
 

 

APPLICATION OF EFFICIENT EXTERNAL MEMORY ALGORITHMS TO 

SIMULATED WEB GRAPHS 

by 

DONGSHENG CHE 

(Under the direction of Robert W. Robinson) 

ABSTRACT 

The Web graph is a graph of the World-Wide Web (WWW), with Web pages represented 

by nodes and hyperlinks represented by directed edges. In the past decade, the WWW has 

spawned a sharing and dissemination of information on an unprecedented scale, and since 

then much research has focused on crawling strategies used by search engines. Recent 

study has shown that breadth first search crawling, one of the current crawling strategies, 

yields high quality pages. However, very little has been done on increasing the overall 

download rate when using breadth-first search crawling in the face of the “massive”  

character of the Web graph. Problems for massive data sets can be solved either by 

storing data sets in a huge main memory, or by storing data sets in external memory but 

with I/O efficient techniques. The goal of our research is to study how to reduce breadth-

first search time for crawling by using I/O efficient techniques. We used data structures 

provided by LEDA-SM to store massive data sets of our simulated Web graphs, and run 

BFS on these generated graphs. The simulated Web graphs share important properties 

with the real Web graph, i.e., the degree distributions follow the same power laws, and 

random-start BFS traversals exhibit sharply bimodal behavior. The results indicate that 



 

the LEDA-SM system is useful for the Web graph computations, especially on machines 

with modest amounts of main memory.   
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CHAPTER 1  

INTRODUCTION 

 

1.1 Graph definitions 

A graph G consists of a finite non-empty set of nodes, denoted V(G) and a finite 

set of edges (or arcs), denoted E(G). Each edge is a pair of distinct vertices, which may 

be ordered or unordered. In this thesis ordered edges are called arcs. A directed graph is 

a graph where each edge is an arc. An arc represents a directed connection from u to v, 

where u is usually called the source node, while v is called the target node. The out-

degree of a node u is the number of distinct arcs (u, v1) ... (u, vk) (i. e., the number of links 

from u), and the in-degree is the number of distinct arcs (v1, u) ... (vk, u) (i. e., the number 

of links to u).  A path from node u to node v is a sequence of arcs (u, u1), (u1, u2) ... (uk, 

v). One can follow such a sequence of arcs to "walk" through the graph from u to v.  Note 

that a path from u to v does not imply a path from v to u. The distance from u to v is the 

minimum number of edges in such a path. If no path exists, the distance from u to v is 

defined to be infinity.  If (u, v) is an arc, then the distance from u to v is 1. 

A random graph is a graph in which source nodes and target nodes for arcs are 

picked randomly from the set of nodes, as shown in Figure 1.1(a). A complete graph is a 

graph a simple graph in which every pair of nodes is adjacent as shown in Figure 1.1(b). 

A Web graph is a graph of the World-Wide Web (WWW), with Web pages represented 
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by nodes and hyperlinks represented by directed edges. The Web graph has special 

properties, which will be introduced in more detail in the following section. 

 

(a) 

 
 
 
(b) 

 
 

Figure 1.1: (a) A random graph with 4 nodes; (b) A complete graph with 6 nodes 
 

Given a directed graph, a strongly connected component of this graph is a 

maximal set of nodes such that for any pair of nodes u and v in the set there is a path from 

u to v.  In general, a directed graph may have one or more strong components.  The 

strong components of a graph consist of disjoint sets of nodes. 

A breadth-first search (BFS) on a directed graph begins at a node u of the graph, 

and proceeds to build up the set of nodes reachable from u in a series of layers, as shown 

in Figure 1.2.  Layer 1 consists of all nodes that are pointed to by an arc from u. Layer k 
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consists of all nodes to which there is an arc from some vertex in layer k−1, but are not in 

any earlier layer. Notice that by definition, layers are disjoint. The distance of any node 

from u can be read out of the breadth-first search.  The length of a shortest path from u to 

v is the index of the layer v belongs in -- if there is such a layer. On the other hand, note 

that a node that cannot be reached from u does not belong in any layer, and thus we 

define the distance to be infinity.  

 

 
 
 

Figure 1.2: Breadth First Search (BFS), showing visitation order 
 
 

1.2 The structure of the Web graph  

In the past decade, the World-Wide Web (WWW) has spawned a sharing and 

dissemination of information on an unprecedented scale. Recently, much research has 

focused on the structure of the massive Web graph, and various properties of the Web 
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graph including its diameter, degree distributions, connected components, and Web 

macroscopic structure have been studied [4]. 

 

 

Figure 1.3: In-degrees follow a power law with exponent 2.1. 

The law also holds if only off-site (or "remote-only") edges are considered 

 

1.2.1 Degree distributions in the Web graph 

Kurmar et al [12] used a pruned data set from 1997 containing about 40 million 

pages to study structural properties of the Web graph. Their study suggested that the 

distribution of in-degrees and out-degrees follow power laws, i.e., the probability that any 

node has in-degree i is proportional to c/ix for some constants x, c > 0, and similarly for 

out-degrees. Recently, Broder et al. [4] did a number of experiments on a Web crawl of 

approximately 200 million pages and 1.5 billion hyperlinks. They generated the in-degree 

and out-degree distributions. The exponent for the power law for in-degrees is 
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consistently around 2.1 (see Figure 1.3, which is from [4]), confirming previous reports 

on power laws of in-degree distributions [12].  

Distributions of out-degrees also exhibit a power law, with the exponent of 2.7 

(see Figure 1.4, from [4]). Broder et al. [4] also found that the initial portion of the out-

degree distribution deviates significantly from the power law, suggesting that pages with 

low out-degree may follow a Poisson distribution, or a combination of Poisson and power 

law. 

 

Figure 1.4: Out-degrees follow a power law with exponent 2.7. 

The law also holds if only off-site (or "remote-only") edges are considered 

 

1.2.2 Other properties of the Web graph 

Other interesting properties of the Web graphs are macroscopic. Broder et al. [4] 

found that over 90% of the approximately 203 million nodes in their crawl form a single 

component if hyperlinks are treated as undirected edges. The connected Web can be 

subdivided into four pieces: a large strongly connected component (SCC), IN, OUT and 
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TENDRILLS (Figure 1.5, from [4]). The SCC is at the heart of the Web, and all of its 

pages can reach one another along directed hyperlinks. All pages in IN can reach the 

SCC, but cannot be reached from it, such as new sites yet be discovered and linked. The 

piece OUT consists of pages that are accessible from the SCC, but do not link to it, such 

as corporate Websites that contain only internal links. All pages from TENDRILLS 

cannot reach the SCC, and cannot be reached from the SCC. They also found that the 

sizes of the four sets are roughly similar. 

 

 
Figure 1.5: Components of the Web macroscopic structure 
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Picking random starting nodes for the BFS algorithm, Broder et al. [4] found that 

BFS traversals exhibited a sharp bimodal behavior, i.e. it would either “die out”  after 

reaching a small set of nodes (90% of the time this set has fewer than 90 nodes; in 

extreme cases it has a few hundred thousand), or it would "explode" to cover about half 

of the total nodes in the graph. This interesting result may be related to degree 

distributions, the Web’s macroscopic structure, and other Web properties, such as that the 

distribution of sizes of SCCs also obeys a power law.  

 

1.3 Crawling strategies 

Understanding properties of the massive Web graph can help in designing 

crawling strategies for the Web [5], in illuminating the sociology of content creation on 

the Web [4], in analyzing the behavior of Web algorithms [3, 11], in predicting the 

evolution of Web structure [12], and in predicting the emergence of new phenomena in 

the Web graph. In this section, we will only focus on one application of the Web graph 

structure: crawling.   

A crawler is a program that retrieves Web pages, commonly used in a search 

engine [6]. A crawler starts off with the URL for an initial page P0. It first retrieves P0, 

extracts any URLs in it, and adds them to a queue of URLs to be scanned. Then the 

crawler gets URLs from the queue, and repeats the process. Every page that is scanned is 

given to a client that saves the pages, creates an index for the pages, or summarizes or 

analyzes the content of the pages.  

Because of the importance of crawlers on the Internet, crawlers are widely used 

today. Major search engines such as Google [9], AltaVista [1], InfoSeek [10], Excite [8], 
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and Lycos [13] use crawlers to visit most text Web pages, in order to build content 

indices. Crawlers may also be used to look only for certain types of information, such as 

e-mail addresses.  

The design of a good crawler presents many challenges. Externally, the crawler 

must avoid overloading Web sites or network links as it goes about its business. 

Internally, the crawler must deal with huge volumes of data [6]. Therefore, how to 

carefully decide what URLs to scan and in what order remains an important question for 

crawlers.  

Cho, Garcia-Molina, and Page [6] suggested using connectivity-based document 

quality metrics to direct a crawler towards high-quality pages. They performed a series of 

crawls over 179,000 pages in the stanford.edu domain and used the following different 

ordering metrics to direct the different crawls: 

• Breadth-first ordering: pages are crawled in the order they are discovered; 

• Backlink count ordering: pages with the highest number of known links to them 

are crawled first; 

• PageRank ordering: pages with the highest PageRank are crawled first; 

• Random ordering: random pages from the set of uncrawled pages are selected 

and crawled. 

PageRank is the connectivity-based page quality measure suggested by Brin and 

Page [3]. It is designed to rank pages in the absence of any queries, i.e. PageRank 

computes the “global worth”  of each page. Intuitively, the PageRank measure of a page is 

similar to its in-degree, which is a possible measure of the importance of a page. The 

PageRank of a page is high if many pages with a high PageRank contain links to it, and a 
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page containing few outgoing links contributes more weight to the pages it links to than a 

page containing many outgoing links. Let pages p1, p2, . . . , pk link to page p. Then the 

PageRank of a page p can be expressed mathematically as the following: 
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Here 

T is the total number of pages on the Web; 

d is a constant in the range of 0.10 to 0.15; 

R(pi) is the PageRank of pi; 

C(pi) is the number of links out of pi. 

Cho et al. [6] evaluated the effectiveness of each ordering metric by examining 

how fast it led the crawler to all the “hot”  pages. In this context, a “hot”  page is a page 

with either a large number of links pointing to it, or a page with a high PageRank. They 

found that using the PageRank metric to direct a crawler works extremely well. 

However, they also discovered that performing the crawl in breadth-first ordering works 

almost as well, in particular if “hot”  pages are defined to be pages with high PageRank. 

 

1.4 Overview of research on secondary memory computation  

Data sets in large applications are often too massive to fit completely inside the 

computer’s internal memory. The resulting input/output communications (or I/O) 

between fast internal memory and slower external memory (or secondary memory) can 

be a major performance bottleneck [17]. The Web graph is an example for which I/O is a 

performance bottleneck. 
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Vitter and Shriver [18] introduced the secondary memory model as shown in 

Figure 1.6.  In that model, a machine consists of a CPU and a fast, internal memory of 

size M, and D independent disks drives. The D disks are connected to the machine, so 

that it is possible to transfer D*B items in one I/O. The model assumes that disk blocks 

are indivisible and that is only possible to perform a computation on data that resides in 

internal memory. This has become the standard complexity model for secondary memory 

computation. Algorithmic performance is measured by counting the number of I/O 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: The secondary memory model of Vitter and Shriver 
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operations executed, the number of CPU operations performed (RAM model), and the 

number of occupied disk blocks. Assuming N is the size of the data, and B is the block 

size, then important lower bounds for this model include the following:  

• Scanning a set of N items: O(N/(DB)) I/Os; 

• Sorting a set of N items: O(N/DB logM/B(N/B)) I/Os; 

• Sorting a set of N items with k distinct keys, k < N: O(N/DB logM/BK) 

I/Os; 

• Online search among N items: O(logDBN) I/Os.  

 

Based on the secondary memory model of Vitter and Shriver, there are currently 

two systems that provide secondary memory computation in a general and flexible 

manner. One is TPIE [16] (Transparent Parallel I/O Environment) from Duke University, 

a C++ library that provides external programming paradigms such as scanning, sorting 

and merging sets of items. TPIE realizes secondary memory by using several files on 

disk. In fact, each data structure or algorithm uses its own file. Several different file 

access methods are implemented. TPIE only offers some more advanced secondary 

memory data structures and most of them are based on the external program paradigms 

[2]. Direct access to single disk blocks is possible but complicated. TPIE offers no 

connection to an efficient internal-memory library that is necessary when implementing 

secondary memory algorithms and data structures. 

Another library is LEDA-SM (LEDA for secondary memory) from Germany, a 

C++ library that extends the internal-memory library LEDA (Library of Efficient Data 

types and Algorithms) [7]. It offers the possibility of using advanced and efficient 
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internal memory data structures and algorithms in secondary memory algorithmic design. 

Unlike TPIE, a collection of external memory data structures, including ext_stack, 

ext_queue, ext_array, ext_graph, ext_r_heap, buffer-tree, B-tree, ext_matrix, are 

provided in LEDA-SM. Simple algorithms, such as depth-first search and topological 

sorting are also supported in LEDA-SM. Detailed information on LEDA-SM will be 

introduced in Chapter 2. 

 

1.5 The goal of the research  

Recent research work [6, 14] has shown that breadth-first search crawling yields 

high quality pages. Najork and Wiener [14] found that breadth-first search downloads hot 

pages first, and the average quality of the pages decreases over the duration of the crawl. 

However, very little has been done on increasing the overall download rate when using 

breadth-first search crawling. This is not only necessary when crawlers are run on current 

workstations with limited internal memory, but is also necessary for data servers with 

large internal memories, since the number of Web pages has been increasing dramatically 

in recent years. 

The ultimate goal of our research is to enhance breadth-first search crawling, i.e. 

studying how to reduce breadth-first search time for crawling. One option is to construct 

highly compressed representations of Web graphs that can be stored and analyzed in 

current machines with moderate amounts of main memory [15]. The alternative is to 

compute massive graphs with I/O efficient techniques [17], i.e., applying efficient 

secondary memory algorithms to process the Web graph. While the first option is 

attractive because of computation speed in main memory, it may not be possible to fit 
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massive data sets in main memory in current machine even if they are compressed. 

Accordingly, we selected the second method to study how to enhance BFS crawling.  

In Section 1.4, we introduced two systems for efficient secondary memory 

computation, TPIE and LEDA-SM. After comparing then, LEDA-SM library was 

selected for our studying efficient computation of the WWW graph since LEDA-SM 

contains external graph data structures and general algorithms, and the ability to support 

these with efficient internal memory algorithms. 

For our research, instead of using real data from the Web graph for the 

experiments, we simulate the Web graph using node numbers but capturing important 

Web properties.  Real data sets will hopefully be the subject of future research on Web 

graph computations.     
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CHAPTER 2 

LEDA-SM 

 

2.1 Architecture of LEDA-SM 

LEDA-SM is implemented in C++. The library is divided into two layers, a kernel 

layer and an application layer (Figure 2.1). The kernel layer is responsible for disk space 

management and disk access. It is subdivided into the abstract kernel and the concrete 

kernel. The concrete kernel is responsible for performing I/O, managing used and non-

used disk blocks, and managing users of disk blocks. The concrete kernel will be 

introduced in Section 2.2.2 in much more detail. The abstract kernel implements a user-

friendly access interface to the concrete kernel (detailed information will be introduced in 

Section 2.2.1). The application layer consists of a collection of secondary memory data 

structures (e.g. ext_array, ext_queue, ext_graph) and algorithms (e.g. DFS, BFS). The 

implementations of all applications use the classes of the abstract kernel to simplify 

access to secondary memory. LEDA is used to implement the in-core part of the 

secondary memory data structures and algorithms and the kernel data structures of 

LEDA-SM. Secondary memory is implemented in LEDA-SM by using the file system of 

the host operating system. Access to secondary memory is provided by file access 

utilities of the operating system.  
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Figure 2.1 Architecture of LEDA-SM 

 

2.2 The kernel structure of LEDA-SM 

As mentioned above, the kernel of LEDA-SM is subdivided into a concrete kernel 

and an abstract kernel. The concrete kernel consists of four classes: name_server, 

ext_memory_manager, ext_disk and ext_freelist (see Figure 2.2). Class name_server 

generates user identifiers, while ext_memory_manager implements disks and disk block 

management. Both classes have only one instance. Class ext_memory_manager uses class 

ext_disk to manage the disks and the access to disk blocks, and uses class ext_freelist to 

manage the used and free blocks of a disk. 

The abstract kernel provides the logical entities disk block identifiers (B_ID) and 

blocks (block<E>). These entities are associated with their physical counterparts in the 

concrete kernel as shown in Figure 2.2. Logical block identifiers are used to specify a 

disk block on a specific disk. Class block is used to provide a templated type view (with 

Concrete Kernel Layer 

Kernel Layer 

Abstract Kernel Layer 

Application Layer 
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parameter type E) of a disk block. LEDA-SM associates with each instance of class block 

one object of type B_ID and one object of U_ID. Type U_ID is used to model users of 

disk blocks as well as logical blocks. The entities “block” , “B_ID”  and “U_ID”  are 

associated with the concrete kernel in the following way: each valid object of type B_ID 

refers to a disk block location in secondary memory, and each block refers to a disk block 

in secondary storage via its unique block identifier (B_ID). Disk blocks are either owned 

by a specific user or are free (U_ID NO_USER). 

 

name_server

new_id()
free_id()

ext_memory_manager

disk
<<abstract>>

U_ID

NO_USER : bool = true

block

name : type = initval
user : U_ID

write()
read()

1..1

[disk block location]
<<physical>>

B_ID

valid : bool = false
1..1

disk block management
<<abstract>>

disk block
<<physical>>

[logical block]
<<abstract>>

1..1 1..1

 
 

Figure 2.2 UML diagram of LEDA-SM kernel 
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2.2.1 The abstract kernel of LEDA-SM 

Class B_ID  

Class B_ID is used to simplify the access to disk block locations in secondary 

memory. An instance of class B_ID is a pair (d, num) of integers, where d specifies the 

disk d and num specifies the logical block of the disk d.  A block identifier is valid if 0 <= 

d < NUM_OF_DISKS and 0 <= num < max_blocks[d].  A block identifier is inactive if 

num = −1; in that case, the block identifier is not connected to any physical disk location.  

 

Class U_ID  

Class U_ID is used to model users of disk blocks. A user identifier is 

implemented by type int. NO_USER is a special user identifier, which is used by class 

block. Management of allocated and free user identifiers is managed by the concrete 

kernel class name_server. 

 

Class block  

Class block is designed to provide the abstract view to secondary memory as 

introduced in the theoretical I/O model of Vitter and Shriver [18]. Physically, a disk 

block is a consecutive region of storage of fixed size B on the disk, thus it is untyped 

(type void * ). Logically, a disk block contains some fixed number of elements of type E. 

Class block is a container class. That parameter with type E allows indexed access to the 

elements of type E and is able to transport to these items to and from secondary memory. 

An instance B of the parameterized type block<E> a is typed view of logical 

internal blocks. It consists of an array of links and an array of variables of data type E. 
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The array of links stores links to other blocks. A link is an object of data type B_ID 

(block identifier). The second array stores variables of data type E. The number of 

variables of the second array is calculated at the time of construction as follows:  

blk_sz = (BLK_SZ - num_of_bids *  sizeof(B_ID)) / sizeof(E) 

where: 

          BLK_SZ is a system constant; 

         num_of_bids – the number of links. 

There are two constructor types of class block: 

block <E> B ;                                                   (1) 

block<E> B(U_ID uid, int bids = 0).               (2) 

Constructor (1) creates an instance B of type block and initializes the number of links to 

zero. At the time of creation, the block identifier is invalid, meaning that the block isn’ t 

associated with a physical location in external memory. The internal user identification is 

set to NO_USER. Constructor (2) creates an instance B of type block and initializes the 

number of links num_of_bids and the user identifier uid. The block identifier is invalid as 

in (1) at the time of creation. During write access to external memory, either a new 

unused block identifier is requested from the external memory manager, or a disk block 

specified by bid is set to the block identifier of B if the block identifier is inactive. 

  

2.2.2 The concrete kernel of LEDA-SM 

The concrete kernel is responsible for performing I/Os and managing disk space 

and users in secondary memory. It consists of the four classes name_server, 
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ext_memory_manager, ext_disk and ext_freelist. UML class diagrams of the concrete 

kernel are shown in Figure 2.2 and 2.3.  

 

1..*
stdio_disk syscall_disk memory_disk raw_disk

array_freelist sortseq_freelist ext_array_freelist new_sortseq_freelist

mmpio_disk

ext_freelist
<<abstract>>

ex_memory_manager

1..*1..*

Disk Block Management

ext_disk
<<abstract>>Disk Implementation

1..*

 
 

Figure 2.3 UML class diagram of the concrete kernel without class name_server 

 

Class name_server   

Class name_server is responsible for managing user identifiers. This class allows 

a new user identifier to be allocated or a formerly used user identifier to be freed. The 

class is implemented by a variable max_name of type int and a LEDA priority queue 

having priority type int and information type char. At the time of creation of class 

name_server, max_name is zero and pq is empty. The priority queue pq is used to store 

freed user-ids. As long as pq is empty, a new user-id is allocated by returning max_name 
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and increasing it. If pq is not empty, it returns its minimal key as the newly allocated 

user-id. 

 

Class ext_memory_manager  

This class has only one instance at a time. The unique instance of this class is 

created when the system starts up. It is mainly responsible for the following four tasks: 

• kernel configuration   

At the time of creation, the constructor will check if a system 

configuration file named .config_leda-sm is located in the current working 

directory. The file specifies the number of disks, name of the disk files, 

size of the disk files, I/O implementation, and free list implementation (see 

Table 2.1). If the configuration file exists, it will parse the configuration 

file, and a configuration check is executed. Depending on circumstances, 

the check may fail due to file creation error or disk device access error, or 

if the requested disk space is not available. 

• creation of secondary storage 

After parsing the configuration file, ext_memory_manager uses 

class ext_disk to create the secondary memory, i.e., it opens the files or 

devices and sets up the disk block management. 

• management of occupied and free disk blocks 

At startup time, all disk blocks on each disk are free, i.e., they 

don’ t belong to any user. It is possible to allocate blocks for a specific user 
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and free blocks. The requests are passed on to class ext_freelist, which is 

responsible for the actual management of disk blocks on each disk. 

 

Table 2.1 LEDA-SM configuration file 

Parameters Description of the Parameter Example 

Number of disks Integer 2 

Blocks per disk Number of disk blocks, one integer per line 600000 

600000 

Disk names Number of disk file names, one per line /var/tmp/disk0 

/var/tmp/disk1 

I/O 

implementation 

One of the five following implementations: 

stdio_disk, syscall_disk, memory_disk, 

mmapio_disk, raw_disk 

syscall_disk 

Freelist 

implementation 

One of the five following implementations: 

array_freelist, sortseq_freelist, 

new_sortseq_freelist, ext_array_freelist 

array_freelist 

Recover to  Either no or filename recover_test 

Recover from Either no or filename no 

 

 

• transaction of physical I/O 

Physical I/O requests to specific disk block locations are first 

checked for correctness and then passed on to class ext_disk, which does 
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the actual physical I/O. The correctness check includes out-of-bounds 

checks for the block identifiers as well as user checks. 

 

Class ext_disk   

Class ext_disk implements the logical disk drive and the access to it. It is a virtual 

base class, i.e., it only describes the functionality while the actual implementations are 

encapsulated in the classes memory_disk, stdio_disk, syscall_disk, mmapio_disk, aio_disk 

and raw_disk. The actual implementation is chosen at the creation time of class 

ext_memory_manager. Detailed information on derived classes will not be given here. 

Member functions of class ext_disk are shown below. 

 

Class ext_disk 

{  

public: 

virtual void open_disk(int num) = 0; 

virtual void close_disk( ) = 0; 

virtual int write_blocks(int block_num, ext_block B, int k = 1) = 0; 

virtual int read_blocks(int block_num, ext_block B, int k = 1) = 0; 

virtual int read_ahead_blocks(int block_num, int ahead_num, ext_block 

B) = 0; 

virtual char*  get_disktype( ) = 0; 

} ; 
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Method open_disk(num) is used to create the disk space for logical disk num                   

(0 ≤ num < NUM_OF_BLOCKS). Information such as the file name of the disk and the 

number of blocks on the disk is used by the external memory manager. Method 

close_disk is used to disconnect the disks from the system. The actual physical I/Os are 

implemented by read_blocks( ) and write_blocks( ). Method Read_ahead_block( ) is used 

to read a single disk block and starts an asynchronous read-ahead of a second disk block. 

 

Class ext_freelist  

Class ext_freelist is responsible for managing free and allocated disk blocks. Class 

ext_freelist is implemented as a virtual base class from which the actual implementation 

classes are derived (see Figure 2.2). The classes include: array_freelist, sortseq_freelist, 

ext_array_freelist and new_sortseq_freelist. The actual implementation is chosen at the 

creation time of class ext_memory_manager. Detailed information on derived classes will 

not be given here. Member functions of class ext_freelist are shown below. 

 

Class ext_freelist 

{  

public: 

virtual void init_freelist(int num) = 0; 

virtual int new_blocks(U_ID uid, int k=1)=0; 

virtual int free_blocks(int block_num, U_ID uid, int k = 1)=0; 

virtual void free_all_blocks(U_ID uid)=0; 

virtual bool check_owner(int block_num, U_ID uid, int k=1)=0; 
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virtual int get_blocks_on_disk( )=0; 

virtual int get_free_blocks( )=0; 

virtual int get_cons_free_blocks( )=0; 

virtual int get_used_blocks( )=0; 

virtual char*  get_freelist_type( )=0; 

virtual int size()=0; 

} ;  

 

Method init_freelist(num) is used to initialize the freelist for disk num,                              

0 ≤ num < NUM_OF_DISKS. Method new_blocks( ) is used to allocate k consecutive 

blocks. The return value is the block number of the first allocated block on disk num. 

Method free_blocks( ) returns previously allocated disk blocks of disk num back to the 

freellist, while free_all_blocks( ) frees all disk blocks of disk num that are allocated to 

user uid. Method check_owner( ) checks if k consecutive blocks starting at block 

block_num are owned by user uid. Other methods are used to get free blocks, used blocks 

and free list information. 

 

2.3 External graph data structures and BFS 

2.3.1 External array (ext_array) 

The external array is introduced because of its extensive use by other external data 

structures and algorithms.  An instance A of the parameterized data type ext_array<E>  is 

a mapping from an interval I = [a..b] of integers, the index set of A, to the set of variables 

of data type E, the element type of A. An external array uses a buffer area of bfs (the 
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number of buffer groups reserved for keeping data in main memory) in groups of bpb 

(the number of blocks per buffer group) internal blocks. A paging algorithm controls this 

buffer area, which is responsible for exchanging blocks between the buffer area and the 

external memory. If paging is necessary, the pager always fetches or writes to a group of 

bpb blocks. There are three predefined paging algorithms, namely Least Recently Used 

(LRU), RANDOM and dummy_pager. The parameters bfs and bpb and the paging 

algorithm implementation are chosen at creation time.  

 

2.3.2 External graph 

An instance G = (V, E) of the data type ext_graph<EXT_GRAPH_TEMPLATE> (or 

EXT_GRAPH) defines an external graph, consisting of nodes V and a set of edges          

E ⊆ V × V. The size of the set of nodes is denoted by |V|, and similarly |E| denotes the size 

of the set of edges. Let e = (u, v) be an edge of G; u is called the source node of e, and v 

is called the target node of e. Node u and v are also endpoints of e. All edges having 

source node u are said to be adjacent from u. The external graph data type uses an 

adjacency list representation, and the implementation is based on external arrays.  

Nodes and edges also called the items of the external graph. The set of nodes is 

indexed by a set of node indices of the data type ext_node<EXT_GRAPH> (or 

EXT_NODE), and the set of edges by a set of edge indices of the data type 

ext_edge<EXT_GRAPH> (or EXT_EDGE). 

An external graph can be implemented as a parameterized graph. For each item, 

two kinds of extra information can be stored with it. The first one is called fixed, since it 

cannot be changed; the other is called variable and can be changed. These are called 
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fix_vtype and var_vtype for the nodes, and fix_etype and var_etype for the edges. The 

fixed information represents some predefined data of the external graph, while the 

variable information can be used for temporary information produced by the algorithm.  

Each item is stored together with its two pieces of information in a container kept by the 

external graph, which is of type called node_container<EXT_GRAPH> 

(NODE_CONTAINER) or edge_container<EXT_GRAPH> (EDGE_CONTAINER). 

Each instance of node_container stores four groups of information: a unique node 

index number of data type ext_node, a label indicating whether the contained node is 

marked, the core node information which is the list of edges (of the data type ext_edge) 

going out of the node, and two extra pieces of information related to the node, the fixed 

information and variable information. The layout of a node_container object is shown in 

Figure 2.4. 

 

node index label core node info. fixed info. variable info. 

 

Figure 2.4: data layout of node_container 

 

Each instance of edge_container also stores four groups of information: a unique 

edge index number of data type ext_edge, a label indicating whether the contained edge is 

marked, the core edge information which is the source and the target node of the edge 

(both of the data type ext_node), and two extra pieces of information related to the edge: 

the fixed information and variable information. The layout of an edge_container is shown 

in Figure 2.5. 
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edge index label core edge info. fixed info. variable info. 

 

Figure 2.5: data layout of edge_container 

 

All data for an external graph instance are kept in external memory. More exactly, 

two instances of the data type ext_array are used, one for the node containers, and the 

other for the edge containers. Let G be an instance of the data type EXT_GRAPH, n be 

the number of nodes of G, and m the number of edges of G. Then the space required in 

external memory is O(n + m). 

 

2.3.3 External Breadth First Search (BFS) 

In external memory, graph algorithms can be classified as being either fully-external or 

semi-external. Fully-external graph algorithms assume that amounts of information of 

size Θ(|V|) or Θ(|E|) can not be stored in internal memory, while semi-external graph 

algorithms are able to store such amounts of information of in internal memory. These 

two types of BFS algorithm are supported in LEDA-SM by the following: 

void EXT_BFS (T& G, NODE_ARRAY & A, EXT_NODE s, int dic_size = 8) 

void EXT_BFS_int (T& G,  NODE_ARRAY & A, EXT_NODE s) 

Procedure EXT_BFS is the fully-external algorithm. It takes as arguments an external 

graph G, an EXT_NODE s and a NODE_ARRAY A. It performs a breadth first search in 

phases, starting at s, computing for every visited node w the distance DIST[w] from s to 

w. On return the NODE_ARRAY A contains all nodes reached from s. The algorithm has 
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I/O complexity O ( ||
*

||*||
V

BS

EV + ), where S is the number of recursive calls during the 

run, and B is the number of edges in one block. 

Procedure EXT_BFS_int is the semi-external algorithm. It takes as arguments an 

external graph G, an EXT_NODE s, a NODE_ARRAY A and int_set Visit. It performs a 

breadth first search starting at s, visiting all reachable nodes v with Visited[v] = 0, 

computing for every visited node w the distance DIST[w] from s to w. On return the 

NODE_ARRAY A contains all nodes reached from s. The algorithm has I/O complexity 

O(|E| + |V|). The precondition for this function is that we should have enough memory to 

construct an int_set with number_of_nodes bits. The implementation of EXT_BFS_int is 

the following: 

 

void EXT_BFS_int( T& G, NODE_ARRAY& A, EXT_NODE s, int_set Visit )  
{ 
  ext_queue<EXT_NODE> Q; 
  EXT_EDGE e; 
  EXT_NODE v; 
  INT i = 0; 
 
  forall_nodes(v, G) 
        G[  v ] .DIST = −1; 
 
  Q.append(s); 
  Visit.insert(s); 
  G[  s ] .DIST = 0; 
  A[  ++i ]  = s; 
 
  while( Q.size( ) ){ 
        v = Q.pop( ); 
        forall_out_edges(e, v, G) 
              if( !Visit.member( G.target(e) ) ){ 
                   Q.append( G.target(e) ); 
                   Visit.insert( G.target(e) ); 
                   A[  ++i ]  = G.target(e); 
                   G[  G.target(e) ] .DIST = G[  v ] .DIST + 1; 
              } 
   } 
} 
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2.3.4 Experimental results with internal and external BFS   

In internal memory, a BFS of G with LEDA’s BFS algorithm can be completed in time 

O(|V|+|E|). However, when the graph becomes larger, the operating system is not able to 

perform the paging in a clever way, thus swap space must be used for the LEDA’s BFS 

algorithm, and the running time become significantly longer. This is not case for LEDA-

SM even if when the graph becomes very large. 

To find out when external BFS is more advantageous than internal BFS as the 

graph becomes massive, we compared LEDA’s BFS algorithm against LEDA-SM’s 

semi-external BFS variant that uses an internal boolean array to keep track of nodes that 

were already visited. Tests were performed on two graph types, namely random graphs 

with n nodes and m edges, and complete graphs with n nodes. In all cases the first node 

was selected as the start node for the BFS. All tests were performed on a workstation 

named “conyers”  with 128 Mb of main memory running Solaris 2.95 as operating 

system. 

Running time results for LEDA’s BFS and LEDA-SM’s BFS on random graphs 

are shown in Figure 2.6.  For small random graphs with m ≤ 2,500,000, LEDA’s BFS is 

much faster than LEDA-SM’s BFS. This is due to the difference in data set storage 

between LEDA and LEDA-SM. All data sets are loaded into the internal memory before 

running BFS for LEDA, while the bulk of the data resides in external memory for LEDA-

SM. When the edge number of edges exceeds 2,000,000, there is a dramatic slowdown of 

LEDA’s BFS.  This can be explained by calculating the amount of data needed by 

LEDA. Take a random graph with |V| = 100,000 and |E| = 2,500,000 as an example. The 

LEDA graph data structure has a size of 100,000 *  44 + 2,500,000 *  52 = 134.4 Mb, 
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while the machine running LEDA BFS has 128 Mb of RAM. Therefore, swap space must 

be used for this massive graph.  The paging algorithm of the operating system is not able 

to exploit locality of reference, although the LEDA graph data structure (adjacency lists) 

does exhibit locality of reference for BFS.  
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Figure 2.6: Comparison of LEDA BFS and LEDA-SM BFS with an internal bit array on 
random graphs with 100,000 nodes and m edges 

 

 Comparison of results from LEDA’s BFS and LEDA-SM’s BFS on complete 

graphs with n nodes are shown in Figure 2.7. From the results of complete graphs, we 

find the advantage of LEDA-SM over LEDA is more obvious, compared with the results 

from random graphs. A possible reason could be the different properties which hold for 

random graph and complete graphs.  In the case of random graphs, we can’ t guarantee 

that the increase in the size of the part of the graph G which is reachable from the first 
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node is in proportion to the increase in the number of nodes |V| and edges |E|, although 

some relationship between them exists. For complete graphs, the entire graph G is 

reachable from any node, so this exactly reflects the increase in the numbers of nodes and 

edges. Therefore, the results for complete graphs reflect the difference between LEDA 

and LEDA-SM more quickly than those for random graphs. 
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Figure 2.7: Comparison of LEDA BFS and LEDA-SM BFS with an internal bit array on 
complete graphs with n nodes 
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CHAPTER 3 

SIMULATION OF THE WEB GRAPH 

 

3.1 Generating a model of the Web graph 

The Web graph has a number of distinctive properties, as described in Section 1.2. In this 

section, we will introduce models of the Web graph. Roughly speaking, we try to capture 

the most important properties of the real world Web graph, i.e., degree distribution and 

Web macroscopic features. The distributions of in-degrees and out-degrees of the Web 

graph follow power laws. The exponent of the power law for in-degrees is consistently 

around 2.1, while the exponent for out-degrees is 2.72 [4]. 

 

3.1.1 Simulating the Web graph’s degree distribution properties 

3.1.1.1 Determining parameters for in-degrees and out-degrees 

Broder et al. [4] found that the distribution of in-degrees follows a power law with 

exponent 2.1. They also found that the node probability is a little bit higher than that 

given by the power law when the degree exceeds 120. Based on these facts, the following 

relationships should hold approximately: 
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Here 
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|V| is the number of nodes of the Web graph; 

|E| is the number of edges of the Web graph; 

i is the in-degree; 

δ is the proportion of nodes with in-degree 1; 

k is the largest possible in-degree; 

α is a positive constant. 

Let ρ = 
||

||

E

V
; then equations (1) and (2) can be reformulated as follows: 
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Now given ρ, α (a positive constant) and δ (the proportion of nodes with in-

degree 1) can be determined based on equations (3) and (4). 

Similarly, the distribution of out-degrees follows the power law with exponent 

2.72 [4]. The node probability is a little bit higher than that given by the power law when 

the degree exceeds 100. Based on these facts, the following relationships should hold 

approximately: 
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Here 

|V| is the number of nodes of the Web graph; 

|E| is the number of edges of the Web graph; 
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i is the out-degree; 

γ is the proportion of nodes with out-degree 1; 

k′ is largest possible out-degree; 

β is a positive constant. 

Let ρ = 
||

||

E

V
; then equations (5) and (6) can be reformulated as follows: 

��
′

==

××+×=
k

101
72.2

100

1
72.2

11
1

ii ii
βγγ ;                  (7)    

72.2

k

101

100

1
72.2

11

i
i

i
i

ii
��

′

==

×××+××= βγγρ .         (8) 

Now given ρ, β (a positive constant) and γ (the proportion of nodes with out-

degree 1) can be determined based on equations (7) and (8). 

 

3.1.1.2 Constructing the source node array 

We now know from Section 3.1.1.1 that parameters for the out-degrees can be 

determined given n = |V| and m = |E|, and are now ready to construct the source node 

array Source. This will be an external array of type ext_array. Let a = ��

�
��

� ××
72.21

1
nγ ,       

b = a + ��

�
��

� ××
72.22

1
nγ , etc. The array Source can be filled in as follows: nodes 1, 2, 3 

…… a each appear once, representing the nodes with out-degree 1, and they are filled in 

the array as Source[0], Source[1], Source[2] …… Source[a-1]; nodes a + 1, a + 2 …… b-

1, b each appear twice, representing the nodes with out-degree 2, an so on. The layout of 

the source node array Source is shown in Figure 3.1. 
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0      1      …                                                                                                                    m−1 

1 2 …  a a+1 a+1 … b b ...   n …   n 

 

 

Figure 3.1:  The source node array Source. 

 

3.1.1.3 Constructing the target node array 

We also know from Section 3.1.1.1 that parameters for the in-degrees can be determined 

given n = |V| and m = |E|, and the target node array Target can be constructed in the same 

way that the source node array Source was constructed, with the addition of an extra step 

before constructing the target node array, i.e., performing a random permutation of the 

node indices. 

All node indices are first stored in a temporary external array as shown in Figure 

3.2 (a). Then a random permutation is performed on the temporary external array. The 

following algorithm describes the random permutation of array A. 

 

             For ( i = n − 1; i > 0; i−−) 
             { 
                      pick a random index rand between 0 and i−1; 
                      swap the elements of A[ i]  and A[ rand] ; 
             } 
 

After the random permutation process, the array elements will be reshuffled as in Figure 

3.2 (b). 

 

nodes with out-degree 1 nodes with out-degree 2 nodes with out-degree k′ 
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(a) 

0      1      2      …                             s−1    s     …             t−1   …                                   n−1 

1 2 3 …    s s+1 …  t …     n 

 

(b) 

0      1       2     …                             s−1    s     …             t−1   …                                   n−1 

f g h …    o p …  q      r 

 

Figure 3.2:  The temporary array A of type ext_array and length n. 

(a) Node elements filled in the array starting from 1 to n in an ascending order.   

(b) The reshuffled temporary array with node numbers randomly permuted. 

 

Now we are ready to construct the target node array Target. This will be an 

external array of type ext_array. Let s = ��

�
��

� ××
1.21

1
nδ , t = s + ��

�
��

� ××
1.22

1
nδ , etc. The 

array Target can be filled in as follows: nodes f, g, h …… o each appear once, 

representing the nodes with in-degree 1, and they are filled in the array as Target[0], 

Target[1], Target[2] …… Target[s-1]; nodes p …… q each appear twice, representing 

the nodes with out-degree 2, and so on. The layout of the target node array Target is 

shown in Figure 3.3 (a). 

 

3.1.1.4 Generating the edges  

Edges can be obtained based on the existing source and target node arrays. A 

random permutation on the target node array is performed before pairing source and 
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target nodes. This step is to guarantee that source nodes pair with target nodes randomly 

in the Web graph. The resulting target node array after the random permutation is shown 

in Figure 3.3 (b).  

Now edges are generated by picking the elements of the same index of the source 

node array Source (Figure 3.1) and the target node array Target randomly permuted 

(Figure 3.3(b)), and therefore the edges will be (1, z), (2, l) ……. (n, w). 

 

(a) 

0      1      2     …    s−1    s      s+1    …    u    u+1   …                     v      …                 m−1 

f g … … o p p … q q ...   r …   r 

 

                                                        

 

(b) 

0      1      2     …    s−1    s      s+1    …    u    u+1   …                     v      …               m−1  

z l … … y c d … x e …   h …   w 

 

Figure 3.3:  The target node array Target with length m 

(a) The target node array with node numbers filled according to in-degree power law; 

(b) The shuffled target node array with node numbers randomly permutated. 

 

 

 

nodes with in-degree 1 nodes with in-degree 2 nodes with in-degree k 
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3.1.2 Refining the Web graph simulation with the help of other properties 

Based on the experiments on 200 million pages and 1.5 billion hyperlinks from Broder et 

al. [4], we can compute the ratio of edges to nodes (also called ρ). This value was used in 

our simulated Web graphs as described in Section 3.1.1.  External BFS was then tested on 

simulated Web graphs with 2 million nodes. In all cases, the last node of the simulated 

Web graph was selected as the start node. The last node is the node with the largest out-

degree based on our model of the Web graph. In our tests, node 2,000,000 was the last 

node. The execution times of BFS indicated that the number of nodes reachable from the 

start node is small. This was confirmed by recording the number of nodes visited. This 

means that the simulated Web graphs are composed of many small strong connected 

components, even though their degree distributions follow realistic power laws. In 

contrast, most of the real Web graph is contained in just four components.  The possible 

reason is that we underestimated the value of ρ when we simulated Web graphs with 2 

million nodes. To accurately simulate the Web graph, we need to better estimate the 

value of ρ and the constants α for in-degree nodes and β for out-degree nodes.  

Broder et al. [4] found that BFS traversals exhibited sharp bimodal behavior, i.e., 

it either reaches a small set of nodes, or else covers about half of all the nodes of the Web 

graph. Based on the fact that nodes of high out-degree should reach about half of total 

nodes, we estimated the constant ρ as follows. Given a test value of ρ, we record the 

number of nodes visited when running BFS. Initially, ρ was set to 7.5. The value of ρ 

was increased until we found that the number of nodes visited was about half the total 

number of nodes. 
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3.2 BFS on simulated Web graphs 

Simulated Web graphs were generated as described in Section 3.1. We simulated Web 

graphs with 2 million nodes and several values of ρ. Different values of ρ were used in 

order to find a value of ρ accurately reflecting the real world Web graph. All tests were 

run on a large Sun server (with 8 processors and 32Gb RAM) named “rna” . Table 3.1 

shows some parameters for simulated Web graphs with the different values of ρ, and the 

running time results of BFS on these graphs.  

From Table 3.1, we see that the number of nodes visited is about half of the total 

number when the value of ρ is around 19.5. Accordingly, we conclude that this value 

gives the best model of the real world Web graph. The running time of BFS on this 

simulated graph is 4694 seconds, or about 1.3 hours. 

 

Table 3.1: Parameters of the simulated Web graphs and BFS results 

ρ (The ratio of edges to nodes) 14.0 17.6 19.5 20.1 

α (The constant for in-degree) 10.0 13.0 14.5 15.0 

δ  (The proportion of nodes 

with in-degree 1) 

0.6245 0.6192 0.6165 0.6156 

β (The constant for out-degree) 375.4 490.8 549.9 569.8 

γ  (The proportion of nodes 

with out-degree 1) 

0.7428 0.7296 0.7231 0.7209 

The number of nodes visited 69,005 76656 1,128,073 2,000,000 

The running time of BFS (sec.) 288 319 4694 7797 
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

 

With the growth of the size of the WWW, efficient crawling for use by search engines 

will become more and more important for satisfactory search results.  Cho et al. [6] 

showed that using a connectivity-based ordering metric (e.g., PageRank) could steer the 

crawler towards higher-quality pages. However, computing PageRank values for several 

hundred million or more pages is an extremely expensive computation. On the other 

hand, crawling in breadth-first search order also yields high quality pages during the early 

stages of the crawl, while not incurring such high computation costs. The reason breadth-

first search obtains high quality pages is that important pages have many links to them 

from numerous hosts, and those links will be found early, regardless of which host or 

page the crawl originates on [14]. Therefore, crawling in breadth-first search order is an 

efficient and practical crawling technique in the real world. 

We know the Web graph is a massive graph, and data sets for the Web graph are 

too large to fit in any single computer’s internal memory. Therefore, running bread-first 

search of the Web graph in the internal memory of most of our computers is impossible. 

We used data structures provided by LEDA-SM to store huge data sets for our simulated 

Web graphs. The simulated Web graphs share important properties with the real Web 

graph, i.e., the degree distributions follow the same power laws, and random-start BFS 

traversals exhibit sharply bimodal behavior. Due to limitations of the LEDA package, 
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only LEDA-SM BFS was tested on the simulated Web graphs. However, the results of 

LEDA BFS and LEDA-SM BFS on random and complete graphs indicate that LEDA-

SM will perform better than LEDA on the simulated Web graphs. Thus, we believe that 

the LEDA-SM system would be useful for Web graph computations, especially on 

machines with modest amounts of main memory.   

At present there is no version of LEDA that supports 64-bit code on Solaris, so 

data sets of graphs cannot be larger than 4 Gb. This limits the size of graphs when doing 

comparison tests of LEDA BFS and LEDA-SM BFS. We believe that the LEDA-SM will 

show increased improvement over LEDA for more massive graphs once 64-bit code is 

supported. 

The real world Web graph is a very complicated graph with many special 

properties. Our simulation of Web graphs captures some important properties of the Web 

graph, such as degree distributions. For future research, additional features of the real 

Web graph need to be accurately simulated. These include unevenness in the degree 

distribution, and some amount of correlation between in-degrees and out-degrees. In 

addition, our simulated Web graphs don’ t contain real information other than incidence 

of nodes and edges. The additional information needed for real Web graphs could be 

modeled in the simulations. Of course real data sets for the Web graph would be best for 

testing BFS for crawling.     

                   

 

 

 



 

 

42

 

 

REFERENCES 

[1]  Alta vista Home Page, http://altavista.digital.com/. 

[2] L. Arge, O. Procopiuc, J. S. Vitter. “ Implementing I/O-Efficient Data Structures 

Using TPIE”. Proceedings of the 10th European Symposium on Algorithms (ESA 

'02), Rome, Italy, 88-100, 2002. 

[3] S. Brin, and L. Page. “The anatomy of a large scale hypertextual Web search 

engine” . In Proceedings of the 7th International World Wide Web Conference, 

107-117, 1998. 

[4]        A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. 

Tomkins and J. Wiener. “Graph structure in the Web: experiments and models” .  

Computer Networks, 33: 309-320, 2000. 

[5] J. Cho and H. Garcia-Molina. “Synchronizing a database to improve freshness” . 

In 2000 ACM International Conference on Management of Data (SIGMOD),  

355-366, 2000.  

[6] J. Cho, H. Garcia-Molina and L. Page. “Efficient crawling through URL 

ordering” . In Proceedings of the 7th International World Wide Web Conference, 

161-172, 1998. 



 

 

43

[7] A. Crauser. LEDA-SM: External memory algorithms and data structures in theory 

and practice. PhD thesis, Universität des Saarlandes, 2001.  

[8]  Excite Home Page, http://www.excite.com/. 

[9]  Google Home Page, http://www.google.com/. 

[10]  InfoSeek Home Page, http://www.infoseek.com/. 

[11] J. Kleinberg. “Authoritative sources in a hyperlinked environment” , In 

Proceedings the 9th ACM-SIAM Symposium on Discrete Algorithms, 668-677, 

1998.  

[12] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. “Trawling the Web for 

cyber communities ” , Computer Networks, 31: 1481-1493, 1999.  

[13]  Lycos Home Page, http://www.lycos.com/. 

[14] M. Najork and J. Wiener. “Breadth-first search crawling yields high-quality 

pages” . In Proceedings of the 10th International World Wide Web Conference, 

114-118, 2001. 

[15]  T. Suel and J. Yuan, “Compressing the graph structure of the Web”. In 

Proceedings of the IEEE Data Compression Conference (DCC), 213-222, 2001.  

[16] TPIE Home Page, http://www.cs.duke.edu/~tpie/. 



 

 

44

[17]  J.S. Vitter. “External algorithms and data structures: dealing with massive data” . 

Computing Surveys, 33: 209-271, 2001. 

[18] J.S. Vitter and E.A.M. Shriver. “Optimal algorithms for parallel memory I: two 

level memories. Algorithmica, 12: 110-147, 1994. 

 

 

 

 


