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Introduction

The motivating problem for my work is to show that the Tate-Shafarevich group

of an elliptic curve can have arbitrarily many elements of order `, for any prime `,

and to find methods for constructing elements of a given order. One could pose this

problem for elliptic curves over Q or over a number field K. The Tate-Shafarevich

group of an elliptic curve over a number field K is a cohomological obstruction,

measuring the extent to which our standard method for determining the set of K-

rational points fails. An alternative description of the Tate-Shafarevich group of E

over K is that it classifies curves whose Jacobian is E, that have points over all

completions of K but no points over K itself.

For an elliptic curve E with coefficients in a number field K, Mordell and Weil

proved that the set of points with coordinates in K form a finitely generated sub-

group E(K). There is still no known algorithm to determine generators for E(K).

The standard approach to computing E(K) is a twentieth century version of the

method of descent invented by Fermat. For him, to solve a Diophantine equation

by descent meant to show that each solution in integers leads to a smaller integer

solution to a related equation, eventually leading to solutions small enough to be

found by hand. For a modern arithmetic geometer to determine E(K) by descent,

she first chooses an integer `, and isogeny φ : E → E ′ of degree ` to another elliptic

curve. There is then an exact sequence of finite groups

0 → E ′(K)/φE(K) → Selφ(E,K) → X(E,K)[φ] → 0

where the middle group is the ‘Selmer group’ for φ over K and X(E,K) is the

Tate-Shafarevich group of E over K. In principle there is a method to determine

1
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Selφ(E,K) but it is an open problem to give a method for identifying the image

of E ′(K)/φE(K) inside it. Calculating Selφ(E,K) involves local calculations (in

completions Kv of K); basically one has to calculate E ′(Kv)/φE(Kv) for each place

v of K. There is also a geometric interpretation of the exact sequence, under which

elements of Selφ(E,K) are curves whose Jacobian is E, and which have Kv-rational

points for all v. Deciding whether an element is in the image of E ′(K)/φE(K) is

equivalent to deciding whether the corresponding curve has a K-rational point. Thus

X(E,K) measures the obstruction to a local global principle. However the geometric

interpretation is used only occasionally in this thesis. All this material is explained

in detail in chapter one.

The Tate-Shafarevich group is shrouded in mystery. It is conjectured to be finite,

for all E and K. While it is clear from the exact sequence that X(E,K)[`] is finite

for all `, the conjecture is very hard to verify even for a fixed elliptic curve. And it

would be almost as hard to verify that a given element in a given X(E,K) is not

infinitely divisible in the group. No example of a Tate-Shafarevich group had been

calculated (provably) until the mid 1980s, when Karl Rubin made the breakthrough.

Now X(E,Q) can be computed for many elliptic curves by Kolyvagin’s method

(the proof of which rests on, among other things, the fact that elliptic curves over Q

are modular, proved by Wiles, Taylor, Breuil, Conrad and Diamond). The quest for

better information about Tate-Shafarevich groups is a focal point of current research

in arithmetic geometry, and perhaps the strongest motivation is the conjecture of

Birch and Swinnerton-Dyer. The order of X(E,K) appears in the strong form of

their conjecture, which bears a clear analogy to the class number formula under

which the Tate-Shafarevich group corresponds to the class group.

Given the difficulty of getting solid information about X, researchers take an

active interest in Selmer groups too. There is work on their sizes, sometimes on

average, and on how to best compute them. In this thesis we primarily study Selmer
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groups, as a means for finding interesting Tate-Shafarevich groups. There are basi-

cally two ways to detect nontrivial elements in X, and both involve comparing two

different Selmer groups. The first is to use ‘second descent’, and this approach is

illustrated in Section 1.4. The other idea is simply to do descent with two separate

isogenies defined on E, say

E
[2]−−−→ E and E

[`]−−−→ E .

One bounds Sel(2)(E,K), thereby bounding the number of generators in E(K) (since

the torsion is bounded anyway). If Sel(`)(E,K) turns out to be bigger than that

bound then some of its elements must map to nontrivial elements of X(E,K)[`].

This is roughly our strategy in chapter 5, which presents a method for producing

7-torsion elements in the Tate-Shafarevich groups of curves over quadratic fields. In

order to calculate the Selmer groups we choose to use isogenies of prime degree, even

though this severely restricts which curves, and which values of `, we can consider.

(Just as Mazur’s and Kamienny’s theorems limit the possible orders of K-rational

torsion points on elliptic curves to a finite list, the possible degrees of K-rational

isogenies are likewise limited.) In the end one also needs to assume a technical arith-

metic hypothesis to prove that the method succeeds infinitely often. The latter part of

the chapter is devoted to a discussion of this hypothesis from various points of view.

For more detail about exactly what is proved, see the introduction to chapter five.

Preliminary to such an undertaking, one needs to be able to accurately describe

Selmer groups for the isogenies one is considering, and perhaps to do it systematically

for a family of curves. This is done in chapter 3, where an explicit description is given

for a certain class of isogenies of prime degree, working over any ground field. This

generalises one of the main results in Fisher’s thesis ([Fi], Cambridge, 2000), and

the method of proof is different.
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As it turns out we do not use the result in chapter 3 for our construction in

chapter 5 because it is more convenient to use an old result of Cassels. In chapter 2

we explain the main ideas in Cassels argument in some detail, as well as presenting

some other standard machinery.

Chapter 4 is also preparatory for chapter 5; we explicitly produce a model for the

moduli space X0(14) with certain properties that are needed in the application. Our

method takes advantage of the theories of complex multiplication and of modular

forms.

Guide to the reader

Chapter One, mainly on descent on elliptic curves: The material on elliptic curves

over local fields is intended for reference only. It is probably fruitful for anyone to

start by reading the section on descent, up to where it discusses the geometric inter-

pretation (which is not crucial for understanding most of the thesis). The example

(Section 1.3) is illuminating and easy to skim, while the construction of X[2] (Sec-

tion 1.4) is not very important.

Chapter Two, on algebraic machinery: One need not read this if one is prepared to

take for granted the results when they are used later. The section on the Weil pairing

may be of interest as it gives a point of view slightly different from Silverman’s book.

Chapter Three, on calculating Selmer groups: this will be interesting to one

who is curious about what data suffices to determine the Selmer conditions. The

substance lies in several local calculations that are similar to each other, so one

might for instance choose to study the proof of Lemma 3.3.1 carefully but just read

the statements of everything else.

Chapter Four: the only thing to be used later is the result, which is a model for

X0(14). The details of how it is found are probably of interest only to a specialist in
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modular curves. However the introduction allows the reader to appreciate how the

method works.

Chapter Five, constructing nontrivial X(E,K)[7]: the reader is invited to follow

the steps in the construction by reading the statements of the lemmas and skipping

their proofs. The discussion of the arithmetic hypothesis towards the end is of a

different flavor to the rest, and might be appealing; the most interesting part to look

at is probably the numerical data.



Chapter 1

Background on elliptic curves

1.1 Elliptic curves over local fields

This section rather tersely records standard facts for future reference, omitting proofs

that are provided in Silverman’s books [Si1] and [Si2]. Throughout this section

Kv/Qp will be a nonarchimedean local field with residue field kv, and E will be

an elliptic curve defined over Kv.

1.1.1 Reduction

When one writes down an explicit equation for an elliptic curve, it is usually in

Weierstrass form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 .

The discriminant of E, ∆(E) is an integral polynomial in a1, . . . , a6 defined in [Si1],

Section III.1. The above equation is a model of some elliptic curve if and only if the

equation is nonsingular, which holds if and only if ∆(E) 6= 0. The discriminant is

not an isomorphism invariant of E, but depends on the choice of model.

Definitions. A minimal model of E at v is a Weierstrass equation for E with

coefficients a1, . . . , a6 in the ring of integers Ov, and with ordv ∆(E) as small as

possible. The reduction of E at v, denoted Ẽ, is the curve over kv obtained by

reducing the coefficients of a minimal model of E.

6
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See [Si1], Section III.1 for the general form of a transformation between different

Weierstrass models of the same curve E, which makes it clear that the reductions

obtained via two different minimal models are isomorphic over kv. Throughout this

section we assume E is given by a minimal model.

When ordv ∆(E) = 0, the reduction is an elliptic curve over kv, the group law

continues to hold, and reduction induces a homomorphism between the groups of

rational points E(Kv) and E(kv). In this case we say E has ‘good reduction at v’.

Otherwise we say E has ‘bad reduction’, and it turns out there is just one singular

point on Ẽ. One defines Ẽns to be the affine variety over kv obtained by omitting

the singular point. The group law on E reduces to a group law on Ẽns. There are

three possible types of bad reduction (for more information and proofs, see [Si1],

section VII.5):

1. Additive reduction, when the singular point is a cusp. Then Ẽns
∼= Ga as group

varieties and Ẽns(kv) is a group of exponent p.

2. Split multiplicative reduction, when the singular point is a node (two branches

of the curve crossing transversally) and the two tangent directions are defined

over kv. Then Ẽns ∼= Gm as group varieties, and so Ẽns(kv) ∼= k×v which is a

cyclic group of order #kv − 1.

3. Nonsplit multiplicative reduction, when the singular point is a node and the

tangent directions are not defined over kv: they are distinct over kv, so they

must be defined over the quadratic extension F/kv, and so the curve has split

multiplicative reduction over F, or equivalently over the unique unramified

quadratic extension Lv/Kv. Over kv, Ẽns is the quadratic twist by F of Gm.

Therefore Ẽns(F) ∼= F× and the subgroup Ẽns(kv) equals the kernel of the norm

NF/kv on F×, which is a cyclic group of order #kv + 1. Concretely, the twist
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of Gm by F = kv(
√
d) is given by the Pell curve x2 − dy2 = 1, where d is any

nonsquare element of k×v .

Good and split multiplicative reduction are called ‘stable’ because when the ground

field is extended, a minimal model remains minimal and the reduction type does

not change.

Next we state the ‘Weil bounds’ on the number of points on an elliptic curve over

a finite field, which assert that the number is close to the expected number with a

square root error term. Actually Weil proved bounds for an arbitrary curve; the case

of genus one is older, proved by Hasse in the 1930s.

1.1.1 Theorem. Let E be a curve defined over kv, with genus one. Then

|#E(kv)− (#kv + 1)| ≤ 2
√

#kv .

In particular, every curve of genus one over a finite field has a rational point over

that field.

Proof: See [Si1], Theorem V.1.1. The second assertion follows by simple arithmetic

from the lower bound.

The Weil bounds will help us prove the following useful fact.

1.1.2 Proposition. Curves that are isogenous over a number field have the same

type of reduction at each prime (the possible types being good, split mulitiplicative,

nonsplit multiplicative and additive), and have the same number of points over each

residue field.

Proof: Isogenous curves have the same conductor, which determines the reduction

type as good, multiplicative or additive. Consider the dual isogenies φ : E → E ′

and φ′ : E ′ → E. Suppose by way of contradiction that E has split reduction at v

while E ′ has nonsplit reduction. Let m = deg φ = deg φ′, so φ′ ◦ φ = [m]. We know
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that the reduction of E ′ will become split over a quadratic extension (unramified at

v) but remains nonsplit over any L/K of odd degree, unramified at v. Denote the

residue fields by kw/kv and let #kv = q, so that #kw = qn for some odd n. On the

reduction, φ maps Ẽns(kw) → E ′
ns(kw), and these are cyclic groups of orders qn − 1

and qn+1. However #E[φ] | m, so we must have qn−1 | m(qn+1), which is absurd

when n becomes large.

When the curves have additive reduction, #Ẽns(kv) = #kv = #E ′
ns(kv) (counting

the point at infinity). It remains to prove that #Ẽ(kv) = #Ẽ ′(kv) in the case of good

reduction. The idea is similar to the multiplicative case in the previous paragraph.

Put m = #Ẽ ′(kv)/#Ẽ(kv) ∈ Q and suppose without loss that m > 1. Then

#
(
Ẽ ′(kv)/φẼ(kv)

)
= m#Ẽ(kv)[φ] ,

We will make a large extension of kv which preserves the discrepancy, and this will

contradict the Weil bounds. Choose coset representatives Pi for Ẽ ′(kv)/φẼ(kv), and

let S = {Pi − Pj : i 6= j}. Then the preimage φ−1S in E(kv) is a finite set that

does not intersect Ẽ(kv). Let F be a finite extension of kv large enough that E(F)

contains both φ−1S and E(kv)[φ]. Now, for a prime p not dividing the degree of

F/kv, take F′/kv to be the extension of degree p. Then F ∩ F′ = kv, so E(F′) does

not intersect φ−1S and E(F′)[φ] = Ẽ(kv)[φ]. Hence the Pi ∈ E ′(F′) are in different

cosets of φE(F′), so

# (E ′(F′)/φE(F′)) > #
(
Ẽ ′(kv)/φẼ(kv)

)
= m#Ẽ(kv)[φ] = m#E(F′)[φ]

and hence #E ′(F′) > m#E(F′). But this is impossible for large p because according

to the Weil bounds (Theorem 1.1.1) #E ′(F′)/#E(F′) tends to 1 as #F′ tends

to infinity.
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1.1.2 The structure of E(Kv)

In close analogy with the structure of K×
v = Gm(Kv), there is a filtration

E(Kv) ⊃ E0(Kv) ⊃ E1(Kv) ⊃ · · · ⊃ En(Kv) ⊃ . . .

defined as follows. Assume E is given by a minimal Weierstrass model at v. Then

E0(Kv) consists of those points that reduce to nonsingular points of E(kv), E1(Kv)

those points that reduce to the identity in Ẽns(kv), and more generally En(Kv) those

points that are congruent to the identity modulo (πnv ). Here πv denotes a uniformiser

for v (an element of Kv with valuation 1).

Clearly these are subgroups of finite index. Define cv(E) := #(E(Kv)/E0(Kv)). If

E has good reduction at v then by definition E(Kv)/E0(Kv) is trivial, and cv(E) = 1.

In chapter 3 we will make frequent use of the following facts (for proofs see [Si1],

Theorem VII.6.1):

1. If E has split multiplicative reduction, then E(Kv)/E0(Kv) is a cyclic group,

and cv(E) = ordv∆(E)

2. If E has nonsplit multiplicative reduction, then cv(E) = 1 or 2.

3. If E has additive reduction, then cv(E) ≤ 4.

From the definitions one sees that E0(Kv)/E1(Kv) ∼= Ens(kv).

If Kv/Qp, E1(Kv) is a pro p-group, called the ‘formal group’ of E. In particular

any isogeny of degree prime to p must restrict to an isomorphism on E1(Kv). For

sufficiently large n, one may define a ‘formal logarithm map’ from En(Kv) to the

additive group O+
v . See [Si1], chapter IV for more about this.

For a curve with stable reduction, E0(Kv) = E0(Kv) ∩ E(Kv) since a minimal

model remains minimal over Kv.

From the preceding considerations we deduce a simple fact which has far reaching

consequences, as we will see in Section 1.2.
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1.1.3 Proposition. Suppose E is an elliptic curve over Kv with good reduction at v.

Suppose further that E[n] ⊂ E(Kv). Then E[n] injects into E0(Kv)/E1(Kv) = E(kv).

1.1.3 Tate uniformisations

When E has multiplicative reduction over Kv, there is a description of E(Kv) in

analogy with the Weierstrass uniformisation over the complex numbers

C/〈1, τ〉 ∼= C(E) .

Note that this could equivalently be expressed C×/qZ ∼= C(E) where q = e2πiτ . There

is an analog of this for curves over Kv.

1.1.4 Theorem. 1. Suppose E has split multiplicative reduction at v. Then there

exists a unique q ∈ Kv with ordv q > 0 such that

K×
v /q

Z ∼= E(Kv) . (1.1)

2. Conversely, for any q ∈ Kv with ordv q > 0, there is an elliptic curve

Eq : y2 + xy = x3 + a4(q)x+ a6(q)

over Kv with split multiplicative reduction, such that K×
v /q

Z ∼= E(Kv).

For a proof and more discussion see Section V.3 in [Si2]. The uniformisation

(1.1) expresses the Weierstrass coordinates x and y as quotients of v-adic power

series that converge for all z ∈ K×
v outside qZ. We need |q|v < 1 so that these power

series converge; this corresponds in the case over C to the requirement that τ be in

the upper half plane, so that q = e2πiτ has |q| < 1.

In the second statement, a4(q) and a6(q) are power series in q which converge for

|q| < 1. When one substitutes these series into the formulas giving the discriminant
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and j-invariant of the curve in terms of the coefficients of E, one recovers the familiar

q-expansions

∆(Eq) = q
∏
n≥1

(1− qn)24

j(Eq) =
1

q
+ 744 + 196844q + . . .

that hold in the complex analytic picture when q stands for e2πiτ . One difference is

that overKv there is a convergent power series inverting the function j(q), expressing

q as a continuous function of j. Thus there is a bijection between j-invariants and

values of q. As a consequence, two curves defined over Kv having split multiplicative

reduction are isomorphic over Kv if and only if they are isomorphic over Kv.

An important feature of the v-adic case is that the Tate uniformisation is Galois

invariant, since an element of the Galois group may be applied to a convergent power

series term by term.

For a Tate curve, the standard filtration can be written in a very natural way:

E(Kv) ⊃ E0(Kv) ⊃ E1(Kv)

‖ ‖ ‖

K×
v /q

Z ⊃ O×
v ⊃ 1 + (πv)Ov

At the top step of the filtration, one sees E(Kv)/E0(Kv) is cyclic of order ordv q. We

asserted above that it is cyclic of order ordv ∆(E), implying that ordv q = ordv ∆(E).

At the middle step, E0(Kv)/E1(Kv) ∼= k×v as we already know. At the bottom step,

the formal group equals the multiplicative formal group.

Isogenies

The Tate uniformisation implies that a curve over Kv with split multiplicative reduc-

tion has a Kv-rational isogeny of degree n for all n, because E[n] has a distinguished

cyclic subgroup:

µn = 〈ζn〉 ⊂ 〈ζn, q1/n〉 = E[n] .
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We already showed in Proposition 1.1.2 that if a curve has split multiplicative

reduction, then all isogenous curves do too. Using the Tate uniformisations for both

curves, one sees there are only two kinds of isogeny with prime degree `, because

the kernel is either µ` or it is generated by some `th root of q. In other words, up to

composition with an automorphism (multiplication by an element of O×
v ), an isogeny

must be either

K×
v /q

Z → K×
v /q

`Z or K×
v /q

`Z → K×
v /q

Z .

Clearly these are dual, their composite being [`]. The first kind is always defined

over the ground field, for every Tate curve and every `. This proves the following.

1.1.5 Lemma. Let Kv/Q` be a local field. Suppose E is an elliptic curve over Kv

that has split multiplicative reduction. Then E has an isogeny φ : E → E ′ of degree

` defined over Kv. If φ′ denotes the dual isogeny, then E[φ] ⊂ E0(K
un
v ) if and only

if E ′[φ′] * E ′
0(K

un
v ).

The last statement makes sense because a minimal model remains minimal over

unramified extensions of the ground field (this holds for all types of reduction).

Nonsplit multiplicative reduction

Now suppose E has nonsplit multiplicative reduction. As noted in Section 1.1.1, it

acquires split reduction over the unramified quadratic extension Lv/Kv. Therefore

E(Lv) ∼= L×v /q
Z where q must in fact lie in Kv, not just in Lv. Moreover the subgroup

E(Kv) is isomorphic to the kernel of the norm NLv/Kv on L×v /q
Z.

As a consequence, #E(Kv)/E0(Kv) ≤ 2.

1.2 Descent on Elliptic Curves

One of the central problems in the theory of elliptic curves is, given a curve E/Q,

how to determine the group of points with rational coordinates, denoted E(Q).
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1.2.1 Theorem. (Mordell, Weil) For any elliptic curve E defined over a number

field K, the set of K-rational points E(K) is a finitely generated abelian group.

Mordell proved this for K = Q in 1922, and in 1928 Weil extended the argument

to work over any number field, and also for an arbitrary abelian variety instead of

an elliptic curve.

Next arises the question of how to effectively compute the ‘Mordell-Weil’ group

E(K), and this remains unsolved, even in the case K = Q. The standard method is

based on the proof of the Mordell-Weil theorem, and is known as ‘descent’ because

it is a twentieth century reincarnation of Fermat’s method of descent. To explain

the method, we give the first half of the proof of the Mordell-Weil theorem, showing

that E(K)/nE(K) is finite for any integer n > 1, a fact also known as the ‘weak

Mordell-Weil theorem’. This is the Galois theoretic half of the proof. It is the second

half which goes by ‘infinite descent’: one deduces from the first half that E(K) is

finitely generated by showing that given a chain of points in E(K), each dividing

the one before, the heights of the points decrease in such a way that the chain must

eventually terminate.

Proof of the weak Mordell-Weil theorem: Given a point P ∈ E(K), consider any

preimage Q ∈ E(K) with nQ = P . The coordinates of Q lie in some finite extension

of K, denoted K(Q). The following property of K(Q) will be the key to our proof.

1.2.2 Lemma. In the preceding notation, the extension K(Q)/K is unramified at

all finite primes of K except possibly those dividing n and those where E has bad

reduction.

Proof: Suppose p is a prime not excluded by the lemma, and choose an extension of p

to K, still denoted p. Then E has good reduction at p, and good reduction is stable,

meaning a minimal model for E at p will continue to be minimal over the algebraic

closure. Now suppose that K(Q) is ramified at p; then there are two conjugates
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Q and σQ that reduce to the same point of E(kp). Hence σQ − Q reduces to the

identity O in E(kp). But σQ−Q is a nontrivial element of E[n], so this contradicts

Proposition 1.1.3, proving the lemma.

Resuming our proof, note that the set of exceptional primes in the lemma is

finite. A standard theorem in number theory asserts that there are only finitely

many extensions of fixed degree over K that are unramified outside a fixed, finite

set of primes. Equivalently, the composite of all such extensions has finite degree.

Therefore in our situation, there exists a finite extension L/K determined by E and

n alone, with the property that for all P ∈ E(K), each preimage Q lies in E(L). It

will be convenient to codify the Galois action on Q as a map σ 7→ σQ−Q. This maps

Gal(L/K) to E[n], the set of n torsion points in E(K), since n(σQ) = σ(nQ) = P =

nQ . Each P ∈ E(K) gives rise to such a map, or perhaps several since the map may

depend on the choice of Q. In any case, there are only finitely many possible maps

since Gal(L/K) and E[n] are both finite. Now suppose P1 and P2 give rise to the

same map, that is to say σQ1 −Q1 = σQ2 −Q2 for all σ ∈ Gal(L/K). Rearranging,

σ(Q1 −Q2) = Q1 −Q2, which means Q1 −Q2 ∈ E(K). But then P1 −P2 ∈ nE(K).

This shows E(K)/nE(K) is finite, proving the weak Mordell-Weil theorem.

1.2.1 Descent with Galois cohomology

The preceding discussion can be expressed more systematically in the language of

group cohomology. For descent one needs only the 0th and 1st cohomology groups,

so we give a down-to-earth definition of them. See [Si1] (Appendix A) for more

information in the same low-tech style. For us the group G will always be GK =

Gal(K/K), and the abelian group M may be E(K), K
×

or µn ⊂ K
×
, for instance.

While doing cohomology one always writes the group operation on M additively, no

matter how it is normally written.
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Definitions. Suppose G is a group and M is an abelian group on which G acts.

Then

H0(G,M) = MG = {m ∈M : σm = m ∀ σ ∈ G}

H1(G,M) =
{1-cocycles}

{1-coboundaries}
=
{ζ ∈ Maps(G,M) : ζ(στ) = ζ(σ) + σζ(τ)}
{ζ : ζ(σ) = σm−m for some m ∈M}

The group operation on H1(G,M) is pointwise addition of maps, using the group

operation on M .

We continue to discuss the maps arising in the proof of the weak Mordell-Weil

theorem, now replacing the isogeny [n] : E → E by a general isogeny φ : E → E ′

defined over K. (More precisely this means E and E ′ are defined over K and φ can

be written in terms of rational functions with coefficients in K.) Consider the map

GK → E[φ] : σ 7→ σQ − Q, where φ(Q) = P ∈ E ′(K). One easily checks that

it satisfies the cocycle property, so it represents an element of H1(GK , E[φ]), and

it represents the trivial element in H1(GK , E): it is a coboundary with respect to

E(K) because Q ∈ E(K). Moreover for fixed P and two different choices of preimage

Q,Q′ ∈ φ∗P , the difference between the associated cocycles is

σ 7→ σQ−Q− (σQ′ −Q′) = σ(Q−Q′)− (Q−Q′)

which is a 1-coboundary with respect to E[φ] because Q−Q′ ∈ E[φ]. Thus we have

a well defined map E ′(K) → H1(GK , E[φ]) sending P to the cocycle σ 7→ σQ − Q,

and this is clearly a homomorphism of abelian groups. The kernel is φE(K), for if

σ 7→ σQ−Q equals a coboundary σ 7→ σR−R, where φ(R) = O, then σ(Q−R) =

Q−R so Q−R is K-rational and P = φ(Q−R) ∈ φE(K). The sequence below is

exact, as we have shown except for the surjectivity:

0 → E ′(K)/φE(K) → H1(GK , E[φ]) → H1(GK , E)[φ] → 0 . (1.2)

In this context E is shorthand for E(K), just as E[n] always means E(K)[n]. To

prove the surjectivity, let ζ ∈ H1(GK , E)[φ], which means φ ◦ ζ is a coboundary
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σR − R, where R ∈ E(K). It suffices find another cocycle cohomologous to ζ that

takes values in E[φ]. So we must find a coboundary σS − S, where S ∈ E(K), such

that ζ(σ)− (σS−S) is in E[φ] for all σ ∈ GK . But this is trivial: for any S ∈ φ−1R,

φ(ζ(σ)− (σS − S)) = σR−R− (σφ(S)− φ(S)) = 0

as required, where φ(σS) = σφ(S) holds because φ is defined over K.

There is a geometric interpretation of (1.2), in which H1(GK , E) classifies the set

of curves of genus 1 whose jacobian is E. We defer presenting this until the end of

our account of descent, because it is not necessary for understanding most of this

thesis (it is used only in Example 1.4 in this chapter, and in the proof of Proposition

2.3.2, but not in chapters 3,4 or 5).

One can also obtain (1.2) from more general principles, as follows. Start with the

exact sequence

0 −−−→ E[φ] −−−→ E(K)
φ−−−→ E ′(K) −−−→ 0

Take the associated long exact sequence of cohomology groups; since H0(GK ,−) is

the fixed point functor, the long exact sequence is

0 −−−→ E(K)[φ] −−−→ E(K)
φ−−−→ E ′(K) −−−→

−−−→ H1(GK , E[φ]) −−−→ H1(GK , E)
φ−−−→ H1(GK , E

′) −−−→ . . .

where φ induces a map on cocycles by composition. By suitably truncating the long

exact sequence one recovers (1.2).

Kummer Theory

Kummer theory is essentially the same construction with E replaced by Gm; the

result is a cohomology group that classifies Kummer extensions. This will be used

heavily in later chapters.
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Start with the exact sequence

0 −−−→ µn −−−→ K
× ×n−−−→ K

× −−−→ 0

where µn denotes the set of nth roots of unity. Taking cohomology one obtains the

long exact sequence

0 −−−→ µn(K) −−−→ K× ×n−−−→ K× −−−→

−−−→ H1(GK , µn) −−−→ H1(GK , K
×
) −−−→ . . .

But H1(GK , K
×
) is trivial, a standard fact known as Hilbert’s Theorem 90 (see [Si1],

Appendix A). So H1(GK , µn) ∼= K×/K×n, which in some sense classifies nth root

extensions of K. The ‘Kummer map’ K×/K×n → H1(GK , µn) can also be defined

(and shown to be an isomorphism) directly as follows:

α 7→ βσ

β
where βn = α

in complete analogy with the map E(K)/nE(K) → H1(GK , E[n]).

1.2.2 Finding the Mordell-Weil group

Lemma 1.2.2, which was the origin of the finiteness in the Mordell-Weil theorem,

suggests a strategy which in some cases will determine E(K). Take φ = [n]. Find

an explicit description of H1(GK , E[n]), and identify the finite subgroup of ‘good

cocycles’, those that are unramified except at primes dividing n or where E has bad

reduction. Then search for points in E(K), not stopping until their images generate

the ‘good cocycles’, in which case the points generate E(K)/nE(K). In practice it

is then not too difficult to find generators for E(K). But the strategy doesn’t work

when there are good cocycles not in the image of E(K)/nE(K); in such cases one

would search in vain for ever, not being able to tell when all points in E(K)/nE(K)

had been found.
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The standard method for computing Mordell-Weil groups is a refinement of

this strategy, where in place of the ‘good cocycles’ one uses a smaller subgroup

of H1(GK , E[φ]) that is still computable, the Selmer group Selφ(E,K). The Selmer

group will by definition be the closest approximation to the image of E ′(K)/φE(K)

obtainable using local information, that is by doing calculations in completions of

K. But we will see that in some cases local information is incapable of determining

E ′(K)/φE(K), so even this refined strategy may fail.

To define Selφ(E,K), note that the descent exact sequence (1.2) is valid for any

field over which E is defined, for instance a completion Kv of K:

0 → E ′(Kv)/φE(Kv) → H1(Gv, E[φ]) → H1(Gv, E)[φ] → 0 (1.3)

where Gv = Gal(Kv/Kv). Fixing an embedding of K into Kv determines an inclusion

Gv ↪→ GK (as the subgroup that fixes Kv ∩ K, the ‘decomposition subgroup’).

Thus it makes sense to restrict cocycles defined on GK to Gv, and it is clear that

coboundaries restrict to coboundaries. For each place v the restriction maps give rise

to a commutative diagram

0 −−−→ E ′(K)/φE(K) −−−→ H1(GK , E[φ]) −−−→ H1(GK , E)[φ] −−−→ 0y resv

y resv

y
0 −−−→ E ′(Kv)/φE(Kv) −−−→ H1(Gv, E[φ]) −−−→ H1(Gv, E)[φ] −−−→ 0

We will now formally define the Selmer group to be the set of cocycles whose

restrictions are in the ‘local Mordell-Weil groups’ for all places (including infinite

places).

Definition. Given an elliptic curve E defined over a number field K and an isogeny

defined over K, φ : E → E ′ to another elliptic curve, the Selmer group for φ over

K is Selφ(E,K) := {ζ ∈ H1(GK , E[φ]) : resv ζ ∈ ImE ′(Kv)/φE(Kv) ∀ v} .
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Given some explicit description of H1(GK , E[φ]), it is a finite computation to

determine Selφ(E,K). To explain this, we first translate Lemma 1.2.2 into the lan-

guage we are now using.

Definitions. AGv-moduleM is unramified if the inertia group Iv ⊂ Gv acts trivially

on M . For M unramified, we define H1
un(Gv,M) to be the subgroup H1(Gv/Iv,M) ⊂

H1(Gv,M).

Remarks: H1(Gv/Iv,M) is well defined because when M is unramified, the action of

Gv factors through Gv/Iv. The inclusion is given by the inflation map on cocycles,

which is clearly injective.

1.2.3 Lemma. Suppose φ : E → E ′ is an isogeny of elliptic curves defined over K.

Suppose further that the curves have good reduction at v and that v - deg φ. Then

the image of E ′(Kv)/φE(Kv) lies in H1
un(Gv, E[φ]).

Proof: Same argument as Lemma 1.2.2.

In Proposition 2.3.2 will show that in fact the image of E ′(Kv)/φE(Kv) is exactly

the set of unramified cocycles. So we know the Selmer condition imposed by ‘good

primes’. For each remaining place, one may determine the Selmer condition by cal-

culating E(Kv) in terms of the structure theory outlined in section 1.1 (or trivially

for infinite places), and then finding the image of E(Kv) in H1(Gv, E[φ]). In many

situations, one wants to use some sophistication in performing this step. For instance

in chapter 3 we will do it theoretically for a moderately general class of isogenies,

obtaining a clear description of the Selmer groups (which makes it very simple to

give, say, a bound on the Mordell-Weil group for a given curve). Alternatively one

may use Hensel’s lemma to determine the Selmer condition at v, taking advantage

of the geometric interpretation of the descent exact sequence.
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The Tate-Shafarevich group of E encapsulates the obstructions to the method

of ‘descent by φ’ successfully determining E ′(K)/φE(K), for every isogeny φ. It

consists of those cocycles in H1(GK , E) that are ‘locally trivial everywhere’.

Definition. Given an elliptic curve E defined over a number field K, the Tate-

Shafarevich group of E over K is

X(E,K) := {ζ ∈ H1(GK , E) : resv ζ = 0 ∀ v} .

For any ζ ∈ Selφ(E,K), resv ζ is in the kernel of the map induced by φ, by the

exactness of (1.3). By the commutativity of the diagram, this means φ ζ satisfies the

definition of X(E,K). Conversely for an element of X(E,K)[φ] ⊂ H1(GK , E)[φ],

which must have a preimage in H1(GK , E[φ]), all preimages are in Selφ(E,K). So

inside the descent exact sequence (1.2), one has an exact sequence of finite groups

0 → E ′(K)/φE(K) → Selφ(E,K) → X(E,K)[φ] → 0

each term of which will interest us.

1.2.3 Geometric interpretation

Let us now describe the geometric interpretation of the descent exact sequence. It

is easiest to start from the opposite point of view, considering an arbitrary curve of

genus 1 defined over K and its jacobian. For any curve C defined over any field, one

can construct a ‘jacobian variety’ Jac(C) algebraically, working over the ground field

(see [Mi]); it is an abelian variety of dimension equal to the genus of the curve. By

the construction, for any field F/K the F -rational points on Jac(C) are in one to one

correspondence with Pic0(C,F ), the set of F -rational divisor classes on C. Hence

for any chosen base point P ∈ C(K), the map R 7→ (R)− (P ) is an embedding of C

into Jac(C) defined over K(P ), the field of definition of P . When C has genus one,

Jac(C) is an elliptic curve defined over K, and the embedding is an isomorphism
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over K. There is a distinguished K-rational point on Jac(C) corresponding to the

zero divisor, so there is an isomorphism C → Jac(C) defined over K if and only if

C has a K-rational point.

To define an action of Jac(C) on C note that by the Riemann-Roch theorem,

given any divisor D of degree 1 on C, there is a unique point P ∈ C(K) such that

D − (P ) = 0 in Pic0(C). This yields a map Jac(C) × C → C (since adding the

arguments gives a divisor of degree 1) which turns out to be K-rational, giving us a

simple transitive group action of Jac(C) on C, making C a principal homogeneous

space for C over K. Conversely one can show that if C is a principal homogeneous

space for an elliptic curve E over K then E ∼= Jac(C) over K.

The important point is that in this situation there is a K-isomorphism λ : E ∼= C

obtained by fixing c ∈ C(K) and letting λ(P ) = P + c, where + denotes the

action of E on C. If the isomorphism fails to be defined over K then it does not

preserve the action of GK . We will define a 1-cocycle that records the difference

between the Galois actions; the corresponding element of H1(GK , E) then measures

the obstruction to the existence of aK-isomorphism E ∼= C. Let λσ denote σ◦λ◦σ−1,

the map obtained by applying σ to the coefficients of λ. Note that the composition

λ−1 ◦ λσ : E → E must equal τP , the ‘translation by P ’ map, where P ∈ E(K) is

the unique point with P + c = cσ. This gives us a map GK → E(K) : σ 7→ P , and

one may check the map satisfies the cocycle property. Furthermore if the map is a

coboundary then one may recover a K-isomorphism E ∼= C. Thus C ∼= E over K if

and only if the cohomology element corresponding to C is trivial.

There is an algorithmic procedure for starting with an element ζ ∈ H1(GK , E)

and producing a corresponding homogeneous space for E. The idea is that over K

the function field K(C) equals K(E), but C as a curve over K is determined by

the Galois action on K(C). Using ζ one defines a new action on K(E), namely
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σ · f := σf ◦ τζ(σ), giving a new curve C. (To actually compute C, compute K(C)

as the fixed points of the new action.)

This means we have a one to one correspondence between H1(GK , E) and the

set of principal homogeneous spaces for E.

Now, if C is a principal homogeneous space with a K-rational point c ∈ C(K),

then λ will be a K-isomorphism sending the identity on E to c. Therefore a principal

homogeneous space is trivial if and only if it has a K-rational point. There is no

known algorithm for deciding whether this is the case, given arbitrary E and C. In

fact for fixed E the problem is equivalent to finding the Mordell-Weil group E(K).

For given an element in a Selmer group, one could decide whether it is in the image

of E(K) if one could decide whether the corresponding homogeneous space has K-

rational points.

1.3 Example: descent by isogenies of degree 2

Start with an elliptic curve in the simple Weierstrass form

E : y2 = x(x− a)(x− b) for a, b ∈ K (1.4)

with ∆(E) = ab(a − b) 6= 0. All points in E[2] are K-rational, since the nontrivial

2-torsion points are (0, 0), (a, 0) and (b, 0). Taking a quotient of E by any one of

them would yield a K-rational isogeny of degree 2. Thus there are three ways to

factor the isogeny [2] as

E
φ−−−→ D

φ′−−−→ E .
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Choosing (0, 0) to be the kernel of φ, it is possible to elegantly express the isogenies

in the form

C :


v2 = x

u2 = x− a

w2 = x− b

φ

y
D :

 v2 = x

V 2 = (x− a)(x− b)

φ′

y
E : y2 = x(x− a)(x− b)

(1.5)

where C and D are elliptic curves and C ∼= E over K, and the maps are given by

V = uw and y = vV . Notice that the extension of function fields K(D)/K(E) is

obtained by adjoining a square root of x ∈ K(E), and K(C)/K(D) by adjoining a

square root of x− a. Likewise the function field extension associated to any isogeny

of elliptic curves is a Kummer extension, at least over K, and the magic functions

whose nth roots define the extension can be identified by their divisors. They are

the same functions appearing in the role of ‘f ’ in the definition of the Weil pairing

(see section 2.2 for more on this).

Having described the isogenies explicitly, let us turn to descent. The Galois action

on E[φ] and D[φ′] is trivial, so the following groups are all the same:

H1(GK , D[φ′]) = H1(GK ,Z/2) = Hom(GK ,Z/2) = H1(GK , µ2) = K×/K×2

are in one to one correspondence with the set of quadratic extensions of K. Hence

there is a map

E(K)/φ′D(K) → K×/K×2 .

By Lemma 1.2.3, the image consists only of cocycles unramified outside the set S of

‘bad places’ (those dividing 2, those where E has bad reduction, and for technical
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reasons the infinite places). As one would surely guess, such cocycles correspond via

Kummer theory to extensions of K that are unramified outside S, the subgroup

of K×/K×2 classifying such extensions is contianed in the ‘S-unit subgroup’ gener-

ated by {
α ∈ K× : ordv α ≡ 0 mod 2 ∀ v /∈ S

}
.

This is a finite subgroup of H1(GK , D[φ′]) containing the Selmer group; in fact it is

the subgroup obtained by imposing only the Selmer conditions from primes outside

S. To compute the Selmer group exactly one must find a way to check which elements

satisfy the remaining conditions. The geometric interpretation presents a way to

do that. Following the procedure sketched in section 1.2.3 for turning a cocycle

into a principal homogeneous space, one finds that each d ∈ K×/K×2 corresponds

to the homogeneous space for D given by Dd below, and similarly each (c, d) ∈

K×/K×2 × K×/K×2 = H1(GK , E[2]) corresponds to the homogeneous space for

C ∼= E given by Cc,d :

Cc,d :


dv2 = x

cu2 = x− a

cdw2 = x− b

φ

y
Dd :

 dv2 = x

dV 2 = (x− a)(x− b)

φ′

y
E : y2 = x(x− a)(x− b)

(1.6)

Here the first map is given by V = cuw and the second by y = dvV . In general

it is impossible to decide whether Dd or Cc,d has a K-rational point. But it is

routine to decide whether they have Kv-rational points, using Hensel’s lemma, and

that is equivalent to deciding whether the corresponding cocycle satisfies the Selmer

condition at v. We do so in the next section, and we are even able to conclude
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that some of the Dd’s are nontrivial elements of X(D,Q) (when a and b are chosen

judiciously).

1.4 Tate-Shafarevich groups with many elements of order two

This section contains a very concrete construction of Tate-Shafarevich elements of

order two, by means of ‘second descent’. I worked this out as a warm up problem,

and the proof turned out to look very similar to constructions made by other people,

especially Ken Kramer’s in [Kr].

We may rewrite the 2-to-1 covering maps Cc,d → Dd → E from the previous

section as

E : y2 = x(x− a)(x− b)

Dd : dV 2 = (dv2 − a)(dv2 − b)

Cc,d :

 dv2 − cu2 = a

dv2 − cdw2 = b

The first map is given by v = v, V = uw/c and the second by x = dv2, y = vV/d.

The values c = d = 1 are special; C1,1
∼= E over Q, and D1 is another elliptic curve

over Q. The maps φ : E → D1 and φ′ : D1 → E are isogenies of elliptic curves with

φ′ ◦ φ = [2]. The Dd are the elements of H1(GQ, E
′[φ′]) ∼= Q×/Q2, and the Cc,d are

the elements of H1(GQ, E[2]).

‘Second descent’ amounts to the following. The map

H1(GQ, E[2]) → H1(GQ, E
′[φ′])

induced by φ is given by Cc,d 7→ Dd. The subgroup Sel2(E,Q) maps into Selφ
′
(E ′,Q),

since if Cc,d is locally solvable over all completions of Q then so is Dd. On the other
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hand, the Kummer maps form a commutative diagram

E(Q)/2E(Q) −−−→ Sel2(E,Q)y y
E(Q)/φ′E ′(Q) −−−→ Selφ

′
(E ′,Q)

so if Dd is in the image of the Kummer map then it is also in the image of Sel2(E,Q).

Turning this around, if Dd is not in the image of Sel2(E,Q) then it must map to

a nontrivial element of X(E ′,Q)[2]. One may verify that Dd is not in the image

of Sel2(E,Q) by checking that for every c, Cc,d is not locally solvable over some

completion. We will explain how to choose a and b so that there are as many such

d as desired.

It clearly suffices to take c and d to be squarefree integers. And as explained in

Section 1.3 it suffices to take c and d to be units away from bad primes, which in

this case are those dividing 2ab(a − b). So for the rest of this section c and d will

denote squarefree integers dividing 2ab(a− b).

We now analyse the local solvability of Dd; we will only need sufficient conditions

for our construction.

1.4.1 Lemma. Let Dd be given as above, where a and b are positive integers that

are odd, squarefree, and coprime. Then

1. Dd has solutions over R if d > 0.

2. Dd has solutions over Q2 if a ≡ b mod 8 and d ≡ 1 mod 8.

3. For odd p | ab, Dd has solutions over Qp

4. For odd p | a− b, Dd has solutions over Qp if
(
d
p

)
= 1.

1.4.2 Sublemma. Let A and B be integers, and p an odd prime with p - AB. Then

the equation r2 + As2 = B has a solution modulo p with r and s nonzero mod p.
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Remark: The sublemma is equivalent to the ‘three units lemma’ that arises in the

theory of quadratic forms.

Proof of the Sublemma: The assertion is clear if B is a square modulo p, or if A

and B are both nonsquare. In the remaining case, where A is a square and B is a

nonsquare, let n be an integer such that
(
n
p

)
= −1 but

(
n−1
p

)
= 1. (There must be

such an n < p otherwise all integers are squares modulo p). Then we may choose r

and s such that r2 = n− 1 and As2 = 1, yielding a solution to r2 + As2 = n. Since

B/n is a square, there is then also a solution to r2 + As2 = B.

Proof of the Lemma: (i) is clear. For (ii), take v to be any multiple of 4; we can then

solve for V over Z2 because 1
d
(dv2 − a)(dv2 − b) ≡ ab ≡ a2 modulo 8, which means

it is a square in Z2. For (iii), it suffices to consider p | a. In the case p - d, Hensel’s

lemma tells us that Dd is solvable if it has a solution modulo p with v and V nonzero.

Reducing modulo p it becomes V 2 = v2(dv2 − b), and this has a such a solution, for

by the sublemma t2 = dv2 − b has a solution modulo p with t and v nonzero. In the

case p | d, we can write d = pD with p - D since d is assumed to be squarefree, and

likewise a = pA. The equation becomes DV 2 = (Dv2 − A)(dv2 − b), and again this

is solvable if it has a solution modulo p with v and V nonzero. Reducing, it becomes

DV 2 = −b(Dv2 − A), or equivalently V 2 = −bv2 + AbD, and by the sublemma

this has a solution of the required kind. For (iv), again it is enough find a solution

modulo p with v and V nonzero. Modulo p, the equation becomes dV 2 = (dv2− a)2,

which has such a solution when
(
d
p

)
= 1.

We now give necessary and sufficient conditions for the local solvability of Cc,d

at odd primes. (For our construction, we will not need 2 or the infinite place, and

we’ll only use that the conditions are necessary.)

1.4.3 Lemma. For an odd prime p | ab(a − b), Cc,d has solutions over Qp if and

only if the condition given below holds.
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p divides: a b a− b

neither c nor d
(c/d
p

)
= 1

(
c
p

)
= 1

(
d
p

)
= 1

c only not solvable not solvable
(
a/d
p

)
= 1

d only not solvable
(−a/c

p

)
= 1 not solvable

c and d
(−cd/bp2

p

)
= 1 not solvable not solvable

The symmetry in the table arises from the symmetry in u, v and w, Accordingly,

the proofs of the various cases follow a similar pattern.

Proof of representative cases: We pass to projective equations

dv2 − cu2 = az2, dv2 − cdw2 = bz2

First we treat the case p | b, p - c, p - d. Suppose there is a solution to dv2 − cdw2 =

bz2. Note ordp bz
2 is odd while ordp dv

2 and ordp cdw
2 are even; since two of the

terms must have the same valuation, it follows that ordp dv
2 = ordp cdw

2 < ordp bz
2.

After dividing through by a power of p, we have dv2 − cdw2 ≡ 0 mod p, hence(
c
p

)
= 1 as stated by the lemma. Now suppose

(
c
p

)
= 1. The equation dv2−cu2 = az2

is a nonsingular conic over Fp. By Sublemma 1.4.2 above, it has a solution over Fp.

Therefore it is isomorphic to P1 over Fp, and has p+ 1 solutions. Since p+ 1 > 2, it

has a solution with v 6= 0. By Hensel’s lemma, this lifts to a solution over Zp with

v ∈ Z×p . We then obtain a point on Cc,d by solving for w ∈ Zp, which is possible

since the equation involving w reduces modulo p to dv2 − cdw2 = 0, and
(
c
p

)
=1.

Now we treat the case p | b, p | c, p - d. Note p - a. In dv2 − cu2 = az2, ordp cu
2 is

odd while ordp dv
2 and ordp az

2 are even, which implies ordp dv
2 = ordp az

2 and hence

ordp v = ordp z. But in dv2−cdw2 = bz2, ordp dv
2 is even while ordp cdw

2 and ordp bz
2

are odd, which implies ordp dv
2 > ordp bz

2 and ordp v > ordp z, a contradiction.

We now give the construction of curves with Tate-Shafarevich groups having

many elements of order two.
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1.4.4 Theorem. Fix a positive integer r.

The following procedure yields infinitely many pairs (a, b). For any such pair D1 :

V 2 = (v2 − a)(v2 − b) is an elliptic curve with #X(D1,Q)[2] ≥ 2r.

1. Choose an integer k with k < 0 and 8 | k.

2. Choose an odd prime a1 with a1 ≡ 1 mod k and
(
k
a1

)
= 1

3. Choose an odd prime b1 such that
(
a1

b1

)
= −1 and

(
h
b1

)
= 1 for h = −1 and for

each h | k.

4. Set R = r+#{ odd primes ` | k}+2 and choose odd primes di for 1 ≤ i ≤ R,

each distinct from a1 and with
(−k
di

)
= 1

5. Find negative integers a′, b′ that are odd and coprime satisfying

a′a1 − b′b1d1 . . . dR = k

Finally define a = a′a1 and b = b′b1d1 . . . dR.

Proof: We leave it to the reader to check that steps (2) thru (4) can be carried

out for any choice of k satisfying (1). We now explain why in step (5) one may take

a′ and b′ to be odd and coprime. To see this, start with any solution (a′, b′) to the

equation; it is standard that there is a solution since a1 is coprime to b1d1 . . . dR.

One may then pass to the alternative solution (a′ − b1d1 . . . dR, b
′ − a1). Doing this

repeatedly, eventually one finds a solution with b′ negative, odd, and prime to k

(since a1 is odd and prime to k). Then the corresponding a′ is negative, odd, and

coprime to b′ (recall that k < 0 and 8 | k).

We now prove that #X(D1,Q)[2] ≥ 2r, by showing that Dd ∈ X(D1,Q)[2] for

any positive d satisfying the conditions
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1. a1 | d,

2. d | a1d1 . . . dR,

3. d ≡ 1 mod 8 and

4.
(
d
`

)
= 1 for all odd ` | k.

Such d exist, for instance d = a1 works because a1 ≡ 1 mod k. Hence the set of such

d has size at least 2r. For such d, it’s clear that Dd is locally solvable everywhere,

since d satisfies all the conditions of Lemma 1.4.1, and a− b = k ≡ 0 mod 8.

Now fix any such d. We must show that for each squarefree c | ab(a − b),

there is some place at which Cc,d is not locally solvable. Note that ab(a − b) =

a′a1b
′b1d1 . . . dRk. First suppose c is divisible by some prime p 6= a1 that divides a′.

Then p | a, while p - d since it is clear from the equation in step (5) that a′ is prime

to each di, and p 6= a1. Thus Cc,d is not solvable at that p according to Lemma 1.4.3.

Next suppose c is divisible by some prime p dividing b = b′b1d1 . . . dR; then Cc,d is

not solvable at that p. It remains only to deal with those c that divide a1k. If c is

not divisible by a1, then Cc,d is not solvable at a1, since a1 | d. On the other hand if

c = ±a1h for some h | k, then
(
c
b1

)
= −1 because of the way b1 was chosen, and so

Cc,d is not solvable at b1. This completes the proof of the theorem.



Chapter 2

Some pairings and a theorem of Cassels

2.1 Introduction

This chapter introduces some standard pairings, and then gives a detailed sketch

of the proof of a theorem of Cassels which will be used in chapter 5. Some of the

preparatory lemmas are standard and will also be used in later chapters. The theorem

was proved by Cassels in [Ca2] in the mid 1960s in order to show that the conjecture

of Birch and Swinnerton-Dyer, as it was then formulated, is true for a curve if it

is true for a Q-isogenous curve. We follow Cassels’ argument, putting it in modern

notation and streamlining it in places by appealing to machinery that has now

become standard.

2.2 The Weil pairing

This section defines the Weil pairing for elliptic curves, taking the view that its

natural context is the Galois theory of the extension of function fields associated

to an isogeny between elliptic curves. This approach entails some extra elaboration

compared with the treatment in Silverman’s book ([Si1] Section 3.8); however certain

points appearing there as fortuitous calculations become very natural from the point

of view taken here.

The Weil pairing is a duality between the kernels of an isogeny and its dual

isogeny. Let F be any field and suppose φ is a separable isogeny of elliptic curves

32
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defined over F ; let φ̂ denote its dual:

E Ê

φ

y φ̂

x
E ′ Ê ′

The dual of E is defined as Ê := Pic0(E). As it happens, there is a canonical map

from E to Ê mapping a point P to the divisor P − O. (This is special to the case

of elliptic curves, whereas everything else in this section goes through for abelian

varieties of any dimension.) The dual isogeny φ̂ : Ê ′ → Ê is then simply the pullback

map φ∗, mapping a divisor
∑
nQQ to

∑
nQ
∑

φP=Q P .

We now characterise the kernel of φ̂. Let n = deg φ, and suppose P ∈ E[n], by

which we mean E(F )[n]. Then the divisor

φ̂(φP −O) =
∑
φR=O

(P +R)−R

is linearly equivalent to nP −nO, which is 0 in Ê. Thus φP −O ∈ Ê ′[φ̂], and in fact

φE[n] ∼= Ê ′[φ̂].

As a consequence, deg φ̂ = deg φ = n. Moreover upon identifying E ′ ∼= Ê ′, we

see E[φ̂ ◦ φ] = E[n], so φ̂ ◦ φ = [n].

To prepare to define the Weil pairing E[φ]× Ê ′[φ̂] → µn, suppose P ∈ E[φ] and

Q− O ∈ Ê ′[φ̂] for some Q ∈ E ′. Since φ̂(Q− O) = 0, φ∗(Q− O) is the divisor of a

function gQ ∈ F (E). Since n(Q−O) ≡ 0, it is the divisor of a function fQ ∈ F (E ′).

But

(fQ ◦ φ) = φ∗ (nQ− nO) =
(
gnQ
)

so after adjusting fQ by a constant from F , we can assume that fQ ◦ φ = gnQ. Note

that if the order of Q is exactly n, then for any proper divisor r of n, rQ− rO is not

the divisor of a function and so fQ is not an rth power in F (E ′). Thus we see that
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the extension of function fields associated to φ is the nth root extension

F (E)∼= F (E ′)({ n
√
fQ : Q−O ∈ Ê ′[φ̂]})

φ∗
x

F (E ′)

When Q is rational over F , gQ ∈ F (E ′) and so F (E)/F (E ′) is a Kummer extension

(and like any Kummer extension, it is Galois if and only if µn ⊂ F ).

For a point P ∈ E[φ], let τ(P ) denote the ‘translation by P ’ map F (E), τ(P ) :

f(·) 7→ f(· − P ). When P ∈ E(F ), τ(P ) is an automorphism of F (E), and it

clearly fixes the subfield F (E ′). Therefore when E[φ] ⊂ E(F ), τ identifies E[φ] ∼=

Gal(F (E)/F (E ′)). To summarize, F (E)/F (E ′) is Galois when P is F -rational, and

an nth root extension when Q is F -rational. It follows that when both P and Q are

F -rational, we must have µn ⊂ F ; this fact is usually stated as F (E[n]) ⊃ F (µn).

For any P ∈ E[φ] and Q − O ∈ Ê ′[φ̂], not necessarily rational over F , the Weil

pairing is

〈P,Q〉 =
g
τ(P )
Q

gQ

This pairing must take values in µn by Kummer theory; in fact for fixed Q

the map P 7→ 〈P,Q〉 is the element of H1(Gal(F (E)/F (E ′)), µn) associated to

fQ ∈ F (E ′)×/F (E ′)n by the Kummer map. Since H1(Gal(F (E)/F (E ′)), µn) =

Hom(Gal(F (E)/F (E ′)), µn), the map P 7→ 〈P,Q〉 is a homomorphism, in other

words the pairing is linear in P . To see that it is linear in Q note that the divisor(
gQ1+Q2

gQ1gQ2

)
= φ∗ ((Q1 +Q2)−O − (Q1 −O)− (Q2 −O)) = φ∗(0) = 0

which means gQ1+Q2 and gQ1gQ2 agree up to a constant, and this constant cancels

in the definition of 〈P,Q〉. It is clear from the definition that the pairing is Galois

invariant (for the arithmetic Galois group Gal(F/F )).

The most interesting property of the Weil pairing is that for the special case of an

isogeny [m] : E → E the pairing is alternating, that is 〈P, P 〉 = 1 for any P ∈ E[m].
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To see this, put E ′ = E/P and consider the maps

E Ê

φ

y φ̂

x
E ′ := E/P Ê ′

ψ

y ψ̂

x
E Ê

where E[φ] = 〈P 〉. One easily calculates that Ê[ψ̂] = 〈P − O〉. As usual, gP is a

function on E with divisor [m]∗(P −O), but in fact it is a pullback by φ of a function

on E ′, since already ψ̂(P −O) = 0. This means g
τ(P )
P = gP , so 〈P, P 〉 = 1.

2.3 The Tate pairing

Let Kv be a local field, and let Gv denote Gal(Kv/Kv). Let φ : E → E ′ be an isogeny

of elliptic curves defined over Kv, let n = deg φ, and let φ′ be the dual isogeny. Using

the Weil pairing E[φ]× E ′[φ′] → µn, the ‘cup product’ gives us the Tate pairing

H1(Gv, E[φ])× H1(Gv, E
′[φ′]) → H2(Gv, µn) ⊂ Q/Z

where the inclusion into Q/Z is the invariant map from local class field theory. The

cup product of two cocycles σ 7→ yσ and σ 7→ zσ is the 2-cocycle wσ,τ = 〈yσ, σzτ 〉

(where 〈·, ·〉 denotes the Weil pairing). More generally this construction works, and

the theorem below holds, for any two finite Gv-modules that pair into µn.

Definitions. AGv-moduleM is unramified if the inertia group Iv ⊂ Gv acts trivially

on M . For an unramified module M , we define H1
un(Gv,M) to be the subgroup

H1(Gv/Iv,M) ⊂ H1(Gv,M).

Remarks: H1(Gv/Iv,M) is well defined because when M is unramified, the action of

Gv factors through Gv/Iv. The inclusion is given by the inflation map on cocycles,

which is clearly injective.
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2.3.1 Theorem. The Tate pairing is a perfect pairing. When E[φ] and E ′[φ′] are

unramified, the subgroups H1
un(Gv, E[φ]) and H1

un(Gv, E
′[φ′]) are exact annihilators

under the pairing.

For a proof, see [Se] Section 5.2, Theorem 2 and Section 5.5, Proposition 19.

Simple consequences of the theorem:

(1) The finite groups H1(Gv, E[φ]) and H1(Gv, E
′[φ′]) have the same cardinality.

(2) Moreover, # H1
un(Gv, E[φ]) ·# H1

un(Gv, E
′[φ′]) = # H1(Gv, E[φ]).

(3) Let v - n be a nonarchimedean place at which the curves have good reduction.

Then the proposition below asserts that the images of the local Mordell-Weil groups

consist of the unramified cocycles, and so by the theorem they are exact annihilators

under the Tate pairing.

2.3.2 Proposition. ([Ca2]) Let Kv be a nonarchimedean local field and suppose

φ : E → E ′ is an isogeny of elliptic curves defined over Kv. Suppose further that the

curves have good reduction at v and that v - deg φ. Then the local Kummer map

E ′(Kv)/φE(Kv) ↪→ H1(Gv, E[φ])

has image exactly equal to H1
un(Gv, E[φ])

Notes: (1) It is standard that the points in E[φ] are defined over unramified exten-

sions of K under the stated hypotheses on v, so H1
un(Gv, E[φ]) makes sense.

(2) Similarly, for any Q ∈ E ′(Kv), the preimages P ∈ φ−1Q are defined over unrami-

fied extensions ofK (otherwise there would be two different P1, P2 ∈ φ−1Q congruent

to each other modulo a prime of some extension of Kv, but then P1 − P2 ∈ E[φ]

would be congruent to O and hence ramified at that prime). Therefore the cocycle

σ 7→ P σ − P , which is the image of Q under the Kummer map, is unramified at v.

This shows that in the proposition, the image of the Kummer map is contained in

H1
un(Gv, E[φ]).



37

Proof of the Proposition: Cassels’ idea is to consider the usual descent sequence,

but this time over the residue field kv:

0 → E ′(kv)/φE(kv) → H1(Gv/Iv, E[φ]) → H1(Gv/Iv, E(kv))

where we identify Gal(kv/kv) ∼= Gv/Iv. Nontrivial elements of H1(Gv/Iv, E(kv))

correspond to curves of genus one over kv that have no points over kv. But, by the

Weil bounds, every curve of genus one over a finite field has points over that field.

Therefore H1(Gv/Iv, E(kv)) is trivial, so the Kummer map over kv is an isomorphism.

We know by standard theory (or by Hensel’s lemma) that since E ′ has good

reduction, E ′(Kv) maps onto E ′(kv) via the reduction map. Reduction commutes

with the Kummer map, so the composition

E ′(Kv) → E ′(kv) → H1(Gv/Iv, E[φ]) = H1
un(Gv, E[φ])

is surjective, proving the proposition.

2.4 Cassels’ theorem

This theorem will be applied in Chapter Five to show that a certain Selmer group

is large.

2.4.1 Theorem. (1965, [Ca2]) Let K be a number field. Suppose φ : E → E ′ is an

isogeny of elliptic curves defined over K, and let φ′ : E ′ → E be the dual isogeny.

Then

Selφ(E)

Selφ
′
(E ′)

=
#E(K)[φ]

#E ′(K)[φ′]

∏
v

∫
E′(Kv)

|ω′|v∫
E(Kv)

|ω|v
where ω and ω′ are any differentials on the curves.

Comments about ω and ω′: (i) The integrals appearing in the theorem are defined

as follows. On an affine patch T ⊂ E where the curve has a smooth coordinate t, we
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may write ω = f(t) dt. Define∫
T (Kv)

|ω|v :=

∫
t∈T (Kv)

|f(t)|v dt

where the second integral is with respect to the standard Haar measure on Kv.

(ii) On an elliptic curve, the set of differentials with no poles is a one dimensional

vector space over K, so they are constant multiples of one another. The product

over all places
∏

v

∫
E(Kv)

|ω|v is independent of the normalisation, by the product

rule
∏

v |α|v = 1 (which holds for all α ∈ K×). To prove the theorem, it is convenient

to choose ω and ω′ so that ω = φ∗ω′.

2.4.2 Lemma. If ω = φ∗ω′ then

1. For all v, ∫
E′(Kv)

|ω′|∫
E(Kv)

|ω|
=

#E ′(Kv)/φE(Kv)

#E(Kv)[φ]

2. This equals 1 for all finite places v - n where E has good reduction. In

particular, the infinite product appearing in the theorem makes sense.

Proof: For a subset N ⊂ E(Kv) that maps injectively to E ′(Kv),∫
N

|ω| =
∫
N

|φ∗ω′| =
∫
φN

|ω′|

by definition of the pullback differential. Hence∫
E(Kv)

|ω| = #E(Kv)[φ]

∫
φE(Kv)

|ω′|

while obviously ∫
E′(Kv)

|ω′| = #E ′(Kv)/φE(Kv)

∫
φE(Kv)

|ω′| .

Dividing the last two equations yields (i).

By Proposition 1.1.2 if E has good reduction at v - n, then so does E ′, and

moreover #E(kv) = #E ′(kv), where kv denotes the residue field. But φ induces
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a homomorphism E(kv) → E ′(kv), so #E ′(kv)/φE(kv) = #E(kv)[φ]. Recall that

E(Kv)/E1(Kv) ∼= E(kv) , and that φ restricts to an isomorphism of the formal groups

E1(Kv) → E ′
1(Kv) when v - n. Thus #E ′(Kv)/φE(Kv) = #E(Kv)[φ], proving (ii).

A sketch of the proof of Cassels’ theorem is given below. The following corollary is

a reformulation that is more convenient for some applications, and where the infinite

product is replaced by a finite product. To state it, one must make some conventions

to deal with the fact that E might not have an everywhere minimal model over OK .

Definitions. Suppose E is an elliptic curve over a number field K. For a nonar-

chimedean place v, a differential ωv on E defined over Kv is well normalised at v

if ∫
E1(Kv)

|ω|v = 1/N v .

Given a differential ω defined over K, define an ideal A = A(ω) as follows: For each

finite place v let αv ∈ K×
v be such that αvω is well normalised at v; then let A be

the ideal satisfying AOv = αvOv for each v. Define

Ω(E) := NA
∏

infinite v

∫
E(Kv)

|ω|v

where ω is any differential on E defined over K.

Remarks showing that the definitions make sense:

(i) For each v, there exists a well normalised differential ωv. Indeed if y2 = f(x) is a

minimal Weierstrass model for E over Kv then dx
2y

is a well normalised differential at

v. To see this, one checks that s := x/y is a smooth coordinate on a neighbourhood

of the identity O ∈ E, and that dx
2y

equals −ds. If the model is minimal, E1(Kv)

consists of those points for which s ∈ (πv) and so∫
E1(Kv)

|ω|v =

∫
s∈(πv)

ds = 1/N v .
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In particular, if y2 = f(x) is an everywhere minimal Weierstrass model for E over

K, the ideal A corresponding to dx
2y

is trivial. Thus in the case K = Q, the above def-

inition coincides with the standard definition of the real period Ω(E) :=
∫
E(R)

∣∣∣dx2y ∣∣∣ .
(ii) In the definition, αv exists since there exists a well normalised ωv and any two

differentials on E (over Kv) are constant multiples of one another.

(iii) Clearly, Ω(E) is independent of the choice of ω since it is unchanged when ω is

replaced by a constant multiple αω.

(iv) There is a more abstract way to define A, as the ideal such that Aω equals the

OK-module of integral differentials on E.

2.4.3 Corollary. Let K be a number field. Suppose φ : E → E ′ is an isogeny of

elliptic curves defined over K, and let φ′ : E ′ → E be the dual isogeny. Let n = deg φ.

Then

Selφ(E)

Selφ
′
(E ′)

=
#E(K)[φ]

#E ′(K)[φ′]
· Ω(E ′)

Ω(E)

∏
finite v

cv(E
′)

cv(E)

where cv(E) = # (E(Kv)/E0(Kv)) as usual. Moreover if n is odd then as fractional

ideals of K (
1

n[K:Q]

)
⊆
(

Ω(E ′)

Ω(E)

)
⊆
(
n[K:Q]

)
.

Note: the product in the corollary is really a finite product, since cv(E) = 1 for all

v where E has good reduction.

Proof of the corollary: For each finite prime v let ωv and ω′v be well normalised

differentials over Kv, and let kv denote the residue field. Note that∫
E0(Kv)

|ωv|v = #E(kv)

∫
E1(Kv)

|ωv|v =
#E(kv)

N v

and likewise for ω′v. Therefore, since #E(kv) = #E ′(kv),∫
E0(Kv)

|ωv|v =

∫
E′0(Kv)

|ω′v|v
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for all finite v. Now if ω is a differential on E over K∫
E(Kv)

|ω|v = cv(E)

∫
E0(Kv)

|ω|v =
cv(E)

|αv|v

∫
E0(Kv)

|ωv|v .

where αvω = ωv. Since 1/|αv|v = #(Ov/αv) = #(Ov/AOv) , the product of 1/|αv|v

over all finite places v equals NA. Putting all this together,∏
v

∫
E′(Kv)

|ω′|v∫
E(Kv)

|ω|v
=

NA′

NA
·
∏

finite v

cv(E
′)

cv(E)

∏
infinite v

∫
E′(Kv)

|ω′|v∫
E(Kv)

|ω|v
=

Ω(E ′)

Ω(E)
·
∏

finite v

cv(E
′)

cv(E)

This shows that the first assertion of the corollary follows from Theorem 2.4.1.

For the second assertion, recall that Ω(E) is independent of the choice of ω, so

without loss of generality take ω′ to be well normalised at all primes dividing n, and

take ω to be φ∗ω′. For primes v - n, note that φ is an isomorphism E1(Kv) → E ′
1(Kv)

so
∫
E1(Kv)

|ω|v =
∫
E′1(Kv)

|ω′|v. It follows that AOv = A′Ov for v - n.

Now suppose v | ` for some prime ` dividing n, with `r exactly dividing n.

Note that φ′ ◦ φ = [n]. By the theory of the formal group (see section 1.1.2), for a

large enough integer m the subgroup Em(Kv) := {P ∈ E(Kv) : P ≡ O mod πmv }

is isomorphic as a group to O+
v , and likewise for E ′. On this subgroup, [n] is an

injection with image `rOv, which has index r[Kv : Q`], so the image of φ must have

index `a for some a ≤ r[Kv : Q`]. Hence∫
Em(Kv)

|ω|v =

∫
Em(Kv)

|φ∗ω′|v =
1

`a

∫
E′m(Kv)

|ω′|v =
1

`a
|πmv |v

since we assumed ω′ is well normalised at v. On the other hand, there is some αv ∈ Kv

such that αvω is well normalised at v, which means∫
Em(Kv)

|ω|v =
1

|αv|v
|πmv |v .

Hence |αv|v = `a for some a ≤ r[Kv : Q`], for each v | n. Combining this with the

facts that ω′ is well normalised at all v | n and that AOv = A′Ov for v - n, one finds

NA′

NA
=
∏
v|n

|αv|v ,
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and this is an integer dividing n[K:Q]. At each infinite place v, φ maps E(Kv) onto

E ′(Kv) since n is assumed to be odd. Thus∫
E′(Kv)

|ω′|v∫
E(Kv)

|ω|v
=

∫
E′(Kv)

|ω′|v∫
E(Kv)

|φ∗ω′|v
=

1

#E(Kv)[φ]
.

For each place, #E(Kv)[φ] divides n, so
∏

infinite v #E(Kv)[φ] divides n[K:Q]. This

completes the proof of the second assertion.

Sketch of the proof of Theorem 2.4.1, in the case where deg φ is prime: This

sketch will take up the remainder of the chapter. Suppose that φ has prime degree q.

Let S be a finite set of places of K containing the infinite places, the primes where

E has bad reduction and those dividing q. By Proposition 2.3.2 (which characterises

unramified cocycles) Selφ(E) sits inside the subgroup H1
S(GK , E[φ]) ⊂ H1(GK , E[φ])

consisting of cocycles unramified except at S. This is a finite subgroup, and when S

is chosen large enough we can conveniently calculate its size.

2.4.4 Lemma. When S is chosen large enough,

# H1
S(GK , E[φ]) =

#E(K)[φ]

#E ′(K)[φ′]

∏
v∈S

#E ′(Kv)[φ
′]

A proof of the lemma is outlined later. Next we introduce a pairing that will help

to determine the relative sizes of the Selmer groups. Recall that the Tate pairing on

local cohomology

H1(Gv, E[φ])× H1(Gv, E
′[φ′]) → Z/q

is a perfect pairing, and by Theorem 2.3.1 the images of the local Mordell-Weil

groups E ′(Kv)/φE(Kv) and E(Kv)/φ
′E ′(Kv) pair trivially. Rather formally, let

T = ⊕v∈S H1(Gv, E[φ]),

T ′ = ⊕v∈S H1(Gv, E
′[φ′]),

and let

〈·, ·〉 : T × T ′ → Z/q
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be the sum of the local pairings; note that #T = #T ′ and that 〈·, ·〉 is perfect. Let

M ⊆ T and M ′ ⊆ T ′ be the direct sums of the local Mordell-Weil groups; thus

M and M ′ pair trivially. Also, let D ⊆ T be the image of H1
S(GK , E[φ]), mapped

diagonally into T . The diagonal map will be an embedding if S is large enough

(as one can see fairly easily from the proof of Lemma 2.4.4 sketched below). Define

D′ ⊆ T ′ analogously. Then D and D′ pair trivially, because the pairing restricted to

D × D′ can be expressed 〈ζ, ζ ′〉 =
∑

v invv ( ζ ∨ ζ ′|v) (since cup product commutes

with restriction), but this is 0 by class field theory. As a remark, it can be shown

that M and M ′ are exact annihilators, as are D and D′, and moreover that all

the inequalities below are really equalities; however we will not need to prove these

things. Note that by definition

# Selφ(E) = #(M ∩D) =
#M #D

#(M +D)

where the second equality is merely group theory. On the other hand, M ′ ∩D′ pairs

trivially with M +D, since M annihilates M ′ and D annihilates D′, so

# Selφ
′
(E ′) = #(M ′ ∩D′) ≤ #T

#(M +D)

Dividing the last two equations,

# Selφ(E)

# Selφ
′
(E ′)

≥ #M #D

#T
=

#E(K)[φ]

#E ′(K)[φ′]

∏
v

#E ′(Kv)[φ
′]

#E(Kv)/φ′E ′(Kv)

using Lemma 2.4.4 for the size of D, and since by the duality of M and M ′

#T/#M = #M ′, which by definition equals
∏

v #E(Kv)/φ
′E ′(Kv). Hence by

Lemma 2.4.2,

Selφ(E)

Selφ
′
(E ′)

≥ #E(K)[φ]

#E ′(K)[φ′]

∏
v

∫
E′(Kv)

|ω′|v∫
E(Kv)

|ω|v
But by interchanging φ and φ′ we may obtain the reverse inequality, thus proving

Cassels’ theorem (in the case of prime degree).

Sketch of the proof of Lemma 2.4.4 The idea is to compare H1
S(GK , E[φ]) with

H1
S(GK , µq), by first restricting to the subgroup of GK which has the same action
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on E[φ] as on µq. These are both cyclic groups of order q, so the actions are given

by characters χφ and χ defined by

σP = χφ(σ)P for P ∈ E[φ]

σζ = ζχ(σ) for ζ ∈ µq

Let ψ = χφχ
−1 and let L/K be the cyclic Galois extension corresponding to the

subgroup GL := ker(ψ) C GK . Since # Gal(L/K) is prime to q, the ‘change of

groups’ exact sequence yields the first of the following isomorphisms:

H1(GK , E[φ]) ∼= H1(GL, E[φ])Gal(L/K) ∼= (L×/L×q)Gal(L/K)

The second isomorphism is a Kummer theoretic calculation. It is important to note

that the action of GL/K on L×/L×q is not the natural one. For more details see

Lemma 1.2.2, where a similar argument is given. There the action on L×/L×q is

calculated, and the fixed points turn out to be

{α ∈ L×/L×q : σα = αψ(σ)}

which is the eigenspace for ψ under the usual action. Now, H1
S(GK , E[φ]) is the

subgroup of this supported at primes above S, which equals the ψ eigenspace of

L×S /L
×q
S (where L×S denotes the elements that are units except at primes above S)

when S is sufficiently large that Cl(L) is generated by primes above S. To calculate

the size of this eigenspace, note that for a prime p ∈ S, p splits in L/K if and only

if there is an element in the eigenspace supported at primes above p; this element

would have the form
∏

σ∈Gal(L/K)(σS)ψ(σ)−1
where S ∈ LS generates the ideal qm

for some m ∈ Z and some prime q above p. On the other hand, by the definition

of L, p splits in L/K if and only if ψ is trivial on Gv, in other words E[φ] ∼= µq as

Gp-modules. By the Galois invariance of the Weil pairing (see 2.2) this is equivalent

to E ′[φ′] ∼= Z/q as Gp-modules, or E ′[φ′] ⊂ E ′(Kp). What we’ve just shown is that

the place p contributes 1 to the dimension of H1
S(GK , E[φ]) if and only if E ′(Kp)[φ

′]
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is nontrivial, which explains why #E ′(Kp)[φ
′] appears on the right hand side in

the statement of the lemma. Finally we just remark that the factors E(K)[φ] and

E ′(K)[φ′] are related to whether µq is contained in K or L. This completes our

sketch of 2.4.4 and of Cassels’ theorem in the case of prime degree.

The general case of Cassels’ theorem can be reduced to the prime case by

regarding an arbitrary isogeny as a composition of isogenies of prime degree and

‘multiplication by n’ maps. To make the reduction one simply manipulates the ker-

nels and cokernels for some compositions of maps, using the nontrivial fact that

#X(E,K)[φ] = #X(E,K)/φ′X(E ′, K)

This fact follows from a duality property of the Cassels-Tate pairing.



Chapter 3

A generalization of Fisher’s First Descent Theorem

3.1 Introduction

This chapter is devoted to proving a theorem that explicitly describes the Selmer

groups for certain isogenies of prime degree between elliptic curves. Let K be a

number field and suppose E and E ′ are elliptic curves defined over K, with an

isogeny φ : E → E ′ of prime degree ` ≥ 5, also defined over K. Denote the dual

isogeny by φ′ : E ′ → E. The theorem (3.4.1) will identify Selφ(E,K) and Selφ
′
(E ′, K)

as subgroups of L×/L×` for some finite extension L/K. It specifies them in terms

of data involving only the behaviour of the kernels of the isogenies under reduction.

This data is very easy to compute for a given curve, so the theorem is useful in

practice for computing Selmer groups. For a very thorough treatment of how to

compute Selmer groups see [S-St].

Our theorem generalises the ‘First Descent Theorem’ given in Tom Fisher’s Cam-

bridge thesis [Fi] in several respects. Fisher’s theorem gives the same description of

Selmer groups, but applies only in the special case where K = Q and ` = 5 or 7.

Both Fisher’s theorem and ours impose the hypothesis that E ′[φ′] is contained in

E(K) (in other words E ′ corresponds to a K-rational point on X1(`), instead of just

X0(`)). However, it would not be too difficult to remove this hypothesis.

To prove the theorem, one first calculates the ‘local Mordell-Weil groups’, namely

E ′(Kv)/φE(Kv) and E(Kv)/φ
′E ′(Kv), and then puts the local information together.

46
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Consider the ‘descent exact sequence’ associated to φ

0 → E ′(K)/φE(K) → Selφ(E,K) → X(E,K)[φ] → 0,

and the analogous one associated to φ′. Each element of Selφ(E,K) corresponds to a

homogeneous space of E, and we must decide which of these have points over all com-

pletions of K. Fisher’s proof supplies explicit equations for the homogeneous spaces

as intersections of quadrics in Pl−1, and uses Hensel’s Lemma to decide whether

they have points locally. One could say his approach concentrates on the right hand

end of the sequence, whereas our approach concentrates on the left hand end. It

calculates the ‘local Mordell-Weil groups’ using standard theory of elliptic curves

over local fields, namely the formal group and Tate uniformisations. The local and

global data about the curves that we discover along the way is much the same in

both proofs.

One motivation for this kind of theorem is the desire to understand the `-parts of

Tate-Shafarevich groups, for instance how large they can be. Fisher constructs elliptic

curves E/Q with X(E,Q)[5] arbitrarily large. His strategy is to consider elliptic

curves that have two different 5-isogenies, apply his theorem to both isogenies, and

compare the results. (This will not work for X(E,Q)[7] because curves can only have

at most one 7-isogeny defined over Q.) A related motivation for doing Selmer group

calculations is the hope of extending them, working with the Cassels-Tate pairing,

to a somewhat explicit description of the images of Selφ(E,K) in X(E,K)[`]. A

third motivation is for writing algorithms to perform `-descent, in which computing

Selmer groups is a key step (again, see also [S-St]).

3.2 A description of H1(G,Z/`)

We recall some standard facts. GK will denote Gal(K/K). To say that E[φ] ∼= µ` as

GK-modules (or more correctly, as Z[GK ]-modules) means that the action of GK on
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P ∈ E[φ] is given by σP = χ(σ)P , where χ is the cyclotomic character defined by

ζσ = ζχ(σ) for ζ ∈ µ` and σ ∈ GK .

In particular, E[φ] ⊂ E(K(µ`)). Similarly the assumption E ′[φ′] ⊂ E ′(K) is equiva-

lent to E ′[φ′] ∼= Z/` as GK-modules.

3.2.1 Proposition. Suppose as above that φ : E → E ′ and its dual φ′ : E ′ → E are

defined over K. If E ′[φ′] ∼= Z/` then E[φ] ∼= µ` as GK-modules.

Proof: Choose a basis for E ′[`] in which E ′[φ′] is generated by [1, 0]. The Weil pairing

E ′[`] × E ′[`] → µ` is skew symmetric, so for any basis it has the form

0 −a

a 0

.

We may renormalise our basis so it becomes

0 −1

1 0

. The pairing is also Galois

invariant, so if σ ∈ GK and Mσ is the matrix describing its action on our basis, we

have

M t
σ

0 −1

1 0

Mσ = χ(σ)

0 −1

1 0

 .

where χ records the action of σ on µ`, namely σζ` = ζ
χ(σ)
` . When one computes

the left side and compares it with the right, one finds detMσ = χ(σ). Since E ′[φ′]

is rational, each Mσ has the form

1 ∗

0 ∗

, and hence the form

1 ∗

0 χ(σ)

. The

bottom right entry tells us the action on the image of E ′[`] under φ′, which is E[φ].

This shows E[φ] ∼= µ`.

The next lemma shows how our Selmer groups can be realized as subgroups of

groups that arise from the theory of Kummer extensions.

3.2.2 Lemma. Suppose as above that E ′[φ′] ∼= Z/`. Then H1(GK , E[φ]) ∼= K×/K×`.

Put L = K(µ`) and let χ : GK → Z/`× be the character defined by τζ` = ζ
χ(τ)
` . Then

H1(GK , E
′[φ′]) ∼=

{
α ∈ L×/L×` : τα = αχ(τ) ∀τ ∈ GK

}
.
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Proof: The long exact sequence for descent via φ comes by taking cohomology of

0 → E ′[φ] → E → E ′ → 0. It tells us

0 → E ′(K)/φE(K) → H1(GK , E[φ]) → H1(GK , E)[φ] → 0 .

Now H1(GK , E[φ]) = H1(GK , µ`) ∼= K×/K×` (the group of Kummer extensions of

degree `).

Doing the same for φ′, we have H1(GK , E
′[φ′]) = H1(GK ,Z/`) (the group of

cyclic extensions of degree `). Of course, if µ` ⊂ K, this is the same as H1(GK , µ`).

Otherwise, we use the ‘change of groups’ cohomology sequence (part of a spectral

sequence). With L = K(µ`), this is

0 → H1(Gal(L/K),Z/`) → H1(GK ,Z/`) → H1(GL,Z/`)Gal(L/K)

→ H2(Gal(L/K),Z/`)

where the action of Gal(L/K) will be given below. Note first that deg(L/K)

divides ` − 1 so H1(Gal(L/K),Z/`) = Hom(Gal(L/K),Z/`) is trivial. Also

H2(Gal(L/K),Z/`) is trivial because it classifies group extensions of Z/` by a

cyclic group of order dividing ` − 1, but by elementary group theory the only such

extension is the direct product. So H1(GK ,Z/`) ∼= H1(GL,Z/`)Gal(L/K). The action

of Gal(L/K) on cocycles is canonical: for τ ∈ GK ,

τ · (σ 7→ ζσ) = (τστ−1 7→ τ · ζσ)

and as always GL acts trivially on its own cohomology. In the formula above and

elsewhere, a dot denotes a special group action, while an action with no dot, such

as σβ, denotes the ordinary Galois action. Since µ` ⊂ L, we know

H1(GL,Z/`) ∼= L×/L×`

via (σ 7→ σβ/β) ↔ α where β` = α

but only as Z-modules; the action of GK on L×/L×` induced by this isomorphism

is a twist of the natural one. We’ll compute the action of τ ∈ GK by finding which
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element of L×/L×` the cocycle τ · (σ 7→ σβ/β) corresponds to. By definition, this

is τστ−1 7→ τ · (σβ/β), or τστ−1 7→ (σβ/β) since τ acts trivially on the coefficients

Z/`. Making a substitution, this becomes

σ 7→ τ−1στβ

β
= τ−1

(
στβ

τβ

)
=

(
στβ

τβ

)χ(τ−1)

=
σβ1

β1

where β1 = τβχ(τ−1). So τ · (σ 7→ σβ/β) corresponds to

α1 = (τβχ(τ−1))` = ταχ(τ−1) ∈ L×/L×`.

The fixed points of this action are as stated in the lemma.

3.3 Finding the local Mordell-Weil groups

Notation. Throughout this section let K be a number field, and let φ : E → E ′ is

an isogeny of elliptic curves defined over K such that E[φ] ∼= µ` as GK-modules. Let

φ′ : E ′ → E denote the dual isogeny; then E ′[φ′] ∼= Z/` by Proposition 3.2.1.

We will calculate the local Mordell-Weil groups at each finite place v, first con-

sidering places v - ` where the curves have good reduction, then in 3.3.2 places v - `

where the curves have bad reduction, and finally in 3.3.3 dealing with the places

above `.

The first case is covered by Proposition 2.3.2. We restate the result here, as it

seems worthwhile to give a more explicit proof in the case under consideration.

3.3.1 Lemma. Suppose v - ` is a place where the curves have good reduction. Then

the images of the local Mordell-Weil groups E ′(Kv)/φE(Kv) and E(Kv)/φ
′E ′(Kv)

are exactly equal to H1
un(Gv, µ`) and H1

un(Gv,Z/`) respectively.

Proof: By Lemma 1.2.3, the images of the local Mordell-Weil groups are contained

in the unramified subgroups. A dimension count will show that the containments are

equalities. In H1(Gv, µ`) ∼= K×
v /K

×`
v , the unramified cocycles are those corresponding
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to unramified Kummer extensions, so H1
un(Gv, µ`) is the unit subgroup O×

v /O
×`
v .

Using K×
v
∼= 〈π〉 × k×v × {1 + πvOv},

K×
v /K

×`
v
∼=


〈π〉/〈π`〉 × µ` if µ` ⊂ k×v

〈π〉/〈π`〉 otherwise

Hence H1
un(Gv, µ`) has order ` when µ` ⊂ kv, and is trivial otherwise. On the other

hand H1
un(Gv,Z/`) automatically has order `, since there is always exactly one non-

trivial unramified cyclic extension of Kv.

Since E and E ′ have good reduction, E(Kv)/E0(Kv) and E ′(Kv)/E
′
0(Kv) are

both trivial. By assumption, v lies above some prime p 6= `. Since E1(Kv) and

E ′
1(Kv) are pro-p groups, φ restricts to an isomorphism between them. Therefore

E ′(Kv)/φE(Kv) ∼= E ′(kv)/φE(kv). But by 1.1.2 E ′(kv) and E(kv) have the same

size, so the map φ : E ′(kv) → E(kv) is surjective if and only if it is injective. This

happens if and only if E(kv)[φ] * E(kv), which is equivalent to µ` * kv by the

assumption E(kv)[φ] ∼= µ`. Thus E ′(Kv)/φE(Kv) has order ` when µ` ⊂ kv and is

trivial otherwise. This shows E ′(Kv)/φE(Kv) and H1
un(Gv, µ`) have the same order,

and are therefore equal. By a similar argument, E(Kv)/φ
′E ′(Kv) has order `, since

E ′[φ′] ⊂ E ′(kv) by the assumption E ′[φ′] ∼= Z/`. This shows E(Kv)/φ
′E ′(Kv) equals

H1
un(Gv,Z/`).

3.3.2 Lemma. Suppose v - ` is a place where the curves do not have good reduction.

(i) When µ` ⊂ Kv, H1(Gv, E[φ]) ∼= 〈πv〉/〈π`v〉 × k×v /k
×`
v and H1(Gv, E

′[φ′]) is the

same. If E ′[φ′] ⊂ E ′
0(Kv) then E ′(Kv)/φE(Kv) is trivial while E(Kv)/φ

′E ′(Kv) is

H1(Gv, E
′[φ′]). Otherwise the reverse holds.

(ii) When µ` * Kv, H1(Gv, E[φ]) ∼= 〈πv〉/〈π`v〉 while

H1(Gv, E
′[φ′]) ∼= Kv(µ`)

×/Kv(µ`)
×` ∼= kv(µ`)

×/kv(µ`)
×` .
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If E ′[φ′] ⊂ E ′
0(Kv) then E ′(Kv)/φE(Kv) is trivial and E(Kv)/φ

′E ′(Kv) is equal to

H1(Gv, E
′[φ′]). Otherwise the reverse holds.

Remarks: (1) This is consistent with Tate local duality (2.3.1). In each case the

dimensions of the images of local Mordell-Weil groups add up to the dimension of

the local cohomology groups.

Proof of (i): In this case µ` ⊂ Kv, so E[φ] ⊂ E(Kv) and E ′[φ′] ⊂ E ′(Kv). Therefore

the reduction cannot be additive, since if it were E0(Kv) would be a pro-p group

and #E(Kv)/E0(Kv) would be at most 4 (recall ` ≥ 5). Thus E and E ′ have multi-

plicative reduction. We will now show they must have split multiplicative reduction.

Suppose they have nonsplit reduction; then cv(E) = #E(Kv)/E0(Kv) ≤ 2 (see Sec-

tion 1.1.3). Hence E(Kv)/E0(Kv) and E1(Kv) have no `-torsion. But E(Kv) contains

a point of order `, so E0(Kv)/E1(Kv) ∼= Ens(kv) must have a point of order `. Under

the assumption that E has nonsplit reduction, #Ens(kv) = #kv + 1, but this is not

divisible by `, giving a contradiction.

First suppose E ′[φ′] * E ′
0(Kv). If cv(E) = m, then cv(E

′) = `m. Consider

the maps induced by φ on the terms of the exact sequence 0 → Ens(kv) →

E(Kv)/E1(Kv) → E(Kv)/E0(Kv) → 0 (and likewise for φ′), as shown below.

0 −−−→ k×v −−−→ E(Kv)/E1(Kv) −−−→ Z/m −−−→ 0y` φ

y y`
0 −−−→ k×v −−−→ E ′(Kv)/E

′
1(Kv) −−−→ Z/`m −−−→ 0∥∥∥ φ′

y y mod m

0 −−−→ k×v −−−→ E(Kv)/E1(Kv) −−−→ Z/m −−−→ 0

The isogenies restrict to isomorphisms on E1(Kv) and E ′
1(Kv), so E(Kv)/φ

′E ′(Kv)

is trivial and dimF`
E ′(Kv)/φE(Kv) = 2. On the other hand if E ′[φ′] ⊂ E ′

0(Kv), it

follows that E[φ] * E0(Kv), as noted in Lemma 1.1.5. Then since µ` ⊂ Kv, the same

argument applies with the roles of E and E ′ reversed.
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Proof of (ii): As always E ′[φ′] ⊂ E ′(Kv); by assumption µ` * Kv so E[φ] * E(Kv).

As before, we cannot have additive reduction. First suppose E ′[φ′] ⊂ E ′
0(Kv); then

` | #E ′(kv). Since by assumption ` - #kv − 1, the reduction cannot be split mul-

tiplicative; it must be nonsplit (and ` must divide #kv + 1). That means cv(E)

and cv(E
′) are at most 2, in particular they are prime to `, so the only part of

the filtration where the isogenies are not isomorphisms is the middle step. Since

E ′[φ′] ⊂ E ′
0(Kv), it sits in E ′

ns(kv); on the other hand since E[φ] * E0(Kv), φ

induces an isomorphism on Ens(kv). That is,

E0(Kv)/E1(Kv)
φ−−−→ E ′

0(Kv)/E
′
1(Kv)

φ′−−−→ E0(Kv)/E1(Kv)∥∥∥ ∥∥∥ ∥∥∥
Ens(kv) E ′

ns(kv)
` to 1−−−→ Ens(kv)

Hence E ′(Kv)/φE(Kv) = 0 and dimF`
E(Kv)/φ

′E ′(Kv) = 1, matching the dimension

of H1(Gv, E
′[φ′]).

Now suppose E ′[φ′] * E ′
0(Kv). Then E ′(Kv)/E

′
0(Kv) must have a point of order

`, in other words ` | cv(E ′), so E and E ′ must have split multiplicative reduction.

Hence #E(kv) = #kv − 1, which is prime to `, so the relevant part of the filtration

is the top step. For some integer m,

E(Kv)/E0(Kv)
φ−−−→ E ′(Kv)/E

′
0(Kv)

φ′−−−→ E(Kv)/E0(Kv)∥∥∥ ∥∥∥ ∥∥∥
Z/m ×`−−−→ Z/`m mod m−−−−−→ Z/m

Hence dimF`
E ′(Kv)/φE(Kv) = 1 while E(Kv)/φ

′E ′(Kv) = 0. This proves (ii).

We now do it for places v | `, which could be of any reduction type (including

good reduction).
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3.3.3 Lemma. Suppose v | `.

1. The cohomology groups H1(Gv, E[φ]) and H1(Gv, E
′[φ′]) have dimension 1 +

[Kv : Q`] + δ` over F`, where

δ` :=


1 if µ` ⊂ Kv

0 otherwise

2. Suppose E and E ′ have multiplicative reduction. If E ′[φ′] ⊂ E ′
0(Kv) then

E ′(Kv)/φE(Kv) is trivial while E(Kv)/φ
′E ′(Kv) is H1(Gv, E

′[φ′]). Otherwise

the reverse holds.

Note that the lemma is consistent with Tate local duality.

Proof: The standard structure theorem states that K×
v = 〈πv〉 × µd × (1 + πvOv),

where d = #kv − 1. Note that when µ` ⊂ Kv it is contained in (1 + πvOv). Now

H1(Gv, E[φ]) = K×
v /K

×`
v = 〈πv〉/〈π`v〉 × (1 + πvOv)/(1 + πvOv)

`

has dimension 1 + [Kv : Q`] + δ`. By Tate local duality (2.3.1), H1(Gv, E
′[φ′]) has

the same size, proving (1).

To prove (2), first suppose the curves have split multiplicative reduction, so we

may use Tate uniformisations. If E ′[φ′] ⊂ E ′
0(Kv), then the isogenies must be as

follows.

E(Kv)
φ−−−→ E ′(Kv)

φ′−−−→ E(Kv)∥∥∥ ∥∥∥ ∥∥∥
K×
v /q

Z `−−−→ K×
v /q

` Z mod q−−−−−→ K×
v /q

Z

So E(Kv)/φ
′E ′(Kv) = 0 and E ′(Kv)/φE(Kv) = K×

v /K
×`
v has the same dimension

as H1(Gv, E
′[φ′]). If E ′[φ′] * E ′

0(Kv), the situation is reversed.

Now suppose the curves have nonsplit multiplicative reduction. This is possible,

but only in the unusual circumstance that Kv(µ`) is the unramified quadratic exten-

sion of Kv. For let Lv/Kv be the unramified quadratic extension. Then there’s a



55

Tate uniformisation

t : L×v /q
Z ∼= E ′(Lv)

for some q ∈ Kv. Recall from Section 1.1.3 that the subgroup E ′(Kv) equals the

kernel of NLv/Kv on L×v /q
Z. As always E ′[φ′] ⊂ E ′(Kv), and indeed E ′[φ′] ⊂ E ′

0(Kv)

since #E ′(Kv)/E
′
0(Kv) ≤ 2 when E ′ has nonsplit reduction. Now E ′

0(Lv) is the

image under t of O×
Lv

so t identifies E ′[φ′] with `-torsion in O×
Lv

, which must be µ`.

This implies µ` ⊂ Lv. Since E ′[φ′] ⊂ E ′(Kv), and E ′(Kv) is the kernel of the norm

on L×v /q
Z, we have NLv/Kv ζ` = 1. In particular µ` * Kv, so Lv = Kv(µ`). The curves

have split reduction over Lv, so we may use Tate uniformisations to describe φ and

φ′ on E(Lv) and E ′(Lv); since E ′[φ′] ⊂ E ′
0(Kv) ⊂ E ′

0(Lv), the isogenies must be as

follows.

E(Lv)
φ−−−→ E ′(Lv)

φ′−−−→ E(Lv)∥∥∥ ∥∥∥ ∥∥∥
L×v /q

` Z mod q−−−−−→ L×v /q
Z `−−−→ L×v /q

` Z

Next we’ll check that φ is a surjection on Kv-points. Suppose α ∈ L×v with

t(α) ∈ E ′(Kv). This means NLv/Kv α = qa for some a ∈ Z. Since ` is odd, we

may find b ∈ Z with ` | a + 2b. Then αqb is the required preimage of α, for φ

maps it to α mod qZ, and t(αqb) ∈ E(Kv) since N(αqb) = qa+2b ∈ q`Z. Therefore

E ′(Kv)/φE(Kv) = 0.

Finally, to determine the rank of the cokernel of φ′ on Kv-points, consider

0 −−−→ E ′
0(Kv) −−−→ O×

Lv

N−−−→ O×
Kv

−−−→ 0

φ′

y `

y `

y
0 −−−→ E0(Kv) −−−→ O×

Lv

N−−−→ O×
Kv

−−−→ 0

We can read off the cokernels of the vertical maps. They are all elementary `-groups:

on the right having rank [Kv : Q`] and in the middle having rank [Lv : Q`] + 1 =

2[Kv : Q`] + 1 where the extra 1 is because µ` is in Lv but not Kv. By exactness the
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cokernal of φ′ has rank [Kv : Q`]+1, therefore dimF`
E(Kv)/φ

′E ′(Kv) = [Kv : Q`]+1.

This matches the dimension of H1(Gv, E
′[φ′]), since δ` = 0 as µ` is in Lv but not Kv.

3.4 Descent Theorem

The following theorem combines the local information from the previous section,

giving a description of the Selmer groups.

3.4.1 Theorem. Suppose the dual isogenies φ : E → E ′ and φ′ : E ′ → E are defined

over K, with E[φ] ∼= µ` and E ′[φ′] ∼= Z/` as GK-modules, where ` ≥ 5 is an odd

prime. Let G denote the set of places v - ` of K where E and E ′ have good reduction,

and partition the remaining v - ` as follows:

A = {v /∈ G : v - `, E ′[φ′] * E ′
0(Kv)}

B = {v /∈ G : v - `, E ′[φ′] ⊂ E ′
0(Kv)}

Then Selφ(E,K) is the subset of K×/K×` represented by

{
α ∈ K× : ` | ordv α ∀ v ∈ G, α ∈ K×`

v ∀ v ∈ B, and α ∈ Lv ∀ v | `
}

where for each v | `, Lv is a subgroup of K×
v containing K×`

v .

Put K(µ`) = L, let χ be the cyclotomic character on GK, and for given v let

w denote an extension of v to L. Then Selφ
′
(E ′, K) is the subset of

(
L×/L×`

)χ
represented by

{
α : ` | ordw α ∀ v ∈ G, α ∈ L×`w ∀ v ∈ A, and α ∈ L′v ∀ v | `

}
where for each v | `, L′v is a subgroup of L×w containing L×`w .

For each given v, it does not matter which extension w one chooses. Note that for v

with µ` * Kv, the condition α ∈ K×
v is equivalent to the unit condition α ∈ O×

v .

Proof: Fix an embedding of K into Kv, for each place. This specifies an identification

of Gv = Gal(Kv/Kv) with a particular subgroup of GK = Gal(K/K), namely the
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subgroup fixing K ∩Kv ⊂ Kv. It also specifies a choice of w, and an embedding of

L into Lw.

By definition, Selφ(E,K) is the set of cocycles whose restrictions lie in the images

of the local Mordell-Weil groups for each v:

H1(G,E[φ])yresv

0 −−−→ E ′(Kv)/φE(Kv) −−−→ H1(Gv, E[φ])

and likewise for Selφ
′
(E ′, K). First consider Selφ(E,K), which is less compli-

cated. By Kummer theory H1(GK , E[φ]) = H1(GK , µ`) ∼= K×/K×` . and similarly

H1(Gv, E[φ]) = K×
v /K

×`
v . The restriction map respects these identifications, in other

words the following diagram commutes.

K×/K×` −−−→ H1(G, µ`)y resv

y
K×
v /K

×`
v −−−→ H1(Gv, µ`)

where the left vertical arrow is induced by our fixed embedding of K into Kv. To

see this, recall that the first row is the Kummer map sending α ∈ K× to the cocycle

σ 7→ σβ
β

, for some β ∈ K with β` = α. The second row sends α to σ 7→ σβv

βv
, where

we may take βv to be the image of β in Kv. Then this cocycle is the restriction to

Gv of the other cocycle.

Now we read off the Selmer condition imposed by each place from the lemmas in

the previous section. For infinite places H1(Gv, E[φ]) is either R×/R×` or C×/C×`,

which are both trivial since ` is odd. Hence H1(Gv, E[φ]) is equal to E ′(Kv)/φE(Kv)

for infinite places, which therefore impose no conditions for a cocycle to be in the

Selmer group.

For v ∈ G, by Lemma 3.3.1 the condition for α ∈ K×
v to be in the Selmer group

is that its restriction be in

H1
un(Gv, µ`) ∼= O×

v /O
×`
v
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Equivalently, the image of α in Kv should be a unit times an `th power, in other

words ordvα ≡ 0 mod `.

For v ∈ A, by Lemma 3.3.2 the Selmer condition is vacuous, since every element

of H1(Gv, E[φ]) is in the image of E ′(Kv)/φE(Kv).

For v ∈ B, by Lemma 3.3.2 the Selmer condition is that α restricts to the trivial

element in H1(Gv, E[φ]) = K×
v /K

×`
v , in other words that the image of α is in K×`

v .

Finally for v | `, simply observe that E ′(Kv)/φE(Kv) must be isormorphic to

some subgroup Lv/K
×`
v of H1(Gv, E[φ]) ∼= K×

v /K
×`
v .

The argument for Selφ
′
(E ′, K) is very similar. Lemma 3.2.2 gives an identification

of H1(GK , E[φ′]) with
(
L×/L×`

)χ
, where χ : G → Z/` is the cyclotomic character

defined by σζ` = ζ
χ(σ)
` . The same calculation shows H1(Gv, E[φ′]) ∼=

(
L×w/L

×`
w

)χv
,

where Lw = Kv(µ`) and χv is the restriction of χ to Gv.

To see that restriction respects the Kummer maps, one checks that the following

diagram commutes.

H1(G,Z/`) H1(GL,Z/`)Gal(L/K)
(
L×/L×`

)χy y y
H1(Gv,Z/`) H1(Gw,Z/`)Gal(Lw/Kv)

(
L×w/L

×`
w

)χv

where Gw is the subgroup Gal(Lw/Lw).

Infinite places again impose no Selmer conditions, since L×w/L
×`
w = C×/C×` when

v is infinite.

For v ∈ G, by Lemma 3.3.1 the condition imposed by v for α ∈
(
L×w/L

×`
w

)χv

to be in the Selmer group is that the restriction of α lies in H1
un(Gv,Z/`). Recall

that H1(Gv,Z/`) classifies cyclic extentions of degree ` over Kv, and H1
un(Gv,Z/`)

classifies unramified extensions. Since Lw = Kv(µ`) is unramified over Kv, α ∈

H1(Gv,Z/`) corresponds to an unramified extension of Kv if and only if its image

in H1(Gw,Z/`) corresponds to an unramified extension of Lw. But H1(Gw,Z/`) =

H1(Gw, µ`) is the unit subgroup O×
w/O

×`
w of L×w/L

×`
w . So the Selmer condition is that



59

in L×w , α can be written as a power of π`w times an element of O×
w , or more simply

ordwα ≡ 0 mod ` as the theorem states.

For v ∈ A, by Lemma 3.3.2 the Selmer condition is that α restricts to the trivial

element in H1(Gv, E[φ]) = Kv(µ`)
×/Kv(µ`)

×`, that is α ∈ Kv(µ`)
×`.

For v ∈ B, by Lemma 3.3.2 the Selmer condition is vacuous.

For v | `, the image of E(Kv)/φ
′E ′(Kv) must be some subgroup of

(
L×w/L

×`
w

)χv
,

which in turn is a subgroup of L×w/L
×`
w . Any such subgroup has the form L′v/L

×`
w .



Chapter 4

A convenient model of X0(14)

4.1 Introduction

This chapter performs a technical task that is needed for the next chapter, where we

will look for elliptic curves that have Tate-Shafarevich groups with large 7-torsion.

The method will require us to use elliptic curves with isogenies of degree 7 and 2,

defined over quadratic extensions of Q. Such curves are classified by the moduli space

X0(14). As it happens, X0(14) is itself an elliptic curve defined over Q, which means

that it has a degree 2 map to P1. In this section we construct an explicit model for

X0(14) and the map to P1 suited to the application we have in mind. In particular

the model will be symmetric with respect to the Atkin-Lehner involution w14.

The argument in chapter 5 could probably be done abstractly, without using the

explicit model. However, one reason to do it explicitly is so that we can use the

method to compute examples.

4.1.1 Outline of the method

Points on the moduli space X0(14) represent isogenies of degree 14 between elliptic

curves. There is a natural involution w14 onX0(14) which sends an isogeny to its dual

isogeny. The curve X0(14) has a map of degree 3 to X0(7); since X0(7) is isomorphic

to P1, the map is given by a single element p ∈ K(X0(14)). The model for X0(14)

we will find is a plane curve with coordinate functions p and p ◦w14. The Q-rational

map to P1 is then obtained by taking the quotient by the action of w14.

60



61

Our method for finding the relationship between p and p14 is somewhat elaborate,

meandering through several topics. The basic idea is to take advantage of the complex

analytic picture of X0(14) as a quotient of the upper half plane, in which p and p◦w14

are modular functions. The theory gives us a formula for the q-expansions of p and

p ◦w14, and by computing the first few terms of the q-expansions we can determine

the polynomial relationship between them. To reduce the number of terms needed,

we first find out where the model intersects the diagonal p = p◦w14. The intersection

points correspond to curves with a special endomorphism, so we can find them using

the theory of complex multiplication.

It would be interesting to know whether there is a simpler, more direct way to

find the explicit formulas we need, that does not resort to such deep and exotic

considerations.

4.2 Curves with a 7-torsion point

Recall the familiar model for E1(7), the universal elliptic curve with a distinguished

rational point of order 7:

E1(7) : y2 + (1− c− c2)xy + c2(c+ 1)y = x3 + c2(c+ 1)x2

for c 6= 0 or 1, where the distinguished 7-torsion point is (0, 0). We will derive this

here, because we will use the procedure later. For the sake of precision, E1(7) will

denote the surface cut out by the above equation inside P2
x,y ×A1

c \ {0, 1}, and Ec

will denote the fiber above c. Suppose we are given any elliptic curve defined over

some field F, with a distinguished rational 7-torsion point. We will now construct

an isomorphism over F to one of the fibers Ec, sending the distinguished 7-torsion

point to (0, 0). First put the curve in Weierstrass form (which is possible over any

field) and then translate the given point to (0, 0). Then the curve has the form

y2 + axy + by = x3 + cx2 + dx .
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Since (0, 0) does not have order 2, the curve does not have a vertical tangent there,

which means b 6= 0. The substitution y = y + (d/b)x puts the curve in the form

y2 + axy + by = x3 + cx2

(where a,b and c have changed). We calculate that the x coordinate of [2](0, 0) is

−c, and since (0, 0) does not have order 3, this is different from 0. Now the scaling

substitution (x, y) = ((b/c)2x, (b/c)3y) makes b = c. Replace a by 1 − a and let

C = b/a. We calculate the x coordinate of [3](0, 0) is a, and that of [4](0, 0) is

C2 +(1−a)C−a− b. Since (0, 0) has order 7 these are the same, and it follows that

a = 1− C − C2 and b = C2(C + 1).

This shows that for any field K, any elliptic curve E over K and any choice

P ∈ E(K)[7], the pair (E,P ) is isomorphic over K to (Ec, (0, 0)) for some c ∈ K.

In fact this value of c is unique; to see this one checks that for generic values of c

there is no isomorphism of Ec to some other Ec′ sending (0, 0) to (0, 0) (see [Si1],

Section III.1 for the general form of an isomorphism between two elliptic curves in

Weierstrass form). Therefore there is a bijection between K-isomorphism classes of

such pairs (E,P ) and values of the parameter c ∈ A1(K) \ {0, 1}; this A1
c \ {0, 1} is

X1(7), the ‘moduli space’ for Γ1(7) structure.

4.2.1 Example

When we apply this procedure starting with the curve Ec and the 7 torsion point

P = [2](0, 0), we obtain an isomorphism from Ec to Ec′ taking P to (0, 0), where

c′ = −c−1
c

. The isomorphism is

(x, y) →
(
x+ c2(c+ 1)

c4
,
y − (c2 − 1)x+ c2(c+ 1)2

c6

)
and these maps taken together give us an automorphism of the surface E1(7),

µ(c, x, y) =

(
−c− 1

c
,
x+ c2(c+ 1)

c4
,
y − (c2 − 1)x+ c2(c+ 1)2

c6

)
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This automorphism has order 3, since µ3 maps each fiber (Ec, [8](0, 0)), which is

(Ec, (0, 0)), to some other (Ec′ , (0, 0)), but for a generic fiber the only such map is

the identity map of Ec to itself, which means µ3 is the identity map on the surface.

Note that if we applied the process starting with (Ec, [−1](0, 0)), we would end

up with the automorphism (c, x, y) → (c, x,−y) which is the inverse map on each

fiber. Thus there are at most three different choices of the parameter c associated

to each subgroup of order 7 on an elliptic curve which agrees with the fact that

[Γ1(7) : Γ0(7)] = 3.

4.3 An ‘almost universal’ family E0(7)

Next we construct a quotient of E1(7) by µ, which will almost be an ‘universal

family for Γ0(7) structure’. If µ maps a value c to itself, then so does µ2, and Ec

has an automorphism of order 3, which means it has complex multiplication by cube

roots of unity and has j-invariant 0. This happens for only finitely many values of

c, since the j invariant map X1(7) → X(1) = A1
j has finite degree. For other values

of c, µ identifies three different fibers isomorphically. Thus each fiber with j 6= 0

maps to an isomorphic copy in the quotient. On fibers with j = 0, µ restricts to an

automorphism of order 3, which has at least one fixed point; therefore the quotient

map restricted to this fiber has ramification and so by the Riemann-Hurwitz formula

its image must have genus zero.

Remark: One cannot avoid this kind of degeneration on fibers with extra auto-

morphisms. In fact this leads to a proof that there is no universal family for X0(7)

and hence that X0(7) is not a ‘fine moduli space’.

Earlier we identified X1(7) with a subset of A1
c , so in particular the function field

K(X1(7)) equals K(c). Now, µ permutes the three values of c associated to a single

7-torsion group, in other words it permutes each fiber of the map X1(7) → X0(7). In
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fact, the associated extension of function fields is a Galois extension of degree 3 and

µ generates the Galois group. As we computed in the example, the three conjugates

under µ are c, −c−1
c

and −1
c+1

, so the sum of these

g = −c
3 + 3c2 − 1

c(c+ 1)
(4.1)

must be in K(c)µ = K(X0(7)). But since c has degree 3 over K(g), K(g) equals

K(X0(7)).

Now we will find a model for the quotient of E1(7) by µ, which we will call E0(7).

It will be a surface fibered over X0(7) ⊂ A1
g, with fibers Eg. The traces of x and y

in K(E1(7)) are in the fixed field K(E0(7)).

s := Trx = x+ µ∗x+ (µ2)∗x

t := Tr y = y + µ∗y + (µ2)∗y

(4.2)

From the definition of µ it is clear that s is linear in x over K(c), and that t is linear

in x and y over K(c). Thus g, s and t generate a subextension of index 3 in K(E1(7))

(which is generated by c, x and y), and so they must generate K(E0(7)).

By taking some resultants, using Maple, we compute the following relationship

between g, s and t. Write p = g − 5 (this will be more convenient later). Except for

the leading coefficients, this equation is a Weierstrass model for E0(7) over A1
p.

t2(−p8 − 52p7 − 1198p6 − 15964p5 − 134539p4

− 734188p3 − 2533410p2 − 5054400p− 4465125)

+st(p10 + 65p9 + 1919p8 + 33878p7 + 395976p6 + 3201380p5 + 18128879p4

+ 70998135p3 + 184026145p2 + 285076350p+ 200434500)

+t(p11 + 72p10 + 2378p9 + 47545p8 + 639276p7 + 6068676p6 + 41500949p5

+204438384p4 + 710941648p3 + 1662276995p2 + 2352091950p+ 1526080500) =
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= −s3(p8 + 52p7 + 1198p6 + 15964p5 + 134533p4 + 734032p3 + 2531836p2

+ 5047120p+ 4452100)

−s2(−p11 − 72p10 − 2377p9 − 47487p8 − 637755p7 − 6045017p6 − 41260464p5

−202782195p4 − 703214561p3 − 1638726301p2 − 2309541170p− 1491350475)

−s(−2p10 − 130p9 − 3847p8 − 68224p7 − 802731p6 − 6546312p5 − 37466398p4

− 148582310p3 − 390730538p2 − 615263810p− 440555550)

−2p9 − 113p8 − 2874p7 − 43151p6 − 421215p5 − 2770668p4 − 12275179p3

− 35305948p2 + 59792760p− 45403675

(4.3)

From the Weierstrass model for E1(7) we can compute a formula for the j-invariant

of Ec. Combining that formula with (4.1) and eliminating c, we find

j(g) = j(Eg) =
(g2 + 3g + 9)(g2 − 5g + 1)3

g − 5
=

(p2 + 13p+ 49)(p2 + 5p+ 1)3

p
(4.4)

4.4 A model for X0(14)

We could easily use (4.3) to make a model of X0(14), because the choice of a 2-

torsion point is simply the choice of a root of the cubic in s on the right hand side

of (4.3). However this would be too unwieldy; after all we know that X0(14) has

genus one. We will make a model by another method clearly revealing the Atkin-

Lehner involution w14, which can be defined in terms of the modular interpretation

of X0(14) as follows. Given a point P on X0(14), choose a pair (E,C14 ⊂ E[14])

in the isomorphism class associated to P ; this is equivalent to choosing an isogeny

(E → E ′) whose kernel has order 14. Take the dual isogeny (E ′ → E), whose kernel

also has order 14 and let P ′ be the associated point on X0(14). Define w14(P) = P ′.
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4.4.1 Finding the fixed points of w14

Fixed points of w14 arise from curves having a certain kind of complex multiplication.

4.4.1 Lemma. Suppose E → E ′ is an isogeny of degree n with cyclic kernel, and

that E is isomorphic to E ′. Then E has complex multiplication by a ring containing

an element of norm n.

Proof: We may assume E = C/〈1, τ〉 and E ′ = C/〈1, τ
n
〉. Since they are isomorphic,

there must be a complex number λ such that

λ 〈1, τ
n
〉 = 〈1, τ〉

Thus λ ∈ End(E ′), and as a map of Z-modules it has determinant n. Hence N(λ) =

n, proving the lemma.

There are only finitely many quadratic imaginary elements of given norm, so

there are only finitely many fixed points of wn on X0(n). This also follows from

the Riemann-Hurwitz formula, since the fixed points are ramification points of the

quotient map. In particular for X0(14), which has genus one, there can be at most

4 fixed points.

We easily check that one fixed point is (E = C/Z[
√
−14], P =

√
−14/14), which

is represented by τ =
√
−14 in the upper half plane. As it happens, Z[

√
−14] has

class number 4. The theory of complex multiplication tells us that the j-invariant of

this curve has degree 4 over Q, and that the conjugates are the j-invariants of the

curves C/L for other ideals L of Z[
√
−14]. So the fixed point of X0(14) given above

has at least 4 conjugates over Q. Now X0(14) and w14 are defined over Q, so all

conjugates of a fixed point are also fixed. But in the previous paragraph we showed

there are at most 4 fixed points, so we conclude that there are exactly 4 fixed points,

all conjugate.
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The computer package Pari tells us that the ideal class group is cyclic, and is

generated by the ideals above (3). Therefore the four ideal classes are represented

in the upper half plane by τ =
√
−14, −1−

√
−14

3
, −3

1+
√
−14

and
√
−14−16

9
. Again using

Pari, one can compute the corresponding values of the j-invariant, approximately,

as complex numbers. But we know that these values j(τ) are algebraic integers, so

one can then determine that their minimal polynomial is exactly

j4 − 16220384512j3 + 2059647197077504j2 + 2257767342088912896j

+ 10064086044321563803648

Using (4.4), one finds that the values of g on X0(7) mapping to these values of j

are the zeros of g4 − 34g3 + 115g2 + 214g + 2081, and the zeros of an irreducible

polynomial of degree 28. Therefore g4 − 34g3 + 115g2 + 214g + 2081 must be the

minimal polynomial of the ‘g coordinates’ of the 4 fixed points.

4.4.2 Using the fixed points of w14

Our model of X0(14) will be a plane curve C with coordinate functions g and g̃ :=

g ◦w14. Geometrically, since X0(7) = A1
g, C is the projection to X0(7)×X0(7) of the

graph of w14 in X0(14)×X0(14). We claim C is birational to X0(14), because g and

g̃ generate K(X0(14)). If they did not we would have K(g) = K(g̃). However for a

point (E,C7, P ∈ E[2]) on X0(14), g gives its image (E,C7) on X0(7), but this does

not determine the value of g̃ because generically the j-invariants of the 14-isogenous

curves E/〈C7, P 〉 are different for the 3 choices of P .

Since w14 is an involution, its graph {(x,w14(x))} ⊂ X0(14) × X0(14) is sym-

metric, and therefore C will be symmetric in the line g = g̃. It has degree 3 sep-

arately in g and g̃, because g̃ has degree 3 above K(g) and vice versa. There-

fore C has total degree at most 6. It intersects the line g = g̃ in the roots of

g4 − 34g3 + 115g2 + 214g + 2081, which we found above as the g values of the
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fixed points of w14. We now look for the other intersections of C with g = g̃ (which

do not come from fixed points of w14). We could find them by tediously examining all

curves having a complex endomorphism of degree 14. The following method requires

less computational work, although it takes longer to explain. Any other intersec-

tion would be a singular point of C, since it would be the image of a point P of

X0(14) that is not fixed by w14, and so P and w14(P) would be different points

with the same image on C. Since deg C ≤ 6, if there is another intersection it is the

only one, it is rational, and has multiplicity 2. Consider the map C to A2 given by

(g, g̃) 7→ (j(g), j(g̃)). The image is again birational to X0(14) for the same reason

that C is. Let Φ14(j, j14) denote the irreducible polynomial defining it. Our hypo-

thetical P would map to a rational root of Φ14(j, j). By Theorem 11 on page 143 of

[La], the roots of Φ14(j, j) are the j-invariants of curves corresponding to imaginary

quadratic orders that have elements of norm 14, and the multiplicity of the root

equals the number of such elements modulo units. We can easily list all imaginary

quadratic integers with norm 14, and using Pari we found that for all except two of

them, the orders they generate have class number greater than 1. That means the

j-invariants of the corresponding curves are not rational. The exceptions are 7+
√
−7

2

and its conjugate, in the order Z[1, 1+
√
−7

2
], so the corresponding value j = −3375

is a root with multiplicity 2. Using (4.4), the values of g with j(g) = −3375 are

g = −2 and the zeros of an irreducible septic. Now let P ∈ X0(14) denote a point

with j(P) = j14(P). Since j and w14 are defined over Q, all conjugates of P have

the same property; if g(P) were septic there would be at least 7 such points, but

we noted already there are only two. Hence g(P) = −2 and for the same reason

g̃(P) = −2. We conclude that C intersects g = g̃ doubly at g = −2, and there are

no other intersections.
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In coordinates x = g+g̃
2

and y = g−g̃
2

, C must take the form

ay6 + p2(x)y
4 + p4(x)y

2 = (x+ 2)2(x4 − 34x3 + 115x2 + 214x+ 2081) (4.5)

where p2 and p4 are undetermined polynomials of degrees 2 and 4. To find their

coefficients, we will compute part of the q-expansions of the modular functions g

and g̃.

4.4.3 Using the q-expansions

Define functions η(τ) and p(τ) on the upper half plane as follows.

η(q) = q1/24
∏
n≥1

(1− qn) where q = e2πiτ ,

p(q) = 49
η(q7)4

η(q)4
.

(4.6)

From [Bi] we learn that p(τ) is a well defined function on X0(7), and its only poles

and zeros on X0(7) are a single zero at the cusp τ = i∞ and a single pole at the

cusp τ = 0. We now show that g − 5 has the same poles and zeros on X0(7). The

cusps on X0(7) are the points where j = ∞; from (4.4) the possible values of g at

these points are 5 and ∞. Moreover from (4.4) one can see that the map g 7→ j is

unramified at g = 5 and has ramification degree 7 at g = ∞. Now, τ = 0 is a cusp of

width 7 on X0(7) which means the map X0(7) → j has ramification degree 7 there;

the other cusp has width 1 and so the map is unramified there. Thus τ = i∞ is the

same point on X0(7) as g = 5, while τ = 0 is the point g = ∞. As mentioned above,

the only zero of p is at τ = i∞ and its only pole is at τ = 0. Therefore g − 5 = Cp

for some constant C. One may identify the constant by substituting the q-expansion

g = 5 + Cp(q) into (4.4); then one must take C = 1 in order to obtain the usual

q-expansion for the j-invariant.

The involution w14 can be given as a function on the upper half plane by τ 7→ −1
14τ

.

The functional equation for η(τ) implies that p(τ)p(−1
7τ

) = 49. We define the function
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p̃(τ) on the upper half plane as

p̃(τ) := p

(
−1

14τ

)
=

49

p(2τ)
=

49

p(q2)
. (4.7)

Using Maple one can compute the beginning of the q-expansion of p using (4.6), and

that of p̃ using the (4.7). Substituting these into (4.5) determines the coefficients

exactly: our model C of X0(14) turns out to be

p3p̃3 − 392p2p̃2 − 2401(p p̃2 + p2p̃)− 19208p p̃+ 117649 = 0 (4.8)

Note: In principle, we could obtain this relationship between p and p̃ from their

q-expansions alone, without knowing (4.5), but this would be much more awkward

to do in Maple.

Below is graph of the curve C.
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This paragraph a small digression that will be helpful in computing an example

in the next chapter. When p is negative, there is just one real value of p̃ on the fiber

over p; since the three complex values of p̃ correspond to the three 2-torsion points on

Ep, when p is negative only one of them is real and so Ep(R) has only one connected

compontent. One can deduce directly that the 2-isogenous curve, denoted by E
(2)
p ,
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must have three real 2-torsion points and so E
(2)
p (R) has two connected components.

Another way to see this is to consider the 14-isogenous curve given by Ep̃; from the

graph, it has three real 2-torsion points, since all three values of p on the fiber over

p̃ are real. But this curve is 7-isogenous to E
(2)
p and the 7-isogeny cannot alter the

number of components.

4.5 Finding the quotient map

Taking the quotient of (4.8) by w14 will give us a 2 to 1 map to a line. To find it,

note that the function field of the quotient consists of all functions that are constant

on orbits of w14, in other words the symmetric functions in p and p̃. The symmetric

function t = 4p p̃ has degree 2 on the curve, since the inverse images are given by

p =
7529536− 307328t− 1568t2 + t3 ± (t− 196)

√
P4(t)

76832t

p̃ =
7529536− 307328t− 1568t2 + t3 ∓ (t− 196)

√
P4(t)

76832t

(4.9)

where

P4(t) = t4 − 2744t3 + 729904t2 − 105413504t+ 1475789056 . (4.10)

Therefore t generates the function field of the quotient, and defines the quotient map

X0(14) → A1
t .



Chapter 5

Tate-Shafarevich elements of order 7, over quadratic fields

5.1 Introduction

In this section we give a method of constructing elliptic curves E defined over

quadratic extensions K/Q, for which X(E/K)[7] is large. For the construc-

tion to work, we need to be able to find quadratic extensions within a given

family, in which a specified list of primes split in a particular way. The asser-

tion that such extensions exist is the ‘Arithmetic Hypothesis’ stated below;

under this hypothesis, the construction shows that X(E/K)[7] can be arbitrarily

large. Another way to view it is that one can use the construction to produce

examples for which X(E/K)[7] has any desired rank, as long as one can find

instances of extensions verifying the hypothesis where the specified list of primes is

large enough.

We will use the same notation as in the previous section.

5.1.1 Outline of the construction

A basic strategy to find elements of order p in Tate-Shafarevich groups is to find a

curve with an isogeny φ : E → E ′ of degree p, for which a structure theorem shows

the Selmer group has large rank, while one can independently bound the rank of E

by a 2-descent.

For p = 7, the previous section provides an explicit 2-to-1 map from X0(14) to

P1, where X0(14) is written in ‘natural’ coordinates (meaning that for each point

72
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x ∈ X0(14) one can explicitly write down the corresponding elliptic curves and

isogeny, in terms of the coordinates of x). Given this map, every point t ∈ P1(Q)

gives rise to elliptic curves E and Eσ over a quadratic field Kt, with Kt-rational

isogenies of degree 7 and degree 2.

How to make the Selmer group of φ large? Fix primes p1, . . . , pk, and let T ∈

P1(Q) be p1 . . . pkr for some r ∈ Z. It turns out that each pi splits in KT , and one

of the factors contributes a generator to the Selmer group of φ while its conjugate

tries to impose a condition. However we may choose a twist of E that has nonsplit

reduction at primes of the latter kind, and then the conditions are vacuous, so the

Selmer group is big.

How to bound the rank of E(KT ) by 2-descent? For this, we must bound the

Selmer groups of a 2-isogeny ϕ and its dual. The same phenomenon arises: for each i,

one factor of pi contributes a generator, and the other a condition, to Selϕ(E/KT ).

For the dual Selmer group, the primes exchange roles. So we need to be able to

arrange that the primes ‘kill each other off’, and for this we must assume an arith-

metic hypothesis concerning quadratic residue symbols of prime elements in KT . One

must also arrange that the class group C(KT )[2] is small, since it contributes to the

Selmer groups; this can be done using genus theory (which is the main motivation

for working over quadratic fields).

5.2 The 7-descent

This will apply to everything in this chapter. Let p1, . . . , pk be primes, not 2 or 7.

Let T denote the integer p1 . . . pkr where r ∈ Z; we will impose more conditions on

r in some of the results later. As in (4.10), let

P4(t) = t4 − 2744t3 + 729904t2 − 105413504t+ 1475789056,
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and put KT = Q(
√
P4(T )). Let

p =
T 3 − 1568T 2 − 307328T + 7529536 + (T − 196)

√
P4(T )

2574T
∈ KT (5.1)

and let p̃ be its conjugate. Recall that under the map X0(14) → P1
t , the preimage

of t = T consists of the points (p, p̃) and (p̃, p); we denote the corresponding

elliptic curves by Ep and Ep̃ respectively, with Cp, Cp̃ being their distinguished

7-torsion subgroups. ( At this stage, they are only determined up to Q-isomorphism.

It makes sense to use the subscript p because the coordinate p does deter-

mine the j-invariant of the point (p, p̃), indeed p gives the image on X0(7)

of that point.) The curves Ep and Ep̃ are 14-isogenous. As a remark, j(p) is

not determined by t because generically j(Ep) 6= j(Ep̃) in particular, generally

j(p) /∈ Q.

5.2.1 Lemma. For T = p1 . . . pkr, each pi splits in KT/Q.

Proof: The constant term of P4(t) is 1475789056 = 148 = 384162. Since pi | T ,

x2 − p4(T ) ≡ x2 − 384162 modulo pi, which splits Therefore by Kummer’s theorem,

pi splits in KT .

Notation: Write (pi) = PiP ′
i.

We now show that our curves have multiplicative reduction at p1, . . . , pk, at least

over an extension where the reduction becomes semistable.

5.2.2 Lemma. For each i, we have ordPi
(j(p)) < 0 and ordP ′i(j(p)) < 0.

Proof: Recall from the previous chapter that the map X0(14) → P1
t is given by

t = 4pp̃, so in our case T = 4pp̃ and

ordpi
NKT /Q(p) = ordpi

(T ) = 1

From (1), p takes the form R/(2574T ) where R is an algebraic integer, and one

calculates that R is not in the ideal piOKT
generated by the rational prime pi.
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However, one calculates that the numerator of p as given in (1) is not a multiple

of the rational prime pi. Therefore, possibly after interchanging Pi and P ′
i, we must

have ordPi
(p) = 2 > 0 and ordP ′i(p) = −1 < 0. Then using

j(p) =
(p2 + 13p+ 49)(p2 + 5p+ 1)3

p
(5.2)

the lemma follows, since pi 6= 7.

Note that given any point on X0(n), for any n, the corresponding Q-isomorphism

class contains a whole family of quadratic twists. Indeed, if a curve E : y2 = f(x)

has a Galois-stable subgroup, then the quadratic twist Ed : dy2 = f(x) does

too, since (−Y/
√
d,X) is the inverse of (Y/

√
d,X). The next lemma shows

that in our case, we can choose a curve Ep corresponding to (p, p̃) ∈ X0(14)

that is defined over KT and already has multiplicative reduction at each Pi

and P ′
i.

5.2.3 Lemma. Let K be a number field, and v a finite place with v - 6. Suppose E is

an elliptic curve defined over K with ordv j(E) < 0. Then there is a quadratic twist

of E, still defined over K and with the same j-invariant, which has multiplicative

reduction at v.

Proof: Take a minimal Weierstrass model for E at v, y2 = x3 + ax + b. Since

ordv j(E) < 0, we have ordv a
3 = ordv b

2 < ordv ∆, where ∆ = −4a3 − 27b2 is

the discriminant of E. Hence ordv a = 2m and ordv b = 3m for some integer m. In

fact since the model is minimal, m must be 0 or 1. Let π ∈ K be an element with

ordv π = 1, and twist E by πm; the twisted curve has a Weierstrass model

y2 = x3 + (a/d2)x+ b/d3

Clearly this is again a minimal model at v, in fact the coefficients are units at v.

When reduced modulo v, the cubic on the right hand side cannot take the form
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(x − u)3, so the reduction cannot be additive. But ordv j < 0 so the reduction is

multiplicative, as required.

Now that the curves have semistable reduction, it makes sense to ask whether Cp

‘has good reduction’, that is, whether the points in Cp reduce to nonsingular points

modulo primes above Pi.

5.2.4 Lemma. Cp ⊂ E0
p(KT,Pi

) if and only if ordPi
(p) ≥ 0, and similarly for P ′

i.

Proof: Recall that p is a coordinate for X0(7). Choose any c ∈ X1(7)(KT ) in the

preimage of p, and any prime Qi that divides Pi in KT (c)/KT . We need to check

whether a generator of Cp lies in E0
p(KT (c)Qi

), and to do this we will use the standard

model of an element of the moduli space X1(7). We may take c to be a Pi-adic

unit since one of c,− c+1
c

and − 1
c+1

will be a unit; the standard model of the curve

corresponding to c ∈ X1(7) is

Ec : y2 + (1− c− c2)xy + c2(c+ 1)y = x3 + c2(c+ 1)x2

with (0, 0) being the distinguished 7-torsion point. Note that Ec is a minimal

model, since c is a unit. Now choose a generator P for Cp such that (Ep, P ) and

(Ec, (0, 0)) correspond to the same point of X1(7). But then there must be an

isomorphism defined over KT (c) between these two models, since they are in the

same Q-isomorphism class, and X1(7) is a fine moduli space (so for any number

field K, there is at most one K-isomorphism class of curves in the Q-isomorphism

class corresponding to a particular point of X1(7)).

Therefore, Cp ⊂ E0
p(KT,Pi

) if and only if (0, 0) ∈ E0
c (KT,Qi

), in other words

(0, 0) reduces to a singular point modulo Qi (since Ec is a minimal model). Using

the equation for Ec, we compute that this happens when ordQi
c2(c + 1) = 0, or

equivalently when ordQi
p ≥ 0, using (4.1), and the lemma follows.

We already noted in the proof of 5.2.2 that, after interchanging Pi and P ′
i if

necessary, ordPi
p = 2 > 0 and ordP ′i p = −1 < 0. Since p and p̃ are conjugate,
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taking conjugates gives ordP ′i p̃ > 0 and ordPi
p̃ < 0. Using 5.2.4 we see Cp has good

reduction at Pi and bad reduction at P ′
i. The reverse holds for Cp̃.

We will now replace (Ep, Cp) by a twist as described in the next lemma, intending

that for this twist, Selφ(Ep/KT ) will be large.

5.2.5 Lemma. There is a curve defined over KT , in the isomorphism class corre-

sponding to (p, p̃) ∈ X0(14), which has split multiplicative reduction at each Pi and

nonsplit multiplicative reduction at each P ′
i.

Proof: At this point in our argument, Ep denotes a specific curve over KT , in just

the Q-isomorphism class corresponding to (p, p̃), with multiplicative reduction at

each Pi and P ′
i. Now choose an algebraic integer d in KT such that

1. for each Pi, d is a square modulo Pi if and only if Ep already has split multi-

plicative reduction at Pi, and

2. for each P ′
i, d is a square modulo P ′

i if and only if Ep already has nonsplit

multiplicative reduction at P ′
i.

When d is a nonsquare modulo P , twisting by d interchanges split and nonsplit

multiplicative reduction: here is a simple way to see this. If E : y2 = f(x) has split

reduction at P , then y2 = f(x) has N P − 1 solutions (x, y) over the residue field.

For nonsquare d, the twisted curve dy2 = f(x) then must have 2N P − (N P − 1) =

N P + 1 solutions over the residue field, which means it has nonsplit reduction.

Therefore the twist of Ep by d will be a curve defined over KT which satisfies the

requirements of the lemma.

Consider the 7-isogeny φ : Ep → E
(7)
p whose kernel is Cp, and let φ′ be the dual

isogeny. We now apply Corollary 2.4.3 to show that the Selmer group of φ is large.

Note first that at each P ′
i, Ep and hence also E

(7)
p have nonsplit reduction. In

that case, c(Ep) and c(E
(7)
p ) are 1 or 2, which means c(Ep) = c(E

(7)
p ) since they could
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only differ by a factor of 7. At each Pi, they have split reduction and Cp has good

reduction. Consider the Tate uniformisations of the curves: writing KP for KT,Pi
,

the isogenies Ep → E
(7)
p → Ep must take the form

K×
P /q

Z −→φ K×
P /q

7Z −→φ′ K×
P /q

Z

It must be this way around because, by the theory of Tate curves, E0(KP) equals

the subgroup O×
P of K×

P /q
Z, and we know the kernel Cp of φ is in this subgroup. This

shows c(E
(7)
p )/c(Ep) = ord q7/ord q = 7 at each Pi. The other factors in Corollary

2.4.3 make only a bounded contribution, because the torsion groups have order at

most 7, there are at most two infinite places v, at which the Ωv terms are either equal

or differ by a factor of 7, cv = 1 at finite places of good reduction, and at each finite

place of bad reduction the cv terms are either equal or differ by a factor of 7. One com-

putes that the primes of bad reduction are those dividing T . Therefore, we can make

# Selφ(Ep/K) have any desired size, simply by taking k −#{p | r} large enough.

5.3 The 2-descent

Now we turn to bounding the rank of E(KT ). Naturally, we will need to impose

some conditions on r in order to have a bound, and in fact we will have to assume

the Arithmetic Hypothesis stated below. Let ϕ : Ep → E
(2)
p denote the 2-isogeny

whose kernel is the distinguished 2-torsion point on Ep, and let ϕ′ denote the dual

isogeny. The Selmer groups for both of these isogenies are subgroups ofH1(KT , µ2) =

K×
T /K

×2
T . We’ll now work out the local conditions determining the Selmer groups.

5.3.1 Lemma. Suppose KP is a completion at one of Pi or P ′
i. If Ep[ϕ] ⊂

E0
p(KP) then Ep(KP)/ϕ′E

(2)
p (KP) = 0 and E

(2)
p (KP)/ϕEp(KP) = H1(KP , Ep[ϕ]) =

K×
P /K

×2
P . If Ep[ϕ] * E0

p(KP), the reverse holds.
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Proof: First we do it for the Pi, where the reduction is split. If Ep[ϕ] ⊂ E0
p(KP)

then the isogenies Ep → E
(2)
p → Ep take the form

K×
P /q

Z ϕ−−−→ K×
P /q

2Z ϕ′−−−→ K×
P /q

Z

where the first map is a 7→ a2. From this it is clear that the lemma is true for this

case. If Ep[ϕ] * E0
p(KP) then we have the same situation except that Ep and E

(2)
p

are interchanged.

Now we do it for the P ′
i. Note that for these primes we have ord p = −1, so by (5.2)

ord j = −7, and so ord q = −ord j is odd. Let Lw/KP be the quadratic extension

over which the reduction becomes split, in other words the unramified quadratic

extension of KP . If Ep[ϕ] ⊂ E0
p(KP) then the maps Ep(Lw) → E

(2)
p (Lw) → Ep(Lw)

again have the form

L×w/q
Z ϕ−−−→ L×w/q

2Z ϕ′−−−→ L×w/q
Z

where the first map is a 7→ a2. Furthermore, Ep(KP) is the kernel of the norm map

NLw/KP applied to L×w/q
Z, and E

(2)
p (K) is the kernel of NLw/KP applied to L×w/q

2Z.

Choose a uniformiser π of KP ; since Lw/KP is unramified π is also a uniformiser

of Lw. To show ϕ′ : E
(2)
p (KP) → Ep(KP) is surjective, take any a ∈ Ep(KP), and

represent it as an element uπn of L×w , where u is a unit. The condition for a ∈ Ep(KP)

is that N(a) = N(u)π2n is in qZ, and since ord q is odd this means N(a) = q2k for

some k. Therefore a mod q2Z is an element of E
(2)
p (KP), and it maps to a ∈ Ep(KP).

This shows Ep(KP)/ϕ′E
(2)
p (KP) = 0, and the assertion about E

(2)
p (KP)/ϕEp(KP)

then follows by local duality. (It can also be seen directly in a few lines.) Finally,

if Ep[ϕ] * E0
p(KP) then we have the same situation except that Ep and E

(2)
p are

interchanged. This completes the proof of the lemma.

The following lemma, which deals with the case where the curves have good

reduction, is a restatement of Proposition 2.3.2.
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5.3.2 Lemma. Suppose P is a place not dividing 2 where Ep has good reduction.

Then the images of Ep(KP)/ϕ′E
(2)
p (KP) and E

(2)
p (KP)/ϕEp(KP) are both the unit

subgroup O×
P/O

×2
P of K×

P /K
×2
P , which is the unramified subgroup of H1(KP , µ2).

Notation: Let us partition the set {Pi} ∪ {P ′
i} as A ∪ B, where A consists of those

places where Ep[ϕ] ⊂ E0
p(KP). For each (pi) = PiP ′

i, exactly one of Pi and P ′
i is in

A; call it P(A)
i and the other P(B)

i .

To describe the Selmer groups, let K(A,B) ⊂ K×/K×2 denote the subgroup

with ‘generators from A and conditions from B’; to be precise

K(A,B) = {a∈K×/K×2 : ordv a is even for all v /∈ A and a ∈ K×2
v for all v ∈ B}

Now, Selϕ(Ep/KT ) is close to KT (A,B), in the following precise sense: regarding

both groups as subgroups of K×
T /K

×2
T , their composite modulo their intersection is

bounded in terms of #{p | r}. Indeed, the two subgroups are defined by the same

local conditions, except that KT (A,B) has the ‘unit’ condition at places dividing

∞, 2 and r, while Selϕ(Ep/KT ) may have some other condition. At any rate, the

resulting difference in dimension cannot be more than the sum of the dimensions

of H1(Kv, µ2) = K×
v /K

×2
v ; for v - 2, this dimension is at most 2, and for v | 2 it is

bounded independently of the value of T since KT is always quadratic over Q. In

the same sense, Selϕ
′
(Ep/K) is close to KT (B,A).

We now begin to describe our arithmetic hypothesis, which basically asserts that

we can arrange for KT (A,B) and KT (B,A) to be bounded.

Arithmetic Hypothesis, part one. There is some number B with the following

property. Given any integer k and any set of primes p1, . . . , pk, we can find an integer

r such that

1. #{p | r} ≤ B

2. #{p | P4(p1 . . . pkr)} ≤ B
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Remarks: (i) The purpose of condition (2) is that via genus theory, it implies that

C(KT )[2] ≤ 2B−1, where as usual KT = Q(
√
P4(p1 . . . pkr)).

(ii) This hypothesis is a true statement: it is a special case of a theorem in sieve

theory (for instance Theorem 9.8 in [H-R], p 261).

If r satisfies the hypothesis and B < k it follows from C(KT )[2] < 2B that we can

reorder the pj so that {Pj : j < B} generates the same subgroup of C(KT )/C(KT )2

as {Pj} does. Note also that P ′
j = P−1

j in the class group, so replacing any Pj’s by

P ′
j would not alter the subgroup generated. Now we can find ideals aj for each j in

the range B < j ≤ k such that

1. aj is divisible only by primes in {P(A)
i : i ≤ j},

2. P(A)
j divides aj, and (P(A)

j )2 doesn’t divide aj,

3. aj ∈ PKI2
K (it is a principal ideal times the square of an ideal)

We choose generators of the principal ideals appearing in (iii) as follows. For each

B < j ≤ k, define α
(A)
j such that aj ∈ (α

(A)
j )I2

K . For each j, define α
(B)
j to be the

conjugate of α
(A)
j which will have the corresponding properties with respect to B.

Then {α(A)
j , α

(B)
j } is a set of linearly independent elements of the F2-vector space

K×
T /K

×2
T , otherwise some product of the aj and their conjugates would be the square

of an ideal, which is impossible because of (ii).

Arithmetic Hypothesis. As in part one, but with the following additional condi-

tion on r: that there is a choice of α
(A)
j and α

(A)
j as above such that the following

(k−B)× (k−B) matrix M is nonsingular over F2. The entries of M are, for each

pair (i, j) with B < i ≤ k and B < j ≤ k,

(M)i,j =
1

2

(
1−

(
α

(A)
i

P(B)
j

))

which is 1 if and only if α
(A)
i is a nonsquare modulo P(B)

j .
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See the end of this chapter for a discussion of the Arithmetic Hypothesis. Its purpose

is made clear in the next lemma.

5.3.3 Lemma. Suppose p1, . . . , pk, r satisfy the arithmetic hypothesis. Then #KT (A,B)

and #KT (B,A) are bounded in terms of B only.

Proof. First we introduce the notation

K(A) := {a ∈ K×/K×2 : ordv a is even for all v /∈ A}

which is an F2-vector space containing K(A,B). Note that

dimF2 K(A) ≤ 2 + #A+ dim C(K)[2] ≤ 2 + k +B

To see this, if α ∈ K× represents an element of K(A), we may write (α) = AI2,

where A is an ideal supported in A. Then the number of choices for α modulo K×2

is determined by

1. the number of units, modulo squares, which contributes at most 2 to the dimen-

sion,

2. the number of choices of squarefree A, which contributes #A to the dimension,

and

3. the number of choices of I; this is bounded by #C(K)[2], for if we have (α1) =

AI2
1 and (α2) = AI2

2 with α1 and α2 different modulo K×2, then I1 and I2 are

in different ideal classes, and I1I
−1
2 ∈ C(K)[2].

This proves the first inequality stated above, and the second follows directly from

condition (2) in the Arithmetic Hypothesis.

We noted that the α
(A)
j are linearly independent elements of K(A), so we may

choose a basis of K(A) consisting of the α
(A)
j and some other elements. The second
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part of the Arithmetic Hypothesis implies that the subspace {α ∈ 〈{βj}〉 : α ∈

K×2
v for all v ∈ B} is trivial. Hence

dimF2 K(A,B) ≤ dimF2 K(A)− (k −B) ≤ 2 + 2B

as the lemma asserts. The same follows for K(B,A) since the sets A and B are

conjugate.

Proof of the main result: By Lemma 5.3.3, KT (A,B) and KT (B,A) are bounded

in terms of B. It follows by the discussion preceding part one of the Arithmetic

Hypothesis that Selϕ(E
(2)
p /K) and Selϕ

′
(Ep/K) are bounded in terms of B and

#{p | r}; then invoking condition (1), they are bounded in terms of B. Therefore

the rank of Ep(K) is bounded in terms of B. On the other hand, we have seen

that the Selmer group for the 7-isogeny Ep → E
(7)
p can be made arbitrarily large,

by taking k large enough. In this way, the Tate-Shafarevich group of Ep can have

arbitrarily large 7-torsion.

5.4 An example of the construction

The method of construction presented in this chapter is motivated out of theoretical

interest rather than its practical value in producing particular examples (certainly

it is not the optimal way to produce them). So it is for the purpose of illustration

that we give a numerical example here (as well as to offer some substantiation for

the arithmetic hypothesis, but see Section 5.5 for much more). In principle all the

theory needed to compute an example has been given already, but in practice one is

led to make a finer analysis of certain terms that had no significance asymptotically,

especially in the 2-descent. This uses additional arguments which will be sketched

but not fully explained here.
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5.4.1 Example. Set T = −165 = −3 · 5 · 11. Then the quadratic field KT is

Q(
√

51808245241), and using (5.1)

p =
11057731 + 361

√
51808245241

12677280

Denote by Ep the corresponding elliptic curve; a very messy equation can be obtained

by substituting this value of p into (4.3). We can show that some twist E of Ep over

KT , X(E,KT ) has nontrivial elements of order 7. Of course, assuming those ele-

ments are not infinitely divisible in X(E,KT ), it follows that #X(E,KT )[7] ≥ 72

(by a standard consequence of properties of the Cassels-Tate pairing). In this

example, the 2-descent bounded the rank of E(KT ) by 2, without using all of the

information.

By taking T = −3 · 5 · 37 one obtains another very similar example. By taking

T = −3 · 5 · 37 · 61 yields an example where one can show that #X(E,KT )[7] ≥ 72

without assuming any conjectures about X.

We now sketch the steps in the computation of the first example, where T = −3 ·

5·11. For the 7-descent, we follow the general procedure, which is to replace the curve

by a twist. It turns out that we need a twist which has split multiplicative reduction

at the places dividing (T,
√
P4(T )− 38416) and nonsplit reduction at the conjugate

places (in fact this is a general phenomenon). One can arrange that twisting intro-

duces only one more bad prime, which will be a place of additive reduction. Then

one finds # Selφ(E,KT ) ≥ 72, applying Corollary 2.4.3. At each of the three primes

v dividing (T,
√
P4(T ) − 38416), the factor cv(E) appearing in Corollary 2.4.3 will

contribute a factor 7, and the ‘additive place’ introduced by twisting contributes at

worst 1
7
. To see that the remaining factors do not contribute anything, note that

E(KT )[φ] and E(7)(KT )[φ′] are trivial, and the factors Ω(E) and Ω(E(7)), which are

both products over the two infinite places, cancel each other: this is because E and

E(14) are conjugate, and because Ω(E(14)) and Ω(E(7)) have the same valuation at 7.
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One may compute most of the 2-descent without specifying the twist (as long

as the twist introduces only one additional bad prime). When T is negative, KT is

real. Further, T < −4 is sufficient to make p positive and p̃ negative. As explained

at the end of Section 4.4, this means Ep(R) has two connected components while

E
(2)
p (R) has one. Hence E

(2)
p (R)/ψEp(R) is trivial while Ep(R)/ψ′E

(2)
p (R) has order

two. This determines the Selmer conditions for the 2-descent imposed by one of the

real places, and the conjugate place imposes the reverse conditions. For odd finite

places, the Selmer conditions are determined as usual by the reduction of the kernels

of the isogenies. However for primes above 2 (which necessarily splits in KT ) we will

use a aspect of the theory of descent that holds in general but which we have not

needed elsewhere. For any isogeny φ, the homomorphisms

E ′(Kv)/φE(Kv) → K×
v /K

× deg φ
v

for each place v are in fact given by a single element of the function field K(E ′). This

function can be identified as having a certain divisor. In the present case the function

is s− s0 where s0 is the s coordinate of the 2-torsion point in the kernel of ψ. Using

this, one finds that for one of the primes above 2 the image of E
(2)
p (Q2)/ψEp(Q2) in

Q×
2 /Q×2

2 is O×
2 /O

×2
2 , represented by {1, 3, 5, 7}, and the image of Ep(Q2)/ψ

′E
(2)
p (Q2)

is the unramified subgroup, represented by {1, 5}. This determines the Selmer condi-

tions imposed by that prime, and the conjugate prime imposes the reverse conditions.

For ease of computations, I instead used {1, 3, 5, 7} for each of the conditions, thus

obtaining upper bounds on the Selmer groups. We also have not determined the

Selmer conditions at the bad prime introduced by twisting; however by Tate local

duality it can at worst increase the sum of the ranks by 1. The Selmer conditions that

are stated above are displayed as a matrix over F2, given below. Rows correspond to

generators of the S-units ofKT , where S consists of the primes dividing (T,
√
P4(T )+

38416): KT has class number 1, and the first three rows correspond to generators of
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the ideals dividing (T,
√
P4(T ) + 38416) above 3, 5, and 11 respectively, the fourth

row corresponds to a fundamental unit and the last row corresponds to −1. Columns

correspond to Selmer conditions: the first three columns indicate quadratic residue

symbols modulo the primes dividing (T,
√
P4(T )+38416) above 3, 5, and 11 respec-

tively, the fourth column is null because that is where the condition at a prime above

2 should go, and the last column gives the condition that elements be positive at one

of the real places. Note that presenting the S-units as an F2 vector space entails trans-

lating everything from multiplicative notation to additive notation; thus quadratic

residue symbols are translated from 1,−1 to 0, 1. The matrix for Selψ(Ep, KT ) is



1 0 0 0 1

0 0 1 0 0

0 1 0 0 0

1 1 1 0 0

1 0 1 0 1


which has rank 4. Incidentally, note that the assertion of the arithmetic hypothesis

holds in this instance. The matrix for Selψ
′
(E

(2)
p , KT ) looks the same, because by

Tate local duality the isogenous Selmer group has the opposite Selmer conditions,

and in this case that means all generators and conditions are replaced by their

conjugates. Putting everything together, one sees that the ranks of Selψ(Ep, KT )

and Selψ
′
(E

(2)
p , KT ) add up to at most 3. (Recall that the ‘additive prime’ does not

appear in the matrix, but as noted above it contributes at worst 1 to the sum of

the ranks.) Consequently the rank of E(KT ) is at most 1, since the kernels of both

isogenies are both pointwise rational, which means 2-torsion in E(KT ) accounts for

a nontrivial part of each Selmer group.
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The other examples are computed in very much the same way. In particular with

T = −3 · 5 · 37 · 61, the matrix for Selψ(Ep, KT ) is

0 0 1 0 0 1

0 1 0 1 0 1

0 0 1 0 0 0

0 1 0 0 0 0

1 1 1 0 0 0

1 0 0 0 0 1


which has rank 5. For what it’s worth, this is one more instance where the assertion

of the arithmetic hypothesis holds.

5.5 Remarks about the Arithmetic Hypothesis

In the absence of any reason that P(A)
i and P(B)

i should be correlated, we expect

that α
(A)
i is as likely to be a square modulo P(B)

i as a nonsquare, as if it were a

randomly chosen element of OKT
\ P(B)

i . The same applies to the α
(A)
i modulo P(B)

j

for i 6= j. Note that if the symbols
(
pi

pj

)
are fixed, this would almost determine the

products

(
α

(A)
i

P(B)
j

)(
α

(B)
i

P(B)
j

)
(it would determine them up to the variation resulting

from multiplying the αi’s by units); however the Arithmetic Hypothesis does not

seek to specify both symbols simultaneously. (Even if it did, nothing essential would

by changed, since we are able to choose p1, . . . , pk so that {
(
pi

pj

)
, i < j} take any

desired values, by the theorem on primes in arithmetic progressions.)

The Arithmetic Hypothesis is a Cebotarev-like statement, asserting that primes

are somewhat equidistributed with respect to each other. Of course, Cebotarev’s

theorem cannot be applied because we are not working in a fixed number field;

indeed we have a fixed set of primes p1, . . . pk and a varying number field KT , which
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is the reverse of the situation where Cebotarev applies. The Arithmetic Hypothesis

is however a statement about maximal ideals in the ring Q[t](
√
P4(t)).

Question. Can the Arithmetic Hypothesis be stated as a special case of some con-

jectural generalisation of the Cebotarev Density Theorem for certain rings of Krull

dimension 2?

Under the heuristic that M is a random matrix of 0’s and 1’s, the probability that

M is nonsingular over F2 is
∏k

j=1

(
1− 1

2j

)
. To see this, note the probability that the

first row is a nonzero vector is
(
1− 1

2k

)
. Given this, the probability that the second

row is independent of the first row is
(
1− 2

2k

)
=
(
1− 1

2k−1

)
. One continues to argue

row by row; finally the probability that the last row is not in the subspace spanned by

the previous rows is
(
1− 1

2

)
. As the dimension k increases to infinity,

∏k
j=1

(
1− 1

2j

)
must converge to a positive value (since

∑∞
j=1

1
2j converges); computationally this

value is 0.2887881 . . . . So under our heuristic, for any k if p1, . . . pk and r are chosen

at random then M will be nonsingular with probability greater then 1
4
. In fact there

is a better chance that the Arithmetic Hypothesis holds for given p1, . . . , pk and r,

since we have the added flexibility of multiplying the αi’s by units. When KT is

imaginary, the probability is twice as good, namely 0.58, and when KT is real it is

8
3

times as good, approximately 0.77. It is simple enough to calculate these values

with the aid of the corank calculation at the end of this subsection.

Of course, we do not really needM to be nonsingular; as long as its corank is small

relative to k we still get a result. As k tends to infinity, the expected corank tends to

0.85017983 . . . (a proof is given below). In particular the expected corank is bounded

by some constant C independent of k, so in our construction for random p1, . . . pk and

r we expect to obtain X(E/KT )[7] with rank k − C. A simple consequence is that

as k tends to infinity, the probability of obtaining nontrivial X[7] tends to 100%.
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Proof of the expected corank: First, for a random matrix M , let Ann(M) denote the

annihilator in (Fn2 )∗ of the row space of M .

Prob(M has corank n)

= (# of choices of a subspace S ⊆ (Fn2 )∗ of rank n) · Prob(Ann(M) = S)

=
# of choices of n independent elements in (Fn2 )∗

# of changes of basis
· Prob(Ann(M) = S)

=
(2k − 1) . . . (2k − 2n−1)

# GLn(F2)

(
1− 1

2k

)
. . .

(
1− 1

2n+1

)(
1

2k

)n
=

(
1− 1

2k

)
. . .
(
1− 1

2k−n+1

)
(2n − 1) . . . (2n − 2n−1)

(
1− 1

2k

)
. . .

(
1− 1

2n+1

)
In the limit as k →∞, this becomes∏∞

j=n+1

(
1− 1

2j

)
2n2
(
1− 1

2n

)
. . .
(
1− 1

2

) =

∏∞
j=1

(
1− 1

2j

)
2n2
(
1− 1

2

)2
. . .
(
1− 1

2n

)2
Therefore the expected corank is

∞∑
n=0

nProb(M has corank n) =
∞∏
j=1

(
1− 1

2j

) ∞∑
n=1

n

2n2
(
1− 1

2

)2
. . .
(
1− 1

2n

)2
which converges; computationally, it equals 0.85017983 . . .

5.5.1 Numerical Data on the arithmetic hypothesis

After various numerical experiments with different polynomials, the arithmetic

hypothesis still seems reasonable. The finer question, regarding the frequency dis-

tribution of ranks, remains unclear. One might guess that the heuristics described

above are correct on average. For each particular polynomial, the frequencies are

evidently skewed by some arithmetic phenomena. Perhaps the correct conjecture

would adjust the heuristic by fudge factors akin to the ‘twin prime constant’ (a

convergent product of local factors).

The polynomial P4(T ) has the special property that its constant term is a square,

which is the reason that odd primes dividing T necessarily split in Q(
√
P4(T )). Our
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numerical experiments aim to investigate the claim that every irreducible polynomial

whose constant term is square should satisfy the same hypothesis. The experiment

that yielded the clearest data (given below) considered the family of quadratic poly-

nomials fk(x) = x2+x+k2. For each value of k, we set T = 3·5·r where r is an integer

such that fk(T ) is prime (then by genus theory, the class number of Q(
√
fk(T )) is

odd). We then find the rank of the matrix formed by the legendre symbols of the

primes above 3 and 5, as in the arithmetic hypothesis. One obtains better data by

keeping the same two primes fixed, at least for each polynomial; due to way data is

selected (requiring fk(T ) to be prime), varying them muddies the data considerably.

The results are as follows. Here ‘EXPECTED’ just gives the expected frequency of

ranks for random matrices, and totals are given for the set of data appearing in

this table (10605 pairs of (k, T )) and for another set of data with higher values of k

(18225 pairs). For each polynomial, 400 values of T are tested, so each row adds up

to 400.

rank = 0 rank = 1 rank = 2

‘EXPECTED’ 1
16

= 6.8% 9
16

= 56.8% 3
8

= 37.5%

TOTAL (THIS SET) 6.8% 54.2% 39.0%

TOTAL (2ND SET) 6.8% 54.3% 38.9%

x2 + x+ 1 0 158 242

x2 + x+ 72 14 222 164

x2 + x+ 112 43 205 152

x2 + x+ 132 24 230 146

x2 + x+ 172 26 222 152

x2 + x+ 192 40 207 153

x2 + x+ 232 17 227 156

x2 + x+ 292 39 214 147

x2 + x+ 312 36 217 147
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rank = 0 rank = 1 rank = 2

x2 + x+ 372 16 222 162

x2 + x+ 412 33 205 162

x2 + x+ 432 21 231 148

x2 + x+ 472 26 209 165

x2 + x+ 492 36 230 134

x2 + x+ 532 19 223 158

x2 + x+ 592 40 210 150

x2 + x+ 612 37 212 151

x2 + x+ 672 11 225 164

x2 + x+ 712 34 231 135

x2 + x+ 732 14 237 149

x2 + x+ 772 23 215 162

x2 + x+ 792 40 212 148

x2 + x+ 832 16 230 154

x2 + x+ 892 33 198 169

x2 + x+ 912 36 225 139

x2 + x+ 972 15 221 164

5.5.2 Units in quadratic extensions of K[t]

This section, of mild independent interest, closes off an obvious avenue by which one

might try to verify the Arithmetic Hypothesis. The hope is that for some primes Pi,

a generator might come from a section A(t)+
√
P4(t)B(t), by virtue of a polynomial

identity A(t)2 − P4(t)B(t)2 = pi. We show this does not happen.

In general let K be a number field and let f ∈ K[t]. The units A +
√
fB of

K[t](
√
f) must satisfy A2 − fB2 ∈ K× since the unit group of K[t] equals K×.
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Question. How large can the unit group of K[t](
√
f) be, and how can it be deter-

mined?

A partial answer is given by the next two lemmas, which rule out certain kinds

of units.

5.5.1 Lemma. There are no solutions to A2 − fB2 = pm2 if p is any prime such

that f takes a nonsquare value modulo p, and m ∈ Z .

Proof: We may assume A and B are in OK [t] with content prime to p, by clearing

denominators and replacing m by another value. Suppose f(x) = n, with
(
n
p

)
= −1

for some p | p. Reducing modulo p, we have A
2 − fB

2
= 0 in Fp[t], although A and

B are nonzero. Divide out the largest power of (T − x) dividing both A and B in

Fp[t]. Then either A(x) 6= 0 or B(x) 6= 0. But we must have B(x) = 0, otherwise

f(x) would be a square in Fp. Now it follows that A(x) = 0, a contradiction.

5.5.2 Lemma. Let K = Q. There are no solutions to A2 − fB2 = pm2 for any

prime p ≥ (deg f + 2)2 such that f has distinct roots modulo p.

Proof: If there is a solution, then by 5.5.1 f(x) is a square modulo p for every

x ∈ Fp. Let d = deg f ; then there are at least 2p − d solutions to y2 = f(x) over

Fp, since f(x) equals 0 for at most d values of x. But since f has distinct roots,

y2 = f(x) is a curve of genus dd
2
e over Fp, so the number of solutions is less than

p + 1 + 2dd
2
e√p, by the Weil bound. After some simple manipulation, one obtains

p ≤ (d+ 2)2 as required.

In particular there can only be solutions for at most finitely many primes. In our

case, where f = P4, we need only consider p < 36 since the only primes dividing the

discriminant of f are 2 and 7. By a short computer search, we find that f takes a

nonsquare value modulo each prime p < 36 except for 2 and 7, so 5.5.1 rules these

out too. We are not interested in 2 or 7, since we cannot use them as pi’s.
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