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Abstract

This dissertation develops statistical methodologies for analysis of design parameters

and response variables in a randomized play the winner design (RPWD). RPWD is an alloca-

tion procedure that changes the allocation probability during the experiment so as to allocate

more subjects to a better performing treatment. This causes an imbalance in the number

of subjects allocated to various treatment arms. Standard statistical methodologies that do

not account for the adaptiveness in the allocation lead to procedures that are inefficient and

inaccurate.

In this thesis, several novel methodologies using bootstrap and Hellinger distance are

developed to mitigate the problems of adaptive allocation. These methodologies have poten-

tial for application in other ares of science and technology.
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Chapter 1

Randomization in Clinical Trials

1.1 Introduction

A clinical trial is an experiment that is designed to compare the efficacy and value of

medical treatments (or interventions) against a control in human beings. Successful imple-

mentation of a clinical trial depends on the following: an efficient randomization scheme,

evaluation of confounding factors, identification of factors that affect the primary outcome,

modeling of the dependence between the primary outcome and the covariates and ethical

issues concerning the study. It has been argued that a properly planned and executed clinical

trial is a powerful experimental technique for assessing the effectiveness of an intervention.

Drug development and marketing of a drug within the U.S. are controlled by the federal

government rules and regulations; polices and procedures are stipulated by the Food and

Drug Administration (FDA) so as to ensure maximum safety for the consumers. A typical

drug development process involves four phases and are popularly termed as Phases of a

clinical trial. Phase I trials are intended to identify the maximum tolerable dose (MTD)

and typically consist of very few subjects. Several popular designs, like up and down designs

(Durham and Flournoy (1995)) are used to evaluate the MTD. The Phase I trials are pre-

ceeded by trials on animals to study if the drug has the potential to cure a related symptom.

Phase II trials are intended to evaluate the toxicity and the efficacy of the drug and are

typically carried out on healthy volunteers. This however is not the case in cancer trials

where new drugs are evaluated on subjects to decrease the high death rates on existing

therapies. Phase III trials are typical large scale clinical trials and are usually multi-center

(several centers of study for the same intervention), double-blind (both the patient and the

1
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investigator are blinded to the randomization), and placebo controlled (one of the treatment

arms is a placebo and acts as a control) fully randomized experiments. Phase IV trials deal

with long-term evaluation of the treatment effects on study subjects. This dissertation will

focus on Phase III clinical trials only.

The following are the oft-touted advantages of a fully randomized experiment:

(1) Freedom from selection bias. If the experimenter knows for certain that the next

assignment will be a treatment, or a control, he(she) may consciously(or unconsciously) bias

the experiment by such decisions as to who is(or is not) a suitable experimental subject,

in which category the subject belongs, etc. Such a bias is called the selection bias, a term

coined by Blackwell and Hodges (1957). It is obvious that complete randomization eliminates

selection bias, while a systematic design maximizes it. Blackwell and Hodges advocate using

complete randomization, but continuing the experiment until a certain minimum number of

subjects are allocated to both treatments and controls. In practice this can be very difficult

to achieve, particularly in an experiment such as the Hodgkin’s disease(where there are many

categories of subjects). Selection bias is not a factor in blind experiments where admission

to the study and related decisions are made by someone ignorant of the past assignment of

treatments and controls.

(2) Freedom from accidental bias. In several experimental studies, systematic factors occur

without the prior knowledge of the experimenter. Typical examples include time trends, sex-

linked differences and differing experimental conditions. Complete randomization tends to

balance out such factors and thus protect the significance level of the usual hypothesis tests.

The systematic designs are quite vulnerable to accidental bias.

(3) Randomization as a basis for inference. Probability statements, such as the observed

significance level of the experiment, can be based entirely on the randomness induced by

the complete randomization between treatments and controls. This eliminates the need for

probability assumptions on the responses of the individual experimental units and guarantees

the validity of the stated significance level.
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We now move to discuss some of the disadvantages of fully randomized experiments.

These are:

(1) Randomization can cause serious imbalances in the number of subjects allocated to

different treatment groups, especially if the sample size is small. Even though the Phase III

trials are large, the number of subjects involved in a particular center is moderate in size

and allocating completely at random can cause serious imbalance.

(2) The second disadvantage of a fully randomized clinical trial is that in certain situations

it could be unethical to allocate subjects to treatments without taking into account the

efficacy of an intervention thus far.

The alternatives that account for these disadvantages are the so called adaptive trials or

restricted randomization designs. We now describe several randomization schemes that are

typically used in the context of a Phase III clinical trials.

1.2 Permuted Block Design

Permuted Block Design (PBD) , first introduced by Hill (1951), describes a randomization

scheme that attempts to balance the number of subjects allocated to treatments groups. For

the sake of illustration let A and B denote two treatments and assume that we have a block

of size 2m. In each block, m subjects are randomly assigned to treatment A and treatment

B, respectively. In particular if m = 2, one of the six possible combinations

AABB, ABAB, BAAB, BABA, BBAA, ABBA

is chosen randomly and assigned to the subjects. If n is the number of subjects in the study,

then the maximum imbalance in the number (of subjects) allocated to the two treatment is

m. m is usually refereed to as the maximum tolerable imbalance (MTI) parameter. Indeed,

investigators using PBD can ensure balanced allocation after the (2m)th assignment.

PBD induces a selection bias, since the treatment assignment of the very last subject in

any block is known if the length of block is known. To avoid this bias, one can choose the
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block size to be random, so that the investigator will not know when the block will end and

fail to guess the treatment assignment.

If the condition of the subjects do not change across time, this design can ensure more

equally sized groups. But from the analysis point of view, the data resulting from this

design are not independent and identically distributed (i.i.d.) data. Ignoring the design in

the analysis will lead to decrease in power or exaggerated treatment effects ( Matt and

McHugh (1978) and Wei et. al.(1990))

1.3 Stratified Randomization

As mentioned in the introduction randomization helps alleviate the accidental bias. If

the accidental bias is caused due to covariate imbalance, sometimes it is more convenient

to address it at the design stage. Complete randomization performed in different strata is

called stratified randomization. For stratified randomization, subjects are grouped according

to different prognostic factors (for instance, sex and age). Within each stratum, independent

randomization scheme is applied separately. Permuted randomization can also be applied

within each strata. As an example, consider a clinical trial studying the effects of an inter-

vention on smoking. The effect of intervention could depend on the smoking history (current

smoker, ex-smoker and never smoked) and the gender (female and male). In such a trial,

there are total of six strata and each subject is allocated to one of the treatment groups

within each stratum separately. Permuted block randomization can be employed within each

stratum.

In a multicenter clinical trial, one does not typically randomize the subjects to treatments

across all clinics. Indeed, separate permuted block designs are carried out within each center

separately. This allows the experimenter to evaluate the effects of unknown covariates like

geography, quality and type of care in a center, and the availability of the clinical expertise.

The last phenomenon is especially useful when studying a new surgical method.
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In some situations, stratification can be used posthumously during the analysis stages.

It has been shown that stratified analysis improves the precision of the estimators, since it

improves the efficiency of the estimators and testing procedures. This phenomenon is more

evident in smaller trials than the larger trials.

An increase in the number of strata due to the inclusion of several covariates leads

to the requirement of a large sample size within each stratum. In a smaller study, this is

infeasible and the disadvantages of including several covariates for stratified randomization

are described in Pocock and Simon (1975).

1.4 Adaptive Randomization

In this section we describe designs that change the probability of allocation to treatments

during the trial. These allocation probabilities could depend on a set of covariates, and the

allocation history thus far, but do not depend on the responses of the allocated subjects.

We begin with the biased coin design due to Efron (1971).

Biased Coin Design

The biased coin design is a randomization scheme for achieving balance in allocation

between treatment groups. Assume that we have two treatments (1 and 2). Let Di = N1(i)−

N2(i), 1 ≤ i ≤ N where N1(i) represents the number of subjects assigned to treatment 1

after the ith subject’s assignment. Efron’s biased coin design can be described as follows:

Let Ti+1 denote the treatment indicator for the (i+ 1)st subject; then

P (Ti+1 = 1|Di) =





1/2 if Di−1 = 0

p if Di−1 < 0

1 − p if Di−1 > 0

where p ∈ (0.5, 1]. Note that Di < 0 implies that more number of subjects have been

allocated to treatment 2 while if Di > 0 implies that more number of subjects have been

allocated to treatment 1. Note that the design is adaptive since the probability of allocation
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to a treatment changes at different stages of the trial, unlike the completely randomized case,

where it remain fixed throughout the entire trial.

Let D∗
i = |Di|, then D∗

i , i ≥ 1 forms a Markov chain on the state space {0, 1, 2, · · ·}.

The one-step transition probability matrix given by

P =




0 1 0 0 0 · · ·

p 0 1 − p 0 0 · · ·

0 p 0 1 − p 0 · · ·

0 0 p 0 1 − p · · ·
...

...
...

...
...

. . .




.

It is possible to introduce a tolerance level into the Efron’s biased coin design and make

the biasing probability depend on the stage of the clinical trial and prognostic factors. Even

though such a generalized design has not been studied in the literature, biased coin design

that account for covariates have been studied by Pocock and Simon (1975). Further properties

of the biased coin design have been studied in Chen (1999), Heckman (1985) and Smith

(1984); comparsions of the biased coin design with other designs have been investigated in

Chen (2000).

Wei’s Urn Design

Wei’s urn design, as the name suggests, also changes the allocation probability during

the course of the trial but uses an urn model instead of a biased coin. This design can

be described as follows: Assume that we have two treatments 1 and 2, start with an urn

containing α balls of types 1 and α balls of types 2 representing the two treatments. When

a subject is available for randomization, a ball is drawn at random and returned to the urn.

Assignment is made according to the type of the drawn ball. If it is a type 1 ball, then

β (β ≥ 1) type 2 balls are added to the urn. If it is a type 2 ball, then β type 1 balls will be

added to the urn. The process is repeated until all subjects have been assigned to treatment.
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It was shown by Wei (1978) that this design tends to keep the probability of allocation

to two treatments close to equal. An analogue of Wei’s design accounting for covariates has

been developed by Wei (1979).

1.5 Response Adaptive Designs

We now describe designs that are driven by ethical considerations and take into account

responses of subjects allocated to treatments.

Randomized Play the Winner Design

Randomized play the winner design (RPWD) is a method of assigning subjects to inter-

vention in clinical trials that takes into account the responses of the patients. The method

inspired by the Play the Winner (PW) rule of Zelen (1969), accounts for a delayed response.

The PW rule of Zelen can be described as follows: A success on a particular treatment gen-

erates a future trial on the same treatment with a new subject. A failure on a treatment

generates a future trial on the alternate treatment with a new subject. If the response is

unavailable, the subject is allocated using equal probability amongst all treatments. This

design assigns subjects to a better performing treatment.

The main difficulty of this design is that when the subject accrual is rapid and the

response is delayed, the design allocates subjects to treatments with equal probability, there-

fore making the adaptation irrelevant. To overcome these difficulties, Wei and Durham (1978)

introduced the RPWD. This design can be described as follows: Suppose we want to assign

subjects to two different treatments (say 1 and 2). We would start this procedure with an

urn containing N1(0) balls of type 1 (representing treatment 1) and N2(0) balls of type

2 (representing treatment 2), corresponding to treatments 1 and 2 respectively. Once the

subject is available for treatment assignment, a ball is drawn at random from the urn and

returned to the urn. The subject is assigned to a treatment according to the type of ball.

When the subject’s response is available the urn is updated as follows: if the response is a
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success on treatment 1 or a failure on treatment 2, then α type 1 balls are added to the urn;

however if the response is failure on treatment 1 or a success on treatment 2, then α type

2 balls are added to the urn. The process is repeated until all subjects have been assigned

to a treatment. This design tends to favor a better performing treatment by increasing the

probability of allocation towards a better performing treatment thus far.

We will propose one extension of the RPWD to the r treatments case. For a clinical trial

with r treatments, we would start with an urn containing N1(0), · · · , Nr(0) balls of r different

types representing r different treatments. Once a subject is available for randomization, draw

a ball at random from the urn and replace it. Assign the subject to a treatment according

to the type of the ball. If the treatment turns out to be a success, then r balls with the

same type are added to the urn. Otherwise, r balls for each type other than the treatment

are added to the urn. The process is repeated until all the subjects have been assigned a

treatment.

Generalized Pólay’s Urn Design

There are several other response adaptive designs that have been studied in the literature.

As we mentioned earlier, the RPWD was a precursor to the various other response adaptive

designs. Wei (1979) presented the following generalized Pólay urn design(GPUD). Begin with

an urn contains N1(0), · · · , Nr(0) balls of r different types representing r different treatments.

Once a subject is available for treatment assignment, a ball is drawn at random from the

urn and then returned to the urn. Assign the subject to a treatment according to the type

of ball. When the response of a subject to treatment i turns out to be a success, then α

balls of the same type are added to the urn. Otherwise, β balls for each type other than

the treatment are added to the urn. Repeat this process until all the subjects have received

treatment assignment. This treatment assignment rule is denoted by GPUD(N, α, β), where

N= (N1(0), · · · , Nr(0))
′. (RPWD for two treatments described above corresponds to the case

r = 2, β = α).
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More recently, Li, Durham and Flournoy (1997) studied a variant of the GPUD for

r(≥ 2) treatments called the RPUD. In their design, while α > 0, β ≡ 0. This design can

be described as follows: start with an urn contains N1(0), · · · , Nr(0) balls of r different types

representing r different treatments. Once a subject is available for treatment, a ball is drawn

at random and the subject is assigned to the treatment indicated by the ball. If the treatment

is success, α balls (α > 0) of the same type are added to the urn; else the ball is returned to

the urn. The main difference between a GPUD and a RPUD is that the composition of balls

in the urn will not change when there is a failure in the response. In other words, RPUD

favors treatments that lead to success.

Birth and Death Urn Model

It has been noted in several simulation studies (for instance Flournoy and Rosengerber

(1992) P.65 and P.23) that RPWD and GPUD introduce much variablity in the design

making it harder to implement in areas such as toxicology and cancer. To overcome these

difficulties, Ivanova, Rosenberger, Durham and Flournoy (2000) presented a design called

the Birth and Death Urn Design (BDUD). In this design the urn starts with r types of balls

representing r different treatments. When a subject is available for a treatment assignment,

a ball is drawn at random. The subject is assigned to a treatment according to the type of

the ball. If the outcome is a failure, the ball is not replaced. If the treatment is a success,

two balls of the same type are added to the urn. In this design, if the success probability

of certain treatment, say 1, is less than 0.5, then the type 1 ball will become extinct at

some point and no more subjects will be assigned to treatment 1. To avoid this scenario, the

authors developed a supplemented birth and death urn design called the Birth and Death

Urn Design with Immigration(BDUDI).

In this design, the urn starts with r types of balls representing r different treatments and

ar immigration balls (a ≥ 0). The parameter, a, is called the rate of immigration. When a

subject is available for treatment assignment, a ball is drawn at random and replaced. If it

is an immigration ball, choose one ball from the r different types with equal probability and
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add to the urn. If it is a treatment ball, then assign the subject to a treatment according to

the type of the ball. If the outcome is a failure, one ball representing the treatment assigned

is removed from the urn. If the treatment is a success, one ball of the same type is added to

the urn.

Ivanova et. al have shown that the equal allocation is not always the optimal solution to

problems in a clinical trial. Simulations (in their work) suggest that when there are three

treatments and success probability of these treatments have the following relationship, viz.,

p1 > p2 = p3, the urn design is more powerful for testing the equality of the pi’s than any

other fixed allocation design.

Drop the Loser Rule

More recently, Ivanova (2003) developed a new rule called Drop the Loser Rule for

assigning subjects to treatments. This is also an urn model. It starts with r + 1 types of

balls. The first r types represent r treatments, while the balls of type r+ 1 are called immi-

gration balls. When a subject arrives for treatment, a ball is drawn at random. If it is an

immigration ball, then no treatment assignment is made and the ball is returned to the urn

together with r additional balls, one corresponding to each of the treatments. If a treatment

ball is drawn (i.e. one of the first r types), the subject will be assigned to the corresponding

treatment. If the outcome is a failure, the ball is not replaced. If the outcome is a success, the

ball is replaced. Several important feature of the design have been studied by Ivanova (2003).

More recently, Hu and Rosenberger (2003) show that this design has properties similar to

that of PWD of Zelen but is less variable and has more adaptivness

Randomized Play the Winner design that account for covariates have been studied by

Rosenberger, Vidyashankar and Agarwal (2001). The feasibility and logistics of conducting

a response-adaptive, double-blind, placebo-controlled study was investigated by Eli-Lilly

and company (Tamura et. al (1994)).
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Example - Fluoxetine Trial

We now describe the clinical trial conducted by Eli-Lilly and company which motivated

this dissertation. This is a multi-center clinical trial comparing fluoxetine to placebo in

patients with depressive disorder. It is believed (Kupfer (1976)) that shortened rapid eye

movement latency is a marker for endogenous depression. In this trial, patients were strati-

fied into two groups: Patients with normal rapid eye movement latency(REML) and patients

with shortened REML. The first six patients within each stratum were assigned by a ran-

domized block design to either fluoxetine or placebo. The trial used two independent urns

(for two different strata) to assign the patients. Both urns started with one ball for each type,

representing the two treatments. Independent randomized play the winner rules were initi-

ated with the seventh patient within each stratum. There are two primary outcomes: (1) the

percentage of patients who exhibited a 50 percent or greater reduction in Hamilton Depres-

sion Scale (HAMD17) between baseline and final active visit after a minimum of three weeks

of therapy, and (2) the reduction in HAMD17 between baseline and the final visit. Patients

receiving therapy for at least 3 weeks who exhibited a 50 percent or greater reduction in

HAMD17 were defined to be responders (success in treatment). The time from baseline to

final measurement was approximately 8 weeks. The time delay, along with a rapid patient

arrival, did not allow an adaptive trial based on the response from final visit. Thus adaptive

allocation was based on a surrogate marker to update the urn. The surrogate responder

was defined as a patient exhibiting a reduction greater than 50 percent in (HAMD17) in

two consecutive visits after at least three weeks of therapy. The trial was stopped after 61

patients had responded according to the surrogate criterion. No further surrogate response

was obtained for the remaining patients. There were total 89 patients in this trial.

The data related to this trial is included in the Table 1.1 where for shortened REML

patients belong to strata 1, normal REML patients belongs to strata 0, treatment is denoted

by 1 if the patients is treated with Fluoxetine and 0 if is placebo. There are 83 patients have

final response been recorded.
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1.6 Conclusions

In this chapter we described several basic randomization procedures that are used in a

typical phaseIII clinical trial. We described the RPWD and other related response adaptive

designs.

In a typical clinical trial, several variables are collected; some represent the primary

outcome while others represent secondary variables. For example, consider a clinical trial

investigating the efficacy of drug A in lowering the cholesterol levels. In such a trial the

primary variables would typically be cholesterol levels, blood pressure, and body weight.

There are certain secondary variables on which the information is also collected. These could

include information on the life style, diet, and genetic components. This dissertation develops

robust and efficient procedures for the analysis of primary and secondary outcomes from a

randomized play the winner design.

The remainder of the dissertation is structured as follows : Chapter 2 describes the basic

limit theory for RPWD and develops new methodology for obtaining confidence intervals for

the design parameters, Chapter 3 developes minimum Hellinger distance methodology for

the analysis of outcomes from a response adaptive design, Chapter 4 is devoted to bootstrap

methodology for i.i.d. and RPWD data, while Chapter 5 contains future research directions.
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Table 1.1: The Fluoxetine trial data

Strata Strata=1 Strata=1 Strata=0 Strata=0

Treatment=1 Treatment=0 Treatment=1 Treatment=0

Success Proportion 12/20 7/21 13/21 10/21

Change -12 4 -2 -7

in -11 2 -12 0

HAMD17 -17 -16 -10 -3

-5 3 -21 -9

-7 0 -4 -20

-8 -6 2 -3

-20 -11 -14 -3

-8 -21 -1 2

-15 -3 -16 -16

-13 -16 -15 -6

-16 3 -22 0

-16 -2 -6 -15

-2 2 -12 -10

-1 -9 -5 -13

-6 -8 -4 -13

-3 -3 -12 -7

-16 -4 -14 -10

-11 -4 -14 -17

-16 1 -17 -15

-21 -17 -5 -18

-15 -23 2
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Chapter 2

Confidence Intervals for the Design Parameters of RPWD.

2.1 Introduction

In Chapter 1, we introduced several randomization methods in clinical trials; the focus of

this dissertation is on randomized play the winner design. Analysis of the design parameters

and inference for secondary and primary variables of interest is complex. In spite of the

availability of enormous computational resources, statistically sound inferential methods that

work in general situations is as yet unavailable.

Frequently, experimenters are interested not only in proportions allocated to various

treatments but are also interested in several qualitative and quantitative characteristics of

the design, response variables and their interactions. In this chapter, we collect several known

technical results and use this opportunity to develop notations and terminology that will be

used in the entire thesis. We also develop new computational tools for inference concerning

the design parameters.

2.2 Randomized Play the Winner Design

We begin by recalling the randomized play the winner design. The following 2-treatment

design will be used throughout our theoretical descriptions in this thesis. Consider an urn

containing R = (N1(0), N2(0)) balls corresponding to two treatments, treatment 1 and

treatment 2. When a subject is available for randomization, a ball is drawn at random (type

i say) and returned to the urn and the subject is assigned to the treatment represented by

the ball. When the response from the subject is available, the urn is updated as follows: if

17
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response was a success then α balls of the same type are added to the urn; else α balls of

the other type are added to the urn. The process is repeated. The design will be represented

as RPWD(α).

We now turn to discuss various properties of the design. A natural first question concerns

the proportion of subjects allocated to each of the treatments after n subjects have been

randomized. We denote by N1(n) and N2(n), the number of subjects assigned to treatment 1

and treatment 2 respectively. Note that N1(n)+N2(n) = n. A key tool to study the behavior

of N1(n) and N2(n) is an embedding rule introduced by Athreya and Karlin (1967). To make

precise statements concerning these results, we make a detour into multitype continuous

time Branching processes.

2.3 Multitype Continuous Time Branching Processes

Consider a population containing two types of particles evolving over time. Let R =

(N1(0), N2(0)) represent the number of type 1 and type 2 particles at time 0. All type

i (i = 1, 2) particles live an exponential length of time with parameter λi and reproduce

according to the offspring distribution Pi(j1, j2), where Pi(j1, j2) represents the probability

that a type i parent produces j1 particles of type 1 and j2 particles of type 2. Let us denote

by X = (x1, x2), the generic random variable representing the offspring distribution. Then

Pi(X = (j1, j2)) = Pi(j1, j2) (2.3.1)

and let mij = EiXj . Let

M =



m11 m12

m21 m22


 . (2.3.2)

denote the mean matrix. Let us denote by Z(t) = (Z1(t), Z2(t)) the number of type 1 and

type 2 particles at time t. Let M(t) = EZ(t). Note that

M(t) =



m11(t) m12(t)

m21(t) m22(t)


 (2.3.3)
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where mij(t) represents the expected number of the type j offspring produced by a single

type i parent. We will assume that there exists t0 and 0 < t0 <∞ such that

M(t0) is irreducible and positively regular (2.3.4)

i.e. there exist t0 such that mij(t0) > 0, for any i and j. Under this assumption, Perron-

Frobenius Theory of positive matrices ensures the existence of a strictly positive maximum

eigenvalue λ1(t0) of M(t0) such that

(i) for every other eigenvalue λ(t0), |λ(t0)| < λ1(t0)

and

(ii) the algebraic and geometric multiplier of λ1(t0) are unity.

Furthermore,

lim
t→0

M(t) = I (2.3.5)

where I is the identity matrix of order 2, and

M(t+ u) = M(t)M(u). (2.3.6)

These conditions ensure that M(t) has the following representation, viz,

M(t) = exp(At). (2.3.7)

Thus, the eigenvalues of M(t) can be expressed as eλit, where λi are the eigenvalues of A and

M(t) and A(t) have the same eigenvectors. This implies that we can arrange the eigenvalues

of A as

λ1 > Re(λ2)

and the left and right eigenvectors of λ1 are u and v and are normalized such that

u
′ · v = 1 and u

′ · 1 = 1 (2.3.8)

where 1 = (1, 1)
′
.
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2.4 Imbedding Urn Schemes into a Continuous Time Markov Branching Pro-

cesses

To describe the composition of the urn, we consider a Markov branching processes with

N1(0) + N2(0) particles and the life time of all particles are exponentially distributed with

parameter 1. Group the particles into two groups. Type 1 represents branching processes

initialed by N1(0) treatment 1 balls and type 2 represents branching processes initialed

by N2(0) treatment 2 balls. Let Z(t) = (Z1(t), Z2(t)) represent the population size at

time t. Let {τn, n ≥ 1} denote the times at which a split or a branching occurs. Then

Z(τn) = (Z1(τn), Z2(τn)) represents the stochastic process of population size at time of split.

The next theorem, first proved by Athreya and Karlin (1967), shows that as a stochastic

process it is equivalent to the composition of the urn.

Theorem 2.4.1. The stochastic processes

{(N1(n), N2(n), n ≥ B)} and {Z(τn), n ≥ 1}

are equivalent.

We now describe how the imbedding helps in deriving the asymptotic urn composition.

Indeed a immediate Corollary of the above Theorem 2.4.1 using the results from branching

process is the following, viz.

Corollary 2.4.2.

lim
n→∞

Ni(n)

n
= vi a.s. (2.4.1)

where vi is as in (2.3.8).

We now return to the RPWD and express (2.4.1) in terms of the parameters of the design.

To this end, let p1 = P{success on treatment 1 | subject was treated with 1} and

p2 = P{success on treatment 2| subject was treated with 2}. Let q1 = 1−p1 and q2 = 1−p2.
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From the discussion above, the matrix M is given by

M =



p1 q2

q2 p2


 . (2.4.2)

The eigenvalues of M are λ1 = 1 and λ2 = p1 + p2 − 1. The corresponding left eigenvector of

λ1 is v = (q1 + q2)
−1(q2, q1). Thus, (2.4.1) reduces to:

Ni

n
→ Qi as n→ ∞, a.s. (2.4.3)

where Qi = (q3−i)(q1 + q2)
−1. In other words, the asymptotic urn composition is given by

(q1 +q2)
−1(q2, q1). Note that if q1 = q2 the asymptotic proportion is (1

2
, 1

2
) which is identical

to complete randomization. If q1 > q2 i.e. the probability of success on treatment 2 is greater

than that of treatment 1, then more subjects will be allocated to treatment 1.

We next focus on the second order results concerning the urn composition. The results for

Markov branching process (Athreya and Karlin (1968)) show that they crucially depend on

the difference of 2λ2−λ1 being positive, negative or 0. Our next theorem uses the results from

Markov Branching process and states the results in terms of RPWD. Let δ = (p1 + p2 − 1).

Theorem 2.4.3. The follows are true:

(i) If δ < 1/2 then, as n→ ∞

√
n(
N1

n
−Q1)

d−→ N(0, σ2) (2.4.4)

where σ2 = (3 + 2δ)(1 − 2δ)−1(Q1(1 −Q1)).

(ii) If δ = 1/2 then, as n→ ∞
√

n

log n
(
N1

n
−Q1)

d−→ N(0, σ2) (2.4.5)

where σ2 = 4Q1(1 −Q1).

(iii)If δ > 1/2 then, as n→ ∞

n( 1
2
−δ)(

N1

n
−Q1)

d−→ W (2.4.6)

where W is a non-degenerate random variable.
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Remark 2.4.4. When δ = 1/2, the limiting variance was identified by Matthews and Rosen-

berger (1997) while if δ < 1/2 Smythe and Rosenberger (1995) identified the limiting vari-

ance.

Remark 2.4.5. A rigorous proof for the identification of the limiting variance for δ ≥ 1/2

is as yet unavailable.

2.4.1 Large Sample Theory

In this section, we describe the basic statistical techniques associated with estimation of

success probabilities on treatment 1 and 2, viz., p1 and p2. Let us denote by Tj the treatment

indicator, i.e. Tj = i if the jth subject was assigned to treatment i, i = 1, 2. Let Ij,i = 1 if

Tj = i. Let Xj denote the response variable for the jth patient. Then

p1 = P{Xj = 1|Ti = 1} (2.4.7)

and

p2 = P{Xj = 1|Ti = 2}. (2.4.8)

Let p = (p1, p2). The likelihood Ln of the data is

Ln(p) =
2∏

i=1

n∏

j=1

p
XjIj,i

i q
(1−Xj)Ij,i

i . (2.4.9)

A simple differentiation with respect to p1 and p2 shows that

p̂1(n) =

∑n
j=1XjIj,1∑n

j=1 Ij,1
.

Now, p̂1 can be expressed as

p̂1(n) =
1

N1(n)

n∑

j=1

XjIj,1. (2.4.10)

In a similar vein,

p̂2(n) =
1

N2(n)

n∑

j=1

XjIj,2. (2.4.11)

Rosenberger, Flournoy and Durham (1997) have established the consistency and asymptotic

normality of p̂1(n) and p̂2(n).
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Theorem 2.4.6. Under the population model described in (2.4.7) and (2.4.8), p̂1(n) and

p̂2(n) are strongly consistent and asymptotic normally distributed; i.e.

lim
n→∞

(p̂1(n), p̂2(n)) = (p1, p2) a.s. (2.4.12)

and

lim
n→∞

P
[
(
√
N1(p̂1 − p1),

√
N2(p̂2 − p2)) ≤ (x1, x2)

]
= Φ

(
x1√
p1q1

)
Φ

(
x2√
p2q2

)
. (2.4.13)

Remark 2.4.7. Since N1

n
→ q2(q1 + q2)

−1 (by (2.4.3)), we can re express the above limit

result as

lim
n→∞

P
[
(
√
n(p̂1 − p1),

√
n(p̂2 − p2)) ≤ (x1, x2)

]
= Φ

(
x1√
p1q1Q1

)
Φ

(
x2√
p2q2Q2

)
. (2.4.14)

2.5 Inference for Success Probability

In this section, we describe various techniques for constructing confidence intervals for

the success probabilities. Wei(1988) was the first to initiate a test for the equality of success

probabilities. Indeed , he developed a permutation test of

H0 : p1 = p2 (2.5.1)

and showed that ignoring the design in the analysis leads to an exaggerated treatment effect.

Further work by Begg (1990) discusses the alone mentioned work of Wei (1988).

Confidence intervals for p1 and p2 were developed by Rosenberger et. al (1999) using

asymptotic theory. They showed, using extensive simulations, that in small samples, ignoring

the design in the analysis is anti conservative and hence the coverage probability based on

asymptotic theory could have serious drawbacks (in terms of converge) in small samples.

Rosenberger and Hu (1999)investigated resampling procedures for constructing confi-

dence intervals for the success probability. They considered situations where δ < 1/2, even

though theorem 2.4.6 holds without any restrictions on δ.

In the next section, we describe the basic resampling technique and develop a kernel

smoothing approach to improve the performance of bootstrap confidence intervals. Using
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the kernel smoothing to improve the accuracy of bootstrap confidence interval have been

investigated in the content of i.i.d. data by Efron (1985), Polansky and Schucany (1997),

Silverman and Young (1987) and Fisher and Hall (1991).

2.5.1 The Bootstrap Algorithm for RPWD

Let Xn = (Xj, Tj·, j = 1, · · · , n) denote the response from the RPWD and p̂1(n) and

p̂2(n) be as defined in (2.4.10) and (2.4.11). Using p̂1(n) and p̂2(n) as the success probability,

we generate B randomized play the winner designs yielding the data

(X ∗
n (k), k = 1, · · · , B) (2.5.2)

where

X ∗
n (k) = {(X∗

j , T
∗
j ), j = 1, 2, · · · , n}. (2.5.3)

Now define the bootstrap version of (2.4.10) and (2.4.11) (for the kth bootstrap sample) as

p̂∗1(k) = (N∗
1 (n))−1

n∑

j=1

X ∗
j T

∗
j1 (2.5.4)

p̂∗2(k) = (N∗
2 (n))−1

n∑

j=1

X ∗
j T

∗
j2. (2.5.5)

The 100(1 − α)% confidence interval based on the bootstrap samples is given by

CI − 1 = (p̂
∗(Bα/2)
i , p̂

∗(B(1−α)/2)
i ) (2.5.6)

where p̂
∗(j)
i is the jth order statistic of {p̂∗(k)

i , 1 ≤ k ≤ B}.

We can also obtain the 100(1 − α)% confidence interval for the estimates, P̂ , based on

large sample theory, viz.,

CI − 2 = p̂i ± zα/2

√
p̂iq̂i

Ni

(2.5.7)

where zα/2 represents the critical points from the standard normal distribution.
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Since the variance is unknown, we replace the critical points from the standard normal

distribution to the critical points from a t distribution. This yields

CI − 3 = p̂i ± tα/2,Ni−1

√
p̂iq̂i

Ni
. (2.5.8)

Note that the above interval is conditioned on the design.

By approximating p̂i−pi by p̂∗i −p̂i , where p̂∗i is an individual bootstrap estimate, i = 1, 2.

Rosengerber and Hu(1999) studied the confidence interval given by

CI − 4 = (2p̂i − p̂
∗(B(1−α)/2)
i , 2p̂i − p̂

∗(Bα/2)
i ). (2.5.9)

Using an adhoc approximation to constructing confidence intervals for the success prob-

ability. Rosenberger and Hu (1999) suggest the following confidence interval, viz.,

CI − 5 = (p̂i − Z
∗B(1−α/2)
i , p̂i − Z

∗B(α/2)
i ) (2.5.10)

where

Z∗
i (j) =

√√√√
(

N∗
i (j)p̂iq̂i

Nip̂∗i (j)q̂
∗
i (j)

)
(p̂∗i (j) − p̂i)

and Z
∗(j)
i is the jth order statistics of {Z∗

i (j), 1 ≤ j ≤ B}.

2.5.2 Kernel Smoothing of Bootstrap Samples

In this section, we develop the kernel smoothing of bootstrap samples to generate confi-

dence intervals for the success probabilities. We define:

f̂B(x) =
1

B

B∑

j=1

KhB
(x− p̂∗j

i ) (2.5.11)

where

KhB
(x) =

1

hB

K
(
x

hB

)

and hB is the so-called bandwidth. Then f̂B(·) is an approximation to hNi(x), the sampling

distribution of p̂. The lower bound and the upper bound for the 100(1 − α)% confidence

interval for pi is given by

CI − 6 = (c∗1, c
∗
2), (2.5.12)
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where c∗1 and c∗2 satisfy

∫ c∗1

−∞
f̂Bi(x)dx = α/2 (2.5.13)

and
∫ ∞

c∗2

f̂Bi(x)dx = α/2. (2.5.14)

The choice of hB is important. The correctness of the confidence intervals depends on the

rate of convergence of hB to 0. Using Theorem 1 of Devroye (1987) we have the following

Theorem.

Theorem 2.5.1. Assume hB → 0 and BhB → ∞ as B → ∞. Then

lim
B→∞

f̂Bi(x) = hNi(x), a.s. (2.5.15)

and

lim
B→∞

∫

<
|f̂Bi(x) − hNi(x)|dx = 0. (2.5.16)

Remark 2.5.2. In the above Theorem, n remains fixed and B → ∞ (independent of n).

Remark 2.5.3. The above Theorem implies that as B → ∞, f̂∗
Bi

(x) approximate the

sampling distribution of p̂i(n).

2.5.3 Simulation Results

All simulations were carried out using 5000 simulations with 2000 bootstrap samples per

simulation. The initial urn composition is N1(0) = N2(0) = 1 and α = 1. The simulation was

done in the Fortran language with eight parallel processors. For all simulations, we assume

r = 2. If p̂i, i = 1, 2, was 0 or 1 or if N1 and N2 were 0, that replication was discarded. The

kernel density was chosen to be the Gaussian kernel.

Table 2.1 contain the results of simulation for the randomized play the winner design

with sample size equals to 30. Coverage probability for true p1 and p2 were computed for

each of the six confidence intervals CI-1 to CI-6 with signlficant level equals to 0.05 and the

average length of the confidence intervals have also been obtained.
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We can tell that CI-3 requires longer length than CI-2 to achieve the same coverage

rate. CI-1, CI-2 and CI-4 are anticonservative (coverage < 0.95), but the coverage rate

for CI-1 increases as p1 + p2 increases. The coverage rate for CI-5 decreases as p1 + p2

increases. Furthermore CI-5 requires longer length than CI-6 for the same coverage rate. CI-

6 (based on the kernel density estimates) can always achieve the desired probability (0.95)

with moderately shorter length compared to the other procedures. Therefore, we conclude

that the confidence interval obtained by kernel smoothing of bootstrap samples yields an

optimal coverage with shortest length amongst the competing methodologies.

Table 2.1: Results for the RPWD. Simulated coverage probabilities (P) for true success

probabilities and the average length (L) for the confidence intervals. Significant level=0.05,

N1(0) = N2(0) = 1, α = 1, n = 30, 5000 simulations and B=2000.

p1 CI-1 CI-2 CI-3 CI-4 CI-5 CI-6

p2

0.5 P 0.9152 0.9136 0.9354 0.8602 0.9504 0.9432

L 0.4935 0.4994 0.5502 0.4935 0.5668 0.5070

0.5 P 0.9092 0.9096 0.9668 0.8496 0.9478 0.9390

L 0.4928 0.5002 0.5511 0.4928 0.5675 0.5061

0.7 P 0.9364 0.9252 0.9426 0.8882 0.9586 0.9454

L 0.4459 0.4318 0.4691 0.4459 0.4914 0.4577

0.5 P 0.9126 0.9060 0.9692 0.8078 0.9222 0.9450

L 0.5281 0.5573 0.6397 0.5281 0.6169 0.5430

0.75 P 0.9316 0.9194 0.9446 0.8232 0.9188 0.9510

L 0.4763 0.4649 0.5315 0.4763 0.5165 0.4898

0.75 P 0.9330 0.9222 0.9896 0.8250 0.9203 0.9544

L 0.4754 0.4643 0.5295 0.4754 0.5158 0.4893
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Table 2.1 continuous

0.76 P 0.9360 0.9158 0.9352 0.8318 0.9120 0.9466

L 0.4682 0.4580 0.5250 0.4682 0.5065 0.4818

0.75 P 0.9306 0.9186 0.9878 0.8210 0.9204 0.9510

L 0.4787 0.4684 0.5378 0.4787 0.5196 0.4922

0.77 P 0.9524 0.9304 0.9454 0.8264 0.9152 0.9608

L 0.4602 0.4464 0.5072 0.4602 0.4917 0.4738

0.75 P 0.933 0.9194 0.98686 0.8198 0.9152 0.9494

L 0.4835 0.4747 0.5473 0.4835 0.5256 0.4972

0.8 P 0.9412 0.9362 0.9504 0.8160 0.9038 0.9536

L 0.4566 0.4440 0.5128 0.4566 0.4774 0.4708

0.8 P 0.9386 0.9354 0.9896 0.8042 0.8992 0.9520

L 0.4534 0.4392 0.5067 0.4534 0.4712 0.4677
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2.6 Confidence Intervals for Allocation Parameters

In this section we develop the confidence intervals for the allocation proportion. This

problem has not been investigated in the literature and we present first results for the

problem. We recall from Theorem 2.4.3, the behavior of

(
N1

n
−Q1,

N2

n
−Q2)

depends on the value of δ = p1 + p2 − 1. Indeed if δ < 1/2 , classical central limit type

normalization, viz
√
n holds and we have an asymptotic normal distribution. If δ = 1/2, the

normalization changes to
√

n
log n

and limiting distribution is still normal. The most interesting

case is when δ > 1/2. In this case the normalization is n1/2−δ and not much is known about

the limit random variable.

Note further that if δ < 1/2, the variance of the limiting normal distribution, which is

given by

σ2(δ) = (3 + 2δ)(1 − 2δ)−1(Qi(1 −Qi)) (2.6.1)

has a singularity at δ = 1/2. These issues complicate the construction of confidence intervals

for Qi.

We now describe the bootstrap technique developed in the previous section to construct

confidence intervals for Qi. We will use the notations from the previous sections. Note that

using the data {X ∗(k), k = 1, · · · , B} we obtain for the kth bootstrap sample

N∗
i (k) =

n∑

j=1

I∗{Tj=i}. (2.6.2)

Our first methodology for constructing confidence interval for Qi is

CI1,1 = (
N

∗(Bα/2)
i

n
,
N

∗(B(1−α)/2)
i

n
) (2.6.3)

where N
∗(j)
i is the jth order statistic of

{N∗
i (1), · · · , N∗

i (B)}.
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The second and third confidence intervals for Qi are based on the large sample theory and

are given by

CI1,2 =
(
Ni

n

)
± zα/2√

n

(
(3 + 2δ)

(
Qi(1 −Qi)

1 − 2δ

))1/2

and

CI1,3 =
(
Ni

n

)
±
tα/2,Ni−1√

n

(
(3 + 2δ)

(
Qi(1 −Qi)

1 − 2δ

))1/2

.

If δ = 1/2 then the corresponding intervals are given by

CI2,2 =
(
Ni

n

)
± zα/2(

log n

n
)1/2(4Qi(1 −Qi))

1/2

and

CI2,3 =
(
Ni

n

)
± tα/2,Ni−1(

log n

n
)1/2(4Qi(1 −Qi))

1/2.

If δ > 1/2, then the corresponding interval is given by

CI3,2 =
(
Ni

n

)
± cαn

δ−1/2σ̂2

where cα is the percentage point from the distribution of W and σ̂2 is an estimate of the

variance of N1

n
. We can also compare the above confidence intervals with their bootstrap

versions’, for example analogous to CI1,2, we can define CI∗1,2 as follows:

CI∗1,2 =
(
Ni

n

)
±
zα/2√
n

(
(3 + 2δ∗)

(
Q∗

i (1 −Q∗
i )

1 − 2δ∗

))1/2

where δ∗ = p∗1 + p∗2 − 1 and p∗i = 1
B

∑B
k=1 p

∗
i (k). Similar substitutes for δ and pi for

CI1,3, CI2,2, CI2,3 and CI3,2 will yield the corresponding bootstrap versions which we

denote by CI∗1,3, CI
∗
2,2, CI

∗
2,3 and CI∗3,2.

Finally, we adopt the kernel smoothing technique from the previous section. Again using

the data {X ∗
n (k), k = 1, · · · , B} we construct the smooth bootstrap density using

f̂∗
Bi

(x) =
1

B

B∑

j=1

KhB
(x− N∗

i (j)

n
). (2.6.4)

The lower bound and the upper bound for the 100(1−α)% confidence interval for Qi is given

by (c∗1, c
∗
2), where c∗1 and c∗2 satisfy
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∫ c∗1

−∞
f̂∗

Bi
(x)dx = α/2 (2.6.5)

and
∫ ∞

c∗2

f̂∗
Bi

(x)dx = α/2. (2.6.6)

The following section will contain all the simulation results including the coverage prob-

ability and the length of the confidence intervals.

2.6.1 Simulation Results

The simulations were performed under the same scenario as mentioned in section 2.5.1.

Table 2.2, 2.3 and 2.4 contain the results of the coverage probability for the asymptotic

allocation proportion defined in (2.4.3) regarding to the above confidence intervals with

signlficant level equals to 0.05 and the average length of the confidence intervals have also

been obtained.

Table 2.2 contains the simulation results associated with δ < 1/2. Comparing CI1,2 and CI1,3

with CI∗1,2 and CI∗1,3 respectively, see that by using the bootstrap correction for δ yields

shorter confidence interval with same coverage. CI1,1 has almost the same coverage rate as

the confidence interval based on the kernel smoothing. We should note that the length of the

confidence interval based on the kernel smoothing of the bootstrap samples is significantly

shorter, the coverage rate is higher than these confidence intervals based on the asymptotic

theory.

Table 2.3 contain the simulation results associate with δ = 1/2. In this case, the confidence

intervals based on the asymptotic theory have longer confidence intervals compared to these

based on kernel smoothing.

Table 2.4 contain the simulation results accociate with δ > 1/2. In this case the confidence

based on the kernel smoothing techniqure and percertial from the bootstrap sample are much

surprior comparing to the confidence intervals that using the asymptotic distribution’s critial

value.
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Table 2.2 Results for the RPWD. Simulated coverage probabilities (Ni, i = 1, 2) for

asymptotic allocation proportions and the average length (L) for the confidence intervals.

Significant level=0.05, N1(0) = N2(0) = 1, α = 1, n = 30, 5000 simulations, B=2000 and

δ < 1/2.

p1 CI1,1 CI1,2 CI1,3 CI∗1,2 CI∗1,3 CI-Ker

p2

0.5 N1 0.9986 0.9665 0.9825 0.9648 0.9828 0.9998

L 0.4768 0.6356 0.6972 0.6140 0.6736 0.4918

0.5 N2 0.9986 0.9665 0.9819 0.9648 0.9822 0.9998

L 0.4769 0.6356 0.6972 0.6140 0.6735 0.4918

0.7 N1 0.9968 0.9810 0.9901 0.9594 0.9690 0.9968

L 0.5319 0.8856 0.9577 0.8507 0.9198 0.5487

0.5 N2 0.9968 0.9810 0.9862 0.9594 0.9644 0.9968

L 0.5317 0.8856 1.0017 0.8507 0.9619 0.5487

2.7 Conclusions

In this chapter we developed confidence intervals for the design parameters and suc-

cess probabilities. We introduced a novel kernel smoothing method that provided optimum

coverage and smaller length compared to other existing methodologies, when dealing with

success probability

We also developed a method for constructing confidence interval for the allocation pro-

portions. This is a challenging problem due to the differential behavior of Ni

n
across the values

of δ. The problem of providing unified inference for all δ without prior knowledge of δ is an

interesting open problem and we plan to pursue it in the future.
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Table 2.3 Results for the RPWD. Simulated coverage probabilities (Ni, i = 1, 2) for

asymptotic allocation proportions and the average length (L) for the confidence intervals.

Significant level=0.05, N1(0) = N2(0) = 1, α = 1, n = 30, 5000 simulations, B=2000 and

δ = 1/2.

p1 CI2,1 CI2,2 CI2,3 CI∗2,2 CI∗2,3 CI-Ker

p2

0.75 N1 0.9942 0.9976 0.9994 0.9996 1.0000 0.9972

L 0.6447 1.2477 1.3898 1.2589 1.4024 0.6662

0.75 N2 0.9944 0.9976 1.0000 0.9996 1.0000 0.9972

L 0.6448 1.2478 1.3888 1.2589 1.4015 0.6662

Table 2.4 Results for the RPWD. Simulated coverage probabilities (Ni, i = 1, 2) for

asymptotic allocation proportions and the average length (L) for the confidence intervals.

Significant level=0.05, N1(0) = N2(0) = 1, α = 1, n = 30, 5000 simulations, B=2000 and

δ > 1/2.

p1 CI3,1 CI3,2 CI∗3,2 CI-Ker

p2

0.8 N1 0.9948 0.8734 0.8372 0.9964

L 0.6747 0.9197 0.7255 0.6980

0.8 N2 0.9944 0.8734 0.8374 0.9964

L 0.6749 0.9200 0.7258 0.6980
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Chapter 3

Minimum Hellinger Distance Estimators

3.1 Introduction

In Chapters 1 and 2 we described various randomization schemes adopted in PhaseIII

clinical trials and developed inferential methodology for the analysis of the design related

parameters. However in a typical clinical trial, information on several variables are collected.

For example, consider a clinical trial investigating the efficacy of drug A in lowering the

cholesterol levels. In such a trial information on cholesterol levels, blood pressure, and body

weight would be collected. Further, information on the lifestyle, diet and genetic components

may also be collected. In this chapter, we develop robust methodology for the analysis of

these continuous variables from the RPWD.

Minimum Hellinger distance procedure (MHDP) for analysis of independent and identi-

cally distributed (i.i.d.) data has been studied in the literature. Beran (1977) investigated

the MHDP for continuous data and showed that the minimum Hellinger distance estimator

(MHDE) of a finite dimensional parameter (in a parametric model) is as efficient as the MLE

(Maximum Likelihood Estimator) under the true model assumption; furthermore, MHDE

possess a ”stability property” when the true distribution is in the neighborhood of the

assumed parametric model. RPWD methodology naturally leads to situations where fewer

subjects are sometimes allocated to one of the treatment arms. In these situations, it is diffi-

cult to identify the true distribution of the data under consideration. Drawing on the results

from the i.i.d. literature, it is conceivable that the methodology based on MHDE would be

more robust than the MLE and perhaps just as efficient as the MLE.

36
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In this chapter, we will introduce the minimum Hellinger distance estimators for the ran-

domized play the winner design and study it’s asymptotic properties. We will also develop

confidence intervals for these estimators using the asymptotic theory. Finally, we describe a

new computational methodology (using Monte Carlo techniques) for obtaining the estima-

tors. A SAS macro that implements these methodologies for Gaussian model is included. We

begin with a brief introduction to the MHDP for the i.i.d. data.

3.2 Minimum Hellinger Distance Estimators (i.i.d. case)

We begin by describing the minimum Hellinger distance estimation for continuous i.i.d.

data. Let f(x) and g(x) be any two densities; the Hellinger distance between f(x) and g(x)

is defined as the L2-norm of the difference between square root of density functions, viz.,
√
f(x) and

√
g(x), i.e.

HD2(f, g) = ||f(x)1/2 − g(x)1/2||22

=
∫

[(f(x))1/2 − (g(x))1/2]2dx

= 2 − 2
∫
f1/2(x)g1/2(x)dx. (3.2.1)

Let X1, . . . ,Xn be i.i.d. real valued random variables with density belonging to a specified

parametric family {f(·|θ), θ ∈ Θ}, where Θ ⊂ <p is the parameter space. Let G be a class

of density functions. We will assume that G is metrized by L1 convergence, i.e. gn → g if and

only if gn
L1−→ g ⇔ (

∫
|gn(x) − g(x)|dx → 0 as n → ∞.) The minimum Hellinger Distance

functional (MHDF) of θ is defined to be a mapping (possibly multivalued). T : G −→ Θ such

that

T (g) = arg min
θ∈Θ

HD2(f(·|θ), g) (3.2.2)

= arg max
θ∈Θ

γ(θ|g) (3.2.3)

where

γ(θ|g) =
∫

<
f1/2(x|θ)g1/2(x)dx. (3.2.4)
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Given the observations (X1, . . . ,Xn), let gn(·) denote any estimator of the density g of X1.

Then the MHDE of θ is given by T (gn), i.e.

T (gn) = arg min
θ∈Θ

HD2
n(f(·|θ), gn), (3.2.5)

where

HD2
n(f(·|θ, gn) = 2 − 2

∫

<
f1/2(x|θ)g1/2

n (x)dx. (3.2.6)

Equivalently

T (gn) = arg max
θ∈Θ

γn(θ|gn). (3.2.7)

When there is no scope for confusion we will use HD2
n(f(·|θ, gn) or HD2

n(θ) based on the

notational convenience. In the same spirit, we will use γ(θ, gn) and γ(θ) interchangeably. A

choice for gn(·) is the kernel density estimator

gn(x) =
1

ncn

n∑

j=1

K{x−Xj

cn
}. (3.2.8)

where K(·) is a kernel density. It is known that (see Devroye (1987)) if cn → 0, and ncn → ∞

then gn
L1−→ f . Now using Cauchy-Schwartz inequality, it follows that

HD2
n(f(·|θ), gn) → 0. (3.2.9)

Beran (1977) has shown that the MHDE is ”robust” compared to the maximum like-

lihood estimator when data contaminations are present. Furthermore MHDE is known to

be asymptotically efficient under a specified parametric family of densities and is minimax

robust in a small Hellinger metric neighborhood of the given family (Beran 1977).

Tamura and Boos (1986) have studied the MHDE when the data are vector valued. They

established the affine-invariance property of the MHDE for multivariate location and scale.

They also established that the breakdown point (i.e. the smallest fraction of contamination

that can cause the estimator to take arbitrary large values) of the estimator to be at least

1
4
. The breakdown point of an affine-invariant M-estimator is at most 1

d+1
, where d is the

dimension of parameter space. The MHDE for the multivariate case is superior since it is

independent of the dimension.
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In the context of discrete data, Simpson (1987) showed that the MHDE has 50% break-

down point. Simpson (1989) also developed a deviance test using Hellinger distance and

studied the impact of contamination on the test size and power. More recently, Lindsay

(1994) studied a generalized disparity method for estimation in parametric models with dis-

crete support. Indeed, a particular choice of the disparity measure yields the MHDE. Sriram

and Vidyashankar (2000) studied MHDE for supercritical branching process. Other weighted

likelihood based approaches for robustness are based on the work of Markatou, Lindsay and

Basu (1997).

3.3 Minimum Hellinger Distance Estimators for Randomized Play The Winner

Design

In this section, we develop the MHDP for analysizing the continuous outcomes from a

RPWD. We begin with notations and terminology. Let Ti denote the treatment indicator

Ti = 1 if the ith subject received treatment 1 and Ti = 2 if the ith subject receiving treatment

2. Let

A(i)
n = {1 ≤ j ≤ n : T (j) = i}

denote all those subjects (amongst the first n subjects) randomized to treatment i. Then the

cardinality of An is

|A(i)
n | = Ni. (3.3.1)

Let

A(i) = {j ≥ 1 : T (j) = i}

denote the set of all subjects randomized to treatment i. The data can be represented by

{Xi, ν(i,j), j ∈ An, i = 1, 2}. Note that given the treatment assignment, the responses of

subjects receiving a particular treatment are i.i.d. and given the treatment assignment, the

responses of subjects receiving treatment 1 are independent of the responses of the subjects

receiving treatment 2.
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While such a conditional independence is useful one can actually extract a ”full” inde-

pendence of the allocated sequences. This is made precise in the following theorem of Melfi

and Page (2000).

Theorem 3.3.1. Let {(X1,j,X2,j), j ≥ 1} be a collection of i.i.d. random variables and let

FX1 denote the distribution of {X1,j, j ≥ 1} and GX2 denote the distribution of {X2,j, j ≥ 1}.

Let Fn = σ < T1, . . . , Tn >. Assume that (X1,n,X2,n) is independent of Fn−1. Let {ν(i, j), i =

1, 2, j = 1, 2, . . .} be a collection of positive, increasing in j (for all i), integer-valued, almost

surely finite random variables such that

{ν(i, j) = k} ∈ Fj−1

for all i = 1, 2. Assume that p(ν(1, j) = ν(2, k)) = 0 for all integers j and k. Then

(i) {X1,ν(1,j), j ∈ A(1)} are i.i.d. with common distribution FX1;

(ii) {X1,ν(2,j), j ∈ A(2)} are i.i.d. with common distribution GX2 ; and

(iii) the two sequences {X1,ν(1,j), j ≥ 1} and {X2,ν(2,j), j ≥ 1} are independent of one

another.

In order to establish the criterion function for estimating the parameters, we make the

following assumption, viz,

(E1) θ and η are not functionally dependent.

We note that this condition can easily be removed by modeling the dependence between θ

and η. This introduces more complex notations and technical issues and hence is not pursued

in this work. Let

F (·| Ξ) =



f(·|θ)

g(·|η)


 and H =



h1

h2


 (3.3.2)

where Ξ = (θ, η)
′
. Let Θ1 ∈ <p denote the parameter space corresponding to θ, Θ2 ∈ <p

denote the parameter space corresponding to η and Θ = Θ1 × Θ2 denote the parameter
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space corresponding Ξ. Let

V HD(F , H) =



HD2(f(·|θ), h1)

HD2(g(·|η), h2)


 (3.3.3)

denote the vector of squares of Hellinger distances between the components of F and H.

Now analogous to (3.2.2), we define the MHDF to be the functional (possibly multivalued)

T : G × G → θ such that

T (H) = arg min
Ξ∈Θ

{V HD(F (·| Ξ), H} (3.3.4)

= arg max
Ξ∈Θ

{γ(Ξ, H)} (3.3.5)

where

γ(Ξ, H) =
(∫

<
f1/2(x|θ)h

1/2
1 (x)dx,

∫

<
g1/2(x|η)h

1/2
2 (x)dx

)′
.

Now, if Hn are the estimators of H based on the data (to be described below) then the

MHDE of Ξ is given by

T (Hn) = arg min
Ξ∈Θ

{V HD(F (·| Ξ), Hn} (3.3.6)

We choose for Hn

Hn = (h1,n, h2,n)
′

the following kernel density estimates, given by

hi,n(x) =
1

Ni

∑

j∈An(i)

K

(
x−Xi,ν(i,j)

cn

)
, i = 1, 2 (3.3.7)

Now using the sample version for V HD we get

V HDn(F , H) = (HD2
n(f(·|θ), h1,n), HD

2
n(g(·|η), h2,n))

= 2 · 1 − γn(Ξ, H) (3.3.8)

where

γn(Ξ, H) = (γn,1(θ), γn,2(η)).
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3.4 Existence and Uniqueness

In this section, we will establish the existence and uniqueness of the MHDE, defined

through a minimization of (3.3.6). Recall that

γ(Ξ, H) =
(∫

<
f1/2(x|θ)h

1/2
1 (x)dx,

∫

<
g1/2(x|η)h

1/2
2 (x)dx

)′

We will make the following assumptions through out this chapter.

(E2) The parameter spaces Θ1 and Θ2 are locally compact.

(E3) f(·|θ) and g(·|η) are upper semi-continuous.

Our first theorem shows that under a further weak regularity condition (3.3.6) exists.

Theorem 3.4.1. Assume (E1)-(E3). Let ΘK = K1 ×K2, where Ki ⊂ Θi is compact for all

i = 1, 2.

(i) Assume that

sup
Ξ∈Θc

γ(Ξ, H) < sup
Ξ∈ΘK

γ(Ξ, H)

where Θc = Θc
1 × Θc

2, Θc
1 = Kc

1 ∩ Θ1, and Θc
2 = Kc

2 ∩ Θ2.

(ii) If Ξ1 6= Ξ2 then H(·|Ξ1) 6= H(·|Ξ2) on a set of positive Lebesgue measure.

Under the above condition (3.3.6) exists. Furthermore T (F ) is unique.

Proof. The method of proof involves two steps.

(1) We will show that V HD(F , H) is lower semi-continuous.

(2) We will then use (i) along with condition (ii) of the theorem to establish the existence

of the minimizers of (3.3.6).

We begin with (1). Note that

V HD(F (·|Ξ), H) = 2 · 1 − 2γ(Ξ, H). (3.4.1)

Under (E3), γ(Ξ, H) is upper semi-continuous function. Hence V HD(F , H) is lower

semi-continuous. Now, since K1 and K2 are compact subsets of Θ1 and Θ2 respectively,
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ΘK = K1×K2 is also a compact subset of Θ. Hence from the lower semi-continuity of V HD

there exists a Ξ∗ such that

(m1,m2)
′ = V HD(F (·|Ξ∗), H) = inf

Ξ∈ΘK

V HD(F (·|Ξ), H). (3.4.2)

Hence using (3.4.1)

γ(Ξ∗, H) =
1

2
(2 −m1, 2 −m2)

′.

Now, using condition (i), we have that for all Ξ /∈ ΘK, we have γ(Ξ, H) < 1
2
(2−m1, 2−m2)

′.

Hence Ξ∗ minimizes V HD(·|Ξ) on Θ. We next prove the uniqueness of T (F (·|Ξ)). Note that

V HD(F (Ξ), F (Ξ0)) =



HD2(f(·|θ), f(·|θ0))

HD2(g(·|η), g(·|η0))




and is minimized at θ = θ0 and η = η0 uniquely by Beran’s (1977) Theorem 1. by the

identifiability assumption implied by (ii).

3.5 L1- Convergence of Kernel Density Estimators for RPWD

In this section we deal with the L1 convergence of the kernel density estimators that are

required in the proof of our consistency results. We recall that the kernel density estimators

of h1 and h2 (the densities of responses for treatment 1 and treatment 2 respectively) are

given by

hi,n(x) = (Nicn)
−1

∑

j∈An(i)

K

(
x−Xi,ν(i,j)

cn

)
, i = 1, 2. (3.5.1)

Our first theorem establishes the strong pointwise consistency and strong L1 consistency of

hi,n(·) and E(hi,n(·)).

Theorem 3.5.1. Assume that cn → 0 and ncn → ∞ as n→ ∞. Then for almost all x (with

respect to the Lebesgue Measure)

lim
n→∞

hi,n(x) = hi(x) a.s., (3.5.2)
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and

lim
n→∞

E(hi,n(x)) = hi(x) a.s.. (3.5.3)

Furthermore,

lim
n→∞

∫

<
|hi,n(x) − hi(x)| = 0, (3.5.4)

and

lim
n→∞

∫

<
|E(hi,n(x)) − hi(x)| = 0. (3.5.5)

Proof. By Melfi’s Theorem, {Xi,ν(i,j), j ∈ A(i)} are i.i.d. random variables. Hence, by The-

orem 1 of Devroye (1987), (3.5.2) follows. (3.5.3) is now a consequence of Glick’s Theorem.

We next calculate

E

(
K

(
x−Xi,ν(i,j)

cn

))
=

∫
K
(
x− y

cn

)
hi(y)dy

= cn

∫
K(t)hi(x+ tcn)dt (3.5.6)

Now, conditioning on the treatment assignment and using (3.5.6)

E(hi,n(x)) =
∫
K(t)hi(x+ tcn)dt. (3.5.7)

Thus, to complete the proof we need to show that (3.5.7) converges to hi(x). Now

|E(hi,n(x)) − hi(x)| ≤
∫
K(t)|hi(x+ t(cn) − hi(x)|dt. (3.5.8)

By the bounded convergence theorem, right hand side of (3.5.8) converges to 0 as n → ∞

yielding (3.5.4). Finally, by integrating (3.5.8) and interchanging the order of integration

(using Tonelli’s theorem), it follows again by the bounded convergence theorem that

lim
n→∞

∫
|E(hi,n(x)) − hi(x)| = 0

yielding (3.5.5).
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3.6 Continuity and Consistency of the MHDF

In this section, we study the consistency of the MHDE via the continuity of the MHDF

defined in (3.3.6). Recall that G is the class of densities and T : G × G → Θ defined by

T (H) = arg max
Ξ∈Θ

γ(Ξ|H).

Our first result establishes the continuity of T . Assume that (E1-E3) and conditions of

Theorem 3.4.1. hold.

Theorem 3.6.1. Assume further (E1)-(E3) that T (H) is unique. Then T is continuous, i.e.

if h1,n
L1−→ h, h2,n

L1−→ h2, then

lim
n→∞

T (Hn) = T (H). (3.6.1)

Proof. Let h1,n
L1−→ h1 and h2,n

L1−→ h2. By Theorem 3.4.1, there exists Ξn ∈ Θ such that

T (Hn) = Ξn. Also, by Theorem 3.4.1, there exist Ξ ∈ Θ such that

T (H) = Ξ.

Thus, to prove (3.6.1) it is enough to show that

Ξn → Ξ0. (3.6.2)

We now show that is sufficient to prove that

lim
n→∞

sup
Ξ∈Θ

|V HD(F (·|Ξn), Hn) − V HD(F (·|Ξ), H)| = 0. (3.6.3)

To this end, suppose (3.6.3) holds and (3.6.2) does not hold. By compactness of ΘK, we have

that there exists Ξ∗ 6= Ξ0 and a subsequence nk such that

Ξnk
→ Ξ∗. (3.6.4)

Hence by (3.6.3)

V HD(F (·|Ξnk
), Hnk) → V HD(F (·|Ξ∗), H). (3.6.5)
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This implies that

V HD(F (·|Ξ∗), H∗) = V HD(F (·|Ξ), H)

contradicting the uniqueness of T (H). Now we show that (3.6.3) holds. Note that

sup
Ξ∈Θ

|V HD(F (·|Ξn), Hn) − V HD(F (·|Ξ0), H)|

≤




supθ∈K1
|HD2(f(x|θ0), h1,n) −HD2(f(x|θ0), h1)|

supη∈K2
|HD2(g(x|η0), h2,n) −HD2(g(x|η0), h2)|


 .

By Theorem 1 (ii) of Beran (1977), each of the components on the RHS of the above converges

to 0, proving (3.6.3).

Now, using the compactness of K1 and K2 and using Theorem 3.5.1 and 3.6.1 we get

strong consistency of the MHDE. We state this as a Theorem.

Theorem 3.6.2. Assume that the T (H) is unique. Then, the sequence of MHDE defined

in (3.3.6) converges a.s. to T (H).

3.7 Joint Asymptotic Normality of MHDE of Ξn

In this section, we deal with the joint asymptotic normality Ξn. We will assume

throughout this section that the conditions (E1-E3) and the conditions of Theorem 3.4.1,

3.5.1 and 3.6.1 hold. We need the following regularity conditions on {f(·|θ), θ ∈ Θ1} and

{g(·|η), η ∈ Θ2}.

(D1) f(·|θ) and g(·|η) are twice continuously differentiable functions of θ and η.

(D2) Assume further that ||∇f1/2(·|θ)||2 and ||∇g1/2(·|η)||2 are continuous and bounded.

Using the (D1) and (D2) and partially differentiating with respect to Ξ we get

∇V HD(Ξ) = 0 (3.7.1)

Let Ξn be the solution to (3.7.1). Now applying one term Taylor expansion of (3.7.1) we get

∇V HDn(Ξ0) = ∇V HDn(Ξn) + (Ξn − Ξ0)
′Dn(Ξ∗

n) (3.7.2)
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where Ξ∗
n = (θ∗

n,η
∗
n)

′ ∈ Un(θ0) × Vn(η0) and

Un(θ0) = {θ|θ = tθ0 + (1 − t)θn} (3.7.3)

Vn(η0) = {η|η = tη0 + (1 − t)ηn} (3.7.4)

Thus,

(Ξn − Ξ0)
′ = ∇V HDn(Ξ0)D

−1
n (Ξ∗

n). (3.7.5)

Hence,

√
n(Ξn − Ξ0)

′ =
√
n∇V HDn(Ξ0)(D

−1
n (Ξ∗

n) −D−1
n (Ξ0))

+
√
n∇V HDn(Ξ0)D

−1
n (Ξ0)

= Tn,1 + Tn,2. (3.7.6)

The following regularity conditions will be needed for proving our theorm.

R1. The kernel K(·) density is symmetric with compact support (K).

R2. Let {αn, n ≥ 1} be a sequence diverging to infinity. Assume that

lim
n→∞

n sup
t∈supp(K)

Pg(|x− cnt| > αn) = 0

lim
n→∞

n sup
t∈supp(K)

Pf (|x− cnt| > αn) = 0

where supp(K) is the support of the kernel density K(·).

R3. Let

Mn(1) = sup
|x|≤αn

sup
t∈supp(K)

∣∣∣f−1(x)f(x+ tcn|θ)
∣∣∣

Mn(2) = sup
|x|≤αn

sup
t∈supp(K)

∣∣∣g−1(x)g(x+ tcn|η)
∣∣∣ .

Assume

sup
n≥1

Mn(i) <∞ for i = 1, 2.

R4. nc2n → ∞.
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Lemma 3.7.1. Assume (R1)-(R4), (D1)-(D2) hold. Assume all the conditions from the

previous section hold. Then

lim
n→∞

(D−1
n (Ξ∗

n) −D−1
n (Ξ0)) = 0. (3.7.7)

Proof. Note that Dn is a block diagonal matrix with diagonals Dn,1 and Dn,2 (say). Tamura

and Boos (1984) have shown that Dn,i → ∞, i = 1, 2 as n → ∞. Their result is true

for fixed sample size. However, using Renyi type theorem for random sample sizes, (3.7.7)

follows.

Our next lemma studies the behavior of Tn,2 in (3.7.6)

Lemma 3.7.2 Assume (R1)-(R4) and (D1)-(D2) hols. Assume further that the conditions

of section 3.6 hold. Then

Tn,2 =
√
n
(
S1

N1
, S2

N2

)′
+ op(1) (3.7.8)

where

op(1) → 0 as n→ ∞

Si
Ni

=
1

Ni

Ni∑

j=1

ψi(X1,ν(i,j)), i = 1, 2 ,

ψ1(x) = (f(x|θ))−1∇f(x|θ),

ψ2(x) = (g(x|η))−1∇g(x|η).

Proof. The proof follows along the same lines as in Tamura and Boos(1984). Convergence

to 0 of the oP (1) term follows from the arguments as in Lemma 3.7.1.

Theorem 3.7.3. Assume that the conditions (R1)-(R4), (E1)-(E3), (D1)-(D2) hold. Then,

as n→ ∞
√
n(Ξn − Ξ0)

d−→ N2(0,Σ)

where

Σ =



Q1I

−1
1 (θ0) 0

0 Q2I
−1
2 (η0)


 . (3.7.9)
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where

I−1
1 (θ0) = 4[

∫
(∇f1/2(x|θ))(∇f1/2(x|θ)′dx]

and

I−1
2 (η0) = 4[

∫
(∇g1/2(x|η))(∇g1/2(x|η)′)dx].

Proof. Using (3.7.6) and lemma 3.7.1 and lemma 3.7.2, it is enough to show that
√
nTn,2

converges to a bivariate normal distribution. We will use the Cramer-Wold device. Let l1

and l2 be any column vectors of constants. Now, using the lemma 3.7.2, we can express the

linear comination of S1
N1

and S2
N2

as

√
n(

2∑

i=1

1

Ni

Ni∑

j=1

liψi(Xi,ν(i,j))). (3.7.10)

Thus to complete the proof we need to show that the term

√
n

2∑

i=1

1

Ni

Ni∑

j=1

liψi(Xi,ν(i,j))

converges a normal distribution. Now

√
n

2∑

i=1

1

Ni

Ni∑

j=1

liψi(Xi,ν(i,j)) = Gn,1 +Gn,2 +Gn,3 +Gn,4 (3.7.11)

where

Gn,1 =
1

N1

∑

j∈An(1)

l′1ψ1(X1,ν(i,j)) =
1

N1

[n·Q1]∑

j=1

l′1ψ1(X1,ν(i,j))

Gn,2 =
1

N2

[nQ2 ]∑

j=1

l′2ψ2(X1,ν(2,j))

Gn,3 =
1

N1

∑

[Q1n]∧N1≤j≤N1∨|Q1n]

l′iψ1(X1,ν(1,j))

Gn,4 =
1

N2

∑

[Q2n]∧N2≤j≤N2∨|Q2n]

l′2ψ2(X2,ν(2,j)).

By Theorem 3.3.1 and central limit theorem for i.i.d. random variables Gn,1 +Gn,2 converges

to a linear combination of Gaussian random vectors. Furthermore,

D−1
n,1(θ0) → D−1

1 (θ0) (3.7.12)
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and

D−1
n,2(η0) → D−1

2 (η0). (3.7.13)

We will now show that Gn,3 +Gn,4 converges to 0 in probability. Now, for any δ > 0,

P (|Gn,3| > ε) = P (|Gn,3| > ε : |N1

n
−Q1| < δ) + P (|Gn,3| > ε : |N1

n
−Q1| > δ)

= (i) + (ii)

Let E(n, δ) = {ω : |N1(w)
n

−Q1| < δ}.

Note that

(i) = P






 1

N1

N1∨[nQ1]∑

j=N1∧[nQ1]

ψ1(X1,ν(1,j)


 > ε : E(n, δ)





≤ P


 1

n(Q1 + δ)

n(Q1+δ)∑

j=[n(Q1−δ)]

ψ1(X1,ν(1,j)) > ε




≤ P


 max

1≤k≤n(Q1+δ)

k∑

j=[n(Q1−δ)]

ψ1(X1,ν(1,j)) ≥ n(Q1 + δ)ε




≤ C

n2
→ 0 as n→ ∞. (3.7.14)

where (3.7.14) follows from Kolmogorov’s maximal inequality (Chung (1974) P. 116.) Similar

argument shows that Gn,4
P−→ 0. As for (ii)

(ii) ≤ P (|N1

n
−Q1| > δ) → 0 as n→ ∞.

Thus combining , (3.7.12) and (3.7.13) the theorem follows since Ni

n
→ Qi by Corollary

2.4.2.

3.8 Robustness of MHDE

In this section we deal with the robustness of the MHDE. We describe the robustness

properties through a study of the α-influence function and the breakdown point. We begin

with the α-influence function. We will denote by F (·|Ξ, α, z) the contaminated model, i.e.

F (·|Ξ, α, z) = (1 − α)F (·|Ξ) + αUz (3.8.1)
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where

Uz =



UZ1

UZ2


 , α =



α1

α2


 .

UZi are uniform densities on the interval (Zi−ε, Zi+ε) where ε > 0. Note that f(·|θ , α1, Z1)

represents a (1 − α1)% contamination with distant “outliers”. Similarly, g(·|η , α2, Z2)

represents a (1 − α2)% contamination with distant “outliers”. Our first main result of this

section is contained in the following theorem.

Theorem 3.8.1. Assume that the conditions of Theorem 3.4.1. hold. If T (F (·|Ξ, α, z) is

unique for all z, then

(i) T (F (·|Ξ, α, z) is a bounded continuous function of z such that

lim
z→∞

T (F (·|Ξ, α, z) = Ξ. (3.8.2)

Furthermore,

(ii)

lim
α→0

(T (F (·|Ξ, α, z) −Ξ)α−1 = RFT (z)

where

RFT (z) =




(I1(θ))−1[
∫
< UZ1(x)ψ1(x|θ)dx]

(I2(η))−1[
∫
< UZ2(x)ψ2(x|η)dx]


 .

Proof. Since α are fixed, let us denote, using the uniqueness of T (F (·|Ξ, α, z), the MHDF

by Ξz. To establish continuity, we need to show that

lim
z→∞

(Ξz) = Ξ. (3.8.3)

Suppose not then without loss of generality, by going to a subsequence if necessary, we may

assume

lim
Z→∞

Ξz = Ξ1. (3.8.4)
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Define

V HDz(t) =




2 − 2
∫
f1/2(x|t1)f

1/2(x|θ, α1, z1)dx

2 − 2
∫
g1/2(x|t2)g

1/2(x|η, α2, z2)dx


 . (3.8.5)

Define

Rz(t) =




(2 − 2
∫
f1/2(x|t1)[(1 − α1)

1/2f1/2(x|θ) + α
1/2
1 U1/2

z1
(x)]dx

(2 − 2
∫
g1/2(x|t2)[(1 − α2)

1/2g1/2(x|η) + α
1/2
2 U1/2

z2
(x)]dx.


 . (3.8.6)

Now, using our arguments in Theorem 3.5.1 we can conclude that

lim
z→∞

sup
t∈Θ

|Rz(t) − V HDz(t)| = 0. (3.8.7)

Now

lim
z→∞

V HDz(Ξ) = lim
z→∞

Rz(Ξ)

=




(1 − α1)
1/2
∫
f1/2(x|θ1)f

1/2(x|θ)dx

(1 − α2)
1/2
∫
g1/2(x|η1)g

1/2(x|η)dx




<




(1 − α1)
1/2

(1 − α2)
1/2




= lim
z→∞

V HDz(Ξ). (3.8.8)

Furthermore, since Ξz minimizes V HDz(Ξ)

lim
z→∞

V HDz(Ξz) ≤ lim
z→∞

V HDz(Ξ) (3.8.9)

which is a contradiction to (3.8.2). Thus, Ξ1 = Ξ.

Continuity of Ξz follows from the Hellinger continuity of the functional T while the

boundedness of Ξz follows from (3.8.2).

Remark 3.8.2. The functional T viewed as a function of z is called the α-influence curve.
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Graph 3.1: The following graph represents the α-influence curve with 20% contamination.
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Remark 3.8.3. Note that F (·|Ξ,α, z) models an experiment where the observations are

mixed with approximately α% gross errors located near z. The above theorem compare

T (F (·|Ξ,α, z)) with T (F (·|Ξ)) = Ξ.

Remark 3.8.4. The Graph 1 on the last page described the influence of z for the Hellinger

distance estimator. Note also that the graphs for various α’s change dramatically, implying

that the convergence of the α-influence curve need not be uniform in z. To contrast our

results with the MLE, we note that the α-influence curve of the MLE is unbounded since

|θ̂MLE,z| → ∞

as z → ∞. This can be seen from the Graph 2.

We now move on to describe the breakdown point of MHDE.

Theorem 3.8.5. Define

B̂ = supγ(Ξ|H). (3.8.10)

Assume that the MHDE lies to the interior of Θ. Let

B∗ = lim
z∗→∞

sup
z≥z∗

γ(Ξz|H). (3.8.11)

If

α < (B̂ − B∗) · (B̂ − B∗)′ · (1 + (B̂ − B∗) · (B̂ − B∗)′)−1 (3.8.12)

then there is no sequence of contaminated families of distributions such that

|T (Ξz) − T (Ξ)| → ∞ (3.8.13)

as z → ∞.

Proof. Assume that

|T (Ξz) − T (Ξ)| → ∞

as z → ∞. Then there exist sequences Ξn such that ||Ξn|| → ∞ and

γ(Ξn|Hn) > γ(Ξn|H)

for infinitely many n. Now
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Graph 3.2: The following graph represents the relative change in the estimator due to the

change in the contamination proportion. α is the percentage of contamination.
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γ(Ξn|H) ≥ ((1 − α)1/2) · B̂
′

(3.8.14)

and

γ(Ξn|Hn) ≤ ((1 − α)1/2) + α1/2. (3.8.15)

Furthermore,

γ(Ξn|Hn) ≤ B∗ + δ (3.8.16)

for some δ > 0. Hence it follows that

((1 − α)1/2) · B̂
′

≤ ((1 −α)1/2) · B∗ + α1/2 (3.8.17)

Remark 3.8.6. The above theorem provides the maximum amount of contamination that

is possible without making the MHDE to breakdown.

3.9 Simulation Results

In this section we deal with computation. Under the regularity condition for the Gaussian

data V HD(·) function is differentiable with respect to θ and η. Hence by partially differen-

tiating equation (3.3.6) with respect to θ and η, we obtain the estimating equations for θ

and η and setting them equal to 0. This leads to

∫ ∇f(x|θ)√
f(x|θ)

√
h1,n(x)dx = 0 (3.9.1)

and

∫ ∇g(x|η)√
g(x|η)

√
h2,n(x)dx = 0, (3.9.2)

where ∇f(x|θ) represents the partial derivative with respect to θ and ∇g(x|η) represents

the partial derivative with respect to η. Let us denote by s
1,θ(x) = (f(x|θ))1/2 and s2,η(x) =

(g(x|η))1/2. The estimation functions can be rewritten as:

∫
∇s

1,θ(x)(h1,n(x))
1/2dx = 0 (3.9.3)
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and

∫
∇s2,η(x)(h2,n(x))

1/2dx = 0, (3.9.4)

where ∇s
1,θ(x) represents the partial derivative with respect to θ and ∇s2,η(x) represents

the partial derivative with respect to η. Evaluating the solution to (3.9.3) and (3.9.4) yields

MHDE. We will describe a new algorithm called one step Monte Carlo approximation for

obtaining the MHDE in the following section.

3.9.1 Estimation of MHDE for the Normal Model

In this section we will introduce a new numerical method to solve equations (3.9.3) and

(3.9.4) for θ and η. Assuming fθ(x) to be the Normal distribution with mean µ and variance

σ2, we will describe the Newton-Raphson method and introduce a new algorithm ”one-step

Monte Carlo approximation method”.

Newton-Raphson Method

Beran (1977) applied the Newton-Raphson method for solving MHDE. Let us describe

the algorithm he carried out briefly. Let us focus on solving equation (3.9.3) now. In our case

θ = (µ, σ)′, so we can rewrite (3.9.3) as the following two equations:

∫
∇s(1)

µ,σ(x)(h1,n(x))
1/2dx = 0 (3.9.5)

and

∫
∇s(2)

µ,σ(x)(h1,n(x))
1/2dx = 0. (3.9.6)

We have two equations (3.9.5) and (3.9.6) and have to solve for two unknown parameters

(µ, σ)′. We can apply multi-variate Newton-Raphson method to obtain an iterative algorithm

as follows:


µ̂(k+1)

σ̂(k+1)


 =



µ̂(k)

σ̂(k)


 −DN



f1(θ

(k))

f2(θ
(k))


 . (3.9.7)
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Where DN is a matrix defined as follows:

DN =




∫
∇s(1,1)

µ,σ (x)(h1,n(x))
1/2dx

∫
∇s(1,2)

µ,σ (x)(h1,n(x))
1/2dx

∫
∇s(2,1)

µ,σ (x)(h1,n(x))
1/2dx

∫
∇s(2,2)

µ,σ (x)(h1,n(x))
1/2dx




−1

.

Following the standard procedure for iterative algorithm, we can use update formula (3.9.7)

to obtain the MHDE.

One Step Monte Carlo Approximation Method

Recall that from (3.2.7), finding the MHDE of θ is equivalent to finding the θ that

maximizes the following:

∫
(fθ(x))1/2(hi,n(x))

1/2dx =
∫
{

(fθ(x))1/2

(hi,n(x))1/2
}(hi,n(x))dx.

using strong law of large numbers, the above integral can be approximated by

1

M

M∑

j=1

(
fθ(yi,j)

hi,n(yi,j)
)1/2, (3.9.8)

where yi,j ∼ hi,n and M is the number of the Monte Carlo samples . We need to find the

value of θ that maximizes (3.9.8). When the underlying distribution of fθ is N(µ, σ2), (3.9.8)

becomes the following :

1

M

M∑

j=1

wi,j

4
√

2πσ2
exp(− 1

4σ2
(yi,j − µ)2), wi,j =

1√
hi,n(yi,j)

. (3.9.9)

Taking the partial derivative of (3.9.9) with respect to µ and σ2 and setting them to 0, we

obtain the following recursive equations for µ and σ2, viz.,

µ̂(m+1) =

∑M
j=1 wi,j exp(− 1

4σ̂2
(m)

(yi,j − µ̂(m))
2)yi,j

∑M
j=1 wi,j exp(− 1

4σ̂2
(m)

(yi,j − µ̂(m))2)
(3.9.10)

and

σ̂2
(m+1) =

∑M
j=1 wi,j exp(− 1

4σ̂2
(m)

(yi,j − µ̂(m))
2)(yi,j − µ̂(m))

2

∑M
j=1 wj exp(− 1

4σ̂2
(m)

(yi,j − µ̂(m))2)
. (3.9.11)

If the kernel K is a standard normal density, we have

hi,Ni(x) =
1

Nicn

Ni∑

l=1

K

{
x−Xi,ν(i,l)

cn

}
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=
1

Nicn

Ni∑

l=1

1√
2π

exp(−1

2
(
x−Xi,ν(i,l)

cn
)2)

=
1

Ni

Ni∑

l=1

1√
2πc2n

exp(−1

2
(
x−Xi,ν(i,l)

cn
)2)

=
1

Ni

Ni∑

l=1

φ(Xi,ν(i,l), c
2
n),

where φ is the normal density with mean equal to Xi,ν(i,l) and variance equal to c2n. Thus,

hi,n(x) is a mixture of normal densities with mixing proportion 1
Ni

. Therefore, in the first

step of the algorithm, we generate a random variable yi,j which has the distribution hi,n(x).

Note that in the update formulas (3.9.10) and (3.9.11), wi,j = 1√
hi,Ni

(yi,j)
which depends on

the choice of the kernel density K. When K is chosen to be standard normal density, we

have

wi,j =


 1

Nicn

Ni∑

l=1

1√
2π

exp(−1

2
(
yi,j −Xi,ν(i,l)

cn
)2)



−1/2

.

If K(·) were Epanechnikov kernel the weight reduces to

wi,j =


 1

Nicn

Ni∑

l=1

0.75(1 − (
yi,j −Xi,ν(i,l)

cn
)2)



−1/2

,

∣∣∣∣∣
yi,j −Xi,ν(i,l)

cn

∣∣∣∣∣ ≤ 1.

Evaluating wij for Epanechnikov Kernel:

We begin with the following claim that will help us evaluate Epanechnikov kernel.

Claim: Let U1, U2, U3 and U4 are i.i.d. uniform [0, 1] random variables, then for a > 1, U
1/a
1 U2

has density a
a−1

(1 − xa−1)I[0≤x≤1] also (−U1/a
3 )U4 has density

a

a− 1
(1 − xa−1)I[−1≤x≤0].

Proof. We first calculate the density function of U
1/a
1 U2. Consider the following:

P (U
1/a
1 U2 ≤ x) = E[P (U

1/a
1 U2 ≤ x|U2)]

= E{ x
a

Ua
2

I(U2≥x) + I(x>U2
}

= xaE[
1

Ua
2

I(U2≥x)] + P (U2 ≤ x)

= xa[
1

1 − a
− x1−a

1 − a
] + x.
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Differentiating the above equation with respect to x, we get the density for the above claim.

Similar argument will give the density function of (−U1/a
3 )U4, and hence the claim follows.

Remark 3.9.1 If a = 3 and randomly choosing between U1/3U2 and (−U1/3
3 )U4 with equal

probability, we obtain a random variable whose density is the Epanechikov density, i.e. if X

is a random variable defined by

X =





U1/3U2 with prob 1/2

−U1/3
3 U4 with prob 1/2

then the density of X is given by the Epanechikov density.

The one step Monte-Carlo approximation algorithm can be described as follows:

1. Generate random variables for each data point from the kernel density with mean

Xi,ν(i,k) and variance c2n. Choose one of then with equal probability ( 1
Ni

) and retain it.

Repeat M times. Using the initial values for µ and σ, viz., µ̂(0) =median{Xi,ν(i,l)} and

σ̂(0) = (0.674−1)median{|Xi,ν(i,l) − µ̂(0)|}.

2. Obtain the updates using (3.9.10) and (3.9.11).

3. When |µ̂(m+1) − µ̂(m)| < ε and |σ̂(m+1) − σ̂(m)| < ε for small ε, say 10−6 then stop; else

go to step 2.

We will present simulation results which were carried out using SAS software. The simu-

lations compares the efficiency between MHDE and MLE with outlier, and incorporating the

randomized play the winner design with two treatments. We start with an urn containing 5

ball of each type and assume treatment A has success probability p1 and treatment B has

success probability p2. Let N0
1 denote the number of type A balls in the urn at the beginning

of the trial and N0
2 denotes the number of type B balls in the urn at the beginning of the

trial. Let N i
1 and N i

2 denote the number of type A and B ball, after the ith patient’s response

is observed and the urn has been updated. The simulation procedure works as follows:

1. Generate a uniform(0,1) random variable, say u1.
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2. If u1 >
N i

1

(N i
1+N i

2)
, assign patient (i+ 1)th to treatment B and generate a N(5,3) random

variable, representing the secondary variable. Otherwise, assign patient to treatment

A and generate a N(0,1) random variable, representing the secondary variable.

3. Generate a uniform(0,1) random variable, say u2. If the treatment assignment in step

2 is A and u2 < P1, then call this treatment a success, and add one type A ball to the

urn. Otherwise, add a type B ball. If the treatment assignment in step 2 is B, we will

update the urn similarly.

4. Repeat steps 1, 2 and 3 for 30 times to represent a sample of size 30.

5. Calculate MHDE and MLE for both treatments.

6. Repeat the above steps 1000 times.

To illustrate the robustness property of the MHDE, we will change some of the treatment

A’s secondary variable to outliers; say a N(2,1) random variable. We obtain the proportion

of times that MHDE and MLE fall in the true confidence interval; i.e. for treatment A, the

true confidence interval is (0 − 1.96 1√
N1
, 0 + 1.96 1√

N1
), where N1 is the number of patients

allocated to treatment A ; similarly for treatment B. Table 3.1 contains the results assuming

p1 = p2 = 0.5. The numbers in the bold font represent the cases that the proportion of times

that MHDE falling into true confidence interval is higher than MLE. From Table 3.1, we

can see that as the values of the outliers become larger, the probability of MLE falling into

the true confidence interval is much smaller than MHDE. Increasing the number of outliers

make the situation even worse.

Instead of assuming p1 = p2 = 0.5, the next simulation assumes p1 = 0.8 and p2 = 0.2, which

means treatment A has a higher success probability than treatment B. Table 3.2 contains the

results. From Table 3.2, we notice that the effect of outliers is similar to Table 3.1, there is a

decreasing in the proportion of data which contains outliers for MLE. Due to more patients

being assigned to treatment A, the results in Table 3.2 are not as dramatic as in Table 3.1.
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Table 3.1: Results for the RPWD. The probability that the MHDE and MLE fall in the

true confidence intervals with outlier from treatment A. The number of outlier equals 1, 2

and 3 with scale from N(2,1) to N(6,1). Significant level=0.05, N1(0) = N2(0) = 5, α = 1,

n = 30, 1000 simulations and p1 = p2 = 0.5

outlier N(2,1) N(3,1) N(4,1) N(5,1) N(6,1)

A B A B A B A B A B

1 MHDE 0.893 0.932 0.895 0.945 0.895 0.934 0.912 0.940 0.923 0.935

MLE 0.923 0.936 0.876 0.954 0.816 0.944 0.727 0.938 0.661 0.940

2 MHDE 0.795 0.942 0.751 0.926 0.740 0.949 0.809 0.941 0.878 0.930

MLE 0.792 0.947 0.669 0.942 0.447 0.953 0.293 0.957 0.135 0.935

3 MHDE 0.671 0.924 0.482 0.937 0.391 0.936 0.523 0.952 0.621 0.940

MLE 0.639 0.934 0.374 0.940 0.130 0.943 0.040 0.963 0.005 0.953

Table 3.2: Results for the RPWD. The probability that the MHDE and MLE fall in the

true confidence intervals with outlier from treatment A. The number of outlier equals 1, 2

and 3 with scale from N(2,1) to N(6,1). Significant level=0.05, N1(0) = N2(0) = 5, α = 1,

n = 30, 1000 simulations and p1 = 0.8, p2 = 0.5

outlier N(2,1) N(3,1) N(4,1) N(5,1) N(6,1)

A B A B A B A B A B

1 MHDE 0.947 0.931 0.909 0.949 0.890 0.932 0.923 0.927 0.932 0.935

MLE 0.9410.942 0.905 0.955 0.854 0.948 0.790 0.949 0.741 0.943

2 MHDE 0.877 0.927 0.836 0.945 0.816 0.937 0.845 0.942 0.908 0.922

MLE 0.876 0.953 0.771 0.951 0.571 0.954 0.386 0.956 0.211 0.943

3 MHDE 0.747 0.923 0.561 0.932 0.585 0.939 0.918 0.930 0.925 0.926

MLE 0.730 0.933 0.422 0.948 0.232 0.954 0.786 0.952 0.697 0.948
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3.10 Data Analysis

In this section, we will provide a robust and efficient data analysis for the Fluoxetine trial

data that was introduced in the chapter 1. We obtain the MHDE and MLE of the primary

outcome, the difference of HAMD17 between baseline and final visit for all four strata . The

data are provided in chapter 1.

As we can see the from the following table, due to the robustness property of MHDE, the

standard deviation estimators are much smaller than the one from the MLE. Also we can

have a better idea about the performance of the treatments in different groups by comparing

the mean using the MHDE. The absolute change in HAMD17 between the baseline and final

visits seem to be substantially higher for treatment 1 than treatment 0 and the change is

more pronounced in strata 1 than in strata 0.

In the next chapter we will provide robust semi-parametric confidence intervals for these

parameters using the bootstrap methodology.

Table 3.3: Analysis results for the Fluoxetine trial data

Strata Strata=1 Strata=1 Strata=0 Strata=0

Treatment=1 Treatment=0 Treatment=1 Treatment=0

MHDE -10.88 (5.04) -3.92 (5.73) -10.14 (6.51) -9.59 (5.96)

MLE -11.20 (5.97) -5.71 (7.68) -10.81 (7.13) -8.62 (6.88)

3.11 Concluding Comments

In this chapter we introduced MHDE for RPWD. We studied the robustness and asymp-

totic properties of our estimates. Our estimates were fully efficient at the true model and

possessed a stability property. The breakdown point of out estimates were found to be 1/2.

Further work on developing robust goodness of fit procedures is being investigated.
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SAS Macro

**********************************************************************

This SAS macro implementing the one step Monte-Carlo approximation

method for calculating the Minimum Hellinger Distance Estimator.

One can just creat a SAS data set with name one and variable name

x to prosecute this program and obtain the Minimum Hellinger Distance

Estimator of mean and standard deviation for variable x.

*********************************************************************;

options nodate pageno=1 formdlim=-;

%let cn=0.7; *the bandwidth;

data yvar;

x=.;

xx=.;

run;

proc means data=one noprint;

var x;

output out=oneout n=n;

run;

data oneout;

set oneout;

call symput(’n’,n);

run;

%macro one;

%do i=1 %to 500;

data two;

set one;

u1=ranuni(0);
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u2=ranuni(0);

u3=ranuni(0);

u4=ranuni(0);

a=u1**(1/3)*u2;

b=-(u3**(1/3)*u4);

u=ranuni(0);

if u > 0.5 then y=a;

else y=b;

xx=&cn*y+x;

keep x xx;

run;

data three;

choice=ceil(ranuni(0)*&n);

set two point=choice;

output;

stop;

run;

proc append base=yvar data=three;

run;

%end;

%mend;

%one;

data one1;

set one;

do i=1 to 500;

xxx=x;

output;
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end;

keep i x;

run;

proc sort data=one1;

by i;

run;

data yvar;

set yvar ;

if xx=. then delete;

run;

data yvar1;

set yvar;

do j=1 to &n;

y=xx;

output;

end;

keep y;

run;

data one2;

merge yvar1 one1;

run;

data one3;

set one2;

k=((y-x)/&cn);

g=(3/4)*(1-k**2);

if abs(k)> 1 then g=0;

else g=g;
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run;

proc means data=one3 noprint;

by i;

var g;

output out=one4 sum=sum;

run;

data one5;

merge yvar one4;

keep xx sum;

run;

data one5;

set one5;

gn=sum/(&n*&cn);

run;

proc means data=one noprint;

var x;

output out=oone mean=mean median=mu max=max std=std min=min;

run;

proc transpose data=oone out=otwo;

run;

data three;

set otwo;

do i=1 to &n;

z= name ;

end;

run;

data three;
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set three;

if z=”mu”;

keep col1 z;

run;

data three;

set three;

do j=1 to &n;

y=col1;

output;

end;

run;

data four;

merge one three;

keep x y;

run;

data four;

set four;

z=abs(x-y)/0.674;

run;

proc means data=four noprint;

var z;

output out=ofour median=sn;

run;

%macro two;

data one6;

set one5;

num1=(1/sqrt(gn))*exp(-(1/(4*&sn**2))*(xx-&mu)**2)*xx;
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dem=(1/sqrt(gn))*exp(-(1/(4*&sn**2))*(xx-&mu)**2);

num2=(1/sqrt(gn))*exp(-(1/(4*&sn**2))*(xx-&mu)**2)*(xx-&mu)**2;

run;

proc means data=one6 noprint;

var num1 dem num2;

output out=one7 sum=num1 dem num2;

run;

data one8;

set one7;

muhat=num1/dem;

snhat=sqrt(num2/dem);

run;

data start;

merge one8 start;

delta1=&mu-muhat;

delta2=&sn-snhat;

keep delta1 delta2 muhat snhat o;

run;

data start;

set start;

mu=muhat;

sn=snhat;

keep delta1 delta2 mu sn o;

run;

data start;

set start;

call symput(’sn’,sn);
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call symput(’mu’,mu);

output;

run;

%mend;

%macro update;

%two;

data start;

set start;

if (abs(delta1) le 0.000001 and abs(delta2) le 0.000001) then o=1;

else o=0;

call symput(’o’,o);

run;

%mend update;

%macro three;

data start ;

merge oone ofour;

keep mu sn;

run;

data start ;

set start;

call symput(’sn’,sn);

call symput(’mu’,mu);

run;

%update;

%do i=1 %to 30;

%if (&o=1)%then %goto exit;

%if (&o=0) %then %goto update;
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%update:

%update;

%end;

data start;

set start;

o=symget(&o);

run;

%exit;

%mend;

%three;

proc print data=start;

run;
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Chapter 4

Bootstrap Confidence Intervals for Minimum Hellinger Distance Estimators

4.1 Introduction

In the previous chapter, we introduced the MHDE for the randomized play the winner

design. We developed the asymptotic theory and showed that one can construct confidence

intervals using the limiting asymptotic distribution. From our results in the previous chapter,

we observed that the limiting covariance matrix is independent of the design. However from

the point of view of prediction, it will be important to incorporate the design features in the

analysis especially in a small sample setting. To remedy this issue, we propose a bootstrap

approach for constructing the confidence intervals for the parameters. As can be seen from our

simulation results, we notice that the proposed bootstrap procedure produces approximately

correct sized confidence intervals with smaller length compared to the results from the large

sample theory.

The bootstrap procedure suggested here is a modification of the available parametric

bootstrap theory for the i.i.d. data and involves bootstrapping of the design. Bootstrapping

of the design for estimating the design related parameters has been investigated by Rosen-

berger and Hu (1999). Incidentally, no work has been performed to study the confidence

intervals for the design parameters. We address this in this chapter. The parametric boot-

strap methodology for i.i.d. data has a long history, as can be seen from the works of Efron

(1985) and Diciccio and Romano (1988). The robustness aspects of such a theory has not

been investigated thus far. In the next section, we develop the notations and methodology

parametric for the bootstrap of i.i.d. data using MHDE and study the properties of the

resulting estimators. In section 3 we develop the parametric bootstrap procedure for data

73
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from RPWD and in section 4 we study their properties. Section 5 is devoted to our sim-

ulation results. In the rest of the chapter, we will assume the appropriate conditions from

chapter 3 hold.

4.2 Parametric Bootstrap for i.i.d. data using MHDE

Let {Xn, n ≥ 1} be i.i.d. with density f(x|θ), θ ∈ Θ ⊂ <p. Let θn be the MHDE of θ

based on the estimate of the density gn, viz.

θn = arg min
θ∈Θ

HD2(f(·|θ), gn). (4.2.1)

The parametric bootstrap technique involves obtaining i.i.d. random variables {X ∗
i , 1 ≤ i ≤

n} where

X ∗
i ∼ f(x|θn). (4.2.2)

The bootstrap version of the density estimator using {X ∗
1 , . . . ,X ∗

n} is given by

h∗n(x) =
1

ncn

n∑

i=1

K(
x−X ∗

i

cn
) (4.2.3)

where K(·) is a bounded density.

Remark 4.2.1 Note that cn is not changed into c∗n. h∗n(·) has been used previously by Hall

et. al (1992) to find an optimal bandwidth in density estimation problem. Our goals here are

however different.

The bootstrap version of the MHDE denoted by (BMHDE) is given by

θ∗
n = arg min

θ∈Θ
HD2(f(x|θ), h∗n).

Using conditions of Theorem 3.4.1, θ∗
n exists and is unique. Using the results from Chapter

3, to prove the consistency of θ∗
n, we need to establish the L1-consistency of h∗n(·). We study

various strong convergence theorems concerning h∗n(·) in our next section. The proofs of the

strong consistency are based on a version of strong law of large numbers due to Chung (1974)

and has also been used by Bozorgnia et. al (1997).
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4.3 L1-Convergence of Bootstrapped versions of Kernel Density Estimators for

i.i.d. Data

In this section, we establish the strong pointwise consistency and strong L1 consistency

of h∗n(·) defined in (4.2.3). We first state the following law of large numbers due to Chung

for array of i.i.d. random variables

Theorem 4.3.1. Let {xn,i} be an array of rowwise independent random variables. Let

Ψ : R → R+ satisfying Ψ(t) is even and continuous such that (|t|rΨ(|t|) is non-decreasing

and t−r+δΨ(t) is non-increasing. Assume that EXn,i = 0 for all i and n and that

∑

n≥1

n∑

i=1

(Ψ(an))
−1E(Ψ(|xn,i|)) <∞

and
∑

n≥1

[
n∑

i=1

E
(∣∣∣∣
xn,i

an

∣∣∣∣
p)]kr

<∞

for some 1 < p ≤ 2 and some positive integer k. Then

lim
n→∞

a−1
n

n∑

i=1

xn,i = 0 a.s.

Our next theorem establishes the strong pointwise consistency and strong L1-consistency.

Theorem 4.3.2. Assume cn → 0, ncn → ∞ as n→ ∞ Then, for almost all x (with respect

to the Lebesgue measure)

lim
n→∞

h∗n(x) = f(x|θ). a.s. (4.3.1)

Furthermore,

lim
n→∞

∫

<
|h∗n(x)− f(x|θ)|dx = 0. (4.3.2)

Proof. Fix an x in a set of positive Lebesgue measure and note that

|h∗n(x) − f(x|θ)| ≤ |h∗n(x) − hn(x)| + |hn(x) − f(x|θ). (4.3.3)

From Theorem 1 of Devroy (1987), the second term on the RHS of (4.3.3) converges to 0 as

n→ ∞. Thus we only have to establish the convergence of the first term to 0 as n→ ∞. As
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for the first term, note first that K(·) is bounded also

|h∗n(x) − hn(x)| ≤ |h∗n(x)− E∗h∗n(x)| + |E∗h∗n(x) − hn(x)|.

Now applying theorem 4.3.1 with Ψ(t) = |t|5 and r = 5 and an = ncn, it follows that the

first term converges to 0 a.s. as n→ ∞. The convergence of the second last term to 0 follows

from law of large numbers for double arrays of random variables. Finally (4.3.3) follows using

Glick’s theorem.

4.4 Strong Consistency of BMHDE

In this section we prove the consistency of BMHDE.

Theorem 4.4.1. θ̂BMHDE is a strongly consistent estimator of θ0.

Proof. From Theorem 4.3.2, h∗n is a strongly L1−consistent estimator of f(x|θ0). Hence by

Theorem 3.6.1, T (h∗n) converges to θ0 with probability one as n→ ∞.

Let {θ∗
n(j), j = 1, . . . , B} denote BMHDE based on B bootstrap samples. One can then

combine these bootstrap estimates to obtain an approximation to the sampling density of

θn, using an(x) the following bootstrap kernel density estimator, viz.

a∗n,B(x) =
1

BcB

B∑

j=1

K

(
x− θ∗

n(j)

cB

)
(4.4.1)

where K(·) is a p-dimensional kernel density. Note that by Devroye’s Theorem 1, as B → ∞,

a∗n,B(x) → a∗n(x) (4.4.2)

and
∫

|a∗n,B(x) − a∗n(x)| → 0. (4.4.3)

4.5 BMHDE for RPWD

In this section we define the BMHDE for RPWD and establish the consistency of the

BMHDE. In the process we will also establish the strong L1-consistency of our bootstrap

versions of the density estimators.
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Resampling of data in the context of RPWD has not been investigated in the literature.

We begin with the methodology for bootstrapping data from RPWD. Let pi(qi), i = 1, 2

denote the estimates probability of success (failure) on treatments 1 and 2 respectively based

on n observations. Note that

p̂i(n) =
1

Ni(n)

n∑

j=1

XjIj,i, i = 1, 2.

We first generate the design using the initial urn composition for the data and success prob-

ability vector (p̂1(n), p̂2(n)). Let {T ∗
k (j), k ≥ 1} denote the collection of treatment indicators

for the jth bootstrap sample. Now, given {T ∗
i , 1 ≤ i ≤ n} we associate x bootstrap response

X ∗
1 where

X ∗
i ∼





f(·|θn) if T ∗
i = 1

g(·|ηn) if T ∗
i = 2.

(4.5.1)

Let us denote by H∗
n = (f(·|θn), g(·|ηn))

′.

Let us denote by ν∗(i, j) the index of the jth patient receiving the ith treatment in the

bootstrap sample. Then the data from the bootstrap is given by {X∗
i, ν∗(i,j), j ∈ A∗

n(i), i =

1, 2}, where

A∗
n(i) = {1 ≤ j ≤ n|T ∗

j = i}. (4.5.2)

Let

A∗(i) = {j|T ∗
j = i}.

We now state an extension of Melfi’s Theorem under our bootstrap setting.

Theorem 4.5.1. {X ∗
i,ν∗(i,j), j ∈ A∗

(i)} are i.i.d. with distribution h∗n,i where h∗n,i is the ith

component of H∗
n.

Proof. The proof follows exactly as in Melfi and Page(2000) by conditioning on the treat-

ment assignment and appealing to Kolmogorov’s consistency theorem.

Now, following analogous arguments as in Chapter 3, we define the BMHDE of Ξ based

on the jth bootstrap sample to be

Ξ∗
n(j) = arg min

Ξ∈Θ
V HD(F (·|Ξ),H∗

n) (4.5.3)
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where

H∗
n = (h∗n,1(·), h∗n,2(·)). (4.5.4)

Note that

h∗n,i(x) =
1

N∗
i cn

∑

j∈A∗
n(i)

K

(
x−X ∗

i,ν∗(i,j)

cn

)
. (4.5.5)

Our next theorem describes the existence and uniqueness of BMHDE for RPWD. The proof

is similar to the proof of Theorem 3.4.1 and hence is omitted.

Theorem 4.5.2. Under the conditions of Theorem 3.4.1, Ξ∗
n(j) exists and is unique.

We next turn to study the consistency of our BMHDE. From Theorem 3.6.1 we know that

this depends on the strong L1-consistency of h∗n,i(·), i = 1, 2. Our next theorem addresses

this issue.

Theorem 4.5.3. Assume that cn → 0 and ncn → ∞ as n → ∞. Then h∗n,i(x)
a.s.−→ hi(x),

i = 1, 2 where hi(x) is the ith component of H(x) = (h1(x), h2(x)). Furthermore,

lim
n→∞

∫
|h∗n,i(x) −Hi(x)|dx = 0 a.s.. (4.5.6)

Proof. As in Theorem 4.3.1,

|h∗n,i(x) − hi(x)| ≤ |h∗n,i(x) − hn,i(x)| + |hn,i(x) − hi(x)|. (4.5.7)

The second term on the RHS of (4.5.7) converges to 0 by Theorem 3.6.1. The first term

converges to 0 by Theorem 4.3.1 as in the proof of theorem 4.3.2..

These results along with theorem 3.6.1 yield the following consistency theorem of BMHDE.

We omit the proof.

Theorem 4.5.4. Under the condition of Theorem 3.4.1, BMHDE defined in (4.5.3) is a

strongly consistent for Ξ0.

4.6 Simulation Results Using the Bootstrap

In chapter 3 we constructed the confidence interval for the parameters using the asymp-

totic theory. However, the asymptotic results do not reflect the design. This is due to the fact
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that the design is ancillary to the inference. In small samples, this could lead to erroneous

inference(Bai, Hu and Rosenberger (2002) and Rosenberger, Flournoy and Durham (1997)).

In this section, we will use the bootstrap methodology developed in previous section to

construct accurate and robust confidence intervals. We will also construct the asymptotic

confidence intervals and through simulations to compare these results. We will assume a

normal model for the responses.

4.6.1 Bootstrap Procedure for Randomized Play the Winner Design

All of our results are based on 2000 simulations with 1000 bootstrap samples per simula-

tion. All simulations were carried out on the super computer sp2 with eight processors. All

the programming was preformed in Fortran 90 language. We being with the algorithm for

implementing the bootstrap procedure described in the previous section.

Algorithm

1. Obtain the success probability of treatment 1 and 2 from the data set; say p̂1 and p̂2

and the estimates of the mean and variance; say (µ̂1, σ̂
2
1) and (µ̂2, σ̂

2
2).

2. We start the procedure with an urn containing one balls of type 1 and one balls of type

2 corresponding to treatments 1 and 2 respectively. For example, if a type i ball has

been drawn, then assign a response by generating N(µ̂i, σ̂
2
i ) and simulate treatment

outcome by p̂i. If the outcome is a success on treatment i or a failure on treatment

3− i, then update the urn by adding 1 type i balls to the urn. Repeat this process for

30 subjects.

3. Obtain the MHDE of (µ̂1, σ̂
2
1) and (µ̂2, σ̂

2
2) for the data generated in step 2.

4. Repeat steps 2 and 3 for 1000 times, yielding 1000 bootstrap estimates,

µ∗
1,1, µ

∗
1,2, · · · , µ∗

1,1000, and σ∗
1,1, σ

∗
1,2, · · · , σ∗

1,1000

µ∗
2,1, µ

∗
2,2, · · · , µ∗

2,1000, and σ∗
2,1, σ

∗
2,2, · · · , σ∗

2,1000
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5. The 95% Bootstrap confidence interval for µ1 is (L,U), where U is the 97.5% percentile

of µ∗
1,i’s and L is the 2.5% percentile of µ∗

2,i’s. The 95% confidence interval for µ2 is

obtained similarly

6. Perform step 4 and 5 for σ2
1 and σ2

2.

We will study the effect of bootstrapping using the MHDE and compare it against boot-

strapping using MLE. We investigate four different cases:

I1 MHDE-MHDE: The parameters in the model for the original data were estimated

using MHDE. Parameters in the model for the bootstrap samples were estimated using

MHDE.

I2 MHDE-MLE: The parameters in the model for the original data were estimated using

MHDE. Parameters in the model for the bootstrap samples were estimated using MLE.

I3 MLE-MHDE: The parameters in the model for the original data were estimated using

MLE. Parameters in the model for the bootstrap samples were estimated using MHDE.

I4 MLE-MLE: The parameters in the model for the original data were estimated using

MLE. Parameters in the model for the bootstrap samples were estimated using MLE.

Data from treatment 1 has one contamination with data from N(6, 1) while treatment 2

data has no contamination. We study various choices of p1 and p2. From Table 4.1, it follows

that MHDE-MHDE is always superior to MHDE-MLE in the sense of coverage probability.

Also MLE-MHDE is always superior to MLE-MLE. When p1 = 0.77 and p2 = 0.75 the

coverage rates are significantly smaller than p1 = 0.75 and p2 = 0.75 or p1 = 0.8 and

p2 = 0.7 for all four cases, which is an interesting new phenomenon. This could possibly be

attributed to theorem 2.4.3. Further analysis needed is to characterize this phenomenon.

We conclude that bootstrap method confidence interval provide a moderate coverage

probability while maintain a short confidence interval length.
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Graph 4.1 contains the bootstrap sample kernel density estimator with respect to four

different cases of bootstrapping mentioned above. We can see that due to the effect of outlier,

the shape of the density estimators of MLE-MHDE and MLE-MLE are no longer symmetric.

Furthermore, the center of the estimates are far from the true mean 0 compare to MHDE-

MHDE and MHDE-MLE. We can also see that the if we use MHDE to calculate the original

data (MHDE-MHDE and MHDE-MLE), then do the bootstrapping, the estimates are almost

center at 0 and have a symmetric curve. MHDE-MHDE is more robust compare to MHDE-

MLE, since MHDE-MHDE has lower peak. Therefore, through this simulation study, we can

conclude that the bootstrap density estimator using MHDE of continuous variable have a

better approximation to the true density function of that variable.

4.7 Computational Issues

All the statistical algorithms that were developed in this dissertation have an a compa-

nying SAS macros. One of the difficulties that we encountered is that some of the compu-

tations were time consuming since the Monte-Carlo method we proposed in section 3.9.1

required us to generate enormous amounts of random variables. Thus to construct one boot-

strap confidence interval using SAS(well optimized) in SAS macro, it takes sixteen hours.

It is almost impossible to do a full simulation study using SAS for this scenario. There-

fore we adopted a parallel programming approach using Fortran 90 to make this project

feasible. Under the parallel computing environment, it took 2.5 minutes to construct one

bootstrap confidence interval. The conversion from Fortran 90 to parallel computing envi-

ronment involves understanding message-passing interface (MPI).This is well described in

Gropp and Skjellum (1999).
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Table 4.1. Results for the coverage probability rates for true mean (treatment 1 has true

mean 0 and treatment 2 has true mean 5) (µ) and the average confidence interval length

(L) for bootstrap confidence interval (1 and 2) and asymptotic confidence interval (1∗ and

2∗) under 0.05 significant level. N1(0) = N2(0) = 1, α = 1, n = 30, 2000 simulations and

B=1000.I1, I2, I3, I4 are as defined.

p1 1 2 1∗ 2∗

p2

0.5 I1 µ(L) 0.8622(1.7921) 0.8778(1.6904) 0.9233(2.8780) 0.9373(2.5283)

0.5 I2 µ(L) 0.8371(1.6483) 0.8594(1.5641)

I3 µ(L) 0.9615(2.6910) 0.9347(1.9273) 0.9994(5.9541) 0.9787(3.2315)

I4 µ(L) 0.9381(2.4001) 0.9219(1.7671)

0.75 I1 µ(L) 0.8474(1.9583) 0.8700(1.8100) 0.9088(3.3008) 0.9105(2.5812)

0.75 I2 µ(L) 0.8174(1.7798) 0.8532(1.6599)

I3 µ(L) 0.9480(2.9918) 0.9276(2.0744) 0.9920(7.0656) 0.9704(3.3820)

I4 µ(L) 0.9203(2.6378) 0.9169(1.8831)

0.77 I1 µ(L) 0.8157(1.8298) 0.7965(1.7028) 0.9208(3.2569) 0.9191(2.6600)

0.75 I2 µ(L) 0.7930(1.6616) 0.7837(1.5589)

I3 µ(L) 0.9294(2.7312) 0.8571(1.9905) 0.9982(6.6728) 0.9692(3.5447)

I4 µ(L) 0.9020(2.4032) 0.8426(1.7972)

0.8 I1 µ(L) 0.8630(1.8232) 0.8709(1.9337) 0.9214(3.0818) 0.9055(2.7013)

0.7 I2 µ(L) 0.8323(1.6697) 0.8550(1.7642)

I3 µ(L) 0.9545(2.7192) 0.9284(2.2449) 0.9960(6.3387) 0.9562(3.5628)

I4 µ(L) 0.9323(2.4187) 0.9147(2.0247)

0.9 I1 µ(L) 0.8691(1.9212) 0.8528(2.0102) 0.9114(3.4663) 0.8837(2.7354)

0.8 I2 µ(L) 0.8406(1.7496) 0.8348(1.8297)

I3 µ(L) 0.9465(2.8243) 0.9279(2.3735) 0.9970(6.7813) 0.9575(3.7917)

I4 µ(L) 0.9261(2.5039) 0.9133(2.1321)
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Graph 4.1: The kernel density estimators for the bootstrap samples with respect to four

different methods.
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4.8 Data Analysis

In this section, we will continue the data analysis for the Fluoxetine Trial data from

Chapter 3. We will use the bootstrap method that is described in this chapter to construct

confidence intervals for the data that provided in Chapter 1.

Table 4.2 presents the confidence intervals for the mean parameters of the Fluoxetine

trial data. Note that in strata 1, the confidence interval obtained by MHDE do not overlap,

showing that there could be a treatment effect in strata 1. This is further confirmed using

the parametric bootstrap using MHDE. Note that the results from asymptotic theory could

be suspect since the number of observations is less than 20 in each treatment group.

Table 4.2: Analysis results for the Fluoxetine trial data.

Strata Strata=1 Strata=1 Strata=0 Strata=0

Treatment=1 Treatment=0 Treatment=1 Treatment=0

Asy. CI by MHDE (-13.09, -8.67) (-6.37, -1.47) (-12.92, -7.36) (-12.14, -7.04)

Length (4.42) (4.9) (5.56) (5.1)

Asy. CI by MLE (-13.82, -8.58) (-8.99, -2.48) (-13.86, -7.76) (-11.56, -5.68)

Length (5.24) (6.51) (6.1) (5.88)

Para. bootstrap(MHDE) (-13.16, -8.63) (-7.11, -0.1) (-13.48, -7.04) (-12.78, -6.31)

Length (4.53) (7.01) (6.44) (6.47)

Para. bootstrap(MLE) (-14.13, -8.63) (-9.99, -1.34) (-13.66, -6.53) (-12.63, -4.92)

Length (5.5) (8.65) (7.13) (7.71)

4.9 Concluding Remarks

In this chapter we developed the bootstrap based methodology using the MHDE for

RPWD data. Using our methodology, we were able to detect and confirm a treatment effect

in Fluoxetine Trial data which was not detected using the MLE technique. We should note
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that this treatment effect was also suggested in the work of Tamura et. al (1994) but was

not considered by FDA due to the suspicious methodology was used.

Results in our dissertation establish a robust and full efficient methodology for analyzing

data from RPWD. Our methods have a potential for application to other response adaptive

trials and will be studied in our future work.
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Chapter 5

Future Research Directions.

In this chapter, we will describe some questions that arise naturally from the thesis. In

Chapter 2, we described a new methodology, namely kernel smoothing of bootstrap samples,

to construct confidence intervals for success probabilities. The theoretical properties of such a

methodology in the context of response adaptive designs has not been previously investigated

in the literature. We propose to study this problem in the future.

Obtaining confidence intervals for the Qi(the asymptotic allocation proportion) is a very

difficult and a challenging problem. A unified methodology for constructing confidence inter-

vals for Qi(independent of the value of δ) is an important problem.

In chapter 3, we developed the MHDE for RPWD. A key assumption that we used in

our study was the independence of the response and the randomization variables. While in

the Eli-Lilly trial the randomization was independent of the response variable, this may not

be the case in general. A new research topic involves modeling this dependence using latent

variables and then developing inferential methodology. A technique to address this problem

involves modelling using mixtures.

Developing robust testing methodology along the lines of the Hellinger deviance test and

extending the methods of this dissertation to other response adaptive designs such as the

”drop-the-loser” rule is an important problem that is worth pursuing.
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