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ABSTRACT 

In the neuroimaging and brain mapping communities, researchers have proposed 

a variety of computational methods and tools to learn functional brain network (FBN), 

such as general linear models (GLM), independent component analysis (ICA) and sparse 

dictionary learning (SDL). Recently, deep learning has attracted much attention in the 

fields of machine learning and data mining, and it has been proven that deep learning 

approach has superb representation power over traditional shallow models. In this 

research, three deep models, which are volumetric sparse deep belief networks (VS-

DBN), neural architecture search based DBN (NAS-DBN) and recurrent autoencoder 

(RAE), were designed to explore representations of fMRI volumes. The quantitative 

analysis showed that these deep models have promising capability in learning meaningful 

FBNs and revealed novel insights into the organizational architecture of human brain. 
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CHAPTER 1 

INTRODUCTION 

1.1 Functional Brain Networks 

Among the many imaging techniques available, non-invasive brain imaging 

techniques are showing great promises to reveal the intrinsic functional architecture of 

the brain. Functional magnetic resonance imaging (fMRI) records spontaneous 

fluctuations in the brain, yielding blood oxygenation level dependent (BOLD) based data. 

By revealing the synchronization of distant neural systems via correlations in 

neurophysiological measures of brain activity, functional brain networks (FBNs) have 

emerged as fundamental, organizational elements of human brain architecture.  

Reconstruction and interpretation of FBNs from fMRI data, either resting state 

fMRI or task-based fMRI, has been under extensive active research (Bullmore & Sporns, 

2009; Dosenbach et al., 2006; Duncan, 2010; Fox et al., 2005; Huettel, Song, & 

McCarthy, 2004; Kanwisher, 2010; Pessoa, 2012) in the past decade. In the neuroimaging 

and brain mapping communities, researchers have proposed a variety of computational 

methods and tools for brain network mapping, which can be generally categorized into 

model-driven or data-driven groups (Beckmann, DeLuca, Devlin, & Smith, 2005; 

Calhoun & Adali, 2012; Calhoun, Adali, Pearlson, & Pekar, 2001; Calhoun, Liu, & 

Adalı, 2009; B. Ge et al., 2016; Hu et al., 2015; Lv, Jiang, Li, Zhu, Chen, et al., 2015; Lv, 

Jiang, Li, Zhu, Zhang, et al., 2015; Lv, Jiang, Li, Zhu, Zhao, et al., 2015; Lv et al., 2017; 

McKeown, 2000; S. Zhang et al., 2016; W. Zhang et al., 2018; S. Zhao et al., 2015; Y. 
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Zhao et al., 2016). Among the data-driven methods, machine learning methodologies 

have played a central role in advancing both brain network reconstruction methods and 

their neuroscientific interpretations.  

Independent component analysis (ICA) offers a methodology for exploring FBNs 

in human neuroimaging data (Beckmann et al., 2005; Calhoun & Adali, 2012; Calhoun et 

al., 2001; Calhoun et al., 2009; McKeown, 2000) . This exploratory approach identifies 

maximally statistically independent distributed spatial patterns depicting source 

processes. Evidence has shown that ICA can extract the intrinsic FBNs in both task fMRI 

and resting fMRI. Sparse dictionary learning (SDL) (B. Ge et al., 2016; Hu et al., 2015; 

Lv, Jiang, Li, Zhu, Chen, et al., 2015; Lv, Jiang, Li, Zhu, Zhang, et al., 2015; Lv, Jiang, 

Li, Zhu, Zhao, et al., 2015; Lv et al., 2017; S. Zhang et al., 2016; W. Zhang et al., 2018; 

S. Zhao et al., 2015; Y. Zhao et al., 2016) has also been widely used in many fMRI 

studies.  

Recent studies (W. Zhang et al., 2018) comprehensively compared four variants 

of ICA methods and three variants of SDL methods using synthesized fMRI data with 

ground-truth. It was shown that ICA methods perform very well and slightly better than 

SDL methods when FBNs’ spatial overlaps are minor, but ICA methods have difficulty in 

differentiating FBNs with moderate or significant spatial overlaps. In contrast, the SDL 

methods perform consistently well no matter how FBNs spatially overlap. SDL methods 

are significantly better than ICA methods when spatial overlaps between networks are 

moderate or severe. Despite the advantages of SDL methods over ICA methods, 

however, it is worth noting that SDL methods are still fundamentally limited as they are 

“shallow” models, meaning that they are not able to represent hierarchical organization of 
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FBNs, which is an intrinsic nature of the brain (Ferrarini et al., 2009; L. Lin, Osan, & 

Tsien, 2006; Meunier, Lambiotte, & Bullmore, 2010; Meunier, Lambiotte, Fornito, 

Ersche, & Bullmore, 2009; Zhou, Zemanová, Zamora, Hilgetag, & Kurths, 2006). 

1.2 Review of Deep Learning 

Machine-learning systems are used to identify objects in images, transcribe 

speech into text, match news items, posts or products with users’ interests, and select 

relevant results of search. Increasingly, these applications make use of a class of 

techniques called deep learning. Conventional machine-learning techniques were limited 

in their ability to process natural data in their raw form. For decades, constructing a 

pattern-recognition or machine-learning system required careful engineering and 

considerable domain expertise to design a feature extractor that transformed the raw data 

(such as the pixel values of an image) into a suitable internal representation or feature 

vector from which the learning subsystem, often a classifier, could detect or classify 

patterns in the input. Deep-learning methods are representation-learning methods with 

multiple levels of representation, obtained by composing simple but non-linear modules 

that each transform the representation at one level (starting with the raw input) into a 

representation at a higher, slightly more abstract level. With the composition of enough 

such transformations, very complex functions can be learned. For classification tasks, 

higher layers of representation amplify aspects of the input that are important for 

discrimination and suppress irrelevant variations. An image, for example, comes in the 

form of an array of pixel values, and the learned features in the first layer of 

representation typically represent the presence or absence of edges at orientations and 

locations in the image. The second layer typically detects motifs by spotting 
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arrangements of edges, regardless of small variations in the edge positions. The third 

layer may assemble motifs into larger combinations that correspond to parts of familiar 

objects, and subsequent layers would detect objects as combinations of these parts. The 

key aspect of deep learning is that these layers of features are not designed by human 

engineers: they are learned from data using a general-purpose learning procedure. Deep 

learning is making major advances in solving problems that have resisted the best 

attempts of the artificial intelligence community for many years. It has turned out to be 

very good at discovering intricate structures in high-dimensional data and is therefore 

applicable to many domains of science, business and government.  

Convolutional neural networks (CNN) are designed to process data that come in 

the form of multiple arrays, for example a colour image composed of three 2D arrays 

containing pixel intensities in the three colour channels.(Karpathy et al., 2014; 

Krizhevsky, Sutskever, & Hinton, 2012; Lawrence, Giles, Tsoi, & Back, 1997; Simonyan 

& Zisserman, 2014) Many data modalities are in the form of multiple arrays: 1D for 

signals and sequences, including language; 2D for images or audio spectrograms; and 3D 

for video or volumetric images. There are four key ideas behind ConvNets that take 

advantage of the properties of natural signals: local connections, shared weights, pooling 

and the use of many layers. The first few stages are composed of two types of layers: 

convolutional layers and pooling layers. Units in a convolutional layer are organized in 

feature maps, within which each unit is connected to local patches in the feature maps of 

the previous layer through a set of weights called a filter bank. The result of this local 

weighted sum is then passed through a non-linearity such as a ReLU. All units in a 

feature map share the same filter bank. Different feature maps in a layer use different 
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filter banks. The reason for this architecture is twofold. First, in array data such as 

images, local groups of values are often highly correlated, forming distinctive local 

motifs that are easily detected. Second, the local statistics of images and other signals are 

invariant to location. In other words, if a motif can appear in one part of the image, it 

could appear anywhere, hence the idea of units at different locations sharing the same 

weights and detecting the same pattern in different parts of the array. Mathematically, the 

filtering operation performed by a feature map is a discrete convolution, hence the name. 

Although the role of the convolutional layer is to detect local conjunctions of features 

from the previous layer, the role of the pooling layer is to merge semantically similar 

features into one. Because the relative positions of the features forming a motif can vary 

somewhat, reliably detecting the motif can be done by coarse-graining the position of 

each feature. A typical pooling unit computes the maximum of a local patch of units in 

one feature map (or in a few feature maps). Neighbouring pooling units take input from 

patches that are shifted by more than one row or column, thereby reducing the dimension 

of the representation and creating an invariance to small shifts and distortions. Two or 

three stages of convolution, non-linearity and pooling are stacked, followed by more 

convolutional and fully-connected layers. Backpropagating gradients through a ConvNet 

is as simple as through a regular deep network, allowing all the weights in all the filter 

banks to be trained. Deep neural networks exploit the property that many natural signals 

are compositional hierarchies, in which higher-level features are obtained by composing 

lower-level ones. In images, local combinations of edges form motifs, motifs assemble 

into parts, and parts form objects. Similar hierarchies exist in speech and text from 

sounds to phones, phonemes, syllables, words and sentences.  
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Recurrent neural networks (RNN) process an input sequence one element at a 

time, maintaining in their hidden units a ‘state vector’ that implicitly contains information 

about the history of all the past elements of the sequence. (Han Wang; Sak, Senior, & 

Beaufays, 2014; Schuster & Paliwal, 1997)When we consider the outputs of the hidden 

units at different discrete time steps as if they were the outputs of different neurons in a 

deep multilayer network, it becomes clear how we can apply backpropagation to train 

RNNs. RNNs are very powerful dynamic systems but training them has proved to be 

problematic because the backpropagated gradients either grow or shrink at each time 

step, so over many time steps they typically explode or vanish. RNNs have been found to 

be very good at predicting the next character in the text or the next word in a sequence, 

but they can also be used for more complex tasks. For example, after reading an English 

sentence one word at a time, an English ‘encoder’ network can be trained so that the final 

state vector of its hidden units is a good representation of the thought expressed by the 

sentence. This thought vector can then be used as the initial hidden state of (or as extra 

input to) a jointly trained French ‘decoder’ network, which outputs a probability 

distribution for the first word of the French translation. If a first word is chosen from this 

distribution and provided as input to the decoder networks, it will then output a 

probability distribution for the second word of the translation and so on until a full stop is 

chosen. Overall, this process generates sequences of French words according to a 

probability distribution that depends on the English sentence. This rather naive way of 

performing machine translation has quickly become competitive with the state-of-the-art, 

and this raises serious doubts about whether understanding a sentence requires anything 

like the internal symbolic expressions that are manipulated by using inference rules. It is 
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more compatible with the view that everyday reasoning involves many simultaneous 

analogies that each contribute plausibility to a conclusion. Instead of translating the 

meaning of a French sentence into an English sentence, one can learn to ‘translate’ the 

meaning of an image into an English sentence. The encoder here is a deep CNN that 

converts the pixels into an activity vector in its last hidden layer. The decoder is an RNN 

like the ones used for machine translation and neural language modelling. There has been 

a surge of interest in such systems. RNNs, once unfolded in time, can be seen as very 

deep feedforward networks in which all the layers share the same weights. Although their 

main purpose is to learn long-term dependencies, theoretical and empirical evidence 

shows that it is difficult to learn to store information for very long. 

1.3 Unsupervised Deep Learning on FMRI 

Due to the weak supervision, in medical image analysis, the supervised deep 

models of CNN or RNN may not be directly applied to fMRI data. The lack of data is 

two-fold and more acute: there is general lack of publicly available data, and high-quality 

labelled data is even more scarce. The fMRI data are given with only coarse-grained 

labels or even no labels at all. What’s more, due to the complexity of human brain 

activity, many intrinsic FBNs could be activated at the same time and they cannot be 

labeled.   

In the past several years, there have been growing bodies of literature (Cui et al., 

2018; Han Wang; Hjelm et al., 2014; Hu et al., 2018; Huang, Hu, Dong, et al., 2018; 

Huang, Hu, Zhao, et al., 2018; Li, Huang, Chen, & Liu, 2018; Plis et al., 2014; Suk, Wee, 

Lee, & Shen, 2016; Y. Zhao et al., 2017; Y. Zhao, Ge, & Liu, 2018; Y. Zhao, Ge, Zhang, 

& Liu, 2018; Y. Zhao, Li, et al., 2018), including our own recent studies (Cui et al., 2018; 
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Han Wang; Hu et al., 2018; Huang, Hu, Dong, et al., 2018; Huang, Hu, Zhao, et al., 

2018; Li et al., 2018; Y. Zhao et al., 2017; Y. Zhao, Ge, & Liu, 2018; Y. Zhao, Ge, 

Zhang, et al., 2018; Y. Zhao, Li, et al., 2018), that adopted deep learning models into 

fMRI data modeling and associated applications.  

For instance, in (Hjelm et al., 2014), Hjelm et al. applied Restricted Boltzmann 

Machine (RBM) models (Fischer & Igel, 2012; Hinton, 2002; Yamashita, Tanaka, 

Yoshida, Yamauchi, & Fujiyoshii, 2014) to reconstruct FBNs from fMRI data and 

compared its performance to that of ICA methods. Based on synthetic and real task fMRI 

data, Hjelm et al. demonstrated that RBMs can be used to identify brain networks and 

their temporal activations with accuracy that is equal to or greater than that of ICA 

methods (Hjelm et al., 2014). Later, Hu et al. proposed to apply RBM models to fMRI 

time courses (Hu et al., 2018), instead of fMRI volume images. The proposed RBM 

method in (Hu et al., 2018) not only interprets fMRI time courses explicitly to take 

advantages of RBM in latent feature learning, but also substantially reduces model 

complexity and increases the scale of training set to improve model training. Their results 

based on Human Connectome Project (HCP) dataset demonstrated the superiority of the 

RBM method over ICA (Hu et al., 2018) in representing fMRI time series data. 

Moreover, the RBM method in (Hu et al., 2018) separated out components representing 

intermixed effects between task events, which could reflect inherent interactions among 

functionally connected brain regions. However, the RBM models in (Hu et al., 2018) and 

(Hjelm et al., 2014) for fMRI data were still shallow, that is, there were no deep 

structures of multiple layers of RBM layers used.  
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With deep learning method, hierarchical models for fMRI data can be constructed 

and high-level feature can be extracted which may contain more information than 

traditional methods. These computational deep methods can be generally classified into 

two categories: spatial approaches and temporal approaches.  

Modeling fMRI with temporal features has already been explored in the literature 

(F. Ge et al., 2015; F. Ge et al., 2018; Hu et al., 2018; Huang, Hu, Dong, et al., 2018; 

Huang, Hu, Zhao, et al., 2018).  For examples, Hu et al. (Hu et al., 2018) used restricted 

Boltzmann machine (RBM) to interpret fMRI temporal courses; Huang et al. (Huang, 

Hu, Zhao, et al., 2018) used deep convolutional auto-encoder (DCAE) to derive the 

features from task-based fMRI time series. Studies based on temporal approaches mostly 

focused on temporal features modeling while spatial information is overlooked. 

Studies based on spatial approaches usually focused on the spatially decomposed 

components derived from fMRI data and typically ignored temporal dynamics 

information(Jiang et al., 2015; Lv, Jiang, Li, Zhu, Zhang, et al., 2015; Plis et al., 2014). 

For examples, Lv et al. (Lv, Jiang, Li, Zhu, Zhang, et al., 2015)used SDL to investigate 

the brain’s spatial functional networks from fMRI data; Jiang et al. (Jiang et al., 2015) 

used the sparse representation to characterize the spatial functional regions with task-

based fMRI data.  

Due to the inter-subject variability is relatively more associated with the volatile 

time courses than with the spatial volumes in different imaging sessions, it appears that 

taking volumes as input possibly works better than time series in terms of modeling the 

FBNs for fMRI data in this case (Schmithorst & Holland, 2004). However, the spatial 
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approach comes with two challenges despite the fact that it handle inter-subject 

variability better (Schmithorst & Holland, 2004). The first challenge is overfitting caused 

by data paucity. Considering the tremendous dimension of fMRI volumes, which can be 

more than 200K voxel per frame (based on MNI152 template (Fonov, Evans, McKinstry, 

Almli, & Collins, 2009)) and much more than a typical neuroimage dataset size, the 

overfitting can be serious. The second challenge is the lack of high-quality label. The 

rfMRI data is weak-supervised since the psychological label is coarse-grained and no 

frame-wise label is given, plus the complex co-activities of multiple ICNs.   

In general, these previous studies focused on either spatial or temporal perspective 

of fMRI data and rarely modeled both domains simultaneously, thus, few of them has the 

ability to model the spatial-temporal variation patterns of FBNs. Therefore, a 

comprehensive and systematic framework is still in great need to recognize dynamic, 

temporal brain states at connectome-scale and model the brain’s spatial-temporal 

dynamic activities simultaneously. However, development of such a comprehensive 

framework faces major challenges including the lack of ground truth of underlying neural 

activities and the inherent complexity associated with those spatial-temporal patterns of 

connectome-scale functional networks (Huang, Hu, Zhao, et al., 2018; Wang et al., 

2018). 

In a more recent study, Zhao et al. proposed a spatiotemporal convolutional neural 

network (ST-CNN) (Y. Zhao, Li, et al., 2018) to jointly learn the spatial and temporal 

patterns of targeted networks from training data and to perform automatic identification 

of functional networks in test data yet the temporal features were derived from the spatial 

features inherently.. The proposed ST-CNN is evaluated by the task of identifying the 
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default mode network (DMN) from HCP fMRI data. Experimental results show that 

while the ST-CNN framework can capture the intrinsic relationship between the spatial 

and temporal characteristics of DMN and thus it ensures the accurate identification of 

DMN from independent datasets. 

In another recent study (Cui et al., 2018), Cui et al. proposed a novel framework 

of Deep Recurrent Neural Network (DRNN) to model the FBNs from task fMRI data, 

and it was shown that the proposed DRNN can not only faithfully reconstruct FBNs, but 

also identify more meaningful brain networks with multiple time scales which are 

overlooked by traditional shallow models. 

1.4 Dissertation Outline 

Chapter 1 starts with an introduction of the concept of FBNs and the traditional 

approaches to learn the FBNs from fMRI data. 

In Chapter 2, a novel volumetric sparse deep belief network (VS-DBN) model 

was designed and implemented through the popular TensorFlow open source platform to 

reconstruct hierarchical brain networks from volumetric fMRI. The experimental results 

showed that many interpretable and meaningful brain networks can be robustly 

reconstructed in a hierarchical fashion, and importantly, these brain networks exhibit 

reasonably good consistency and correspondence across multiple HCP task-based fMRI 

datasets.   
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In Chapter 3, It has been shown that deep neural networks are powerful and 

flexible models that can be applied on fMRI data with superb representation ability over 

traditional methods. However, a new challenge of neural network architecture design has 

also attracted attention: due to the high dimension of fMRI volume images, the manual 

process of network model design is very time-consuming and error prone. To tackle this 

problem, we proposed a Particle Swarm Optimization (PSO) based neural architecture 

search (NAS) framework for a deep belief network (DBN) that models volumetric fMRI 

data, named NAS-DBN. The core idea is that the particle swarm in our NAS framework 

can temporally evolve and finally converge to a feasible optimal solution. Experimental 

results showed that the proposed NAS-DBN framework can find robust architecture with 

minimal testing loss.  

In Chapter 4, a novel deep sparse recurrent auto-encoder (DSRAE) was proposed 

in an unsupervised way to learn spatial patterns and temporal fluctuations of brain 

networks jointly. The proposed DSRAE were evaluated and validated on three tasks of 

the publicly available human connectome project (HCP) fMRI dataset with promising 

results. The proposed DSRAE is among the early efforts in developing unified models 

that can extract connectome-scale spatial-temporal networks from 4D fMRI data 

simultaneously. 

In Chapter 5, the three models were summarized, and future work was discussed.  
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CHAPTER 2 

MODELING HIERARCHICAL BRAIN NETWORKS VIA VOLUMETRIC SPARSE 

DEEP BLEIEF NETWORK 

2.1 Overview 

It has been recently shown that deep learning models such as convolutional neural 

networks (CNN), deep belief networks (DBN) and recurrent neural networks (RNN), 

exhibited remarkable ability in modeling and representing fMRI data for the 

understanding of functional activities and networks because of their superior data 

representation capability and wide availability of effective deep learning tools. For 

example, spatial and/or temporal patterns of functional brain activities embedded in fMRI 

data can be effectively characterized and modeled by a variety of CNN/DBN/RNN deep 

learning models as shown in recent studies. However, it has been rarely investigated 

whether it is possible to directly infer hierarchical brain networks from volumetric fMRI 

data using deep learning models such as DBN. The perceived difficulties of such studies 

include very large number of input variables, very large number of training parameters, 

the lack of effective software tools, the challenge of results interpretation, etc. To bridge 

these technical gaps, we designed a novel volumetric sparse deep belief network (VS-

DBN) model and implemented it through the popular TensorFlow open source platform 

to reconstruct hierarchical brain networks from volumetric fMRI data based on the 

Human Connectome Project (HCP) 900 subjects release. Our experimental results 

showed that a large number of interpretable and meaningful brain networks can be 
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robustly reconstructed from HCP 900 subjects in a hierarchical fashion, and importantly, 

these brain networks exhibit reasonably good consistency and correspondence across 

multiple HCP task-based fMRI datasets. Our work contributed a new general deep 

learning framework for inferring multiscale volumetric brain networks and offered novel 

insights into the hierarchical organization of functional brain architecture. 

In this paper, a volumetric sparse Deep Belief Net (VS-DBN) was designed to 

explore the hierarchical organization of FBNs. As shown in Figure. 2.1, from tfMRI data 

of different tasks, the VS-DBN model learned features that can be interpreted as 

hierarchical task-specific FBNs. 

 

Figure. 2.1. Illustration of representing hierarchical structures of brain networks in tfMRI 

data by VS-DBN. (a) Preprocessed fMRI data was temporally concatenated in spatial 

fashion for input. Each fMRI volume data was treated as a single training sample for VS-

DBN. (b) A VS-DBN with 3 layers was trained with volumes, and each layer has 100 
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hidden nodes. (c) The weights of each layer in the trained VS-DBN were considered as 

brain networks and visualized in the standard brain space. 

2.2 Background 

Recently, deep learning has attracted much attention in the fields of machine 

learning and data mining (Bengio, Courville, & Vincent, 2013; Karpathy et al., 2014; 

Krizhevsky et al., 2012; Lawrence et al., 1997; LeCun, Bottou, Bengio, & Haffner, 1998; 

Liu, Han, Liu, & Li, 2018; Liu, Han, Zhang, Wen, & Liu, 2015; Schmidhuber, 2015; 

Simonyan & Zisserman, 2014), and it has been proven that deep learning approach is 

superb at learning high-level and mid-level features from low-level raw data. A deep 

learning architecture usually consists of deep network layers by stacking multiple similar 

building blocks. The bottom layer receives input and then passes the transformed 

versions of the input to the next layer, all the way up to the top layer. As a result, the 

architecture of a deep learning model acts as a hierarchical feature extractor as a whole 

(Bengio, Goodfellow, & Courville, 2015; Li et al., 2018). In the past several years, there 

have been growing bodies of literature (Cui et al., 2018; Han Wang; Hjelm et al., 2014; 

Hu et al., 2018; Huang, Hu, Dong, et al., 2018; Huang, Hu, Zhao, et al., 2018; Li et al., 

2018; Plis et al., 2014; Suk et al., 2016; Y. Zhao et al., 2017; Y. Zhao, Ge, & Liu, 2018; 

Y. Zhao, Ge, Zhang, et al., 2018; Y. Zhao, Li, et al., 2018), including our own recent 

studies (Cui et al., 2018; Han Wang; Hu et al., 2018; Huang, Hu, Dong, et al., 2018; 

Huang, Hu, Zhao, et al., 2018; Li et al., 2018; Y. Zhao et al., 2017; Y. Zhao, Ge, & Liu, 

2018; Y. Zhao, Ge, Zhang, et al., 2018; Y. Zhao, Li, et al., 2018), that adopted deep 

learning models into fMRI data modeling and associated applications. For instance, in 

(Hjelm et al., 2014), Hjelm et al. applied Restricted Boltzmann Machine (RBM) models 

(Fischer & Igel, 2012; Hinton, 2002; Yamashita et al., 2014) to reconstruct FBNs from 



 

16 

fMRI data and compared its performance to that of ICA methods. Based on synthetic and 

real task fMRI data, Hjelm et al. demonstrated that RBMs can be used to identify brain 

networks and their temporal activations with accuracy that is equal to or greater than that 

of ICA methods (Hjelm et al., 2014). Later, Hu et al. proposed to apply RBM models to 

fMRI time courses (Hu et al., 2018), instead of fMRI volume images. The proposed RBM 

method in (Hu et al., 2018) not only interprets fMRI time courses explicitly to take 

advantages of RBM in latent feature learning, but also substantially reduces model 

complexity and increases the scale of training set to improve model training. Their results 

based on Human Connectome Project (HCP) dataset demonstrated the superiority of the 

RBM method over ICA (Hu et al., 2018) in representing fMRI time series data. 

Moreover, the RBM method in (Hu et al., 2018) separated out components representing 

intermixed effects between task events, which could reflect inherent interactions among 

functionally connected brain regions. However, the RBM models in (Hu et al., 2018) and 

(Hjelm et al., 2014) for fMRI data were still shallow, that is, there were no deep 

structures of multiple layers of RBM layers used. Therefore, the hierarchical organization 

of functional brain activities and networks cannot be explored yet. In a more recent study, 

Zhao et al. proposed a spatiotemporal convolutional neural network (ST-CNN) (Y. Zhao, 

Li, et al., 2018) to jointly learn the spatial and temporal patterns of targeted networks 

from training data and to perform automatic identification of functional networks in test 

data. The proposed ST-CNN is evaluated by the task of identifying the default mode 

network (DMN) from HCP fMRI data. Experimental results show that while the ST-CNN 

framework can capture the intrinsic relationship between the spatial and temporal 

characteristics of DMN and thus it ensures the accurate identification of DMN from 
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independent datasets. In another recent study (Cui et al., 2018), Cui et al. proposed a 

novel framework of Deep Recurrent Neural Network (DRNN) to model the FBNs from 

task fMRI data, and it was shown that the proposed DRNN can not only faithfully 

reconstruct FBNs, but also identify more meaningful brain networks with multiple time 

scales which are overlooked by traditional shallow models.      

Prior studies of using deep learning models for fMRI data analysis, such as 

CNN/RBM/RNN (Cui et al., 2018; Han Wang; Hu et al., 2018; Huang, Hu, Dong, et al., 

2018; Huang, Hu, Zhao, et al., 2018; Li et al., 2018; Y. Zhao et al., 2017; Y. Zhao, Ge, & 

Liu, 2018; Y. Zhao, Ge, Zhang, et al., 2018; Y. Zhao, Li, et al., 2018), have exhibited 

great promises, however, it has been rarely examined whether/how to infer and 

reconstruct hierarchical brain networks from volumetric fMRI data directly using deep 

learning models such as deep belief networks (DBN). A major advantage of using DBN 

for fMRI data modeling is that DBN can naturally represent the hierarchical patterns of 

FBNs in an unsupervised manner (Bengio, 2009; Hinton, Osindero, & Teh, 2006). 

Theoretically, the unsupervised learning via DBN has the solid interpretability based on 

maximizing likelihood estimation rather than minimizing the reconstruction error, which 

makes DBN attractive (Bengio, 2009; Hinton et al., 2006). However, the perceived 

difficulties of developing DBN models for fMRI data include very large number of input 

variables (e.g., the hundreds of thousands of volumetric image intensities), very large 

number of training parameters (e.g., millions of DBN weights), the lack of effective 

software tools (e.g., there is no TensorFlow (Abadi et al., 2015) implementation of 

DBN), the challenge of results interpretation (e.g., many volumetric brain network maps 

in multiple layers) and etc. To bridge these technical and knowledge gaps, in this paper, 
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we designed a novel volumetric sparse deep belief network (VS-DBN) model, 

implemented it based on the popular TensorFlow open source platform, and applied it on 

the Human Connectome Project (HCP) 900 subjects release. Our extensive experimental 

results have shown that many meaningful FBNs can be robustly reconstructed from HCP 

900 subjects in a hierarchical fashion, and importantly, these reconstructed networks can 

be well interpreted based on current neuroscience knowledge. Interestingly, these 

reconstructed brain networks by DBN exhibit reasonably good consistency and 

correspondence across multiple HCP task-based fMRI (tfMRI) datasets, suggesting a 

possibly common functional organization architecture of the brain. In general, our works 

contributed a general DBN deep learning framework for inferring volumetric brain 

networks and offered new insights into the hierarchical functional organization 

architecture of the brain. The source codes and models in this paper will be released at: 

https://github.com/QinglinDong/vsDBN.  

2.3 Dataset and Pre-processing 

In this paper, we used the Human Connectome Project (HCP) 900 Subjects MR 

imaging data from Q3 Release as training dataset and all the data is available on 

https://db.human connectome.org. (Fischer & Igel, 2012). The HCP dataset is a 

systematic and comprehensive connectome-scale collection over 900 healthy young 

adults, aging 22-35. In all parts of the dataset, participants were scanned on the same 

equipment using the same protocol for each subject and the detailed acquisition 

parameters are shown in TABLE I. The number of brain voxels is either: 228,453 (MNI-

152 space of 2 mm spacing), 28,549 (MNI-152 space of 4 mm spacing), or 91,282 

(standard co-ordinate system of cortical surface vertices and subcortical voxels). In this 

https://github.com/QinglinDong/vsDBN
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paper, our experiments were based on the MNI-152 space of 2 mm spacing due to its 

superior spatial resolution.  

TABLE 2.1 Imaging Protocol of HCP Q3 TFMRI Dataset 

Parameter VALUE Parameter Value 

Sequence Gradient-echo EPI Matrix 104x90  

TR 720 ms Slice thickness 2.0 mm 

TE 33.1 ms Multiband factor 8 

flip angle 52 deg Echo spacing 0.58 ms 

FOV 208x180 mm BW 2290 Hz/Px 

 

Stimuli were projected onto a computer screen behind the subject’s head within 

the imaging chamber (Barch et al., 2013). The screen was viewed by a mirror positioned 

approximately 8 cm above the subject’s face. Seven categories of behavioral tasks were 

involved. 

TABLE 2.2 Size of HCP Q3 TFMRI Dataset 

Task VOLUMES Duration (Min) Samples 

Emotion 176 2:16 152,240 

Gambling 253 3:12 218,845 

Motor 284 3:34 245,660 

Language 316 3:57 273,340 

Relational 232 2:56 200,680 

Social 274 3:27 237,010 

Working Memory 405 5:01 350,325 

 

Before the tfMRI data was modeled with deep learning, standard preprocessing 

was applied. For consistency and fair comparison, 35 subjects that did not perform all 7 

tasks were excluded thus 865 out of 900 subjects’ data was used in this work. For tfMRI 



 

20 

images, the preprocessing pipelines included skull removal, motion correction, slice time 

correction, spatial smoothing etc. These steps are implemented by FSL FEAT (FMRIB’s 

Expert Analysis Tool).  

Spatial Resampling 

For all 865 subjects in the dataset, all volumes were registered to a same MNI-

152(Montreal Neurological Institute) T1-weighted standard template space, hence on a 

common affine. 

Frequency Filtering 

 A band filter was applied to remove high or low frequency signals. 

Detrending 

The global drift over the time series was removed. The absolute voxel intensity 

may be ignored since we are modeling the fMRI volumes. 

Normalization 

A spatial normalization was applied to all volumes such that they have zero mean 

and unit variance, yielding a Gaussian distribution. It helps the DBN training to converge 

better. 

Masking 

With the MNI152 mask, the backgrounds of all subjects were removed and the 

original 4D block of fMRI data (three spatial dimensions and a time dimension) was 

transformed into a 2D array (voxel dimension and time dimension). 
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The preprocessed dataset consisted of 1,678,100 volumes as training samples in 

total and the information of each task is shown in TABLE II. The volumes of all subjects 

in each task were temporally concatenated for a task-specific group-wise volumetric 

learning scheme and the details are explained in Section E. 

2.4 RBMs and DBNs 

Restricted Boltzmann Machines (RBMs) are generative models that approximates 

a closed-form representation of the underlying probability distribution of the training 

data. RBMs can also be interpreted as deterministic feed-forward neural networks and 

they are widely used as the building blocks of Deep Belief Nets (DBNs). As shown in 

Figure.2, RBMs can be viewed as undirected probability graphical models, i.e. Markov 

Random Fields which are complementary to the directed models, i.e. Bayesian Networks. 

(Fischer & Igel, 2012) 

 

 

Figure. 2.2 The RBM and DBN structures. 
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RBMs consist of an input layer of visible variables 𝑣𝑖 ∈ 𝑅 and a hidden layer of 

latent variables ℎ𝑖 ∈ 𝑅. Given the observed data, RBMs can model the dependencies of a 

set of visible variables 𝑣𝑖  and a set of hidden variables ℎ𝑖  over the set of observed data.  

For each pair of a visible node 𝑣𝑖 and a hidden node  ℎ𝑖 , the connection models the joint 

probability distribution as follows (Bengio et al., 2015; Fischer & Igel, 2012; Hinton et 

al., 2006): 

𝑃(𝒗, 𝒉) =
1

𝑍
𝑒−𝐸(𝒗,𝒉) (1) 

where Z is a normalization term and E (v, h) is an energy function defined by the 

interaction of visible variables and hidden variables. Given a set of observations v, the 

model parameter 𝜽 is optimized when the likelihood of the probability of training data 

𝑃(𝒗) is maximized which is the same as maximizing the log-likelihood given by: 

ln 𝑃(𝒗|𝜽) = ln
1

𝑍
∑𝑒−𝐸(𝒗,𝒉)

ℎ

                              

                  = ln∑𝑒−𝐸(𝒗,𝒉)

ℎ

− ln∑𝑒−𝐸(𝒗,𝒉)

𝑣,ℎ

(2)
 

However, computing the likelihood of the undirected models and their gradients 

for inference in generally computationally intensive, thus RBMs restrict the interactions 

only those between visible variables and hidden variables to yield simple conditional 

probabilities: 

𝑃(𝒗|𝒉) = ∏ 𝑃(𝑣𝑖|𝒉)
𝑚

𝑖=1

(3) 

𝑃(𝒉|𝒗) = ∏ 𝑃(ℎ𝑗|𝒗)
𝑛

𝑗=1

(4) 
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To calculate the conditional probabilities in (3) an (4), the energy function is 

defined for different distribution of training data. For binary images where the RBM was 

first applied, both visible nodes and hidden nodes are binary variables in Bernoulli 

distribution. In the context of fMRI data, the activation of each voxel being real-valued 

and in Gaussian distribution. Thus, in this paper, Gaussian-Bernoulli E (v, h) is adopted 

as energy model (Cho, Raiko, & Ilin, 2013). Note the interactions between 𝑣𝑖  and ℎ𝑖  as 

𝑊𝑖𝑗 , the visible bias as 𝑎𝑖, the hidden bias as 𝑏𝑗, the standard deviations of visible nodes 

𝜎𝑖, the energy function is defined as: 

𝐸(𝒗, 𝒉) = −∑
(𝑎𝑖 − 𝑣𝑖)

2

𝜎𝑖
2

𝑖

−∑ 𝑏𝑗ℎ𝑗
𝑗

−∑
𝑣𝑖
𝜎𝑖

𝑖𝑗

𝑊𝑖𝑗ℎ𝑗 (5) 

With the energy defined in (5), the conditional probabilities in (3) and (4) can be 

computed as follows, which can also be interpreted as the firing rate of a stochastic 

neuron with sigmoid activation function.  

𝑃(ℎ𝑖 = 1|𝒗) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (∑ 𝑊𝑖𝑗𝑣𝑖
𝑗

+ 𝑏𝑗) (6) 

𝑃(𝑣𝑖 = 1|𝒉) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (∑ 𝑊𝑖𝑗ℎ𝑖
𝑖

+ 𝑎𝑗) (7) 

To update the model, the gradient of log-likelihood in (2) is estimated using Gibbs 

Sampling methods as a Markov Chain Monte Carlo (MCMC) Technique, where the angle 

brackets denote the expectation with respect to the specified distribution (Fischer & Igel, 

2012). 
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𝜕 ln  (𝒗|𝜽)

𝜕𝑊𝑖𝑗
⋍ 〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙 (8) 

𝜕 ln  (𝒗|𝜽)

𝜕𝑎𝑖
⋍ 〈𝑣𝑖〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖〉𝑚𝑜𝑑𝑒𝑙 (9) 

𝜕 ln  (𝒗|𝜽)

𝜕𝑏𝑗
⋍ 〈ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙 (10) 

However, the 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙  is still intractable due to computation burden of Gibbs 

Sampling where summing over all values of the visible variables has exponential 

complexity. The contrastive divergence (CD) algorithm is used to approximate the 

gradient (as shown in TABLE III): 

 

As shown in Figure. 1 and Figure. 2, with 3 RBMs as building blocks, the stacked 

model forms a DBN, yielding a higher level of features. As similar to an RBM that can 

be trained by the CD algorithm successfully (TABLE III), a DBN can be trained with the 

same method in a layer-wise manner. (Hinton et al., 2006) 

TABLE 2.3 ALGORITHM: Contrastive divergence 

Input: RBM, training batch X∈ ℝ𝒕×𝒏 

Output: parameter approximation 𝑊𝑖𝑗, 𝑎𝑖 , 𝑏𝑗, for i=1, …, n, j=1, …, m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

Initialize  𝑊𝑖𝑗 , 𝑎𝑖 , 𝑏𝑗 to ℕ (0, 1) for i=1, …, n, j=1, …, m 

for all v in X do 

      sample  ℎ𝑗~ p (ℎ𝑗 |𝒗) 

      sample  𝑣𝑗~ p (𝑣𝑖|𝒉) 

      for i=1, …, n, j=1, …, m do 

            𝑊𝑖𝑗  ←  𝑊𝑖𝑗 + 𝛼(〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑟𝑒𝑐𝑜𝑛 −  𝛽 · 𝑠𝑖𝑔𝑛(𝑊𝑖𝑗)) 

            𝑎𝑖  ←  𝑊𝑖𝑗 + 𝛼(〈𝑣𝑖〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖〉𝑟𝑒𝑐𝑜𝑛) 

            𝑏𝑗  ←  𝑊𝑖𝑗 + 𝛼(〈ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈ℎ𝑗〉𝑟𝑒𝑐𝑜𝑛) 
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2.5 VS-DBN for fMRI  

Modeling fMRI with temporal features has already been explored in the literature 

(F. Ge et al., 2015; F. Ge et al., 2018; Hu et al., 2018; Huang, Hu, Dong, et al., 2018; 

Huang, Hu, Zhao, et al., 2018). However, since the inter-subject variability is relatively 

more associated with the volatile time courses than with the spatial volumes in different 

imaging sessions, it appears that taking volumes as input possibly works better than time 

series in terms of modeling the FBNs for fMRI data in this case (Schmithorst & Holland, 

2004). In this paper, a volumetric learning scheme was applied where a volume from the 

fMRI data was taken as a feature and each time frame was taken as a sample. Thus, after 

preprocessing, the volumes of all subjects were concatenated along time dimension and 

shuffled for further group-wise training. As shown in Figure.1(a), each fMRI volume at a 

time point was used as a training sample and the DBN was trained in an unsupervised 

fashion DBN. 

Moreover, to reduce overfitting and improve generalization, weight regularization 

was adopted in the proposed model. In each iteration, the weight updates with the 

estimated derivative and an extra term of weight regularization derivative. In this paper, 

L1 weight penalty was adopted as the regulation term and it calculated the derivative of 

the sum of the absolute values of the weights (Bengio et al., 2015; Fischer & Igel, 2012; 

Hinton et al., 2006). With a weight decay rate 𝛽, the overall weight update was: 

𝜕 ln  (𝒗|𝜽)

𝜕𝑊𝑖𝑗
= 〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑟𝑒𝑐𝑜𝑛 −  𝛽 · 𝑠𝑖𝑔𝑛(𝑊𝑖𝑗) (11) 

The sparse weight regularization works by causing most of the weights to become 

zero while allowing a few of the weights to grow large. As shown in Figure.1(b), a DBN 
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model consisting of 3 RBM with weight regularization was built in a spatial fashion, by 

taking tfMRI volumes as input. In the context of fMRI data, L1 regularization can 

denoise the FBNs and improve interpretability by suppressing useless weights and 

allowing important model parameters to become larger, which is considered as an 

important methodology contribution of this work and it will be demonstrated in the 

following results sections.  

With respect to interpreting a trained VS-DBN in an fMRI context, each row of 

weight vector was mapped back into the original 3D brain image space, which was the 

inverse operation of masking in preprocessing steps and was interpreted as an FBN. As 

shown in Figure.1(c), after the DBN was trained layer-wisely on a large-scale tfMRI 

dataset, the trained weights modeled a feature representation with the latent variables in 

the hidden nodes, thus yielding interpretable FBNs. Each weight showed the dependency 

of each voxel with a latent variable. For deeper layers, the linear combination approach 

was used to interpret the connection (Lee, Grosse, Ranganath, & Ng, 2009). With this 

approach, 𝑊1 was visualized for the first hidden layer as FBNs, 𝑊2 ×𝑊1 for the second 

layer and 𝑊3 ×𝑊2 ×𝑊1 for the third layer, respectively. To analyze the internal 

representation of each layer, the connection to a hidden node will be visualized, which 

will be illustrated later in Figure. 3(a-c) and Figure. 4(a-c).  

Here, a group-wise scheme of VS-DBN was proposed to model fMRI data. 

Considering the large inter-subject variability among human brains, arbitrary selection of 

a single individual may not effectively represent the population, thus a group-wise 

learning scheme was needed to reduce inter-subject variability by jointly registering the 

volumes to a common reference template corresponding to the group average. Due to the 
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wide individual variation of human brain, the arbitrary selection of a single individual 

may not truly represent the population. In this paper, a group-wise learning scheme was 

used to reduce biases by jointly registering the volumes to a common reference 

corresponding to the group average.  

Besides the massive group-wise population size, the VS-DBN was inherently 

much more computationally expensive despite the merit of the volumetric deep learning 

model, compared to a temporal fMRI time series model. In the context of fMRI data, the 

spatial dimension is much higher than the temporal dimension in most cases due to the 

high cost of single fMRI scan, yielding a much larger trainable parameter space in the 

model correspondingly. Consider HCP 3D images and one single layer of RBM, there are 

around 20K trainable parameters for temporal approach is, 20M for volumetric. 

Moreover, the seriously large population of data will put significantly computational 

burden on the model training.  

To solve this problem, in this paper, TensorFlow (Abadi et al., 2015), which is a 

popular deep learning framework and provides great convenience coding with GPUs, was 

adopted with high efficiency GPU computation to fill the gap. Based on TensorFlow, we 

designed and implemented a fast and flexible DBN to realize the proposed VS-DBN 

specifically and the source code will be released at 

https://github.com/QinglinDong/vsDBN. Below are the details of implementation:  

Nodes 

https://github.com/QinglinDong/vsDBN
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According to the dataset, the visible layer of DBN model was constructed with 

228,453 nodes. Hyperbolic tangent function was chosen as the activation function instead 

of sigmoid since the fractional nature of the fMRI data.  

Initialization 

 To start with training, the weights and biases are initialized from a Gaussian with 

zero-mean and a standard deviation of 0.01. 

Batch Normalization 

To improve the convergence, batch normalization technique was applied to each 

hidden layer, which explicitly forced the activations to be unit Gaussian distributed. 

Converging 

With a learning rate of 0.01, batch size of 20 and weight-decay rate of 0.1, the 

models were trained for 20 epochs and the hyperparameters were selected by grid search 

to achieve a good convergence and interpretability. 

Mni-batches 

The volumes were divided into mini batches with a size of 5. Mini batches take 

the advantage of GPU boards better and accelerate tCraining with a proper size. 

However, if the batch size was too large, it may end up with less efficiency or even not 

converging, unless learning rate was decreased even larger. 

Progressively Loading 

Due to the very large size of fMRI dataset, a progressively loading algorithm was 

used to tackle the issue that big data won’t fit in memory (Ross, Lim, Lin, & Yang, 

2008).  
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Reproducibility 

All experiments were repeated 5 times to test the stability of consistency of 

results. 

2.6 Analysis of DBN-FBNs 

To explore the representation on task fMRI data, seven task-specific VS-DBNs 

were trained on fMRI data of 7 HCP tasks independently using the same 

hyperparameters. For each task-specific VS-DBN, three hidden layers were constructed, 

each with 100 nodes (empirically set). To fairly compare the FBNs of different layers, the 

numbers of hidden nodes were set to be the same intentionally. To achieve fair 

comparison across FBNs from different task datasets and different layers, all maps from 

different layers were normalized and equally thresholded. Each layer of a task-specific 

VS-DBN model acquired 100 FBNs and two randomly chosen task of emotion and 

gambling is illustrated.  

The FBNs derived from the emotion task is shown in Figure. 3 (a-c). In the 

emotion task, the participants are presented with blocks of trials that ask them to decide 

either which of two faces presented on the bottom of the screen match the face at the top 

of the screen, or which of two shapes presented at the bottom of the screen match the 

shape at the top of the screen. The faces have either angry or fearful expressions (Barch 

et al., 2013). In layer 1, there are visual (no. 30 in Figure. 3(a)), frontal (no. 56 in Figure. 

3(a)), motor (no. 99 in Figure. 3(a)), subcortical area (no. 42 in Figure. 3(a)), 

frontopariatal network (no. 64 in Figure. 3(a)) and sensorimotor (no. 20 in Figure. 3(a)), 

etc. In layer 2, there are default mode network (no. 71 in Figure. 3(b)), executive control 

network (no. 38 in Figure. 3(b)) and frontopariatal network (no. 1, 45 in Figure. 3(b)), 
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etc. In layer 3, there are default mode network (no. 35, 64 in Figure. 3(c)) and 

frontopariatal network (no. 29 in Figure. 3(c)), etc. 

 

Figure. 2.3(a). Visualization of 100 FBNs learned in layer 1 of the VS-DBN from 

emotion task. Each network is visualized with the most informative axial slice. The index 

of each of these 100 networks is on the top left.   
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Figure. 2.3(b). Visualization of 100 FBNs learned in layer 2 of the VS-DBN from 

emotion task. Each network is visualized with one most informative axial slice. The 

index of each of these 100 networks is on the top left.   
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Figure. 2.3(c). Visualization of 100 FBNs learned in layer 3 of the VS-DBN from 

emotion task. Each network is visualized with one most informative axial slice. 

 

The FBNs derived from the gambling task is shown in Figure. 4(a-c). In the 

gambling task, the participants play a card guessing game where they are asked to guess 

the number on a mystery card in order to win or lose money. Feedback is the number on 

the card the participants are provided with money because of completing the task, though 

it is a standard amount across subjects. (Barch et al., 2013) In layer 1, there are visual 

(no. 60 in Figure. 4(a)), frontal (and no. 62 in Figure. 4(a)), motor (no. 15 in Figure. 4(a)) 

and subcortical area (no. 51 in Figure. 4(a)), etc. In layer 2, there are default mode 

network (no. 71 in Figure. 4(b)) and frontopariatal network (and no. 2 in Figure. 4(b)), 

etc. In layer 3, there are default mode network (no. 72 in Figure. 4(c)) and frontopariatal 

network (no. 38 in Figure. 4(c)), etc. 

 

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/methadone
https://www.sciencedirect.com/topics/medicine-and-dentistry/mustard-gas
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Figure. 2.4(a). Visualization of 100 FBNs learned in layer 1 of the VS-DBN from 

gambling task. Each network is visualized with one most informative axial slice. 

 

 

 

Figure. 4(b). Visualization of 100 FBNs learned in layer 2 of the VS-DBN from gambling 

task. Each network is visualized with one most informative axial slice. 
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Figure. 2.4(c). Visualization of 100 FBNs learned in layer 3 of the VS-DBN from 

gambling task. Each network is visualized with one most informative axial slice. 

By visual inspection, it is observed that these meaningful group-wise FBNs agree 

with neuroimaging knowledge and can be well interpreted. The FBNs from other 5 tasks 

are given in supplementary materials (Figure. 1-5). Notably, we obtained similar 

promising results in all HCP task fMRI datasets, suggesting the effectiveness of the VS-

DBN. In the following sections, the FBNs are compared with and validated by other 

standard methods, and the hierarchy between layers is quantitatively analyzed.  

 

2.7 Comparison of VS-DBN with GLM 

To quantitatively evaluate the performance of DBN in modeling tfMRI data, a 

comparison study between VS-DBN results and the widely known GLM activation 

results is investigated in this section. Specifically, the GLM-based activation detection 

result is performed individually and averaged group-wisely. Task designs are convoluted 
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with the double gamma hemodynamic response function and set as the repressors of 

GLM. The contrast-based statistical parametric mapping was carried out with T-test and 

p<0.05 (with cluster correction) is used to reject false positives. All the functional 

networks are thresholded at Z > 2.3 after transformation into “Z-scores” across spatial 

volumes.  

 
Figure. 2.5.  OR between Emotion FBNs from GLM and emotion FBNs from DBN layer 

1, layer 2, layer 3 
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Figure. 2.6.  OR between Gambling FBNs from GLM and gambling FBNs from DBN 

layer 1, layer 2, layer 3 

 

To compare the functional networks derived by these two methods, the spatial 

overlap rate is defined to measure the similarity of two FBNs in accordance with previous 

studies (Lv, Jiang, Li, Zhu, Zhang, et al., 2015). Here, the spatial similarity is defined by 

the overlap rate (OR) between two functional networks 𝑁(1)𝑎𝑛𝑑 𝑁(2)as follows, where N 

is the volume size:  

𝑂𝑅(𝑁(1),𝑁(2)) =
∑ |𝑁𝑖

(1)  ∩  𝑁𝑖
(2) |𝑛

𝑖=1

∑ |𝑁𝑖
(1)  ∪  𝑁𝑖

(2) |𝑛
𝑖=1

(12) 
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With the similarity measure defined above, the similarities 

𝑂𝑅(𝑁𝐷𝐵𝑁, 𝑁𝐺𝐿𝑀) between the DBN derived functional networks 𝑁𝐷𝐵𝑁  and the GLM 

derived functional networks 𝑁𝐺𝐿𝑀 were quantitatively measured in Figure. 5 and 6. As 

shown and quantified in Figure.7, the GLM benchmark results are found in VS-DBN 

FBNs with ORs higher than 0.8. Such results demonstrated that VS-DBN FBNs well 

include the widely adopted GLM activation results, further suggesting the effectiveness 

and meaningfulness of the proposed model. The Comparison of all 7 tasks are given in 

supplementary materials (Figure. 6-10). 

 

Figure. 2.7. FBNs validation with GLM. (a) Illustrative validated DBN FBNs for each 

task by GLM. (b)The OR between FBNs from GLM and DBN layer 1 for 7 different 

tasks. 
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2.8 Analysis of FBN Hierarchy 

In addition to the validation result with GLM, it was also observed that lower 

layer networks in VS-DBN appear to be more localized, and the higher layer networks 

more global (as already shown in Figure. 3-4). To demonstrate and measure such 

association between two hierarchical functional networks, the inheritance similarity rate 

(ISR) between a lower layer network 𝑁(𝐿)and a higher layer network 𝑁(𝐻) is defined as 

follows: 

𝐼𝑆𝑅(𝑁(𝐿), 𝑁(𝐻)) =
∑ |𝑁𝑖

(𝐿)
 ∩  𝑁𝑖

(𝐻)
 |𝑛

𝑖=1

∑ 𝑠𝑖𝑔𝑛(𝑁𝑖
(𝐻)

)𝑛
𝑖=1

(13) 

As an example, the ISR between layer 2 and layer 1 and the ISR between layer 3 

and layer 2 are shown in Figure.8-9. The ISR analysis of all 7 tasks are given in 

supplementary materials (Figure. 11-15). The widespread ISR between the networks 

across different layers can be clearly appreciated. More interestingly, the phenomenon of 

several lower layer networks merging into higher layer networks, clearly indicating the 

existence of traditionally hypothesized hierarchical structure of FBNs. These sparse large 

ISRs between associated networks in different layers of VS-DBN quantitatively 

confirmed the hierarchical organization of FBNs networks. It can also be seen that that 

the inheritance similarity between layer 2 and 3 is more complex than layer 2 and 1. 
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Figure. 2.8.    The hierarchy property measured with ISR across VS-DBN layers in 

emotion task. (a) An illustration of a randomly selected hierarchy with ISR. (b) The left is 

the ISR between layer 2 and layer 1, and the right is the ISR between layer 3 and layer 2. 

There are widespread overlaps between the networks across different layers, thus forming 

a hierarchy of FBN networks.  
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Figure. 2.9.    The hierarchy property measured with ISR across VS-DBN layers in 

gambling task. (a) An illustration of a randomly selected hierarchy with ISR. (b) The left 

is the ISR between layer 2 and layer 1, and the right is the ISR between layer 3 and layer 

2. There are widespread overlaps between the networks across different layers, thus 

forming a hierarchy of FBN networks.  

Interestingly, the proposed VS-DBN can also model task-common FBNs besides 

task-specific FBNs since it has been observed that some FBNs exist in more than one 

task fMRI data. As shown in Figure. 10, the illustration is an example low-level network 

which indicates that VS-DBN can learn consistently task-common FBNs even though 

that the VS-DBN models were trained on different HCP tasks independently. 



 

41 

 

Figure. 2.10. Illustration of a high-MFScore FBN, which is the FBN of emotion layer 1 

#11. These low-level FBNs are common in all 7 HCP tasks consistently.  

 

To further investigate whether low-level FBNs tend to be common in more tasks 

than those learned from higher levels in VS-DBN, a Multifunction Score (MFScore) was 

defined as the number of tasks in which one FBN has ever existed and the OR was used 

to determine whether two FBNs are one or not. For unbiased comparison across FBNs 

from different layers, the OR thresholds were all set to 0.25.  
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Figure. 2.11.     The MFScore of layer 1, 2 and 3 FBNs from emotion tasks. The higher is 

the MFScore, the FBNs participate in more tasks. Lower level FBNs participate more 

tasks than higher level FBNs. 
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Figure. 2.12.     The MFScore of layer 1, 2 and 3 FBNs from gambling tasks. The higher 

is the MFScore, the FBNs participate in more tasks. Lower level FBNs participate more 

tasks than higher level FBNs. 

 

As shown in Figure. 11 and 12, the illustrated Emotion FBN #11 in Figure. 3(a) 

was confirmed to have a MFScore of 7, and many more low-level FBNs were common 

across different tasks. The MFScore analysis of other 5 tasks are given in supplementary 

materials (Figure. 16-20). Moreover, the MFScores of the FBNs from the first layers 

were larger than the second and third layers generally, which suggested that different 

tasks involve a variety of common low-level FBNs to perform some basic core task-

common functions, while high level FBNs perform higher level task-specific functions.  
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2.9 Discussion 

In this paper, we designed and implemented the VS-DBN model and exploited its 

capability of hierarchical representation of tfMRI data. With a group-wise experiment on 

massive HCP tfMRI data, the VS-DBN model quantitatively and qualitatively showed its 

promising capability of learning functional networks under a hierarchical structure. A 

comparison study using GLM validated that the functional networks learned by VS-DBN 

are meaningful and can be well interpreted. With networks at higher levels in the VS-

DBN structure, the activated brain regions in a functional network tend to be larger and 

the patterns are more global involving both task-common and task-specific regions. It is 

inspiring that we observed some low-level task-related networks merging into one global 

task-related network layer, which indeed suggested the hierarchical architecture of FBNs. 

Also, our results on all 7 HCP task fMRI datasets show that different tasks exhibit a 

variety of common low-level FBNs to perform some basic core task-common functions, 

while high level FBNs perform higher level task-specific functions. In the future works, 

we will explore and optimize more configurations of VS-DBN’s parameters, and further 

investigate the relationship of functional networks between different hierarchies and aim 

to interpret the corresponding neuroscientific meanings of the hierarchical organization of 

the brain functions in both healthy and diseased brains.  
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CHAPTER 3 

NEURAL ARCHITECTURE SEARCH FOR OPTIMIZING DEEP BELIEF 

NETWORK MODELS OF FMRI DATA 

3.1 Overview 

It has been shown that deep neural networks are powerful and flexible models that 

can be applied on fMRI data with superb representation ability over traditional methods. 

However, a new challenge of neural network architecture design has also attracted 

attention: due to the high dimension of fMRI volume images, the manual process of 

network model design is very time-consuming and error prone. To tackle this problem, 

we proposed a Particle Swarm Optimization (PSO) based neural architecture search 

(NAS) framework for a deep belief network (DBN) that models volumetric fMRI data, 

named NAS-DBN. The core idea is that the particle swarm in our NAS framework can 

temporally evolve and finally converge to a feasible optimal solution. Experimental 

results showed that the proposed NAS-DBN framework can find robust architecture with 

minimal testing loss. Furthermore, we compared functional brain networks derived by 

NAS-DBN with general linear model (GLM), and the results demonstrated that the NAS-

DBN is effective in modeling volumetric fMRI data. 

Figure 1 summarizes our PSO-based NAS framework (Fig.1(A)) and DBN 

structure (Fig.1(B)) for modeling FBNs. The particle swarm consists of 30 particles, each 

of which represents a subnet with different initial architecture (Fig.1(A)). We 

investigated two main hyper-parameters including the number of layer and the number of 
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neurons in each layer. These two parameters are used to construct a mapping between a 

particle position and a solution of network architecture design. The testing loss of DBN is 

regarded as the fitness function of PSO, which will be minimized in the searching 

process. The particle swarm can evolve and converge to an optimal solution. Then we 

applied this optimal architecture of DBN to model FBNs from task-based fMRI data 

(Fig.1(B)), and the weights of network are visualized and quantified as FBNs (Fig.1(C)), 

which will be further compared with GLM-derived network maps.  

 

 

Fig. 3.1. Illustration of proposed NAS-DBN framework for deriving functional brain 

networks from task-based fMRI data 

3.2 Background 

Understanding the organizational architecture of functional brain networks has 

raised intense interest since the inception of neuroscience (Logothetis, 2008; Pessoa, 

2014). In recent years, deep learning has attracted much attention in the field of machine 

learning and data mining, and it has been demonstrated to be a powerful tool for 
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modeling brain networks based on fMRI data, compared to traditional shallow methods 

such as general linear model (GLM)(Beckmann, Jenkinson, & Smith, 2003), and 

independent component analysis (ICA)(Beckmann et al., 2005), and sparse dictionary 

learning (SDL) (Lv, Jiang, Li, Zhu, Zhang, et al., 2015). Although deep learning has 

enjoyed remarkable progresses over the past few years, most current neural network 

architectures were developed manually by researchers, which typically is a very time-

consuming and error prone process, since all hyper-parameters of neural networks were 

decided by expert experiences. Fortunately, Neural Architecture Search (NAS), aiming to 

automatically search for optimal network architecture, is recently considered as a feasible 

and promising solution to the abovementioned problem. During recent years, several 

novel NAS methods, e.g., either based on reinforcement learning or evolutionary 

computation, have been developed and applied in a variety of deep learning tasks (Zoph 

& Le, 2016). However, due to the high dimension and complexity of volumetric fMRI 

data, there is still few NAS applications in the field of brain imaging using fMRI. 

To fill the above gap, in this work, we firstly proposed a novel multi-layer 

volumetric deep belief network (DBN) and designed a group-wise scheme that 

aggregated multiple subjects’ fMRI volume data for effective training of the DBN, with 

the purpose of discovering meaningful functional brain networks (FBN) in task-based 

fMRI data. Secondly, and more importantly, aiming to find out the optimal network 

architecture of DBN in modeling fMRI volumes, we developed a novel NAS framework 

based on particle swarm optimization (PSO). The key idea is that the particle swarm in 

the NAS framework will temporally evolve and finally converge to a feasible optimal 

solution. To quantitatively evaluate the performance of the NAS-DBN framework, a 
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series of experiments have been conducted and the results showed the effectiveness of 

our design. Furthermore, we used the DBN with optimal architecture to extract FBNs 

from task-based fMRI data of Human Connectome Project (HCP) and compared the 

results with GLM-derived brain networks. Our results demonstrated that the NAS-DBN 

is a promising tool for deriving meaningful and interpretable FBNs from fMRI data.  

3.3 Dataset and Preprocessing 

In this paper, fMRI data from the Human Connectome Project (HCP) 900 

Subjects Release was adopted as training dataset. The stimuli were projected onto a 

computer screen behind the subject’s head within the imaging chamber, and 4 out of 7 

categories of behavioral tasks are used, including Emotion, Gambling, Language, and 

Social. The fMRI preprocessing pipelines were implemented by FSL FEAT (FMRIB’s 

Expert Analysis Tool) and Nilearn (Abraham et al., 2014), including spatial resampling 

to the MNI152 template, frequency filtering, detrending, normalization and masking. The 

details of acquisition parameters and information of each task can be found in the 

literature (Lv, Jiang, Li, Zhu, Zhang, et al., 2015). 

3.4 PSO based NAS framework 

Particle Swarm Optimization (PSO) is a swarm based evolutionary computation 

algorithm that is originally proposed by Kennedy and Eberhart in 1995 (Kennedy, 2010). 

Due to its numerous advantages, such as less parameter requirements, simple formula, 

easy to implement, PSO has become a popular tool for solving various complex 

optimization problems. In this work, we adopted and designed a PSO based NAS 

framework to search for the optimal network architecture of DBN. We designed a two-

dimensional encoding method to map network architecture of DBN to a particle position. 
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The dimensions of the particle represent the number of layer and the number of neurons 

in each layer with the range of (2, 10) and (20, 200), respectively. To reduce 

computational cost, we assume the number of neurons in each layer is equal.  

As shown in Figure 1(A), 30 particles are initialized in the solution space with 

initial velocities and positions. A particle position represents a solution of network 

architecture design, and the velocity of particle determines the particle’s next motion, 

which is affected by three factors: current motion, personal best position and global best 

position. The whole swarm is attracted by the global best and is exploring in the solution 

space, and at the same time each particle is exploiting its nearby space because of 

attraction of personal best. The process of exploring and exploiting also has a 

randomness, making PSO a stochastic and intellectual searching algorithm, thus the 

whole swarm can quickly converge to a feasible optimal solution compared to other 

exhaustive search algorithms. 

The evolutionary process of particle swarm mainly consists of two steps: 

evaluation and updating. First, after initialization, all particles are evaluated by a fitness 

function which is defined by the testing loss of DBN. To avoid potential overfitting in 

NAS process, testing loss is adopted instead of training loss as an evaluation index of the 

model. After training, the trained model is applied to predict testing data (not used in 

training) and the Mean Squared Error (MSE) between input and output is calculated as 

testing loss, also the fitness value of corresponding particle. Notably, the input data was 

normalized to a Gaussian distribution for effective training. Then the personal best 

solution of each particle and the global best solution of whole swarm are recorded. 

Second, all particles’ velocities and positions are updated by the following equations:  
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 𝑣𝑖𝑑
𝑡+1 = 𝑤 ∙ 𝑣𝑖𝑑

𝑡 + 𝑐1 ∙ 𝑟1(𝑝𝑖𝑑
𝑡 − 𝑥𝑖𝑑

𝑡 ) + 𝑐2 ∙ 𝑟2(𝑝𝑔𝑑
𝑡 − 𝑥𝑖𝑑

𝑡 )               (1) 

𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡+1                                                     (2) 

Equations (1) and (2) are for velocity and position updating, respectively, where 

𝑥𝑖𝑑
𝑡  and 𝑥𝑖𝑑

𝑡+1 are the current and next positions, respectively; 𝑣𝑖𝑑
𝑡  and 𝑣𝑖𝑑

𝑡+1are the current 

and next velocities, respectively. The subscripts t, i, and d denote current iteration, 

subnet, and coding dimension, respectively; w is the inertia weight that reflects the inertia 

of particle motion; c1 and c2 are learning rate that affect the ratio of learning towards 

personal best and global best, making the searching process intelligent; r1 and r2 are two 

uniform random numbers selected from the interval of 0 to 1, which give the searching 

process a certain randomness. The second and third parts of the right side of Equation (1) 

reflect that current particle’s next motion is affected by personal best position (𝑝𝑖𝑑
𝑡 ) and 

global best position (𝑝𝑔𝑑
𝑡 ), as well as its previous motion. In addition, a uniform mutation 

strategy with variable mutation probability was introduced to increase the diversity of 

particle swarm. At the beginning of iteration, greater mutation probability makes the 

algorithm to have better exploration ability, and smaller mutation probability makes the 

algorithm to have better exploiting ability in the last stage of iteration. Therefore, the 

mutation probability was set to a linearly changing value from 0.2 to 0.05 with the 

increase of iteration number. Notably, we perform convergence check after initialization 

and updating, since some of particles might be divergent in the training process. These 

non-convergent subnets will be replaced by re-initiated subnets, and they will also be 

checked until they converge. 
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3.5 DBN Model of Volumetric fMRI Data 

DBN, constructed by blocks of Restricted Boltzmann Machines (RBM), is widely 

used for deep generative models and has been proven to be a powerful tool for modeling 

fMRI data. Here, a group-wise volumetric scheme of DBN is proposed to model fMRI 

volumes. Considering the large inter-subject variability among human brains, arbitrary 

selection of a single individual may not effectively represent the population, thus a group-

wise learning scheme is needed to reduce inter-subject variability by jointly registering 

the fMRI volumes to a common reference template corresponding to the group average. 

Since that the inter-subject variability is relatively more associated with the volatile time 

courses in different imaging sessions, it appears that taking volumes as input possibly 

works better than time series in terms of modeling the FBNs from fMRI data in this 

work. Accordingly, a volume from the fMRI data was taken as a feature, each time frame 

was taken as a sample, and a group-wise temporal concatenation was applied to all HCP 

subjects.  

To reduce the possibility of overfitting and to improve generalization, a sparse 

weight regularization was designed and added in the DBN model. In each iteration, the 

weight was updated with the estimated gradient and an extra term of weight 

regularization derivative.  In this paper, L1 weight penalty served as the regulation term 

while calculating the derivative of the sum of the absolute values of the weights. With a 

weight decay rate 𝛽, the overall optimization and weight update are formulated as 

follows: 

minimize
𝑊𝑖𝑗,𝑎𝑖,𝑏𝑗

  ln ℒ(𝑃(𝑣)) + 𝛽‖𝑊𝑖𝑗‖1                                    (3) 
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𝑊𝑖𝑗  ←  𝑊𝑖𝑗 + 𝛼(〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑟𝑒𝑐𝑜𝑛 − 𝛽 · 𝑠𝑖𝑔𝑛(𝑊𝑖𝑗))                  (4) 

The sparse weight regularization works by causing many of the weights to 

become zero while allowing a few of the weights to grow large. In the context of fMRI 

data, L1 regularization can denoise the FBNs and improve interpretability by suppressing 

useless weights and allowing important model parameters to become larger, which is 

considered as an important methodology/technical contribution of this work and it will be 

demonstrated in the following results sections. With respect to interpreting a trained DBN 

in the fMRI context, each row of weight vector was mapped back into the original 3D 

brain image space, which was the inverse operation of masking in preprocessing steps 

and was interpreted as an FBN. After the DBN was trained layer-wisely on a large-scale 

task fMRI dataset, each weight showed the extent of each voxel contributed to a latent 

variable. For deeper layers, the linear combination approach was used to interpret the 

connection. With this approach, as an example, 𝑊3 ×𝑊2 ×𝑊1 was visualized for the 

first hidden layer as FBNs (Fig.1(C)). 

 

3.6 Implementations 

The NAS-DBN is inherently much more computationally expensive, compared to 

DBN models for temporal fMRI time series. Considering HCP 4D images and one single 

layer of RBM, there are around 20K trainable parameters for temporal fMRI time series 

DBN, but 20 million for volumetric fMRI DBN. Moreover, the population size and 

iteration size will put significant computational burden on the NAS process. To deal with 

this problem, in this paper, the TensorFlow (Abadi et al., 2015), which is a popular deep 

learning framework and provides great convenience coding with GPUs, was adopted with 
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high efficiency GPU computation to fill the gap. Based on TensorFlow, we designed and 

implemented a fast and flexible DBN model. Limited by computing resources, all subnets 

will be trained one by one and processed collectively. The code was run on a deep 

learning server with GeForce GTX 1080 TI of GPU and 32Gb of RAM.  

3.7 Comparisons between NAS-DBN and DBN   

To quantitatively evaluate the effectiveness of our NAS-DBN framework, we ran 

10 times of the searching process independently, and analyzed the statistical results. We 

used 4 shuffled HCP tasks data as input of NAS. After NAS, we used the same optimal 

architecture of DBN to model each task data independently. As shown in Figure 2, the 

optimal results show high consistence and robustness in the optimal number of layer and 

the optimal number of neurons. In most runs (8 out of 10), the result of the optimal 

number of layer is 3, except only two results are 2 and 4 respectively. The average result 

in the optimal number of neurons is 80, and all results are in a range from 69 to 112. 

These statistical experiments demonstrated that our NAS framework can generate 

reliable results of architecture design. Furthermore, we compared the testing loss of 

DBNs with optimal architecture and manually selected architectures. Figure 3 shows 

comparison of testing loss of 4 DBNs with the same number of neurons and comparison 

of testing loss of 4 DBNs with the same layers. DBN (3,80) denotes that there are 3 

hidden layers and 80 neurons in this DBN structure. DBN with the optimal architecture 

from NAS has the lowest testing loss of 0.0213 compared to other manually designed 

DBNs, demonstrating the effectiveness of NAS framework. 
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Fig. 2. Statistical results of 10 independent experiments in the optimal number of layers 

and optimal number of neurons.  

 

Fig. 3. Testing loss of DBNs with same neurons and Testing loss of DBNs with the same 

layers 

3.8 Comparison of NAS-DBN with GLM 

To explore the representation of task-based fMRI data, four task-specific DBNs 

were trained on fMRI data of 4 HCP tasks independently using the same 

hyperparameters. To quantitatively evaluate the performance of DBN in modeling tfMRI 

data, a comparison study between NAS-DBN results and the widely known GLM 

activation results is investigated in this section. For fair comparison, all the functional 

networks derived by these two methods are thresholded at Z > 2.3 after transformation 

into “Z-scores” across spatial volumes. The spatial overlap rate is defined to measure the 

similarity of two FBNs in accordance with previous literature studies. Here, the spatial 

similarity is defined by the overlap rate (OR) between two functional networks 

𝑁(1)𝑎𝑛𝑑 𝑁(2)as follows, where n is the volume size:  
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𝑂𝑅(𝑁(1),𝑁(2)) =
∑ |𝑁𝑖

(1)  ∩  𝑁𝑖
(2) |𝑛

𝑖=1

∑ |𝑁𝑖
(1)  ∪  𝑁𝑖

(2) |𝑛
𝑖=1

(5) 

With the similarity measure defined above, the similarities 

𝑂𝑅(𝑁𝐷𝐵𝑁, 𝑁𝐺𝐿𝑀) between the NAS-DBN derived functional networks 𝑁𝐷𝐵𝑁 and the 

GLM derived functional networks 𝑁𝐺𝐿𝑀 were quantitatively measured. For each of GLM 

template, we found the most similar FBN derived by NAS-DBN with high OR in all 4 

HCP tasks. Notably, we developed in-house GLM codes and obtained our own templates 

derived by group-wise fMRI data, which are quite like the widely known GLM templates 

(Barch et al., 2013). Figure 4 shows the comparison of FBNs derived by NAS-DBN and 

GLM templates in 4 tasks. We selected one specific stimulus for each task and the 

corresponding GLM templates were all found in NAS-DBN FBNs of these tasks. For 

emotion task, we can see fear stimulus activated GLM template, and the most similar 

FBN from NAS-DBN, which is the 12th network out of 80 networks. Comparing this 

brain network with the benchmark GLM template, the overlap rate is as high as 0.502, 

and thus it is easy to recognize the close match between them. Since our NAS-DBN is an 

unsupervised architecture, there are other similar FBNs that can be detected in all 4 tasks. 

For instance, we found a similar fear activation network in emotion task, and the overlap 

rate between this network and GLM template is 0.327. For other three tasks, including 

gambling, language, and social, we also found 2 most similar FBNs compared to GLM 

templates.  

Furthermore, we detected several resting state networks (RSNs) though our NAS-

DBN model including the default mode network (in emotion and social tasks), visual 

network (in gambling and social tasks), auditory network (in gambling and language 
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tasks), and frontoparietal network (in emotion task), demonstrating that our NAS-DBN 

model can derive not only task activated networks but also resting state networks. As 

shown in Figure 5, 4 RSNs were found and visualized in our DBN-derived FBNs in 

different tasks. Here, we used the RSN templates from Nilearn (Y. Zhao, Ge, Zhang, et 

al.) as benchmark, and details of RSNs can be found in the literature (Smith et al., 2009).  

      

Fig. 4. Comparison between GLM templates and similar FBNs derived by NAS-DBN in 

emotion, gambling, language, and social tasks. Each network is visualized with 7 axial 

slices. 

 

Fig. 5. Comparison between RSN templates and similar FBNs derived by NAS-DBN in 

different tasks. Each network is visualized with 3 most informative orthogonal slices. 

3.9 Discussion 

We proposed a novel PSO based NAS-DBN framework for searching optimal 

architecture of DBN in modeling FBNs from volumetric fMRI data. Based on 

evolutionary computation, 30 subnets in our framework learn experience of each other, 

and the whole swarm can evolve and finally converge to a feasible optimal architecture of 
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DBN. We selected testing loss as fitness function of NAS, instead of training loss, to 

avoid potential overfitting problems. The statistical experiment of NAS showed high 

consistence and robustness of our architecture design. Furthermore, we showed that our 

DBN model can derive both task specific functional networks and resting state networks 

which are meaningful and can be well interpreted. The promising results by showed the 

importance of optimizing neural network structures in deep learning. 
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CHAPTER 4 

SPATIAL-TEMPORAL DECOMPOSITION OF CONNECTOME-SCALE BRAIN 

NETWORKS BY DEEP SPARSE RECURRENT AUTOENCODERS 

4.1 Overview 

Exploring the spatial patterns and temporal dynamics of human brain activities 

has been of intense interest to better understand connectome-scale brain networks. 

Though modeling spatial and temporal patterns of FBNs has long been a research topic, 

the development of a unified and simultaneous spatial-temporal model to realize such a 

purpose is challenging. For instance, although some deep learning methods have been 

proposed recently to model FBNs, most of them can only represent either spatial or 

temporal perspective of functional Magnetic Resonance Imaging (fMRI) data and rarely 

model both domains simultaneously. Inspired by the recent success in applying sequential 

auto-encoders for brain decoding, in this paper, we proposed a novel deep sparse 

recurrent auto-encoder (DSRAE) in an unsupervised way to learn spatial patterns and 

temporal fluctuations of brain networks jointly. The proposed DSRAE were evaluated 

and validated on three tasks of the publicly available human connectome project (HCP) 

fMRI dataset with promising results. To our best knowledge, the proposed DSRAE is 

among the early efforts in developing unified models that can extract connectome-scale 

spatial-temporal networks from 4D fMRI data simultaneously. 

Figure.1 summarizes the architecture of our proposed DSRAE model, as well as 

the two validation experiments. After data preprocessing (Sec. B), the fMRI data in each 
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subject is extracted and normalized. Based on RNN (Sec. C), we trained the DSRAE 

model in an unsupervised manner (Sec. D) with the fMRI data. Particularly, the 

activation of each hidden node represents a typical functional brain state, and its hidden 

response to specific stimulus represents the temporal activities of the brain states. 

 

Figure. 4.1.  Illustration of DSRAE model and the two validation experiments. (a) The 

outline of DSRAE model, in which the input and output layers are both fMRI time series, 

and the latent layer features are the networks with temporal information. (b) The input of 

DSRAE is the 4D fMRI data, which is a series of 3D brain volumes acquired in each task 

session. (c) Validation I: spatial maps, derived from latent layer time series via Elastic 

Net, are compared with benchmark maps via GLM; the time series are validated by the 

task stimulus curve; and the correlation matrix is calculated between the obtained 

networks and original volumes to detect the brain states. (d) Validation II: The signal 

reconstruction error analysis based on Pearson correlation between reconstructed output 

and original input. 
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4.2 Background 

Exploring human brain function and its dynamics has been one of the important 

topics in modern neuroscience (Logothetis, 2008; Pessoa, 2014). Mounting evidence 

shows that the human brain undergoes noisy, massive, and complex neural processes that 

are highly correlated both spatially and temporally(Friston, 1997; Shimony et al., 2009; 

Smith et al., 2012), which suggests that it is desirable to model spatial and temporal 

information at the same time to account for the relationship between a stimulus such as 

cognitive task and the brain response measured with fMRI(Derado, Bowman, & Kilts, 

2010; Shen, Mayhew, Kourtzi, & Tiňo, 2014; Woolrich, Jenkinson, Brady, & Smith, 

2004). To better explore brain networks based on fMRI data, inspired by the successful 

applications of machine learning methods, a variety of data-driven methods have been 

proposed on fMRI data, such as sparse dictionary learning (SDL) (Lv, Jiang, Li, Zhu, 

Zhang, et al., 2015; W. Zhang et al., 2019), deep belief network (DBN)(Hu et al., 2018; 

Plis et al., 2014), convolutional neural network (CNN)(Huang, Hu, Zhao, et al., 2018), 

and recurrent neural network (RNN) (Cui et al., 2018; Han Wang; Wang et al., 2018). 

These computational methods can be generally classified into two categories: spatial 

approaches and temporal approaches. Studies based on spatial approaches usually 

focused on the spatially decomposed components derived from fMRI data and typically 

ignored temporal dynamics information(Jiang et al., 2015; Lv, Jiang, Li, Zhu, Zhang, et 

al., 2015; Plis et al., 2014). For examples, Lv et al. (Lv, Jiang, Li, Zhu, Zhang, et al., 

2015)used SDL to investigate the brain’s spatial functional networks from fMRI data; 

Jiang et al. (Jiang et al., 2015) used the sparse representation to characterize the spatial 

functional regions with task-based fMRI data. On the other hand, studies based on 
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temporal approaches mostly focused on temporal features modeling while spatial 

information is overlooked (Hu et al., 2018; Huang, Hu, Zhao, et al., 2018; Wang et al., 

2018). For examples, Hu et al. (Hu et al., 2018) used restricted Boltzmann machine 

(RBM) to interpret fMRI temporal courses; Huang et al. (Huang, Hu, Zhao, et al., 2018) 

used deep convolutional auto-encoder (DCAE) to derive the features from task-based 

fMRI time series. Notably, a recent study based on deep spatial-temporal convolutional 

neural network (ST-CNN) tried to take the advantages of both spatial and temporal 

domains(Y. Zhao, Li, et al., 2018), yet the temporal features were derived from the 

spatial features inherently. In general, these previous studies focused on either spatial or 

temporal perspective of fMRI data and rarely modeled both domains simultaneously, 

thus, few of them has the ability to model the spatial-temporal variation patterns of FBNs. 

Therefore, a comprehensive and systematic framework is still in great need to recognize 

dynamic, temporal brain states at connectome-scale and model the brain’s spatial-

temporal dynamic activities simultaneously. However, development of such a 

comprehensive framework faces major challenges including the lack of ground truth of 

underlying neural activities and the inherent complexity associated with those spatial-

temporal patterns of connectome-scale functional networks (Huang, Hu, Zhao, et al., 

2018; Wang et al., 2018). 

Recently, RNN has been widely employed in many research areas, such as 

language modeling and handwriting recognition. Due to its great promise and 

performance to capture the temporal dependences in the data sequences effectively, RNN 

has been also introduced to model dynamic biological signals(Schuster & Paliwal, 1997). 

What’s more, RNN can preserve the information of the past sequences and restore the 
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memories with the memory cells to make predictions, rather than predicting based only 

on current samples in time serie. Therefore, RNN can effectively and easily acquire the 

temporal dependence of the sequential data to model temporal dynamic activities that can 

help to recognize the brain states from fMRI data. Recently, Wang et al. (Wang et al., 

2018)proposed a deep sparse RNN (DSRNN) framework based on the traditional RNN to 

recognize functional brain states with task-based fMRI data and achieved promising 

results. However, the work in (Wang et al., 2018)still focused on the temporal 

information analysis and did not analyze spatial-temporal variation patterns of FBNs 

simultaneously and its training process relies on the label/annotation of each frame of the 

neuroimages.  

Inspired by the previous studies of using RNN for video frames reconstruction 

(Srivastava, Mansimov, & Salakhudinov, 2015), neuros dynamic analysis (Pandarinath et 

al., 2018), speech recognition(Pei & Tax, 2018), and recent success of using RNN for 

fMRI data modeling  (Wang et al., 2018), in this paper, we designed a novel deep sparse 

recurrent auto-encoder (DSRAE) in order to bridge the above-mentioned gaps and better 

understand the spatial-temporal patterns of connectome-scale FBNs. To our best 

knowledge, our proposed model is among the early efforts of developing a unified 

spatial-temporal model for 4D fMRI data in the literatures, and notably our model can be 

applied on both task-based fMRI (tfMRI) and resting fMRI (rfMRI) due to the entirely 

unsupervised training process, which can effectively deal with the above-mentioned two 

challenges. That is, our DSRAE model naturally represents the complex spatial-temporal 

patterns of connectome-scale functional networks and the training process of DSRAE 

does not need the spatial or temporal labels/annotations of neural activities. Conceptually, 
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the DSRAE is a unified spatial-temporal data-driven framework that can jointly 

characterize and recover the embedded spatial and temporal information from 4D fMRI 

data. Specifically, the proposed DSRAE model contains four layers for both encoder part 

and decoder part, respectively. The encoder part includes one input layer, one fully 

connected layer and two recurrent layers; the decoder part includes two recurrent layers, a 

fully connected layer and an output layer. To evaluate the performance of our DSRAE 

model, two validation experiments of reconstruction error calculation and spatial-

temporal feature interpretation were performed on three tfMRI datasets (Language, 

Working Memory and Gambling) of 791 subjects of Human Connectome Project 

(HCP)(Barch et al., 2013). Our experimental results demonstrated that the proposed 

DSRAE framework can learn the representations of both task-evoked spatial networks 

and their temporal time series fluctuations across all subjects and tasks effectively and 

robustly. The FBNs derived in the spatial domain showed great consistency with those 

derived by the traditional General Linear Model (GLM), and the temporal time series 

fluctuations of those networks also exhibited relatively high correlations with the task 

stimulus curves correspondingly. In general, the meaningful and interpretable spatial-

temporal functional network patterns derived from our proposed DSRAE framework 

offer a new approach to represent the human brain function based on fMRI data, 

contributing to the understanding of functional mechanisms of the human brain. The 

source codes of our DSRAE model and associated sample datasets will be released at: 

https://github.com/ChloeLeeBnu/DSRAE. 

https://github.com/ChloeLeeBnu/DSRAE
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4.3 Dataset and Pre-processing 

In this paper, we used 791 healthy adult participants that executed all seven tasks 

in HCP 900 Subjects Data Release (Barch et al., 2013) with grayordinate tfMRI dataset 

and it is publicly available on https://db.humanconnectome.org. Here, three behavioral 

tasks were used in this work, including Language, Working Memory and Gambling tasks. 

The detailed acquisition parameters were as follows: TR=720 ms, TE=33.1 ms, flip 

angle=52°, in-plane FOV=208 mm×180 mm, 104×90 matrix, slice thickness=2 mm, 72 

slices, multiband factor=8, echo spacing=0.58 ms, BW=2290 Hz/Px. The HCP 

grayordinate data model the gray matter as combined cortical surface vertices and 

subcortical voxels across subjects in the standard MNI space. The preprocessing steps of 

the fMRI dataset include spatial smoothing, temporal filtering, nuisance regression, and 

motion censoring, which were all implemented with FreeSurfer Software (Glasser et al., 

2013).  

In our experiments in this paper, we used the fMRI data of subjects who 

performed all three tasks. In language task, there were two stimulations: story and math, 

in which the math blocks were designed to provide a comparison task that was 

attentionally demanding(Binder et al., 2011). Story blocks presented subjects with 

auditory stories, which transcribed from Aesop's fables, and two options related to the 

topic asked subjects to choose subsequently. Math blocks presented participants addition 

and subtraction problems with two alternative options, and participants needed to choose 

the right answer. The lengths of math stimulations were corresponding to the story 

stimulations. In working memory task, a version of the N-back task was used to assess 

working memory capability (Drobyshevsky, Baumann, & Schneider, 2006). In the 
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design, 2-back task (respond ‘target’ whenever the current stimulus was the same as the 

one 2-back) and 0-back task (respond ‘target’ only if the fixation was presented) fMRI 

data were collected to study the brain states for working memory. It was reported that the 

associated brain activations were reliable across subjects (Drobyshevsky et al., 2006) and 

time (Caceres, Hall, Zelaya, Williams, & Mehta, 2009). In gambling task, participants 

played card guessing games in which they needed to guess the number on a card, and 

won money if hit, or lost money if missed (Caceres et al., 2009). Prior studies 

demonstrated that the task elicited activations in the striatum and some other reward 

related regions which were robust and reliable across the subjects (Caceres et al., 2009; 

Forbes et al., 2009; Tricomi, Delgado, & Fiez, 2004). More experiment details are 

available in the supplemental materials. 

4.4 Basics of Recurrent Neural Network (RNN)  

RNN is a kind of feedforward neural network, which uses a internal state 

(memory) to process sequences of inputs. Due to this advantage, RNN has been applied 

in diverse tasks for sequence modeling (Sak et al., 2014; Wang et al., 2018; Yamins & 

DiCarlo, 2016). As illustrated in Figure.2a, each recurrent neural network layer can be 

unfolded as a feedforward network along temporal series. However, because of the 

vanishing gradient, the traditional basic RNN is difficult to maintain expertise learned on 

earlier data. To overcome this problem, Long Short-Term Memory (LSTM) unit 

(Hochreiter & Schmidhuber, 1997), with the “forget gate”, was specifically designed and 

have become one of the most widely-used RNN architectures. 
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Figure. 4.2. A schematic illustration of LSTM cell model. (a) The interconnections in a 

common recurrent hidden layer. (b) LSTM memory unit. 

The internal memory, which stores information from previous time points, is in a 

cell state of each LSTM unit. As shown in Figure.2b, there are gates in each unit to 

control the contents of the cell states 𝒄𝑡 and determine the outputs 𝒉𝑡 based on the inputs 

𝒙𝑡. These gates regulate the ability to remove or add information to the cell state of 

LSTM. The cell state of an LSTM unit is defined as follows: 

  

𝒄𝑡 = 𝒇𝑡 ∗ 𝒄𝑡−1 + 𝒊𝑡 ∗ 𝒄̃𝑡  
(

1) 

  

𝒇𝑡 = 𝜎(𝑼𝑓𝒉𝑡−1 +𝑾𝑓𝒙𝑡 + 𝒃𝑓) 

(

2) 

  

𝒊𝑡 = 𝜎(𝑼𝑖𝒉𝑡−1 +𝑾𝑖𝒙𝑡 + 𝒃𝑖) 
(

3) 

  

𝒄̃𝑡 = 𝑡𝑎𝑛ℎ(𝑼𝑐𝒉𝑡−1 +𝑾𝑐𝒙𝑡 + 𝒃𝑐) 
(

4) 

where 𝒇𝑡 and 𝒊𝑡 are the forget gate and input gate activities respectively, 𝒄̃𝑡 are 

auxiliary variables, 𝑼𝑓 , 𝑼𝑖, 𝑼𝑐 and 𝑾𝑓 , 𝑾𝑖, 𝑾𝑐 are the corresponding weights, and 𝒃𝑓 , 

𝒃𝑖, 𝒃𝑐 are the biases. The cell states 𝒄𝑡 maintain information about the previous time 

points, the forget gates control what or if the previous information will be discarded from 

 ̃𝒕

(a) (b)
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the cell states, and the input gates control what new information will be stored in the cell 

states. Then, based on the cell state definition, the states of an LSTM unit are defined as 

follows: 

  

𝒉𝑡 = 𝒐𝑡 ∗ 𝑡𝑎𝑛ℎ(𝒄𝑡) 
(

5) 

  

𝒐𝑡 = 𝜎(𝑼𝑜𝒉𝑡−1 +𝑾𝑜𝒙𝑡 + 𝒃𝑜) 
(

6) 

where 𝒐𝑡 are the output of gate activities. After the output gate, the final outputs 

𝒉𝑡 could be derived. As a result, after a sigmoid function, which decides what parts of the 

cell state will be outputted, the cell state through tanh (pushing the values to be between 

−1 and 1) and multiply it by the output of the sigmoid gate, the output parts could be 

derived. 

4.5 RAE for fMRI 

Previous literature study has demonstrated the efficiency of RNN in modeling 

tfMRI data while preserving memories of previous state information and capturing the 

temporal dependences of input fMRI volumes (Wang et al., 2018). However, the fMRI 

data is weak supervised in nature, due to the common resting state fMRI not providing 

any frame-wise labels, letting alone the noise, inter-subject variations and intrinsic brain 

activities. Thus, the previous study in (Wang et al., 2018) is conceived to have two 

possible limitations when modeling fMRI data. First, RNN heavily relies on strong 

supervision; the lack of volume-wise labels would simply restrain RNN’s training and 

convergence. Second, since the RNN must be trained with labels, which are mostly task-

related, the features learned are limited to task-related, possibly leaving out intrinsic 

component networks. Therefore, learning the intrinsic spatial-temporal structure in fMRI 
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data without using explicitly provided labels is in great need and much desired, which 

partly motivated our work in this paper. 

To overcome these limitations, we proposed a novel LSTM-based deep sparse 

recurrent auto-encoder (DSRAE), which is a deep unsupervised sequential neural 

network framework to model connectome-scale FBNs based on fMRI data. As shown in 

Figure.3, the proposed DSRAE is an eight-layer deep neural network model and it is 

composed of two parts: encoder and decoder. The encoder part encodes the input into 

high-level features and is comprised of the first four layers: one input layer, one fully 

connected layer, and two recurrent layers. The decoder part reconstructs the input and is 

comprised of the last four layers: two recurrent layers, one fully connected layer, and one 

output layer. Specifically, the node number decreases from 59,421 (the number of voxels 

for each volume) to 128 in the fully connected layer, then down to 64 in the first recurrent 

layer, and then down to 32 in the second recurrent layer. For the decoding component, 

there is a reverse way for node numbers, eventually increasing to 59,421 (the length of 

input) by layers. 
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Figure. 4.3. Architecture of DSRAE.  The DSRAE contains eight layers, in which the 

first four layers are encoding layers, and the last four layers are decoding layers. One 

input layer, one fully-connected layer, two recurrent layers included in encoding layers; 

two recurrent layers, one fully-connected layer, and one output layer correspondingly 

included in decoding layers. 

To be more specific, for example, in language task, the DSRAE model received 

the 4D fMRI data as input, which represented the 3D volumes in the corresponding time 

series as shown in Figs.1a and b. Each 3D volume was transformed into a 1D vector 

(59,421×1). In this way, the whole input for one subject was a data matrix with 

dimension of 59,421×316. With the fully connected layer, the original large dimension 

recordings were converted into small size (128×316). After that, two recurrent layers 

were employed with the neuron unit size 64 and 32. With the Elastic Net(Zou & Hastie, 

2005), 32 groups of activation networks were derived, as shown in Figure.1c. To 

illustrate the brain networks clearly, we regarded GLM-derived maps and task design 

curve as the spatial and temporal “ground truth”, respectively. According to the Pearson 

correlation coefficients between the task design and the obtained temporal fluctuation, we 

found the most task-related spatial activated networks. To predict and decode the brain 

states during the tasks in time series, we calculated the Pearson correlation coefficients of 

the spatial activation networks and the original fMRI volume data as the representational 

similarity analysis (Kriegeskorte, Mur, & Bandettini, 2008). After the decoder part (two 

recurrent layers increased the unit from 32 to 64 and then to 128, and one fully connected 

layer), the reconstructed layer (output layer) was derived. As shown in Figure.1d, the 

reconstruction errors of both the spatial and temporal dimensions were calculated to 

illustrate the matching relations between them. 
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The DSRAE models were trained on 791 subjects on tfMRI dataset of language 

task, working memory task and gambling task. For each task, we set the LSTM see-back 

step (the length of considered time point samples for predicting) as the length of the scan 

volumes, 316, 405 and 253, respectively. And all the other hyperparameters are same for 

all three tasks: the learning rate is set as 0.01, the epoch is set as 10, the batch size is set 

as 1 based on convergence. Notably, during the training of DSRAE, we use the L1-

regulation (10e-7) and L2-regulation (10e-4) empirically at the same time to make our 

model more robust. In this paper, we implemented the DSRAE model with Keras, and 

ran on a GPU of Quadro K600.  

4.6 Analysis of Reconstruction Error  

We investigated the proposed DSRAE models on three tasks to assess the 

effectiveness and robustness across different tasks. The results have shown consistently 

good performance in terms of inferring and characterizing both task-evoked and 

spontaneous brain networks at the connectome scale, demonstrating that the DSRAE 

model is effective and robust.  

To quantitatively evaluate and validate the signal reconstruction by DSRAE, we 

used one randomly selected subject in gambling task as an example to calculate the 

Pearson correlation coefficients between original tfMRI signals and reconstructed signals. 

The reconstruction result of DSRAE in spatial dimension is illustrated in Figure.4a, in 

which DSRAE has good reconstruction performance. That is, all the correlations are 

larger than 0.9. Specifically, we randomly selected 4 voxels to show the reconstruction 

error in temporal dimension, in which the reconstruction time series (blue curve) have 

remarkably high correlation with the original fMRI data time series (orange curve) (as 
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shown in Figure.4b). We achieved the similar results and conclusion in other validation 

tasks (language task and working memory task), which are summarized in supplemental 

Figs.1 and 2. These high correlations between the original signals and reconstructed 

signals indicate that our DSRAE model can encode good spatial-temporal representations 

and reconstruct the input data. 

 

Fig. 4.4. Performance of DSRAE in reconstructing the gambling task fMRI signals. (a) 

The Pearson correlation coefficients between the reconstructed signals by DSRAE and 

the original signals in spatial dimension. (b) Temporal fluctuation comparison of the 

reconstructed voxels and original voxels. Blue curves are the reconstruction time series. 

Orange curves are the time series of original fMRI data. 

 

4.7 Analysis of DSRAE-FBNs 

To interpret the complex feature maps obtained by DSRAE, we treated the task 

paradigm via GLM as the spatial benchmark event block maps, which is a common 

practice in the fMRI field. For each task, we totally obtained 32 networks via DSRAE. 

Figs.5-7 show the estimated outputs activated by language task, and Figs.8-9 show the 

estimated outputs activated by working memory task. Figs.10-11 show the estimated 

outputs activated by gambling task and their comparison results.   
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Fig. 4.5. Comparison between DSRAE and GLM-derived benchmark outputs of story 

stimulation specific maps in language task. (a) The spatial benchmark activation map 

predicated by GLM. (b) The spatial activation map predicted by DSRAE, the 2nd network 

of the total 32 networks. And the corresponding temporal fluctuation of network #2 and 

ground truth. Here, we showed the comparison results of four randomly selected subjects. 

Blue curves are ground truth. Orange curves are DSRAE temporal outputs. (c) Several 

other similar spatial maps of story stimulus activated maps and their temporal fluctuation. 

As shown in Figure.5, the resulted spatial and temporal patterns predicted by 

DSRAE model are consistent with the GLM-derived benchmark patterns and task 

stimulus curve.  Figure.5a is the brain network predicted with the benchmark event block 

map via GLM. Figure.5b is the estimated most similar output map with GLM by story 

stimulation, which is the 2nd network out of 32 networks.  Comparing the networks 

derived by DSRAE with GLM, it is easy to recognize the close spatial match between 

them. The correlation coefficient between the maps via GLM and DSRAE is 0.931, 

which proves that the outstanding and effective performance of encoding ability of the 

DSRAE. The temporal fluctuation tendency of network #2 with the time series is also 
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shown in Figure.5b, in which the predicted time series (orange curve) has a very high 

similarity (the highest correlation coefficient is 0.827 among the 4 randomly selected 

subjects) with the ground truth of story stimulation (blue curve). Although all the subjects 

we showed here have similar high correlation coefficients, the temporal time series vary 

among different subjects, which suggests the unique activations of different individuals. 

Since our DSRAE model is an unsupervised architecture, it can detect some other similar 

spatial maps during the activation of story stimulation (shown in Figure.5c). Based on the 

time series compared with ground truth and the corresponding correlation coefficients 

(the highest correlation coefficient is 0.821), network #10 and #18 are both story 

stimulation activated maps, which indicates that the brain states would vary during time 

sessions even under the same stimulation, and the dynamic fluctuations would not change 

in a transient way. 

 

Fig. 4.6. The comparison between DSRAE and GLM-derived benchmark outputs o f 

math stimulation specific maps in language task. (a) The spatial benchmark activation 

map predicated by GLM. (b) The spatial activation map predicted by DSRAE, the 12th 



 

74 

network of the total 32 networks. And the corresponding temporal fluctuation of network 

#12 and ground truth. Here, we showed the comparison results of four randomly selected 

subjects. Blue curves are ground truth. Orange curves are DSRAE temporal outputs. (c) 

Several other similar spatial maps of story stimulus activated map and their temporal 

fluctuation.  

   Figure.6 shows the specific maps of math stimulation, which is the control 

experiment of story stimulation, the comparison with the GLM-derived benchmark map, 

and task curve ground truth. Though the math stimulation is similar in auditory and 

phonological input, the spatial activation maps are quite different from that of story 

stimulation (as shown in Figs.6a and b). The correlation coefficient between the maps 

predicted by DSRAE and GLM is 0.91, which proves the high correlation of the hidden 

layer of DSRAE with the spatial ground truth. In Figure.6b, there is a quite high negative 

correlation of network #12 (the math specific state) with the story stimulation (versus 

with math stimulation). Here, the greater the negative correlation coefficient is, the more 

relevant the network is with the math stimulation. For subject #790, the absolute value of 

the correlation coefficient can even reach up to 0.817, which indicates that the network 

predicted by DSRAE is quite meaningful. Besides, in Figure.6c, several similar networks 

also have good correlations with the task-designed ground truth, which can be seen as the 

math stimulus activated maps that varied in different time points. 

Since the DSRAE models were trained in an unsupervised fashion, the features 

are not limited to task-related networks. In this way, the Dorsal Attention Network 

(DAN) can be detected via DSRAE model, which is a common distinct control network 

when subjects direct their attention (Fox, Corbetta, Snyder, Vincent, & Raichle, 2006; 

Giesbrecht, Woldorff, Song, & Mangun, 2003). Figure.7 shows the spatial map of 
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activation of DAN and its time series, where the DAN is uncorrelated with the task 

stimulation (the absolution of correlation coefficient is less than 0.1). This result 

suggested that DAN should be a spontaneous network whenever the subjects are paying 

attention, and that would not be affected by the specific task. 

 

Fig.4.7. New map found by DSRAE in language task. The Dorsal Attention Network 

activation (network #26), and its temporal fluctuation. Here, we showed the comparison 

results of two randomly selected subjects. Blue curves are ground truth. Orange curves 

are DSRAE temporal outputs. 

 

Network 26 Dorsal Attention Network Activation

DSRAE 
latent layer 
map

Subject 350 Corr = -0.064

Subject 5 Corr = -0.058

Time points Amplitude* 
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Fig. 4.8. Comparison between DSRAE and GLM-derived benchmark outputs of cue and 

2-back stimulation specific maps in working memory task. (a) The spatial benchmark 

activation map predicated by GLM and DSRAE (the 13th network of the total 32 

networks) of cue stimulation. And the corresponding temporal fluctuation of network #13 

and ground truth. Here, we showed the comparison results of two randomly selected 

subjects. Blue curves are the cue-stimulus ground truth. Orange curves are 2-back 

stimulus ground truth. Green curves are 0-back ground truth. Red curves are DSRAE 

temporal outputs. (b) The spatial benchmark activation map predicated by GLM and 

DSRAE (the 5th network of the total 32 networks) of 2-back stimulation. The 

corresponding temporal fluctuation of network #5 and ground truth are shown here too. 

To evaluate the robustness and efficiency of our DSRAE model, we also tested 

the architecture on working memory task and gambling fMRI datasets. The working 

memory task embedded two stimulations, including 0-back memory test, 2-back memory 

test, and cue period. First, as in shown in Figure.8a, the maps of the cue period relevant 

network derived by GLM and DSRAE have a high correlation coefficient of 0.936. No 

matter for subject #5 or #350, the correlation coefficients between network #13 and the 

cue-period ground truth are higher than 0.5, which proves the meaning of hidden layer in 

DSRAE. For the task-relevant maps, though the two kinds of working memory tests have 

very similar activation maps, we still obtain the 2-back task-specific spatial maps, as 

shown in Figure.8b. In which, the 2-back relevant spatial map via DSRAE (network #5) 

is similar to that benchmark derived from GLM with the correlation coefficient of 0.892. 

And the time series of network #5 is also positively correlated with that of 2-back test 

ground truth (correlation coefficient is 0.377). The 0-back test always has less memory 

loaded on the brain, and is hard to classify its activation patterns from 2-back stimulation 

(Archbold, Borghesani, Mahurin, Kapur, & Landis, 2009), so it is difficult to detect the 

specific network.     



 

77 

 

Fig. 4.9. New maps found by DSRAE in working memory task. (a) The Default Mode 

Network activation (network #15), and its temporal fluctuation. Here, we showed the 

comparison results of one randomly selected subject. Blue curves are the cue stimulus 

ground truth. Orange curves are 2-back stimulus ground truth. Green curves are 0-back 

ground truth. Red curves are DSRAE temporal outputs. (b) The Visual Network 

activation (network #17), and its temporal fluctuation. 

For the spontaneous networks, the task-negative network of Default Mode 

Network (DMN) has been detected via DSRAE. Figure.9a shows the DMN (network #15 

out of 32 networks) from DSRAE and that from GLM. Here, one subject’s time series of 

network #15 is shown in Figure.9b as an example, where the time series have high 

positive correlation with the cue period (correlation coefficient is 0.454), i.e., anti-

correlation with the working memory task positive activation (Fox et al., 2005; Prilipko 

et al., 2011). Interestingly, via the unsupervised DSRAE model, the Visual Network 

(network #17) has also been detected, as shown in Figure.9b. Because the working 

memory task needed the subjects to look at the screen to finish the tests during the task, 

the Visual Network could be activated (Woodman, Luck, & Schall, 2007). Moreover, 

network #17 has a positive correlation (correlation coefficient is 0.34) with the working 

Network 17 Visual activation

DSRAE latent layer map

(a)

Network 15 DMN activation

(b)

Subject 5 Corr = 0.454

Time points Amplitude* 

Subject 5 Corr = 0.340
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memory tasks, which may indicate that the subjects paid stronger attention to the screen 

during the task performances. 

 

Fig. 4.10. Comparison between DSRAE and GLM-derived benchmark outputs of cue and 

reward stimulation specific maps in gambling task. (a) The spatial benchmark activation 

map predicated by GLM and DSRAE (the 28th network of the total 32 networks) of cue 

stimulation. And the corresponding temporal fluctuation of network #28 and ground 

truth. Here, we showed the comparison results of one randomly selected subjects. Blue 

curves are the reward-stimulus ground truth. Orange curves are loss-stimulus ground 

truth. Green curves are cue stimulus ground truth. Red curves are DSRAE temporal 

outputs. (b) The spatial benchmark activation map predicated by GLM and DSRAE (the 

16th network of the total 32 networks) of reward stimulation. The corresponding temporal 

fluctuation of network #16 and ground truth are also shown here. 
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Fig. 4.11. New map found by DSRAE in gambling task. The Motor Network activation 

(network #2), and its temporal fluctuation. Here, we showed the comparison results of 

one randomly selected subject. Blue curves are the reward-stimulus ground truth. Orange 

curves are loss-stimulus ground truth. Green curves are cue stimulus ground truth. Red 

curves are DSRAE temporal outputs.   

The gambling task dataset includes cue, reward, and loss stimulations. Figure.10a 

shows the cue stimulation activation (network #28), which is similar with the DMN, and 

the correlation coefficient of the activated spatial maps between the GLM and DSRAE is 

0.848. Some studies found that the core regions of the DMN would be activated during 

rest and are dampened in response to task performance (task suppression) (Fox et al., 

2005; Raichle et al., 2001). Here, the temporal fluctuation shows high positive correlation 

(correlation coefficient is 0.541) with the cue stimulus curve that consistent with the 

characteristics of DMN, which is negatively correlated with the task stimuli curve. The 

reward and loss stimulation activations have highly overlapped brain regions and are hard 

to be differentiated (C.-H. Lin, Chiu, Cheng, & Hsieh, 2008), so here we just 

demonstrated the main reward (6 reward trials pseudo randomly interleaved with either 1 

neutral and 1 loss trial, 2 neutral trials, or 2 loss trials) stimulation specific activation map 

and the corresponding temporal fluctuation. As shown in Figure.10b, the reward 

stimulation activated map predicted by DSRAE (network #16) is similar with GLM-

derived map with the correlation coefficient 0.66. For the temporal fluctuations, the 

Time points Amplitude* 

Subject 350 Corr = 0.346

Network 2 Motor activation DSRAE latent layer map
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network #16 has a high correlation coefficient of 0.48 with the reward-stimulation ground 

truth. 

With our unsupervised DSRAE, the Motor Network activation has been detected 

during the gambling task (network #2 out of 32 networks), where striatal areas are 

involved in instrumental behaviors (Van Den Bos, Koot, & de Visser, 2014). As shown in 

Figure.11, the motor activation has positive correlation with the task stimulations (reward 

and loss are included) that are consistent with the task design requiring subjects to press 

button. 

4.8 Analysis of Task Decoding 

To verify the stability and robustness of our DSRAE model, we take the language 

task as an example to employ a repeated experiment and put other tasks’ result into the 

supplemental materials (please see supplemental Figs.3 and 4). In order to eliminate the 

effect of the number and variation of subjects, a total of 791 subjects have been used in 

the original and repeated experiments. All the hyperparameters of the DSRAE framework 

are same for the both experiments. As shown in Figure.12, the networks yielded by the 

repeated experiments look very similar with those in the original experiment (Figs.5b and 

6b). The correlation coefficients between the networks derived based on the repeated 

experiment and original experiment are 0.925 and 0.902 for story and math stimulation, 

respectively. Moreover, as the same as in the original experiment, no matter it is the story 

or the math stimulation specific network, both of their temporal fluctuations showed high 

correlation coefficients with the ground truth (the highest absolution correlation 

coefficients are 0.843 and 0.837). Given the lack of ground truth data of FBNs, these high 
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robustness and reproducibility of our results validated the effectiveness of our DSRAE 

model.   

 

Fig. 4.12. The repeat experiment results in language task. (a) The story activation 

(network #29), and its temporal fluctuation. Here, we showed the comparison results of 

four randomly selected subjects. Blue curves are the stimulus ground truth. Orange 

curves are DSRAE temporal outputs. (b) The math activation (network #15), and its 

temporal fluctuation. 
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Fig. 4.13. The correlation matrix of the networks derived by DSRAE and the fMRI 

volumes of gambling task. Here, 2 randomly selected subjects are shown. 

To examine what functional state the brain is in during the task period more 

specifically, we investigated the correlation of the input fMRI volumetric data and the 

learned feature networks via Pearson correlation, which is a kind of representational 

similarity analysis method (Dimsdale-Zucker & Ranganath, 2019) to measure how good 

the learned network map represents the original fMRI volume image (Y. Zhao, Dong, et 

al., 2018). In the correlation matrix, each row or column represents each network or 

original volume separately, which can show the relationship between each network and 

each original volume. In Figure.13, taking gambling task as an example, the network #16 

and #28 have the negative or positive correlation with the cue stimulations, respectively. 

Especially, the network #28, which is the DMN, has high positive relevance with the cue 

period, which is an evidence that DMN could be suppressed during task period. Some 

volumes that have high positive correlation or negative correlation with some networks, 

which suggests that the brain is in such certain states at those time points. However, some 

volumes have low correlation with all networks, mainly during the task transition periods, 

which might indicate that the brain stays in multiple states at the same time. We achieved 

the similar results in other tasks, which are summarized in supplemental Figs.5 and 6. In 
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general, our DSRAE model has revealed interesting patterns of spatial-temporal brain 

network dynamics that warrants future interpretation studies. 

4.9 Discussion 

In this work, we proposed a novel deep sparse recurrent auto-encoder (DSRAE) 

model to identify and characterize connectome-scale functional networks from spatial-

temporal 4D fMRI data in an unsupervised way. We used the HCP language, working 

memory, and gambling tasks as our experiment testbed in this study and obtained 

promising results. To our best knowledge, the proposed DSRAE is among the early 

unified spatial-temporal deep learning models that can infer large-scale brain networks 

from 4D fMRI data directly in an unsupervised way. By visualizing and analyzing the 

feature maps of the brain responses, we confirmed that the feature maps are robust and 

meaningful. Besides, some networks have been identified and compared with the 

benchmark from classic GLM method, and the results confirmed the effectiveness of the 

DSRAE model. Meanwhile, the DSRAE model has also revealed the complex patterns of 

temporal brain network dynamics. For instance, DSRAE can detect some volumes that 

are highly correlated with one of the well-characterized networks. However, for some 

volumes with low correlation, there might be some more subtle states that need to be 

further decoded and interpreted in the future. 

Though the current DSRAE model achieved promising performances in both 

spatial patterns and temporal dynamics understanding, it can still be enhanced and 

improved in a few aspects in the future. First, in this paper, although the length of the 

scan volumes for each task is set as the LSTM see-back step, it can be further revisited by 

introducing the attention mechanism to find out more task specific networks by the 
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flexible see-back steps. The attention mechanism could make the neural networks choose 

which features they pay attention to (Xu et al., 2015), which could have the potential to 

use our DSRAE to map more hidden networks. Second, here we only used the simple and 

direct representational similarity analysis method to decode the brain states during 

different tasks. In our future work, we will conduct more interpretation into the feature 

networks learned by DSRAE to provide more in-depth neuroscientific insights into the 

DSRAE. Based on the previous improvement, the DSRAE model could be potentially 

applied as a real-time tool in the future to detect the brain behaviors in a shorter time, 

which can be potentially used as a brain states identifier. 

In addition, there are several possible applications with our DSRAE model that 

can be considered in basic neuroscience and clinical research. For the neuroscience field, 

given that the brain activities and states are under dynamical changes, the DSRAE model 

could provide a useful tool to recognize brain states at fast time-scale using either task-

based fMRI or resting   fMRI data. For the clinical research field, dynamic performance 

could be sensitive to psychiatric or neurologic disorders, thus we could consider applying 

the DSRAE framework on resting fMRI datasets to potentially investigate the altered 

brain network states in brain disorders. 

In general, our work contributes a novel deep sparse recurrent auto-encoder 

framework for spatial-temporal fMRI data modeling with future significant applications 

in cognitive and clinical neuroscience. Finally, the source codes of our DSRAE model 

and its associated sample datasets will be released at:  

https://github.com/ChloeLeeBnu/DSRAE.    
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

This dissertation addressed methodological progress in the estimation of FBNs 

from fMRI data. From the perspective of machine learning, representation learning is 

interesting because it provides one way to perform unsupervised learning. Specifically, 

we can learn good representations for the unlabeled data, and then use these 

representations to solve the supervised learning task. The contribution of this work was 

three-fold since three major challenges of applying deep representation learning on fMRI 

volumes were conquered.  

First, the enormous feature dimension. Despite these recent investigations of the 

feature extraction and classification of MRI/fMRI data using deep networks, no study has 

explicitly employed whole-brain fMRI volume as an input and blindly extracted hidden 

features from the fMRI data. The curse of dimensionality was evident when the DNN 

with tens of thousands of input nodes (i.e., number of voxels; more than approximately 

70,000 voxels within a whole brain with a 3-mm isotropic voxel size from a single fMRI 

volume) was  

Second, the insufficient samples. A recurring theme in machine learning is the 

limit imposed by the lack of labelled datasets, which hampers training and task 

performance. Considering the enormous feature dimension of fMRI data, the dataset size 

is usually significantly smaller than the number of voxels per volume which may yield 

severe overfitting problem. 
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Third, the weak supervision. In medical image analysis, the lack of data is two-

fold and more acute: there is general lack of publicly available data, and high-quality 

labelled data is even more scarce. The fMRI data are given with only coarse-grained 

labels or even no labels at all. What’s more, due to the complexity of human brain 

activity, many intrinsic FBNs could be activated at the same time and they cannot be 

labeled.   

This dissertation proposed VS-DBN, NAS-DBN, DSRAE models to identify and 

characterize connectome-scale functional networks from spatial-temporal 4D fMRI data 

in an unsupervised way. The HCP dataset was used as our experiment testbed in this 

study and obtained promising results. To our best knowledge, the proposed models are 

among the early unified spatial-temporal deep learning models that can infer large-scale 

brain networks from 4D fMRI data directly in an unsupervised way. By visualizing and 

analyzing the feature maps of the brain responses, we confirmed that the feature maps are 

robust and meaningful. Besides, some networks have been identified and compared with 

the benchmark from classic GLM method, and the results confirmed the effectiveness of 

the proposed models. Meanwhile, the proposed models have also revealed the complex 

patterns of temporal brain network dynamics. For instance, the proposed models can 

detect some volumes that are highly correlated with one of the well-characterized 

networks. However, for some volumes with low correlation, there might be some more 

subtle states that need to be further decoded and interpreted in the future. 

In addition, there are several possible applications with the proposed models that 

can be considered in basic neuroscience and clinical research. For the neuroscience field, 

given that the brain activities and states are under dynamical changes, the proposed 
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models could provide a useful tool to recognize brain states at fast time-scale using either 

task-based fMRI or resting fMRI data. For the clinical research field, dynamic 

performance could be sensitive to psychiatric or neurologic disorders, thus we could 

consider applying the proposed frameworks on resting fMRI datasets to potentially 

investigate the altered brain network states in brain disorders. 
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