

INSTRUMENTING WEBCAPSULE ON ANDROID WEBVIEW

by

SNEHA TANAJI DALVI

(Under the Direction of Roberto Perdisci)

ABSTRACT

WebCapsule is a record and replay forensic engine for web browsers. It can assist

forensic analysts to reconstruct and analyze real world web security attacks such as social

engineering and phishing attacks. WebCapsule is always on, lightweight, portable and

collects critical information. WebCapsule is designed and implemented as a self-

contained instrumentation layer around Google's Blink web rendering engine and V8

JavaScript engine. Blink is already embedded in a variety of browsers and can run on

different platforms, which makes WebCapsule portable. In this research, we instrument

WebCapsule on Android WebView to verify the portable nature. WebView allows us to

display web pages in Android Apps. We build Android System WebView with embedded

WebCapsule and show that it is possible to record and replay web contents in WebView

of Android applications. We evaluate the efficiency of the System WebView with

embedded WebCapsule on a self-developed app and few real-world apps.

INDEX WORDS: Forensic Engine, Web Security, Browsing Replay,

 Android WebView, Android App

INSTRUMENTING WEBCAPSULE ON ANDROID WEBVIEW

by

SNEHA TANAJI DALVI

BE, University of Mumbai, India, 2011

A Thesis Submitted to the Graduate Faculty of the University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2017

© 2017

Sneha Tanaji Dalvi

All Rights Reserved

INSTRUMENTING WEBCAPSULE ON ANDROID WEBVIEW

by

SNEHA TANAJI DALVI

 Major Professor: Roberto Perdisci

 Committee: Kyu Lee

 Kang Li

Electronic Version Approved:

Suzanne Barbour

Dean of the Graduate School

The University of Georgia

May 2017

iv

DEDICATION

 I dedicate my work to my family and friends and all my mentors, academic or

otherwise, who gave me motivation to push the boundaries of my achievements.

v

ACKNOWLEDGEMENTS

 I would like to thank Dr. Roberto Perdisci for his guidance and perseverance

throughout my research work and writing of thesis. I would also like to thank Dr. Kyu

Lee, Christopher Neasbitt and Bo Li for their support and insightful comments

throughout my research.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER

 1 INTRODUCTION ...1

 1.1 Problem ..1

 1.1 Proposed Solution ..4

 2 BACKGROUND ...6

 2.1 WebCapsule ...6

2.2 Motivation ..7

2.3 Types of mobile apps ...8

3 RELATED WORK ..10

 3.1 Record and Replay Tools ...10

 3.2 Summary ..16

4 BUILD AND TEST ...17

 4.1 Building Chromium ...17

4.2 WebView Shell ..20

4.3 System WebView...20

4.4 Real-world apps ...27

vii

4.5 Apache Cordova and Adobe PhoneGap ..28

5 EVALUATION..32

 5.1 Experimental Setup ..32

5.2 Results and Evaluation ...33

5.3 Discussion ..38

5.4 Limitations ...40

6 CONCLUSION ..42

 6.1 Conclusion ...42

 6.2 Future Work ...43

REFERENCES ..44

viii

LIST OF TABLES

Page

Table 1: Summary of past Record and Replay techniques ..8

Table 2: GYP/GN Targets for different architectures ..18

Table 3: Record and Replay tests in WebView Shell app ...32

Table 4: Record and Replay tests on real-world apps..33

Table 5: YouTube links for demo videos ..37

ix

LIST OF FIGURES

Page

Figure 1: Overview of WebCapsule’s Instrumentation Shims ..4

Figure 2: Common steps in building Chromium browser ...13

Figure 3: Steps to test record and replay capabilities of modified System WebView20

Figure 4: Two different builds of Android System WebView ..13

Figure 5: Chrome inspect page showing running WebView ...23

Figure 6: Port forwarding and Record/Replay commands ..25

Figure 7: Steps to enable WebView debugging in real-world app28

Figure 8: Cordova Application Architecture ...29

Figure 9: Types of hybrid apps and PhoneGap framework components30

Figure 10: Google webpage in Chrome Custom Tab and overflow menu39

1

CHAPTER 1

INTRODUCTION

1.1 Problem

It is critical to perform forensic analysis of web-based security incidents. Because,

security researchers can then understand past incidents better and develop stronger

defenses against future attacks. Unfortunately, analyzing real world web attacks that

directly target users, such as social engineering and phishing attacks, is an extremely

challenging and time-consuming task. Generally, forensic analysts rely on browser's

history, cache files and system logs to analyze these attacks. But these sources lack

adequate details to reconstruct the past incidents of social engineering and phishing

attacks. Another approach is to leverage access to full network packet traces, which may

provide more information on how a security incident happened. Still, there is a large

semantic gap between the web traffic and the detailed events such as page rendering,

mouse movements, and key presses that occurred within the browser. Due to the semantic

gap, it is very difficult to precisely reconstruct victim interactions, the steps of the attack,

and the impact of the attack.

To address this problem, we can use a record and replay engine which collects

critical information such as network traces, DOM tree, user interactions. The record and

replay approach is generally used for software debugging and testing in order to

reconstruct and analyze bugs. There are few record and replay solutions for different

types of software for example multi-threaded programs, web browsers and mobile

2

applications. However, the existing solutions for recording and replaying applications are

not portable. There are not enough record and replay solutions available for mobile

applications. There are few record and replay solutions available for Android applications

but not for other platforms like iOS or Windows. Additionally, most of the existing

solutions for Android applications are only suitable for functional or usability testing and

not perfect for forensic analysis.

Mobile phones have been increasingly popular in recent years and millions of

applications (apps) are available in different platforms. Moreover, more websites are now

loaded on smartphones and tablets than on desktop computers. A recent study by a web

analytics company StartCounter shows that internet usage by mobile and tablet devices

exceeded desktop worldwide for the first time in October 2016 [25]. More numbers of

mobile apps are being developed and used by people. Most of the apps use WebView to

display web contents inside the app. WebView is a system component used in mobile

platforms such as Android, iOS and Windows. It is called UIWebView in iOS. It enables

smartphone and tablet apps to embed a simple but powerful browser inside them.

WebView provides a number of APIs, allowing code in apps to invoke and be invoked by

the JavaScript code within the web pages, intercept their events, and modify those events.

According to a study [26] in the year 2011, 86 percent of the top 20 most downloaded

apps in 10 diverse categories in Android market use WebView.

 Therefore, there are equal or probably more chances of security incidents such as

social engineering or phishing attacks in mobile apps. A study presents possible attacks

on WebView in the Android System such as JavaScript Injection, event sniffing and

hijacking [26]. They explain how two essential pieces of the Web's security infrastructure

3

are weakened if WebView and its APIs are used: the Trusted Computing Base (TCB) at

the client side, and the sandbox protection implemented by browsers. As a result, many

attacks can be launched either against apps or by them. Another study presents cross-site

scripting attacks on Android WebView [27]. Such types of attacks result in stealing of

cookies and other sensitive information such as contacts from the Android phone. They

also result in Session Hijacking and impersonating user using stolen cookies. The attacks

are a result of breach in the same origin policy of Android browsers. XSS attacks are easy

to execute, but difficult to detect and prevent. Then, there is a blog by Dan Wallach [28],

which describes possible threats of mobile advertising in Android WebView. Virtually all

the advertising we see in Android apps is hosted inside a WebView. It’s all HTML,

JavaScript, and images, and it’s all generally loaded over HTTP. That means there’s no

encryption and no authentication, violating Google’s security advice. Just like web

advertising, mobile advertising uses HTTP redirects, so the content can come from a

variety of different sources. Attackers may well be able to craft malicious content and use

any of the many advertising services to deliver it directly into apps. A WebView runs

with the same privileges as the app that’s hosting it. Maliciously crafted advertising

content will then inherit all these privileges. Even with full Internet privileges and

nothing else, malicious ad content connected to the Wi-Fi behind your firewall could use

your phone as a launching pad for further attacks. Therefore, we need a tool to detect and

analyze such attacks. A record and replay tool can be helpful to reconstruct such

incidents in order to analyze and find the source of the attack.

4

1.2 Proposed Solution

To better address this problem, WebCapsule [1] is proposed. It is an always on,

lightweight, portable, record and replay forensic engine for web browsers. It collects

critical information such as network traces and snapshot of DOM tree which allows the

forensic analyst to analyze exactly how the page was structured at every significant user

interaction with the page’s components. Using WebCapsule, an analyst can later replay

previously recorded browsing sessions in a separate controlled environment, without

providing any new external user inputs or network transactions. This enables detailed

analysis of security incidents that are unexpected. It allows reconstructing detailed

information about incidents that may follow new attack patterns. Since, WebCapsule can

replay all non-deterministic inputs, including all content provided by the server, it enables

a full forensic investigation of incidents involving short-lived phishing or social

engineering attack pages.

To make WebCapsule portable, it is designed and implemented as a self-

contained instrumentation layer around Google's Blink web rendering engine, which is

already embedded in a variety of browsers such as Chrome, WebView, Opera, Amazon

Silk, etc. and can run on different platforms like Linux, Android, Windows, and Mac OS.

WebCapsule is implemented around Chromium [2] codebase. Chromium is an open

source browser project behind the Google Chrome browser, which uses Blink rendering

engine [3] and V8 JavaScript engine [4]. Due to the portable nature, WebCapsule can be

used in browser and apps in mobile devices as well.

In this research, we show that WebCapsule can also be embedded in Android

WebView [5] and we can record and replay web contents in WebView of Android apps.

5

Android WebView is a system framework component and is used to display web pages in

Android apps. Since Android 4.4 (KitKat), the WebView component is based on

Chromium code and from Android 5.0 (Lollipop), the WebView is moved to an APK as

Android System WebView, so it can be updated separately. It is possible to test

modifications done in Chromium codebase by building full browser or simple test shells

for different platforms. We built Android WebView Shell and System WebView APK

from Chromium with WebCapsule. Then, we performed record and replay on web

contents in WebView of Android Apps. This proves the portable nature of WebCapsule

forensic engine. The record and replay capabilities of WebCapsule are implemented by

extending’s Chrome’s DevTools. Hence, we had to enable WebView debugging in real

world apps in order to test the record and replay functionality.

In CHAPTER 2, we will look at the implementation and portable nature of

forensic engine WebCapsule and the motivation behind this research. We will then talk

about some past works of record and replay engines for debugging software in

CHAPTER 3. Then, we will describe the process of building Android System WebView

with embedded WebCapsule and how we tested record and replay capabilities in Android

apps in CHAPTER 4. Finally, we will present the evaluation results and discuss about

native library in CHAPTER 5 and conclude in CHPTER 6.

6

CHAPTER 2

BACKGROUND

2.1 WebCapsule

WebCapsule is a record and replay forensic engine for web browsers. It

transparently records enough information to enable forensic analysts to reconstruct a

user’s historic browsing activities. WebCapsule records corresponding HTML and a

snapshot of the current DOM tree. It also records all non-deterministic inputs to the

rendering engine, and all input events such as mouse location coordinates, keypress

codes, etc. It also records responses to network requests, and return values from calls to

the underlying platform API. This allows analysts to replay previously recorded browsing

sessions without any external user input or network transaction. This enables

investigation of incidents such as short-living phishing or social engineering attack pages.

WebCapsule can function as an always-on system by configuring to start

recording at browser startup. Moreover, WebCapsule is highly portable, can be embedded

in a variety of web-rendering applications, and can run on a variety of platforms. To

make WebCapsule portable, it is implemented by injecting lightweight instrumentation

shims around Google’s Blink web rendering engine and its tightly coupled V8 JavaScript

engine without altering their application and platform APIs as shown in figure 1. Blink

web rendering engine is embedded in a variety of browsers like Chrome, WebView,

Opera, Amazon Silk, etc. and can run on different platforms e.g. Linux, Android,

Windows and Mac OS. Hence, WebCapsule inherits Blink’s portability.

7

Figure 1: Overview of WebCapsule’s Instrumentation Shims

(Source: WebCapsule [1])

2.2 Motivation

 WebCapsule is implemented around Chromium, which is an open source project

and it uses Blink rendering engine and V8 JavaScript engine. We can test modifications

done in Chromium by building full browser or test shells for different platforms.

Chromium project provides instructions to build Chromium on different platforms such

as Linux, Windows, Mac, ChromeOS, iOS, Cast and Android. Therefore, Chromium for

Linux and ChromeShell APK for Android was built from Chromium code with

WebCapsule instrumentation and the record and replay capability was tested

successfully.

 We found that, we can even build Android WebView from Chromium code with

WebCapsule instrumentation. Android WebView is used to display web pages in Android

apps. Hence, with WebCapsule embedded in Android WebView, we will be able to

8

record and replay web contents in Android apps. This will help forensic analysts to

reconstruct previously recorded incidents in Android apps. There are other existing

record and replay systems but most of them are not portable and cannot be used in

Android apps. Hence, in this research, we will build Android WebView with embedded

WebCapsule and test its record and replay capabilities in our self-developed test app and

few real world apps. This will also prove the portable nature of WebCapsule.

2.3 Types of mobile apps

 Mobile apps can be divided in three types: native app, web app and hybrid app.

Native and hybrid apps are installed from an app store, whereas web apps are mobile

optimized webpages that look like an app. Both hybrid and web apps render HTML web

pages, but hybrid apps use app-embedded browsers like Android WebView to do that.

Hence, in this research, we will be focusing on hybrid apps that use Android WebView.

 Native apps are installed on the device through an application store such as

Google Play or Apple’s App Store and are accessed through icons on the device home

screen. They are developed specifically for one platform and can take full advantage of

device features such as camera, GPS, compass, list of contacts and so on.

 Mobile web apps are mobile-optimized websites and look like a native app. They

are accessed by a URL in mobile browser. They are developed sing technologies such as

JavaScript or HTML5. But, web apps cannot take advantage of all the native features of

device.

 Hybrid apps are installed from an app store and run on the device. They contain

both native as well web components. Like native apps, they can take advantage of many

device features available. Like web apps, they render HTML web pages in a browser

9

embedded within the app like Android WebView. Hybrid apps are written with web

technologies like HTML, CSS and JavaScript and they can be developed as cross-

platform. There are tools such as PhoneGap/Cordova that allow people to develop hybrid

apps across platforms.

10

CHAPTER 3

RELATED WORK

3.1 Record and Replay Tools

During debugging, a developer needs to reproduce a bug repeatedly and adjust

breakpoints in order to find the root cause of the bug. This is a time-consuming process

and record and replay can be a very useful feature to reconstruct a bug. Replay can be

used for a variety of reasons such as failure analysis using debugging tools, performance

evaluation, usability analysis and forensic analysis. Many efforts have been done to

implement record and replay feature in different ways.

John Vilk, James Mickens and Mark Marron propose a gray box approach for

high-fidelity and high-speed Time-Travel Debugging (TDD) [6]. Time-travel debuggers

allow developers to step forward as well as backward through a recorded program’s

execution. To increase fidelity in time-travel debuggers, they propose a gray-box

approach, in which external or black box components like GUI state is also recorded.

Based on this approach, they implement REJS, a new time-traveling debugger for client-

side web applications that uses the JavaScript runtime as the virtualization layer. REJS

leverages gray-box techniques to capture important state like animation metadata that

resides in the rendering engine, which was formerly a black box component. REJS has

less than 6% overhead during program recording, negligible overhead during replay, logs

less than 1.5KB/s uncompressed on a wide variety of programs, keeps the GUI and other

runtime state live during time-travel, and can migrate web applications in less than one

11

second over a 10Mbps connection. REJS has been incorporated into Microsoft’s open-

source Chakra-Core JavaScript engine. This gray-box approach can also be used in other

managed runtimes like the JVM and CLR.

Jong-Deok Choi and Harini Srinivasan present DejaVu [32], which provides

deterministic replay of Java multi-threaded application. Threads and concurrency

constructs in Java introduce non-determinism to a program’s execution, which makes it

hard to understand and analyze the execution behavior. This non-determinism also makes

it impossible to use execution replay for debugging, performance monitoring, or

visualization. DejaVu is a record and replay tool which provides deterministic replay of

program’s execution. It is implemented as an extension to the Sun Microsystem’s Java

Virtual Machine. It records the logical thread schedule information of the execution while

the Java program runs and replays the same execution behavior of the program by

enforcing the recorded logical thread schedule. In addition to thread schedule

information, DejaVu also records other non-deterministic attributes such as network

events and windowing inputs/events. This is designed for generic multi-threaded

applications and not for web applications. To record and replay web applications, there

are many other non-deterministic inputs that needs to be recorded.

There are a variety of tools for debugging web applications, which are used by

forensic analysts. For example, Fiddler is a web proxy that allows the local user to

inspect, modify, and replay HTTP messages. The commercial Selenium, a Firefox

extension records user activity for later playback. Recording can only be done in Firefox,

but playback is portable across browsers using synthetic JavaScript events. Because

Selenium does not log the full set of nondeterministic events, it is suitable for automating

12

tests, but it cannot reproduce many nondeterministic bugs. The commercial products

ClickTale and CS SessionReplay capture mouse and keyboard events in browser-based

applications. The services provide click analytics and a movie of client-visible

interactions. However, neither of these products expose a full, browser-neutral

environment for logging all sources of browser nondeterminism. They do not provide the

underlying internal state of the JavaScript heap and the browser DOM tree.

James Mickens, Jeremy Elson, and Jon Howell propose Mugshot [7], a system

that captures every event in an executing JavaScript program so that developers can

deterministically replay past executions of web applications. The advantage of Mugshot

is that its client-side component is implemented entirely in standard JavaScript, providing

event capture on unmodified client browsers. It is always-on and imposes low overhead

in terms of storage (20-80KB/minute) and computation (slow-downs of about 7% for

games with high event rates). It only records JavaScript component of the application

which includes DOM events, interrupts, non-deterministic functions, text selection.

Mugshot has a server-side proxy which stores the external objects like images fetched by

the application so that at replay-time, requests for the objects can access the log-time

versions. If an application fetches external content that does not pass through the proxy,

Mugshot cannot guarantee faithful replay of its data or its load time.

Silviu Andrica and George Candea presents WaRR [9], a tool for high-fidelity

web application record and replay. The WaRR recorder extends WebKit and is embedded

into the Chrome web browser. It records and replays interactions between users and web

applications only. It only records user inputs such as mouse clicks, UI-element drags and

13

keystrokes. It works as “always-on” system and incurs low overhead. It can assist in

finding bugs in web application and generating user experience reports.

Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim and Todd Millstein propose

RERAN [10], a timing and touch sensitive record and replay for Android. This tool

captures and playbacks GUI events such as different touchscreen gestures (e.g., tap,

swipe, pinch, zoom) and other sensor inputs (e.g., accelerometer, light sensor, compass).

Its implementation is heavily based on Android’s Software Developer Kit (SDK) tools.

This is specially designed for Android apps to capture complex gestures and sensors with

microsecond accuracy in order to replay it later for testing. It does not capture other

sources of non-determinism. They successfully recorded and replayed 86 out of the top

100 free Android apps on Google play store.

Yongjian Hu, Tanzirul Azim and Iulian Neamtiu propose a tool called VALERA

[33] (VersAtile yet Lightweight rEcord and Replay for Android). It records and replays

smartphone apps, by intercepting and recording input streams and events with minimal

overhead and replaying them with exact timing. It records all kinds of inputs such as

network, GPS, camera, microphone, touchscreen with accurate timing. VALERA records

the data sent and received, timing of network API and any exception occurred for each

HTTP/HTTPS connection. It is implemented as instrumented app that intercepts

communication between the app and Android Framework to produce log files. It is

evaluated on 50 popular Android apps showing low overhead of around 1% during record

and replay.

Zhengrui Qiny, Yutao Tangy, Ed Novak, and Qun Li present a novel system,

called MobiPlay [11], which aims to improve record and replay testing for mobile

14

applications. It records all input data, including all sensor data, all touchscreen gestures,

and GPS. It records the inputs at application layer and not at the Android Framework or

Linux kernel layer. It is able to record and replay on the mobile phone as thin client as

well as on the server. The client app on mobile phone intercepts all input data to target

app and transmits to the server, so it the input data can be recorded on mobile as well as

server. It uses SVMP, secure mobile application platform developed by MITRE2, based

on thin client technology and cloud computing technology to implement client-server

platform. Again, it does not record network requests and responses. It requires large

number of resources such as virtual machine and high-speed internet connection.

Brian Burg, Richard Bailey, Andrew J. Ko and Michael D. Ernst presents

TimeLapse [8], a developer tool for creating, visualizing, and navigating program

recordings during debugging tasks. It utilizes Dolos, a novel record/replay infrastructure

for web applications. To ensure deterministic execution, Dolos captures and reuses user

input, network responses, and other nondeterministic inputs as the program executes.

TimeLapse is based on Apple’s WebKit rendering engine. Thus, it is not portable and

only works on MacOS+Safari+WebKit. It deeply modifies the internals of WebKit which

does not allow for transparent recording and it does not work as “always on” system.

C Neasbitt, B Li, R Perdisci, L Lu, K Singh and K Li propose WebCapsule [1], a

record and replay engine for web browsers. It captures all user inputs, network requests

and responses and other non-deterministic calls to underlying system. WebCapsule is

implemented as instrumentation layer around Blink rendering engine, which is already

embedded in variety of browsers and can run on different platforms. The record and

replay capabilities are implemented by extending Blink’s built-in instrumentation facility

15

known as Dev-Tools. Since WebCapsule records all the non-deterministic inputs

including all previously rendered web content, it can record and replay even short-lived

phishing pages, which is very important for forensic analysis.

Table 1: Summary of past Record and Replay techniques

Name Year Record and Replay Implementation

Gray-box

TDD/REJS

2016 External program state such as

GUI

Gray-box virtualization

DejaVu 1998 Logical thread schedule

information

JVM extension

Mugshot 2010 Client-side JavaScript JavaScript program

WaRR 2011 Only user inputs to web

application

WebKit instrumentation

RERAN 2013 Touch-screen gestures and sensor

inputs to Android phone

Based on Android SDK

tools

VALERA 2015 Different inputs to Android phone

such as network, GPS, camera,

microphone, touchscreen

API interception

MobiPlay 2016 All user inputs such as sensor data,

touchscreen gestures, and GPS

Intercepting app and

client-server platform

TimeLapse 2013 User input, network responses WebKit instrumentation

16

WebCapsule 2015 User inputs, network transactions,

and non-deterministic calls to the

underlying system platform

Blink instrumentation

3.2 Summary

The primary aim for most of the above approaches is to assist in debugging, and

they record specific components such as JavaScript or user inputs to web application or

smartphone. WebCapsule records enough detailed information to enable a full

reconstruction of web security incidents, including phishing attacks. Additionally, some

of the approaches only work for particular type of applications or smartphone.

WebCapsule is highly portable than all the other approaches. It allows us to record and

replay web contents in browsers as well as mobile apps on different platforms.

17

CHAPTER 4

BUILD AND TEST

4.1 Building Chromium

WebCapsule is implemented as an instrumentation layer around Chromium,

which is an open source project. It uses Blink rendering engine and V8 JavaScript engine.

We can test modifications done in Chromium by building full browser or test shells for

different platforms. Chromium project provides instructions to build Chromium on

different platforms such as Linux, Windows, Mac, ChromeOS, iOS, Cast and Android.

We can test record and replay capabilities of WebCapsule by building Chromium

browser from Chromium codebase having WebCapsule instrumentation. For our

research, we will focus on build instructions for Android [12]. In Android, we can have

Chrome browser or WebView, where WebView is used to display web pages in Android

apps. We can build Chrome Shell APK or full Chromium browser APK for Android. We

will focus on building WebView Shell APK and Android System WebView APK in

order to test modifications to WebView. This building process consists of many steps as

shown in figure 2.

4.1.1 Pre-requisites

A Linux machine is required to build Chrome or WebView for Android. Other

platforms (Mac/Windows) are not supported for Android. We used a desktop Dell

Optiplex 980 with a Core i7 870 CPU and 8GB of RAM running 64-bit Ubuntu 14.04

Linux. At least 100GB free disk space is required. We also need Git and Python installed.

18

Figure 2: Common steps in building Chromium browser

4.1.2 Get the code

Foremost, we need to checkout depot tools and Chromium code using Git

subversion tool. Depot tools is a package of scripts to manage checkouts and code

reviews. It contains many utilities such as gclient, gcl, git-cl, repo and others. This depot

tools should be added in PATH. Then, we checkout Chromium with WebCapsule

instrumentation codebase using git. This step will be different from the instruction

provided by Chromium, as we will clone the WebCapsule repository and not the original

Chromium. This will take around 30 minutes to download the code.

After this, we add Android support by appending target_os = ['android'] to the

.gclient file and run “gclient sync” to get the Android related files checked out. Gclient is

a python script to manage a workspace of modular dependencies and the dependencies

can be specified on a per-OS basis.

4.1.3 Configure the build

We can specify environment variables that configure the way Chromium is built

using GYP (Generate Your Project) [13] or GN. GYP is intended to support large

projects that need to be built on multiple platforms e.g. Mac, Windows, and Linux. By

Install
depot_tools

Checkout
Chromium +
WebCapsule

code

Configure
.gclient and get
Android files

Configure
GYP/GN for
appropriate
architecture

Update and
sync files

Install Android
system

packages

Prepare the
environment

Build browser
using ninja

19

modifying these parameters, we can build chrome for different platforms and

architectures, or speed up the build process [14]. For example, for android and arm based

32-bit architecture build, the GYP_DEFINES environment variable is set as

"{'GYP_DEFINES': 'OS=android target_arch=arm'}". The default architecture is “arm”

and can be omitted. GN also uses the same target values.

Table 2: GYP/GN Targets for different architectures

Device Architecture Target

Arm 32-bit arm

Arm 64-bit arm64

X86 ia32

MIPS mipsel

We used GYP to build, as GN is not fully supported yet. But, GN incremental

builds are the fastest option and GN will soon be the only supported option. GYP and GN

are both meta-build systems that generate ninja files for the Android build. Both builds

are regularly tested on the build waterfall.

After this, we update and sync project using “gclient runhooks” and “gclient

sync” command. This will download more things and prompt to accept Terms of Service

for Android SDK packages. We also need to install build dependencies and prepare the

environment by running few scripts. We need to make sure that the PATH environment

variable is set to latest build tool package in Android SDK.

4.1.4 Build the browser

 Now, we can use ninja command “ninja –C out/Release android_webview_apk”

to build test shell WebView i.e. WebView Shell APK. To build full WebView i.e.

System WebView APK, the command is “ninja –C out/Release system_webview_apk”.

20

Ninja is a build system written with the specific goal of improving the edit-compile cycle

time. It is included in depot tools. Also, we can build either debug or release version of

APK. After this, we can install the APK in an Android emulator or device and test the

any modifications done to WebView.

4.2 WebView Shell

Android WebView is a system framework component that allows Android apps to

display web content. Since Android 4.4 (KitKat), the WebView is implemented using

Chromium code. It is possible to test modifications to WebView using a simple test shell,

called WebView shell. It is a view with a URL bar at the top and is independent of the

WebView implementation in the Android system. The WebView shell is essentially a

standalone unbundled app. We built WebView Shell APK from the Chromium having

WebCapsule instrumentation code and installed in an Android device. Then, we opened

the app, entered a web URL and tested record and replay functionality successfully. We

will explain the process of recording and replaying web contents later in this chapter.

4.3 System WebView

4.3.1 Build

The WebView Shell is sufficient to run tests and for certain development tasks.

But, if we want to run WebView code as an Android system component which is useful

when working on performance or application compatibility, we need to build System

WebView APK [15]. System WebView is the complete Android WebView framework

component and is required to test the capabilities of WebView with WebCapsule in an

Android app which uses WebView. Since Android 5.0 (Lollipop), the WebView is

moved to an APK so it can be updated separately to the Android platform. Thus, we built

21

System WebView APK from the modified Chromium source code. To test the record and

replay capabilities of WebCapsule in an Android app with the new System WebView

APK requires additional steps as shown in the figure.

Figure 3: Steps to test record and replay capabilities of modified System WebView

4.3.2 Install

Now, we need to replace the default System WebView App in an Android device

and install this new System WebView APK in order to test record and replay WebView

contents of an Android app. But, System WebView is a system app and cannot be

removed unless the device is rooted. Thus, this experiment requires a rooted device with

Android 5.0 or above. For our experiment, we rooted Google Pixel C Tablet with

Android version 6.0 [16].

Moreover, AOSP (Android Open Source Project) builds are required for testing

the new System WebView APK as per the given instructions. AOSP build means an

operating system built from standard Android source code. In AOSP build Android

device, the System WebView package is named as “com.android.webview” by default

and is called by this package name when any app tries to open a WebView. The System

Build System
WebView APK

Root Device with
Android 5.0 or

later

AOSP Build or
Change package

name of APK

Replace System
WebView APK

Develop Test App
and Enable
WebView

Debugging in App

Forward Port from
host to device

Record and Replay
using extended
DevTools script

22

WebView built from the Chromium source code also has package name

“com.android.webview”.

But, the Android devices in market have released builds of Android and are

shipped with Google applications with the Google-specific version of the WebView

called “com.google.android.webview”. These partner devices have product builds of

Android and are shipped with device specific drivers, software and Google apps. The

AOSP builds and product builds of android, use two different package names because

only the Google-specific package can be updated via the Play Store. The icons for the

two different System WebView can be seen in Figure 4. The first one is the released

System WebView and second one is the developer build, which is built from modified

Chromium source code.

Figure 4. Two different builds of Android System WebView

But, there is a workaround if we do not have AOSP build in Android device. We

can simply change the package name of System WebView APK to

“com.google.android.webview”. We can decompile the APK using apktool, edit package

name in AndroidManifest.xml file, compile again using apktool and sign the APK using

apksigner. We used this workaround because flashing AOSP build on Pixel C [17], was

not allowing to root the device and we had to use modified stock kernel.

23

After this, we uninstalled the default System WebView and removed its related

files from the device. Then we installed the modified System WebView.

4.3.3 Develop Test App

 Now, we need an Android app that uses WebView in order to test record and

replay feature of the new WebView. We developed a simple app which accepts a URL

and opens that webpage in WebView [18]. The test app opens the entered URL in a

WebView without crashing. Note that, the entered URL is not opened in Chrome or any

other browser, but it is opened in WebView inside the test app. It indicates that the

System WebView is built properly.

4.3.4 Enable WebView Debugging

 The record and replay capabilities of WebCapsule are implemented using

Chrome’s DevTools. We will explain it in detail later in this chapter. But, because of this,

we need to enable WebView debugging in the testing Android app, in order to remotely

debug WebView [19]. To enable WebView debugging, call the static method

setWebContentsDebuggingEnabled on the WebView class in onCreate() method of the

app’s application class or launcher activity. This setting applies to all of the application's

WebViews. One thing to note here is that WebView debugging is not affected by the

state of the debuggable flag in the application's manifest. After this, once the APK is built

and installed in Android device, connect the device to the computer by USB cable and

enable USB debugging. Then, open the app and we can see a list of running debug-

enabled WebViews of the app in the desktop Chrome browser by navigating to

“chrome://inspect” as shown in figure 5.

24

Figure 5. Chrome inspect page showing running WebView

4.3.5 Port Forwarding

 We can use port forwarding to remotely debug Chrome on Android. ADB

(Android Debug Bridge) has forward command that forwards requests on a specific host

port to a different port on a device. This makes a port on the android device accessible

from the computer and allows us to remotely debug an app on Android device. The port

for Chrome on Android is chrome_devtools_remote. Similarly, we found that the port for

WebView on Android is webview_devtools_remote_<process_id> where <process_id> is

the process id of the app which is running the WebView. This process id can be obtained

by using “adb shell ps” command. This command shows all the running processes and

their process ids.

 The command for port forwarding is “adb forward tcp:<port_number>

localabstract:webview_devtools_remote_<process_id>”. This tells adb to forward any

requests on localhost:<port_number> to the WebView port of the specified app on the

25

android device. Now, if we navigate to “http://localhost:<port_number>/json” in Chrome

browser on the desktop, we can see the running WebView details in JSON format.

4.3.6 Record and Replay

The Chrome DevTools [20] are a set of web authoring and debugging tools built

into Google Chrome. DevTools is designed to provide developers information about

DOM elements, network traffic, and JavaScript execution. The collection and

presentation of information from each category is implemented via an ‘InspectorAgent’.

Users can retrieve the desired information collected by DevTools using either a graphical

interface, called “Developer Tools” in Chromium, or via a JSON-based protocol over a

WebSocket connection. The existing functionalities of DevTools are extended by

hooking events we want to record. This is done by modifying ‘Inspector-

Instrumentation.idl’, which is written using a mix of IDL and C++ code. This allows us

to define a special InspectorAgent, which we use to add WebCapsule’s instrumentation

shims around the web-rendering API.

To allow for the communication between WebCapsule and the external agent, we

extend the DevTools JSON-based network protocol. This extension is developed as

Python script, which defines new commands such as StartRecording, StopRecording,

StartReply, etc. to remotely control WebCapsule operating mode.

To start recording web contents of any app, first we open WebView in the test

app, use port forwarding to forward any requests on “localhost:8080” to the WebView

port of the app. Then, we execute the DevTools script and we can see the URL opened in

the webview of the app. We select the page which we want to record and execute

StartRecording command to start the recording. In this way, we recorded web contents in

26

WebView of the test app and were able to replay the recorded session successfully. The

commands used for port forwarding and performing record and replay on BestBuy app

using DevTools extension script can be seen in following figure 6.

Figure 6: Port forwarding and Record/Replay commands

 One of the commands developed using the DevTools script is EnableJavaScript.

In this build, JavaScript is disabled by default and a function is provided to enable

JavaScript using the command. We used this command before recording BestBuy app

and PhoneGap Browser app. We could see the difference before and after enabling

JavaScript. Since, JavaScript is disabled by default and can be enabled only after we

connect to the opened WebView, we were not able to test few apps which require

JavaScript to open a WebView at first.

27

4.4 Real-world Apps

As we were successful in recording and replaying WebView contents in a test

app, we then tried to record and replay WebView contents in real-world apps. Most of the

Android apps we use everyday use WebView in some way. But, in order to detect

WebViews in real-world apps and use Chrome’s DevTools, we need to enable WebView

debugging for the app. This was a challenging task, since we have to reverse engineer the

APK and modify source code of the app, to enable WebView debugging. We found a

hack to accomplish this task.

 We can get APK of an app using ApkExtractor app or we can download APK

from websites such as apkmirror.com or apkpure.com. Then, we can get source code

from APK by converting it into zip file. The zip file contains classes.dex (Dalvik

bytecode), which can be converted to jar file (Java bytecode) using dex2jar tool. The

.class files in the jar file can be opened and converted to Java source code by using Java

decompilers such as Jd-gui. But, these Java files will not be exactly same as they were in

the developer’s Android project, because they are the decompiled short-form classes.

Hence, it will not be possible to modify the source code and recompile the APK for a

complex Android app. Also, the AndroidManifest.xml [21] file will not be in plain-text

format. But, we can understand the code of the app and how it works.

 Another way to decompile and recompile an APK is by using apktool. This way

we get AndroidManifest.xml in readable format and .smali files. Smali/baksmali is an

assembler/disassembler for the dex format used by dalvik, Android's Java VM

implementation. Smali is assembly based language and after careful inspection we can

understand and modify the code. So, we can find the Android app’s application class or

28

the launcher activity from AndroidManifest.xml file. Then, we can edit the corresponding

.smali file and add smali code to enable WebView debugging at appropriate place. Then,

we can recompile the APK, sign it using apksigner. Now, we have the real-world app

with WebView debugging enabled and we can simply record and replay WebView

contents using the extended DevTools script, developed for WebCapsule. We can see all

the steps to enable WebView debugging in real world apps in following figure 7.

Figure 7: Steps to enable WebView debugging in a real-world app

4.5 Apache Cordova and Adobe PhoneGap Apps

 Apache Cordova is an open-source mobile development framework. It allows

developers to build applications for mobile devices using CSS3, HTML5, and JavaScript

instead of relying on platform-specific APIs like those in Android, iOS, or Windows

Phone. It enables wrapping up of CSS, HTML, and JavaScript code depending upon the

platform of the device. It extends the features of HTML and JavaScript to work with the

device. The resulting applications are hybrid, meaning that they are neither truly native

mobile application nor purely Web-based. This is because all layout rendering is done via

Web views instead of the platform's native UI framework. Also, they are not just Web

Get APK file of an
App

Decompile it using
Apktool

Find app class name
in

AndroidManifest.xml

Edit corresponding
.smali file

Add smali code to
enable WebView

debugging
Recompile the APK Sign with Apksigner

29

apps, but are packaged as apps for distribution and have access to native device APIs. It

is important to note that Cordova apps are ordinarily implemented as a browser-based

WebView within the native mobile platform. It means for Android devices, they use

System WebView. There are several components to a Cordova application. The

following figure 8 is inspired from Apache Cordova documentation [22], which shows a

high-level view of the Cordova application architecture.

Figure 8: Cordova Application Architecture

(Source: Apache Cordova Documentation [22])

Apache Cordova was formerly known as Adobe PhoneGap [24]. Basically, Adobe

PhoneGap framework is an open source distribution of Apache Cordova and also

30

includes access to the PhoneGap toolset. Over time, the PhoneGap distribution may

contain additional tools that tie into other Adobe services.

 PhoneGap can be used to build both types of hybrid apps, web hybrid and native

hybrid apps. Web hybrid mobile apps are wrapped in a webview with a thin native

container which is just used as the bridge to native. It is simply a wrapper for native-to-

webview communication and there are no UI components provided from the native side.

Native hybrid mobile apps include different native controls as well as one or more

webviews. Native controls can be used to provide the navigation and transitions with the

main content wrapped in webviews. The following figure 9 is inspired from PhoneGap

Blog [30], which shows types of hybrid apps and how PhoneGap provides access to

native APIs.

Figure 9: Types of hybrid apps and PhoneGap framework components

(Source: Adobe PhoneGap Blog [30])

31

It is easy and quick to develop hybrid apps using PhoneGap framework.

PhoneGap is being used by hundreds of thousands of developers and thousands of apps

built using PhoneGap are available in mobile app stores and directories. Therefore, we

tried to record and replay web contents in PhoneGap apps and apparently it is easier to

enable webview debugging in PhoneGap apps. In traditional android app, we need to

enable webview debugging inside the application class. We have to reverse engineer the

APK and add few lines of code in the application or launcher activity class as explained

in figure 3. But, this is already supported in PhoneGap apps which use Cordova 3.3 or

higher. For such apps, we only need to set debuggable flag to true in

AndroidManifest.xml of the app. To do this, we need to decompile an APK using

Apktool. Then, we can edit AndroidManifest.xml and set android debuggable to true.

Then, we can recompile the APK using Apktool and sign the APK using Apksigner.

After this, we can install the PhoneGap app in an Android device having modified

System WebView and perform record and replay inside the app using WebCapsule tools

as explained in section 4.3.5 and 4.3.6.

For Cordova 3.2 or lower, the webview debugging is not enabled by default and

we will need to enable webview debugging inside the application class as shown in figure

3. Once, the webview debugging is enabled, we can record and replay web contents in

PhoneGap apps using WebCapsule tools. But, nowadays most of the PhoneGap apps will

have Cordova 3.3 or higher version.

32

CHAPTER 5

EVALUATION

5.1 Experimental Setup

 We performed our experiments on two Android tablets - Nexus 9 with Android

5.0.1 and Google Pixel C with Android 6.0. We rooted these Android devices, in order to

replace the default System WebView with the modified one. Both tablets have ARM-

based 64-bit architecture. Hence, we specified target architecture as ‘arm64’ in GYP

environment variables while building WebView Shell APK and System WebView APK.

These APKs were built from Chromium codebase having WebCapsule instrumentation.

A Linux machine is required to build Chrome or WebView for Android. Other platforms

(Mac/Windows) are not supported for Android. We used a desktop Dell Optiplex 980

with a Core i7 870 CPU and 8GB of RAM running Ubuntu 14.04 Linux. We also

required this machine to remotely send record/replay commands of WebCapsule to

Android device.

We performed some of our initial experiments with WebView Shell on Nexus 5

which has ARM-based 32-bit architecture and Android Virtual Device (AVD) also called

as emulator. WebView Shell is a standalone app which encapsulated the WebView

libraries and is independent of the System WebView component. Thus, to test the

modification to the WebView in WebView Shell does not require replacement of System

WebView and can be performed in non-rooted Android device.

33

5.2 Results and Evaluation

 We initially tested record and replay functionality of WebCapsule in the new built

WebView Shell APK with embedded WebCapsule. All the record and replay tests on

different webpages opened in WebView Shell APK were successful. We recorded

browsing session of different websites such as Google, Wikipedia, etc. inside WebView

Shell and were able to replay them with negligible difference.

Table 3: Record and replay tests on popular websites inside WebView Shell

Website Comments

Google Successful Record and Replay

Wikipedia Successful Record and Replay

Flickr Successful Record and Replay

IMDB Successful Record and Replay

Ebay Successful Record and Replay

Similarly, when System WebView APK with embedded WebCapsule was

installed in the device, all the record and replay tests on WebView of our self-developed

test app were successful. This was a simple test app that accepts a web URL and opens

the URL in WebView. We also performed record and replay test on few real-world apps.

There are many real-world hybrid mobile apps that show web contents because they need

to update the contents frequently, for example apps related to news and magazines,

shopping, social media, weather, entertainment or books and reference.

Adobe PhoneGap framework allows mobile developers to quickly and easily

build cross-platform hybrid mobile applications with web technologies. These apps are

ordinarily implemented as a browser-based WebView within the native mobile platform.

It means for Android devices, they use native component System WebView. There are

34

thousands of apps developed using PhoneGap. Therefore, we developed a simple test app

using PhoneGap, which opens a given URL in WebView inside the app. Then, we tested

this self-developed app and few more PhoneGap apps from Google play store to test

record and replay functionality. The summary of record and replay tests on real-world

apps and PhoneGap apps from Google Play store is listed in Table 2.

Table 4: Record and Replay tests on real-world apps

Android App Category Results

IMDB Entertainment Successful record and replay

with no divergence NYTimes News and Magazines

BestBuy Shopping

Craigslist (Postings) Shopping

Expedia Travel and Local

HowStuffWorks Entertainment

Cordova Demo Tools Successful record and replay

(PhoneGap apps) PhoneGap Browser Productivity

WikiHow

Books and Reference

Successful record and replay

with the issue of opening

Chrome browser

Flickr Photography Unable to record and replay,

as modified/recompiled APK

do not work
Wikipedia Books and Reference

Google Tools

Amazon Shopping Unable to record and replay,

due to absence of 32-bit

library in WebView
Walmart Shopping

 Once we enabled webview debugging for the above apps as explained in section

4.4 and section 4.5, we were able to perform successful record and replay on some of the

apps listed in the table. IMDB app provides information about movies, TV shows,

celebrities, reviews and recent entertainment news. After enabling WebView debugging

for the app, we successfully performed record and replay on different web contents

including featured items on IMDB such as The Oscars, Awards Central, IMDB Picks as

35

well as IMDB sign in, conditions of use and other related web pages. The only problem

with this app was that, the app uses multiple webviews on some if the screens with no

title which makes it difficult to identify specific webview. Some of the webview

displayed advertisements.

 Similarly, we were able to record and replay some of the web contents in

NYTimes app such as news, blogs, pages related to terms and services, subscription. The

news on certain screens were not detected in webview list. This may be because the app

uses customized webviews or the debugging for those webviews is not enabled.

 Then, we performed record and replay of BestBuy shopping app. When the

recording is started, the app asks whether to open with Chrome or the app. We selected

the app and continued recording. After finishing with recording, we started replaying,

again the app asks whether to open with Chrome. Here, we manually select the app and

then it continues replaying the same recorded sequence. We were able to record and

replay most of the contents such as cart details, product list, my best buy program, and

other details regarding order, shipping, etc. The product details page is not detected in

webview list. Again, this may be because the app uses customized webviews or the

debugging for those webviews is not enabled.

 Craigslist Postings app is easy to use and visually appealing Craigslist search

application. It uses native UI components as well as provides option to open the website

in app. We were able to record and replay different pages such as search results,

categories, help and support.

 Expedia app is used for hotel and flight booking. The app uses native components

as well as webview. Functionalities such as hotel or flight booking, location of the hotel

36

are developed in native UI. But, the app also supports the same functionality through

webview, which can be recorded. The app also uses webview for career section, terms

and conditions and links to entire website in webview. We were able to record and replay

all of these functionalities.

HowStuffWorks app provides articles, videos, podcasts, quizzes and more. We

were able to record and replay articles in the app. Sometimes, the app opens articles in

multiple webviews. For example, clicking on a link within a webview opens the link in a

new webview, which is not selected for recording. In this case, we could not continue

recording the contents in the new webview. Otherwise, if the link opens in the same

webview, then we could record and replay the contents.

 PhoneGap browser is an app that can be used to display any URL on the internet

in PhoneGap app. It is linked to the demo page of major frameworks for example

Bootstrap, Ionic. Thus, we can check the compatibility of the framework and PhoneGap.

For PhoneGap apps, webview debugging is enabled by default for debug version. Thus,

we only had to set debuggable flag to true in AndroidManifest.xml file of the app. After

that, we performed record and replay in the PhoneGap browser app successfully.

Similarly, we recorded and replayed Cordova demo – nativeDroid app, which provides

demonstration of jQuery Mobile theme nativeDroid v0.2.2.

 The record and replay tests with some of the apps like WikiHow were successful

with a particular issue. When we started recording these apps, they opened a new tab in

Chrome browser with no URL. This was a different behavior, since the other apps we

tested successfully, do not open Chrome browser. Then, if we close the Chrome browser,

we could continue recording inside the app and could replay afterwards. During replay,

37

the app again opens a Chrome browser at the start and we had to close so that the replay

continues in the app.

 The tests with real-world apps were limited, because of the requirement of

enabling WebView debugging. There were some apps for which we could not enable

webview debugging. This is because to enable webview debugging, we had to decompile

and compile the APK again and some apps do not work after re-compiling with or

without modifications. For example, Facebook app does not re-compile due to errors.

Wikipedia app gives parse error when tried to install after recompilation. Similarly,

Google app does not work after recompiling. Some of the apps crash when we modify or

recompile the APK.

 Some of the apps did not work with the modified System WebView, because they

were 32-bit apps and do not use 64-bit libraries. We can identify 32-bit apps by

decompiling its APK and checking its ‘lib’ folder. If the APK does not contain any ‘lib’

folder, the app will run in both 32-bit and 64-bit devices. Inside ‘lib’ folder, ‘armebi’ or

‘armebi-v7a’ contains 32-bit libraries and ‘arm64-v8a’ contains 64-bit libraries. If an

APK does not have ‘arm64-v8a’ folder, then the app won’t work with 64-bit System

WebView.

The modified System WebView we built, is for 64-bit devices and contains only

64-bit libraries. The main library here is “libwebviewstandalonechromium.so”. After

further research, on Chromium Google group [23], we found that we can only build either

32-bit or 64-bit System WebView APK by setting target architecture in building process

using GYP. There is a script ‘apk_merger.py’ which can be used to merge 32-bit and 64-

bit APKs. We need to build both 32-bit and 64-bit APKs separately, and then merge them

38

together afterward with “src/android_webview/tools/apk_merger.py” in single APK. We

built such System WebView APK, it runs 64-bit apps but it still couldn’t run 32-bit apps.

Therefore, we couldn’t test 32-bit apps such as Amazon, EBay or Walmart shopping

apps. But, we could see in 32-bit device that these apps use WebView to display most of

the web contents.

 We have recorded two videos that show a representative demonstration of how

WebCapsule can be used to record and replay web contents in Android apps. We

recorded two Android apps – BestBuy and PhoneGap Browser. Following are the

YouTube links where you can view these videos.

Table 5: YouTube links for the demo videos

App YouTube Links

BestBuy https://youtu.be/Cj5T8YeDkHw

PhoneGap Browser https://youtu.be/9Nukdotll_U

5.3 Discussion

While performing record and replay tests on real-world apps, we noticed that, we

could not record and replay some parts of specific apps. This is because, these are hybrid

apps and they contain native UI components as well. We can only record and replay web

contents inside WebView. We also noticed that, many apps (for example Reddit) use

Chrome Custom Tabs [31] to display web pages within the app. In such apps, when a

user opens a link in the app, it loads in Chrome Custom Tabs inside the app. The

transition between native and web content more seamless. Developers can customize

Chrome’s look and feel to match to the app, including changing the toolbar color,

https://youtu.be/Cj5T8YeDkHw
https://youtu.be/9Nukdotll_U

39

adjusting the transition animations, and even adding custom actions to the toolbar,

overflow menu and bottom toolbar to let the user interact with the app. The following

figure shows Google webpage in Chrome Custom Tab inside Google app and the

overflow menu.

Figure 10: Google webpage in Chrome Custom Tab and overflow menu

 The contents of Chrome Custom Tab may also be recorded and replayed using

WebCapsule, as it is a Chrome component and uses same rendering engine Blink. But, to

verify this, we will need to build full Chrome browser for Android with WebCapsule

instrumentation in latest Chrome version which supports Chrome Custom Tab. The

process of record and replay remains the same, except that the port for Chrome Custom

Tab will be same as Chrome, which is “localabstract:chrome_devtools_remote”. It is

40

recommended to use WebView if the app hosts its own web contents. If the app directs

people to URLs outside the app domain, it is recommended to use Chrome Custom Tab.

Another thing we noticed is the common native library inside all the WebView

APKs named, "libwebviewstandalonechromium.so". This library basically bundles all the

native code. In our early experiments, we replaced this library from an unmodified

WebView Shell APK by the same library of modified WebView Shell and compiled the

APK. We tested this new unmodified WebView Shell having modified native library and

we were able to record and replay network traces. This implies that the native library was

sufficient to include WebCapsule functionality in WebView Shell.

5.4 Limitations

 The WebView Shell and System WebView APK were built from past versions of

Chromium codebase and initial instrumentation of WebCapsule. They are prototype for

record and replay functionality of WebCapsule and does not contain full-fledged

implementation. This is the reason the scrolling UI event could not be recorded and

replayed in WebView. Otherwise, WebCapsule records all user interactions and UI

events such as touch on screen, network requests and responses.

 WebCapsule is implemented as instrumentation layer around Blink web rendering

engine and user interactions to the browser tools outside of Blink cannot be recorded. For

instance, events such as a user’s click on the “back button” on the browser toolbar or

touch on back button in Android cannot directly be recorded, because the input event is

handled outside of Blink.

 The record and replay tests on real-world apps were limited because of the

requirement of enabling webview debugging. The process to enable webview debugging

41

in real world apps is complicated and may not be successful for some apps. This can be

simplified if the feature of enabling webview debugging can be added as a flag in

AndroidManifest.xml of the app. Just like, we set debuggable flag to true to get debug

version of the app.

 Chromium is an open source browser project and there are many tools and scripts

which are still in development phase or do not have enough documentation. We found

some of our answers through chromium google groups, issue tracker and stack overflow

website.

42

CHAPTER 6

CONCLUSION

6.1 Conclusion

WebCapsule is a record and replay forensic engine, which aims to work as an

always-on and lightweight forensic data collection system that enables a full

reconstruction of web security incidents, including phishing and social engineering

attacks. To make it portable, it is implemented as instrumentation layer around Google's

Blink web rendering engine, which is already embedded in a variety of browsers and can

be run on different platforms. In this research, we instrumented WebCapsule on Android

WebView, a system component which is used to display web contents in Android apps.

We built WebView Shell APK and System WebView APK from Chromium with

WebCapsule instrumentation. We successfully recorded and replayed different websites

in the modified WebView Shell APK. We installed the modified System WebView APK

in an Android device and tested record and replay functionality on web contents in a self-

developed app. Our experiments show that, WebCapsule can record and replay web

contents in real-world apps and apps developed using Adobe PhoneGap framework. In

this way, we show that, unlike other record and replay techniques, WebCapsule is highly

portable and can be used for forensic analysis of real-world phishing attacks in websites

as well as mobile apps.

43

6.2 Future Work

 We performed our tests on the prototype implementation of WebCapsule, but

more features can be implemented to solve the challenges or limitations occurred during

recording and replaying. For example, support for tracking and recording multiple active

WebView can be added. Then, similar to PhoneGap apps, support for enabling WebView

debugging by debuggable flag in AndroidManifest in Android app can be added. This

will make it easy to debug WebView in Android app and we will not have to decompile

and modify the app. This will not only help for WebCapsule recording but also in

debugging and testing of hybrid apps in general.

As we discussed, WebCapsule is implemented with Google’s Blink web

rendering engine, which is embedded in a variety of browsers like Chrome, WebView,

Opera, Amazon Silk, etc. and can run on different platforms e.g. Linux, Android,

Windows and Mac OS. Thus, WebCapsule is portable and its record and replay

functionality is already tested in Chromium browser for Linux and Android and we tested

it on Android WebView. It can be further tested by building Chromium for other

platforms such as Windows, Mac OS X, Chrome OS and iOS [29].

44

REFERENCES

[1] C Neasbitt, B Li, R Perdisci, L Lu, K Singh and K Li. WebCapsule: Towards a

Lightweight Forensic Engine for Web Browsers. In Proceedings of CCS. ACM, 2015.

[2] Chromium. https://www.chromium.org/Home.

[3] Blink web rendering engine. http://www.chromium.org/blink.

[4] V8 JavaScript engine. https://developers.google.com/v8/.

[5] Android WebView. https://developer.chrome.com/multidevice/webview/overview.

[6] J Vilk, J Mickens, M Marron. A Gray Box Approach for High-Fidelity, High-Speed

Time-Travel Debugging. research.microsoft.com. 2016

[7] JW Mickens, J Elson, J Howell. Mugshot: Deterministic Capture and Replay for

JavaScript Applications. NSDI, 2010. usenix.org

[8] B Burg, R Bailey, AJ Ko, MD Ernst. Interactive record/replay for web application

debugging. In Proceedings of the 26th Annual ACM Symposium on User Interface

Software and Technology (New York, NY, USA, 2013)

[9] S Andrica, G Candea. WaRR: A tool for high-fidelity web application record and

replay. In Proceedings of the 2011 IEEE/IFIP 41st International Conference on

Dependable Systems & Networks (Washington, DC, USA, 2011)

[10] L Gomez, I Neamtiu, T Azim, T. Millstein. RERAN: Timing- and Touch-Sensitive

Record and Replay for Android. In Proceedings of the 2013 ICSE (2013).

https://www.chromium.org/Home
http://www.chromium.org/blink
https://developers.google.com/v8/
https://developer.chrome.com/multidevice/webview/overview

45

[11] Z. Qin, Y. Tang, E. Novak, and Q. Li. MobiPlay: A Remote Execution Based

Record-and-Replay Tool for Mobile Applications. In Proceedings of the 2016

International Conference on Software Engineering, 2016.

[12] Chromium build instructions for Android.

https://www.chromium.org/developers/how-tos/android-build-instructions

[13] GYP. https://gyp.gsrc.io/

[14] GYP environment variables. https://www.chromium.org/developers/gyp-

environment-variables

 [15] System WebView build instructions. http://www.chromium.org/developers/how-

tos/build-instructions-android-webview

[16] Root Pixel C. http://androiding.how/root-pixel-c/

[17] AOSP build for Pixel C. https://developers.google.com/android/images#ryu

[18] Building Apps in WebView.

https://developer.android.com/guide/webapps/webview.html.

[19] Remote Debugging WebView. https://developers.google.com/web/tools/chrome-

devtools/remote-debugging/webviews

[20] Chrome DevTools. https://developers.google.com/web/tools/chrome-devtools/

[21] Android Manifest. https://developer.android.com/guide/topics/manifest/manifest-

intro.html

[22] Apache Cordova Overview.

https://cordova.apache.org/docs/en/latest/guide/overview/index.html

https://www.chromium.org/developers/how-tos/android-build-instructions
https://gyp.gsrc.io/
https://www.chromium.org/developers/gyp-environment-variables
https://www.chromium.org/developers/gyp-environment-variables
http://www.chromium.org/developers/how-tos/build-instructions-android-webview
http://www.chromium.org/developers/how-tos/build-instructions-android-webview
http://androiding.how/root-pixel-c/
https://developers.google.com/android/images#ryu
https://developer.android.com/guide/webapps/webview.html
https://developers.google.com/web/tools/chrome-devtools/remote-debugging/webviews
https://developers.google.com/web/tools/chrome-devtools/remote-debugging/webviews
https://developers.google.com/web/tools/chrome-devtools/
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://cordova.apache.org/docs/en/latest/guide/overview/index.html

46

[23] System WebView APK with 32 and 64-bit libraries.

https://groups.google.com/a/chromium.org/forum/#!topic/android-webview-dev/hwmFs-

L8u5I

[24] Brian LeRoux, Adbe PhoneGap Blog (2012, Mar. 19). Apache Cordova and Adobe

PhoneGap. http://phonegap.com/blog/2012/03/19/phonegap-cordova-and-whate28099s-

in-a-name/

[25] Mobile Internet Usage. http://gs.statcounter.com/press/mobile-and-tablet-internet-

usage-exceeds-desktop-for-first-time-worldwide

[26] T Luo, H Hao, W Du, Y Wang, H Yin. Attacks on WebView in the Android system.

In Proceedings of the 27th Annual Computer Security Applications Conference Pages

343-352. Orlando, Florida, USA. December 05 - 09, 2011.

[27] Bhavani A B. Cross-site Scripting Attacks on Android WebView, IJCSN

International Journal of Computer Science and Network, Vol 2, Issue 2, April 2013,

ISSN:2277-5420

[28] Dan Wallach, Freedom to Tinker (2015, Jan. 28). Android WebView Security and

the mobile advertising marketplace. https://freedom-to-tinker.com/2015/01/28/android-

webview-security-and-the-mobile-advertising-marketplace/

[29] Building Chromium for different platforms.

https://chromium.googlesource.com/chromium/src/+/master/docs/get_the_code.md

[30] Holly Schinsky, Adobe PhoneGap (2015, Mar. 12). Choosing a mobile strategy for

PhoneGap Apps. http://phonegap.com/blog/2015/03/12/mobile-choices-post1/

[31] Chrome Custom Tabs.

https://developer.chrome.com/multidevice/android/customtabs

https://groups.google.com/a/chromium.org/forum/#!topic/android-webview-dev/hwmFs-L8u5I
https://groups.google.com/a/chromium.org/forum/#!topic/android-webview-dev/hwmFs-L8u5I
http://phonegap.com/blog/2012/03/19/phonegap-cordova-and-whate28099s-in-a-name/
http://phonegap.com/blog/2012/03/19/phonegap-cordova-and-whate28099s-in-a-name/
http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide
http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide
https://freedom-to-tinker.com/2015/01/28/android-webview-security-and-the-mobile-advertising-marketplace/
https://freedom-to-tinker.com/2015/01/28/android-webview-security-and-the-mobile-advertising-marketplace/
https://chromium.googlesource.com/chromium/src/+/master/docs/get_the_code.md
http://phonegap.com/blog/2015/03/12/mobile-choices-post1/
https://developer.chrome.com/multidevice/android/customtabs

47

[32] Choi, J.-D., and Srinivasan, H. Deterministic replay of java multithreaded

applications. In Proceedings of the SIGMETRICS Symposium on Parallel and

Distributed Tools (New York, NY, USA, 1998)

[33] Y Hu, T Azim, I Neamtiu. Versatile yet Lightweight Record-and-Replay for

Android. ACM SIGPLAN Notices, 2015 - dl.acm.org

