Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DataCite
DublinCore
EndNote
NLM
RefWorks
RIS

Files

Abstract

An essential step in the substrate recognition of the Neurospora VS ribozyme is the formation of a loop-loop interaction between the terminal loops of stem-loop I and stem-loop V. Site-specific substitution and mutagenesis have suggested that this interaction is facilitated by the presence of a U-turn in the loop of stem-loop V. We have determined the structure of stem-loop V by nuclear magnetic resonance (NMR) spectroscopy and show that it adopts a U-turn conformation, a common motif found in RNA. Structural comparisons indicate that the U-turn of stem-loop V (SL5) fulfills some but not all of the structural characteristics found in canonical U-turn motifs. The formation of the stem-loop I / stem-loop V interaction is magnesium-ion dependent. Chemical shift mapping indicated that the addition of magnesium ions to SL5 resulted in a conformational change in loop. We have determined the structure of SL5 in the presence of magnesium ions and show that the binding of magnesium ions to the loop causes a conformational change. This conformational change results in the U-turn motif of SL5 having more characteristics of a canonical U-turn motif in the presence of magnesium ions. We used paramagnetic line broadening effect of manganese ions to localize four divalent metal ion binding sites in the loop of stem-loop V. Three of these divalent metal ion binding sites are specific to the U-turn motifs and have been found in structures of other U-turn motifs. We also show that the U-turn conformation in stem-loop V allows the bases involved in the stem loop I / stem-loop V interaction (G697, A698, and C699) to be accessible, by exposing their Watson-Crick faces to the solvent. This study brings some light on the mechanism of substrate recognition in the VS ribozyme and expands our understanding of the role of U-turn motifs in RNA structure and function.

Details

PDF

Statistics

from
to
Export
Download Full History