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ABSTRACT 

 This thesis focuses on functional interactions between gyri and sulci in the human brain. 

From the signal processing aspect, a data-driven signal decomposition framework was proposed 

and applied to infer meaningful low-frequency information from Blood Oxygenation Level 

Dependent (BOLD) time series from resting-state, task-based, and natural stimulus fMRI. From 

the data analysis aspect, a functional model of cortical gyri and sulci was proposed where we 

hypothesize that gyri are the global functional integration hubs and sulci are the local functional 

units. We examined and verified this functional model by structural and functional connectivity 

analysis on cortical landmarks of gyri and sulci, as well as whole brain correlation analysis 

performed on resting-state fMRI data. This functional model of gyri and sulci provides a novel 

perspective on the functional cortical architecture and offers a starting point for future 

elucidation of fine-scale functional mechanisms of the cerebral cortex. 
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CHAPTER 1 

INTRODUCTION 

Functional Magnetic Resonance Imaging (fMRI) leverages the coupling between 

neuronal activity and hemodynamics in the human brain to obtain non-invasive localization and 

measurement of brain activity [1]. From a signal processing perspective, fMRI signal reflects the 

brain's hemodynamic responses to external stimuli or intrinsic oscillations of neuronal systems at 

multiple time scales [2]. From a neuroscience perspective, fMRI signal reflects the local field 

potential of synchronized neuron populations, simultaneous excitation and inhibition, 

modulatory inputs, or changes in neuronal synchrony [3]. Researchers use fMRI technology to 

image the human brain and record its real-time responses in a non-invasive way, making it 

possible to explore and study the functional mechanisms of the human brain. 

Due to the vast complexity and variability of the structure and function of the cerebral 

cortex [4-9], studying the functional mechanisms of the human brain has been very challenging. 

As a consequence, the functional mechanisms of the human brain and their structural 

underpinnings remain largely unknown. From our perspective, a fundamental barrier to 

deciphering the functional mechanisms of the brain is the critical lack of joint representation and 

mapping of common structural and functional brain architectures, based on which functional 

mechanisms can be investigated and inferred. For instance, despite significant advancements of 

segmentation/parcellation of cortical gyri and sulci from structural MRI images in the past few 

decades [7, 10-15], the structural connection patterns and the functional roles of gyri and sulci 

still remain to be elucidated. Thanks to the recent advancements of modern in-vivo multimodal 
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neuroimaging techniques, in particular, diffusion tensor imaging (DTI) [16] and fMRI [3, 17], 

we are now able to quantitatively measure the brain’s axonal fiber wiring diagrams and 

functional activities with decent spatial and temporal resolutions [18-20]. The multimodal 

DTI/fMRI data offers unparalleled opportunities to investigating the structural architectures and 

functional mechanisms of the human brain [19-23]. Particularly, a joint representation and 

modeling approach of multimodal structural and functional neuroimaging data has demonstrated 

superior advantages in elucidating the structural/functional brain architectures [18-20, 23-25]. 

Using this joint representation and modeling approach, recent macro-scale neuroimaging 

and micro-scale bio-imaging studies revealed an interesting finding: axonal fiber terminations 

concentrate on gyri [26, 27]. That is, a dominant percentage of DTI-derived axonal fibers are 

connected to gyral regions, rather than sulcal regions. This finding has been replicated in DTI 

and Higher Angular Resolution Diffusion Imaging (HARDI) [28] data of human, chimpanzee, 

and macaque brains [26]. Furthermore, a joint representation of cortical gyral folding and axonal 

fiber connection patterns was applied to the analyses of a number of primate/human brains. The 

experimental results consistently demonstrate that gyral regions are connected by much denser 

axonal fibers than sulcal regions in the whole cerebral cortex in all brains we studied [26, 27], 

suggesting a common principle of structural brain architecture: gyri are the structural connection 

hubs of the cerebral cortex. 
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Fig. 1.1. Proposed functional model of cortical gyri and sulci. (1) A gyral region (red ribbon); (2) 

A sulcal region (green ribbon); (3) Sulci exchange information with neighboring regions via 

inter-column cortico-cortical axons (brown arrows); (4) Indirect communications are possible via 

dense axonal fibers (cyan arrow); (5) fMRI signals are extracted from cortical regions; and (6) 

Functional interactions measured by signal processing techniques.  

Inspired by the above finding and the fact that axonal fibers are the structural substrates 

of functional connectivity [6], a functional model of the cerebral cortex is hypothesized: gyri are 

the global functional integration hubs and sulci are the local functional units [29]. Specifically, 

the hypothesized functional model of cortical gyri and sulci is illustrated in Fig. 1.1. The main 

idea here is that gyral regions are the functional integration hubs that exchange information 

between distant gyral regions via dense axonal fibers (black curves in Fig. 1.1), while sulcal 

regions communicate directly with their neighboring gyri through inter-column cortico-cortical 

axons (brown arrows in Fig. 1.1, [30]) and communicate indirectly with remote cortical regions 

via the gyri hubs and their dense axonal connections (cyan arrow). It should be noted that the 
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local inter-column cortico-cortical axons cannot be imaged and revealed by current in-vivo DTI 

techniques [16], but they do play important roles in inter-column neural communications [5, 30]. 

Once the functional units are identified, signal processing and analysis techniques play 

important roles in studying functional interactions in the human brain (6 in Fig. 1.1). In the 

literature, a great amount of effort has been devoted into this area, e.g., the generalized linear 

models (GLM) [31], wavelet algorithms [32, 33], Markov random field (MRF) models [34], 

mixture models [35], autoregressive spatial models [36], Bayesian approaches [37], and 

independent component analysis (ICA) [38, 39]. Though these model-driven approaches have 

their own advantages in various applications [31-39], the characteristics of non-linearity and 

composition of signal components at multiple time scales in fMRI Blood Oxygenation Level 

Dependent (BOLD) signals present significant challenges to the inference of meaningful 

information from fMRI BOLD data. In particular, it was reported that neuronal networks in the 

brain demonstrate a variety of oscillatory bands covering frequencies from approximately 0.01 

Hz to 500 Hz [2], which means that fMRI BOLD signal has complex composition of signals at a 

wide range of time scales in nature, laying down the fundamental need for data-driven, multi-

scale decomposition methods of fMRI BOLD signal. In addition, fMRI BOLD signal might be 

subject to physiological motion effect or non-neuronal noise [1, 3]. As such, non-linearity and 

low signal-to-noise ratio are common in fMRI time series data [1, 3], which further entails the 

decomposition of fMRI BOLD signal into meaningful components and random noise residue. 

 This thesis focuses on discovering and further understanding the functional interactions 

between gyri and sulci in the human brain from both aspects. We propose in Chapter 2 a data-

driven signal decomposition framework to decompose fMRI BOLD time series data into model-

free components [40]. The framework was applied to infer meaningful low-frequency 
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information from BOLD signals from resting-state fMRI, task-based fMRI, and natural stimulus 

fMRI. In Chapter 3 we hypothesize a functional model at the gyri/sulci level of the human brain 

and verify it using a joint representation and modeling approach with joint DTI/fMRI data [29]. 

This functional model of gyri and sulci provides a novel perspective on the functional cortical 

architecture and offers a starting point for future elucidation of fine-scale functional mechanisms 

of the cerebral cortex. 
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CHAPTER 2 

EMPIRICAL MEAN CURVE DECOMPOSITION 

2.1 Data-driven fMRI Signal Analysis 

In the signal processing community, empirical mode decomposition (EMD) [41-43] has 

been recognized as an effective data-driven signal decomposition approach and has been widely 

used in multi-scale signal analysis [44]. The EMD algorithm was initially proposed to study 

ocean waves [41], and has been applied in solving biomedical signal processing problems [45-

49], e.g., in [45] for field potential recording analysis and in [48] for task-based fMRI activation 

detection. In brief, EMD extracts intrinsic mode functions (IMFs) by iteratively removing mean 

curves from the input time series (or the residue in subsequent iterations) until the residue 

becomes an IMF. EMD features a unique decomposition scheme that the IMFs are derived from 

the time series data directly without prior domain knowledge. Therefore, it is adaptive, in 

contrast to wavelet or Fourier analysis where the basis functions are predefined in advance.  

The data-driven manner of decomposing time series makes EMD a powerful tool in 

analyzing many types of time series data. In spite of EMD's superiority over many model-based 

decomposition methods, direct applications of EMD in fMRI BOLD signal analysis might not be 

appropriate for several reasons. The major issue is the strict constraints of IMF which forces all 

components extracted by EMD to be (1) narrow-band limited; and (2) with zero local mean. 

These constraints ease theoretical analysis and provide a fairly simplified model of the 

components of prospect. In fMRI time series analysis, as well as many other biomedical 

applications, however, the ultimate goal of signal decomposition is to reconstruct the intrinsic, 
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biologically meaningful components rather than mathematically defined ones. In particular, 

EMD extracts higher-frequency components first, employing a finer-to-coarser scheme. In fMRI 

time series analysis, the major noise source is of high-frequency while low-frequency global 

drifting are typically overcome by detrend algorithms [50]. Accordingly, the EMD 

decomposition results are unstable due to its unavoidable error in extracting the highest-

frequency component. Thus, the error accumulates rapidly in subsequent iterations. When it 

reaches the most desirable scale in the low-frequency bands [1, 17], the component might have 

been deteriorated by the accumulated error. 

 

Fig. 2.1. A conceptual comparison between EMCD (a) and EMD (b). For both (a) and (b) the blue curve 

is the original time series; its superior and inferior envelopes are depicted as dark dashed curves. (a) Red 

curve: extracted mean curve component in EMCD. (b) Red curve: extracted IMF in EMD. EMCD makes 

use of extrema optimization to improve the decomposition, which does not exist in EMD. 

In response to the major limitations of applying EMD in fMRI time series analysis and in 

the meanwhile inspired by this data-driven signal decomposition methodology, a novel multi-

scale, iterative signal decomposition framework named Empirical Mean Curve Decomposition 

(EMCD) is proposed to deal with the above issues in fMRI signal decomposition. The EMCD 

algorithm calculates both the superior and inferior envelopes in each iteration of signal 

decomposition (Fig. 2.1), applies a scale control algorithm to optimize the envelopes, and 
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extracts the mean curve by averaging the superior and inferior envelopes. This algorithm is 

iteratively applied on the residue signal, which is the subtraction of the extracted mean curve 

from the original signal. Sections 2.2 and 2.3 will cover the details of the algorithm and 

framework. 

 

Fig. 2.2. A general flowchart of the algorithm. 

 

2.2 Decomposition Basics 

A general flowchart of the EMCD decomposition algorithm is shown in Fig. 2.2. The 

algorithm decomposes a time series in a multi-scale, data-driven manner. Briefly, the maxima 

(Step 2) and minima (Step 3) are extracted from the input time series (Step 1). They are 

optimized (Step 4, Step 5) by a local scale control algorithm and are interpolated to form 

superior envelope (Step 6) and inferior envelope (Step 7), respectively. The local scale control 

algorithm moderately controls the scale to which the time series is decomposed. The mean curve 

(Step 8) as the output is calculated by averaging both envelopes. This decomposition algorithm is 

iteratively applied to the input time series (in its first iteration) and the residues (in the following 

iterations). 
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Let x[n], n=1, …, N be an N-element time series which we will refer to as x[n]. (pi, x[pi]), 

i=1, …, Np is the maxima series of x[n], where pi is the time index and Np is the number of 

maxima; (qi, x[qi]), i=1, …, Nq is the minima series of x[n], where qi is the time index and Nq is 

the number of minima; B[(xi, yi), x0] is the widely used B-spline interpolation function which 

interpolates the input series (xi, yi) at time point x0. 

 

Fig. 2.3. An example of superior/inferior envelopes and mean curve. 

Superior Envelope 

The superior envelope of a time series is the upper trend curve that passes through all of 

its maxima (purple curve in Fig. 2.3). The B-spline interpolation is used to interpolate the 

maxima: 

Equation 2.1  NnnxpxpBnx ii ,...,1]],[]),[,[(][sup   

Inferior Envelope 

Similarly, the inferior envelope of a time series is the lower trend curve that passes 

through all of its minima (green curve in Fig. 2.3): 

Equation 2.2  NnnxqxqBnx ii ,...,1]],[]),[,[(][inf   

Mean Curve 

The mean curve of a time series is the average of its superior and inferior envelopes (red 

curve in Fig. 2.3) representing the global trend: 
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Equation 2.3  Nnnxnxnxmean ,...,1,2/])[][(][ infsup   

The notations introduced above are illustrated in Fig. 2.3. 

Mode 

The mode of a time series is defined as the average of its number of maxima Np and 

minima Nq: 

Equation 2.4  2/)(])[( qp NNnxM   

Empirical Wave Form 

The fact that the mean curve is determined by the extrema provides a new way to model 

time series. Here we introduce the concept of Empirical Wave Form (EWF). A EWF is a series 

of alternating maxima and minima. A simplified EWF is defined as follows: 

Equation 2.5  ])}[,(]),[,{(])[( iiii qxqpxpnxEWF   

Then we can use a EWF to represent a mean curve, while its mode, M(x[n]) (Equation 

2.4), characterizes this EWF. In principle, one complete sine wave cycle has one maximum and 

one minimum, contributing exactly one to its mode. Hence the mode of a EWF behaves like the 

number of complete cycles in traditional Fourier analysis. We derive the empirical period for the 

above EWF as: 

Equation 2.6  ])[(/ nxMNTEWF   

while the empirical frequency is given by: 

Equation 2.7  NnxMfEWF /])[(  

These concepts are listed in Table 2.1 (next page) in conjunction with their corresponding 

terms in traditional Fourier analysis for comparison. 

It should be noted that empirical period and empirical frequency are temporal estimations 

over the entire time series rather than the exact model parameters as in traditional Fourier 
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analysis. This relaxation of conditions improves the descriptive abilities such that a wider class 

of signals from different oscillatory sources can be modeled, e.g., neurons and brain regions, 

whose signals are similar to (in the sense of their shapes), but not the same as, sine waves. As a 

comparison, the Fourier analysis decomposes this type of time series into a set of sine waves at 

different frequencies, and the wavelet transform decomposes them into a set of wavelets at 

multiple frequencies and different temporal locations. 

Table 2.1. COMPARISON OF CONCEPTS 

Concept Empirical Wave Form Fourier Analysis 

Form x[n], (pi, x[pi]), (qj, x[qj]) y[n], sin(ωn) 

Period N/M(x[n]) 2π/ω 

Frequency M(x[n])/N ω/2π 

 

Theoretically, any time series can be modeled as a EWF once we have extracted the 

extrema, so is any continuous range of an existing time series. Considering the local properties of 

the time series, we define local scale as the local period of a cycle. Here by “cycle” we refer to 

the range of a pair of adjacent maximum and minimum. For a time series with multiple 

components in the form of riding waves, the local scale descriptor may vary largely at different 

cycles within the time series. In order to effectively model the time series, we process the time 

series in its empirical wave form to recover singular EWF components without riding waves, in 

which a local scale control algorithm is employed to optimize the EWF. We refer to the 

recovered singular EWF components as “pure” EWFs. 

In short, the goal of the proposed EMCD algorithm is to decompose the time series at 

different scale levels, yielding a composition of pure EWFs. In that sense, these pure EWFs are 

the basis functions in EMCD, compared to the sine waves in Fourier analysis and the wavelets in 
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wavelet transforms. These empirical basis functions, however, require no prior knowledge of the 

signal model and are thus purely data-driven. Orthogonality, therefore, is not guaranteed. 

2.3 Decomposition Framework 

The main procedure of EMCD is the iterative decomposition process, which is applied on 

the input time series to produce the mean curve as the output. 

Extrema Extraction 

The algorithm extracts both maxima and minima as the initial step of the iterative 

process. 

Local Scale Control 

This step of the algorithm controls the local scale of the extrema. Recall that by “local 

scale” we refer to the length of period of a certain cycle. Furthermore, as cycles are determined 

by extrema, we control the local scale by inserting extrema time points, since the extracted 

extrema are data-dependent and are not to be modified. Basically, the local scale controls how 

much alike we want the extracted mean curve and the input time series to be, since the 

reconstruction of envelopes depends solely on the extracted extrema. If two extrema are too far 

away, it may be infeasible to recover the true envelope. 

The local scale control procedure applies to both maxima and minima with the same 

method. Taking maxima as an example, for each pair of adjacent maxima, the number of time 

points they are apart is calculated as the distance of the pair. By definition, this distance is the 

local scale. If it is larger than a pre-selected scale threshold, we need to insert a certain number of 

new nodes as the “interpolated” maxima between the two real ones. This process controls the 

local scale at each maximum. 
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Specifically, suppose the maxima pair, (x[u], x[v]), u<v, are currently in consideration. 

Its distance is calculated as: 

Equation 2.8  1 uvD  

Let S be the scale threshold. We calculate the number of new nodes to insert and their 

locations as: 

Equation 2.9    1/  SDNnew  

Unlike the indices u and v, the locations L[n] need not to be rounded to integers since 

those inserted nodes will be used only in the interpolation procedure. Meanwhile, the amplitudes 

at these nodes are derived from the following Gaussian model: 

Equation 2.10  

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Equation 2.11  ]
2/)(][

2[]][[
uv

uvnL
GnL




  

where E[u] is the estimate of the amplitude difference at maximum x[u] between the expected 

mean curve and the original time series; E[v] is the estimated amplitude difference at maximum 

x[v]; σ is the scaling parameter of the Gaussian model which controls the shape; G[t] is the 

Gaussian model; the estimated difference in amplitude at L[n] between the expected mean curve 

and the original time series is given by Δ[L[n]]. The amplitude difference estimates can be 

derived from smoothing the time series. Therefore, the amplitude for the n
th

 interpolated node is: 

Equation 2.12  ]][[]][[][ nLnLxnA   

Interpolation 

Once we have the optimized extrema from the previous step, B-spline interpolation is 

used to obtain the superior envelope and inferior envelope. The output mean curve is obtained by 

averaging both envelopes. 
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The Decomposition Framework 

Having obtained a mean curve, C, we employ a practical strategy to determine whether 

this is a valid pure EWF. The extracted mean curve is simply decomposed one more time into C' 

and residue R' (C=C'+R'). C is considered as a valid pure EWF only if either of the following 

criteria is not met: 

 The difference between M(C') and M(R') is larger than a given threshold; 

 The variance values of both C' and R' are larger than a given threshold. 

The first criterion confirms that a riding wave exists in C; and the second ensures that 

both C' and R' are statistically non-trivial. If either of the two criteria is not met, C is a valid pure 

EWF or useless residue; otherwise, we continue the test using C'. Depending on the complexity 

of the data, this process might be repeated a few times until the riding wave diminishes, which 

must happen because of the nature of the decomposition method. 

 

Fig. 2.4. A full EMCD decomposition of an fMRI BOLD time series into three EWFs. C1 and C2 are the 

first and second components and C3 is the residue. 

After each iteration, the residue is also tested for variance conditions. If the variance of 

the residue after an iteration is too low, the algorithm terminates to avoid generating trivial 

components. Therefore, the input time series, X[n], is decomposed into a number of pure EWFs 

(EMCD components) and a residue (which is a EWF as well). The number of extracted pure 

EWFs depends on the data and the local scale threshold. In summary, we have: 
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Equation 2.13  





1

1
][][

EWFN

i
iCnx  

where NEWF is the number of extracted pure EWFs determined by the data; the residue is 

rewritten as C[NEWF+1]. The original time series is merely the addition of all the decomposed 

EWFs. As an example, depicted in Fig. 2.4 is a decomposition of an fMRI BOLD time series. 

It should be noted that the largest scale (the first component) is data-dependent. A further 

decomposition of the first component yields even larger scale components. 

In comparison with EMD, EMCD focuses on improving the extraction of components at 

a low frequency or coarser scale. This is especially useful in fMRI analysis where the major 

noise source is of higher frequency, which typically forms the residue in EMCD results. 

2.4 Experiment Data 

Resting state fMRI data 

Resting state fMRI data were acquired in a 3T HDx GE MRI system (GE Healthcare, 

Milwaukee, WI) with dimensionality 128*128*60*100, spatial resolution 2mm*2mm*2mm, TR 

5s, TE 25ms, and flip angle 90 degrees. Standard pre-processing procedures were applied, 

including brain skull removal, motion correction, spatial smoothing, temporal pre-whitening, 

slice time correction, and global drift removal [50, 51]. DTI data were acquired using the same 

spatial resolution as that of resting state data, with TR 15.5s, TE 89.5ms, 30 DWI gradient 

directions, and 3 B0 volumes. Standard pre-processing procedures were applied, including brain 

skull removal, motion correction, and eddy current correction. Fiber tracking was performed 

using MedINRIA [32] (FA threshold: 0.2; minimum fiber length: 20; sampled by four). We used 

DTI as the standard space by registering resting state data to the DTI space [50, 52, 53]. 

Task-based fMRI data 
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Task-based fMRI is very useful in localizing function regions of interests (ROIs) in the 

human brain and is widely used in the brain imaging community [1, 3, 31]. In this experiment, 

we decomposed the task-based fMRI BOLD time series [54] using the proposed EMCD 

framework, and compared the decomposed components with the result provided by FSL FEAT 

[55], which is widely used in the community. The pre-processing steps of task-based fMRI 

BOLD signals were based on published methods in [52, 56] and the auditory task-based fMRI 

data [54] was used in the experiments. 

Natural stimulus fMRI data 

The datasets we used were reported in [54]. Briefly, natural stimulus fMRI data was 

scanned in a news-watching session. The news multimedia was selected from the TRECVID 

2005 dataset [57]. Low-level audio/video features were extracted [54], including visual motion 

saliency [58] and audio signal energy. Twenty-nine brain regions from the vision, auditory, 

language, and working memory networks were mapped via task-based fMRI [54], and the 

natural stimulus fMRI signals scanned in separate sessions were extracted from these functional 

brain regions [54]. The preprocessing steps of these natural stimulus fMRI signals are referred 

the published methods in [52, 54]. 

2.5 Results 

EMCD on synthesized time series 

In this experiment, we aim to evaluate EMCD on signal recovery in the presence of 

noise, and compare it with EMD and wavelet transform, both of which are well-established 

multi-scale signal decomposition methods. 
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Fig. 2.5. Comparisons of time series decomposition on synthesized time series. (a) EMCD results; (b) 

EMD results; (c) results from Daubechies wavelet transform. Notice that we only plotted the non-trivial 

components. In all subfigures, dark dashed curves refer to the original time series (the sine wave); red: 

time series with random noise; green: the most representative component as C1 from EMCD, C3 from 

EMD and C5 from wavelet transform. 

The synthesized time series was decomposed using EMCD, EMD, and Daubechies 

wavelet transform as shown in Fig. 2.5a-c, respectively. The dark dashed curve is the original 

time series without noise, i.e. sin(n/3). The synthesized time series with noise is colored in red. 

Note that only non-trivial components are plotted in the figure. The shown components include 

C1 and the residue from the proposed EMCD framework (Fig. 2.5a), C1 and C3 from EMD (Fig. 

2.5b), and C5 and C6 from the wavelet transform (Fig. 2.5c). 

It is evident that the proposed EMCD decomposition component C1 matches the 

benchmark sine wave with high accuracy. In contrast, the result of EMD suffers from the 
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algorithm's instability to noise because it extracts high frequency components first and 

accumulates error quickly in subsequent sifting processes, as demonstrated in Fig. 2.5b. In Fig. 

2.5c, it is evident that the wavelet transform can hardly recover the original shape since it is 

model-driven and the basis functions can hardly match the signal shapes in the data without prior 

information. All it generates are linear combinations of its basis functions, as shown in Fig. 2.5c. 

The choice to select the first EMCD component as the representing one is empirical 

rather than theoretically supported at current stage. In this synthesized time series experiment, 

the first component has the right scale that is comparable to that of the sine wave model. In other 

applications, e.g., natural stimulus fMRI, choosing the right scale becomes non-trivial when the 

external stimulus feature curves have a much higher sampling rate than that of fMRI time series. 

To ensure comparisons between components at the same scale, further analysis is essential. 

 

Fig. 2.6. Comparison between EMCD and EMD in measuring the Pearson correlation of 100 synthesized 

time series with random noise and the original sine wave. 

Quantitatively, we compared EMCD and EMD in measuring Pearson correlation of 100 

synthesized time series with random noise and the original sine wave. The results are shown in 

Fig. 2.6, from which we can see that EMCD achieves substantially better correlation results 

consistently. Specifically, the mean and variance are 0.904 and 0.001 for EMCD results; and 
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0.537 and 0.023 for EMD results. The wavelet method was not included in this correlation 

analysis experiment since it is model-driven, which could bias the comparison results. 

To summarize this section, both qualitative and quantitative evaluations using 

synthesized time series signals with ground-truth demonstrated that the proposed EMCD 

framework has superior performance in extracting meaningful true components from 

contaminated signals.  

 

Fig. 2.7. Correlation structure between two time series. (a) The time series; (b) the correlation structure 

matrix. There are six components and a residue for time series 1, and five components and a residue for 

time series 2. The color bar is on the right. 

EMCD in Resting State fMRI Analysis 

In this experiment, we applied the EMCD framework in resting state fMRI [17, 50, 59-

61] analysis to discover the multi-scale correlation structure as well as the spectral characteristics 

of EWFs in the resting state frequency bands. 

With the proposed decomposition framework, we are able to measure the EWFs 

correlation structure between two fMRI time series in a multi-scale manner. Suppose we have 

two resting state fMRI time series X and Y. They are decomposed using EMCD as: 

Equation 2.14  





1

1

XK

m

X

mCX  
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Equation 2.15  




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n

Y

nCY  

Then, their correlation structure is given in the form of a matrix (PC stands for Pearson 

correlation): 

Equation 2.16  ),(][ , Y

n

X

mC

nm

orr CCPC   

Fig. 2.7 shows an example of the EWF’s correlation structure between two resting state 

fMRI time series. Elements colored in red or green indicate stronger correlation. As we can see 

from Fig. 2.7, this matrix reveals the scales the two time series are most correlated at. This 

capability has wide applications in measuring the functional connectivity between resting state 

fMRI signals at different frequencies [44] in the future. 

 

Fig. 2.8. Corresponding correlation pair distributions in the correlation structures. The color bar 

(logarithm scale) is at bottom. (a) Time series pairs with white matter fiber connections; (b) Time series 

pairs without white matter fiber connections; (c) The logarithmic color bar representing the number of 

time series. 
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We conducted additional experiments to evaluate this multi-band correlation structure 

analysis on more resting state fMRI data as shown in Fig. 2.8. Two groups of time series pairs 

were selected. Group A contains 100 randomly selected time series pairs from voxels with strong 

white matter fiber connections derived from DTI data [51], while group B contains 100 

randomly selected time series pairs from voxels without white matter fiber connections. The 

functional connectivity strengths were originally measured by Pearson correlation [51]. Here, for 

each time series pair, we estimated its multi-band functional correlation structure using EMCD. 

Taken column 2 in Fig. 2.8 as an example, the colors of the elements in the matrices indicate the 

numbers of cases out of 100 that have their second largest functional correlation values at the 

corresponding EMCD component pairs. Notice that the extracted EMCD components may be 

more than ten, which is the dimension of the matrix. We merged all elements beyond that limit to 

the right-bottom one within the matrix. As shown in Fig. 2.8, the EMCD revealed interesting 

characteristics of the two types of time series pairs: (1) for time series from voxels with strong 

DTI-derived white matter fiber connections, more than 90% of its largest functional correlation 

values resides in C1-C1 pair (left panel in Fig. 2.8), while the largest functional correlation values 

of time series from voxels without white matter fiber connections have a sparse distribution as 

indicated by the red arrows in Fig. 2.8b; (2) the distributions of the 3rd and 4th largest pairs are 

alike in both time series pairs. We interpret that the observed differences between the two types 

of time series pairs in Fig. 2.8 might originate from the intrinsic characteristics of the time series. 

As of the pairs with structural fiber connections, the time series pairs in group A are strongly 

correlated and the correlation structures concentrate on a few scales. The time series pairs in 

group B, however, are not associated with fiber connections and are thus weakly correlated, the 

correlation structures of which are therefore displaying a sparsely distributed pattern.  
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This result is quite reasonable, considering the close relationship between structural and 

functional connectivity in the human brain [6, 18]. Thus, given the lack of ground-truth data in 

fMRI, this cross-validation result based on independent DTI-derived structural connection 

patterns strongly support the biological meanings of our EMCD framework and the decomposed 

EWFs. 

 

Fig. 2.9. Decomposition of a resting state fMRI time series (a) and Fourier spectrum plots (b). In (a) only 

C1 and the residue are plotted. 

In comparison with the traditional low-pass filters commonly used in the signal 

processing community, EMCD naturally forms a band-pass filter whose spectrum response is 

non-linear and data-driven. An example is shown in Fig. 2.9, from which we can see that the 

extracted different EWFs are separated in the Fourier frequency domain. This figure provides an 

intuition of how EMCD works in decomposing resting state fMRI signals in the frequency 

domain. 

 

Fig. 2.10. Empirical frequency statistics of resting state fMRI data. Horizontal axis refers to the empirical 

frequency; vertical axis refers to the percentage of time series at the corresponding empirical frequency. 
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With the notation of EWF, we can calculate the empirical frequency for each extracted 

EWF component. Fig. 2.10 shows the statistics of empirical frequency distributions of resting 

state time series from grey matter voxels in one human brain as an example. Specifically, the 

resting state fMRI time series were decomposed into three EWFs. In Fig. 2.10, the horizontal 

axis refers to the empirical frequency, and the vertical axis refers to the percentage of time series 

at the corresponding empirical frequency. For each EWF component, the distribution of 

empirical frequency shows a Gaussian-like pattern. The mean empirical frequency of C1 is 0.020 

Hz; for C2 it is 0.028 Hz; and for C3 it is 0.057 Hz. We analyzed other 8 brains with resting state 

fMRI data and found similar patterns. These frequency distributions are quite consistent with the 

reports in the resting state fMRI literature [3, 17]. 

Importantly, it is also evident in Fig. 2.10 that the variation of frequency distributions of 

resting state fMRI signals across different brains is remarkable, as demonstrated by the standard 

deviations of the three Gaussian distributions. This variation imposes significant difficulty in 

selecting the best upper and lower band-limits when designing traditional low-pass or band-pass 

filters for decomposing the fMRI signals. In contrast, our data-driven EMCD decomposition 

method is adaptive to data itself and provides superior flexibility in fMRI signal decomposition, 

which is the major advantage of the proposed EMCD framework. 

 

Fig. 2.11. The decomposition framework applied to task-based fMRI data. The red curve is the original 

fMRI time series, while the blue one is the first EMCD component and the black dashed curve is the 

BOLD model fit by FSL FEAT. 
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EMCD in Task-based fMRI Analysis 

Fig. 2.11 shows an example of EMCD decomposition of task-based fMRI time series. We 

can see that the first EMCD component C1 closely matches the FEAT BOLD model, which is a 

convolution of the Hemodynamic Response Function (HRF) with a linear combination of 

explanatory variables such as block-based paradigm stimuli and motion factors. 

 

Fig. 2.12. FSL FEAT activation results in an auditory task-based fMRI dataset. 

We compared the correlations between the FEAT BOLD model and the signals 

decomposed by EMCD, EMD, and the original fMRI signal, respectively. We randomly selected 

100 fMRI time series from activated voxels in the auditory task-based fMRI [54] and the other 

100 time series from non-activated voxels. The activation map was detected by the FSL FEAT as 

shown in Fig. 2.12. 

For EMCD, we calculated the Pearson correlation between the first EMCD component 

and the BOLD model; for EMD, we calculated the Pearson correlation between each of the 

components and the BOLD model, and selected the most significant value; for the original fMRI 

signal, we simply calculated the Pearson correlation value between the raw fMRI time series and 

the BOLD model. The results are shown in Fig. 2.13 (next page). In Fig. 2.13a, the mean and 

variance are 0.755 and 0.004 for EMCD, 0.491 and 0.037 for EMD, and 0.636 and 0.002 for 

original fMRI signal. It is evident that the first EWF component decomposed by the EMCD 

framework has the highest correlation to the stimulus curve, suggesting that the lower frequency 
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component in fMRI signal is the biologically relevant signal that is of interest to us and the 

EMCD approach is able to effectively extract this meaningful component. In contrast, the 

original fMRI signal might be contaminated or influenced by other irrelevant components of 

higher frequencies, and the EMD method extracts irrelevant higher frequency signal components 

first and the error could accumulate rapidly in subsequent iterations when it starts the extractions 

of the biologically meaningful components.  

 

Fig. 2.13. Correlations between the FSL FEAT BOLD model and the EMCD components, the EMD 

components and raw fMRI signals. The numbers on the left refer to the correlation values. (a) Results for 

100 time series from randomly selected activated voxels in auditory task-based fMRI dataset; (b) Results 

for 100 time series from randomly selected non-activated voxels in the same dataset. 

In Fig. 2.13b where 100 fMRI time series from non-activated voxels are shown, the 

means and variances of correlations are -0.014 and 0.057 for EMCD, 0.217 and 0.033 for EMD, 

and 0.008 and 0.020 for original fMRI signal, respectively. This result suggests that when there 

is no correlation between the fMRI signal and stimulus curve, EMCD, EMD and Pearson 

correlations have similar outcomes. It can be seen that the specificity of the EMCD framework in 

extracting relevant signal components is also very good, given its substantially better sensitivity 

than the EMD and Pearson correlation methods.   
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The experimental results in this section demonstrated that the proposed EMCD 

decomposition framework substantially better recovered the intrinsic BOLD activity embedded 

in the fMRI time series data that is induced by the block-based external stimulus than the EMD 

and Pearson correlation methods. Considering that the external stimulus curve of block-based 

paradigm is widely regarded as the benchmark data, the results based on task-based fMRI data 

partially validated the effectiveness and accuracy of the proposed EMCD framework in 

extracting biologically relevant signal components. 

 

Fig. 2.14. Low-level features in natural stimulus fMRI. (a) Decomposition of the visual motion saliency 

feature curve into a coarser-scale signal (C1); (b) Comparison of the extracted visual low-level feature 

component and the fMRI component at similar scales. 
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Fig. 2.15. EMCD on natural stimulus fMRI. EMCD-derived correlation (a) and Pearson correlation (b) 

between visual motion saliency feature curve and fMRI time series. EMCD-derived correlation (c) and 

Pearson correlation (d) between logarithm audio signal energy feature curve and fMRI time series. The 

color bar is at the bottom. The arrows in the same colors highlighted some brain regions with significant 

differences between the two methods in (a) and (b), as well as in (c) and (d). The correlation is much 

stronger between the visual motion saliency feature and brain regions for motion perception, including 

MT and MST (black arrows), while negative correlation was exposed for insular and precuneus (red 

arrows and blue bubbles in (a)). When comparing with logarithm audio signal energy feature, insular and 

paracingulate exhibited strong correlation (c). The corresponding Pearson correlation results shown in (b) 

and (d) could not reveal the differences. 
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EMCD in Natural Stimulus fMRI Analysis 

Natural stimulus fMRI of movie watching allows us to continuously monitor the brain's 

responses to multimedia contents in a natural way and with high spatial resolution. Importantly, 

recent research studies [54, 62, 63], have shown that natural stimuli provide a realistic 

experiment environment for brain research and that the human brain's response to the same 

stimulus is reliable and reproducible across individuals. In the literature, a relatively less 

explored issue in natural stimulus fMRI is how to measure the correlation between low-level 

feature curves extracted from continuous audio/video streams, such as motion energy and motion 

saliency [58], and fMRI BOLD signals. In our experiments, we applied the EMCD framework to 

measure the correlation between multi-scale low-level multimedia feature curves and fMRI 

signals, in order to elucidate the potential correlative interactions among multimedia stimuli and 

the human brain's perception and cognition [54, 62, 63].  

The frequencies of fMRI signals and low-level multimedia features are at quite different 

scales, e.g., 0.1Hz vs. 30Hz. Hence, we extracted the components from fMRI time series, and use 

the scale information to guide the decomposition of low-level multimedia feature curves to 

obtain components at the similar scale. Depicted in Fig. 2.14a is an example of decomposing the 

visual motion saliency features [58] into a coarser-scale signal. After the decomposition, the 

extrema time points were kept and the extracted component was later reconstructed at the length 

of the fMRI time series with the extrema for the correlation analysis. 

Then, the correlation between these two types of signals are measured by the Pearson 

correlation of corresponding EMCD components at the same or similar temporal scales, as 

illustrated in Fig. 2.14b. We hypothesize that low-level features with specific semantic meanings 

will have higher correlations with the corresponding signals from relevant brain regions. For 
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instance, Fig. 2.15a shows a pilot result on visual motion saliency features, from which we can 

see that much stronger correlation appears in some brain regions for motion perception including 

right middle temporal (MT) region and left middle superior temporal (MST) region [64] (black 

arrows in Fig. 2.15a), when we compared the EMCD C1 components of fMRI BOLD signals and 

the visual saliency feature curve [58]. The result is quite reasonable, given current known 

neuroscience knowledge that MT and MST regions are responsible for visual motion processing 

and understanding [64]. As a comparison, we calculated the Pearson correlation between the 

original visual saliency feature and the raw fMRI time series signals and it turns out that most 

correlations are close to zero, indicating that calculating the Pearson correlation between original 

fMRI signals and low-level multimedia features at different time scales is unable to infer any 

meaningful information (Fig. 2.15b).  

In addition to the capability of inferring meaningful positive correlations between fMRI 

signals of MT and MST brain regions and the visual motion saliency features, interestingly, our 

EMCD-based method also reveals strong negative correlation between the visual saliency feature 

and the fMRI signal of the insular and precuneus regions (red arrows in Fig. 2.15a), while the 

measured Pearson correlation between the original raw fMRI signals and visual motion saliency 

features cannot. The validity of the results on negative correlations for insular and precuneus 

regions in Fig. 2.15a is supported by a variety of literature neuroscience studies that reported the 

deactivation of vestibular cortex (including insular and precuneus regions) in response to visual 

motion [65-67].  

In addition to visual low-level features, Fig. 2.15c shows another result of the correlation 

between logarithm audio signal energy feature curve and fMRI time series, where the insular and 

paracingulate regions (red arrows in Fig. 2.15c) exhibit strong positive correlation with the audio 



 

30 

features. The validity of these results is supported by several neuroscience literature studies that 

reported activations of these regions in response to audio stimuli [68-72]. However, the results 

by calculating the Pearson correlation between the raw low-level auditory feature curves and 

fMRI signals are close to zero (Fig. 2.15d).  

The promising results in Fig. 2.15 indicate that the EMCD-based correlation analysis is 

able to discover meaningful intrinsic positive/negative correlations between low-level 

multimedia features and fMRI signals extracted from relevant functional brain regions. The 

critical point here is that the EMCD enables the decomposition of time series into components of 

multiple temporal scales so that the correlative structure can be measured at the same or similar 

scales. 
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CHAPTER 3 

FUNCTIONAL ROLES OF CORTICAL GYRI AND SULCI 

3.1 Functional Mechanisms of the Human Brain 

We qualitatively and quantitatively analyzed two independent multimodal DTI/R-fMRI 

(resting state fMRI) datasets to test our proposed functional model of the human brain, that is, 

gyri are the global functional integration hubs and sulci are the local functional units. 

Specifically, the pre-central gyrus (PCG), post-central gyrus (POG), central sulcus (CS), and 

post-central sulcus (PCS) on both of the left and right hemispheres were labeled. Their structural 

and functional connectivity were examined based on multimodal DTI/R-fMRI data. Our 

rationale is that the PCG, POG, CS and PCS are within the primary motor and primary 

somatosensory systems and are known to possess structural and functional connections [5]. Thus, 

this well-characterized sub-system of the cerebral cortex can serve as a test-bed to investigate the 

functional mechanisms of cortical gyri and sulci. Furthermore, the whole-brain functional 

connectivity to the landmarks on these selected gyri/sulci are also measured and examined. The 

extensive experimental results from two independent multimodal DTI/R-fMRI datasets have 

consistently demonstrated the following findings. First, there exists strong functional 

connectivity between any pair of the four gyri. Second, the functional connectivity among four 

sulci is relatively weak except between LCS (L- for left) and RCS (R- for right). Third, the 

functional connectivity between neighboring gyri and sulci are moderate. These three lines of 

experimental findings have been replicated by two independent multimodal DTI/R-fMRI 

datasets and were further confirmed by whole-brain analyses, thus supporting our hypothesized 
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functional model of cortical gyri and sulci: gyri serve as the global functional integration hubs, 

while sulci function as the local functional units. 

 

Fig. 3.1. Placements of landmarks on cortical gyri and sulci. Initial landmarks (color bubbles) were 

chosen manually on the cortical surface for a roughly uniform distribution on the gyrus or sulcus. Other 

algorithm-generated sample landmarks are shown in small red/green dots. Six examples are shown in this 

figure. 

 

3.2 Joint Multimodal Representation 

Labeling landmarks on cortical gyri and sulci 

Cortical segmentation of gyri and sulci based on structural MRI images has been 

extensively studied in the neuroimage analysis literature [7, 10-15], and a variety of algorithms 

and software tools are available. In this thesis, however, we used the cortical surfaces 

reconstructed from DTI images to reduce the misalignment between fMRI images and structural 

images due to the geometric distortions that are commonly expected in EPI sequences [26, 50, 

73, 74]. The reconstructed surfaces, however, are of lower quality because of the lower 
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resolution of DTI data (2 mm isotropic) in comparison with structural T1-weighted MRI images 

(1 mm isotropic). The automatic methods might not be able to robustly extract gyral/sulcal 

patches. To ensure good quality of landmark labeling, visual inspection was used to interactively 

determine the four gyral and sulcal surface patches. Then, a series of structural landmarks (the 

number ranges from five to ten as shown in Table 3.1) were placed on those identified gyri and 

sulci, as shown in Fig. 3.1. 

Table 3.1. NUMBER OF LABELED LANDMARKS PER CORTICAL REGION. 

 LPCG LPOG LCS LPOS RPCG RPOG RCS RPOS 

Dataset 1 
Mean 9.18 8.55 7.55 5.91 9.09 8.82 7.36 5.64 

Stdev 0.98 1.13 0.93 0.94 2.59 1.54 0.81 0.92 

Dataset 2 
Mean 10.00 9.25 8.38 7.13 9.75 9.13 8.00 7.25 

Stdev 1.07 1.28 0.92 1.25 1.91 1.46 0.53 1.16 

 

It should be noted that at current stage, there are no structural and/or functional 

correspondences between the landmarks in different subjects due to the lack of mature 

algorithms or tools (as far as we know) that can reliably achieve those correspondences. Thus, 

the structural and functional correspondences across different brains have to be established at the 

gyrus/sulcus level, instead of the landmark level, and thus the proposed functional model is at the 

level of cortical gyri and sulci as well. Due to this lack of correspondences of cortical landmarks 

across different brains, examining the functional connectivity of cortical gyri/sulci based solely 

on the manually extracted cortical landmarks could potentially be biased. That is, the manually 

placed landmarks and their representative fMRI time series might not be sufficient to represent 

the functional activities of a whole gyrus or sulcus. In addition, due to the variability, 

nonlinearity, and inhomogeneity of the cerebral cortex, a slightly displaced landmark, even by 

only a few surface vertices, could have quite different structural and/or functional connectivity 

profiles, as demonstrated in [20, 23, 50]. Therefore, in order to reduce the potential bias and 
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ensure sufficient statistical power, we algorithmically generated additional 100 different sets of 

sample landmarks for each subject based on the manually-labeled landmarks. Specifically, this 

procedure serves as a repeated uniform sampler on the three-ring surface mesh neighborhoods in 

terms of graph connectivity of the original manually-labeled landmarks. In each repetition, the 

procedure randomly picks one vertex within the three-ring surface mesh neighborhood of each 

landmark with equal probability. The newly selected vertices form a new set of landmarks with 

the same number of elements as the original manually-labeled landmarks, as represented by the 

red and green dots in Fig. 3.1. It can be seen from the figure that the sampled landmarks 

constitute a dense coverage of the whole gyrus/sulcus. Even if some of the manually-labeled 

landmarks were misplaced, the above sampling procedure can substantially reduce the potential 

bias by including many more additional neighboring sampled landmarks and ensure the 

statistical power. These sampled landmarks were then used to localize the R-fMRI time series 

under structural guidance, as detailed in [50]. To increase signal-to-noise ratio, each sampled 

landmark is represented by the average of R-fMRI time series within a one-ring surface mesh 

neighborhood. The numbers of labeled landmarks in the gyri/sulci in two independent datasets 

are provided in Table 3.1. 

Joint multimodal representation methodology 

Our previous studies [26, 27] have shown that axonal fiber connections closely follow the 

gyral folding patterns. This observation has been replicated in all of the DTI datasets of human, 

chimpanzee, and macaque brains we analyzed [26, 27]. Therefore, for each gyral or sulcal 

landmark defined in Fig. 3.1, the emanating fibers connected to the landmark in consideration 

can be readily extracted from the results of whole-brain streamline tractography via a similar 

method detailed elsewhere [20, 23, 52]. In addition, the R-fMRI signals can also be extracted for 
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each vertex within the neighborhood of the landmark in consideration, and then averaged to 

represent the functional activity of that landmark [50]. As a result, the structural fiber 

connections and R-fMRI signals for each gyral and sulcal landmark are co-localized on and 

jointly represented by the same cortical surface patch. This joint representation of cortical shape, 

structural connection, and functional activity effectively takes the advantage of the fact that 

multimodal DTI and R-fMRI data are in the same DTI space and exhibit much less geometric 

misalignment [20, 50]. That is, the geometric distortions in EPI (echo planar imaging)-based DTI 

and R-fMRI tend to be similar [50], which substantially reduces the misalignment between 

traditionally used structural MRI and DTI/fMRI images [26, 74]. Additionally, this joint 

multimodal representation methodology enables and facilitates simultaneous modeling of 

structural and functional connectivity of cortical landmarks, thus offering important insights into 

the structural and functional brain architectures and their functional mechanisms. 
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Fig. 3.2. Distributions of FC values (without normalization) for each subject in dataset 1. The 

distributions, though are Gaussian-like, differ substantially. 

 

Fig. 3.3. Distributions of normalized FC values for each subject in dataset 1. In comparison with the raw 

correlation distributions in Fig. 3.2, the normalization procedure results in consistent individual 

distributions and enables fair comparisons of results from different subjects. 
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Fig. 3.4. Distributions of FC values (without normalization) for each subject in dataset 2. The 

distributions, though are Gaussian-like, differ substantially. 

 

Fig. 3.5. Distributions of normalized FC values for each subject in dataset 2. In comparison with the raw 

correlation distributions in Fig. 3.4, the normalization procedure results in consistent individual 

distributions and enables fair comparisons of results from different subjects. 

Structural/functional connectivity among gyral/sulcal landmarks 

For a pair of the gyral/sulcal regions, their functional correlation strength was calculated 

by averaging the functional connectivity between any possible pairs of landmarks on two cortical 

regions. Here, the Pearson correlation [50] between two extracted R-fMRI signals from two 

cortical landmarks was considered as their functional connectivity. In order to gain robustness 

and full coverage of the whole gyrus/sulcus, 100 sets of sampled landmarks were randomly 

selected in the 3-ring surface mesh neighborhood of the corresponding landmark (e.g. Fig. 3.1). 
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This procedure creates 100 functional connectivity matrices for each subject and they were 

averaged element-wise to suppress noise and outliers, resulting in a final functional connectivity 

matrix for each subject. It should be noted that the distributions of functional correlation values 

could vary largely from subject to subject, as demonstrated in Fig. 3.2 and Fig. 3.4 (for two 

different datasets). Therefore, we used the mean functional correlation value and the standard 

deviation per subject to normalize the corresponding subject’s functional connectivity correlation 

matrix. As a result, this normalization procedure provides much more consistent and comparable 

individual distributions, as shown in Fig. 3.3 and Fig. 3.5 (for the same two datasets), and 

enables fair comparisons of functional connectivity between different subjects. The normalized 

functional connectivity matrices are then used in subsequent analyses. Intuitively, a value of 1.0 

represents an average functional connection level, and the larger the value is, the stronger the 

functional connectivity will be. 

To extract the DTI-derived white matter fibers connecting to a certain gyral/sulcal 

landmark, the fibers in the 3-ring surface mesh neighborhood of each landmark were collected 

via a similar approach in [20, 23]. Then, the structural connectivity strength between two cortical 

regions is represented by the number of fibers connecting both regions [19, 20, 75]. Similar to 

the normalization procedure in measuring functional connectivity, the structural connection 

strength was normalized by the average number of fibers between any pair of cortical landmarks 

in this study, in order to reduce the individual variability. Thus, a value of 1.0 represents the 

average structural connectivity; the larger the value is, the stronger the structural connectivity 

will be. Finally, the structural or functional connection strength between any pair of cortical 

gyri/sulci is defined as the averaged connection strength between all possible combinational pairs 
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of the landmarks on two gyri/sulci. Details of the abovementioned algorithms are covered in 

section 3.3. 

3.3 Methods 

Labeling landmarks on gyri and sulci 

The cortical landmarks were manually labeled and placed as shown in Fig. 3.1. 

Specifically, each subject’s reconstructed cortical surface mesh was visualized in ParaView [76] 

using the built-in “Surface With Edges” display mode. The gyri and sulci to be extracted were 

visually identified by experts. A number of landmarks were chosen at surface mesh vertices that 

are distributed roughly evenly along the ridges of gyri and the valleys of sulci (color bubbles in 

Fig. 3.1). The number of landmarks for a specific gyrus/sulcus is dependent on the size of the 

cortical region (Table 3.1). 

Assessing functional connectivity 

For each pair of cortical gyrus/sulcus, their functional correlation was obtained by 

averaging the absolute value of Pearson correlations of the R-fMRI time series of any possible 

pair of landmarks drawn from both regions. Specifically, given two gyral/sulcal regions X and Y, 

the landmarks x1…xm on X, and the landmarks y1…yn on Y, their functional correlation (FC) 

between X and Y is calculated as: 

Equation 3.1    

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where Pcorr denotes the Pearson correlation of the R-fMRI time series of two landmarks. This 

FC value represents the average of functional correlation between two gyral/sulcal regions with 

the selected landmarks. 

For each set of sample landmarks, we obtain a symmetric eight-by-eight FC matrix and 

thus 100 matrices per subject by including the algorithm-sampled landmarks. Then, the 
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functional connectivity was averaged in terms of pair-wise FC value to reflect the overall 

correlation level of two cortical regions at the gyri/sulci level. 

Table 3.2. AVERAGE FC VALUES IN INDIVIDUAL SUBJECTS. 

 Sub 1 2 3 4 5 6 7 8 9 10 11 Stat 

Dataset 

1 

Mean 0.37 0.60 0.60 0.64 0.69 0.71 0.47 0.76 0.41 0.40 0.37 0.55 

Stdev 0.08 0.10 0.10 0.13 0.06 0.05 0.08 0.03 0.17 0.07 0.06 0.15 

Dataset 

2 

Mean 0.46 0.40 0.48 0.52 0.38 0.40 0.57 0.47 
 

0.46 

Stdev 0.09 0.09 0.13 0.06 0.05 0.08 0.08 0.13 0.07 

 

Table 3.2 shows the average FC values of individual subjects used in our analysis. From 

the table we can see that: (1) in dataset 1 the average FC varies from the lowest 0.37 (subject 1) 

to the highest 0.76 (subject 8, twice as that in subject 1); while in dataset 2 the range is from 0.38 

(subject 5) to 0.57 (subject 7); (2) the standard deviations are 0.15 and 0.07 for dataset 1 and 2, 

respectively, which is considered substantial given that the mean values are 0.55 and 0.46. To 

overcome this remarkable variability across subjects, we normalize the functional connectivity 

by the average FC values and standard deviation of individuals. For each subject, the functional 

connectivity values, FC, in the averaged functional network is normalized by 

Equation 3.2  




4

),(
1),(




YXFC
YXFC  

where µ is the average FC of the corresponding subject; σ is the standard deviation; 4σ, as 

commonly used in statistics, is considered as a cut-off threshold of the Gaussian distribution 

(experimental results suggested that the histograms of the FC are similar to Gaussian 

distributions). With this normalization scheme, a functional connection with strength equivalent 

to the average level of the subject will have a value of 1.0. As a comparison, the distributions of 

FC values and those of the normalized values for each subject are shown in Fig. 3.2 and Fig. 3.3, 

respectively, for dataset 1, and Fig. 3.4 and Fig. 3.5, respectively, for dataset 2. These figures 
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further confirmed that before normalization (Fig. 3.2 and Fig. 3.4), the distributions of FC values 

vary largely across individuals. It is infeasible to directly compare the results obtained from 

different subjects. Instead, the normalization procedure described above brings consistency to the 

distributions (Fig. 3.3 and Fig. 3.5). The distributions after normalization are similar to each 

other and thus enable fair comparisons across subjects. In the following sections, the normalized 

values will be used in our analysis. These normalized matrices are further averaged together to 

form a single eight-by-eight functional connectivity matrix, which is used in our modeling and 

analyses of functional roles of gyri and sulci.
  

Graph analysis 

The functional network of cortical gyri and sulci is considered as a graph, and the 

functional connectivity is regarded as a weight for each edge in the graph. For each functional 

network that is generated by a set of sample landmarks, we examined the edge degrees defined 

as the number of edges with a weight (functional connectivity) larger than 1. These edge degrees 

were accumulated for each cortical gyral/sulcal region that the node belongs to in the repeated 

experiments. The accumulated edge degrees were then normalized based on an individualized 

profile, where zero means no connection at all and one means the node has connection edges to 

every other node. 

Whole brain connectivity analysis 

In the whole brain connectivity analysis, only the original manually labeled landmarks 

(e.g. the bubbles in Fig. 3.1) were used. For each landmark, the averaged R-fMRI time series 

within its 3-ring surface mesh neighborhood is chosen to represent the landmark for the purpose 

of increasing the signal-to-noise ratio. Then, the functional connectivity between the landmark in 

consideration and any other cortical voxel on the whole cerebral cortex is measured using either 
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Wavelet transform or Pearson correlation (details in subsequent sections) between the two R-

fMRI time series, thus generating a whole-brain functional connectivity map for each landmark. 

We applied the above approaches to generate the cortical connectivity maps for all of the 

manually labeled landmarks, and selected the top 1% of the most functionally correlated cortical 

voxels for each landmark. The 1% threshold is selected so that: 1) we have sufficient cortical 

voxels to ensure statistical power (approximately 500 cortical voxels per subject for dataset 1 and 

900 voxels per subject for dataset 2); and 2) the selected cortical voxels are likely to be truly 

functionally connected. Then, these selected cortical voxels were classified into gyral and sulcal 

ones [77], and the ratios of the numbers of strongly correlated gyral voxels over those of strongly 

correlated sulcal voxels were reported. 

3.4 Experiment Data 

Dataset 1 

Eleven healthy volunteers were scanned in a GE 3T Signa MRI system (GE Healthcare, 

Milwaukee, WI) using an 8-channel head coil at the Bio-imaging Research Center (BIRC) of the 

University of Georgia (UGA) under IRB approval. The experiments were undertaken with the 

understanding and written consent of each subject. DTI data was acquired using the spatial 

resolution 2 mm × 2 mm × 2 mm; parameters are TR 15.5s and TE min-full, b-value=1000 with 

30 DWI gradient directions, and 3 B0 volumes were acquired. R-fMRI data was acquired using 

dimensionality 128×128×60×100, spatial resolution 2 mm × 2 mm × 2 mm, TR 5s, TE 25 ms, 

and flip angle 90 degrees [50]. All DTI and R-fMRI scans were aligned to the AC-PC line. For 

the anatomic MRI data, pre-processing includes brain skull removal, and gray matter (GM) and 

white matter (WM) tissue segmentation [74]. Then the GM/WM cortical surfaces were 

reconstructed using the marching cubes algorithm [78]. For the DTI data, pre-processing 
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includes brain skull removal, motion correction, and eddy current correction [20]. Fiber tracts 

were generated from the DTI data by using MedINRIA [79]. Pre-processing of the R-fMRI data 

includes brain skull removal, motion correction, spatial smoothing, temporal pre-whitening, slice 

time correction, global drift removal, and band pass filtering (0.01 Hz to 0.1 Hz) [50]. 

Dataset 2 

The second multimodal DTI/R-fMRI dataset includes eight healthy brains from the 

publicly available NA-MIC dataset [80]. The multimodal DTI/R-fMRI imaging parameters are 

as follows. Both DTI and R-fMRI scans were acquired on a 3 Tesla GE system using echo planar 

imaging sequences. An eight-channel coil was used to perform parallel imaging using ASSET 

(Array Spatial Sensitivity Encoding Techniques, GE) with a SENSE-factor (speed-up) of 2. The 

DTI parameters are: 51 directions with b=900, 8 baseline scans with b=0, TR 17000 ms, TE 78 

ms, FOV 24 cm, 144×144 encoding steps, and 1.7 mm slice thickness. Totally, 85 axial slices 

parallel to the AC-PC line covering the whole brain were acquired. The R-fMRI scan is 10 

minutes long, and contains 200 repetitions of a high resolution EPI scan. The parameters are: 96 

× 96 in plane, 3 mm thickness, TR=3000 ms, TE=30, 39 slices, and ASSET. During R-fMRI 

scans, the subjects kept their eyes closed and rested. Pre-processing of this DTI/R-fMRI dataset 

is similar to that of the first dataset [20]. This second dataset is used as an independent dataset to 

replicate the findings from the first dataset. 
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Fig. 3.6. Structural/functional connectivity among pre- and post-central gyri/sulci. (a) Illustration of the 

four gyral regions (red) and four sulcal regions (green). In (b)-(d), the width of a functional connection 

edge, blue for gyri-gyri pattern in (b), black for sulci-sulci pattern in (c), and yellow for gyri-sulci pattern 

in (d), is proportional to the functional connectivity (F.C.). The width of a structural connection edge 

(cyan) is proportional to the structural connectivity (S.C.). The right panel shows: (1) the size of 

functional edges with 80% of, 100% of, and 120% of average functional connectivity, respectively; and 

(2) the structural edges with ten times of the average number of fibers connecting a pair of cortical 

landmarks (a structural connectivity value of 10.0). Weak edges (width less than one) are in dashed lines. 

(b) Joint representation of structural and functional connectivity among four gyri. Strong structural 

connectivity was observed in LPCG-LPOG, RPCG-RPOG, and LPCG-RPCG. (c) Joint representation of 

structural and functional connectivity among four sulci. No or very weak structural connectivity was 

observed from the DTI data. (d) Joint representation of structural and functional connectivity between 

adjacent gyri and sulci. 
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Table 3.3. GYRAL STRUCTURAL/FUNCTIONAL CONNECTIVITY IN DATASET 1
i
. 

  Con 

 

Sub 

Functional Connectivity Structural Connectivity 

LPCG 

RPCG 

LPCG 

RPOG 

LPCG 

LPOG 

RPCG 

LPOG 

RPCG 

RPOG 

LPOG 

RPOG 

LPCG 

RPCG 

LPCG 

RPOG 

LPCG 

LPOG 

RPCG 

LPOG 

RPCG 

RPOG 

LPOG 

RPOG 

1 1.25 1.30 1.34 1.19 1.26 1.27 7.08 0.00 4.61 0.00 12.02 0.00 

2 1.30 1.30 1.26 1.27 1.36 1.33 4.64 0.93 5.93 0.56 12.98 0.93 

3 1.06 1.20 1.38 1.12 1.11 1.37 8.48 3.15 8.85 0.00 5.94 0.85 

4 1.26 1.25 1.27 1.23 1.29 1.29 6.05 0.00 11.35 0.76 6.81 0.38 

5 0.61 0.86 1.00 0.93 1.14 1.28 4.81 0.00 8.75 0.00 6.56 0.44 

6 1.22 1.13 1.39 1.40 1.19 1.30 12.73 0.00 3.39 0.85 1.70 2.55 

7 0.91 1.22 1.41 0.98 1.00 1.33 2.49 0.00 18.36 0.00 5.29 0.62 

8 1.11 1.17 0.97 0.80 1.07 1.04 2.77 0.35 11.06 0.00 4.49 5.88 

9 1.15 1.19 1.24 1.09 1.21 1.25 7.00 0.78 9.72 0.00 8.17 0.39 

10 1.09 1.12 1.10 1.13 1.64 1.15 9.12 1.00 5.69 0.84 6.49 2.37 

11 1.22 1.17 0.99 0.77 1.33 1.20 7.11 1.64 10.49 0.18 4.74 0.09 

Mean 1.11 1.17 1.22 1.08 1.24 1.26 6.57 0.71 8.93 0.29 6.84 1.32 

Stdev 0.20 0.12 0.17 0.20 0.17 0.09 2.95 0.98 4.14 0.38 3.26 1.73 

p-val 0.10 0.00 0.00 0.19 0.00 0.00 0.00 0.82 0.00 1.00 0.00 0.28 

 

3.5 Results 

Structural/functional connectivity among four gyri 

The structural and functional connection patterns among four gyri (red ribbons in Fig. 

3.6a) are shown in Fig. 3.6b. A major observation from the gyrus-gyrus connection patterns in 

Fig. 3.6b is that there exist both strong structural (cyan curves) and functional (blue lines) 

connectivity among those selected gyri. For instance, the DTI-derived structural fiber 

connections between PCG and POG on both hemispheres are quite strong, and their functional 

connections are strong as well. From a neuroanatomy perspective, this result is quite reasonable 

since the primary motor cortex (PCG) and primary somatosensory cortex (POG) are known to 

have strong connections [5]. This DTI study also demonstrates that there is strong direct 

structural connection between PCGs on two hemispheres, while the direct structural connections 

between LPOG and RPOG is relatively weak, as shown in Fig. 3.6b. However, it is interesting 

                                                 
i
 Statistically significant elements are underlined (p-value<0.05, one-sample, two-tailed test, mean=1.0 for 

functional connectivity; one-sample, right-tailed test, mean=1.0 for structural connectivity). The same parameters 

apply to subsequent tables of connectivity. 
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that the functional connection between LPOG and RPOG is still strong. Our interpretation is that 

this strong functional connection might attribute to the strong indirect structural connections 

through LPCG and RPCG. This result provides supporting evidence to the notion of functional 

connectivity via indirect structural connections that have been examined in the literature [81]. 

Our interpretation that strong indirect structural connection underlies strong functional 

connection is further supported by the strong functional connections between LPCG and RPOG 

and those between RPCG and LPCG, though the direct structural connections between them are 

relatively weak, as shown by the dashed cyan curves in Fig. 3.6b.     

Quantitative measurements of these structural and functional connection strengths 

between any pair of gyri in the eleven subjects in dataset 1 are shown in Table 3.3. It is apparent 

that the functional connection strength of any pair of gyri is above 1, meaning that the functional 

connection strengths between gyral regions are all above average. In particular, four pairs exhibit 

statistical significance (p-value<0.05) and they are underlined in the left panel of Table 3.3. This 

result quantitatively demonstrates that gyral regions interact strongly with other gyral regions (at 

least the ones we studied here), supporting our hypothesized functional model of cortical gyri. 

From the right panel in Table 3.3, it can also be found that there are strong or weak direct 

structural connections among any pair of gyri. In particular, there are three pairs of strong direct 

structural connections (LPCG-RPCG, LPCG-LPOG, and RPCG-RPOG), as highlighted by the 

underlines in the right panel of Table 3.3. In comparison, other pairs of gyri (LPCG-RPOG, 

RPCG-LPOG, and LPOG-RPOG) exhibit relatively weak direct structural connections. The 

functional connection strengths for these pairs, however, are still strong, as shown in the left 

panel of Table 3.3, and their indirect structural connections are strong as well (defined as 

successive strong direct connections, up to 3-hops here). This result further suggests that: 1) 
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strong indirect structural connections are associated with strong functional connectivity [18, 81]; 

and 2) structural and functional connectivity are closely related [6, 18, 20, 82]. Notably, an 

important differentiation that should be made here is the particularly evident close relationship 

between strong functional connectivity and strong direct/indirect structural connections for 

gyrus-gyrus pairs. 

Table 3.4. SULCAL STRUCTURAL/FUNCTIONAL CONNECTIVITY IN DATASET 1. 

  Con 

 

Sub 

Functional Connectivity Structural Connectivity 

LCS 

RCS 

LCS 

RPOS 

LCS 

LPOS 

RCS 

LPOS 

RCS 

RPOS 

LPOS 

RPOS 

LCS 

RCS 

LCS 

RPOS 

LCS 

LPOS 

RCS 

LPOS 

RCS 

RPOS 

LPOS 

RPOS 

1 1.14 0.45 0.82 0.68 0.40 0.81 0.00 0.00 0.00 0.00 0.00 0.00 

2 1.11 0.50 0.61 0.72 0.61 0.84 0.00 0.00 0.00 0.00 0.00 0.00 

3 1.18 0.57 0.94 0.88 0.56 0.76 0.00 0.00 0.00 0.00 0.00 0.00 

4 1.15 0.71 0.65 0.62 0.74 0.79 0.00 0.00 0.00 0.00 0.00 0.00 

5 1.27 0.93 0.71 0.89 1.26 1.21 0.00 0.00 0.00 0.00 0.00 0.00 

6 1.02 0.64 0.82 0.83 0.69 1.25 0.00 0.00 0.00 0.00 0.00 0.00 

7 0.87 0.80 0.78 0.92 1.01 1.31 0.00 0.00 0.00 0.00 0.00 0.00 

8 1.33 0.94 1.16 1.18 1.17 1.27 0.00 0.00 0.00 0.00 0.00 0.00 

9 1.45 0.57 0.54 0.57 0.62 1.05 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.74 0.78 0.72 0.99 1.17 0.90 0.00 0.00 0.00 0.00 0.00 0.00 

11 1.24 0.51 0.61 0.80 0.87 1.03 0.00 0.00 0.09 0.00 0.00 0.00 

Mean 1.14 0.67 0.76 0.82 0.83 1.02 0.00 0.00 0.01 0.00 0.00 0.00 

Stdev 0.20 0.17 0.17 0.18 0.29 0.21 0.00 0.00 0.03 0.00 0.00 0.00 

p-val 0.05 0.00 0.00 0.01 0.07 0.77 1.00 1.00 1.00 1.00 1.00 1.00 

 

Structural/functional connectivity among four sulci 

The structural and functional connection patterns among four selected sulci are shown in 

Fig. 3.6c. It is evident that there is no or extremely weak DTI-revealed direct structural 

connection between any pair of sulcal regions (no cyan curves in Fig. 3.6c). This result further 

replicates our prior results reported in [26, 27] that axonal fiber connection terminations 

concentrate on gyri, but not on sulci. Meanwhile, the functional connections of the sulci pairs of 

LCS-RPOS, LCS-LPOS, RCS-LPOS, and RCS-RPOS are week (black lines in Fig. 3.6c), 

suggesting that weak functional connections are associated with no direct structural connections 
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and weak indirect structural connections. This result supports our hypothesized functional model: 

sulci are the local functional units. It is interesting that the RCS-LCS pair has relatively higher 

functional connection. Our interpretation is that both RCS and LCS are connected to the RPCG 

and LPCG through local inter-column cortico-cortical axons, and RPCG and LPCG are strongly 

connected by structural axonal fibers (Fig. 3.6b). As a result, RCS-LCS has relatively strong 

indirect structural connections, and therefore exhibits stronger functional connectivity. These 

results further suggest that functional connectivity has its structural underpinnings. For instance, 

weak direct structural connections predict weak functional connectivity, as shown by the sulcus-

sulcus connection patterns in Fig. 3.6c and Table 3.4. If there is a strong indirect structural 

connection, however, the functional connectivity could be strong, as demonstrated by the RCS-

LCS connection patterns.   

The quantitative measurements of these structural/functional connection strengths are 

provided in Table 3.4. It is evident that in all of the eleven subjects we studied, there is no or 

very weak structural connections between any pair of sulci, which is consistent with our previous 

reports in [26]. Also, the functional connection strengths between LCS-RPOS, LCS-LPOS, RCS-

LPOS, and RCS-RPOS are substantially lower than the average, and three of them are 

statistically significant, as underlined in the left panel of Table 3.4. The LCS-RCS pair has 

higher functional connection, which was already interpreted and explained in the previous 

paragraph. Therefore, the results in this section have demonstrated that sulcal regions have much 

less remote functional interactions with other sulcal regions (Fig. 3.6c and the left panel of Table 

3.4) or other gyral regions (next section). Instead, sulcal regions mainly interact with locally 

connected neighboring gyral regions, which will be explained in details in the next section. 
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Table 3.5. GYRAL-SULCAL STRUCTURAL/FUNCTIONAL CONNECTIVITY IN DATASET 1. 

  Con 

 

Sub 

Functional Connectivity Structural Connectivity 

LPCG 

LCS 

LCS 

LPOG 

LPOG 

LPOS 

RPCG 

RCS 

RCS 

RPOG 

RPOG 

RPOS 

LPCG 

LCS 

LCS 

LPOG 

LPOG 

LPOS 

RPCG 

RCS 

RCS 

RPOG 

RPOG 

RPOS 

1 1.18 1.00 1.20 0.93 1.11 0.92 0.99 0.49 0.99 0.99 0.66 0.16 

2 1.12 0.96 1.08 1.16 1.17 0.80 0.37 0.37 0.19 0.19 0.93 0.00 

3 1.22 1.30 1.13 1.03 1.15 0.78 0.12 0.12 0.00 0.24 0.12 0.12 

4 1.19 1.19 0.73 1.22 1.26 0.81 0.38 1.89 0.00 0.00 0.00 0.38 

5 0.66 0.96 1.08 1.04 1.45 1.47 1.31 0.88 0.88 0.44 3.94 0.00 

6 0.84 1.05 1.38 1.02 0.92 0.61 0.85 1.70 0.00 1.70 2.55 0.00 

7 0.78 0.76 1.39 0.67 1.07 1.22 0.62 0.00 0.31 0.00 0.31 0.00 

8 1.28 0.90 0.66 0.99 1.20 0.99 1.04 0.35 0.69 0.35 1.04 0.00 

9 1.28 1.18 0.90 1.07 1.20 0.84 1.56 0.39 0.00 0.00 0.00 0.00 

10 0.89 0.96 0.78 1.30 1.43 1.14 0.11 0.16 0.90 0.90 0.26 0.16 

11 0.97 1.05 0.70 1.23 1.26 1.38 0.73 0.46 0.46 0.27 0.27 1.46 

Mean 1.04 1.03 1.00 1.06 1.20 0.99 0.73 0.62 0.40 0.46 0.92 0.21 

Stdev 0.22 0.15 0.27 0.17 0.15 0.27 0.47 0.63 0.40 0.53 1.24 0.43 

p-val 0.59 0.54 0.97 0.26 0.00 0.95 0.95 0.96 1.00 1.00 0.59 1.00 

 

Structural/functional connectivity between adjacent gyri and sulci 

The structural and functional connection patterns between adjacent gyri and sulci are 

shown in Fig. 3.6d. We can see that there are moderate functional connections between sulcal 

regions and their neighboring gyral regions (solid yellow lines in Fig. 3.6d) in spite of the very 

weak structural connections (dashed cyan curves in Fig. 3.6d) that can be revealed by in-vivo 

DTI data. However, a large number of neuroscience literature publications have demonstrated 

the inter-column cortico-cortical axonal connections within neighboring cortical regions [5, 30] 

that cannot be revealed by in-vivo DTI at the current stage, and these inter-column connections 

may explain the moderate functional connections between neighboring sulcal and gyral regions 

in Fig. 3.6d. The quantitative measurements of the structural and functional connection strengths 

between adjacent gyri and sulci shown in Fig. 3.6d are provided in Table 3.5. It is evident that 

the structural connections between adjacent gyri and sulci pairs are very weak, in comparison 

with the structural connection strengths between gyri pairs in Table 3.3. In contrast, the 
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functional connection strengths between adjacent gyri and sulci are moderate, which are in-

between the functional connection strengths between gyrus-gyrus pairs (Table 3.3) and those 

between sulcus-sulcus pairs (Table 3.4).  

The results in Fig. 3.6c-d and Table 3.3-Table 3.5 have demonstrated two major points 

about structural and functional connectivity of cortical sulci: 1) both structural and functional 

connection strengths between sulci and other remote cortical regions (except the RCS-LCS pair) 

are relatively weak; 2) sulcal regions mainly interact directly with their neighboring gyri, and at 

the same time, they communicate indirectly with other remote gyral/sulcal regions via their 

neighboring gyri hubs. Also, we interpret that the moderate functional connectivity between 

adjacent sulci and gyri has its structural underpinnings. That is, the inter-column cortico-cortical 

axonal projections that cannot be revealed by DTI data. Therefore, these results further support 

our hypothesized functional model of cortical gyri and sulci: gyri are the global functional 

integration hubs, and sulci are the local functional units. 

Replicative study on superior temporal regions 

In addition to the PCG, POG, CS, and PCS examined in previous sections, a replicative 

study was conducted on the superior temporal gyrus/sulcus. Specifically, we extracted landmarks 

on both superior temporal gyrus (STG) and superior temporal sulcus (STS) in Dataset 1 via the 

same approaches and performed similar analyses, except that we used the corresponding 

individual mean and variance obtain from previous studies when normalizing FC values to 

enable a fair comparison. The results are shown in Table 3.6. Though the functional connectivity 

level is relatively lower in the superior temporal regions than those previously studied in the pre-

central and post-central areas, it is still evident that the gyrus-gyrus functional connectivity 

(average: 0.99) is significantly stronger than the sulcus-sulcus connectivity (average: 0.64) (p-
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value=0.004), while adjacent gyrus-sulcus connectivity (0.79 for the left hemisphere and 0.72 for 

the right hemisphere) is moderate and in-between. Although no structural fiber connections 

between any pair of STG and STS were revealed by DTI (Table SOMETHING), the fibers 

connecting STGs to other cortical areas are abundant, indicating possible indirect connections 

between left and right STGs. The above findings are in line with our aforementioned results in 

the pre-central and post-central cortical areas, suggesting that the proposed functional model of 

cortical gyri and sulci can be replicated in other cortical regions such as left and right STG and 

STS. 

Table 3.6. STRUCTURAL/FUNCTIONAL CONNECTIVITY OF SUPERIOR TEMPORAL REGIONS. 

  Con 

 

Sub 

Functional Connectivity Structural Connectivity 

LSTG 

RSTG 

LSTS 

RSTS 

LSTG 

LSTS 

RSTG 

RSTS 

LSTG 

RSTG 

LSTS 

RSTS 

LSTG 

LTST 

RSTG 

RSTS 

1 1.00 1.10 0.79 0.76 0 0 0 0 

2 1.01 0.61 0.78 0.68 0 0 0 0 

3 0.55 0.21 0.67 0.41 0 0 0 0 

4 0.90 0.88 0.88 0.81 0 0 0 0 

5 0.99 0.56 1.01 0.92 0 0 0 0 

6 N/A N/A N/A N/A N/A N/A N/A N/A 

7 0.68 0.48 0.38 0.53 0 0 0 0 

8 1.22 0.33 0.86 0.43 0 0 0 0 

9 1.36 0.91 1.31 1.13 0 0 0 0 

10 0.89 0.64 0.51 0.36 0 0 0 0 

11 1.28 0.63 0.71 1.17 0 0 0 0 

Mean 0.99 0.64 0.79 0.72 0 0 0 0 

Stdev 0.25 0.27 0.26 0.29 N/A N/A N/A N/A 

Two-sample statistical significance test without equal variance assumption 

Test LSTG-RSTG>LSTS-RSTS LSTG-RSTG>LSTG-LSTS LSTG-RSTG>RSTG-RSTS 

p-value 0.004 0.05 0.02 
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Fig. 3.7. Examples of functional connectivity patterns for two randomly selected subjects (left and right 

panels, respectively). Red, white, green, and blue bubbles represent the landmarks on PCG, POG, CS, and 

POS, respectively. The edges are colored based on the functional connectivity strength (without 

individualized normalization) according to the color bar on the right. (a) and (b) are gyrus-gyrus pairs; (c) 

and (d) are sulcus-sulcus pairs; (e) and (f) are adjacent gyrus-sulcus pairs. 
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Fig. 3.8. Overall joint representation of structural/functional connectivity of gyri and sulci. Edges colored 

in cyan represent structural connections, and those colored in blue, black, and yellow represent functional 

connections for gyrus-gyrus, sulcus-sulcus, and gyrus-sulcus patterns, respectively. (a) Dataset 1. (b) The 

replication of the overall joint representation of structural and functional connectivity of gyri and sulci in 

the second dataset. 

 

Overall structural/functional connectivity among gyri and sulci 

To provide an illustrative overview of the results discussed so far, Fig. 3.7 shows two 

examples of the functional connectivity patterns between the landmarks on gyrus-gyrus, sulcus-

sulcus, and adjacent gyri-sulci pairs. It is apparent that the gyrus-gyrus functional connections 

(Fig. 3.7a, b), sulcus-sulcus functional connections (Fig. 3.7c, d), and adjacent gyri-sulci 

functional connections (Fig. 3.7e, f) are strong, weak, and moderate, respectively. This 

visualization illustrates the major findings in previous sections. Also, the sub-figures in Fig. 

3.6b-d are integrated and summarized in Fig. 3.8a, that is, all of the structural/functional 

connection patterns are represented by the colored curves/lines in Fig. 3.8a. Based on the 

visualizations in Fig. 3.8a, it becomes even more evident that gyri (red boxes in Fig. 3.8a) are the 

functional integration hubs, while the sulci serve as the local functional units. Quantitatively, we 
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measured the graph edge degrees of the functional connection networks for all of the gyri and 

sulci, as shown in Table 3.7. The graph degrees are normalized to [0, 1], where 0 means no 

connection at all and 1 means the corresponding landmark connects to all possible nodes. It is 

evident that the graph edge degrees of the gyri nodes are significantly higher than those of the 

sulci nodes (overall p-value=1.90E-30, two-sample, right-tailed test without equal variance 

assumption). In addition, the averaged total functional connection strengths of the gyri nodes are 

significantly higher than those of sulci (p-value=0.004). Altogether, the quantitative results in 

this section further support our hypothesis: gyri are the global functional integration hubs and 

sulci are the local functional units. 

Table 3.7. AVERAGE GRAPH EDGE DEGREES OF DATASET 1
ii
. 

Gyri Mean Stdev Sulci Mean Stdev 

LPCG 0.66 0.20 LCS 0.50 0.18 

LPOG 0.65 0.17 LPOS 0.43 0.21 

RPCG 0.65 0.19 RCS 0.55 0.15 

RPOG 0.68 0.15 RPOS 0.41 0.22 

 

                                                 
ii
 Threshold=1. The degree values are normalized to [0, 1] where 0 means no connection at all and 1 means the 

corresponding node connects to all possible nodes. The same parameters apply to subsequent tables of graph edge 

degrees. 
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Table 3.8. GYRAL STRUCTURAL/FUNCTIONAL CONNECTIVITY IN DATASET 2. 

  Con 

 

Sub 

Functional Connectivity Structural Connectivity 

RPCG 

LPCG 

RPOG 

LPCG 

LPOG 

LPCG 

RPCG 

LPOG 

RPCG 

RPOG 

RPOG 

LPOG 

RPCG 

LPCG 

RPOG 

LPCG 

LPOG 

LPCG 

RPCG 

LPOG 

RPCG 

RPOG 

RPOG 

LPOG 

1 1.11 1.27 1.21 1.25 1.54 1.39 0.50 0.00 8.00 1.21 6.86 7.93 

2 1.26 1.15 1.21 1.05 1.17 1.10 0.00 0.62 3.11 0.00 17.73 0.00 

3 1.20 1.18 1.38 1.24 1.19 1.27 1.69 0.08 11.69 0.00 7.08 2.85 

4 0.92 1.11 1.44 1.05 0.97 0.85 6.34 0.27 8.99 0.00 6.82 4.12 

5 0.80 1.06 1.13 1.07 1.27 1.19 3.58 0.00 9.69 0.65 10.01 1.38 

6 1.15 0.99 1.02 1.30 1.31 1.36 0.00 0.00 16.75 0.00 9.44 0.05 

7 0.82 1.33 1.21 0.91 1.01 1.37 1.75 0.00 12.29 0.00 10.86 0.00 

8 1.24 1.09 1.30 1.35 1.16 1.19 0.13 0.00 14.46 0.00 8.41 2.10 

Mean 1.06 1.15 1.24 1.15 1.20 1.22 1.75 0.12 10.62 0.23 9.65 2.30 

Stdev 0.19 0.11 0.13 0.15 0.18 0.18 2.23 0.22 4.19 0.46 3.60 2.72 

p-val 0.38 0.01 0.00 0.03 0.01 0.01 0.19 1.00 0.00 1.00 0.00 0.11 

 

Table 3.9. SULCAL STRUCTURAL/FUNCTIONAL CONNECTIVITY IN DATASET 2. 

  Con 

 

Sub 

Functional Connectivity Structural Connectivity 

RCS 

LCS 

RPOS 

LCS 

LCS 

LPOS 

RCS 

LPOS 

RCS 

RPOS 

RPOS 

LPOS 

RCS 

LCS 

RPOS 

LCS 

LCS 

LPOS 

RCS 

LPOS 

RCS 

RPOS 

RPOS 

LPOS 

1 1.13 0.82 0.63 0.65 0.86 1.01 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.91 0.94 0.84 0.73 1.71 0.90 0.00 0.00 0.00 0.00 0.00 0.00 

3 1.06 0.77 0.80 0.55 0.95 0.62 0.00 0.00 0.00 0.00 0.00 0.00 

4 1.22 1.07 0.87 0.73 1.43 0.76 0.00 0.00 0.00 0.00 0.00 0.00 

5 1.24 0.84 1.37 0.97 1.06 1.04 0.00 0.00 0.00 0.05 0.00 0.00 

6 0.98 0.92 1.04 1.08 1.18 1.22 0.00 0.00 0.00 0.00 0.00 0.00 

7 1.14 0.88 0.92 0.74 0.97 0.69 0.00 0.00 0.00 0.00 0.00 0.00 

8 1.05 0.51 0.76 1.05 0.66 0.88 0.00 0.00 0.00 0.00 0.00 0.00 

Mean 1.09 0.84 0.90 0.81 1.10 0.89 0.00 0.00 0.00 0.00 0.00 0.00 

Stdev 0.12 0.16 0.22 0.20 0.33 0.20 0.00 0.00 0.00 0.00 0.00 0.00 

p-val 0.06 0.03 0.26 0.03 0.41 0.17 N/A N/A N/A N/A N/A N/A 
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Table 3.10. GYRAL-SULCAL STRUCTURAL/FUNCTIONAL CONNECTIVITY IN DATASET 2. 

  Con 

 

Sub 

Functional Connectivity Structural Connectivity 

LPCG 

LCS 

LCS 

LPOG 

LPOG 

LPOS 

RPCG 

RCS 

RCS 

RPOG 

RPOG 

RPOS 

LPCG 

LCS 

LCS 

LPOG 

LPOG 

LPOS 

RPCG 

RCS 

RCS 

RPOG 

RPOG 

RPOS 

1 1.07 1.18 0.76 1.13 1.16 0.94 3.07 0.00 0.21 0.07 0.14 0.00 

2 0.88 1.01 0.94 1.08 1.36 1.31 0.00 0.93 1.24 2.49 1.87 0.00 

3 1.07 1.10 0.63 1.26 1.24 0.90 2.69 0.77 0.08 0.31 0.15 0.62 

4 1.14 1.13 0.87 1.08 1.31 1.31 0.05 0.11 0.49 0.05 0.43 0.27 

5 0.85 1.41 1.02 0.90 0.82 1.17 0.24 0.08 2.12 0.24 0.00 0.00 

6 0.87 1.15 0.96 0.76 1.13 1.19 0.71 0.11 0.05 0.16 0.38 0.33 

7 1.08 1.06 0.86 0.80 1.39 1.32 0.58 0.13 1.68 0.39 0.19 0.00 

8 1.08 0.99 1.08 1.33 1.22 0.77 0.92 0.39 0.66 0.79 0.13 0.00 

Mean 1.00 1.13 0.89 1.04 1.20 1.11 1.03 0.32 0.82 0.56 0.41 0.15 

Stdev 0.12 0.13 0.14 0.21 0.18 0.22 1.19 0.35 0.78 0.81 0.60 0.23 

p-val 0.91 0.03 0.07 0.57 0.01 0.18 0.47 1.00 0.74 0.91 0.99 1.00 

 

Table 3.11. AVERAGE GRAPH EDGE DEGREES OF DATASET 2. 

Gyri Mean Stdev Sulci Mean Stdev 

LPCG 0.61 0.07 LCS 0.51 0.06 

LPOG 0.62 0.05 LPOS 0.43 0.11 

RPCG 0.63 0.11 RCS 0.57 0.05 

RPOG 0.64 0.08 RPOS 0.49 0.13 
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Fig. 3.9. Results of dataset 2 (in correspondence with Fig. 3.6). (a) Illustration of the four gyral regions 

(red) and four sulcal regions (green). In (b)-(c), the width of a functional edge (blue, black, and yellow) is 

linear with regard to the functional connectivity (F.C.); that of a structural edge (cyan) is proportional to 

the structural connectivity (S.C.). The right panel shows: (1) the size of functional connection edges with 

80% of, 100% of, and 120% of average functional connectivity, respectively; and (2) the structural 

connection edges with ten times of the average number of fibers connecting a pair of cortical landmarks 

(structural connectivity value of 10.0). Weak edges (width less than one) are shown in dashed lines. (b) 

Joint representation of structural and functional connectivity among four gyri. Strong direct DTI-derived 

structural connectivity was observed in the LPCG-LPOG, RPCG-RPOG, LPCG-RPCG, and LPOG-

RPOG pairs. (c) Joint representation of structural and functional connectivity among four sulci. Strong 

structural connectivity was not observed from data. (d) Joint representation of structural and functional 

connectivity between adjacent gyrus and sulcus. Weak direct structural connectivity was observed from 

the DTI data. 
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Reproducibility study on dataset 2 

All experiments and results for dataset 1 are repeated for dataset 2. Specifically, Table 

3.8-Table 3.10 correspond to Table 3.3-Table 3.5 in the main text; Table 3.11 corresponds to 

Table 3.7; Fig. 3.9 corresponds to Fig. 3.6. 

The structural and functional connection patterns among four gyri in dataset 2 are shown 

in Fig. 3.9b. Similar to the results in dataset 1 (Fig. 3.6b), both strong structural (cyan curves) 

and functional (blue lines) connections exist in gyrus-gyrus pair. Specifically, strong structural 

connections were observed in the PCG-POG pair of both hemispheres; moderate structural 

connections were observed between the RPCG-LPCG pair, as well as the RPOG-LPOG pair. 

Although in dataset 2 the RPCG-LPCG structural connection is only moderate in comparison 

with the strong structural connection of the RPCG-LPCG pair in dataset 1, the difference is 

minor and they are both above average (1.0) as shown in Table 3.8 (dataset 2) and Table 3.3 

(dataset 1, main text). The strong functional connectivity patterns are very consistent with the 

findings in dataset 1, suggesting the reproducibility of the conclusions drawn from the results in 

dataset 1. 

The structural and functional connection patterns among four sulci in dataset 2 are shown 

in Fig. 3.9c. Despite the difference in the RCS-RPOS pair where dataset 2 exhibits stronger 

functional connectivity while dataset 1 does not, the overall connection patterns are quite 

consistent. For instances, the functional connections between those sulci pairs of RPOS-LCS, 

LCS-LPOS, RCS-LPOS, and RCS-RPOS are week (black lines in Fig. 3.9c). And both of RCS-

LCS and RPOS-LPOS pairs show strong functional connectivity. Similar to that in dataset 1, no 

direct DTI-derived structural connections between sulci were found, as shown in Table 3.9. 
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Fig. 3.10. Functional activities on gyri and sulci revealed by R-fMRI. (a): Joint visualization of R-fMRI 

activity and fiber density on cortical surface. The color map is in (b), in which red means region with both 

high fiber density and fMRI activity, while black represents region with both low fiber density and fMRI 

activity. It is apparent that most red regions are located on gyri, while most black regions are on sulci. The 

average spectral power in gyral regions is 1.5 times that in sulcal regions. (c)-(h): six additional cases of 

(a). (i): Two randomly picked voxels from the gyral and sulcal regions in the same subject in (a). The two 

voxels are represented by the white boxes. (j): Functional interaction strength between the voxel on gyral 

region (highlighted by the white arrow) and all other voxels on the cortical surface. The color bar is on the 

right. Red and blue represent strong and weak interaction, respectively. It is evident that the gyral voxel 

has significant long-distance functional interactions with other cortical voxels. (k): Functional interaction 

strength between the voxel on sulcal region (highlighted by the white arrow) and all other voxels on the 

cortical surface. The color bar is on the right. Red and blue represent strong and weak interaction, 

respectively. It is evident that the picked sulcal voxel has much less long-distance functional interactions 

with other cortical voxels, in comparison with the picked gyral voxel. 
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Fig. 3.9d shows the structural and functional connection patterns between adjacent gyri 

and sulci. In conjunction with the quantitative results in Table 3.10, it is evident that the 

structural and functional patterns among by adjacent gyri and sulci in dataset 2 are very 

consistent with the results from dataset 1. For instances, adjacent gyrus-sulcus pair shows 

moderate functional connectivity, while the direct DTI-derived structural connectivity is weak. 

In comparison with gyri pairs, the functional connectivity between an adjacent gyrus-sulcus pair 

is weaker, which might be due to the lack of direct structural connections. In comparison with 

sulci pairs, however, the functional connectivity of adjacent gyrus-sulcus pair is stronger as of 

the local connections formed by inter-column cortico-cortical connections. 

Reproducibility study via whole brain analysis 

In addition to the quantitative analysis of structural/functional connection patterns of four 

gyri and sulci, we examined the functional activities on the gyral and sulcal regions in the whole 

cerebral cortex. Specifically, the R-fMRI signal spectrum energy (indicator of brain activity, [2]) 

was mapped on gyral and sulcal regions (Fig. 3.10a-h), on which axonal fiber densities [26] are 

also quantitatively measured. On average among eleven subjects, the spectral power in gyral 

regions is 1.5 times of that in sulcal regions, suggesting that gyral regions are substantially more 

active than sulcal regions. In particular, most of the highest spectrum power regions are co-

localized with high fiber densities on the gyral crests, as represented by the red regions in Fig. 

3.10a-h. These whole-brain analysis results are consistent with our previous reports [26] and 

agree with our findings in the above sections, further supporting our hypothesized functional 

model of cortical gyri and sulci. 
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Fig. 3.11. Examples of cortical connectivity maps of selected landmarks (pointed by white arrows). (a)-

(c): three landmarks from the RPCG; (d)-(f): three landmarks from the RCS. The color bar is on the right. 

The results shown in this figure are in agreement with the proposed functional model. 

To further illustrate the above finding, we randomly picked two voxels in the gyral and 

sulcal regions shown in Fig. 3.10i. Then, we measured the functional interaction strength 

between other cortical voxels and the picked voxels in consideration as follows. A time-

frequency map (akin to the methods in [83]) generated from Wavelet transform is converted into 

a binary interaction map using statistical significance test, in which elements with statistical 

significant power are valued one. The interaction strength is derived from the interaction map by 

counting the number of one-elements outside the Cone-Of-Influence (COI) [83]. The ratio of this 

number and the total number of elements outside the COI is defined as the interaction strength, 

which can be regarded as a measurement of how strongly two R-fMRI time series interacts in the 

time-frequency domain. The rationale of using Wavelet transform in this experiment is that 

Wavelet transform reveals fine correlation structure between time series that Pearson Correlation 

could not. After that, we mapped the functional interaction strength onto the cortical surface, as 
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shown in Fig. 3.10j and Fig. 3.10k. It is evident that the gyral voxel has much more long-distance 

functional interactions (Fig. 3.10j) than the sulcal voxel (Fig. 3.10k), consistent with our 

hypothesis that there are many more long-distance functional interactions on gyral regions than 

sulcal region. Additional examples using Pearson correlation for randomly selected cortical 

landmarks are shown in Fig. 3.11, which further replicates the findings in Fig. 3.10j-k.  

 

Fig. 3.12. Ratio of the number of gyral voxels over that of sulcal voxels within the top 1% of the most 

functionally connected cortical voxels in the first dataset. 

 

Fig. 3.13. Ratio of the number of gyral voxels over that of sulcal voxels within the top 1% of the most 

functionally connected cortical voxels in the second dataset. 

 

In addition to the above individual voxel-wise analysis, a whole-brain functional 

connectivity analysis was performed for all of the cortical landmarks in the two datasets. 

Specifically, the functional correlation strengths between the aforementioned landmarks and 
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other cortical voxels in the whole brain were measured. From the top 1% of the most correlated 

cortical landmark/voxel pairs, we collected the ratios of the number of gyral voxels over that of 

sulcal voxels. On average, for those strongly connected cortical voxels on gyral regions (LPCG, 

LPOG, RPCG, and RPOG), 72.76% of the cortical voxels on the other ends of these connections 

are located on gyri and only 27.24% of them are located on sulci (a ratio of 2.67). As a 

comparison, for those strongly connected cortical voxels on sulcal regions (LCS, LPOS, RCS, 

and RPOS), 51.14% of the cortical voxels on the other ends of these connections are on located 

on gyri and 48.86% of them are located on sulci (a ratio of 1.05). These ratio differences are 

summarized in Fig. 3.12 and Fig. 3.13 for both datasets. These results suggest that a majority of 

the strong functional connections to gyral regions originate from gyri too. This whole-brain 

analysis result further supports our functional model of cortical gyri and sulci: gyri are the 

functional integration hubs. 
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CHAPTER 4 

CONCLUSION 

The latest functional brain imaging techniques offer unparalleled opportunities for 

researchers to extend our understanding of the human brain into a deeper level. This thesis 

presents our efforts in discovering the functional interactions in the human brain using fMRI 

from both signal processing and neuroscience perspectives. 

Our contributions of the signal processing part are summarized in the following five 

aspects. (1) EMCD extracts and uses the mean curve as the useful signal while the residue signal 

is used in subsequent signal decompositions. In short, EMCD extracts coarser-to-finer scale 

signals, reducing the error accumulation against useful low-frequency components. (2) A scale 

control algorithm was designed and implemented to deal with the instability as of the sparse 

distribution of extrema causing problems in interpolating and recovering superior and inferior 

envelopes, thus improving the accuracy and reliability of the decomposition procedure. In 

addition, this algorithm makes it possible to moderately control the scale at which the extracted 

component will be, which is helpful when some prior knowledge of the intrinsic signal 

composition is present. (3) The low-frequency mean curves extracted by EMCD, instead of high-

frequency IMFs by EMD, are what we need to reconstruct in fMRI. For instance, in resting state 

fMRI analysis, we aim to reconstruct the neuronal oscillation signals in the range of 0.01Hz to 

0.1Hz [2, 17], which is in the low-frequency bands. Therefore, the mean curve extraction in the 

proposed EMCD method fulfills the requirements of resting state fMRI time series analysis, 

while the IMFs from EMD do not. (4) We successfully applied EMCD in processing and 
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analyzing fMRI time series data, including resting state fMRI [17, 50], task-based fMRI [52, 56], 

and natural stimulus fMRI [54]. (5) The EMCD framework has been extensively evaluated and 

validated by synthesized signals, independent diffusion tensor imaging (DTI) data, comparison 

with other methods, and verification by neuroscience domain knowledge. 

For the data analysis part, we presented two lines of experimental and computational 

studies to formally propose a hypothesized functional model of gyri and sulci. First, we defined a 

series of cortical landmarks on both gyri and sulci, and analyzed the structural and functional 

connectivity among these gyral and sulcal landmarks. In particular, we assessed the functional 

connectivity patterns among gyral-gyral, gyral-sulcal and sulcal-sulcal landmark pairs over all of 

the eight selected functional areas. Second, we performed whole brain voxel-wise analyses to 

measure the strengths of functional activities and functional connections on gyral and sulcal 

regions. To examine the reproducibility of our studies, two independent multimodal DTI/R-fMRI 

datasets were used to examine the above hypothesized functional model. Collectively, these 

studies and the experimental results have supported a common functional model based on the 

common structural brain architecture: gyri are the global functional integration hubs and sulci are 

the local functional units. 

Conceptually, the studies of the fundamental functional mechanism of cortical gyri and 

sulci in our study are rooted in the following two methodological considerations. First, DTI is a 

prominent imaging technique that can quantitatively map axonal fiber connections in vivo [16]. 

Our DTI studies [26] have revealed that axonal fiber wiring patterns closely follow cortical gyral 

folding pattern and fiber terminations concentrate on gyri. This finding provides a solid structural 

basis for the proposed functional model of the brain, that is, gyri are the functional integration 

hubs in that axonal fibers are the structural substrates of functional integration of the brain. 
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Second, R-fMRI is a powerful functional neuroimaging technique that can reveal the functional 

architecture of the brain [17]. In particular, multimodal DTI and R-fMRI data has the promise of 

elucidating the common structural and functional brain architectures and their relationships. In 

addition to the investigation of the proposed functional model of cortical gyri and sulci via 

multimodal DTI/R-fMRI data, this work also revealed that structural connections, either direct or 

indirect, are the structural underpinnings of functional connectivity. Altogether, the studies 

explicitly explained the close relationships between structural and functional connectivity.          

At the current stage, we only used the landmarks from four major gyri/sulci in the 

primary motor and primary somatosensory systems for the study of the proposed functional 

model of gyri and sulci. This work can be naturally extended and enhanced by including 

landmarks from other major gyri and sulci in the cerebral cortex in the future, which entails 

larger scale of manual segmentation and labeling of cortical structures in a large-scale dataset. 

Also, in this work, the cortical landmarks on gyri and sulci do not possess structural and 

functional correspondences across individuals. In the future, we plan to use our recently 

developed cortical landmark optimization approaches [23, 52] to define and optimize these 

cortical landmarks so that they will have correspondences in different brains. In this case, their 

structural and functional connectivity patterns can be integrated and compared across 

populations, which could potentially provide additional supporting evidence to the proposed 

functional model of gyri and sulci.   

Finally, we envision that the proposed functional model and its supporting experiment 

results could provide a foundation for future elucidation of fine-scale functional mechanisms of 

the cerebral cortex, for instance, how the gyri and sulci functionally interact with subcortical 

regions in resting state [17], during task performance [3], or under natural stimulus of movie 
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watching [54, 62]. The verified functional model and its associated computational approaches 

could possibly enable and facilitate many novel studies and applications in neuroimaging, 

cognitive neuroscience, and clinical neuroscience. For instances, the differentiation of the 

functional roles of gyri and sulci can help achieve better localization and selection of brain 

regions in different functional neuroimaging and cognitive neuroscience studies, and the 

functional interactions among gyral-gyral, gyral-sulcal, and sulcal-sulcal landmarks could be 

used to elucidate the potential dysfunctions in neurological or psychiatric diseases/conditions. 
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