadsworth & Brooks, 1988, 1988.

Robert J Beichner, Jeffery M Saul, David S Abbott, Jeanne J Morse, Duane Dear-

123

http://proxy-remote.galib.uga.edu:80/login?url=https://search.proquest.com/docview/213538223?accountid=14537
http://proxy-remote.galib.uga.edu:80/login?url=https://search.proquest.com/docview/213538223?accountid=14537
http://dl.acm.org/citation.cfm?id=1283494{&}CFID=921150079{&}CFTOKEN=36982346
http://dl.acm.org/citation.cfm?id=1283494{&}CFID=921150079{&}CFTOKEN=36982346
https://stat.ethz.ch/CRAN/web/packages/fda.usc/fda.usc.pdf
https://stat.ethz.ch/CRAN/web/packages/fda.usc/fda.usc.pdf

dorff, Rhett J Allain, Scott W Bonham, Melissa H Dancy, and John S Risley.

The student-centered activities for large enrollment undergraduate programs

(scale-up) project. Research-based reform of university physics, 1(1):2–39, 2007.

Richard Bellman. On the theory of dynamic programming. Proceedings of the

National Academy of Sciences, 38(8):716–719, 1952.

Lida Beninson, Quincy Brown, Elizabeth Burrows, Dana Hunter, Craig Jolley,

Meredith Lee, Nishal Mohan, Chloe Poston, Renata Rawlings-Goss, Carly

Robinson, Alejandro Suarez, Martin Wiener, Fen Zhao, et al. The Federal Big

Data Research and Development Strategic Plan. Technical report, Networking

and Information Technology Research and Development (NITRD), 2016.

Bonnie Berger, Jian Peng, and Mona Singh. Computational solutions for omics

data. Nature Reviews Genetics, 14(5):333–346, 2013.

David Bernstein. Containers and cloud: From lxc to docker to kubernetes. IEEE

Cloud Computing, 1(3):81–84, 2014.

Stacey Blackwell, Sari Katzen, Nipa Patel, Sun Yan, and Mary Emenike. Devel-

oping the preparation in stem leadership programs for undergraduate academic

peer leaders. Learning Assistance Review (TLAR), 22(1):49 – 84, 2017. ISSN

10870059. URL http://proxy-remote.galib.uga.edu/login?url=http://

search.ebscohost.com/login.aspx?direct=true&db=ehh&AN=122687314&

site=eds-live.

124

http://proxy-remote.galib.uga.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=ehh&AN=122687314&site=eds-live
http://proxy-remote.galib.uga.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=ehh&AN=122687314&site=eds-live
http://proxy-remote.galib.uga.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=ehh&AN=122687314&site=eds-live

Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundations of Data Science.

Vorabversion eines Lehrbuchs, 2016.

Casey N Bowman and John A Miller. Modeling traffic flow using simulation and

big data analytics. In Winter Simulation Conference (WSC), 2016, pages 1206–

1217. IEEE, 2016.

Danah Boyd and Kate Crawford. Six Provocations for Big Data. SSRN Electronic

Journal, pages 1–17, sep 2011. ISSN 1556-5068. doi: 10.2139/ssrn.1926431.

URL http://www.ssrn.com/abstract=1926431.

Sarah Brockhaus, David Ruegamer, and Torsten Hothorn. Package ‘FDboost’.

The Comprehensive R Archive Network (CRAN), 2016. URL https://

cran.r-project.org/web/packages/FDboost/FDboost.pdf. https://cran.r-

project.org/web/packages/FDboost/FDboost.pdf.

Peter J Brockwell and Richard A Davis. Introduction to time series and forecasting.

springer, 2016.

Russel E. Bruhn and Judy Camp. Capstone course creates useful business prod-

ucts and corporate-ready students. SIGCSE Bull., 36(2):87–92, June 2004.

ISSN 0097-8418. doi: 10.1145/1024338.1024379. URL http://doi.acm.org/

10.1145/1024338.1024379.

C. F. Camerer, A. Dreber, E. Forsell, T.-H. Ho, J. Huber, M. Johannesson,

M. Kirchler, J. Almenberg, A. Altmejd, T. Chan, E. Heikensten, F. Holzmeister,

T. Imai, S. Isaksson, G. Nave, T. Pfeiffer, M. Razen, and H. Wu. Evaluating

125

http://www.ssrn.com/abstract=1926431
https://cran.r-project.org/web/packages/FDboost/FDboost.pdf
https://cran.r-project.org/web/packages/FDboost/FDboost.pdf
http://doi.acm.org/10.1145/1024338.1024379
http://doi.acm.org/10.1145/1024338.1024379

replicability of laboratory experiments in economics. Science, 351(6280):1433–

1436, mar 2016. doi: 10.1126/science.aaf0918. URL https://doi.org/10.

1126/science.aaf0918.

Longbing Cao. Data science: A comprehensive overview. ACM Comput. Surv.,

50(3):43:1–43:42, June 2017. ISSN 0360-0300. doi: 10.1145/3076253. URL

http://doi.acm.org/10.1145/3076253.

Susan E Celniker, Laura AL Dillon, Mark B Gerstein, Kristin C Gunsalus, Steven

Henikoff, Gary H Karpen, Manolis Kellis, Eric C Lai, Jason D Lieb, David M

MacAlpine, et al. Unlocking the secrets of the genome. Nature, 459(7249):

927–930, 2009.

Soumen Chakrabarti, Martin Ester, Usama Fayyad, Johannes Gehrke, Jiawei Han,

Shinichi Morishita, Gregory Piatetsky-Shapiro, andWei Wang. Data mining cur-

riculum: A proposal (version 1.0). Intensive Working Group of ACM SIGKDD

Curriculum Committee, page 140, 2006.

CL Philip Chen and Chun-Yang Zhang. Data-intensive applications, challenges,

techniques and technologies: A survey on big data. Information Sciences, 275:

314–347, 2014.

Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile Networks

and Applications, 19(2):171–209, Apr 2014. ISSN 1572-8153. doi: 10.1007/

s11036-013-0489-0. URL https://doi.org/10.1007/s11036-013-0489-0.

Laura Clarke, Xiangqun Zheng-Bradley, Richard Smith, Eugene Kulesha, Chunlin

126

https://doi.org/10.1126/science.aaf0918
https://doi.org/10.1126/science.aaf0918
http://doi.acm.org/10.1145/3076253
https://doi.org/10.1007/s11036-013-0489-0

Xiao, Iliana Toneva, Brendan Vaughan, Don Preuss, Rasko Leinonen, Martin

Shumway, Stephen Sherry, and Paul Flicek. The 1000 genomes project: data

management and community access. Nature Methods, 9(5):459–462, apr 2012.

doi: 10.1038/nmeth.1974. URL https://doi.org/10.1038/nmeth.1974.

Michael E. Cotterell, John A. Miller, and Tom Horton. Unicode in Domain-

Specific Programming Languages for Modeling & Simulation: ScalaTion as a

Case Study, 2011a.

Michael E. Cotterell, John A. Miller, and Tom Horton. Unicode in Domain-

Specific Programming Languages for Modeling & Simulation: ScalaTion as a

Case Study. Technical report, Department of Computer Science, University

of Georgia, Athens, Georgia, May 2011b. URL http://arxiv.org/abs/1112.

1751.

Peter Craven and Grace Wahba. Smoothing noisy data with spline functions.

Numerische Mathematik, 31(4):377–403, 1978. ISSN 0029-599X. doi: 10.1007/

BF01404567. URL http://link.springer.com/10.1007/BF01404567.

Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social coding

in github: Transparency and collaboration in an open software repository. In

Proceedings of the ACM 2012 conference on Computer Supported Cooperative

Work, pages 1277–1286. ACM, 2012.

Xiongtao Dai, Pantelis Z. Hadjipantelis, Hao Ji, Hans-Georg Mueller, and Jane-

LingWang. Package ‘fdapace’. The Comprehensive R Archive Network (CRAN),

127

https://doi.org/10.1038/nmeth.1974
http://arxiv.org/abs/1112.1751
http://arxiv.org/abs/1112.1751
http://link.springer.com/10.1007/BF01404567

2017. URL https://stat.ethz.ch/CRAN/web/packages/fdapace/fdapace.

pdf. https://stat.ethz.ch/CRAN/web/packages/fdapace/fdapace.pdf.

Carl de Boor, J.E. Marsden, and L. Sirovich. A Practical Guide to Splines (Revised

Edition). Applied Mathematical Sciences 27. Springer-Verlag New York, 2001.

ISBN 9780387953663. URL http://gen.lib.rus.ec/book/index.php?md5=

C908D608964F2FDDB6F67FF1632DBF2F.

Nate Derbinsky and Durga Suresh. Sustainable methods for impactful service

learning in computer science (abstract only). In Proceedings of the 2017 ACM

SIGCSE Technical Symposium on Computer Science Education, SIGCSE ’17,

pages 723–723, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4698-6.

doi: 10.1145/3017680.3022346. URL http://doi.acm.org/10.1145/3017680.

3022346.

Van A. Deursen, P. Klint, and J. Visser. Domain-Specific Languages: An Anno-

tated Bibliography. ACM Sigplan Notices, 35(6):26–36, 2000. ISSN 0362-1340.

Vasant Dhar. Data Science and Prediction. Communications of the ACM, 56(12):

64–73, 2013.

Michael B Eisen, Paul T Spellman, Patrick O Brown, and David Botstein. Cluster

analysis and display of genome-wide expression patterns. Proceedings of the

National Academy of Sciences, 95(25):14863–14868, 1998.

Eli Eisenberg and Erez Y. Levanon. Human housekeeping genes, revisited.

Trends in Genetics, 29(10):569–574, 2013. ISSN 01689525. doi: 10.1016/j.tig.

128

https://stat.ethz.ch/CRAN/web/packages/fdapace/fdapace.pdf
https://stat.ethz.ch/CRAN/web/packages/fdapace/fdapace.pdf
http://gen.lib.rus.ec/book/index.php?md5=C908D608964F2FDDB6F67FF1632DBF2F
http://gen.lib.rus.ec/book/index.php?md5=C908D608964F2FDDB6F67FF1632DBF2F
http://doi.acm.org/10.1145/3017680.3022346
http://doi.acm.org/10.1145/3017680.3022346

2013.05.010. URL http://www.sciencedirect.com/science/article/pii/

S0168952513000899.

Elsevier. Research data faqs, 2017.

Leandro Fernández, Riccard Andersson, Hakan Hagenrud, Timo Korhonen,

Emanuele Laface, and Bla Zupanc. Jupyterhub at the ESS. An Interactive

Python Computing Environment for Scientists and Engineers. In In Proceed-

ings of 2016 International Particle Accelerator Conference (IPAC16), 2016.

John Fink. Docker: a software as a service, operating system-level virtualization

framework. Code4Lib Journal, 25, 2014.

Steven Finlay. Predictive analytics, data mining and big data: Myths, misconcep-

tions and methods. Springer, 2014.

Y Fujikoshi. Modified AIC and Cp in multivariate linear regression.

Biometrika, 84(3):707–716, 1997. ISSN 0006-3444. doi: 10.1093/biomet/84.

3.707. URL https://academic.oup.com/biomet/article-lookup/doi/10.

1093/biomet/84.3.707.

Matthias E Futschik and Bronwyn Carlisle. Noise-robust soft clustering of gene

expression time-course data. Journal of Bioinformatics and Computational Bi-

ology, 3(4):965–88, 2005. ISSN 0219-7200. URL http://www.ncbi.nlm.nih.

gov/pubmed/16078370.

Ruti Gafni and Dudu Nissim. To social login or not login? exploring factors

129

http://www.sciencedirect.com/science/article/pii/S0168952513000899
http://www.sciencedirect.com/science/article/pii/S0168952513000899
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/84.3.707
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/84.3.707
http://www.ncbi.nlm.nih.gov/pubmed/16078370
http://www.ncbi.nlm.nih.gov/pubmed/16078370

affecting the decision. Issues in Informing Science and Information Technology,

11:57–72, 2014.

Isak Gath and Amir B. Geva. Unsupervised optimal fuzzy clustering. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 11(7):773–780, 1989.

Yolanda Gil, Cédric H David, Ibrahim Demir, Bakinam T Essawy, Robinson W

Fulweiler, Jonathan L Goodall, Leif Karlstrom, Huikyo Lee, Heath J Mills, Ji-

Hyun Oh, et al. Toward the geoscience paper of the future: Best practices for

documenting and sharing research from data to software to provenance. Earth

and Space Science, 3(10):388–415, 2016.

Stephen Goff, Matthew Vaughn, Sheldon McKay, Eric Lyons, Ann Stapleton,

Damian Gessler, Naim Matasci, Liya Wang, Matthew Hanlon, Andrew Lenards,

Andy Muir, Nirav Merchant, Sonya Lowry, Stephen Mock, Matthew Helmke,

Adam Kubach, Martha Narro, Nicole Hopkins, David Micklos, Uwe Hilgert,

Michael Gonzales, Chris Jordan, Edwin Skidmore, Rion Dooley, John Cazes,

Robert McLay, Zhenyuan Lu, Shiran Pasternak, Lars Koesterke, William Piel,

Ruth Grene, Christos Noutsos, Karla Gendler, Xin Feng, Chunlao Tang, Mon-

ica Lent, Seung-jin Kim, Kristian Kvilekval, B.S. Manjunath, Val Tannen,

Alexandros Stamatakis, Michael Sanderson, Stephen Welch, Karen Cranston,

Pamela Soltis, Douglas Soltis, Brian O’Meara, Cecile Ane, Tom Brutnell, Daniel

Kleibenstein, Jeffrey White, Jim Leebens-Mack, Michael Donoghue, Edgar

Spalding, Todd Vision, Christopher Myers, David Lowenthal, Brian Enquist,

Brad Boyle, Ali Akoglu, Greg Andrews, Sudha Ram, Doreen Ware, Lincoln

130

Stein, and Dan Stanzione. The iplant collaborative: Cyberinfrastructure for

plant biology. Frontiers in Plant Science, 2:34, 2011. ISSN 1664-462X. doi:

10.3389/fpls.2011.00034. URL http://journal.frontiersin.org/article/

10.3389/fpls.2011.00034.

Jeff Goldsmith, Fabian Scheipl, Lei Huang, Julia Wrobel, Jonathan Gel-

lar, Jaroslaw Harezlak, Mathew W. McLean, Bruce Swihart, Luo Xiao,

Ciprian Crainiceanu, Philip T. Reiss, Yakuan Chen, Sonja Greven, Lan Huo,

Madan Gopal Kundu, So Young Park, David L. Miller, and Ana-Maria

Staicu. Package ‘refund’. The Comprehensive R Archive Network (CRAN),

2016. URL https://cran.r-project.org/web/packages/refund/refund.

pdf. https://cran.r-project.org/web/packages/refund/refund.pdf.

Brenton R Graveley, Angela N Brooks, Joseph W Carlson, Michael O Duff,

Jane M Landolin, Li Yang, Carlo G Artieri, Marijke J van Baren, Nathan Bo-

ley, Benjamin W Booth, et al. The developmental transcriptome of Drosophila

melanogaster. Nature, 471(7339):473–479, 2011.

Clara Happ. Package ‘funData’. The Comprehensive R Archive Network (CRAN),

2016. URL https://stat.ethz.ch/CRAN/web/packages/funData/funData.

pdf. https://stat.ethz.ch/CRAN/web/packages/funData/funData.pdf.

J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. Journal of

the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979.

ISSN 00359254, 14679876. URL http://www.jstor.org/stable/2346830.

131

http://journal.frontiersin.org/article/10.3389/fpls.2011.00034
http://journal.frontiersin.org/article/10.3389/fpls.2011.00034
https://cran.r-project.org/web/packages/refund/refund.pdf
https://cran.r-project.org/web/packages/refund/refund.pdf
https://stat.ethz.ch/CRAN/web/packages/funData/funData.pdf
https://stat.ethz.ch/CRAN/web/packages/funData/funData.pdf
http://www.jstor.org/stable/2346830

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Sta-

tistical Learning. Springer Series in Statistics. Springer New York, New York,

NY, 2009. ISBN 978-0-387-84857-0. doi: 10.1007/978-0-387-84858-7. URL

http://link.springer.com/10.1007/978-0-387-84858-7.

Chikio Hayashi. What is data science? fundamental concepts and a heuristic

example. In Data Science, Classification, and Related Methods, pages 40–51.

Springer, 1998.

Tony Hey, Stewart Tansley, Kristin M Tolle, et al. The Fourth Paradigm: Data-

Intensive Scientific Discovery, volume 1. Microsoft Research Redmond, WA,

2009.

William H. Heyborne and Jamis J. Perrett. To flip or not to

flip? analysis of a flipped classroom pedagogy in a general biol-

ogy course. Journal of College Science Teaching, 45(4):31–37, Mar

2016. URL http://proxy-remote.galib.uga.edu:80/login?url=https://

search.proquest.com/docview/1769716240?accountid=14537. Copyright -

Copyright National Science Teachers Association Mar/Apr 2016; Document fea-

ture - Tables; Graphs; ; Last updated - 2016-03-02; CODEN - JSCTBN.

C. Hofer, K. Ostermann, T. Rendel, and A. Moors. Polymorphic Embedding

of DSLs. In Proceedings of the 7th International Conference on Generative

Programming and Component Engineering, GPCE ’08, pages 137–148. ACM,

2008.

132

http://link.springer.com/10.1007/978-0-387-84858-7
http://proxy-remote.galib.uga.edu:80/login?url=https://search.proquest.com/docview/1769716240?accountid=14537
http://proxy-remote.galib.uga.edu:80/login?url=https://search.proquest.com/docview/1769716240?accountid=14537

Christian Hofer and Klaus Ostermann. Modular Domain-specific Language Com-

ponents in Scala. In Proceedings of the 9th International Conference on Genera-

tive Programming and Component Engineering, GPCE ’10, pages 83–92. ACM,

2010. ISBN 978-1-4503-0154-1. doi: http://doi.acm.org/10.1145/1868294.

1868307. URL http://doi.acm.org/10.1145/1868294.1868307.

Helen H Hu, Douglas Blank, Albert Chan, and Travis Doom. Panel: Teaching to

increase diversity and equity in stem. In Proceedings of the 2017 ACM SIGCSE

Technical Symposium on Computer Science Education, pages 665–666. ACM,

2017.

Ross Ihaka and Robert Gentleman. R: A Language for Data Analysis and Graph-

ics. Journal of Computational and Graphical Statistics, 5(3):299–314, 1996.

John P. A. Ioannidis. Why most clinical research is not useful. PLOS Medicine,

13(6):e1002049, jun 2016. doi: 10.1371/journal.pmed.1002049. URL https:

//doi.org/10.1371/journal.pmed.1002049.

Julien Jacques and Cristian Preda. Functional data clustering: a survey. Advances

in Data Analysis and Classification, 8(3):231–255, 2014.

Stephen Kaisler, Frank Armour, J Alberto Espinosa, and William Money. Big

data: Issues and challenges moving forward. In System Sciences (HICSS), 2013

46th Hawaii International Conference on, pages 995–1004. IEEE, 2013.

Takeaki Kariya and Hiroshi Kurata. Generalized Least Squares. John Wiley &

Sons, 2004.

133

http://doi.acm.org/10.1145/1868294.1868307
https://doi.org/10.1371/journal.pmed.1002049
https://doi.org/10.1371/journal.pmed.1002049

Avita Katal, Mohammad Wazid, and RH Goudar. Big data: issues, challenges,

tools and good practices. In Contemporary Computing (IC3), 2013 Sixth Inter-

national Conference on, pages 404–409. IEEE, 2013.

Leonard Kaufman and Peter J Rousseeuw. Finding Groups in Data: An Introduc-

tion to Cluster Analysis, volume 344. John Wiley & Sons, 2009.

Nawsher Khan, Ibrar Yaqoob, Ibrahim Abaker Targio Hashem, Zakira Inayat,

Waleed Kamaleldin Mahmoud Ali, Muhammad Alam, Muhammad Shiraz, and

Abdullah Gani. Big data: survey, technologies, opportunities, and challenges.

The Scientific World Journal, 2014, 2014.

J. Kiefer, J. Kiefer, J. Wolfowitz, Herbert Robbins, Sutton Monro, and J. Wol-

fowitz. Sequential minimax search for a maximum. Proceedings of the

American Mathematical Society, 4(3):502–502, 1953. ISSN 0002-9939. doi:

10.1090/S0002-9939-1953-0055639-3. URL http://www.ams.org/jourcgi/

jour-getitem?pii=S0002-9939-1953-0055639-3.

Gerhard Klimeck, Michael McLennan, Sean P. Brophy, George B. Adams III,

and Mark S. Lundstrom. nanohub.org: Advancing education and research

in nanotechnology. Computing in Science & Engineering, 10(5):17–23, 2008.

doi: 10.1109/MCSE.2008.120. URL http://aip.scitation.org/doi/abs/10.

1109/MCSE.2008.120.

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,

Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Ja-

134

http://www.ams.org/jourcgi/jour-getitem?pii=S0002-9939-1953-0055639-3
http://www.ams.org/jourcgi/jour-getitem?pii=S0002-9939-1953-0055639-3
http://aip.scitation.org/doi/abs/10.1109/MCSE.2008.120
http://aip.scitation.org/doi/abs/10.1109/MCSE.2008.120

son Grout, Sylvain Corlay, et al. Jupyter notebooks-a publishing format for

reproducible computational workflows. In ELPUB, pages 87–90, 2016.

Ron Kohavi and Foster Provost. Glossary of terms. Machine Learning, 30(2-3):

271–274, 1998.

Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–

1480, 1990.

Siu Cheung Kong. Developing information literacy and critical thinking skills

through domain knowledge learning in digital classrooms: An experience of prac-

ticing flipped classroom strategy. Computers & Education, 78:160–173, 2014.

Sadanori Konishi, Tomohiro Ando, and Seiya Imoto. Bayesian information

criteria and smoothing parameter selection in radial basis function net-

works. Biometrika, 91(1):27–43, 2004. URL http://www.jstor.org/stable/

20441077?seq=1{#}page{_}scan{_}tab{_}contents.

Sadanori Konoshi and Genshiro Kitagawa. Generalised information criteria in

model selection. Biometrika, 83(4):875–890, 1996. URL https://www.jstor.

org/stable/2337290?seq=1{#}page{_}scan{_}tab{_}contents.

Stephan Krusche, Andreas Seitz, Nadine von Frankenberg, and Bernd Bruegge.

How to integrate interactive learning into large classes (abstract only). In

Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer

Science Education, SIGCSE ’17, pages 737–737, New York, NY, USA, 2017.

135

http://www.jstor.org/stable/20441077?seq=1{#}page{_}scan{_}tab{_}contents
http://www.jstor.org/stable/20441077?seq=1{#}page{_}scan{_}tab{_}contents
https://www.jstor.org/stable/2337290?seq=1{#}page{_}scan{_}tab{_}contents
https://www.jstor.org/stable/2337290?seq=1{#}page{_}scan{_}tab{_}contents

ACM. ISBN 978-1-4503-4698-6. doi: 10.1145/3017680.3017843. URL http:

//doi.acm.org/10.1145/3017680.3017843.

Mikael Laakso, Patrik Welling, Helena Bukvova, Linus Nyman, Bo-Christer Björk,

and Turid Hedlund. The development of open access journal publishing from

1993 to 2009. PloS one, 6(6):e20961, 2011.

Jingyi Jessica Li, Haiyan Huang, Peter J Bickel, and Steven E Brenner. Compar-

ison of D. melanogaster and C. elegans developmental stages, tissues, and cells

by modENCODE RNA-seq data. Genome Research, 24(7):1086–1101, 2014.

A. Lichman. UCI Machine Learning Repository, 2013. URL http://archive.

ics.uci.edu/ml. University of California, Irvine, School of Information and

Computer Sciences.

James W Longley. An appraisal of least squares programs for the electronic com-

puter from the point of view of the user. Journal of the American Statistical

association, 62(319):819–841, 1967.

P. Ma, Cristian I. Castillo-Davis, Wenxuan Zhong, and Jun S. Liu. A data-driven

clustering method for time course gene expression data. Nucleic Acids Research,

34(4):1261–1269, 2006. ISSN 0305-1048. doi: 10.1093/nar/gkl013. URL https:

//academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkl013.

Ping Ma and Wenxuan Zhong. Penalized clustering of large-scale functional data

with multiple covariates. Journal of the American Statistical Association, 103

(482):625–636, 2008.

136

http://doi.acm.org/10.1145/3017680.3017843
http://doi.acm.org/10.1145/3017680.3017843
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkl013
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkl013

James MacQueen et al. Some methods for classification and analysis of multivariate

observations. In Proceedings of the fifth Berkeley symposium on Mathematical

Statistics and Probability, pages 281–297. Oakland, CA, USA., 1967.

Youness Madani, Jemaa Bengourram, and Mohammed Erritali. Social login and

data storage in the big data file system hdfs. In Proceedings of the International

Conference on Compute and Data Analysis, ICCDA ’17, pages 91–97, New York,

NY, USA, 2017. ACM. ISBN 978-1-4503-5241-3. doi: 10.1145/3093241.3093265.

URL http://doi.acm.org/10.1145/3093241.3093265.

Vivien Marx. Biology: The big challenges of big data. Nature, 498(7453):255–260,

2013.

G J McLachlan, R W Bean, and D Peel. A mixture model-based approach to the

clustering of microarray expression data. Bioinformatics, 18(3):413–422, 2002.

ISSN 1367-4803. URL http://dx.doi.org/10.1093/bioinformatics/18.3.

413.

Dirk Merkel. Docker: lightweight linux containers for consistent development and

deployment. Linux Journal, 2014(239):2, 2014.

John A Miller, Rajesh S Nair, Zhiwei Zhang, and Hongwei Zhao. JSIM: A Java-

based Simulation and Animation Environment. In Proceedings of the 1997 Sim-

ulation Symposium, pages 31–42. IEEE, 1997.

John A. Miller, Jun Han, and Maria Hybinette. Using domain specific language

for modeling and simulation: ScalaTion as a case study. In Proceedings of

137

http://doi.acm.org/10.1145/3093241.3093265
http://dx.doi.org/10.1093/bioinformatics/18.3.413
http://dx.doi.org/10.1093/bioinformatics/18.3.413

the 2010 Winter Simulation Conference, pages 741–752, Baltimore, MD, USA,

2010. ISBN 978-1-4244-9866-6. doi: 10.1109/WSC.2010.5679113. URL http:

//ieeexplore.ieee.org/document/5679113/.

John A. Miller, Michael E. Cotterell, and Stephen J. Buckley. Supporting a Mod-

eling Continuum in ScalaTion: From Predictive Analytics to Simulation Mod-

eling. In 2013 Winter Simulations Conference (WSC), pages 1191–1202, Wash-

ington, DC, dec 2013a. IEEE. ISBN 978-1-4799-3950-3. doi: 10.1109/WSC.

2013.6721507. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=6721507.

John A Miller, Michael E Cotterell, and Stephen J Buckley. Supporting a modeling

continuum in scalation: From predictive analytics to simulation modeling. In

2013 Winter Simulation Conference (WSC’13), pages 1191–1202. IEEE, 2013b.

Michael Milligan. Interactive hpc gateways with jupyter and jupyterhub. In Pro-

ceedings of the Practice and Experience in Advanced Research Computing 2017

on Sustainability, Success and Impact, page 63. ACM, 2017.

Paolo Missier, Khalid Belhajjame, and James Cheney. The w3c prov family of

specifications for modelling provenance metadata. In Proceedings of the 16th

International Conference on Extending Database Technology, pages 773–776.

ACM, 2013.

Joseph Muscat. Functional Analysis: An Introduction to Metric Spaces, Hilbert

Spaces, and Banach Algebras. Springer International Publishing, Cham, 2014.

138

http://ieeexplore.ieee.org/document/5679113/
http://ieeexplore.ieee.org/document/5679113/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6721507
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6721507

ISBN 978-3-319-06727-8. doi: 10.1007/978-3-319-06728-5. URL http://link.

springer.com/10.1007/978-3-319-06728-5.

National Academies of Sciences, Engineering, and Medicine. Future Directions for

NSF Advanced Computing Infrastructure to Support U.S. Science and Engineer-

ing in 2017-2020. National Academies Press, 2016.

National Science Foundation. Public Access Plan: Today’s Data, Tomorrow’s

Discoveries: Increasing Access to the Results of Research Funded by the National

Science Foundation. National Science Foundation, Mar 2015. URL https:

//www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf15052.

Nature. Science in the Petabyte Era, volume 455. Nature Publishing Group, sep

2008. URL http://dx.doi.org/10.1038/455001a.

David Nicholas, Paul Huntington, and Ian Rowlands. Open access journal publish-

ing: the views of some of the world’s senior authors. Journal of Documentation,

61(4):497–519, 2005.

Brian A Nosek, George Alter, George Banks, Denny Borsboom, Sara Bowman,

Steven Breckler, Stuart Buck, Colin Camerer, Chris Chambers, Gilbert Chin,

et al. Transparency and openness promotion (top) guidelines. 2016.

Mustafa V Nural, Michael E Cotterell, and John A Miller. Using semantics in

predictive big data analytics. In Big Data (BigData Congress), 2015 IEEE

International Congress on, pages 254–261. IEEE, 2015.

139

http://link.springer.com/10.1007/978-3-319-06728-5
http://link.springer.com/10.1007/978-3-319-06728-5
https://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf15052
https://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf15052
http://dx.doi.org/10.1038/455001a

Mustafa V Nural, Hao Peng, and John A Miller. Using meta-learning for model

type selection in predictive big data analytic. In Proceedings of the 2017 IEEE

International Conference on Big Data, Special Session on Intelligent Data Min-

ing. IEEE, 2017.

Barack Obama. Executive orderâĂŤcreating a national strategic computing ini-

tiative. The White House, US, 29, 2015.

Valerie Otero, Steven Pollock, and Noah Finkelstein. A physics departmentâĂŹs

role in preparing physics teachers: The colorado learning assistant model. Amer-

ican Journal of Physics, 78(11):1218–1224, 2010.

Oxford English Dictionary. big data. Oxford University Press, 2017. URL http:

//www.oed.com/view/Entry/18833?redirectedFrom=big+data.

Claus Pahl and Brian Lee. Containers and clusters for edge cloud architectures–a

technology review. In Future Internet of Things and Cloud (FiCloud), 2015 3rd

International Conference on, pages 379–386. IEEE, 2015.

Nicholas M. Patrikalakis and Takashi Maekawa. B-spline Curves and Sur-

faces. In Shape Interrogation for Computer Aided Design and Man-

ufacturing, chapter 1.4. Springer, Berlin, Heidelberg, Hyperbook edi-

tion, 2010. ISBN 978-3-642-04073-3. doi: 10.1007/978-3-642-04074-0.

URL http://link.springer.com/10.1007/978-3-642-04074-0http://web.

mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node15.html.

Hao Peng, Zhe Jin, and John A Miller. Bayesian networks with structural restric-

140

http://www.oed.com/view/Entry/18833?redirectedFrom=big+data
http://www.oed.com/view/Entry/18833?redirectedFrom=big+data
http://link.springer.com/10.1007/978-3-642-04074-0 http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node15.html
http://link.springer.com/10.1007/978-3-642-04074-0 http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node15.html

tions: Parallelization, performance, and efficient cross-validation. In Big Data

(BigData Congress), 2017 IEEE International Congress on, pages 7–14. IEEE,

2017.

Les Piegl and Wayne Tiller. The NURBS Book. Monographs in Visual Communi-

cation. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997. ISBN 978-3-540-

61545-3. doi: 10.1007/978-3-642-59223-2. URL http://link.springer.com/

10.1007/978-3-642-59223-2.

Foster Provost and Tom Fawcett. Data science and its relationship to big data

and data-driven decision making. Big Data, 1(1):51–59, 2013.

Jean Francois Puget. The Most Popular Language For Machine Learn-

ing Is ... IBM developerWorks Blogs, dec 2016. URL https:

//www.ibm.com/developerworks/community/blogs/jfp/entry/What_

Language_Is_Best_For_Machine_Learning_And_Data_Science?lang=en.

M Ragan-Kelley, F Perez, B Granger, T Kluyver, P Ivanov, J Frederic, and M Bus-

sonnier. The jupyter/ipython architecture: a unified view of computational re-

search, from interactive exploration to communication and publication. In AGU

Fall Meeting Abstracts, 2014.

J. O. Ramsay and C. J. Dalzell. Some Tools for Functional Data Analysis on

JSTOR. Journal of the Royal Statistical Society. Series B (Methodological), 53

(3):539–572, 1991. URL http://www.jstor.org/stable/2345586.

141

http://link.springer.com/10.1007/978-3-642-59223-2
http://link.springer.com/10.1007/978-3-642-59223-2
https://www.ibm.com/developerworks/community/blogs/jfp/entry/What_Language_Is_Best_For_Machine_Learning_And_Data_Science?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/What_Language_Is_Best_For_Machine_Learning_And_Data_Science?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/What_Language_Is_Best_For_Machine_Learning_And_Data_Science?lang=en
http://www.jstor.org/stable/2345586

J. O. Ramsay and B. W. Silverman. Functional Data Analysis. Springer, 1997.

ISBN 9781475771077.

J. O. Ramsay and B. W. Silverman. Functional Data Analysis.

Springer Series in Statistics. Springer-Verlag, New York, 2nd edi-

tion, 2005. ISBN 0-387-40080-X. doi: 10.1007/b98888. URL

http://link.springer.com/10.1007/b98888http://link.springer.com.

proxy-remote.galib.uga.edu/book/10.1007/b98888.

J. O. Ramsay, Hadley Wickham, Spencer Graves, and Giles Hooker. Pack-

age ‘fda’. The Comprehensive R Archive Network (CRAN), 2015. URL

https://cran.r-project.org/web/packages/fda/fda.pdf. https://cran.r-

project.org/web/packages/fda/fda.pdf.

James Ramsay, Giles Hooker, and Spencer Graves. Functional Data Analysis with

R and MATLAB. Use R. Springer New York, New York, NY, 2009. ISBN 978-

0-387-98184-0. doi: 10.1007/978-0-387-98185-7. URL http://link.springer.

com/10.1007/978-0-387-98185-7.

Ellen M. Rathje, Clint Dawson, Jamie E. Padgett, Jean-Paul Pinelli, Dan

Stanzione, Ashley Adair, Pedro Arduino, Scott J. Brandenberg, Tim Cocker-

ill, Charlie Dey, Maria Esteva, Fred L. Haan, Matthew Hanlon, Ahsan Kareem,

Laura Lowes, Stephen Mock, and Gilberto Mosqueda. Designsafe: New cy-

berinfrastructure for natural hazards engineering. Natural Hazards Review, 18

(3):06017001, 2017. doi: 10.1061/(ASCE)NH.1527-6996.0000246. URL http:

//ascelibrary.org/doi/abs/10.1061/%28ASCE%29NH.1527-6996.0000246.

142

http://link.springer.com/10.1007/b98888 http://link.springer.com.proxy-remote.galib.uga.edu/book/10.1007/b98888
http://link.springer.com/10.1007/b98888 http://link.springer.com.proxy-remote.galib.uga.edu/book/10.1007/b98888
https://cran.r-project.org/web/packages/fda/fda.pdf
http://link.springer.com/10.1007/978-0-387-98185-7
http://link.springer.com/10.1007/978-0-387-98185-7
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29NH.1527-6996.0000246
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29NH.1527-6996.0000246

Katherine Sanderson. Data on display. Nature, 455(7211):273–274, 2008.

David Schultz, Stacy Duffield, Seth C Rasmussen, and Justin Wageman. Effects

of the flipped classroom model on student performance for advanced placement

high school chemistry students. Journal of chemical education, 91(9):1334–1339,

2014.

Charles Scott, Devin Wynne, and Chutima Boonthum-Denecke. Examining the

privacy of login credentials using web-based single sign-on - are we giving

up security and privacy for convenience? In 2016 Cybersecurity Sympo-

sium (CYBERSEC). IEEE, apr 2016. doi: 10.1109/cybersec.2016.019. URL

https://doi.org/10.1109/cybersec.2016.019.

Han Lin Shang and Rob J Hyndman. Package ‘fds’. The Comprehensive R Archive

Network (CRAN), 2013. URL https://stat.ethz.ch/CRAN/web/packages/

fds/fds.pdf. https://stat.ethz.ch/CRAN/web/packages/fds/fds.pdf.

Han Lin Shang and Rob J Hyndman. Package ‘roahd’. The

Comprehensive R Archive Network (CRAN), 2016. URL

https://stat.ethz.ch/CRAN/web/packages/rainbow/rainbow.pdf.

https://stat.ethz.ch/CRAN/web/packages/rainbow/rainbow.pdf.

Helen Shen. Interactive notebooks: Sharing the code. Nature, 515(7525):151, 2014.

Aisha Siddiqa, Ahmad Karim, and Abdullah Gani. Big data storage technologies:

a survey. Frontiers of Information Technology & Electronic Engineering, 18(8):

1040–1070, 2017.

143

https://doi.org/10.1109/cybersec.2016.019
https://stat.ethz.ch/CRAN/web/packages/fds/fds.pdf
https://stat.ethz.ch/CRAN/web/packages/fds/fds.pdf
https://stat.ethz.ch/CRAN/web/packages/rainbow/rainbow.pdf

PSG Aruna Sri and M Anusha. Big data-survey. Indonesian Journal of Electrical

Engineering and Informatics (IJEEI), 4(1):74–80, 2016.

Anuj Srivastava, Wei Wu, Sebastian Kurtek, Eric Klassen, and J S Mar-

ron. Registration of functional data using Fisher-Rao metric. arXiv preprint

arXiv:1103.3817, 2011.

Steve Lohr. Searching for Origins Of the Term ’Big Data’, feb 2013. ISSN 03624331.

Nicholas Tarabelloni, Ana Arribas-Gil, Francesca Ieva, Anna Maria Paganoni,

and Juan Romo. Package ‘rainbow’. The Comprehensive R Archive Network

(CRAN), 2017. URL https://stat.ethz.ch/CRAN/web/packages/roahd/

roahd.pdf. https://stat.ethz.ch/CRAN/web/packages/roahd/roahd.pdf.

Thaddeus Tarpey and J Kimberly K Kinateder. Clustering Functional Data.

Journal of Classification, 20(1):93–114, 2003. ISSN 1432-1343. doi: 10.1007/

s00357-003-0007-3. URL http://dx.doi.org/10.1007/s00357-003-0007-3.

Firat Tekiner and John A Keane. Big data framework. In Systems, Man, and

Cybernetics (SMC), 2013 IEEE International Conference on, pages 1494–1499.

IEEE, 2013.

Anbupalam Thalamuthu, Indranil Mukhopadhyay, Xiaojing Zheng, and George C

Tseng. Evaluation and comparison of gene clustering methods in microarray

analysis. Bioinformatics, 22(19):2405–2412, 2006.

Robert Tibshirani and Guenther Walther. Cluster validation by prediction

144

https://stat.ethz.ch/CRAN/web/packages/roahd/roahd.pdf
https://stat.ethz.ch/CRAN/web/packages/roahd/roahd.pdf
http://dx.doi.org/10.1007/s00357-003-0007-3

strength. Journal of Computational and Graphical Statistics, 14(3):511–528,

2005.

John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew

Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D. Peterson,

Ralph Roskies, J. Ray Scott, and Nancy Wilkins-Diehr. Xsede: Accelerating

scientific discovery. Computing in Science & Engineering, 16(5):62–74, 2014.

doi: 10.1109/MCSE.2014.80. URL http://aip.scitation.org/doi/abs/10.

1109/MCSE.2014.80.

George C. Tseng and Wing H. Wong. Tight Clustering: A Resampling-Based

Approach for Identifying Stable and Tight Patterns in Data. Biometrics, 61(1):

10–16, mar 2005. ISSN 0006-341X. doi: 10.1111/j.0006-341X.2005.031032.x.

URL http://doi.wiley.com/10.1111/j.0006-341X.2005.031032.x.

J Derek Tucker. Package ‘fdasrsf’. The Python Package Index (PyPI), 2013.

https://pypi.python.org/pypi/fdasrsf/1.0.1.

J. Derek Tucker. Package ‘fdasrvf’. The Comprehensive R Archive Network

(CRAN), 2017. URL https://stat.ethz.ch/CRAN/web/packages/fdasrvf/

fdasrvf.pdf. https://stat.ethz.ch/CRAN/web/packages/fdasrvf/fdasrvf.pdf.

J Derek Tucker, Wei Wu, and Anuj Srivastava. Generative models for functional

data using phase and amplitude separation. Computational Statistics & Data

Analysis, 61:50–66, 2013.

Johnathan D Tune, Michael Sturek, and David P Basile. Flipped classroom model

145

http://aip.scitation.org/doi/abs/10.1109/MCSE.2014.80
http://aip.scitation.org/doi/abs/10.1109/MCSE.2014.80
http://doi.wiley.com/10.1111/j.0006-341X.2005.031032.x
https://stat.ethz.ch/CRAN/web/packages/fdasrvf/fdasrvf.pdf
https://stat.ethz.ch/CRAN/web/packages/fdasrvf/fdasrvf.pdf

improves graduate student performance in cardiovascular, respiratory, and renal

physiology. Advances in physiology education, 37(4):316–320, 2013.

Guido Van Rossum and Fred L Drake. The python language reference manual.

Network Theory Ltd., 2011.

Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-

hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Sid-

dharth Seth, et al. Apache hadoop yarn: Yet another resource negotiator. In

Proceedings of the 4th annual Symposium on Cloud Computing, page 5. ACM,

2013.

Matthew A Waller and Stanley E Fawcett. Data science, predictive analytics, and

big data: a revolution that will transform supply chain design and management.

Journal of Business Logistics, 34(2):77–84, 2013.

Yandong Wang, Robin Goldstone, Weikuan Yu, and Teng Wang. Characteriza-

tion and optimization of memory-resident MapReduce on HPC systems. In

2014 IEEE 28th International Parallel and Distributed Processing Symposium.

IEEE, may 2014. doi: 10.1109/ipdps.2014.87. URL https://doi.org/10.

1109/ipdps.2014.87.

Jonathan Stuart Ward and Adam Barker. Undefined by data: a survey of big data

definitions. arXiv preprint arXiv:1309.5821, 2013.

Michel Willem. Functional Analysis: Fundamentals and Applications. Corner-

stones. Springer New York, New York, NY, 2013. ISBN 978-1-4614-7003-8.

146

https://doi.org/10.1109/ipdps.2014.87
https://doi.org/10.1109/ipdps.2014.87

doi: 10.1007/978-1-4614-7004-5. URL http://link.springer.com/10.1007/

978-1-4614-7004-5.

Fang Yao, Hans-Georg Müller, and Jane-Ling Wang. Functional data analysis for

sparse longitudinal data. Journal of the American Statistical Association, 100

(470):577–590, 2005.

Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion

Stoica. Spark: Cluster computing with working sets. HotCloud, 10(10-10):95,

2010.

147

http://link.springer.com/10.1007/978-1-4614-7004-5
http://link.springer.com/10.1007/978-1-4614-7004-5

	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Background & Challenges
	Big Data
	Data Science
	Open Science
	Domain-Specific Language
	Big Data Frameworks
	Challenges in Data Science Education

	ScalaTion
	Abstract
	Motivation and Significance
	Software Description
	Illustrative Examples
	Functional Data Analysis in ScalaTion
	Impact
	Conclusions

	ScalaTion Kernel: Towards Open Notebook Support
	Introduction
	ScalaTion Kernel for Jupyter
	Usage and Example
	Impact
	Conclusions

	ScalaTion Example: Functional Tight Clustering
	Abstract
	Introduction
	Materials and Methods
	Results
	Discussion
	Acknowledgments

	Applied Open Data Science: Website & Example Notebooks
	Introduction
	AODS Website & Projects
	Example Notebooks
	Impact
	Conclusions

	Summary
	Appendices
	Proposed Cyberinfrastructure Courses
	CI for Data Science I (CI1)
	CI for Data Science II (CI2)
	Pedagogy and Additional Details

	Proposed Community Outreach Programs
	Secondary School Program
	Data Science as a Community Service Program
	Additional Details

	Bibliography

