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Abstract

As a non-parametric method, Empirical Likelihood (EL) has been attracting serious

attention from researchers in statistics, econometrics, engineering and biostatistics. By

defining the estimation equations in EL appropriately, we can extend EL to various data

settings, especially those in which parametric likelihoods are absent. In this dissertation,

two applications of empirical likelihood are explored: quantile estimation and longitudinal

data analysis. Quantile estimation for discrete data analysis has not been well studied. For

a given 0 < p < 1, the commonly used sample quantile may or may not be consistent for the

pth quantile, depending on whether or not the underlying distribution has a plateau at the

level of p. I propose an EL-based categorization procedure which not only helps determine

the shape of the true distribution at level p, but also provides a way of formulating a new

estimator that is consistent in any case. For non-Gaussian longitudinal data, generalized esti-

mating equations (GEE) are a popular class of marginal models. While the GEE estimator

is consistent and robust, it may suffer significant loss of efficiency if the working correlation

structure is misspecified. I consider the use of EL to select working correlations for GEE

models, for which parametric likelihoods are absent and quasi-likelihoods are difficult to

construct.
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Chapter 1

Introduction to Empirical Likelihood

Empirical likelihood (EL), introduced by Owen (1988, 1990, 1991), is a nonparametric analog

of the classical likelihood, and has been attracting serious attention from practitioners and

researchers in statistics, econometrics, engineering and biostatistics. As a nonparametric

method, EL is more robust than parametric likelihoods since it does not require the spec-

ification of a family of distributions for the data. On the other hand, EL carries many

properties of parametric likelihood: EL determines the shape of confidence regions automat-

ically; it can readily incorporate known constraints on parameters, and extend to biased

sampling and censored data; it has favorable asymptotic power properties; it can be Bartlett

corrected, providing accurate inferences. As such, this technique has the potential to yield

powerful tests for various data settings.

1.1 Empirical Likelihood for the Mean

For a sample X1, . . . , Xn from an unknown d-variate distribution F0 having mean µ0 ∈ R
d

(d ≥ 1), the empirical likelihood function for a distribution F is

L(F ) =

n∏

i=1

dF (Xi) =

n∏

i=1

wi,

where wi = Pr(X = Xi), the probability mass placed on Xi by F . Note that this likelihood

is nonzero only for distributions that put positive probability on each of the observed data

points. Without any additional constraint on wi, L(F ) is maximized by the empirical dis-

tribution function Fn which puts equal weight 1/n on each observation. Then the empirical

1
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likelihood ratio for F is

R(F ) =
L(F )

L(Fn)
=

n∏

i=1

nwi.

Suppose now one is interested in estimating a parameter, expressed as a functional θ(F0);

for simplicity, take θ(F0) = µ0. For estimating µ0, the profile empirical likelihood ratio (ELR)

for a candidate µ is

R(µ) = sup

{
n∏

i=1

nwi | wi ≥ 0,

n∑

i=1

wi = 1,

n∑

i=1

wiXi = µ

}
.

Let Hn denote the convex hull of the sample points X1, . . . , Xn. For µ /∈ Hn, the constraint
∑n

i=1 wiXi = µ cannot be satisfied by any valid set of wi and R(µ) is defined to be zero. For

inference purpose, one only needs to consider µ ∈ Hn, for which a unique value of R(µ) exists:
∏n

i=1 nwi is maximized subject to the constraints when wi = wi(µ) = [n(1 + λT (Xi − µ))]−1,

where λ ∈ R
d is a Lagrange multiplier that solves

n∑

i=1

Xi − µ

1 + λT (Xi − µ)
= 0.

Therefore, R(µ) can be explicitly expressed as

R(µ) =
n∏

i=1

[1 + λT (Xi − µ)]−1.

Details can be found in Owen (2001). Since
∏n

i=1 nwi is maximized unconditionally by Fn,

it follows that R(µ) is maximized with respect to µ at µ̂ = X̄, i.e., the maximum empirical

likelihood estimator (MELE) of µ0 coincides with the sample mean when no other condition

is imposed.

The empirical likelihood ratio test statistic for µ is −2 logR(µ). Empirical likelihood

confidence regions are of the form {µ | − 2 logR(µ) ≤ c0}. Owen (1988, 1990) showed that,

under mild conditions, the empirical likelihood test statistic inherits the basic asymptotic

property of the parametric likelihood. In particular, if X1, . . . , Xn are i.i.d. random vectors

in R
d with mean µ0 and finite variance covariance matrix V0 of rank q > 0, then

−2 logR(µ0)
d−→ χ2

(q) as n → ∞, (1.1)
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where q = d if V0 has full rank. The coverage error of EL confidence intervals is of order

O(n−1). This approach also applies to general parameters θ(F ) that are smooth functions of

means.

1.2 Empirical Likelihood and Estimating Equations

Qin and Lawless (1994) extended EL to p-dimensional parameters θ defined via general

r-dimensional estimating equations

E{g(X, θ)} = 0, (1.2)

where g(X, θ) = ( g1(X, θ), . . . , gr(X, θ) )T and r ≥ p. Many parameters can be formulated in

this way. For µ considered above, g(X, µ) = X −µ; if θ stands for the median of a univariate

continuous distribution, then g(X, θ) = 1(X ≤ θ) − 0.5, where 1(X ≤ θ) is the indicator

function. An estimating equation in the form of (1.2) translates straightforwardly into the

constraint
n∑

i=1

wig(Xi, θ) = 0

in the definition of ELR for θ:

R(θ) = sup

{
n∏

i=1

nwi | wi ≥ 0,

n∑

i=1

wi = 1,

n∑

i=1

wig(Xi, θ) = 0

}
. (1.3)

For any θ, Zi(θ) = g(Xi, θ) are i.i.d. with common mean µ = EF0
{Z(θ)} = EF0

{g(X, θ)}

provided that Xi are i.i.d., where EF0
(·) emphasizes that the expectation is evaluated under

the true distribution F0. Under the assumption that EF0
{Z(θ0)} = 0r×1 := µ0, it follows

that R(θ0) = R(µ0) since they are both the maximum of
∏n

i=1 nwi subject to the same

constraints. Thus, Owen’s result on the asymptotic distribution of −2 logR(µ0) also applies

to −2 logR(θ0).

By allowing r ≥ p, the framework of Qin and Lawless provides a general and flexible

method of combining information about parameters. In many situations, pieces of infor-

mation about F0 can be formulated into equations which can be made into components
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of g(X, θ). For example, suppose that (X1, Y1), . . . , (Xn, Yn) are i.i.d. observations from a

bivariate distribution with mean (θx0, θy0), and it is known that θx0 = θy0 = θ0, then the

estimating function for a candidate θ can be taken to be

g( (X, Y ), θ ) = (X − θ, Y − θ)T , (1.4)

and the MELE for θ0 is

θ̂ = arg max
θ

R(θ),

where R(θ) is defined with estimating equation (1.4). In this case, while (1.2) holds for the

true distribution F0 with the true parameter θ0, it will not generally hold for the empirical

distribution Fn, since (1/n)
∑n

i=1 g( (Xi, Yi), θ ) = (0, 0)T typically has no solution when the

number of equations (r = 2) is more than the number of parameters (p = 1). The fact that

(1.2) holds is a special feature of F0 and constitutes important side information. Therefore,

with additional information, the MELE of θ0 in this example is not the same as the sample

means X̄, Ȳ (the two separate sample means), or (X̄ + Ȳ )/2 (the pooled sample mean).

Under mild assumptions, including that E[g(X, θ0)g
T (X, θ0)] is positive definite and that

g(X, θ) is smooth in θ, Qin and Lawless (1994) showed that the MELE θ̂ is consistent and

asymptotically normal, i.e.,
√

n(θ̂ − θ0)
d−→ N(0, V ),

where

V =

[
E

(
∂g

∂θT

)T

(EggT )−1E

(
∂g

∂θT

)]−1

.

One interesting property of EL is that it delivers sharper inference when more information

is exploited (i.e., more components are added to the estimating equation g(X, θ)), in the

sense that the asymptotic variance of the MELE will not increase and will typically become

smaller.

Qin and Lawless also showed properties of empirical likelihood ratio statistics. For testing

H0 : θ = θ0, the statistic

WE(θ0) = −2 logR(θ0) − [−2 logR(θ̂)]
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is defined; if H0 is true, then

WE(θ0)
d−→ χ2

(p) as n → ∞. (1.5)

When r = p, WE(θ0) reduces to −2 logR(θ0), since θ̂ is identical to the solution of
∑n

i=1(1/n)g(Xi, θ) = 0 and −2 logR(θ̂) = 0. Thus, it is seen that Owen’s result on

−2 logR(µ0) is a special case of (1.5), provided that V ar(X) is of full rank. When r > p,

one may test the model (1.2) by using the ratio statistic

W1 = −2 logR(θ̂),

which is asymptotically χ2
(r−p) if (1.2) is correct.

1.3 Applications and Development

Since its introduction, EL has been extended to a variety of contexts, including linear models

(Owen, 1991), generalized linear models (Kolaczyk, 1994), density estimation (for example

Chen, 1996), biased samples (for example Qin, 1993), survival data (for example Zhou, 2005),

and time series (for example Kitamura, 1997). Moreover, DiCiccio et al. (1991) demonstrated

that higher order properties of parametric likelihood, in particular Bartlett correctability, are

also inherited by EL. This means that an empirical correction for scale reduces the order of

coverage error from n−1 to n−2. And Baggerly (1998) showed that EL is the only member

of a rich family of alternative likelihoods to inherit these properties. Lazar (2003) extended

the discussion of EL to the Bayesian setting. Other generalizations of EL include weighted

empirical likelihood (Wu, 2004) and exponentially tilted EL (Schennach, 2005), which exploit

the relationships between EL and other alternative likelihood structures (Efron, 1981). In

sum, EL offers an attractive alternative to parametric likelihood analyses, retaining many

desirable likelihood properties, but without the need to fully specify a parametric model.
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1.4 Scope of this Dissertation

In this dissertation, two different applications of empirical likelihood are investigated: quan-

tile estimation for discrete data, and longitudinal data analysis.

Quantile estimation via empirical likelihood presents an example of an estimating equa-

tion not smooth in the parameter, and hence the asymptotic properties of the MELE derived

in Qin and Lawless (1994) do not apply. Some researchers have proposed smoothed versions

of the estimating equation to improve the coverage of EL confidence intervals for a contin-

uous distribution’s quantile. Nevertheless, properties of the MELE of quantiles of a discrete

distribution have not received much attention. The objective of the first part of the disser-

tation is to study the MELE of quantiles of a discrete distribution, and propose a way to

improve the MELE.

A longitudinal data set consists of repeated measurements taken over time on a sample

of subjects. The correlation of measurements clustered by subjects poses a challenge to the

empirical likelihood method, as independence of observations is a required condition in the

theory. Although one possible way to apply empirical likelihood to longitudinal data analysis

is simply to ignore the within-subject correlation, this may not lead to efficient inference.

How to improve the efficiency of the MELE in the context of longitudinal data is the focus

of the second part of the dissertation.



Chapter 2

Quantile Estimation

2.1 Introduction

Quantiles, and in particular the quartiles, are important characteristics of a population that

contain more information about the shape of the distribution than do moments. In practice,

estimates of quantiles provide a more compact summary than do histograms or scatter plots.

Therefore, quantile estimation is useful in a variety of problems.

For 0 < p < 1 and an unknown distribution F0, the pth quantile is defined by

θp = F−1
0 (p), (2.1)

where F−1
0 (p) = inf{x |F0(x) ≥ p}. There is an abundant literature on estimation of θp under

the basic assumption that F0 is continuous and has a positive density at θp. The pth sample

quantile

θ̃pn = F−1
n (p),

where n denotes the sample size and Fn is the empirical distribution, is the conventional

estimator whose asymptotic properties, in particular its consistency and asymptotic nor-

mality, are well studied and can be found in standard asymptotics (for example, Serfling

1980). Alternatives to sample quantiles have been proposed by Reiss (1980), Yang (1985)

and others. Exact distribution-free confidence intervals for θp are discussed in David (1981).

Asymptotic nonparametric confidence intervals for quantiles can be constructed using boot-

strap (Efron 1979; Hall and Martin 1989; Ho and Lee 2005), or empirical likelihood (for

example, Owen 1988).

7
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All of the above quantile estimation methods are restricted by the continuity assumption

about F0 at θp, and hence cannot be applied to discrete distributions which typically consist

of jumps and plateaus. Nevertheless, data from discrete distributions are prevalent in many

social and behavioral science applications. For example, a health insurance company may be

interested in the number of claims made by an individual from a certain age group during

one year. Such a discrete distribution F0 takes only discrete integer values, and hence its

quantiles must be an integer where F0 has a jump. Recall a theorem on the consistency of

the sample quantile θ̃pn (Serfling 1980, p. 75): If θp is the unique solution x of

F0(x−) ≤ p ≤ F0(x), (2.2)

then θ̃pn
a.s.−→ θp. In other words, θ̃pn is a consistent estimator for θp if (1) F0 is a continuous

distribution, or (2) F0 is a discrete distribution but p is not a plateau of F0. For a discrete

distribution F0, the sample quantile θ̃pn is not consistent for θp if p is at a plateau of the

distribution, i.e., F0(θp) = p and F0 is flat in a right-neighborhood of θp (Serfling 1980, p.

74). In this case, the expected bias of θ̃pn will not decrease as the sample size increases. For

the health insurance example in which most observed values are small integers, θ̃pn will be

very misleading if θ̃pn is off by only 1. Therefore, it is important to come up with a consistent

quantile estimator for discrete distributions.

In contrast to the case where F0 is continuous, the discrete case has not been well

studied. Some recent exceptions include González-Barrios and Rueda (2001), and Machado

and Santos Silva (2005). If p is at a plateau of F0, then there is an interval [a, b) or [a, b]

such that any x inside the interval satisfies F0(x) = p, and thus θp = a by definition (2.1).

González-Barrios and Rueda (2001) showed that there exist two random subsequences {nk}

and {mk} of N such that θ̃pnk
and θ̃pmk

converge almost surely to a and b, respectively, as

k → ∞, and proposed an algorithm to find such subsequences. θ̃pnk
is therefore the estimator

for θp proposed by González-Barrios and Rueda. Their algorithm was shown to work well

for a binomial distribution with only two possible outcomes, and for distribution functions

having a plateau at the level of p but being strictly increasing to the left and right of the
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plateau (as in Figure 2.1). However, for typical discrete distributions without any strictly

x

F
0

0
p

1

0 θp 5

Figure 2.1: A typical distribution F0, of which the pth quantile θp can be consistently estimated
by the estimator proposed by González-Barrios and Rueda (2001). F0 has a plateau at level p, and
is strictly increasing to the left and right of the plateau.

increasing segment, such as the Poisson, we carried out a simulation study that showed that,

if F0 has a plateau at the level of p, the method of González-Barrios and Rueda fails to yield

an estimator whose mean squared error is decreasing in n. Specifically, we generated random

samples of sizes ranging from 200 (as noted by González-Barrios and Rueda, their algorithm

requires that the sample size be fairly large) to 2000 from the Poisson distribution with

mean 2; for each sample size n, we examined the mean and the variance of González-Barrios

and Rueda’s estimator using 1000 replicate samples. As Figure 2.2 shows, for p = 0.406,

which is a plateau of Poisson(2), the variance of the estimator stabilizes at around 0.2 for

all n ≥ 1000, and the mean of the estimator does not approach the true quantile 1 as n

increases.

Machado and Santos Silva (2005) considered quantile regression for counts data, and

argued that quantile regression coefficients of covariates and hence conditional quantiles of
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Figure 2.2: A simulation study testing the estimator proposed by González-Barrios and Rueda.
1000 samples were generated from Poisson(2) for n ∈ {200, . . . , 2000}. Here, p = 0.5 is not a plateau
of Poisson(2), but p = 0.406 is. In each panel, the dashed line indicates the true quantile, while
the dotted line and the solid lines represent the variance and the mean of 1000 estimated quantiles
based on 1000 replicate samples, respectively. In the left panel, the solid line for the mean essentially
coincides with the dashed line for the true quantile for all large n > 500; while in the right panel,
the solid line does not approach the dashed line as n increases.



11

the discrete response variable can be consistently estimated, provided that there is at least

one continuous random covariate. Clearly, Machado and Santos Silva’s approach does not

apply to the setting where no covariate is involved and unconditional quantiles are of interest.

Considering the fact that the consistency of the sample quantile θ̃pn depends on whether

or not p, the order of interest, is at a plateau of the true distribution F0, we can infer that a

consistent estimator for θp, if it exists, must be based on correct (at least in the asymptotic

sense) judgment on the shape of F0 at level p. In the nonparametric setting, this judgment

requires the information available from data, which can be summarized by empirical likeli-

hood. Thus, our focus here is to explore quantile estimation for discrete distributions with

the tool of empirical likelihood. The rest of the chapter is organized as follows. In Section

2.2, we first briefly review quantile estimation via empirical likelihood under the assumption

that F0 is continuous, and then provide an explicit form of the EL estimator and its consis-

tency result. Estimation of θp in the discrete case is studied more elaborately in Section 2.3.

Two data sets are analyzed in Section 2.4. Some practical issues are discussed in Section 2.5.

Finally, Section 2.6 presents our conclusion.

2.2 Quantiles of Continuous Distributions

2.2.1 A Review of EL for Quantile Estimation

If F0 is continuous and has a positive density at the pth quantile θp, then θp is a functional

that can be defined as the root of the estimating equation

E[g(X, θp)] = E[1(X ≤ θp) − p] = 0. (2.3)

Suppose {X1, . . . , Xn} is a random sample of size n from F0. For θ ∈ [X(1), X(n)), the empir-

ical likelihood ratio (ELR) of θ is defined to be

R(θ) = sup

{
n∏

i=1

nwi |
n∑

i=1

wi[1(Xi ≤ θ) − p] = 0, wi ≥ 0,

n∑

i=1

wi = 1

}
. (2.4)



12

The MELE for θp based on a sample of size n is

θ̂pn = arg max
θ

R(θ). (2.5)

The application of empirical likelihood to quantiles dates back to Owen (1988), who showed

that −2 logR(θp) is asymptotically calibrated by the χ2
(1) distribution, and approximate

confidence intervals for θp can be constructed accordingly. However, note that the estimating

function g(X, θp) = 1(X ≤ θp) − p is not smooth in θ. This lack of smoothness raises

difficulties in inference for quantiles using empirical likelihood: empirical likelihood cannot

deliver confidence intervals with coverage accuracy better than O(n−1/2), compared to O(n−1)

in other contexts; Qin and Lawless’s consistency and asymptotic normality results about the

MELE do not apply to quantiles.

The first problem has been addressed by some researchers. Chen and Hall (1993)

smoothed 1(X ≤ θ) by a properly chosen kernel, and substituted the smoothed version

for 1(X ≤ θ) in estimating equation (2.3). Alternatively, Adimari (1998), Zhou and Jing

(2003a) used (2.3) to derive the explicit form of −2 logR(θ) involving the unsmooth empir-

ical distribution function Fn, and then replaced Fn by different smooth substitutes. These

modifications have been shown to yield improved coverage accuracy to O(n−1) of confidence

intervals for θp. Yet, little attention has been paid to the second problem. Properties, in

particular consistency, of the MELE for θp have not been explicitly discussed for continuous

nor discrete distributions.

Since the first use of EL for quantile estimation by Owen (1988), EL has been extended

by many others to related problems such as quantiles and conditional quantiles, both in

the presence of auxiliary information (see Zhang, 1995, and Qin & Wu, 2001, respectively),

and quantile differences (e.g., the interquartile range; Zhou and Jing, 2003b). In spite of the

importance of discrete data, all previous work on quantile estimation via empirical likelihood

is under the continuity assumption about the underlying distribution.

Exploring the behavior of the MELE in the discrete case is our major interest. As we

will see shortly, properties of θ̂pn in the continuous case help in determining its consistency
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in the discrete case as well. Therefore, we begin with a brief study of θ̂pn in the continuous

case.

2.2.2 MELE of Quantiles

As noted above, if the underlying distribution is continuous, then R(θ) is defined by (2.4),

and its explicit form can be derived by the method of Lagrange multipliers. Specifically,

R(θ) =

n∏

i=1

{1 + λ[1(Xi ≤ θ) − p]}−1 , (2.6)

where λ solves
n∑

i=1

1(Xi ≤ θ) − p

λ[1(Xi ≤ θ) − p] + 1
= 0. (2.7)

Equation (2.7) can be simplified by using the fact that nFn(θ) =
∑n

i=1 1(Xi ≤ θ). λ is then

solved to be

λ =
Fn(θ) − p

p(1 − p)
. (2.8)

Substituting (2.8) for λ in (2.6), we get

R(θ) =

(
p

Fn(θ)

)nFn(θ)(
1 − p

1 − Fn(θ)

)n−nFn(θ)

. (2.9)

Note that the curve of R(θ) is a right-continuous step function in θ, since Fn(θ) takes a jump

at each observation and is right-continuous. This means that the MELE of θp is not a unique

point but an interval. For uniqueness, we can redefine

θ̂pn = inf
{
θ′ | R(θ′) = max

θ
R(θ)

}
. (2.10)

Also note that R(θ) in equation (2.9) is a function of θ only through Fn(θ), and is

maximized to 1 when Fn(θ) = p. But the value p may not be attainable by Fn(θ), since

Fn(θ) must take a value from { 1
n
, . . . , n−1

n
}. Therefore the maximum of R(θ) is actually

obtained when Fn(θ) = [np]/n or Fn(θ) = ([np] + 1)/n, and maxθ R(θ) may not be exactly

1. Taking into account that Fn(θ) = i/n for all θ ∈ [X(i), X(i+1)) and definition (2.10), we
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summarize the MELE of the pth quantile to be

θ̂pn =






Xnp:n if np ∈ N

X[np]:n if np /∈ N and R(X[np]:n) ≥ R(X[np]+1:n)

X[np]+1:n if np /∈ N and R(X[np]:n) < R(X[np]+1:n)

, (2.11)

where Xi:n is the extended form of X(i), with the explicit subscript n denoting the sample

size, and R(Xi:n) =
(

p
i/n

)i (
1−p

1−i/n

)n−i

.

2.2.3 Consistency of the MELE of a Quantile

It is worth noting that the MELE θ̂pn defined above is very close to the sample quantile

θ̃pn = F−1
n (p) =





Xnp:n if np ∈ N

X[np]+1:n if np /∈ N

. (2.12)

θ̂pn differs from θ̃pn only when np /∈ N and R(X[np]:n) ≥ R(X[np]+1:n), and the difference is

just the gap between two consecutive order statistics X[np]:n and X[np]+1:n. This difference

is insignificant for two reasons. First, it is caused by definitions, since both θ̃pn and θ̂pn

can be defined in multiple ways. θ̂pn could be defined to be exactly the same as θ̃pn, if

one is willing to consistently follow the logic behind definition (2.12), namely, that we take

θ̂pn = Xnp:n if p ∈ { 1
n
, . . . , n−1

n
}, and take θ̂pn = X[np]+1:n by using ([np] + 1)/n in place of

p if p /∈ { 1
n
, . . . , n−1

n
}. Second, even if we keep the current definitions of θ̃pn and θ̂pn, the

difference will converge to zero in probability as n → ∞. This can be verified by applying

Lemma 21.7 in van der Vaart (1998); see the proof of Result 2.2.1 (Appendix) for details.

We know from standard asymptotics (such as Serfling, 1980) that, for continuous distri-

butions, θ̃pn is consistent for θpn. By utilizing the close relationship between θ̂pn and θ̃pn, the

following result about the consistency and asymptotic normality of the MELE θ̂pn can be

proved.

Result 2.2.1. If F0 is continuous, for 0 < p < 1, the MELE θ̂pn is consistent for θp, i.e.

θ̂pn
p−→ θp. If F0 is twice differentiable at θp, then

n1/2
(
θ̂pn − θp

)
d−→ N

(
0,

p(1 − p)

[F ′
0(θp)2]

)
. (2.13)
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2.3 Quantiles of Discrete Distributions

2.3.1 A Jittering Method and MELE of Quantiles

If the underlying distribution is discrete, the equation E[1(X ≤ θp) − p] = 0 does not hold

for all 0 < p < 1, and consequently it cannot be used directly to define the ELR for θp.

Take the Poisson(2) distribution as an example. We know that Pr(X ≤ 1) = 0.406 and

Pr(X ≤ 2) = 0.677, so the median θ0.5 is 2, but E[1(X ≤ θ0.5) − 0.5] = 0.177. Furthermore,

there will be many ties in a sample, especially when the sample size is large. When F0 is

discrete and many ties are present, we may get an empty confidence region for θp if we use

R(θ) of the form (2.9) (Owen 2001, p.46). Because of ties, Fn(θ) =
∑n

i=1 1(Xi ≤ θ)/n skips

many values in the set { 1
n
, . . . , n−1

n
}, possibly including all values corresponding to large

R(θ). In this case, at confidence level 95%, say, even maxR(θ) may be too small for the

MELE to be included in the confidence region, if the critical value from χ2(1) is used. This

possible situation is illustrated by Figure 2.3. The left panel of Figure 2.3 is the histogram of
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Figure 2.3: An empty confidence region. The left panel is the histogram of a random sample from
Poisson(2). The right panel shows the empirical likelihood ratio curve for the median; the entire
curve is below the threshold 0.1465.
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a random sample from Poisson(2), which indicates many ties at the true median 2 (and every

other value), and the right panel is the empirical likelihood ratio curve for the median. The

maximum of R(θ) for this sample is only 0.134 which is below exp(−χ2
0.95(1)/2) = 0.1465,

the threshold at the 95% level.

To circumvent these difficulties, we can proceed by adding a small jitter Zi to each Xi, so

that the transformed data {Yi = Xi + Zi, i = 1, 2, . . . , n} no longer have ties, and the order

of {Xi} is preserved in the sense that if Xi < Xj then Yi < Yj. The method of jittering is

discussed in Owen (2001) and Machado and Santos Silva (2005). We now use superscripts X

and Y to distinguish functionals and statistics associated with the two sets of data. Without

ties, {Yi} can be treated as if they came from a continuous distribution, so RY (θ) has the

form of (2.9) and is hence maximized to 1 or a value close to 1 at the MELE θ̂Y
pn determined

by (2.11). Suppose that in the original sample {Xi, i = 1, . . . , n}, there are d < n distinct

values, denoted by x1 < x2 < . . . < xd. For each θ = xj, j = 1, 2, . . . , d, the empirical

likelihood ratio for the pth quantile of X is defined by

RX(θ)| θ=xj
= RX(xj) = max

Yi∈Gj

{
RY (Yi)

}
,

where Gj is the set of Yis generated by the Xis having the same value xj . For θ /∈

{x1, x2, . . . , xd}, RX(θ) is computed by (2.9), in the same way as in the continuous case.

The MELE θ̂X
pn is obtained by transforming θ̂Y

pn back to the X scale.

Without loss of generality, we assume that the support of F X
0 is Sx = {x1, x2, . . .}, where

x1 < x2 < . . . are consecutive integers. Let 0 < p1, p2, . . . < 1 be the weight that F X
0 puts on

x1, x2, . . ., respectively, where
∑j

i=1 pi = Pr(X ≤ xj) = Pj → 1 as j increases. The smallest

nonzero gap in a sample {Xi} from F X
0 is therefore at least 1, and it is convenient to use

jitters Zi
iid∼ U(0, 1]. Consequently, the probability mass that F X

0 puts on each integer point

xj is evenly spread over the interval (xj , xj+1], and thus F Y
0 is continuous with a piece-wise

constant slope that changes at each point xj , i.e.,

∂F Y
0 (y)

∂y
|y∈(xj ,xj+1) = pj , (2.14)
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and F Y
0 (y)|y=xj

=
∑j−1

i=1 pi = Pj−1. Figure 2.4 gives a simple example where Xi follows

the Poisson(2) distribution. The left panel shows the cumulative distribution function of

Poisson(2) (i.e., F X
0 ) up to x = 7, and the right panel displays the corresponding CDF of the

jittered variable Yi = Xi + Zi. Here, xj = j, Pj = F X
0 (j) = Pr(Xi ≤ j) and F Y

0 (j) = Pj−1

for j = 0, 1, . . .. The inverse transformation from the Y scale to the X scale is defined to be

⌈Y − 1⌉, where ⌈a⌉ is the ceiling function that returns the smallest integer greater than or

equal to a. Therefore, θ̂X
pn =

⌈
θ̂Y

pn − 1
⌉
.
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Figure 2.4: The jittering transformation. Jitters Zi
iid∼ U(0, 1] are used. Here, Pj = Pr(Xi ≤ j); the

right tails of the cumulative distributions FX
0 and F Y

0 are not shown. After jittering, the probability
mass that FX

0 puts on each integer point j is evenly spread over the interval (j, j + 1], so that F Y
0

is continuous with a piece-wise constant slope.

2.3.2 Consistency of the MELE

The jittering method considered in Section 2.3.1 is a convenient device that helps us examine

the consistency of θ̂X
pn in the following two cases.
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(i) First consider p such that Pk−1 < p < Pk for some k ∈ {1, 2, . . .}, that is, p is not a

plateau of F0. In this case θX
p satisfies F X

0 (θp−) < p < FX
0 (θp) and E[1(X ≤ θp)−p] >

0. The median (p = 0.5) of Poisson(2) is an example, as shown in Figure 2.4. Here,

θX
p = xk, xk < θY

p < xk+1, and θX
p =

⌈
θY

p − 1
⌉
. The inverse transformation f(t) =

⌈t − 1⌉ is continuous at t = θY
p . By the previous result for a continuous distribution,

θ̂Y
pn

p→ θY
p and it follows that

⌈
θ̂Y

pn − 1
⌉

p→
⌈
θY

p − 1
⌉
, i.e. θ̂X

pn

p→ θX
p .

(ii) Next consider p = Pk for some k ∈ {1, 2, . . .}, i.e., p is a plateau of F0. θX
p now satisfies

F X
0 (θp) = p and E[1(X ≤ θp) − p] = 0. The 0.677th quantile of Poisson(2) is an

example of this case, as illustrated by Figure 2.4. Since θX
p = xk and θY

p = xk+1, it

follows again that θX
p =

⌈
θY

p − 1
⌉
. Because θY

p is an integer, the inverse transformation

f(t) = ⌈t − 1⌉ is discontinuous at t = θY
p = xk+1. Consequently, even though θ̂Y

pn

p→ θY
p

still holds for p = Pk,
⌈
θ̂Y

pn − 1
⌉

p→
⌈
θY

p − 1
⌉

fails because of the discontinuity. In this

case, the MELE θ̂X
pn is not a consistent estimator of θX

p .

Comment 2.3.1 The inconsistency in case (ii) can be further explained by the following

result, which is derived from Theorem A of Serfling (1980, p. 77) and the relation between

θ̂Y
pn and θ̃Y

pn. The proof is shown in the Appendix. Part (c) of this result says that, for large

n, θ̂Y
pn > θY

p with probability roughly 1
2
. In the inconsistent case, θX

p = xk and θY
p = xk+1 =

xk + 1; if θ̂Y
pn > θY

p = xk+1, then θ̂X
pn =

⌈
θ̂Y

pn − 1
⌉
≥ xk+1 = θX

p + 1. That is, θ̂X
pn ≥ θX

p + 1

with an approximate probability of 0.5 when n is large.

Result 2.3.1. Let 0 < p < 1. Suppose that F Y
0 (y) is continuous at y = θY

p .

(a) If there exists
∂F Y

0
(θY

p −)

∂y
> 0, then for t < 0,

lim
n→∞

Pr




n1/2

(
θ̂Y

pn − θY
p

)

[p(1 − p)]1/2 /
∂F Y

0
(θY

p −)

∂y

≤ t



 = Φ(t),

(b) If there exists
∂F Y

0 (θY
p +)

∂y
> 0, then for t > 0,

lim
n→∞

Pr




n1/2

(
θ̂Y

pn − θY
p

)

[p(1 − p)]1/2 /
∂F Y

0
(θY

p +)

∂y

≤ t



 = Φ(t),
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(c) In any case,

lim
n→∞

Pr
(
n1/2

(
θ̂Y

pn − θY
p

)
≤ 0
)

= Φ(0) =
1

2
.

Comment 2.3.2 For the discrete distribution F X
0 , θ̂X

pn either hits the true parameter θX
p ,

or is off by at least 1. So a sufficient and necessary condition for the consistency of θ̂X
pn is

limn→∞ Pr(θ̂X
pn = θX

p ) = 1. In fact, Result 2.3.1 and the relationship between X and Y can

be used to show that limn→∞ Pr(θ̂X
pn = θX

p ) = 1 for p in case (i); Result 2.3.1. leads further

to limn→∞ Pr(θ̂X
pn = θX

p ) = 0.5 for p in case (ii). These are summarized in Result 2.3.2,

which also points out that, as n increases, θ̂X
pn will jump only between θX

p and θX
p + 1 with

approximately equal probability. The proof of Result 2.3.2 is relatively simple and hence is

omitted.

Result 2.3.2. If p is such that Pk−1 < p < Pk for some integer k ≥ 1, then

lim
n→∞

Pr(θ̂X
pn = θX

p ) = 1;

if p satisfies p = Pk for some integer k ≥ 1, then

lim
n→∞

Pr(θ̂X
pn = θX

p ) = lim
n→∞

Pr(θ̂X
pn = θX

p + 1) = 0.5.

Comment 2.3.3 When the underlying distribution F X
0 is discrete, θ̂X

pn may or may not

be consistent for θX
p , depending on the position of p. Consider an intermediate situation in

which Pk−1 < p < Pk, but p is very close to Pk−1 or Pk. This is categorized as case (i), so θ̂X
pn

is consistent but the rate at which convergence occurs will be very slow. It can be derived

from Result 2.3.1 that

Pr(θ̂X
pn = θX

p ) ≈ 1 − Φ

(
−(1 − a1)pk

√
n√

p(1 − p)

)
− Φ

(
− a1pk

√
n√

p(1 − p)

)
, (2.15)

where a1 = (p−Pk−1)/pk. For Pr(θ̂X
pn = θX

p ) to converge to 1 as n → ∞, Z∗
1 = (1−a1)pk

√
n√

p(1−p)
and

Z∗
2 = a1pk

√
n√

p(1−p)
both need to increase as n increases. For fixed large values of Z∗

1 and Z∗
2 , n is

proportional to max{(1 − a1)
−2, a−2

1 }. If p is close to Pk−1 or Pk, then either a1 or (1 − a1)

will be close to zero, and n will need to be very large for the last two terms in (2.15) to be

approximately zero.
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2.3.3 An EL-based Classification and a Consistent EL Estimator

The consistency of θ̂X
pn in the discrete case is not as straightforward as in the continuous case.

If one knows in advance whether F X
0 is flat at a given level p, then one can tell whether the

estimator (e.g., the MELE or the sample quantile) is consistent or not. Unfortunately, this

information is typically unavailable, and hence one may want to use a statistical procedure

to categorize p into case (i) or case (ii). We now consider using ELRs associated with θ̂Y
pn and

hence θ̂X
pn to categorize p. To begin, we suppose that θ̂X

pn = ⌈θ̂Y
pn − 1⌉ has the value x∗, and

that Y(L) and Y(U) are the smallest and largest order statistics that satisfy ⌈Y(i) − 1⌉ = x∗.

Note that the indices L and U are random variables. As shown in Figure 2.5, let Cl =

RY (Y(L)) and Cu = RY (Y(U)). By (2.9), Cl and Cu can be explicitly written as

Cl =

(
p

L/n

)L(
1 − p

1 − L/n

)n−L

and Cu =

(
p

U/n

)U (
1 − p

1 − U/n

)n−U

. (2.16)

Further, let

hl = Pr{χ2(1) ≤ −2 log(Cl) } and hu = Pr{χ2(1) ≤ −2 log(Cu) }. (2.17)

Result 2.3.3 indicates that hl and hu behave differently for the two types of p.

Result 2.3.3. Suppose that {Xi} is a random sample of size n from a discrete distribution

F X
0 , and {Yi} is the jittered sample with distribution F Y

0 . Let hl and hu be defined by (2.17).

Then,

(a) both hl
p−→ 1 and hu

p−→ 1 for p in case (i);

(b) max{hl, hu} p−→ 1 but min{hl, hu} d−→ U(0, 1) for p in case (ii).

A direct implication of Result 2.3.3 is that min(hl, hu) converges to 1 for p in case (i)

but not for p in case (ii). Thus, we hope to categorize p by examining whether min(hl, hu) is

close to 1. An immediate question would be “How close is defined to be close?” If min(hl, hu)

were exactly 1 for p in case (i), we could simply check whether or not min(hl, hu) is 1, and

the probability of misclassification would be zero. However, min(hl, hu) is random in either
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Figure 2.5: Two ELRs Cl = RY (Y(L)) and Cu = RY (Y(U)) associated with the MELE θ̂Y
pn. Here,

Y(L) and Y(U) are the smallest and largest order statistics satisfying ⌈Y(i) − 1⌉ = ⌈θ̂Y
pn − 1⌉.
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case, with its variability decreasing to zero for p in case (i). Therefore, we need to choose a

classification criterion whose misclassification rate is acceptable for moderate samples and

diminishes to zero as the sample size increases to infinity. In particular, we can use δ(n) ∈

(0, 1), a function decreasing to zero in n, to categorize p according to

p =⇒





case (i), if 1 − min(hl, hu) ≤ δ(n)

case (ii), if 1 − min(hl, hu) > δ(n)
. (2.18)

Possible candidates for δ(n) include n−1, n−1/2, n−1/3, etc. The choice of δ(n) will be studied

in Section 2.3.4.

As we have seen, whether or not the MELE θ̂X
pn is consistent for θX

p depends on whether

F X
0 has a plateau at the level of p. Result 2.3.2 implies that, if the sample size is large

enough, then θ̂X
pn will be either constant at θX

p for p in case (i), or vary only between θX
p and

θX
p +1 with approximatively equal probability for p in case (ii). Thus, to obtain a consistent

estimator, it is desirable to apply the categorization procedure proposed above to distinguish

p in cases (i) and (ii), and then make an appropriate adjustment to θ̂X
pn if p is identified to be

in case (ii). The only necessary adjustment is to subtract 1 from θ̂X
pn if θ̂X

pn = θX
p + 1, which

will occur with large samples only if p is a plateau of F X
0 . Therefore, once a specific p is

categorized into case (ii), we need to make a further judgment about whether θ̂X
pn = θX

p + 1.

From the proof of Result 2.3.3 (Appendix), for p in case (ii), we find that





hl ≥ hu with probability tending to 1, if θ̂X

pn = θX
p

hl < hu with probability tending to 1, if θ̂X
pn = θX

p + 1
.

This inspires the following two-step judgment procedure:

• Step 1. Use rule (2.18) to categorize p.

• Step 2. If p is categorized into case (ii), then compare hl with hu: assume θ̂X
pn = θX

p if

hl ≥ hu; otherwise, assume θ̂X
pn = θX

p + 1.
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Now that an approach has been proposed for categorizing p and identifying the sub-case

where θ̂X
pn is biased, a consistent EL estimator θ̂Xc

pn can be formulated as

θ̂Xc
pn =





θ̂X

pn − 1, if 1 − min(hl, hu) > δ(n) and hl < hu;

θ̂X
pn, otherwise.

(2.19)

2.3.4 Simulation Studies

In this section, we study the performance of the EL-based categorization procedure and the

new estimator θ̂Xc
pn by simulation. In our simulation studies, n−1, n−1/2, n−1/3, n−1/4 and

n−1/5 are included as candidates for δ(n); of course these candidates are arbitrarily chosen,

and other forms of δ(n) are possible. The choice of δ(n) is also discussed here.

In the first simulation study, for simplicity and without loss of generality, the discrete

uniform distribution on {1, 2, . . . , 10} (i.e, F X
0 ), which consists of plateaus at levels of

{0.1, . . . , 1.0}, is used to generate the data. Here, p = 0.75 and p = 0.78 are both examples

of case (i), with p = 0.75 representing a value located exactly in the middle of two plateaus,

and p = 0.78 representing a value which leans toward one of the two immediate plateaus;

p = 0.70 is an example of case (ii). We repeat the simulation 1000 times, and count the

numbers of correct (“C” in Table 2.1) and incorrect (“NC”) categorizations for each combi-

nation of δ(n) and n = 100, 500, 1000, 2000, 10000. Note that “C” and “NC” also summarize

the performance of Step 1 of the two-step judgment procedure. Entries “S0” and “S1” in

Table 2.1 jointly show how Step 2 performs in making the second stage decision, given that

p is already categorized as a plateau (or a step; denoted by “S”) of F X
0 . “S0” represents the

decision that θ̂X
pn = θX

p , with “0” meaning no bias, and “S1” stands for θ̂X
pn = θX

p +1, with “1”

meaning a bias of 1. Of course, for p in case (ii), only when the sample size is large enough,

will θ̂X
pn take a value only from θX

p and θX
p + 1; θ̂X

pn may take a value other than θX
p or θX

p + 1

with a small or moderate sample. To reflect the discrepancy between θ̂X
pn being determined

by Step 2 to be θX
p (or θX

p + 1) and θ̂X
pn actually being θX

p (or θX
p + 1), both “S0” and “S1”

contain two numbers. Specifically, a/b under entry “S0” and c/d under “S1” mean that p is
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categorized as a plateau of F X
0 at b+d simulation runs, which equals “NC” for p = 0.75 and

p = 0.78 in case (i) but equals “C” for p = 0.7 in case (ii); among the b + d simulation runs,

hl ≥ hu and hence θ̂X
pn is determined to be θX

p in b simulation runs, and θ̂X
pn is determined to

be θX
p + 1 in the other d runs; in fact, θ̂X

pn = θX
p in a out of b runs, and θ̂X

pn = θX
p + 1 in c

out of d runs. The information provided by “S0” and “S1” is further explained by the flow

chart in Figure 2.6. Ideally, a = b and c = d, which would mean that we have made 100%

correct judgment on whether θ̂X
pn equals to θX

p or θX
p + 1, given that p is already categorized

as a plateau of F X
0 .

“C” for p in case (i)
“NC” for p in case (ii)

���
�

�

�

�

�

�

�

�

p is categorized
into case (i)

A given p

1−hmin≤δ

(1000−b−d)

99ttttttttttttttttttttttttttttttttt

1−hmin>δ

(b+d)

%%JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
Conclude θ̂X

pn = θX
p

Decision “S0” is
correct a (≤ b) times

oo_ _ _ _ _ _ _ _

p is categorized
into case (ii)

hl≥hu

(b)

77oooooooooooooooooooooooooooooooooooooo

hl<hu

(d)

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

“NC” for p in case (i)
“C” for p in case (ii)

OO�
�

�

�

�

�

�

�

�

Conclude θ̂X
pn = θX

p + 1
Decision “S1” is

correct c (≤ d) times
oo_ _ _ _ _ _ _

Figure 2.6: The two-step judgment procedure. A solid arrow “→” points to a possible decision of
Step 1 or 2; above the arrow is the condition leading to this particular decision; beneath the arrow
is the number of simulation runs (out of 1000) in which this decision is made. A dashed arrow “99K”
connects a decision and its corresponding notation used in Table 2.1.

The categorization procedure. As one can observe from the simulation results dis-

played in columns “C” and “NC” in Table 2.1, for any δ(n) and any p, the EL-based cate-
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Table 2.1: Performance of the two-step judgment procedure

δ(n) = n−1/5

p = 0.75, θX
p = 8 p = 0.7, θX

p = 7 p = 0.78, θX
p = 8

n C NC S0 S1 C NC S0 S1 C NC S0 S1
100 247 753 228/371 67/382 752 248 303/372 278/380 229 771 341/381 215/390
500 865 135 52/57 4/78 708 292 345/345 363/363 540 460 334/334 125/126

1000 984 16 5/7 0/9 784 216 395/395 389/389 680 320 278/278 42/42
2000 1000 0 0/0 0/0 799 201 394/394 405/405 825 175 164/164 11/11

10000 1000 0 0/0 0/0 840 160 410/410 430/430 1000 0 0/0 1/0

δ(n) = n−1/4

p = 0.75, θX
p = 8 p = 0.7, θX

p = 7 p = 0.78, θX
p = 8

n C NC S0 S1 C NC S0 S1 C NC S0 S1
100 55 945 138/202 29/179 865 135 326/400 344/465 113 887 405/462 239/425
500 797 203 67/76 2/127 790 210 399/399 391/391 462 538 417/417 118/121

1000 977 23 6/6 0/17 822 178 412/412 410/410 604 396 345/345 51/51
2000 1000 0 0/0 0/0 881 119 439/439 442/442 790 210 197/197 13/13

10000 1000 0 0/0 0/0 916 84 460/460 456/456 1000 0 0/0 0/0

δ(n) = n−1/3

p = 0.75, θX
p = 8 p = 0.7, θX

p = 7 p = 0.78, θX
p = 8

n C NC S0 S1 C NC S0 S1 C NC S0 S1
100 52 948 314/469 92/479 953 47 366/456 350/497 75 925 422/481 235/444
500 703 297 110/116 3/181 897 103 476/476 420/421 338 662 540/540 110/112

1000 952 48 15/15 0/33 920 80 473/473 447/447 463 537 480/480 57/57
2000 1000 0 0/0 0/0 928 72 469/469 459/459 661 339 319/319 20/20

10000 1000 0 0/0 0/0 951 49 474/474 477/477 1000 0 0/0 0/0

δ(n) = n−1/2

p = 0.75, θX
p = 8 p = 0.7, θX

p = 7 p = 0.78, θX
p = 8

100 14 986 307/448 95/538 998 2 349/471 375/527 5 995 469/516 238/479
500 426 574 248/257 3/317 963 37 484/484 477/479 148 852 689/689 136/163

1000 865 135 63/64 0/71 968 32 484/484 484/484 288 712 667/667 45/45
2000 993 7 2/2 0/5 984 16 498/498 486/486 466 534 522/522 12/12

10000 1000 0 0/0 0/0 994 6 494/494 500/500 995 5 5/5 0/0
δ(n) = n−1

p = 0.75, θX
p = 8 p = 0.7, θX

p = 7 p = 0.78, θX
p = 8

100 0 1000 329/480 91/520 1000 0 399/491 370/509 0 1000 430/481 263/519
500 8 992 431/440 1/552 1000 0 506/509 481/491 2 998 820/820 129/178

1000 316 684 307/307 0/377 1000 0 495/495 505/505 41 959 904/904 51/55
2000 912 88 26/26 0/62 1000 0 508/508 492/492 83 917 907/907 10/10

10000 1000 0 0/0 0/0 1000 0 498/498 502/502 829 171 171/171 0/0

Step 1 of the judgment procedure in Section 2.3.3 is reflected by “C” and “NC”, which record the numbers of correct and
incorrect categorizations, respectively, over 1000 runs. Entries “S0” and “S1” jointly show the performance of Step 2. Here,
“S” means p is already categorized as a step (plateau) of F X

0
; “S0” and “S1” stand for the two subcases where Step 2 leads to

the decision that θ̂X
pn = θX

p and that θ̂X
pn = θX

p + 1, respectively. In particular, a/b under entry “S0” and c/d under “S1” mean

that θ̂X
pn was judged to be θX

p and θX
p + 1 in b and d simulation runs, respectively, and θ̂X

pn was actually θX
p and θX

p + 1 in a
out of b runs and in c out of d runs, respectively.
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gorization procedure performs better as the sample size n increases. With an appropriately

chosen δ(n), this procedure can achieve a 100% correct categorization rate when n = 10000.

In practice, it is unlikely that one will obtain a sample of size 10000. The main point of

providing the simulation results with n = 10000 is to show that, asymptotically, any p can

be classified into the correct category — a plateau or not a plateau. The categorization pro-

cedure has a stronger tendency to over-estimate plateaus with p = 0.78 than with p = 0.75.

Since p = 0.78 is closer to 0.8 than to 0.7, it takes a larger sample size for the procedure to

well differentiate p = 0.78 from the closest plateau p = 0.8.

The estimator θ̂Xc
pn . With respect to the performance of Step 2 of the two-step judgment

procedure, we observe that, for p = 0.7 and for all δ(n) candidates, a and c become very

close to or the same as b and d, respectively, when the sample is 500 or larger. This confirms

the judgment procedure, and also means that θ̂X
pn is correctly adjusted to form correct θ̂Xc

pn

once p = 0.7 is identified as a plateau. For p = 0.75 and p = 0.78, “S0” and “S1” show how

misclassifications distribute between the two sub-cases for finite samples, and this information

is useful for examining the performance of the estimator θ̂Xc
pn , which is the major concern

here. Specifically, a/b under “S0” and c/d under “S1” also present proportions of θ̂X
pn that

receive the correct treatment, after p is misclassified into the wrong category. For example,

for the combination of p = 0.78, δ(n) = n− 1

5 and n = 500, p is misclassified as a plateau in

460 simulation runs; among the 460 runs, θ̂X
pn is actually equal to θX

p in 334 out of 334 times

when it is judged to be θX
p , and θ̂X

pn is correctly judged to be θX
p + 1 and hence reduced by 1

in 125 out of the other 126 times; this means that in only 1 out of the 460 simulation runs,

θ̂Xc
pn is not in fact correct. For p = 0.78, even though the misclassification rate converges to

zero more slowly than for p = 0.75 and p = 0.7, the number of θ̂X
pn estimates that receive the

wrong adjustment drops to zero very quickly. As shown in Table 2.2, as n increases, the mean

squared error (MSE) of θ̂Xc
pn approaches zero for any p, indicating that θ̂Xc

pn is consistent. In

particular, θ̂Xc
pn converges more quickly for p = 0.78 than for p = 0.75 and p = 0.7. Overall,

the performance of θ̂Xc
pn is satisfactory when n ≥ 500 and an appropriate δ(n) is used.
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Table 2.2: Performance of the modified EL estimator θ̂Xc
pn

p = 0.75, θX
p = 8 p = 0.7, θX

p = 7 p = 0.78, θX
p = 8

δ(n) n MEAN MSE MEAN MSE MEAN MSE

n−1/5 100 7.514 0.516 7.056 0.300 7.847 0.279
500 7.921 0.079 7.150 0.150 8.015 0.017

1000 7.989 0.011 7.107 0.107 8.002 0.002
2000 8.000 0 7.094 0.094 8 0

10000 8.000 0 7.078 0.078 8 0

n−1/4 100 7.500 0.546 6.992 0.270 7.8 0.284
*500 7.866 0.134 7.098 0.098 8.008 0.014
1000 7.983 0.017 7.084 0.084 8.002 0.002
2000 8.000 0 7.063 0.063 8 0

10000 8.000 0 7.039 0.039 8 0

n−1/3 100 7.447 0.581 6.938 0.272 7.749 0.291
500 7.816 0.184 7.047 0.049 7.991 0.015

*1000 7.967 0.033 7.036 0.036 8 0
2000 8.000 0 7.030 0.030 8 0

10000 8.000 0 7.022 0.022 8 0

n−1/2 100 7.399 0.633 6.912 0.278 7.73 0.29
500 7.677 0.323 7.016 0.020 7.974 0.028

1000 7.928 0.072 7.010 0.010 8 0
*2000 7.995 0.005 7.007 0.007 8 0
10000 8.000 0 7.002 0.002 8 0

n−1 100 7.404 0.634 6.903 0.237 7.706 0.322
500 7.440 0.560 6.992 0.013 7.951 0.049

1000 7.623 0.377 7.000 0 7.996 0.004
2000 7.938 0.062 7.000 0 8.0 0

*10000 8.000 0 7.000 0 8.0 0

Entries “MEAN” and “MSE” are the average and the mean squared error of θ̂Xc
pn over 1000 runs.

Four choices of δ(n), i.e., n−1/4, n−1/3, n−1/2 and n−1, have satisfactory and the most balanced
performance for samples of sizes n = 500, 1000, 2000 and 10000, respectively. These compatible
sample sizes are marked by ∗.
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Choosing δ(n). Table 2.1 shows that a smaller δ(n) such as n−1 induces smaller misclas-

sification rates for p in case (ii), while a larger δ(n) such as n−1/5 performs better for p in case

(i). This is not surprising, as the classification rule (2.18) will always put p into case (i) if

δ(n) = 1 (the upper limit) and into case (ii) if δ(n) = 0 (the lower limit). Note that n−1/5 and

n−1 are the closest to 1 and 0, respectively, among all candidates in the simulation. Results

in Table 2.1 are consistent with those in Table 2.2, from which one can observe that the MSE

of θ̂Xc
pn shrinks to zero faster with a smaller δ(n) if p is in case (ii), but a larger δ(n) leads to

a smaller MSE for a fixed sample size if p is in case (i). In this sense, there may not exist a

δ(n) that is uniformly optimal for all p. Therefore, it is reasonable to choose a δ(n) that has

balanced low MSE for p in the two cases, although there may be other criteria for choosing

δ(n), as will be discussed in Section 2.5. According to the criterion of balanced performance,

comparison among the five candidates of δ(n) is mixed in the sense that n−1/5, n−1/4, n−1/3,

n−1/2 and n−1 have the best and most balanced MSEs for samples of sizes n = 100, 500,1000,

2000 and 10000, respectively. That is to say, the best choice of δ(n) depends on the sample

size n. This is possibly due to the complexity of the underlying best δ(n), if it exists. If we

require that the MSE be smaller than 0.15, then the sample size should be at least 500 for

the uniform discrete distribution considered here. The performance of each of the five δ(n)

candidates improves with large samples, with n−1 being the best if the sample size is as large

as 10000.

Small and large values of p. We extend the above simulation study to p = 0.05, 0.1, 0.9

and 0.95 to investigate the performance of θ̂Xc
pn for p in the lower or upper tail of F X

0 .

Simulation results for p = 0.1 and 0.9 are very similar to those for p = 0.7. Recall that,

for p in case (ii), the proposed adjustment to θ̂X
pn is based on the fact that limn→∞ Pr(θ̂X

pn =

θp or θp + 1) = 1. How fast this probability converges to 1 is mainly determined by the

probability mass F X
0 puts on θp and θp + 1. Then it is natural to expect that the adjusted

estimator θ̂Xc
pn behaves similarly for p = 0.1, 0.7 and 0.9, due to the uniformity of F X

0 . Results

for p = 0.05 and p = 0.95 are actually much better than those for p = 0.75. For example,
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when p = 0.05, n = 100 and δ(n) = n−1/5, the MSE of θ̂Xc
pn is only 0.002, which is also smaller

than the MSE of θ̃pn, 0.018. Since θX
0.05 = 1 is at the left boundary of F X

0 , θ̂X
0.05n (or θ̃X

0.05n)

cannot take any values below θX
0.05n. In contrast, θ̂X

0.75n is likely to take any integer value

between θX
0.75n − 2 and θX

0.05n + 2 if n is not very large. Thus, in 1000 replicates, θ̂X
0.05n takes

fewer wrong values than θ̂X
0.75n for a fixed n, which explains why θ̂Xc

pn converges more quickly

with p = 0.05 than with p = 0.75. A similar argument applies to θ̂Xc
pn with p = 0.95. When

θ̂X
0.05n does take a wrong value (that must be greater than the true quantile), say θX

0.05n + 1,

p = 0.05 is often misclassified as a plateau and then θ̂X
0.05n is very likely to receive the correct

adjustment so that the final estimate θ̂Xc
pn is often correct. This is why θ̂Xc

pn is also better than

the sample quantile when p = 0.05.

To explore how θ̂Xc
pn behaves with small and large values of p for a more general discrete

distribution, we also conduct simulations on the Poisson(2) and Poisson(20) distributions,

both with unbounded upper tails. The former concentrates most of its probability mass on

only a few points while the latter is much more scattered on a longer range of points. Table

2.3 displays the mean and MSE of θ̂Xc
pn for both distributions with p = 0.1 and p = 0.9,

and also compares them to the performance of the sample quantile. When p = 0.1, θ̂Xc
pn

converges quickly and outperforms the sample quantile θ̃X
pn for both distributions. Note that

p = 0.1 is very close to a plateau of the Poisson(20) distribution, so θ̃X
pn (or θ̂X

pn) converges

very slowly (see Comment 2.3.3). When p = 0.9, the convergence of θ̂Xc
pn becomes slower, as

the jumps between consecutive plateaus are smaller at the upper tails of both Poisson(2)

and Poisson(20). Since Poisson(20) is more spread than Poisson(2), the convergence of θ̂Xc
pn

is even slower for Poisson(20). It appears that θ̂Xc
pn is worse than θ̃X

pn at the upper tail, if p is

not a plateau of F X
0 . This is due to the trade-off between consistency and efficiency, which

is more significant for p between two close plateaus. Typically the upper tail of F X
0 is quite

flat in the sense that it consists of smaller and smaller jumps, and hence θ̂X
pn varies among

multiple values for n not very large. In this case, it is important to categorize p correctly
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Table 2.3: θ̂Xc
pn for p = 0.1 and p = 0.9

Poisson(2) Poisson(20)

p = 0.1, θX
p = 0 p = 0.9, θX

p = 4 p = 0.1, θX
p = 14 p = 0.9, θX

p = 26

δ(n) n MEAN MSE MEAN MSE MEAN MSE MEAN MSE

n−1/5 100 0.012 0.012 3.556 0.444 13.840 0.536 25.176 1.368
500 0 0 3.954 0.046 14.020 0.108 25.378 0.632

1000 0 0 3.994 0.006 14.044 0.050 25.452 0.548
2000 0 0 4 0 14.016 0.016 25.68 0.320

10000 0 0 4 0 14.001 0.001 25.996 0.004

n−1/4 100 0.013 0.013 3.444 0.558 13.877 0.523 25.207 1.337
500 0 0 3.942 0.058 13.964 0.116 25.329 0.683

1000 0 0 3.993 0.007 14.022 0.032 25.436 0.564
2000 0 0 4 0 14.008 0.008 25.601 0.399

10000 0 0 4 0 14.001 0.001 25.987 0.013

n−1/3 100 0.005 0.005 3.471 0.529 13.823 0.531 25.205 1.287
500 0 0 3.894 0.106 13.944 0.106 25.284 0.74

1000 0 0 3.991 0.009 14.001 0.031 25.354 0.646
2000 0 0 4 0 14.005 0.007 25.493 0.507

10000 0 0 4 0 14 0 25.969 0.031

n−1/2 100 0.003 0.003 3.374 0.626 13.798 0.534 25.178 1.354
500 0 0 3.807 0.193 13.901 0.117 25.332 0.696

1000 0 0 3.976 0.024 13.975 0.035 25.238 0.764
2000 0 0 4 0 14 0 25.282 0.718

10000 0 0 4 0 14 0 25.917 0.083

n−1 100 0 0 3.333 0.667 13.837 0.533 25.205 1.339
500 0 0 3.437 0.527 13.913 0.109 25.28 0.736

1000 0 0 3.791 0.209 13.964 0.038 25.234 0.766
2000 0 0 3.994 0.006 13.993 0.007 25.176 0.824

10000 0 0 4 0 14 0 25.559 0.441

θ̃X
pn 100 0.108 0.096 3.879 0.1485 14.316 0.579 25.723 0.763

500 0.008 0.008 4 0 14.329 0.329 25.815 0.199
1000 0 0 4 0 14.302 0.212 25.880 0.217
2000 0 0 4 0 14.215 0.169 25.950 0.048

10000 0 0 4 0 14.053 0.050 26 0

Entries “MEAN” and “MSE” are the average and the mean squared error of θ̂Xc
pn over 1000 runs.

Note: for the Poisson(2) distribution, Pr(X ≤ 0) = 0.135, . . . , Pr(X ≤ 3) = 0.857, and
Pr(X ≤ 4) = 0.947; for the Poisson(20) distribution, Pr(X ≤ 13) = 0.066, Pr(X ≤ 14) = 0.105,
. . . , Pr(X ≤ 25) = 0.887, and Pr(X ≤ 26) = 0.922.
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in order to avoid incorrect adjustment to θ̂X
pn, but correct categorization of p requires the

sample size to be very large.

2.3.5 Estimating the Probability of a Correct Estimate

When the underlying distribution is continuous, the maximum empirical likelihood estimator

for a quantile (or the sample quantile estimator) is consistent in the sense that the estimator

moves around the population quantile within a range shrinking gradually to zero as the

sample size increases. In this case, a point estimate is often accompanied with a confidence

interval at a desired confidence level. Now for F X
0 discrete, the consistent quantile estimator

θ̂Xc
pn hits θX

p with probability tending to 1 as n → ∞. Unlike in the continuous case, con-

structing a confidence interval around θ̂Xc
pn for θX

p at a given confidence level is not feasible,

because F X
0 puts probability mass on discrete points. Therefore, we propose to estimate the

probability of a correct estimate (PCE), i.e., Pr(θ̂Xc
pn = θX

p ). Note that, if we treat the point

θ̂Xc
pn as a shrunken interval and write PCE as Pr({θ̂Xc

pn } ∋ θX
p ), then PCE will have an inter-

pretation similar to that of a confidence interval, namely the probability that {θ̂Xc
pn } covers

the true parameter θX
p . PCE may also be used to measure how good an estimate θ̂Xc

pn is. If

the PCE is high, then θ̂Xc
pn is very likely to estimate θX

p correctly.

To estimate PCE based on a single finite sample from a discrete distribution, one possible

approach is to bootstrap. Applying the plug-in principle (Efron and Tibshirani 1993), we

estimate Pr(θ̂Xc
pn = θX

p ) by

P̂r(θ̂Xc∗
pn = θ̂Xc

pn ) =

∑B
b=1 1(θ̂Xc∗b

pn = θ̂Xc
pn )

B
,

where θ̂Xc∗b
pn is the estimate of θX

p based on (2.19) and the bth bootstrap sample X∗b = {X∗b
i },

θ̂Xc
pn is obtained from the original sample {Xi}, and B is the number of bootstrap samples.

Table 2.4 shows the simulation results of bootstrapping PCE. The simulation setup is

the same as in the first simulation study in Section 2.3.4. At each simulation run, a random

sample is first drawn from F X
0 , θ̂Xc

pn is calculated, and then P̂r(θ̂Xc∗
pn = θ̂Xc

pn ) is obtained based

on B = 500 bootstrap samples drawn from the original sample. Here, “mean” and “mse”
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Table 2.4: Bootstrapping Pr(θ̂Xc
pn = θX

p )

p = 0.75, θX
p = 8 p = 0.7, θX

p = 7

δ(n) n true est mean mse true est mean mse

n−1/5 100 0.537 0.546 0.659 0.029 0.716 0.726 0.652 0.019
500 0.907 0.906 0.855 0.023 0.869 0.876 0.838 0.021

1000 0.990 0.992 0.951 0.009 0.886 0.881 0.839 0.023
2000 1.000 1.000 0.996 0.000 0.902 0.903 0.847 0.024

10000 1.000 1.000 1.000 0.000 0.923 0.925 0.867 0.023

n−1/4 100 0.480 0.464 0.655 0.049 0.734 0.749 0.649 0.019
*500 0.870 0.863 0.817 0.025 0.905 0.905 0.845 0.022
1000 0.983 0.983 0.936 0.013 0.921 0.920 0.873 0.021
2000 0.999 1.000 0.993 0.001 0.931 0.934 0.880 0.020

10000 1.000 1.000 1.000 0.000 0.952 0.939 0.894 0.020

n−1/3 100 0.444 0.472 0.666 0.062 0.747 0.729 0.654 0.020
500 0.796 0.791 0.801 0.023 0.944 0.953 0.881 0.019

*1000 0.967 0.966 0.915 0.016 0.960 0.959 0.909 0.016
2000 0.999 1.000 0.987 0.002 0.966 0.964 0.914 0.016

10000 1.000 1.000 1.000 0.000 0.978 0.982 0.933 0.013

n−1/2 100 0.421 0.422 0.676 0.079 0.761 0.754 0.668 0.021
500 0.670 0.679 0.768 0.031 0.977 0.974 0.903 0.018

1000 0.911 0.920 0.861 0.022 0.987 0.986 0.945 0.011
*2000 0.996 0.995 0.974 0.004 0.991 0.989 0.953 0.009
10000 1.000 1.000 1.000 0.000 0.995 0.994 0.965 0.005

n−1 100 0.419 0.443 0.679 0.082 0.763 0.763 0.673 0.020
500 0.455 0.448 0.746 0.107 0.990 0.985 0.940 0.009

1000 0.603 0.598 0.760 0.045 0.999 0.998 0.985 0.002
2000 0.932 0.933 0.871 0.023 1.000 0.999 0.992 0.001

*10000 1.000 1.000 1.000 0.000 1.000 1.000 0.996 0.000

The entry “true” is Pr(θ̂Xc
pn = θX

p ) calculated using FX
0 ; “est” is estimated PCE by

#{θ̂Xc
pn = θX

p }/N , where N = 1000 is the number of simulation runs; “mean” and “mse” are the

average and the mean squared error of bootstrap estimates P̂r(θ̂Xc∗
pn = θ̂Xc

p ) over 1000 runs.
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are the average and the mean squared error of P̂r(θ̂Xc∗
pn = θ̂Xc

p ) over 1000 runs. As one can

observe, the bootstrap estimator is biased for a finite sample, and the speed at which the

bias diminishes to zero varies with the choice of δ(n). The MSE approaches zero relatively

fast when δ(n) = n−1/5 is chosen for p = 0.75 or δ(n) = n−1 is chosen for p = 0.7. When

n is fixed and the type of p is unknown, δ(n) = n−1/5, n−1/4, n−1/3, n−1/2, n−1 perform best

with sample sizes n = 100, 500, 1000, 2000 and 10000, respectively, which indicates that the

results in Table 2.4 are consistent with those in Tables 2.1 and 2.2.

2.4 Applications

Table 2.5: Epileptic seizures (n = 351)

X 0 1 2 3 4 5 6 7 8
Frequency 126 80 59 42 24 8 5 4 3
Fn(x) 0.359 0.587 0.755 0.875 0.943 0.966 0.980 0.991 1.000

Estimate: θ̃X
0.75n = 2 θ̂X

0.75n = 2 θ̂Xc
0.75n = 2

δ−1 δ−1/2 δ−1/3 δ−1/4 δ−1/5

Bootstrapped PCE: 0.989 0.999 1.000 1.000 1.000

We present two examples to illustrate the application of the new estimator θ̂Xc
pn . The first

example is the epileptic seizure counts data discussed in Albert (1991), which exhibits sig-

nificant overdispersion relative to a Poisson distribution. A patient with intractable epilepsy

controlled by anti-convulsant drugs was observed for 351 days, and the patient’s daily seizure

counts were recorded. The observed counts are summarized in Table 2.5. The sample quan-

tile θ̃X
0.75n and the MELE θ̂X

0.75n are both 2. Note that 75.5% of the 351 counts are 2 or less,

suggesting that the true distribution might have a plateau at level 0.75. The classification

procedure (2.18) and θ̂Xc
pn are applied to the data for p = 0.75. As a result, p = 0.75 is clas-

sified into case (i) with any of the five choices of δ, and hence θ̂Xc
0.75n agrees with the sample

quantile and the MELE in this example. All PCE estimates are very high, indicating that 2

is an accurate estimate of θ0.75.
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Table 2.6: Counts of alpha-particles (n = 2608)

X 0 1 2 3 4 5 6
Frequency 57 203 383 525 532 408 273
Fn(x) 0.022 0.010 0.247 0.448 0.652 0.808 0.913
X 7 8 9 10 11 ≥ 12
Frequency 139 45 27 10 4 2
Fn(x) 0.966 0.984 0.994 0.998 0.999 1.000

Estimate: θ̃X
0.25 = 3 θ̂X

0.25 = 3 θ̂Xc
0.25 = 2

n−1 n−1/2 n−1/3 n−1/4

Bootstrapped PCE: 0.999 0.979 0.920 0.870

The second example is the classic data set from Rutherford and Geiger (1910), which

consists of 2608 counts of scintillations caused by the radioactive decay of a quantity of the

element polonium; all the counts were observed in 72-second intervals. Table 2.6 shows the

count frequencies. Here, θ0.25 is of interest; both θ̃X
0.25n and θ̂X

0.25n provide the same estimate,

3. However, p = 0.25 is classified into case (ii) by (2.18), and θ̂Xc
0.75n = 2. Since the data

are concentrated on only a few points and the sample size is large, δ = n−1 or n−1/2 yield

better estimates of PCE than other choices of δ. Note that the data agree excellently with

the Poisson distribution with mean 3.87 (goodness of fit χ2 = 12.99 with degrees of freedom

11, p-value = 0.30), as shown in Figure 2.7. The 0.25th quantile of Poisson(3.87) is 2, which

confirms that θ̂Xc
0.75n = 2 is a better estimate of θ0.25.

2.5 Practical Issues

2.5.1 Sample Size

For the discrete uniform distribution considered above, in order for the proposed classification

procedure and the quantile estimator θ̂Xc
pn to perform fairly well, the sample size n needs to

be at least 500. We also examined the Poisson(2) and the Poisson(20) distributions. For

Poisson(2), a balanced and acceptable correct-classification rate of 80% can be attained by
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Figure 2.7: Counts of alpha-particles

a sample of size n = 150, while for Poisson(20), the sample size needs to be 1000 to achieve

approximately the same performance. In any case, the sample size should be much larger

than what is typically needed in other contexts. This high requirement of the sample size is

mainly due to the discreteness of the underlying distribution. In the discrete case, it usually

takes a fairly large sample for the MELE of a quantile (or the sample quantile) to reach a

relatively stable status. A very large sample is necessary if the distribution is scattered or p

is close to a plateau of F X
0 (as discussed in Comment 2.3.3). For this reason, Gonzále-Barrios

and Rueda (2001) set the sample size to 1000, and Machado and Santos Silva (2005) used

sample sizes of 500 and 2000 in their simulation studies. Perhaps, this is the price we have to

pay for discrete data that are usually less tractable than continuous data. We can conjecture

that, for a very scattered discrete distribution (i.e., the probability mass on each point is

very small), θ̂Xc
pn performs poorly unless n is extremely large. In this seemingly problematic
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situation, a quantile estimate off by 1 will not have much negative impact, and one can

usually treat the data as if they were from a continuous distribution and use θ̂X
pn or θ̃X

pn

directly.

2.5.2 Choice of δ(n)

The choice for δ(n) depends on the sample size, and consistently affects the performance

of the EL-based classification procedure, θ̂Xc
pn and the bootstrap estimator of PCE. In our

simulation example, n−1/5, n−1/4, n−1/3, n−1/2 and n−1 seem to be the best choice for δ(n)

when n = 100, 500, 1000, 2000, 10000, respectively. However, the dependence of the best

δ(n) on the sample size may vary with the underlying distribution. To explore this, we also

compared Poisson(2) with Poisson(20). The performance of θ̂Xc
pn does not vary much for p

in case (ii), even though F X
0 changes from the concentrated Poisson(2) to the scattered

Poisson(20). If p is in case (i), for each δ(n) candidate, θ̂Xc
pn converges more quickly with a

concentrated distribution than with a scattered distribution. The consequence is that the

most balanced δ(n) corresponding to a particular sample size varies from distribution to

distribution, meaning that there is no simple rule to choose δ(n) for the data at hand. For

Poisson(2), δ(n) = n−1/4 and n−1/2 are compatible with n = 100 and 500, respectively, and

n−1 is the best when n ≥ 1000. In contrast, for Poisson(20), δ(n) = n−1/5, n−1/4 and n−1/2

perform best with n = 1000, 2000 and 10000, respectively. Therefore, when the sample size

is fixed, we can expect that a relatively small δ(n) is needed if there is evidence (e.g., many

ties in the data) that the underlying distribution is quite concentrated.

In practice, the chance that the p of interest is a plateau of F X
0 is generally very small.

From this point of view, balanced performance of δ(n) for the two types of p is not important,

and hence other criteria for choosing δ(n) may be considered. Suppose that the true PCE

Pr(θ̂Xc
pn = θX

p ) can be obtained for any δ(n). Then we can choose the δ(n) leading to the

highest PCE. The logic is simply that the best δ(n) should yield an estimate that is most

likely to be the true quantile. As one can observe from Tables 2.1, 2.2 and 2.4, for any fixed
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n, if p is not a plateau of F X
0 , a larger δ(n) has a higher PCE and also corresponds to better

performance of the classification procedure and the estimator θ̂Xc
pn ; if p is a plateau of F X

0 , a

smaller δ(n) has a higher PCE and also corresponds to better performance of the procedure

and the estimator. Consequently, the criterion of maximizing PCE automatically ensures

the best performance of the classification procedure and θ̂Xc
pn . However, the true PCE is not

available since it requires detailed information about F X
0 . One may use bootstrap estimates

of PCE in practice. Because bias and variation of the bootstrap estimator exist for finite

samples and diminish to zero as n → ∞, the chance that the best δ(n) will be chosen is not

100% for a real sample, but will increase as n increases.

Using the same discrete uniform distribution as above, we simulated the process of

choosing δ(n) by the criterion of maximizing bootstrap estimates of PCE, and found that the

best δ(n) for p = 0.7 was chosen 64% of the time when n = 500 and 80% of the time when

n = 1000; similarly, the best δ(n) for p = 0.75 was chosen 60% of the time when n = 500

and 74% of the time when n = 1000. Since the two criteria for choosing δ(n) are not perfect,

some care is needed when they are used in practice.

2.5.3 Jitters

When the data {Xi} are drawn from a discrete distribution, jittering is useful for us to

properly define RX(θ) and the MELE θ̂X
pn. Another point of jittering is that it transforms

{Xi} to a new set of continuous data {Yi}, so that we can study the consistency property

of θ̂X
pn more easily using the results for θ̂Y

pn. Under the assumption that the support of F X
0

consists of consecutive integer values, our choice of jitters Zi
iid∼ U(0, 1] is simple but not

necessary. Random variables from any Beta distribution will serve the same purpose of

constructing a continuous distribution F Y
0 , except that F Y

0 may not be piecewise linear. If

the support of F X
0 contains unevenly spaced values, to ensure that the jittered variable Y

has a continuous distribution, Zi may be generated from distributions supported on different

lengths of intervals, i.e., Zi may be non-identically distributed. The use of non-uniform
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or non i.i.d. jitters will not affect the derivation of our results for θ̂X
pn, although it may

affect the shape of F Y
0 . θ̂X

pn and hence θ̂Xc
pn are actually invariant to the choice of jitters.

Since jittering should preserve the order of the data (i.e., Y(i) must be generated from X(i)

even though X(i) may be tied with X(i−1) or X(i+1), and Y(i) recovers X(i) after the inverse

transformation), θ̂X
pn must be X(i∗) with i∗ = np, [np] or [np] + 1, no matter what specific

jitters are used. In practice, to get estimates θ̂X
pn and θ̂Xc

pn , one can skip the jittering step,

and find i∗ using (2.11) and then the smallest index L and the largest index U such that

X(L) = X(i∗) = X(U). For instance, if n = 500 and p = 0.5, then θ̂X
pn = X(250); if we also

know that X(240) < X(241) = . . . = X(250) = . . . = X(255) < X(256), say, then hl and hu can be

calculated by plugging in 241 for L and 255 for U in (2.16); finally, θ̂Xc
pn can be determined

based on the values of hl and hu.

2.6 Conclusion

The quantile estimator θ̂Xc
pn has been shown to be consistent for θX

p , when the underlying

distribution is discrete. Although its consistency may cost significant amount of efficiency

if p is not at a plateau of the true distribution, θ̂Xc
pn is particularly useful for consistently

estimating quantiles θX
p for fairly concentrated discrete distributions. The invariance of θ̂X

pn to

jittering contrasts to the dependence of Machado and Santos Silva’s (2005) quantile regression

coefficients on jitters, and makes practical quantile estimation very convenient. Compared

to González-Barrios and Rueda’s approach that involves calculating sample quantiles for

a long sequence of sub-samples, the estimator θ̂Xc
pn is computationally easy to obtain once

δ(n) is chosen; this advantage is even more prominent when the sample size is large. With

a sample of size 1000, our estimator θ̂Xc
pn correctly estimates the quantile θX

0.7 of the discrete

uniform distribution at a rate of at least 0.92 (Table 2.1), which is much better than the

performance of González-Barrios and Rueda’s method. In our preliminary simulation study,

the correct-estimation rate of their method reaches approximately 0.70 at n = 1000 but fails

to go up for n up to 10000. Although we consider the performance of θ̂Xc
pn to be satisfactory,
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it may be further improved by developing a sophisticated criterion for choosing δ(n). It

is also of significance to improve the associated PCE estimator, as this not only provides

more information about the data but also helps in choosing the best δ(n). A more accurate

estimator for PCE might be obtained by modifying the simple bootstrap procedure, which

could be a future research direction.



Chapter 3

Selection of Working Correlation Structure in GEE via Empirical

Likelihood

3.1 Introduction

Longitudinal data consist of measurements taken repeatedly through time on a sample of

subjects (e.g., human patients and animals) and a set of covariates for each subject. In

contrast to cross-sectional studies in which the response of each individual is measured at

a single occasion, longitudinal studies allow researchers to study changes over time and to

evaluate treatments that influence these changes, and hence play a prominent role in medical,

pharmaceutical and behavioral sciences.

Among various models for longitudinal data, the approach of generalized estimating equa-

tions (GEE) proposed by Liang and Zeger (1986) has become increasingly important and

popular, due to its many attractive features. This approach is appropriate for longitudinal

data in general, and is especially useful in dealing with Non-Gaussian longitudinal data that

are often encountered in practice. It is not a likelihood-based method, and requires only a

partial specification of the joint distribution of the repeated measurements within the same

subject, and hence is more robust than a fully parametric model. Estimation in GEE models

is computationally easier than in likelihood models, such as generalized linear mixed-effects

models that usually require numerical or Monte Carlo integration.

While the GEE approach enjoys advantages of semi-parametric methods, it is also lim-

ited by its lack of a likelihood. It is known that likelihood methods are very effective in

finding efficient estimators, constructing tests with good power properties and short con-

fidence intervals (or small confidence regions), and selecting the best model from a pool

of candidates. Combining the reliability of nonparametric methods with the flexibility and

40
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effectiveness of likelihood approaches, empirical likelihood has the potential to add value to

longitudinal data settings, in particular GEE models, as the semi-parametric character of

the GEE approach matches well the philosophy of empirical likelihood.

This chapter explores the use of empirical likelihood to longitudinal data analysis with

GEE models. The particular focus is on improving efficiency of the GEE estimator. First,

a brief review of longitudinal data and the method of GEE is provided in Section 3.2.

Next, Section 3.3 presents existing methods for improving the GEE estimator, including

the quadratic inference function approach and model selection methods for GEE. After our

investigation of these methods, it becomes clear that an effective way of improving the

estimation efficiency within the GEE framework is to select among competing GEE models

the one that assumes the correct working correlation structure for repeated measurements.

Thus, our focus is further narrowed down to applying empirical likelihood to the problem

of model selection in the context of GEE. Before proceeding to empirical likelihood-based

estimation and model selection for GEE models, we review in Section 3.4 some existing work

on empirical likelihood applied to regression models and to dependent data. We discuss in

Section 3.5 using empirical likelihood to choose the best GEE model, in particular the best

working correlation structure. Finally, Section 3.6 summarizes our conclusions and proposes

some future directions.

3.2 Longitudinal Data and Generalized Estimating Equations

In a longitudinal data set, Yi = (Yi1, . . . , Yiti)
T denotes the response vector of the ith subject,

where Yij is the response observed at the jth time point on subject i, i = 1, . . . , n and

j = 1, . . . , ti; Xij = (Xij1, . . . , Xijp)
T is the p × 1 vector of covariates associated with Yij,

and Xi = (Xi1, . . . , Xiti)
T is the ti × p design matrix for the ith subject. The vector Xij

may include two types of covariates: covariates whose values do not change throughout the

duration of the study and those whose values change over time. Examples of the former
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include sex and fixed experimental treatments, and examples of the latter include time since

baseline and current smoking status.

Measurements taken on the same subject at different times form a cluster, and typically

exhibit positive correlation which must be accounted for in the analysis. A number of models

and methods have been developed to analyze longitudinal data. The type of the response

variable is an important characteristic that dictates to some extent the choice of models. If the

response variable is continuous and has an approximately symmetric distribution so that it is

reasonable to assume normality, marginal multivariate linear models and linear mixed-effects

models are common choices, depending on the research questions. In biomedical applications,

the response variable is often binary or a count, for instance the presence or absence of some

particular illness, and the number of epileptic seizures in a four-week interval. For non-

Gaussian response variables, general models that are different extensions of the generalized

linear model have been developed. Among those models (extensions), generalized estimating

equations are a popular class of marginal models (marginalized over subject-specific random

effects) .

The method of generalized estimating equations was proposed by Liang and Zeger (1986),

and is denoted by GEE in the literature. The abbreviation GEE is not to be confused with

general estimating equations as used in Qin and Lawless (1994) to define empirical likelihood

for general parameters. Used to evaluate the population-averaged effects of treatments, GEE

requires only a partial specification of the marginal distribution for the response, which is

an appealing feature as there are few tractable multivariate distributions for non-Gaussian

data. The GEE approach is based on the idea of the quasilikelihood for a generalized linear

model and the concept of estimating equations. In particular, the following are assumed in

GEE:

(1) The marginal mean of the response of subject i measured at time point j, E(Yij) = µij,

depends upon the covariates Xij through a known link function h(µij) = ηij = XT
ijβ,

where β is the p-dimensional parameter of interest.



43

(2) The marginal variance var(Yij) is assumed to depend on the marginal mean according

to var(Yij) = φv(µij), where v(·) is a known variance function and φ is a possibly

unknown scale parameter.

(3) A ti × ti working correlation matrix R(α) is assumed for the random vector Yi, and

R(α) is parameterized by α = (α1, . . . , αs)
T , a vector of nuisance parameters. The

corresponding working covariance matrix is

Vi(β, α, φ) = A
1/2
i (β, φ)R(α)A

1/2
i (β, φ), (3.1)

whereAi(β, φ) is a diagonal matrix with var(Yij) = φv(µij), j = 1, . . . , ti, along the

diagonal. Note that Vi = var(Yi) if R(α) is chosen correctly.

Then the generalized estimating equation for β is defined as

n∑

i=1

(
∂µi

∂βT

)T

V −1
i (β, α, φ)(Yi − µi) = 0, (3.2)

where µi = (µi1, . . . , µiti)
T . The parameter α in the working correlation matrix is treated as

a nuisance. The left-hand side of (3.2) can be written as a function of β alone given the data,

n∑

i=1

(
∂µi

∂βT

)T

V −1
i (β, α, φ)(Yi − µi) =

n∑

i=1

Ui[ β, α̂(β, φ̂(β) ) ],

since φ in V −1
i = A

−1/2
i (β, φ)R−1(α)A

−1/2
i (β, φ) can be replaced by a n1/2-consistent esti-

mator φ̂(β) given β, and α by a n1/2-consistent estimator α̂(β, φ) given β and φ. Typically,

method of moment estimators of φ and α are used. The solution to equation (3.2), β̂G, is the

GEE estimator of the regression parameter β.

Liang and Zeger (1986) proved that, under mild regularity conditions, β̂G is consistent

and asymptotically normal:

n1/2(β̂G − β)
d−→ N (0, VG) , (3.3)

where

VG = lim
n→∞

n

(
n∑

i=i

DT
i V −1

i Di

)−1( n∑

i=1

DT
i V −1

i cov(Yi)V
−1
i Di

)(
n∑

i=i

DT
i V −1

i Di

)−1

, (3.4)



44

and Di = ∂µi/∂βT . Another important advantage of the GEE approach is that the con-

sistency and asymptotic normality of β̂G hold whether or not the working correlation R is

correctly specified. Thus, valid inference for β can be made via the generalized Wald statistic

that utilizes the asymptotic normality of β̂G, regardless of what working correlation is used.

If R is correct so that var(Yi) = Vi, then VG will reduce to

V ∗
G = lim

n→∞

(
1

n

n∑

i=i

DT
i V −1

i Di

)−1

.

V ∗
G is the optimal asymptotic variance that can be achieved by the class of estimating equa-

tions
{
HT (Y − µ(β)) = 0 | HN×p does not involve Y

}
, (3.5)

where Y = (Y T
1 , . . . , Y T

n )T , µ = (µT
1 , . . . , µT

n)T , and N =
∑n

i=1 ti (McCullagh and Nelder,

1989, page 347-8; Heyde, 1997, page 25-6). Note that GEE is a member of class (3.5),

since (3.2) can be rewritten as DT V −1(Y − µ) = 0, where D = (DT
1 , . . . , DT

n )T and V =

diag{V1, . . . , Vn}. The optimality is in the sense that, if β̃ is any estimator that solves an

estimating equation in class (3.5), then var[n1/2(β̃−β)]−V ∗
G is nonnegative definite, at least

asymptotically. Thus, the full efficiency of β̂G is gained when R is correct.

Since there is no associated likelihood or objective function in the GEE method, inference

for β is limited to using the generalized Wald’s statistic, and no goodness-of-fit statistic is

available. It has been reported that Wald’s statistic might behave poorly even for large sam-

ples (Moolgavkar & Venzon, 1986). Therefore, some modifications leading to alternative test

statistics have been proposed. The generalized score statistic was considered by Rotnitsky

& Jewell (1990) and Boos (1992). Rotnitsky & Jewell (1990) also proposed adjusted Wald

and score statistics that are asymptotically equivalent to a weighted sum of independent

chi-squared variables under the null. Hanfelt and Liang (1995) presented two ways of con-

structing approximate likelihood ratios, one based on quasi-likelihood and the other based

on linear projection.
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While it is appealing that the GEE estimator β̂G is consistent even if the working correla-

tion R differs from the true underlying structure, there is a price to pay in terms of efficiency.

For example, the independence structure is seemingly the simplest working assumption that

can be adopted in all cases, but, for time-varying covariates, the resulting efficiency of the

GEE estimator may be as low as 60% compared to the GEE estimator obtained by using the

correct correlation structure (Fitzmaurice, 1995). In general, it is more efficient to use an R

closer to the true correlation. Then a practical question is “How to decide whether a working

correlation structure is closer to the truth, compared to other alternatives?” The original

GEE approach is not helpful in answering this question: working correlations are merely a

device to provide consistent and asymptotically normal estimates for the regression parame-

ters, and do not have associated standard errors, thus making Wald-type tests unavailable;

likelihood-ratio tests cannot be used since GEE is not a likelihood method; score tests are

not easy to use.

3.3 Methods for Improving the GEE Estimator

3.3.1 Quadratic Inference Function

Many authors have attempted to improve the efficiency of GEE estimators. Qu et al. (2000)

applied the principle of generalized method of moments (GMM, Hansen, 1982) in the GEE

framework to construct a quadratic inference function (QIF) for β. Their main idea is as

follows. First, the inverse of the working correlation matrix R−1(α) is assumed to be a linear

combination of basis matrices in the form

R−1(α) =
m∑

l=1

alMl, (3.6)

where m and the set of matrices {Ml} depend on the particular choice of R(α), and {al}

are functions of α. For instance, if R(α)m×m has an exchangeable structure (i.e., its diagonal

elements are all equal to 1 and off-diagonal elements are all equal to α), then its inverse can

be represented as R−1(α) = a1M1 + a2M2,, with M1 being the identity matrix I, M2 being

the matrix with 0 on the diagonal and 1 off the diagonal, a1 = −[(m−2)α+1]/[(m−1)α2 −
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(m− 2)α− 1], and a2 = α/[(m− 1)α2 − (m− 2)α− 1]. Second, instead of the estimation of

{al} in 3.6, an extended estimating function is defined to be

ge(Yi, Xi, β) =




(
∂µi

∂βT

)T

A
−1/2
i M1A

−1/2
i (Yi − µi)

...
(

∂µi

∂βT

)T

A
−1/2
i MmA

−1/2
i (Yi − µi)




mp×1

, (3.7)

and then the QIF

Qn(β) = nḡT
e (β)C−1

n ḡe(β),

where ḡe(β) = (1/n)
∑n

i=1 ge(Yi, Xi, β) and Cn = (1/n)
∑n

i=1 ge(Yi, Xi, β)gT
e (Yi, Xi, β). Last,

the QIF estimator is obtained by minimizing the objective function Qn(β), i.e.,

β̂Q = arg min
β∈Rp

Qn(β).

Note that β̂Q is the solution of

∂Qn(β)

∂β
= 2n

∂ḡT
e (β)

∂β
C−1

n ḡe(β) − nḡT
e (β)C−1

n

∂Cn

∂β
C−1

n ḡe(β) = 0p×1. (3.8)

Qu et al. pointed out that the second term of ∂Qn(β)/∂β in (3.8) is Op(n
−1), and hence

solving (3.8) is asymptotically equivalent to solving

n
∂ḡT

e (β)

∂β
C−1

n ḡe(β) = 0p×1. (3.9)

They further argued that, by estimating equation theory, (3.9) is optimal among the class

of estimating equations

m∑

l=1

Hl

N∑

i=1

(
∂µi

∂βT

)T

A
−1/2
i MlA

−1/2
i (Yi − µi) = 0, (3.10)

in the sense that the asymptotic variance of the solution to (3.9) reaches the minimum among

all estimating equations in this class. Here, Hl are arbitrary p × p nonrandom matrices. If

Hl = alI, then (3.10) becomes

n∑

i=1

(
∂µi

∂βT

)T

A
−1/2
i (a1M1 + . . . + amMm)A

−1/2
i (Yi − µi) = 0,
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which is exactly the GEE with the working correlation structure R(α). Since GEE is a

member of the class in (3.10), Qu et al. concluded that, with the same incorrect choice of

R(α), the QIF estimator β̂Q is more efficient than the GEE estimator β̂G, and β̂Q will be

as efficient as β̂G if R(α) is correct, as it is already known that the GEE estimator is fully

efficient with the true correlation structure. Qu et al. also performed a simulation study to

support this conclusion.

The QIF method sounds very appealing, since the estimator is claimed to have improved

efficiency if R(α) is misspecified. The extended estimating equation in (3.7) is especially

interesting to us, as it may be used to define empirical likelihood for β. Qin and Lawless

(1994) showed that the MELE will have smaller asymptotic variance if additional informa-

tion is formulated into added components of the estimating function. For these reasons, we

investigate the QIF method in detail.

However, we get dramatically different results after replicating exactly the same simula-

tion study as in Qu et al. (2000). In particular, the model is assumed to be

E(Yij) = µij = XT
ijβ and Yi = Xiβ + εi,

where XT
ij = (Xij1, Xij2) and β = (β1, β2)

T = (1, 1)T . For i = 1, . . . , 20 (i.e., n = 20) and

j = 1, . . . , 10 (i.e., ti ≡ t = 10), Xij1 and Xij2 are generated independently from N(0.1×j, 1),

and εi is generated from N10(0, Σ0(α)), with Σ0(α) = R0(α), where R0(α) has either an

exchangeable correlation structure or an AR-1 structure, and α = 0.7. To ensure correct

results, much care is taken in our simulation procedure, which is written in R. For each

simulated data set, the GEE estimate generated from our R program is found to agree with

the one generated from the GENMOD procedure of SAS. Both the grid search algorithm and

the Newton-Raphson algorithm are used to obtain QIF estimates, and the two sets of QIF

estimates are identical. Table 3.1 shows our results obtained from 1000 replicate simulation

runs, along with the results from Qu et al. (2000). Entries “GEE” and “QIF” are the mean

squared errors (MSEs) of β̂G and β̂Q, respectively; “SRE” is the simulated relative efficiency,

i.e., the ratio of MSE(β̂G) to MSE(β̂Q). If the relative efficiency is larger than 1, then it
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verifies that β̂Q is more efficient than β̂G. Our results indicate that β̂Q is no better than

β̂G in any situation, which contradicts the conclusion of Qu et al. that β̂Q has improved

efficiency if R(α) is specified incorrectly. In particular, when the true correlation structure

R0 is exchangeable with α = 0.7 but the working structure R is AR-1, our SRE is 0.86 in

contrast to 2.07 reported by Qu et al.; when R0 is actually AR-1 with α = 0.7 but R is

exchangeable, our SRE is 0.90 instead of 1.34 in Qu et al. (2000).

Table 3.1: Comparison between the GEE estimator and the QIF estimator (n = 20)

Results reproduced Results of Qu et al.

Working R Working R
True R0 EX AR-1 EX AR

GEE QIF SRE GEE QIF SRE SRE SRE
EX 0.00437 0.00560 0.78 0.00296 0.00342 0.86 0.99 2.07

AR-1 0.00756 0.00839 0.90 0.00377 0.00518 0.73 1.34 0.98

Both the true exchangeable and the true AR-1 correlation structures are parameterized by
α = 0.7. Entries “GEE” and “QIF” are the mean squared errors (MSEs) of β̂G and β̂Q,
respectively, which are obtained from our 1000 simulation runs. “SRE” is the simulated ratio of
MSE(β̂G) to MSE(β̂Q).

While the simulation procedure in Qu et al. (2000) is questionable, their argument is also

flawed. First, as also indicated in Pilla and Loader (2006), the second term of ∂Qn(β)/∂β in

(3.8) is of order Op(1), rather than Op(n
−1). This can be verified by checking that

√
nḡe(β̂Q) =

Op(1), Cn
p−→ V ar[ge(Y, X, β)] and

∂Cn

∂βk

p−→ E

[
ge(Y, X, β)

∂gT
e (Y, X, β)

∂βk

+
∂ge(Y, X, β)

∂βk

gT
e (Y, X, β)

]
, for k = 1, . . . , p.

Thus for small samples, β̂Q that solves (3.8) differs from the solution to the optimal estimating

equation (3.9). It should be noted that the difference is ignorable if the sample size is very

large, as the first term in ∂Qn(β)/∂β has the order Op(
√

n) and hence will become dominant

for large n. Second, it should be emphasized that the so-called optimal estimating equation

(3.9) is optimal only in the asymptotic sense. We now denote the class of (3.10) by C. By the

theory of estimating equations (for example, Heyde, 1997), the optimal estimating equation
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in the class C is

nE

[
∂gT

e (Y, X, β)

∂β

]
[V ar(ge(Y, X, β))]−1 ḡe(β) = 0p×1,

which is the limit of (3.9) as n → ∞. The asymptotic optimality of (3.9) explains in part the

poor performance of β̂Q for small samples. Third (and most important), even though β̂Q is

asymptotically optimal in the class C, it does not necessarily mean that β̂Q is asymptotically

superior to β̂G. To reach the conclusion that β̂Q is indeed better than β̂G, one also needs to

show that β̂G is not also optimal in class C.

In order to compare β̂Q and β̂G for large samples, we provide additional simulation

results in Table 3.2. Here, the sample size n is increased to 200 and 1000, respectively.

“OEF” represents the MSE of β̂O, where β̂O denotes the solution to the asymptotic optimal

estimating equation (3.9). Numerical results confirmed that β̂Q and β̂O are equivalent in the

asymptotic sense. Also note that, when the sample size becomes large, the difference between

the GEE estimator β̂G and β̂O also shrinks significantly, leading the relative efficiency to be

very close to 1. One may conjecture based on these numerical results that β̂G is also optimal in

class C, although this statement is still to be tested by rigorous theoretical proof. Recall that

class C is defined by the set of {Ml, l = 1, . . . , m}, which is in turn determined by the choice

of R(α). Therefore, the optimality is constrained by the working correlation assumption. If

the optimality of this class is actually achieved when Hl = alI for l = 1, . . . , m, then β̂G is

also optimal in class C and cannot be outperformed by β̂Q under the same assumption about

R(α). It is interesting to note that this hypothesis seems to be self-evident when R(α) = R0;

in this situation, β̂G is known to be fully efficient in the class (3.5) (as discussed in Section

3.2), and is also optimal in class C since C is a subclass of (3.5).

One may hope to improve the efficiency of β̂Q by “expanding” the optimality of class

C, i.e., by adding more matrices to the set {Ml, l = 1, . . . , m}, so that the true correlation

structure can be accommodated or better approximated by
∑m

l=1 alMl. However, there are

other issues, such as how to decide m. Using more matrices may increase the chance of

R−1
0 being included in the class

∑m
l=1 alMl. On the other hand, using a very large set of
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Table 3.2: The GEE estimator and QIF for large samples (1000 simulation runs)

Working R
True R0 EX AR-1

GEE QIF OEF SRE GEE QIF OEF SRE
EX ∗ 2.938 2.976 2.977 0.987 4.306 4.306 4.305 1.000n = 200
AR-1 ∗ 7.213 7.246 7.242 0.995 3.426 3.479 3.479 0.985

EX ∗∗ 5.986 5.976 5.976 1.002 8.828 8.820 8.819 1.001n = 1000
AR-1 ∗∗ 14.21 14.18 14.18 1.002 7.189 7.275 7.276 0.988

Entries “GEE”, “QIF” and “OEF” are MSEs of β̂G, β̂Q and β̂O (the solution to the asymptotic
optimal estimating equation (3.9)), respectively; the units of MSEs reported in rows marked by ∗

and ∗∗ are 10−4 and 10−5, respectively. “SRE” is the same as in Table 3.1.

{Ml, l = 1, . . . , m} may not make any sense. If m is large, the vector ge(Y, X, β)mp×1 will

be very long, and it is impossible that each element of ge(Y, X, β) contains non- redundant

information. In fact when mp > t, V ar[ge(Y, X, β)] will not be of full rank and hence will

not be strictly positive definite, which violates one basic assumption that is used to establish

some asymptotic properties of Qn(β) and β̂Q (Pilla and Loader, 2006). In summary, it is not

convincing that the QIF method improves estimation in the GEE framework.

3.3.2 Selection of Working Correlation Matrix

An alternative way to improve the efficiency of the GEE estimator is to select an appro-

priate working correlation structure for the GEE model. To achieve this goal, Pan (2001)

constructed a criterion called QIC which is a modification to AIC based on quasi-likelihood.

Under the framework of the generalized linear model, if Y is a scalar response, then the (log)

quasi-likelihood function (McCullagh and Nelder, 1989, page 325) is

Q(µ, Y ) =

∫ µ

Y

Y − u

V (u)
du,
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which behaves like a log-likelihood function for µ under very mild assumptions. However,

when Y denotes the t-component response vector of a subject and V is the working covariance

matrix of Y defined with a general correlation structure R(α) as in (3.1), the integral

Q(µ, Y, u(s)) =

∫ u(s)=µ

u(s)=Y

(Y − µ)T{V (u)}−1du(s)

along a smooth path u(s) in R
t ordinarily depends on the particular path u(s) chosen, and

hence it does not make sense to use this function as a quasi-likelihood (McCullagh and

Nelder, 1989, page 333-5). To avoid this difficulty, Pan (2001) opted for the independence

structure R = I to define the quasi-likelihood based on data {(Yi, Xi), i = 1, . . . , n},

Q (β; I) =

n∑

i=1

ti∑

j=1

Q(β, (Yij, Xij)).

Analogous to the Kullback-Leibler distance which is used to derive AIC, a new discrepancy

between the true model, indexed by the true parameter β∗, and a candidate model, indexed

by β, was defined as

∆(β, β∗, I) = E[−2Q (β; I)]. (3.11)

Further, Pan (2001) obtained an approximation of (3.11) using Taylor’s expansion up to the

second-order partial derivative, and reached the model selection criteria QIC by ignoring the

first-order partial derivative term that is difficult to estimate. Specifically,

QIC(R) = −2Q(β̂(R); I) + 2tr(Ω̂I V̂R), (3.12)

where Ω̂I is the negative Hessian of Q(β̂(R); I) under the independent correlation structure,

and V̂R is the sandwich covariance estimator (3.4) evaluated with the working correlation

structure R. While QIC has the strength of not being based on a parametric likelihood, this

criterion is not very powerful in choosing a working correlation structure due to the fact that

Q (β; I) does not contain any information about the within-subject correlation structure.

A nonparametric approach not involving any kind of likelihood was proposed by Pan

and Connett (2002). They used resampling-based procedures (i.e., bootstrap and cross-

validation) to select the working correlation structure that minimizes the estimated predictive
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mean squared error. Like the QIC criterion, this approach has also been shown by simulation

to be effective to some extent. Since one of the several simulation settings in Pan and Connett

(2002) is identical to that of Pan (2001), one can compare the two different approaches

based on the simulation results reported in the two articles; there is some evidence, although

not conclusive, that the QIC criterion has a higher chance to select the correct correlation

structure.

3.4 Empirical Likelihood for Regression Models and for Dependent Data

In the context of longitudinal data, the primary interest is often in estimation and inference

for the regression parameters, and responses measured on the same subject are dependent.

So it is useful to review EL for regression models and dependent data.

Empirical likelihood has been applied to inference on regression parameters for inde-

pendent data by Owen (1991) and Kolaczyk (1994) in the context of linear models and

generalized linear models, respectively. Let X ∈ R
p and Y ∈ R be the vector of covariates

and response. In linear models, EL for the regression parameter β was defined with the

estimating equation

E[g((Y, X), β)] = E[X(Y − XT β)] = 0,

of which the solution minimizes the mean square prediction error E((Y − XT β)2).

Owen (1991) distinguished between linear models with random covariates and those

with non-random covariates. In the former case, g(Xi, Yi, β), i = 1, . . . , n, are i.i.d., and

−2 logR(β0)→χ2
(p) follows from the results in Owen (1988, 1990) directly. In the latter

case where Yi are sampled independently given Xi = xi, g(Xi, Yi, β) are independent but

not identically distributed. Owen (1991) employed triangular array arguments to justify

the asymptotic chi-squared distribution of −2 logR(β0) for independent but not identically

distributed data. Later, Kolaczyk (1994) used quasi-likelihood to derive the estimating

function

g((Y, X), β)) =
Y − µ

V (µ)

(
∂µ

∂β

)
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for regression parameters in generalized linear models, and applied Owen’s triangular array

empirical likelihood theorem in this more general setting.

Although empirical likelihood was originally defined for independent observations, its

extension to dependent data, especially time series, has also been studied by many others.

Specifically, under the assumption of weak dependence, Kitamura (1997) preserved the

dependence of the data by reorganizing the original time series {Yt, t = 1, . . . , N} into a

set of blocks {Bi = (Y(i−1)L+1, . . . , Y(i−1)L+M ), i = 1, . . . , n}, where M ≥ L and are properly

chosen block length and distance between block starting points, respectively. To define ELR

for θ, Kitamura used an estimating function φ(Bi, θ) of observation blocks rather than an

estimating function g(Yt, θ) of individual observations. For simplicity, φ(Bi, θ) was chosen to

be φ(Bi, θ) =
∑M

j=1 g(Y(i−1)L+j, θ)/M. Kitamura also established the asymptotic distribution

of ELR for weakly dependent time series.

Very recently, application of empirical likelihood to longitudinal data analysis has received

attention from several authors. You et al. (2006) applied empirical likelihood to the semipara-

metric longitudinal partially linear regression model described in Zeger and Diggle (1994),

Yij = XT
ijβ + h(tij) + εi(tij) + eij , (3.13)

where h is an arbitrary smooth function of time, {εi(t), i = 1, . . . , n} are independent repli-

cates of a zero mean stationary process that accounts for the serial correlation within each

cluster, and eij are i.i.d. measurement errors. In their approach, Yij and Xij were first adjusted

to Ŷij and X̂ij , respectively, using an estimator of h(tij) given β, so that E(Ŷij−X̂T
ijβ) = o(1);

to minimize E[(Ŷij − X̂T
ijβ)2] in the same way as for linear models, β is defined to satisfy

E[X̂ij(Ŷij − X̂T
ijβ)] = 0p×1, (3.14)

and then the estimating function for β

g((Yi, Xi), β) =

ti∑

j=1

X̂ij(Ŷij − X̂T
ijβ) (3.15)

is derived. To accommodate the within-subject correlation, estimating function (3.15) is

defined on a data cluster (or a block) (Yi, Xi) rather than an individual observation (Yij, Xij),
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similar to the idea in Kitamura (1997). Therefore, an empirical likelihood ratio R(β) of the

form in (1.3) will consist of n probability weights {wi, i = 1, . . . , n} that are assigned to the n

data clusters {(Yi, Xi), i = 1, . . . , n}. Since g((Yi, Xi), β) is simply the sum of X̂ij(Ŷij −X̂T
ijβ)

over all j = 1, . . . , ti, this formulation treats each observation within cluster i equally, and

does not contain any information about the within-subject correlation.

Other recent works on the use of empirical likelihood for longitudinal data analysis include

Xue and Zhu (2007), and Zhao and Jian (2007). Specifically, Xue and Zhu (2007) considered

a varying coefficient model

Yij = XT
i (tij)β(tij) + εi(tij), j = 1, . . . , ti, (3.16)

where the coefficient β(t) is assumed to be a vector of smooth functions of continuous time,

and {εi(t)} are the same as in (3.13); the estimating function

g((Yi, Xi), β(t)) =

ti∑

j=1

[Yij − XT
i (tij)β(t)]Xi(tij)Kh(t − tij)

was defined to yield a least-square estimator of β(t) conditional on t, with a kernel function

Kh(·) modeling the underlying density of t. Zhao and Jian (2007) used a prospective logistic

model to analyze case-control longitudinal data, and defined empirical likelihood for β with

g((Yi, Xi), β) =

ti∑

j=1

IijX
T
ij

[
Yij −

exp(ηij(β))

1 + exp(ηij(β))

]
,

where Iij is an indicator variable denoting whether each individual observation is included

in the case-control sample, and ηij(β) = logit[E(Yij|Xij)].

Although all three existing articles focus on different models to analyze different types of

longitudinal data, or to address different research issues, they share two common features.

First, the estimating function for β, g((Yi, Xi), β), is the sum of ti dependent subfunctions

(e.g., X̂ij(Ŷij − X̂T
ijβ), j = 1, . . . , ti, in (3.15)) that are derived from an equation that holds

for each individual observation (e.g., the equation in (3.14)); however, g((Yi, Xi), β) does

not account for the within-subject correlation. Second, empirical likelihood is used as an

alternative way to construct confidence intervals for the regression parameter. All of the
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articles show that the empirical likelihood method has three advantages over the traditional

method of normal approximation and/or the computational method of bootstrap: it leads to

confidence intervals with better coverage properties; it does not require variance estimation

for the estimator, which is rather complicated in nonparametric or semiparametric regression

settings; it avoids intensive Monte Carlo simulations required by the bootstrap method.

To our knowledge, there is no published work that extends empirical likelihood to lon-

gitudinal data with the goal of improving efficiency of the estimator. Since non-Gaussian

continuous, categorical and count longitudinal data are often encountered in practice, we are

especially interested in improving point estimation for GEE models that are appropriate for

longitudinal data in general when population-averaged effects of treatments are of interest.

3.5 Improving Estimation of GEE with Empirical Likelihood

In the GEE context, an inappropriate working correlation structure may significantly impair

the efficiency of the estimator for β. It can be seen from Section 3.3.1 that, if the working

correlation is misspecified, it is difficult (or infeasible) to obtain an estimator with improved

efficiency by simply using an extended estimating function that contains no more informa-

tion than the original GEE. According to Qin and Lawless (1994), an extended estimating

function ge(Y, X, β)r×1, with r > dim(β) = p, will result in a more efficient estimator if

its r components are all functionally independent; that is, each component should con-

tain non-redundant information. In the absence of additional information that can be used

to effectively extend the original generalized estimating equation, a more plausible way to

improve the GEE estimator is to select the working correlation structure most appropriate

for the data at hand.

As discussed in Section 3.3.2, existing model selection methods for GEE models are

not very powerful in choosing the correct correlation structure. One possible reason is that

they are not based on a likelihood that contains information about the correlation among

repeated measurements. While it is neither desirable nor easy to construct a parametric
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likelihood for GEE models, empirical likelihood provides an attractive alternative. Thus,

to achieve efficiency improvement, we explore applying empirical likelihood to selection of

working correlation structures in GEE.

3.5.1 Empirical likelihood for parameters in GEE

To begin, we first need to define empirical likelihood for the regression parameter β in

GEE. We have already seen that estimating equations form an important component in EL

theory, combining information about parameters. As a special class of estimating equations,

GEE fits naturally into empirical likelihood. Note that GEE is an extension of generalized

linear models to longitudinal data. Thus, parallel to the path of extensions of linear models,

namely “linear models → generalized linear models → GEE for longitudinal data”, we study

the potential path of extensions of EL: “EL for linear models → EL for GLM → EL for

longitudinal data in the GEE framework”. Here, by ‘the GEE framework’, we mean the

original GEE and closely related variants that require the same moment assumptions about

the underlying distribution of the response, so GEE extensions, such as Prentice’s GEE and

GEE2, that need more assumptions (Molenberghs & Verbeke, 2005) are not included in our

current study.

It is quite natural to incorporate GEE into EL, so we can define the empirical likelihood

ratio for the regression parameter β to be

R(β) = sup

{
n∏

i=1

nwi : wi ≥ 0,

n∑

i=1

wi = 1,

n∑

i=1

wig(Yi, Xi, β) = 0

}
, (3.17)

with

g((Yi, Xi), β) =

(
∂µi

∂βT

)T

V −1
i (β, α̂(β), φ̂(β))(Yi − µi), (3.18)

where V −1
i (β, α̂(β), φ̂(β)) = A

−1/2
i (µi, φ̂(β))R−1(α̂(β))A

−1/2
i (µi, φ̂(β)). The definition in

(3.17) is similar to Kitamura’s definition for time series data in that empirical likelihood

is applied to data clusters (or blocks) (Yi, Xi)ti×(p+1). While blocks of time series data

are not well defined and may overlap with one another (the block length and the size

of overlap need to be selected; see Kitamura, 1997), the choice for blocks is obvious in
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longitudinal data settings. Since data are clustered by subjects, each block simply consists

of a cluster of responses and the corresponding covariates. Furthermore, time series blocks

are not completely independent and a strong mixing-condition is needed in the derivation

of theoretical results. However, longitudinal data blocks are independent of one another

because of the independence between subjects. If we take the identity link h(µij) = µij,

the variance function for normal data v(µij) = 1 and the independence working correlation

structure R(α) = I, then R(β) in (3.17) reduces to the form in You et al. (2006); see (3.15)

in Section 3.4. Therefore the empirical likelihood ratio defined by You et al. is a special

case of (3.17). Similarly, our empirical likelihood differs from the EL of Xue and Zhu (2007)

and the EL of Zhao and Jian (2007) in that the within-subject correlation is accounted

for by R(β) in (3.17), but is ignored in the other two empirical likelihood ratios. Although

existing extensions of EL to longitudinal data have been shown to possess advantages over

traditional inference methods, these approaches may not be entirely satisfactory due to the

ignorance of the within-subject correlation.

The maximum empirical likelihood estimator for β is

β̂E = arg max
β∈Rp

R(β).

In this just-determined case where the dimension of the parameter β and that of the esti-

mating function g((Yi, Xi), β) in (3.18) are both p, the equation 1
n

∑n
i g(Yi, Xi, β) = 0 has a

unique solution which is nothing but β̂G. It follows that R(β) can achieve its unconditional

maximum 1 with wi = 1/n (i = 1, . . . , n) when β = β̂G, i.e., the MELE β̂E is identical to

β̂G. Consequently, the MELE β̂E resulting from the empirical likelihood defined in (3.17)

inherits all properties of the GEE estimator, namely that the estimator is consistent and

asymptotically normal whether or not the working correlation structure R(α) is correct, but

is generally not efficient if R(α) is misspecified. From this point of view, the empirical likeli-

hood defined by You et al. (2006) cannot yield an optimal estimator unless the data within

each cluster are independent.
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When it comes to selecting the best working correlation matrix from a set of competing

matrices using empirical likelihood, the first question to be answered is “How to compare

empirical likelihoods of GEE models with different working correlation matrices?” As seen

from above, R(β) in (3.17) is defined for a GEE model with a particular R(α), and hence is

specific to the choice of R(α). That is, if there are M competing working correlation matrices

{Rm, m = 1, . . . , M}, then M different empirical likelihoods {Rm(β), m = 1, . . . , M} can be

defined by (3.17). For each Rm, the MELE β̂m
E equals the corresponding GEE estimator

β̂m
G , and maxβ Rm(β) = Rm(β̂m

E ) ≡ 1 (or equivalently, −2 logRm(β̂m
E ) ≡ 0). It is clear that

comparing Rm(β̂m
E ) for m = 1, . . . , M cannot achieve model comparison. In order to facilitate

model comparison via empirical likelihood, we need to define a unified measure, in this case

a unified empirical likelihood ratio, so that GEE models with different working correlation

structures will “be assigned” different values.

We can proceed by embedding a set of competing working structures into a more general

structure, of which the competing working structures are special cases. This idea is illustrated

in the following example.

Example 3.1 As shown in (3.19), if ti = t = 3 and we are to choose one from the inde-

pendence (R1), the exchangeable (R2), and the AR-1 (R3) correlation structures, a general

structure could be the stationary structure (R4). R4(α1, α2) reduces to R1 if α1 = α2 = 0, to

R2(α) if α1 = α2 = α 6= 0, and to R3(α) if α1 = α 6= 0 and α2 = α2.
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R1(α) =




1 0 0

0 1 0

0 0 1




, R2(α) =




1 α α

α 1 α

α α 1




,

Independence (IN) Exchangeable (EX)

R3(α) =




1 α α2

α 1 α

α2 α 1




, R4(α1, α2) =




1 α1 α2

α1 1 α1

α2 α1 1




,

AR-1 (AR) Stationary (ST)

(3.19)

We denote the specified general structure by RF , and call the GEE model with RF the “full

model”. To make use of the constraints on α that are implied by the full model correlation

structure RF = R4, instead of using g(Yi, Xi, β) in (3.18), we define a new estimating function

for θ = (βT , αT )T to be

gF ((Yi, Xi), β, α1, . . . , αt−1) =




(
∂µi

∂βT

)T

V −1
i (β, α1, . . . , αt−1, φ̂(β))(Yi − µi)

∑t−1
j=1 eij(β)ei,j+1(β) − α1φ̂(β)(t − 1 − p/n)

...
∑1

j=1 eij(β)ei,j+t−1(β) − αt−1φ̂(β)(1 − p/n)




(p+t−1)×1

,

(3.20)

where

eij(β) = (Yij − µij(β))/
√

v(µij(β))

(i.e., the Pearson residual) and

φ̂(β) =
1

nt − p

n∑

i=1

t∑

j=1

e2
ij

(i.e., the method of moment estimator for φ). The second through the last components of

gF (·) are derived from the MOM estimator for the correlation coefficients in R4,

α̂k(β) =
1

(n(t − k) − p)φ

n∑

i=1

t−k∑

j=1

eijei,j+k,
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which is also used in the original GEE that assumes R4. Therefore, gF (·) in (3.20) is equivalent

to g(·) with R = R4 in (3.18), in the sense that they yield the same β̂G when used to form

estimating equations for β. Then, we can define the full-model empirical likelihood ratio

RF (β, α) = sup

{
n∏

i=1

nwi : wi ≥ 0,

n∑

i=1

wi = 1,

n∑

i=1

wig
F (Yi, Xi, β, α) = 0

}
(3.21)

with gF (·) in (3.20), where α = (α1, . . . , αt−1)
T and t = 3 in this example.

The purpose of defining a full model empirical likelihood ratio as in (3.21) is twofold:

first, information about within-subject correlation can be built into RF (β, α) at the expense

of a very weak assumption, such as the stationarity assumption of the underlying correlation

structure; second, RF (β, α) serves as a unified measure that can be applied to each of the

competing GEE models. To see the latter, let us return to the above example, where the

full model correlation structure is parameterized by α = (α1, α2). Suppose RF (β, α1, α2)

is defined for the full model and we have four sets of GEE estimates based on the same

data: β̂IN , (β̂EX , α̂EX), (β̂AR, α̂AR), and (β̂ST , α̂ST
1 , α̂ST

2 ), each obtained with one of the four

working correlation structures. Then these four GEE models can be evaluated by

R1 = RF (β̂IN , 0, 0),

R2 = RF (β̂EX, α̂EX , α̂EX),

R3 = RF (β̂AR, α̂AR, (α̂AR)2),

and R4 = RF (β̂ST , α̂ST
1 , α̂ST

2 ), (3.22)

respectively. With the new definition (3.21), R4 = RF (β̂ST , α̂ST
1 , α̂ST

2 ) is still equal to 0, since

(β̂ST , α̂ST
1 , α̂ST

2 ) also solves the equation 1
n

∑n
i gF (Yi, Xi, β, α1, α2) = 0; however, empirical

likelihood ratios for the other GEE models (i.e., R1, R2 and R3) are no longer zero. Thus,

we are now able to compare different GEE models using empirical likelihood.

3.5.2 Choosing a working correlation structure

First consider the simple situation where each competing GEE model has the same number

of parameters (i.e., dim(θ) ). Note that θ includes the regression parameter β and the corre-
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lation parameter α. The exchangeable structure is often used as an alternative to the AR-1

structure, and GEE models with both structures have an equal number of parameters. Intu-

itively, if the underlying correlation structure is AR-1, then θ̂AR = (β̂AR, α̂AR, . . . , (α̂AR)t−1)T

will be closer to the solution of

1

n

n∑

i

gF (Yi, Xi, β, α1, . . . , αt−1) = 0,

and therefore RF (β̂AR, α̂AR, . . . , (α̂AR)t−1) will be closer to 1. Thus we can select the working

correlation structure that leads to the larger ELR.

We conduct a very simple simulation study to examine this idea. Specifically, we adopt

the model

Yij = Xijβ + εij , (j = 1, . . . , t, and i = 1, . . . , n), (3.23)

where ti = t = 3, β = 2, Xij is a univariate random variable generated from N (0.1j, 1),

and εi = (εi1, εi2, εi3)
T are generated from a multivariate normal distribution N3(03×1, Σ0).

That is, we assume the identity link h(µij) = µij. We let Var(εij) = 1, so Σ0 = R0, where

the true correlation matrix R0 has either the exchangeable (EX) structure or the AR-1 (AR)

structure. The parameter in both correlation structures is specified to be α = 0.7. Simulation

results displayed in Table 3.3 indicate that the correct correlation structure is much more

likely to be chosen, and the proportion of correct decisions increases when the sample size n

becomes larger.

Table 3.3: Selecting a working correlation structure in the simple situation

n = 50 n = 100
R R

EX AR EX AR
EX 920 80 921 79R0
AR 204 796 68 932

R0 and R stand for the true and working correlation structures, respectively. Each entry shows
the number of times that a working structure is chosen over 1000 simulation runs.



62

In the more general situation where competing working correlation structures have dif-

ferent numbers of parameters, it is necessary to extend the above idea to a model selection

criterion that takes the dimension of the model into account. In parametric settings, the

Akaike information criterion (AIC; Akaike, 1973) and Bayesian information criterion (BIC;

Schwarz, 1978) are widely used for model selection. These criteria cannot be applied to GEEs

due to the lack of parametric likelihood. However, we can modify AIC and BIC by substi-

tuting empirical likelihood for parametric likelihood, and get empirical likelihood versions of

AIC and BIC:

EAIC(m) = −2 logRF (θ̂m
G ) + 2 dim(θm), (3.24)

EBIC(m) = −2 logRF (θ̂m
G ) + dim(θm) log(n), (3.25)

where m is the index for a candidate model parameterized by θm (m = 1, . . . , M), and θ̂m
G is

the GEE estimate associated with the working correlation structure Rm. More specifically,

θ̂m
G =



 β̂m
G

α̂m
G



 ,

where α̂m
G is the method of moment estimator of α given β̂m

G and Rm.

In fact, Kolaczyk (1995) showed that a criterion analogous to AIC may be derived in the

context of empirical likelihood for estimating equations. It is known that the Kullback-Leibler

distance

K(θ, θ̂) =

∫
log

(
f(x|θ)
f(x|θ̂)

)
f(x|θ)dx, (3.26)

where θ̂ is an estimate of θ, is a measure of the discrepancy between the estimated and

the true probability distributions. Suppose θ ∈ R
L, and let θk ∈ R

k (k < L) be a nested

parameter of θ, i.e., θk consists of k components of θ and assumes that the other L − k

components are zeros. Akaike (1973) showed that 2nE[K(θ, θ̂MLE
k )], which describes the risk

of modeling θ with θ̂MLE
k , can be asymptotically estimated by

−2
n∑

i=1

log

(
f(Xi|θ̂MLE

k )

f(Xi|θ̂MLE)

)
+ 2k − L, (3.27)
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where θ̂MLE
k and θ̂MLE are the maximum likelihood estimates of θk and θ, respectively. Since

it is assumed that competing models with different θk are nested in the common full model

with θ ∈ R
L, one only needs to compute the part of (3.27) that is specific to θk, which leads

to the AIC criterion

−2

n∑

i=1

log f(Xi|θ̂MLE
k ) + 2k.

In the setting of Kolaczyk (1995), information about a regression parameter θ ∈ R
L is sum-

marized by an L-component estimating equation E[g(X, θ)] = 0L×1, via which the empirical

likelihood ratio R(θ) is defined; θk is assumed to be very near to θ, as in the derivation

of AIC. Within the context of empirical likelihood, Kolaczyk defined an analog of the loss

function in (3.26) to be

KEL(θ, θ̂) =
n∑

i=1

log

(
wi(θ)

wi(θ̂)

)
wi(θ), (3.28)

where {wi(θ), i = 1, . . . , n} and {wi(θ̂), i = 1, . . . , n} are the two sets of probability weights

associated with R(θ) and R(θ̂), respectively. Kolaczyk denoted the MELE of θk by θ̃k, and

further showed that the statistic

−2 logR(θ̃k) + 2k − L

is asymptotically an unbiased estimator of

2nE[KEL(θ, θ̃k)]. (3.29)

Analogous to AIC, the EIC

EIC = −2 logR(θ̃k) + 2k (3.30)

is a statistic specific to θk, and can be used to compare the risks of approximating a larger

model with parameter θ by smaller fitted submodels with different θ̃k. One advantage of EIC

is that it requires no parametric assumption regarding the distribution of the data, but only

unbiasedness of the estimating function. Although an information criterion statistic typically

is used for choosing an optimal model among many choices, Kolaczyk (1995) focused only

on the behavior of EIC as an estimator for (3.29), and left out the issue of model selection.
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Our EAIC in (3.24) is a modified version of Kolaczyk’s EIC, and is adapted to the

context of GEEs. The most significant modification is that we replace the maximum empirical

likelihood estimator in (3.30) by the GEE estimator θ̂G. In Example 3.1, after the full model

empirical likelihood ratio RF (β, α1, α2) is defined with the stationary correlation structure

R4(α1, α2), we plug four different GEE estimates into RF (β, α1, α2) as in (3.22) to obtain

empirical likelihood ratios for each of the four GEE models. An alternative approach, which

is also used in Kolaczyk (1995), is to first obtain four different maximum empirical likelihood

estimates with different constraints, and then use them in place of the GEE estimates. The

full model MELE in Example 3.1 is

θ̃ST =




β̃ST

α̃ST
1

α̃ST
2




(p+2)×1

= arg max
(β,α1,α2)T

RF (β, α1, α2),

and is equal to the full model GEE estimate θ̂ST
G as they both solve the equation

1

n
gF ((Yi, Xi), β, α1, α2) = 0(p+2)×1.

For other correlation structures that are nested in RF = R4(α1, α2), maximum empirical

likelihood estimates are different from the corresponding GEE estimates. For instance, the

GEE estimate θ̂EX
G consists of β̂EX that solves the GEE

1

n

n∑

i=1

(
∂µi

∂βT

)T

[A
1/2
i (β, φ̂(β))R2(α̂(β))A

1/2
i (β, φ̂(β))]−1(Yi − µi) = 0,

and α̂EX = α̂(β̂EX), whereas the MELE θ̃EX
G = ( (β̃EX)T , α̃EX)T is obtained by maximizing

RF (β, α1, α2) with respect to (βT , α1, α2)
T under the additional constraint that α1 = α2.

With the additional constraint, we can suppress α2 and drop the subscript of α1 in RF (·),

and then express θ̃EX
G more explicitly as

θ̃EX
G =



 β̃EX

α̃EX





(p+1)×1

= arg max
(βT , α)T

RF (β, α), (3.31)
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where the estimating function involved in RF (β, α) becomes

gF (Yi, Xi, β, α) =




(
∂µi

∂βT

)T

V −1
i (β, α, φ̂(β))(Yi − µi)

∑2
j=1 eij(β)ei,j+1(β) − αφ̂(β)(2 − p/n)

∑1
j=1 eij(β)ei,j+2(β) − αφ̂(β)(1 − p/n)




(p+2)×1

. (3.32)

In this over-constrained case,

dim(gF (·)) = p + 2 > dim(θEX) = p + 1,

with a difference of 1 caused by the additional constraint. If RF is stationary with parameter

α = (α1, . . . , αt−1), then the exchangeable structure imposes t − 2 additional constraints:

α1 = α2, α2 = α3, . . ., and αt−2 = αt−1. Therefore the number of additional constraints

increases with the cluster size t. Similarly, for other correlation structures embedded in RF ,

maximization of the empirical likelihood ratio with respect to the parameter is subject to

additional constraints. Thus, it can be seen that the approach of Kolaczyk (1995) involves

searching for maximum likelihood estimates in the over-constrained case where dim(gF (·)) >

dim(θ).

When dim(gF (·)) > dim(θ), the existence of a maximum empirical likelihood esti-

mate θ̃ is guaranteed only when 0 is inside the convex hull of the data, i.e., Hn =

ch{gF ((Y1, X1), θ), . . . , g
F ((Yn, Xn), θ)}. For each correlation structure embedded in RF

(submodel), Pr (0 ∈ Hn) → 1 as n → ∞ if

E[gF ((Y, X), θ)] = 0 (3.33)

holds (see Theorem 4.1 in Owen, 2001). It is conceivable that not all embedded correlation

structures are correct, and hence (3.33) will not always hold. Even if an embedded correlation

structure is correct and (3.33) holds, Pr (0 ∈ Hn) is not 1 for finite samples. Therefore, 0 is

not always inside Hn in practice. This problem becomes severe if the cluster size t is large

so that some submodels become highly over-constrained. In the situation where 0 is near or

outside Hn, convergence to a valid solution is difficult or impossible. Variyath et. al (2007)
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also discussed this issue. They proposed an adjusted empirical likelihood by introducing an

artificial “observation”

gF ((Yn+1, Xn+1), θ) = −an

(
1

n

) n∑

i=1

gF ((Yi, Xi), θ),

where an = op(n
2/3) is a positive constant, so that 0 is always inside the enlarged convex hull

Hn+1 = ch{gF ((Y1, X1), θ), . . . , g
F ((Yn, Xn), θ), gF ((Yn+1, Xn+1), θ)}. However, this solution

leaves users another practical issue, namely, choosing an. Although the adjusted empirical

likelihood approach (with a properly chosen an) is shown to work well in selecting regression

variables, it may not solve all problems encountered in the GEE setting. Unlike the regression

parameter β, each element of the correlation parameter α is restricted between -1 and 1.

There is some empirical evidence from our preliminary simulation study that maximization

of RF (β, α) over subspaces constrained by embedded correlation structures may reach the

boundary of the parameter space where one (or more) component of α is ±1.

Our modification avoids the computational issues associated with Kolaczyk’s (1995)

approach, and makes the use of EAIC especially easy in practice. To use EAIC and EBIC in

(3.24) and (3.25), one does not need to obtain maximum empirical likelihood estimates with

over-constrained estimating equations, but only needs to evaluate RF (β, α) at GEE esti-

mates for each correlation structure. To compute a GEE estimate θ̂G, one iterates between

a modified Fisher scoring for β and moment estimation of α and φ, and usually conver-

gence can be reached. Due to the popularity of the GEE method, it has been implemented

in many software packages, including SAS, S-Plus, Stata and SUDAAN. See Horton and

Lipsitz (1999) for a review.

Not only is −2 logRF (θ̂m
G ) in (3.24) and (3.25) computationally convenient, but also it

retains the asymptotic property of −2 logRF (θ̃m). Let dim(gF ) = r and dim(θm) = q. If

Rm is correct and E[gF ((Y, X), θm)] = 0, then by Corollary 4 in Qin and Lawless (1994),

−2 logRF (θ̃m) → χ2
(r−q). We find that −2 logRF (θ̂m

G ) also behaves like a χ2
(r−q) random

variable, given that the same conditions are met. Specifically, we simulate −2 logRF (θ̂m
G )

using the model in (3.23) with t = 4 and p = 1, and let m = 1, 2, 3 be the indices for the
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independence, exchangeable and AR-1 working assumptions, respectively. Let dim(β) = p,

then dim(θ1) = p, dim(θ2) = p + 1 and dim(θ3) = p + 1. The general correlation struc-

ture is assumed to be stationary, so r = dim(gF ) = p + t − 1 = p + 3. Under each true

correlation structure Rm (m = 1, 2, 3), Figure 3.1 plots quantiles of −2 logRF (θ̂m
G ) against

quantiles of χ2
(3), χ2

(2) and χ2
(2), respectively. Empirical evidence in these Q-Q plots suggests

that −2 logRF (θ̂m
G ) → χ2

(r−q) if the working assumption R is correct. However, if R is not

correct, our numerical results (not shown) indicate that the statistic −2 logRF (θ̂m
G ) diverges

to infinity as n → ∞, just as −2 logRF (θ̃m) does (Variyath et al., 2007). Therefore, the

asymptotic behavior of EAIC is the same as Kolaczyk’s EIC.

Although EAIC and EBIC in (3.24) and (3.25) are proposed to select a working correla-

tion matrix in GEE, the two criteria may also be used in other settings. To use EAIC and

EBIC in the context of selecting regression variables as considered by Kolaczyk (1995), we

use θ̂k (the solution to the k-dimensional submodel estimating equation) in (3.24) and (3.25),

rather than the MELE

θ̃k = arg max
θ∈Rk

R(θ),

where R(θ) is defined with the L-dimensional (k < L) full model estimating equation. The

performance of EAIC and EBIC in variable selection is not examined here, as we focus only

on selecting the working correlation in GEE.

3.5.3 Simulation Studies

In this section we perform extensive simulation studies to examine the reliability of using

EAIC and EBIC to choose an optimal working correlation structure for GEE models.

Although one could extend the use of Kolaczyk’s (1995) EIC (which was designed to select

regression variables) to this context, our preliminary simulation shows that computational

issues of EIC are often encountered. Therefore we do not compare the performance of EIC

with that of EAIC and EBIC.
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Figure 3.1: Q-Q plots of −2 logRF (θ̂m
G ) and χ2

(r−q) when the working correlation assumption is

correct. m = 1 (the top panel), 2 (the middle panel), and 3 (the bottom panel) are indices for the
independence, exchangeable and AR-1 working assumptions, respectively. r = dim(gF ) = p + 3;
q = dim(θm) in the top, middle, bottom panels are p, p+1, and p+1, respectively, where p = dim(β);
thus, r − p equals 3 in the top panel, 2 in the middle and bottom panels. These plots are obtained
from 1000 random samples of size 2000.
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Simulation study 1: Gaussian longitudinal data

First, the model in (3.23) is used to generate Gaussian longitudinal data. For the true

(R0) and working (R) correlation matrices, we consider four structures: the independence

(IN), exchangeable (EX), AR-1 (AR) and stationary (ST) structures. Since there is only one

covariate and t = 3, dim(θIN) = 1, dim(θEX) = 2, dim(θAR) = 2, and dim(θST ) = 3. To

examine the performance of EAIC and EBIC for moderately correlated longitudinal data, we

now reduce α in the true exchangeable and AR-1 structures from 0.7 to 0.5, and parameterize

the true stationary matrix with α = (0.5, 0.35)T . Under each true correlation specification,

we record the numbers of times that different working correlation structures are chosen over

1000 simulation runs, as shown in Table 3.4.

Table 3.4: Model selection: Gaussian longitudinal data (t = 3)

Working Correlation Structures R
——————————————————————————————–

n = 50 n = 100 n = 200
IN EX AR ST IN EX AR ST IN EX AR ST

EAIC 688 121 127 75 702 103 121 74 730 93 115 62R0 =IN
EBIC 864 45 68 23 932 30 32 6 961 18 19 2

EAIC 0 766 133 101 0 828 39 33 0 829 0 171R0 =EX
EBIC 0 832 136 32 0 919 61 20 0 976 14 10

EAIC 0 122 754 124 0 55 820 155 0 1 816 183R0 =AR
EBIC 0 124 840 36 0 69 909 22 0 15 966 19

EAIC 0 417 550 33 0 310 572 118 0 152 333 515R0 =ST
EBIC 0 424 562 14 0 360 640 0 0 380 670 13

“IN”, “EX”, “AR” and “ST” stand for the independence, exchangeable, AR-1 and stationary
structures, respectively. Here the cluster size is t = 3. The true exchangeable and AR-1 structures
are parameterized by α = 0.5, and the true stationary structure has α = (0.5, 0.35)T . Each entry
shows the number of times that a working correlation structure is chosen over 1000 simulation
runs.

It is seen from the simulation results displayed in Table 3.4 that, when the true correlation

structure R0 is independence, exchangeable or AR-1, both EAIC and EBIC are very effective

in choosing the correct correlation structure, with EBIC being better than EAIC. The EAIC
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criterion tends to choose the full-model correlation structure (ST) more often than EBIC

does. This is not surprising, as it is well known that AIC is more likely to result in an

over-parameterized model than BIC in parametric settings. However, when R0 is stationary,

frequencies of EAIC and EBIC choosing the correct structure drop significantly; EBIC rarely

picks the stationary structure even when the sample size is as large as 200. In fact, EAIC and

EBIC are not as useless as they appear in this case; even though the two criteria mistakenly

choose a parsimonious correlation structure most of the time, they will not cause significant

efficiency loss. Recall that in the GEE method, estimation of β is of major interest, while α

is treated as a nuisance parameter. The purpose of choosing the correct correlation structure

is to improve the efficiency of estimating β, since using a wrong working correlation may

cause significant loss of efficiency. For example, Table 3.1 in Section 3.3.1 shows that, if R0

is AR-1, the MSE of β̂EX
G is as twice large as the MSE of β̂AR

G (0.00756/0.00377 ≈ 2). With

the goal of improving efficiency in mind, we further examine the MSEs of β̂IN
G , β̂EX

G , β̂AR
G

and β̂ST
G when R0 is stationary, and find that β̂ST

G is not necessarily more efficient than β̂EX
G

or β̂AR
G , especially when the sample size is not very large. This is because the stationary

structure has more nuisance parameters and estimating them costs efficiency.

Simulation study 2: comparison with QIC for Gaussian longitudinal data

Next, we compare EAIC and EBIC to the QIC criterion proposed by Pan (2001). As in

simulation study 1, we use the model in (3.23) to generate data, and let ti = t = 4. When

choosing a working correlation matrix, Pan (2001) considered only three candidates: IN, EX

and AR. For this reason, we limit the pool of candidates to these three correlation structures.

Note that, in our approach, the empirical likelihood ratio is always defined with a general

correlation structure (e.g., ST in this case) even if the general structure is not considered

as a candidate for the working correlation matrix. Simulation results are presented in Table

3.5. For any choice of R0, we see that both EAIC and EBIC perform much better than QIC.

If R0 is independence, QIC seems to be not effective at all in choosing the correct structure,

while both EAIC and EBIC (especially EBIC) choose the right structure most of the time.
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If R0 is exchangeable or AR-1, QIC is effective to some extent and performs better with a

larger sample size n; however, EAIC and EBIC are far better than QIC in any case, never

choosing the incorrect IN structure. It is interesting to note that, if ST is excluded from

consideration and if R0 is EX or AR, the performance of EAIC and that of EBIC seem to

be identical.

Table 3.5: Comparison of EAIC, EBIC and QIC (Gaussian response, t = 4)

Working Correlation Structures R
———————————————————————

n = 50 n = 100 n = 200
IN EX AR IN EX AR IN EX AR

EAIC 654 164 182 723 146 131 732 142 126
EBIC 853 72 75 933 30 37 944 29 27R0 =IN

QIC 254 378 368 240 375 385 264 379 357

EAIC 0 976 24 0 998 2 0 1000 0
EBIC 0 976 24 0 998 2 0 1000 0R0 =EX

QIC 190 579 231 136 645 219 132 687 181

EAIC 0 42 958 0 6 994 0 1000 0
EBIC 0 42 958 0 6 994 0 1000 0R0 =AR

QIC 166 240 594 120 206 674 119 197 684

The true exchangeable and AR-1 structures are parameterized by α = 0.5, and the true stationary
structure has α = (0.5, 0.35, 0.2)T . Each entry shows the number of times that a working
correlation structure is chosen over 1000 simulation runs.

We now extend the above comparison to the situation where the full-model correlation

structure ST is included in the pool of candidates. Simulation results in Table 3.6 show that

QIC becomes ineffective for any choice of R0 if the full-model correlation structure is also

considered as a candidate. Since the only difference between the simulation setting of Table

3.6 and that of Table 3.4 is the cluster size, we can compare these two tables to see how

the performance of EAIC and the performance of EBIC change with cluster size. With R0

being independence, results in these two tables are similar. But if R0 is EX, AR or ST, both

EAIC and EBIC perform better for data with a larger cluster size. Intuitively, if the cluster
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size increases, the pattern of within-subject correlation will become more prominent, and

therefore will be more easily recognized.

Table 3.6: Continued comparison of EAIC, EBIC and QIC (Gaussian response, t = 4)

Working Correlation Structures R
——————————————————————————————–

n = 50 n = 100 n = 200
IN EX AR ST IN EX AR ST IN EX AR ST

EAIC 642 118 140 100 688 115 108 89 703 107 124 66
EBIC 848 69 76 7 913 44 37 6 962 17 20 1R0 =IN

QIC 202 185 186 427 189 189 179 443 210 169 206 415

EAIC 0 824 18 158 0 838 0 162 0 871 0 129
EBIC 0 940 29 31 0 973 4 23 0 993 0 7R0 =EX

QIC 160 326 211 303 150 313 142 395 103 366 164 367

EAIC 0 38 788 174 0 1 834 165 0 0 834 166
EBIC 0 45 923 32 0 7 978 15 0 0 989 11R0 =AR

QIC 136 210 299 355 108 194 300 398 82 176 348 394

EAIC 0 193 551 256 0 46 444 510 0 2 220 778
EBIC 0 254 708 38 0 164 762 74 0 26 701 273R0 =ST

QIC 137 238 247 378 139 247 239 375 131 219 229 421

The true exchangeable and AR-1 structures are parameterized by α = 0.5, and the true stationary
structure has α = (0.5, 0.35, 0.2)T .

Simulation study 3: comparison with QIC for binary longitudinal data

Since the GEE method has the strength of analyzing non-Gaussian longitudinal data,

it is interesting to compare EAIC and EBIC to QIC for binary longitudinal data. Here we

adopt the same model considered in Pan (2001) and Pan & Connett (2002):

logit(µij) = β1 + β2Xij2 + β3(j − 1), j = 1, 2, 3 and i = 1, . . . , n, (3.34)

where Xij2 are i.i.d. Bernoulli with Pr(Xij2 = 1) = 1/2, and β1 = 0.25 = −β2 = −β3.

This is also the model used in Fitzmaurice (1995) to show that the independence working

assumption, if it is not correct, may result in 40% loss of efficiency compared to the correct

correlation assumption. As in simulation study 2, we first include IN, EX and AR into the
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pool of true and working correlation structures, for the sake of easy comparison with results

from Pan (2001) and Pan & Connett (2002). Both the EX and AR matrices are parameterized

with α = 0.5 when used as the true correlation matrix. Results in Table 3.7 are similar to

those in Table 3.5 for Gaussian longitudinal data. Both EAIC and EBIC are powerful in

choosing the correct structure in all cases, and appear to be equivalent if R0 is EX or AR.

QIC is less powerful compared to EAIC and EBIC, and becomes ineffective if R0 is the

independence structure.

Table 3.7: Comparison of EAIC, EBIC and QIC (binary response, t = 3)

Working Correlation Structures R
—————————————————————————

n = 50 n = 100 n = 200
IN EX AR IN EX AR IN EX AR

EAIC 734 147 119 754 126 120 776 121 103
EBIC 913 46 41 941 29 30 950 29 21R0 =IN

QIC 244 388 368 247 369 384 249 366 385

EAIC 4 862 134 0 945 55 0 991 9
EBIC 4 862 134 0 945 55 0 991 9R0 =EX

QIC 141 666 193 147 730 123 135 766 99

EAIC 0 157 843 0 69 931 0 15 985
EBIC 0 157 843 0 69 931 0 15 985R0 =AR

QIC 138 262 600 97 248 655 103 221 676

The true exchangeable and AR-1 correlation matrices are parameterized with α = 0.5. These
results are obtained from 1000 simulation runs.

Simulation results from Pan (2001) and Pan & Connett (2002) are reorganized into Table

3.8 so that we can make further comparison. Pan (2001) generated data only with the EX

structure, and computed MLE and AIC since the true distribution was known. We note that

Pan’s (2001) results on the performance of QIC (see the first row of Table 3.8) are very

close to those presented in the sixth row of Table 3.7, which confirms our simulation study.

By comparing the second row of Table 3.8 to the fourth row of Table 3.7, we see that the

performance of EAIC is comparable to that of AIC yet without specifying a full-parametric
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model. Pan & Connett (2002) simulated three bootstrap-based criteria, denoted by BOOT,

BOOT2 and BCV, which minimize the predictive mean squared error. It is seen from Table

3.8 that these three criteria are not nearly as effective as EAIC or EBIC.

Table 3.8: Simulation results from Pan (2001), and Pan & Connett(2002)

Working Correlation Structures R
——————————————–

n = 50 n = 100
IN EX AR IN EX AR

Pan QIC 138 678 184 140 721 139
(2001)

R0 =EX
AIC 0 836 164 0 946 54

BOOT 48 22 30 38 30 32
BOOT2 35 31 34 30 34 36R0 =IN

BCV 40 30 27 38 25 37

BOOT 19 56 25 21 47 32
BOOT2 17 52 31 18 48 34

Pan & Connett
R0 =EX

BCV 6 65 29 12 51 37

BOOT 14 30 56 19 21 60
BOOT2 12 33 55 18 23 59

(2002)

R0 =AR

BCV 5 32 63 13 17 70

Results from Pan (2001) and Pan & Connett (2002) were obtained from 1000 and 100 simulation
replicates, respectively.

Finally, we add the full-model correlation structure ST to this study, and present relevant

results in Table 3.9; these are very similar to those in Table 3.6. QIC cannot well distinguish

the correct correlation structure from others, and always tends to over-parameterize the

working correlation matrix. Although QIC chooses ST more often when R0 is actually ST,

it does not actually lead to more efficient estimation of β because the full model itself may

not be efficient. We denote by β̂EAIC
G , β̂EBIC

G and β̂QIC
G three estimates chosen by EAIC,

EBIC and QIC, respectively, in a single simulation run. When R0 and n = 100, based on

over 1000 simulation runs we find that MSE(β̂EAIC
G ) = 0.0996, MSE(β̂EBIC

G ) = 0.0998, and
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MSE(β̂QIC
G ) = 0.109 (These are not shown in Table 3.9). In general, EAIC and EBIC are

more powerful than QIC in terms of achieving the goal of efficiency improvement.

Table 3.9: Continued comparison of EAIC, EBIC and QIC (binary response, t = 3)

Working Correlation Structures R
——————————————————————————————–

n = 50 n = 100 n = 200
IN EX AR ST IN EX AR ST IN EX AR ST

EAIC 727 105 104 64 732 99 122 47 741 111 100 48
EBIC 916 33 43 8 945 25 27 3 976 11 11 2R0 =IN

QIC 194 184 209 413 175 190 201 434 182 175 197 446

EAIC 0 737 118 145 0 822 44 134 0 838 4 158
EBIC 0 817 118 65 0 913 70 17 0 968 16 16R0 =EX

QIC 153 369 124 345 147 383 112 358 125 386 73 416

EAIC 0 154 726 120 0 50 815 135 0 1 844 155
EBIC 0 156 782 62 0 60 917 23 0 10 981 9R0 =AR

QIC 120 216 309 355 107 171 308 414 103 185 333 379

EAIC 1 437 520 42 0 370 525 105 0 138 367 495
EBIC 1 446 534 19 0 417 581 2 0 341 652 7R0 =ST

QIC 115 294 218 373 133 275 184 408 111 268 158 463

The true exchangeable and AR-1 structures are parameterized by α = 0.5, and the true stationary
structure has α = (0.5, 0.35, 0.2)T . These results are based on 1000 simulation runs.

3.5.4 Example

To illustrate the use of empirical likelihood GEE models, we apply EAIC and EBIC to

data arising from a clinical trial of 59 patients suffering from epileptic seizures. This study

was carried out by Leppik et al. (1985), and the entire data set is presented in Thall and

Vail (1990). A baseline count of the number of epileptic seizures in an 8-week period prior

to randomization was obtained for each patient. Patients were then randomized to receive

either a placebo or the drug progabide, in addition to standard therapy. Counts of epileptic

seizures in each of four successive 2-week periods were reported. The goal of the study is to

answer the question: “Does progabide reduce the seizure rate?”
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The response variable is a count, suggesting a Poisson regression model. Thus we use the

log link function log(µij) = XT
ijβ, and assume the marginal variance has the form var(Yij) =

φv(µij) = φµij. Overdispersion present in the data is accounted for by φ. Let yhij be the

response at time j (j = 0, 1, 2, 3, 4) for the ith subject in treatment group h (h = 0 for

placebo and h = 1 for progabide). We consider a model for the log seizure rate that includes

baseline seizure rate (yhi0), computed as the logarithm of 1/4 the 8-week baseline count

(log(yhi0/4)), treatment group, time, and the interaction between treatment and time. This

is an ANCOVA model that can be written as

log(µhij) = λhj + β log(yhi0), h = 1, 2; i = 1, . . . , nh; j = 1, 2, 3, 4.

We first fit the above model with GEE, using correlation structures IN, EX, AR and ST.

Empirical likelihood ratio is defined with the general correlation structure ST. EAIC and

EBIC are obtained with each of the four sets of GEE estimates. We also calculate QIC using

(3.12). Table 3.10 shows the results. Both EAIC and EBIC choose the stationary structure,

meaning that neither exchangeability nor AR-1 are sufficient to describe the correlation

structure. In contrast, QIC chooses the independence structure; this choice is not reliable

as seen from our simulation results. After choosing the GEE with a stationary working

correlation structure, one can use this model to examine the interaction between treatment

and time, and the two main effects. It turns out that these effects are not significant, meaning

that the drug progabide cannot effectively reduce the seizure rate.

Table 3.10: Example: epileptic seizures

Working Correlation Structures
—————————————————
IN EX AR ST

EAIC 108.744 20.762 23.852 18.000
EBIC 127.442 39.459 42.550 36.698
QIC -1176.468 -1175.557 -1168.187 -1171.905
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3.6 Conclusions and Future Directions

3.6.1 Conclusions

In this chapter we have reviewed two classes of methods for improving the estimation of

regression parameters in GEE models. One approach is to extend the generalized estimating

equations by replacing the inverse of the working correlation matrix with a linear combi-

nation of known basis matrices. However, since the set of basis matrices originates from an

assumption about the working correlation structure, this manipulation of estimating equa-

tions does not add any new (or change) information to the original GEE model, and hence

cannot actually lead to an estimator more efficient than the GEE estimator. The claim that

the quadratic inference function approach based on extended estimating functions is supe-

rior to the GEE method has been disproved by at least empirical evidence. A more plausible

way to achieve efficiency improvement is model selection, in particular selecting the optimal

working correlation structure for a GEE model. Existing model selection methods for GEE

models cannot integrate any information about the underlying correlation structure, and

therefore are not powerful in choosing the optimal working correlation structure.

To compare a set of candidate correlation structures, we embed them in a general cor-

relation structure and define a unified empirical likelihood ratio with the general structure.

Then the ELR of a GEE model with any candidate structure can be obtained using the

associated GEE estimates of β and α. We get two model selection criteria — EAIC and

EBIC — by simply substituting the log empirical likelihood ratio for the log likelihood ratio

in AIC and BIC, respectively. Our approach is easy to use in practice, and avoids com-

putational issues encountered by the EIC proposed by Kolaczyk (1995). EAIC and EBIC

are compared to existing model selection methods for GEE, including QIC (Pan, 2001) and

three bootstrap-based criteria of minimum predictive mean squared error (Pan and Con-

nett, 2002). Simulation studies conducted under various scenarios suggest that EAIC and

EBIC are much more powerful than existing methods. Just like their parametric counter-

parts, EAIC tends to over-parameterize the working correlation structure. Considering that



78

a correlation structure with many nuisance parameters, even if correct, may not improve the

efficiency of estimating β when it can be approximated by a more parsimonious structure,

we recommend using EBIC.

3.6.2 Future Work

An EL-based generalized information criterion

Although it is shown that EAIC is quite effective when used to select the working corre-

lation structure in a GEE, there are potential ways to further improve its performance. One

possible way is to develop an EL-based information criteria that has a solid theoretical basis

and can be applied to estimating equations in general. AIC is derived as an estimator of the

Kullback-Leibler information of the true model with respect to the fitted model, under the

assumptions that (i) the parameter is estimated by maximizing likelihood and (ii) the spec-

ified parametric family of distributions contains the true model. Similarly, the derivation of

Kolaczyk’s (1995) EIC requires maximum empirical likelihood estimates and the assumption

that the estimating equation model under consideration is correctly specified even though it

may not be the most parsimonious one. The second assumption of AIC and of EIC imply

that the model to be evaluated will produce a consistent estimator for the true parameter.

Akaike (1973) argued that −2 log(likelihood ratio) evaluated at a bad estimate (resulting

from an incorrect model) will be significantly larger than would be expected from the chi-

square approximation, and hence the incorrect model will be automatically excluded from

being considered as optimal. Therefore, the second assumption seems reasonable. However,

it is not known whether this is the reason why AIC, EIC and EAIC are likely to favor

a larger model when a more parsimonious model suffices. To evaluate parametric models,

Konishi and Kitagawa (1996) proposed a generalized information criterion which also esti-

mates Kullback-Leibler information but relaxes the above two assumptions of AIC; only a

functional estimator, which includes MLE as a special case, is required by this criterion.
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In the context of estimating equations, of which GEE is a special case, we may develop

an EL-based generalized information criteria in the spirit of Konishi and Kitagawa (1996).

Estimating sub-model parameters by maximizing the full model ELR with additional sub-

model constraints may encounter problems such as those discussed in Section 3.5.2. Since

it is more convenient to estimate a sub-model parameter by solving the sub-model esti-

mating equation whose dimension is equal to that of the sub-model parameter, it is desirable

to replace the MELE by this alternative estimate. Note that the solution of a sub-model

estimating equation is an M-estimator, and M-estimators are a special class of functional

estimators. In addition, we wish to relax the assumption in EIC that estimating equation

models are correct and yield consistent estimators. Recall that when we choose GEE models

with different working correlation structures, the correlation parameter α is considered as

part of θ that parameterizes the entire model. If the working correlation is misspecified, α̂G

cannot be consistent for the true α. For example, it is impossible that a fitted exchangeable

correlation structure is consistent for the true AR-1 structure. Thus, it is not reasonable to

assume that θ̂G obtained with any GEE model is consistent for the true θ, although β̂G is

always consistent for β. In fact, only the unstructured correlation is guaranteed to be correct.

In Konishi and Kitagawa (1996), a specified parametric family of distributions {F (x|θ) :

θ ∈ Θ} may not contain the unknown true distribution G(x|θ0). Let f(x|θ) and g(x|θ0) be

densities of F and G, respectively. Different from (3.26), the Kullback-Leibler information is

now expressed as

K(g(θ0), f(θ̂)) =

∫
log

(
g(x|θ0)

f(x|θ̂)

)
g(x|θ0)dx

= an unknown constant −
∫

log(f(x|θ̂) dG(x|θ0),

where θ̂ is a (random) estimator. Minimizing K(g(θ0), f(θ̂)) is equivalent to maximizing

η(G) =

∫
log(f(x|θ̂) dG(x|θ0),
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which needs to be estimated since G(x|θ0) is unknown. A simple estimator of η(G) is given

by substituting the empirical distribution Ĝ for G:

η(Ĝ) =
1

n

n∑

i=1

log f(Xi|θ̂),

which has a bias b(G) = E[η(G)− η(Ĝ)]. Then a generalized information criterion is defined

to be

GIC = −2

n∑

i=1

log f(Xi|θ̂) + 2nb(G) = −2n{η(Ĝ) − b(G)}, (3.35)

whose expectation is equal to −2nE[η(G)]. When used in practice, b(G) is estimated by

b̂(G). Konishi and Kitagawa (1996) showed that b(G) and b̂(G) in GIC have an explicit form

if θ̂ is an M-estimator, and GIC can be further simplified to AIC if AIC’s assumptions are

retained.

Following Kolacyzk (1995), we use the empirical analog of Kullback-Leibler information

in (3.28), i.e.,

KEL(θ0, θ̂) =

n∑

i=1

log

(
wi(θ0)

wi(θ̂)

)
wi(θ0)

= a constant given the data −
n∑

i=1

log(wi(θ̂))wi(θ0),

where θ̂ is obtained by solving a sub-model estimating equation. Then we can define empirical

likelihood versions of η(G), η(Ĝ) and b(G) as

ηEL(θ0) =
n∑

i=1

log(wi(θ̂))wi(θ0),

η̂EL(θ0) =
1

n

n∑

i=1

log(wi(θ̂)),

and bEL(θ0) = η̂EL(θ0) − ηEL(θ0),

respectively. An EL-based generalized criterion is of the form

−2
n∑

i=1

log wi(θ̂) + 2nb(θ0).
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Thus developing an EL-based generalized criterion boils down the problem of estimating

2nbEL(θ0). Since {wi(θ̂)} in 2nbEL(θ0) can be obtained in the process of computing logRF (θ̂),

the major task is to approximate {wi(θ0)}. Note that

wi(θ0) =
1

n

1

1 + (λ(θ0))T gF (Xi, θ0)
.

A possible way to tackle the problem is to expand wi(θ0) around θ̂0, the solution to the

full-model estimating equation, as we know wi(θ̂0) = 1/n. Since the expansion will involve

(θ0 − θ̂0), we may use the functional Taylor expansion (Konishi and Kitagawa, 1996, page

888)

θ̂0 = θ0 +
1

n

n∑

i=1

IF (Xi; G), +Op(n
−1)

where IF (Xi; G) is the influence function of functional T at distribution G and has a more

explicit form for the M-estimator θ̂0 (Hampel et al., 1986, page 20).

Whether an EL-based generalized criterion can be successfully developed in this way

depends on (at least) the simplest form of b̂EL(θ0) one can get eventually. If b̂EL(θ0) has

a simple form that facilitates practical use, then the criterion should be examined for its

effectiveness in terms of selecting the optimal model.

Bayesian interpretation of EBIC

We get the empirical likelihood version of BIC in (3.25) by substituting empirical like-

lihood for parametric likelihood in the original BIC. Considering that empirical likelihood

and parametric likelihoods share many common asymptotic properties, we may expect that

EBIC has a Bayesian interpretation. Specifically, Lazar (2003) extended the discussion of

EL to the Bayesian setting, showing that it is possible to replace the parametric likelihood

in Bayes theorem with empirical likelihood, and to obtain valid posterior inferences. These

posterior distributions are asymptotically normal and combine the prior and the data in the

same way as parametric Bayes. Thus, another future direction of research is to provide a

Bayesian justification of EBIC along the line of the original BIC.
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Alternative estimating equations

To compare different working correlation structures using empirical likelihood, our idea

is to combine the p-dimensional regression parameter β and the s-dimensional correlation

parameter α of the specified general correlation structure into θ = (βT , αT )T , and then

define a (p + s)-dimensional estimating function gF (Yi, Xi, θ) for θ; the first p components

of gF (Yi, Xi, θ) are simply the left-hand side of GEE, and the last s components incorporate

constraints (information) on α that are implied by the general correlation structure. In

particular, in Section 3.5.1 gF (Yi, Xi, θ)(p+s)×1 is defined as in (3.20), where the s components

associated with α originate from the method of moment estimator used in GEE. It is natural

and convenient to use gF (Yi, Xi, θ) in (3.20), since it is exactly equivalent to the corresponding

GEE in terms of estimation of β and α. Despite this “advantage”, there are potentially better

options for devising gF (Yi, Xi, θ).

Liang, Zeger and Qaqish (1992) noted that the method of moment estimator of α used in

GEE has low asymptotic efficiency relative to the maximum likelihood estimator. This is not

surprising, as α is treated as a nuisance parameter in GEE, and the exact form of the method

of moment estimator depends on the assumed form of R(α) (Liang and Zeger, 1986). Other

authors have proposed different GEE extensions that estimate β and α simultaneously and

achieve greater efficiency in estimating α. Thus an alternative to gF (Yi, Xi, θ) in (3.20) can be

devised using such a GEE extension. We conjecture that, if an estimating equation yields a

more precise α̂ for the full-model (general) correlation structure, then ELR defined with this

estimating equation may lead to a more accurate evaluation of each sub-model correlation

structure, and consequently the correct sub-model correlation structure may have a higher

chance to be chosen as the optimal by an EL-based model selection criterion.

Among GEE extensions, the extended generalized estimating equations (EGEE) proposed

by Hall and Severini (1998) requires no more assumptions than the original GEE approach

and yields α̂ with improved efficiency without sacrificing consistency of β̂ under a misspecified

working covariance structure. In particular, an EGEE was derived from the derivatives of an
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extended quasi-likelihood function Q+(µ, α, Y ) =
∑n

i=1 Q+
i (µi, α, Yi), with

Q+
i (µi, α, Yi) = Qi(µi, Yi) + f(α, Yi), (3.36)

where Qi(µi, Yi) is the quasi-likelihood function, if it exists, and is given by

Qi(µi, Yi) =

∫ u(s)=µ

u(s)=Y

(Yi − µi)
T{Vi(u)}−1du(s). (3.37)

Here, ∂Q+
i (µi, α, Yi)/∂βT = ∂Qi(µi, Yi)/∂βT = DT

i V −1
i (Yi − µi). The form f(α, Yi) is deter-

mined by setting E[∂Q+
i (µi, α, Yi)/∂αT ] = 0. The extended estimating equation results

from the first derivatives of Q+ with respect to β and α, respectively, and is given by
∑n

i=1 gF
egee(Yi, Xi, β, α) = 0, where

gF
egee(Yi, Xi, β, α) =




DT
i V −1

i (Yi − µi)

−(Yi − µi)
T ∂V −1

i

∂α1
(Yi − µi) + tr

(
Vi

∂V −1

i

∂α1

)

...

−(Yi − µi)
T ∂V −1

i

∂αs+1
(Yi − µi) + tr

(
Vi

∂V −1

i

∂αs+1

)




(p+s)×1

, (3.38)

and Vi is the working covariance of Yi that assumes the general correlation structure.

Although the quasi-likelihood Q and hence the extended quasi-likelihood Q+ may not exist

for all choices of the covariance matrix Vi, the first derivatives of Q+ in (3.38) provide valid

estimating functions for β and α. Along the line of selecting working correlation structures,

we will study the use of gF
egee(Yi, Xi, β, α) as an alternative to gF (Yi, Xi, β, α) in (3.20).
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Summary

This dissertation applies empirical likelihood to two different problems: quantile estimation

for discrete data, and selecting the working correlation structure in GEE. Although these

two problems arise in unrelated settings, there are common features that bring them into

the framework of empirical likelihood.

First, parametric assumption is not desired or difficult to make. Sample quantiles are

often used in practice to provide a preliminary summary of the data with no parametric

assumptions. Even if a parametric model is to be built based on the data, it is still useful to

obtain nonparametric estimates of quantiles as they may be used to check the goodness of

the proposed parametric model. For example, Q-Q plots are a widely used tool for diagnosing

differences between a fitted parametric distribution and an empirical distribution. If data

are drawn from a discrete distribution, sample quantiles are not necessary good estimates of

population quantiles. In this situation, we use empirical likelihood to summarize information

available from the data without any parametric assumptions, and then propose a nonpara-

metric alternative to the sample quantile estimator. This new estimator has been shown to be

consistent. When analyzing discrete or categorical longitudinal data, researchers often resort

to the semiparametric approach of GEE, as there are relatively few tractable multivariate

distributions that can be used to model this type of data. Since parametric likelihood are

absent in GEE models, many powerful model selection methods based on likelihood cannot

be applied to GEEs. Even though quasi-likelihood (Pan, 2001) and approximate likelihood

based on quasi-likelihood (Hanfelt and Liang, 1995) have been proposed for GEEs, the usage

of these likelihoods has been limited partly because exact quasi-likelihood may not exist. In

Chapter 3, we construct empirical likelihood for GEEs, and show that EL versions of AIC

84
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and BIC are more powerful than methods that are based on quasi-likelihood or resampling

procedures.

Second, information or constraints on parameters can be expressed as estimating equa-

tions. It is seen from these two applications that empirical likelihood can be extended to

various data settings as long as estimating equations are defined appropriately. In quantile

estimation, the estimating equation E[1(X ≤ θp) − p] = 0 is not smooth in the parameter

θp, and therefore Qin and Lawless’ (1994) results on properties of the maximum empirical

likelihood estimator do not apply. Nevertheless, we can study properties of the MELE for

quantiles using its relationship with the sample quantile estimator. To improve the accuracy

of interval estimation, one can smooth the estimating equation using kernel methods (e.g.,

Chen and Hall, 1993). Normally, empirical likelihood requires that data be independent, and

estimating equations are defined for independent individual observations. In the longitudinal

data setting, observations made on the same subject (i.e., within the same cluster) are corre-

lated, but clusters are assumed to be independent of one another. Therefore, to construct a

valid empirical likelihood ratio for longitudinal data, estimating equations need to be defined

on clusters rather than individual observations. In the GEE approach, the regression para-

meter β is modeled as the solution of generalized estimating equations that are defined on

clusters, so a GEE can be used directly as the estimating equation for empirical likelihood.

However, to compare GEEs with different working correlation structures using empirical

likelihood, it is necessary that the estimating equation contain constraints on the correla-

tion parameter α. Thus, we form a new vector of estimating equation by adding equation

components that explicitly estimate α to the original GEE.

In the literature, empirical likelihood has been extended to various data settings mostly

as an alternative way to construct confidence intervals and hypotheses testing. It is shown in

both theoretical and applied work on empirical likelihood that EL-based confidence intervals

(or regions) have desirable properties, especially when compared to confidence intervals based

on normal approximation (see for example, Chen et al., 2003). Nevertheless, we see from
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the two applications here that the use of empirical likelihood is not limited to confidence

intervals. In quantile estimation, we propose an EL-based categorization procedure which not

only helps determine the shape of the true discrete distribution at level p, but also provides

a way of formulating a consistent estimator. We show in the context of GEEs, empirical

likelihood can be used in place of parametric likelihood to form model selection criteria. It

is reasonable to expect that EL-based model selection criteria will be effective in selecting

semiparametric models in the form of general estimating equations. In summary, empirical

likelihood is a flexible and powerful method just as its parametric counterpart.

Although the majority of work on EL has focused on the case where data are continuous,

we show that empirical likelihood is also very useful for analyzing discrete and categorical

data that may be as simple as univariate data (such as in quantile estimation), or as complex

as repeated measures with a number of covariates. Along the line of discrete and categorical

data, another potential application of EL is analyzing contingency tables.

In recent years, there have been remarkable developments in methods for longitudinal

data analysis, due to the prominent role of longitudinal data in the behavioral, health and

medical sciences. In addition to commonly used models (e.g., GEE and linear mixed effects

models), there are various semiparametric models including the semiparametric partially

linear regression model in (3.13) (Zeger and Diggle, 1994) and the varying coefficient model

in (3.16) (for example, Xue and Zhu, 2007) mentioned in Section 3.4. Therefore, there may

be various extensions of empirical likelihood to longitudinal data analysis, depending on the

specific data type and the model for which EL is to be defined. We have focused on empirical

likelihood for GEE, which accounts for the within-subject correlation via the working corre-

lation matrix in GEE. Other authors have considered EL for models (3.13) and (3.16); their

approaches ignore the within-subject correlation and hence might not be optimal. Notice

that there is a subject-specific zero mean stochastic process εi(t) in both (3.13) and (3.16),

describing the within-subject serial correlation. Thus, we may conjecture that existing empir-

ical likelihoods for models (3.13) and (3.16) might be further improved if εi(t) is somehow
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incorporated into the estimating equations. This problem might be generalized to a much

broader topic, namely, how to construct a more informative empirical likelihood for longitu-

dinal data (or more general, dependent data) based on basic model assumptions.
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Appendix A

Proofs

A.1 Proof of Result 2.2.1

Let {kn} be a sequence of positive integers that is determined by

kn =






np if θ̂pn = Xnp:n

[np] if θ̂pn = X[np]:n

[np] + 1 if θ̂pn = X[np]+1:n

,

and therefore θ̂pn = Xkn:n. If kn = pn, then kn/n = p; if kn = [np], then (np−1)/n < kn/n ≤

(np)/n and hence kn/n = p + o(1/
√

n); if kn = [np] + 1, then (np)/n < kn/n ≤ (np + 1)/n

and kn/n = p + o(1/
√

n). Thus, the condition

kn/n = p + o(1/
√

n)

is satisfied in any case. Then by Lemma 21.7 in van der Vaart(1998), when the underlying

distribution F0 is continuous at θp, we have
√

n
(
Xkn:n − θ̃pn

)
p−→ 0, i.e.

√
n
(
θ̂pn − θ̃pn

)
p−→ 0.

It is known that θ̃pn
a.s.−→ θp for a continuous distribution. (See Serfling (1980), page 75).

Then for any ǫ > 0,

Pr
(∣∣∣θ̂pn − θp

∣∣∣ > ǫ
)

≤ Pr
(∣∣∣θ̂pn − θ̃pn

∣∣∣+
∣∣∣θ̃pn − θp

∣∣∣ > ǫ
)

≤ Pr
(∣∣∣θ̂pn − θ̃pn

∣∣∣ > ǫ/2 or
∣∣∣θ̃pn − θp

∣∣∣ > ǫ/2
)

≤ Pr
(∣∣∣θ̂pn − θ̃pn

∣∣∣ > ǫ/2
)

+ Pr
(∣∣∣θ̃pn − θp

∣∣∣ > ǫ/2
)

→ 0, as n → ∞.

Therefore, the MELE θ̂pn is a consistent estimator for θp if F0 is continuous. �
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A.2 Proof of Result 2.3.1

First consider part (a). θ̂Y
pn ≤ θ̃Y

pn by (2.11) and (2.12). As discussed in the proof of Result

2.2.1,
√

n
(
θ̂Y

pn − θ̃Y
pn

)
p−→ 0. Now consider for t < 0, since θ̂Y

pn ≤ θ̃Y
pn,

Pr




n1/2

(
θ̂Y

pn − θY
p

)

[p(1 − p)]1/2 /
∂F Y

0
(θY

p −)

∂y

≤ t





= Pr




n1/2

(
θ̂Y

pn − θ̃Y
pn

)

[p(1 − p)]1/2 /
∂F Y

0
(θY

p −)

∂y

+
n1/2

(
θ̃Y

pn − θY
p

)

[p(1 − p)]1/2 /
∂F Y

0
(θY

p −)

∂y

≤ t





≥ Pr




n1/2

(
θ̃Y

pn − θY
p

)

[p(1 − p)]1/2 /
∂F Y

0
(θY

p −)

∂y

≤ t



 . (A.1)

By part (i) of Theorem A of Serfling (1980, page 77),

lim
n→∞

Pr




n1/2

(
θ̃Y

pn − θY
p

)

[p(1 − p)]1/2 /
∂F Y

0
(θY

p −)

∂y

≤ t



 = Φ(t).

Taking the limits of both sides of inequality (A.1), we get

lim
n→∞

Pr




n1/2

(
θ̂Y

pn − θY
p

)

[p(1 − p)]1/2 /
∂F Y

0
(θY

p −)

∂y

≤ t



 ≥ Φ(t). (A.2)
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On the other hand, for any ε > 0 such that t + ε < 0,

limn→∞ Pr




n1/2

(
θ̂Y

pn − θY
p

)

[p(1 − p)]1/2 /
∂F Y

0
(θY

p −)

∂y

≤ t





= limn→∞ Pr




n1/2

(
θ̂Y

pn − θ̃Y
pn

)

[p(1 − p)]1/2 /
∂F Y

0
(θY

p −)

∂y

+
n1/2

(
θ̃Y

pn − θY
p

)

[p(1 − p)]1/2 /
∂F Y

0
(θY

p −)

∂y

≤ t





≤ limn→∞ Pr




n1/2

(
θ̂Y

pn − θ̃Y
pn

)

[p(1 − p)]1/2 /
∂F Y

0
(θY

p −)

∂y

≤ −ε or
n1/2

(
θ̃Y

pn − θY
p

)

[p(1 − p)]1/2 /
∂F Y

0
(θY

p −)

∂y

≤ t + ε





≤ limn→∞ Pr




n1/2

(
θ̂Y

pn − θ̃Y
pn

)

[p(1 − p)]1/2 /
∂F Y

0
(θY

p −)

∂y

≤ −ε





+ lim
n→∞

Pr




n1/2

(
θ̃Y

pn − θY
p

)

[p(1 − p)]1/2 /
∂F Y

0
(θY

p −)

∂y

≤ t + ε





= limn→∞ Pr




n1/2

(
θ̃Y

pn − θY
p

)

[p(1 − p)]1/2 /
∂F Y

0
(θY

p −)

∂y

≤ t + ε



 .

Letting ε → 0, we have

lim
n→∞

Pr




n1/2

(
θ̂Y

pn − θY
p

)

[p(1 − p)]1/2 /
∂F Y

0
(θY

p −)

∂y

≤ t



 ≤ Φ(t). (A.3)

Combining (A.2) and (A.3), we get

lim
n→∞

Pr




n1/2

(
θ̂Y

pn − θY
p

)

[p(1 − p)]1/2 /
∂F Y

0
(θY

p −)

∂y

≤ t



 = Φ(t).

Parts (b) and (c) can be shown using similar arguments. �

A.3 Proof of Result 2.3.3

Suppose that F X
0 is supported on {x1, x2, . . .} with x1 < x2 < . . ., and that Pj = Pr(X ≤ xj).

We now introduce random variables Lj and Uj (j = 1, 2, . . .), which are the smallest and

the largest values of l satisfying X(l) = xj (or equivalently, the indices of the smallest and
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largest order statistics of Y that are generated by X = xj). For example, a random sample

from an unknown Poisson distribution contains sorted values

{0, 1, 1, 1, 2, 2, 2, 2, 3, 3, . . .}

and the jittered sample is

{0.3, 1.2, 1.6, 1.9, 2.1, 2.3, 2.4, 2.8, 3.1, 3.5, . . .},

then

L1 = 1, U1 = 1, Y(L1) = 0.3, Y(U1) = 0.3,

L2 = 2, U2 = 4, Y(L2) = 1.2, Y(U2) = 1.9,

and so on. For any j ≥ 1,

Uj = #{Xi ≤ xj} ∼ Binomial(n, Pj)

and Uj/n
p−→ Pj ; if we define P0 ≡ 0 and U0 ≡ 0, then

Lj =





Uj−1, with probability qj0 = (Pk − Pk−1)

n,

Uj−1 + 1, with probability qj1 = 1 − qj0,

where qj0 is the probability that the value xj does not appear in the sample {Xi, i = 1, . . . , n}.

It can be verified that Lj/n
p−→ Pj−1.

Part (a)

Without loss of generality, we assume Pk−1 < p < Pk for some integer k > 1, so θX
p = xk.

To show hl
p−→ 1 and hu

p−→ 1, it is equivalent to show Cl = RY (Y(L))
p−→ 0 and Cu =

RY (Y(U))
p−→ 0.

By the definition of L and U (Section 2.3.3), the two events [θ̂X
pn = xj ] and [L = Lj , U =

Uj ] are equivalent. Thus, it follows from limn→∞ Pr(θ̂X
pn = xk) = 1 that limn→∞ Pr(L =

Lk, U = Uk) = 1, which implies L/n−Lk/n
p−→ 0. Therefore, L/n

p−→ Pk−1 since Lk/n
p−→

Pk−1. From (2.9), we can write Cl = [g(L/n)]n, where

g(t) =
(p

t

)t
(

1 − p

1 − t

)1−t

.
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Due to the continuity of g(·), g(L/n)
p−→ g(Pk−1). By a general form of the Arithmetic-

Geometric Mean Inequality (see for example, Schaumberger 1988), for 0 < t < 1,

g(t) ≤ t · p

t
+ (1 − t) · 1 − p

1 − t
= 1,

where the equality holds only when t = p. Therefore, g(Pk−1) < 1, and hence g(L/n) < 1

with probability tending to 1. We can further conclude that Cl = [g(L/n)]n
p−→ 0. Similar

arguments can be used to show U/n
p−→ Pk and then Cu

p−→ 0.

Part (b)

We now assume p = Pk for some k > 1, so θX
p = xk and θY

p = xk+1 (see case (ii) in Section

2.3.2). Since limn→∞ Pr(θ̂X
pn = xk) = limn→∞ Pr(θ̂X

pn = xk + 1) = 0.5, we may consider the

only two possible outcomes of θ̂X
pn for large n: xk and xk+1. If θ̂X

pn = xk, then

L = Lk, Cl = R(Y(Lk)) = [g(Lk/n)]n ,

U = Uk, Cu = R(Y(Uk)) = [g(Uk/n)]n .

If θ̂X
pn = xk + 1, then

L = Lk+1, Cl = R(Y(Lk+1)) = [g(Lk+1/n)]n ,

U = Uk+1, Cu = R(Y(Uk+1)) = [g(Uk+1/n)]n .

Note that g(Lk/n)
p−→ g(Pk−1) < 1, g(Uk/n)

p−→ g(Pk) = g(p) = 1, g(Lk+1/n)
p−→

g(Pk) = 1 and g(Uk+1/n)
p−→ g(Pk+1) < 1. It follows that g(Lk/n) < g(Uk/n) and

g(Lk+1/n) > g(Uk+1/n), both with probability tending to 1. Thus for large n,

θ̂X
pn =





xk, then Cl = [g(Lk/n)]n < Cu = [g(Uk/n)]n ,

xk + 1, then Cl = [g(Lk+1/n)]n > Cu = [g(Uk+1/n)]n .

both with conditional probability (given θ̂X
pn = xk or xk+1) tending to 1. Now using argu-

ments in part (a), one can verify that min(Cl, Cu)
p−→ 0, i.e., max(hl, hu) = Pr{χ2(1) ≤

−2 log(min(Cl, Cu))} p−→ 1.

Next, consider min(hl, hu) = Pr{χ2(1) ≤ −2 log(max(Cl, Cu))}. For convenience, let

−2 log(max(Cl, Cu)) = −2nf(W ), (A.4)
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where f(W ) = W log
(

p
W

)
+ (1 − W ) log

(
1−p
1−W

)
and

W =





Uk/n if θ̂X

pn = xk

Lk+1/n = Uk/n + 1/n if θ̂X
pn = xk+1

,

for n large. Recall that

−2 log(R(θY
p )) = −2nf(Fn(θY

p )). (A.5)

Now we show in three steps that (A.4) and (A.5) are asymptotically equivalent. First, when

p = Pk, Uk/n = #{Xi ≤ xk = θX
p }/n = #{Yi ≤ θY

p }/n = Fn(θY
p ) and hence W − Fn(θY

p ) =

O(n−1). Second, by the Central Limit Theorem, Fn(θY
p ) = p+Op(n

−1/2). Third, we have the

following expansion:

f(W ) = f(Fn(θY
p )) + f ′(Fn(θY

p ))(W − Fn(θY
p )) + O(n−2)

= f(Fn(θY
p )) +

[
f ′(p) + f ′′(Fn(θY

p ))(Fn(θY
p ) − p) + op(n

−1/2)
]
(W − Fn(θY

p ))

+O(n−2)

= f(Fn(θY
p )) + op(n

−1).

Therefore, [−2 log(max(Cl, Cu))] − [−2 log(R(θY
p ))]

p−→ 0. It is known from Owen (1988)

that −2 log(R(θY
p ))

d−→ χ2(1). Then by the Probability Integral Transformation Theorem,

Pr
(
χ2(1) ≤ −2 log(R(θY

p ))
) d−→ U(0, 1). (A.6)

Combining (A.6) with the asymptotic equivalence of −2 log(max(Cl, Cu)) and −2 log(R(θY
p )),

we get

min(hl, hu) = Pr
(
χ2(1) ≤ −2 log(max(Cl, Cu))

) d−→ U(0, 1).
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