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ABSTRACT 

As part of a hook exchange program initiated by the Eastern Pacific Regional Sea 

Turtle Program (EPRSTP), data on fish and sea turtle catch rates were collected for a 

large number of fishing lines. The goal of this paper is to find a statistically sound way to 

analyze these data, comparing two types of fish hooks in terms of their effects on turtle 

bycatch and catch rates for merchantable fish. The overall goal of this environmental 

project is to minimize the number of endangered sea turtles being caught on these fishing 

lines. We suggest an appropriate method for analyzing turtle bycatch data of the type 

collected by the EPRSTP. In this study, we generate probabilities at a line level under 

three different patterns simulating possible probabilities of catching a turtle along a line. 

Once these data were generated four different Mantel-Haenszel methods were compared 

as methods for analyzing the data. This study suggests that Mantel-Haenszel estimators 

proposed by Liang (1985) are appropriate for analyzing turtle bycatch data.  
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CHAPTER 1 

BACKGROUND INFORMATION 

 

1.1     NATURE OF THE PROBLEM 

Individuals living in many of the poverty–stricken communities along the coast of 

Central and South America lean on fishing as a major source of income. These 

professional fishermen are targeting fish such as tuna, billfish, sharks, and mahi-mahi. 

While they are targeting these marketable fish they are also catching several different 

species of sea turtles as ``bycatch’’, or unintended, non-marketable marine species.  

Over the past few years, the numbers of sea turtles along the Pacific beaches have 

seen decreasing trends. In fact, several sea turtle species are endangered. In hopes of 

reducing the number of turtles being caught in the longline fishing industry, a ‘hook 

exchange’ program was started in 2004 called the Eastern Pacific Regional Sea Turtle 

Program (EPRSTP). Prior to this program most fishermen were using traditional 

Japanese-style tuna hooks (or J hooks). It is the belief of the organizers of the EPRSTP 

that the use of a different type of fish hook, called a circle hook (or C hook), may 

significantly reduce the number of turtles caught.  

This is a completely voluntary program asking fishermen to exchange J hooks for 

C hooks and adopt an alternating pattern of J and C hooks along a line. The C hooks were 

provided at no charge to fishermen. As part of the program, an EPRSTP staff member 

accompanied each fishing crew participating in the hook exchange program to record 
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data on turtles and merchantable fish caught on the two hook types during the fishing trip. 

The sponsors of the EPRSTP would like to compare catch rates on these J and C hooks 

for both sea turtles and merchantable fish. The hope is that the use of C hooks will reduce 

turtle bycatch rates without adversely affecting the merchantable fish harvest. Because a 

switch to C hooks would be inconvenient and difficult in several respects, such a switch 

would only be worthwhile if it results in a major reduction in turtle bycatch. Therefore, 

both whether C hooks reduce bycatch rates and the magnitude of this reduction is of 

interest.  

 

1.2     NATURE OF THE DESIGN 

The EPRSTP conducted this observational study and provided us with a portion 

of the resulting data. This dataset summarizes information from 539 fishing lines 

collected from three different countries of interest. There are a number of explanatory 

variables that were gathered and which are relevant to this turtle bycatch problem. These 

variables include country of origin, trip number, vessel id, size of boat used, set number, 

latitude and longitude of the location at which the line was set, elapsed time that the line 

was in the water, percent of time out in daylight, length of the main line, distance 

between hooks, bait type used, total number of hooks, number of J hooks, number of C 

hooks, number of both fish and turtles caught on J hooks, number of both fish and turtles 

caught on C hooks. While all of these variables are potentially important in determining 

bycatch rates, the main variables of interest in our analysis are the line identifier, the 

number of C & J hooks, and the number of turtles caught on each type of hook. While 

more detailed and intricate analyses are possible, the methods advocated in this thesis 
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have the great advantage of controlling for effects of all between-line covariates (e.g., 

potential confounders) without specifically accounting for them in the analysis.  

A generalized diagram of how a line appears once it is launched in the water is 

shown in Diagram 1. A typical line would include a mainline and numerous branchlines 

of which both can be of various lengths. The floatline would adjust the desired depth of 

the mainline from the water’s surface. Then branch lines would be attached to the 

mainline at various intervals set by the fishermen. At the other end of each of the branch 

lines would be the fish hook and some type of bait chosen by the fishermen.  

For a more detailed example a typical line (also called a “set”) would be released 

from the back of the boat. As the currents would pull the floats out behind the boat a 

fisherman would attach a shorter branch line onto the main line one after another in 

which the fisherman would attempt to alternate the type of fish hook used J, C, J, 

C,…etc. After a certain amount of time in the water, the line would be reeled back in and 

the hooks would be removed along with any animals caught. The researcher on board 

would record all of the data at the line level; the number of turtles and the number of 

marketable fish caught and the type of hook the catch was caught on.  

As seen in Diagram 1, lines are layed out in catenaries that suspend the hooks at 

multiple different depths. Depth could create heterogeneity in the catch probability from 

hook to hook. For example, turtles are known to be topdwellers. If a line is suspended in 

such a way that the end of the line is much deeper than the part of line closest to the boat 

and the depth of the hooks at the end of the line are deeper than where turtles usual 

navigate then these hooks would have a much lower probability of catching a turtle. 

Because of the inherent characteristics of the line you wouldn’t necessary expect these to 
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be independent identical trials like you would have in a binomial. There are other with-in 

line factors that may affect hooking events such as distance from the boat, distance from 

a float, distance between the hooks.  

There are other things that could create dependence that are not line specific 

characteristics. For example, merchantable fish have a tendency to school together and 

therefore can create hooking encounters in local bunches along a line. This may cause 

one part of a line to encounter more hooking activity than another part of the line. This 

sort of thing would potentially violate an assumption of independent identical trials. 

Failure of that assumption will play a crucial role in our choice of methods and our 

analysis of the relative performance of those methods. The alternating hook design 

controls (to a large extent) for some of the within-line sourses of variability. 

 

1.3     NATURE OF THE DATA 

Tables 1.1, 1.2, and 1.3 summarize some simple features of the data. From Table 

1.1 it is clear that we are dealing with a large number of hooks: 96,443 J hooks and 

69,158 C hooks on a total of 539 lines. Also note that J hooks out-number C hooks. Table 

1.2 breaks out the number of turtles caught and the number of fish caught on each type of 

hook and provides a comparison of percentages for J hooks vs. C hooks. For example, 

69% (167) of the turtles caught were on J hooks and the other 31% (76) were on C hooks. 

These figures can be misleading because J hooks and C hooks do not occur in a 50/50 

ratio.  There are more J hooks than C hooks, so one would expect that more turtles were 

caught on J hooks.  However, even accounting for the greater number of J hooks, the 
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proportion of hooks which caught turtles is higher for J hooks: 0.17% and 0.11% for J 

and C hooks, respectively (Table 1.3). 

In Figure 1 it is clear to see that there were few lines that caught turtles. This 

figure shows that 74.21% of the lines caught zero turtles and another 16.51% caught only 

one turtle. Figures 3, 4, 5 and 6 show graphical evidence of sparseness in the data 

collected. In Figure 2 it is clear to see that there were few lines that caught large numbers 

of fish. This figure shows that 13.54% of the lines caught zero fish and 69.76% of the 

lines caught five or fewer fish. More evidence of the sparseness of the data can be seen in 

Table 1.3. This table shows the ratio of the number of animals caught on a specific type 

of hook per line, divided by the number of specific type of hooks per line. For example, 

only 0.17% of J hooks caught a turtle and only 0.11% of C hooks caught a turtle.  

Figure 7 is a three-dimensional graph that compares the frequency of turtles 

caught for J hooks vs. C hooks. There were more lines that caught 0 turtles on C hooks 

than on J hooks.  It is also visible that those lines that caught more than zero turtles are 

proportionally smaller for C hooks than J hooks. Figure 8 provides the same information 

for marketable fish. This figure is a bit more difficult to see but those lines that caught 

larger numbers of fish were on J hooks as opposed to C hooks. 

 

Table 1.1: 

Number (Percentage) of Hooks of Each Type   
     
 J Hook C Hook Total  

Number of Hooks 96,443 
(58.2%) 

69,158 
(41.8%) 

165,601 
(100%) 
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Table 1.2: 

Number (Percentage) of Turtles/Fish Caught By Hook Type 
     
 J Hook C Hook Total  

Number of Turtles Caught 167 
(68.7%) 

76 
(31.3%) 

243 
(100%)  

Number of Marketable Fish Caught 1,395 
(47.6%) 

1,535 
(52.4%) 

2,930 
(100%) 

 
     

 

Table 1.3: 

Proportion of Hooks that Caught Turtles/Fish By Hook Type 
     
 J Hook C Hook Total  

Proportion of Hooks That Caught Turtles 
0.0017 0.0011 0.0015 

 

Proportion of Hooks That Caught Fish 
0.0145 0.0222 0.0177 

 
     

 

1.4     GOAL OF THIS PAPER 

This paper focuses on coming up with an appropriate method for analyzing turtle 

bycatch data of the type collected by the EPRSTP. The EPRSTP would like to be able to 

say that the proportions of turtles caught on C hooks are significantly lower than on J 

hooks. Implementing this change to a different type of fish hook would hopefully allow 

turtles a better chance at survival in this area without causing any drastic changes to the 

fishing industry.  

 The ‘naïve’ analysis would be to cross classify all the hooks by hook type and 

whether a turtle was caught, creating a simple 22×  table which would be analyzed as if 

the hooks were not organized onto different lines. This analysis will ignore heterogeneity 

from line to line and treats all the hooks as independent, identical trials. This simple test 

is a way of comparing whether proportions are the same for two groups. The odds ratio is 
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used to make this comparison and it is simply the ratio of the odds of a turtle hooking for 

J and C hooks. This yields an odds ratio of 1.58 for the turtle data. This result suggests 

that the odds of catching a turtle is 58% higher on a J hook than on a C hook.  The same 

‘naïve’ analysis can be done on the fish data collected.  It results in an odds ratio of 1.55.  

This result suggests that the odds of catching a fish is 55% higher on a C hook than on a J 

hook.  

Based on this simple naïve analysis, evidence suggests that C hooks may provide 

the desired advantages the EPRSTP is looking for. However, given the complexity of the 

data collection scheme and the multiple sources of potential heterogeneity and 

dependence among these data, this analysis is clearly over-simplistic, and a more 

sophisticated analysis with assumptions consistent with the data collection scheme is 

needed. There are several options to consider when attempting answering the question, 

what is an appropriate method for analyzing these data? The main goal of this paper is to 

fix this naïve analyses and see if the resulting ‘non-naïve’ analyses gives essentially the 

same answer. 

     

1.5     STATISTICAL METHODS WORKSHOP 

In November, 2007, the EPRSTP organized a workshop in Costa Rica to study 

statistical methods to analyze turtle bycatch data. The participants in this workshop 

discussed a variety of approaches for analysis of these data including modeling, M-H 

methods and permutation/randomization methods. A detailed description of the 

proceedings of the workshop can be found in Christman et al. (2008). 
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One approach discussed at the workshop was to model all sources of variability in 

a complex regression model to model the probability that a turtle was caught as a 

function of hook type and a variety of other covariates, and then compare catch 

probabilities for J and C hooks through inferences based on this model. Such a model 

would have to account for many things, including the large proportion of zeros in the 

data. This approach would be quite challenging, and may be avoidable through the use of 

simpler, non-model-based statistical methods.  

In terms of the question of, is there a difference between the J and C hooks, there 

is a much simpler way to approach this without building a complex model while 

simultaneously controlling all of those external sources of variability. In particular, 

Mantel-Haenszel (M-H) methods are appropriate here. M-H methods are appropriate for 

testing and quantifying association between two categorical variables like two binary 

variables such as hook type (J or C) and whether an animal was caught (Yes or No) while 

controlling for one or more categorical nuisance variables. That is, they are appropriate 

for analyzing the association within multiple (or stratified) 22×  tables. Since we are 

only concerned with making a comparison between hook types we could create a 22×  

table to characterize the data for each line. This would provide for a simpler and more 

direct approach that gets right to the hypothesis test that we are interested in.  

  

1.6     ORGANIZATION OF THESIS 

We want to use a nonparametric test that uses the fewest assumptions as possible. 

Two of the approaches that we consider are the M-H test and the other is the permutation 

test, which is closely related to a randomization test. As the first goal of the thesis we will 
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discuss more thoroughly what permutation and M-H tests are and establish that under 

certain situations the permutation test is the same thing as a M-H test, which is 

summarized in Chapter 2. We will discuss the applicability of classical M-H methods to 

the turtle bycatch problem and discuss violations of standard M-H assumptions that are 

likely to be present in the data collected by the EPRSTP. In Chapter 3, we will present 

alternative forms of the M-H test and then go over details of our simulation analysis in 

Chapter 4. Through simulation, we will investigate the effects of such assumption 

violations on the performance of the classical M-H test as well as generalizations of the 

M-H test that have been proposed in the statistical literature. We will present several 

scenarios or patterns used in our simulations which are designed to be realistic given the 

nature of the data collection scheme used by the EPRSTP, and which represent differing 

degrees of failure of the M-H assumptions. In Chapter 5, we will draw conclusions from 

the simulations results and use those to draw conclusions about the real data. Finally, in 

Chapter 6, we will make some suggestions to possible future work.  
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CHAPTER 2 

MANTEL-HAENSZEL METHODS & PERMUTATION TESTS  

 

 Our data can be summarized into multiple 22×  tables, one table for each line, set 

up as in Table 2.1 below.  

 

Table 2.1:  22×  Contingency Table 

 Turtle 
Caught 

No Turtle 
Caught  

J hook xi ni - xi ni 

C hook yi mi - yi mi 

 ti Ni- ti Ni 

 

Here i  is the specified line from 1 to 539, xi is the number of turtles caught on J hooks on 

the thi  line, yi is the number of turtles caught on C hooks on the thi  line, ti is the total 

number of turtles caught on the thi  line, ni is the total number of J hooks on the thi  line, 

mi is the total number of C hooks on the thi  line, ni - xi is the number of J hooks on the 

thi  line that did not catch a turtle, mi - yi is the number of C hooks on the thi  line that did 

not catch a turtle, and Ni is the total number of hooks on the thi  line. 
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 We need to find whether there is an association between the row (type of 

hook) and column (turtle caught or no turtle caught) variables. Using Fisher’s Exact test 

or a Chi Square test one could analyze a single 22×  table and conclude if the bycatch 

probabilities on the two types of hooks are significantly different. We need a similar type 

of analysis that can analyze multiple lines at once because we have data collected from 

539 lines. So, we would be dealing with 539 22×  tables. 

 In this Chapter we will introduce M-H methods and briefly discuss their 

relationship with the permutation test. 

 

2.1     MANTEL-HAENSZEL TEST 

The Mantel-Haenszel (M-H) test is a test for detecting average partial association 

between two categorical variables while adjusting for the effects of one or more 

extraneous variables. The combinations of the levels of these extraneous variables are 

treated as strata, within which the two-way relationship (or conditional association) is of 

interest. The M-H methods are appropriate for detecting association within i  stratified 

22×  tables. The test statistic is given by 

∑
∑

−−

−
=

i iiiiiii

i iiii

NNtNtmn
Ntnx

T
)}1(/{)( 

})/({
2

2

MH ,                                   (1) 

which approximately has a chi-squared distribution with 1=df  for a large sample. The 

M-H method is most powerful for detecting patterns of association across I  strata when 

there is a tendency for the majority of the differences 
i

ii
i N

tn
X −  among partial tables to 

consistently have the same sign. If the differences are in opposite directions the M-H 

method may fail to detect the association. 
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It is also inappropriate to combine results across multiple partial tables into a 

single 22×  marginal table then to be analyzed by an odds ratio (for example). This 

analysis could lead to inaccurate results. It is possible for the marginal table to exhibit an 

association that is completely different from the individual partial tables. This is known 

as Simpson’s Paradox. A detailed description of Simpson’s Paradox can be found in 

Agresti (1996). 

            

2.2 MANTEL-HAENSZEL ODDS RATIO ESTIMATOR  

The so-called common odds ratio provides a way to estimate the strength of 

association between J hooks and C hooks rather than doing a simply hypothesis test 

comparing J hooks and C hooks, which would be a test on the overall or marginal odds 

ratio collapsing across strata. When this association is stable across partial tables, we can 

estimate an assumed common value of the I  true odds ratios. The M-H estimator of the 

common odds ratio equals 

[ ]

[ ] ∑
∑

∑
∑

=
−

−
=Ψ

∧

i
i

i
i

i
iiii

i
iiii

MH
S

R

Nyxn

Nymn

/))((

/)(
,                                   (2) 

and the standard error of MH
∧

Ψ  can be consistently estimated by  

∑ ∑
∧

Ψ−
i i

iiMHi SSR 22 )/()( .                                         (3) 

The M-H odds ratio estimator is a powerful summary of evidence against the hypothesis 

of conditional independence, as long as the sample associations fall primarily in a single 

direction.  Further detail of the M-H odds ratio estimator can be found in Kuritz et al. 

(1988). 
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2.3 MANTEL-HAENSZEL RISK DIFFERENCE ESTIMATOR  

Another tool related to the odds ratio is called risk difference. The common risk 

difference also provides a way to estimate the strength of association between J hooks 

and C hooks. M-H estimator of the common risk difference equals 

∑∑ −=
∧

i
iii

i
iiiiiiMH NmnNnyNmx )//()//(δ , 

and the standard error of 
∧

MHδ can be consistently estimated by  
 

2)/(/∑∑ i iiii i NmnL , 

 
where  

)/(])()([ 233
iiiiiiiiiiii NmnnymymxnxL −+−= . 

The risk difference is often used in epidemiology settings and is preferred when one 

wants to quantify the “public health impact” of an exposure to a disease.  In our case we 

will use the risk difference to quantify the number of turtles saved by implementing the 

replacing of J hooks with C hooks. Further description of the risk difference can be found 

in Greenland et al. (1985). 

  

2.4     EXACT MANTEL-HAENSZEL INFERENCE  

For stratified 22×  tables, conditional on the marginal totals, the M-H test of 

conditional independence depends on the cell counts through ∑
i

ix . Conditional on the 

table margins, the hypergeometric distribution determines probabilities for },...,1,{ Iixi =  

and therefore determines the distribution of their sum. 
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The null hypothesis of conditional independence states that all conditional odds 

ratios }{ )(iXYθ  equal 1. A “positive” conditional association corresponds to the one-sided 

alternative: 1>XYθ , where ∑=
i iXYXY I )(

1 θθ . The M-H P-value for this alternative is 

hypergeometric probability that ∑
i

ix  is at least as large as observed, for the fixed 

marginal totals. Similarly, for the alternative 1<XYθ , the P-value equals the 

hypergeometric probability that ∑
i

ix  is no greater than observed. Two-sided alternatives 

can use a two-tailed probability of those outcomes at least as unlikely as the observed 

one. Additional information about the exact version of the M-H test can be found in 

Agresti (1996). 

 

2.5     PERMUTATION TEST & ITS RELATIONSHIP TO EXACT MANTEL-

HAENSZEL 

The goal of this section is to clarify the connection between the permutation test 

and the exact M-H test. The classical definition of a hypergeometric distribution goes as 

follows. You have an urn with 11 balls, 3 are red, 8 are black and a sample of 6 balls is 

chosen. What proportion of them is red? This is a textbook example of the 

hypergeometric distribution. In terms of our turtle problem, you have a line with n  

hooks, 1n  of J hooks and 2n  of C hooks. We sample k   hooks (the hooks that caught a 

turtle) and we count the number x  of those hooks which are of type J. The distribution on 

x  is hypergeometric.  
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Now, suppose a line has 6 J hooks and 5 C hooks for a total of 11 hooks. Suppose 

3 turtles are caught on this line of which 2 were on J hooks and 1 on a C hook. All other 

hooks either caught no turtle or perhaps caught a fish. So 62  of the J hooks caught 

turtles and 51  of the C hooks caught turtles. Using this data we could compute the odds 

ratio as one form of the test statistic to test the hypothesis of no association. If the type of 

hook doesn’t matter then there are many different ways to assign J and C hooks to these 

11 positions such that you have 6 J hooks and 5 C hooks. The pattern of hooks along the 

line could be alternating or it could be that the first 6 hooks are J hooks and the last 5 

hooks are C hooks, etc. For every possible layout of J and C hooks along a line one could 

compute the odds ratio associated with it.   

The odds ratio is determined by how many of the J hooks caught turtles.  As soon 

as you know that 2 of these J hooks caught turtles, the number of total J hooks there are, 

how many C hooks there are, and how many total turtles were caught we know 

everything about the line. So each distinct value of the odds ratio corresponds to a distinct 

value of x , the number of J hooks that caught a turtle. The permutation distribution of the 

odds ratio is the permutation distribution of x . Once x  is known the odds ratio is known.  

Out of all the possible permutations of the assignments of J and C hooks to the line, what 

proportion of them have an odds ratio (or equivalently have a value of x ) at least as 

extreme as the one we obtained. This is the permutation test p-value. It quantifies how 

extreme the observed odds ratio is relative to the permutation distribution that assumes 

the J and C hook labels do not matter, and it is given by a hypergeometric probability.   
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This setup of the permutation distribution on x  fits the definition of a 

hypergeometric probability distribution. There is equivalence between Fisher’s Exact test 

in terms of this turtle problem (the classic definition of the hypergeometric distribution) 

and Fisher’s Exact test being a permutation test. In the data that we have analyzed there is 

not a single line, but there are actually 539 lines. However, this does not change the 

argument. The same process can be done for every line and the resulting permutation p-

value is that given by the exact version of the M-H test based on hypergeometric 

probabilities. If we had two lines then one would look at all the permutations in the first 

line and all permutations in the second line and compare the actual data observed in the 

first line to how extreme it is of getting 3 J hooks with turtles in two lines. This can be 

extended to many lines. Simply take all the permutations possible from each line and 

compare how extreme the observed case is to getting 3 J hooks with turtles in 539 lines 

like in the case we have.  It is hypergeometric in each line and it is hypergeometric with 

multiple lines. 

 

 

 



 

 17

 

 

CHAPTER 3 

LIMITATIONS OF MANTEL-HAENSZEL TESTS & ALTERNATIVES 

 

One of the limitations of the M-H test is an underlying assumption of 

independence among the experimental units. The source of the concern here is there is 

potential for correlation in the catch event among the hooks that we are using to form the 

22×  tables. For example, imagine a fish or turtle being caught and flopping around on a 

hook. Then the two hooks adjacent to this hook may be directly affected. Standard M-H 

methods are not designed to accommodate such dependence. In addition to independence, 

the M-H test also assumes a constant success probability within each row of the stratified 

22× tables. This assumption too is of some concern for the turtle bycatch data. As 

mentioned above, differences in the depth at which the hooks are set within a line may 

make for non-constant hooking probabilities, or long lines that pass through waters that 

have different environmental conditions or habitats may have similar effects.  Fortunately 

there are a number of generalizations of the M-H methods that exist in literature designed 

for correlated data. Because correlation and heterogeneity among Bernoulli events both 

lead to a similar phenomenon of over-dispersion in the sum of such events, one can 

expect these methods also to work well in the presence of non-constant catch 

probabilities along a line. Below we investigate these methods under both scenarios. 

Because the derivation of both the asymptotic and exact sampling null distribution 

of the M-H test statistic depends strongly on the assumption of independent, identical 
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trials, the appropriateness of the M-H test is in doubt when this assumption is invalid. 

Liang (1985) proposed two new test statistics that relax the assumptions of the M-H test 

and allow for possible correlation and/or heterogeneity of the response probabilities. 

Below we present Liang’s tests. 

As stated above in Chapter 2, the M-H test, under the hull hypothesis where the 

odds ratio is equal to 1, can be written as in equation (1). Below Liang uses the same 

numerator as MHT  but replaces the denominator with its sample variance formula 

Σ 2)/( iiii Ntnx −  which results in  

 

∑
∑

−

−
=

i iiii

i iiii

Ntnx
Ntnx

T 2

2

1 )/(
})/({

. 

 

By taking the numerator of MHT , which has a mean of 0 under the null hypothesis,  and 

dividing by its standard deviation, results in 1T  being the square of an approximately 

standard normal random variable. Liang’s second proposed test statistic is 
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where the M-H estimator MH
∧

Ψ  can be defined as in equation (2) and the standard error of 

the MH
∧

Ψ  can be consistently estimated by equation (3). Under the hull hypothesis, where 

the odds ratio is equal to 1, both 1T  and 2T  have asymptotic chi-squared distributions 

with one degree of freedom.   
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CHAPTER 4 

SIMULATION STUDY DESIGN 

 

We want to evaluate all the above versions of the M-H test under different 

conditions and see whether or not they are appropriate methodologies and if so is there an 

advantage of one over another. In order to do this we needed to do a simulation study. In 

this study we wanted to generate data that mimic the real data that we have. One problem 

that we encountered is that we don’t know exactly how a turtle interacts with the hooks 

along a line. The data that we have were collected at the line level. So we know how 

many animals were caught on a specific line but what we don’t know is the location of 

the hook along the line the animal was caught on.  

In the study we generated the data at the individual hook level. We then 

summarized them into stratified two way tables where we then analyzed them using 

different versions of the M-H Test discussed above.  

 

4.1     OVERVIEW OF THE SIMULATIONS 

Since we are not certain of how turtles interact with hooks, we generated data 

under three different scenarios. The differences between these three patterns come from 

how the probabilities of catching a turtle along a line were generated. The simulations are 

meant to account for a variety of factors that may affect catch rates along longlines: 

heterogeneity in hook probabilities across lines (found in all three patterns), heterogeneity 



 

 20

in hook probabilities within a line (found in patterns 2 & 3), correlation among hooks 

within a line (found in pattern 3), and effect size (found in all three patterns). A 

comparison of all three patterns can be seen in Table 4.1, located at the end of this 

chapter. 

In addition there were some factors that we simply controlled for in the 

experiment instead of trying to vary. We felt that it would be unrealistic to assume that 

there is not heterogeneity from line to line. For example, some lines are being soaked 

where many fish or turtles are located while other lines are being soaked where no fish or 

turtles are located.  

We controlled the size of the effect to be detected by the M-H tests by 

manipulating the difference between the J and C hook catch probabilities. Three effect 

sizes, none, small and large, were examined in each scenario, but the specific settings 

differed across scenarios so are summarized below.  

We felt it would be unrealistic to assume that the level of catch probabilities 

would be the same across lines. For example, one line is pulled through a school of fish 

while another line came in contact with a small grouping of turtles and another line never 

came in contact with any sort of sea creature. This seemed realistic so we included it in 

all of the simulations.  

To make these simulations as real as possible we kept a number of the parameters 

the same as our real data. Each simulation was composed of 539 lines and each line was 

the exact length (total number of hooks) as the observed data. We created a constant 

pattern of difference between the lines to create the type of variability across strata that 
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the M-H test is designed to control for and which are to be expected in the longline 

fishery.   

 

4.2     SIMULATION PATTERN 1 

Pattern 1 is the most simplified scenario. It is when the classical assumptions hold 

under the M-H test. The probability of catching a turtle remains constant throughout the 

entire line. There is a JP  (probability of catching a turtle on a J hook) and a CP  

(probability of catching a turtle on a C hook) for each line. So within a given line the 

number of turtles hooked on a J hook and the number of turtles hooked on a C hook will 

respectively both be binomials because those will be the number of successes out of the 

number of independent trials, each with a constant success probability. We initialized the 

JP  by calculating the actual proportion of turtles caught on J hooks.  

0017.0
443,96

167
==JP , 

where 167 turtles were caught on 96,443 J hooks. 

After establishing an initial value for JP  we imposed three different effect levels 

where CJ PP = , CJ PP ×= 4.1 , and CJ PP ×= 8.1  along a line. The effect size is the 

difference between J and C hook probabilities. The main idea is that in the no effect the 

probability of catching a turtle on a C hook is equal to that of a J hook. The small effect 

would have some increased probability of catching a turtle on a C hook equal to that of a 

J hook. Finally, the large effect would have a larger increased probability of catching a 

turtle on a C hook equal to that of a J hook. The effect sizes were set up where there were 
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increased levels of difference between J and C hook probabilities and where the rejection 

rates were comparable.  If the effect size is too large then everything gets rejected. 

We also created a constant pattern of differences between the lines by setting 

0017.0=JP (as mentioned above) for one-third of the lines JP =1.5×0.0017 in a second 

third of the lines, and JP =0 in the remaining third of the lines. Our reasoning for making 

these settings is to mimic spatial variability in the prevalence of sea turtles are located, 

whereas other lines could be finished in unsuitable habitats thus never encounter a turtle. 

 

4.3     SIMULATION PATTERN 2 

The probability of catching a turtle was generated using a uniform probability 

between 0 and 0.05. This scenario allows the probabilities within a line to vary. So 

whether you catch a turtle on each hook is independent within a line. In this scenario we 

are violating the constant success probability assumption.  

Again, we imposed the three different effect levels where CJ PP = , CJ PP ×= 05.1 , 

and CJ PP ×= 1.1  along a line. Here the effect sizes changed from Pattern 1.  The effect 

sizes of 1.4 and 1.8 were much too large resulting in a 100% rejection rate for all tests.  

The effect sizes were lowered to make the rejection rates comparable.  

We also created a constant pattern of differences between the lines by setting the 

first third of the lines equal to what is generated, second third equal to 1.5 times the value 

generated, and the last third is equal to zero. Like in Pattern 1, we did this to mimic how 

some lines are going to encounter more turtles than others and to reflect other between-

line sources of variability. 
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4.4     SIMULATION PATTERN 3 

Similar to Pattern 2, Pattern 3 represents violations of the assumptions under the 

classical M-H test. This pattern violates the constant success probability assumption and 

the assumption of independence under the M-H test. This pattern is designed to have 

correlated binary responses. In other words, hooks closer together will have a higher 

correlation than hooks further apart. For example, the line goes out and some of it goes 

into water that is unsuitable for turtle migratory condition. Or some may go into a school 

of fish but you want that probability to be higher in one region of the line and lower in 

another. We feel this scenario is theoretically reasonable but have no evidence to suggest 

this is apparent in real data. 

We separated each line up into four approximately equal sized subgroups and 

assigned starting probabilities for each subgroup. The probabilities of each of the four 

subgroups of a given line were set as (0.01, 0.02, 0.03, 0.04). We generated correlated 

binary data according to the method of Oman and Zucker (2001). In particular, we 

generate a continuous variable iZ  with an AR(1) dependency structure using the formula 

iiiii UZUZ ε)1(1 −+= −   )2( ≥i , 

where U  is Bernoulli(0.5),  1Z  is Normal(0,1)  and the iε s are independent Normal(0,1) 

random variables. Then correlated binary variables are created via 

)(1
iiZiY θ≤= , 

where )(1
ii p−Φ=θ , Φ  is the standard normal distribution function, and ip  is the 

desired probability of catching a turtle. The resulting series }{ iY  does not have an exact 

AR(1) structure, but as described by Oman and Zucker (2001), has the desired marginal 
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mean (sequence of success probabilities) and a correlation structure that is close to 

AR(1), subject to the constraints of the specified marginal and the binary nature of the 

data. The exact theoretical lag-1 autocorrelation among the iY s is a complex function of 

their marginal mean and the parameters used to generate }{ iZ , but the estimated sample 

lag-1 autocorrelation for these binary deviates was about 0.36. 

Again, we imposed the three different effect levels where CJ PP = , CJ PP ×= 1.1 , 

and CJ PP ×= 5.1  along a line. Here the effect sizes changed once again.  The effect sizes 

of 1.4 and 1.8 were again much too large.  All of the hypothesis tests were being rejected. 

The effect sizes were lowered to make the rejection rates comparable.  

We also created a constant pattern of differences between the lines by making the 

first third of the lines equal to what is generated, second third equal to 1.5 times the value 

generated, and the last third is equal to zero, thus creating heterogeneity across lines.  

Like in Patterns 1 and 2, we did this to mimic how some lines are going to encounter 

more turtles than others. 

 

4.5     DETAILS OF THE ANALYSIS 

Once the data had been generated under each scenario explained above they were 

analyzed using four different test statistics. The first two are the exact version and an 

asymptotic version of the M-H test. Both of these versions discussed in Chapter 2 are the 

most familiar and can be found in most statistical programming packages. Also included 

in the analysis are two generalizations of the M-H test which were explained in Chapter 

3. 



 

 25

Each simulation generated the data at the individual hook level and then we 

summarized that simulated set of 539 fishing lines into a stratified 22×  table. From there 

we calculated each of the test statistics and the associated p-value. We simulated 1,000 

data sets and calculated the rejection rates, which is the proportion of times the 

significance level exceeded the p-value. The rejection rate is the empirical size of the test 

when data are generated under the null, and is the empirical power when the null is false. 

Significance levels of 0.05 and 0.01 were used in the simulation study. 
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Table 4.1:  Simulation Patterns 

            
   Pattern 1 Pattern 2 Pattern 3  

 
Type of 

Pattern Along 
a line 

Homogeneity of Catch Probabilities and 
Independence within a Line 

Catch Probabilities Generated Uniformly 
within a Line Correlated Catch Probabilities within a Line  

                      

 Proportion of 
lines  1/3  1/3  1/3  1/3  1/3  1/3  1/3  1/3  1/3  

                      

 Heterogeneity 
Across Lines 

),( CJ PP  ),(5.1 CJ PP×  ),(0 CJ PP×  ),( CJ PP  ),(5.1 CJ PP×  ),(0 CJ PP×  ),( CJ PP  ),(5.1 CJ PP×  ),(0 CJ PP×   

                      
                      
 Simulation 1 2 3 4 5 6 7 8 9  
                      
 Effect Levels NONE SMALL LARGE NONE SMALL LARGE NONE SMALL LARGE  
                      
   CJ PP =  CJ PP ×= 4.1  CJ PP ×= 8.1  CJ PP =  CJ PP ×= 05.1  CJ PP ×= 1.1  CJ PP =  CJ PP ×= 1.1  CJ PP ×= 5.1   
                      
                      

 Heterogeneity 
Within Line 

JP  is Constant along a line JP  generated from Uniform(0,0.05) JP  generated with Correlation: each line split 

into 4 subgroups 
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CHAPTER 5 

RESULTS 

 

5.1     SIMULATION RESULTS  

In the results from the no effect setting within each of the three patterns yield 

conclusions regarding whether or not the tests have the correct nominal size (0.05 or 

0.01). This can be seen below in Tables 5.1 and 5.2. Table 5.1 contains the proportion of 

p-values that are less than 0.05. We are also interested in the rejection rates at each 

increasing level of hook effect, which is called the empirical power. Power can be the 

determining factor when choosing which test is the best. It can be used for comparing 

multiple tests of the correct size and the one with the greater power is considered the best 

test. 

The motivation behind this research is to determine if M-H methods provide an 

appropriate way to analyze real turtle bycatch data. So, if we are generating these data 

under a realistic scenario and we take that data and analyze it with our M-H methods are 

we really getting a valid test?  

The initial simulations that we ran were simply comparing the M-H test statistics 

that were built into R which include both asymptotic versions (with and without the 

continuity correction) and the exact version. These simulations show that using the M-H 

test to analyze data that violate certain assumptions does really matter. This conclusion is 

drawn from Tables 5.1 and 5.2. In Table 5.1 for example we are expecting to see 5% 
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rejection rate (proportion of the simulations where we rejected) in each of the no effect 

columns of each of the three patterns. Pattern 3 results suggest that we have a 0% 

rejection rate, which is too conservative. This conservativeness lowers the power of the 

test and thus, the basic M-H test is not appropriate to analyze data that were correlated as 

in the simulated Pattern 3. The real data are possibly correlated from one hook to the 

next. We should be using a method that allows for that and doesn’t assume independence.  

In addition to the exact version and the asymptotic version of the M-H test 

statistic built into R we imposed two additional versions of the M-H test. Additional 

simulations were ran for these two new test statistics which can also be seen in Tables 5.1 

and 5.2. These simulation results include Liang’s test statistics and compare them to the 

basic M-H test statistics that are built into R. These new tests are performing roughly the 

same as the M-H in Patterns 1 and 2. They are doing significantly better in Pattern 3. This 

suggests the test statistics 1T  and 2T  work well under all three scenarios. We get close to 

nominal size in all of three patterns using either of Liang’s test statistics. So it doesn’t 

matter if the data are correlated or heterogeneous within a line or not. Liang’s second test 

statistic 2T  seems to have slightly stronger power in some case but it appears from the 

analysis that both of Liang’s test statistics perform equally well. Liang’s test statistics are 

definitely the better proposed generalized version of the M-H test because Liang’s test 

statistics are not limit to the assumptions under the basic M-H.  
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Table 5.1:  Rejection Rates 

Alpha=0.05          
 Pattern 1 Pattern 2 Pattern 3 
 NO SMALL BIG NO SMALL BIG NO SMALL BIG 

EXACT 0.041 0.306 0.671 0.057 0.734 0.897 0.000 0.321 0.789 
TMH 0.049 0.335 0.706 0.057 0.743 0.899 0.000 0.332 0.794 

LIANG-T1 0.052 0.333 0.705 0.059 0.735 0.901 0.055 0.768 0.974 
LIANG-T2 0.052 0.333 0.703 0.060 0.746 0.905 0.055 0.769 0.975 

                                         

Table 5.2:  Rejection Rates 

Alpha=0.01          
 Pattern 1 Pattern 2 Pattern 3 
 NO SMALL BIG NO SMALL BIG NO SMALL BIG 

EXACT 0.013 0.133 0.433 0.016 0.501 0.747 0.000 0.076 0.445 
TMH 0.013 0.145 0.461 0.017 0.507 0.754 0.000 0.076 0.453 

LIANG-T1 0.014 0.141 0.462 0.017 0.504 0.751 0.018 0.513 0.892 
LIANG-T2 0.014 0.140 0.451 0.017 0.516 0.758 0.018 0.522 0.895 

 

5.2     REAL DATA RESULTS 

In Tables 5.3 and 5.4 we report some real data analysis for two versions of the  

M-H test build into R software and both of Liang’s test statistics. Note that there are 

some differences between the two versions found in the software and Liang’s statistics 

because the two versions of the M-H test built into the software rely strongly on the 

assumption of independent, identical trials whereas neither of Liang’s statistics requires 

such an assumption. 

From Table 5.3 it can be seen that using either of Liang’s test statistics we can 

conclude that the number of turtles caught on J hooks is significantly higher than the 

number of turtles caught on C hooks. There is evidence to suggest that these C hooks are 

better at catching few turtles.  In fact, from Table 5.4, we see the odds ratio of catching a 

turtle on a J hook is estimated to be 1.97 meaning the odds of catching a turtle on a J 
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hook is estimated to be 97% higher than on a C hook. The M-H odds ratio 

)hook C
hook J(  is greater than one and the risk difference (J hook – C hook) is 0.000976 

with a 95% confidence interval that does not contain zero, as shown in Table 5.4. This 

implies the difference in hooking risk between J and C hooks is statistically significant. 

 

Table 5.3:  Turtle Result – Rejection Rates 

 T-Statistic P-value 
EXACT  ∗ 0.00000109 

TMH 23.68 0.00000114 
LIANG-T1 19.36 0.00001083 
LIANG-T2 19.85 0.00000837 

 

Table 5.4:  Turtle Result – M-H Estimators and Standard Errors 

Odds Ratio 1.97 
Standard Error 0.301 

95% CI OR (1.50,2.60) 
Risk Difference 0.000976 
Standard Error 0.000194 

95% CI RD (0.00136,0.00060) 
 

                                                 
∗ No test statistic is given in the exact form of the test, only a p-value. 
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Analyzing the merchantable fish data gives similar results. From Table 5.5 it can 

be seen that using either of Liang’s test statistics we can conclude that the number of fish 

caught on C hooks is significantly higher than the number of fish caught on J hooks.  

There is evidence to suggest that C hooks are better at catching more fish. In fact, from 

Table 5.6, we see that the odds of catching a fish on a J hook is estimated to be 0.72 

meaning the odds of catching a fish on a C hook is estimated to be 38% higher than on a J 

hook.  The M-H odds ratio )hook C
hook J(  is less than one and the risk difference         

(J hook – C hook) is -0.00592 with a 95% confidence interval that does not contain zero, 

as shown in Table 5.6. This implies the difference in hooking risk between J and C hooks 

is statistically significant.  

 

Table 5.5:  Fish Result – Rejection Rates 

 T-Statistic P-value 
EXACT  * 0.00000000 

TMH 76.4757 0.00000000 
LIANG-T1 23.30481 0.00000134 
LIANG-T2 29.01486 0.00000007 

 

Table 5.6:  Fish Result – M-H Estimators and Standard Errors 

Odds Ratio 0.72 
Standard Error 0.00189 

95% CI OR (0.672,0.779) 
Risk Difference -0.00592 
Standard Error 0.00071 

95% CI RD (-0.00731,-0.00454) 
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CHAPTER 6 

CONCLUSION 

 

We generated data using different scenarios which are undoubtedly much simpler 

than real conditions, but which were chosen to capture the main complicating features 

that one might expect to occur in real life. After looking at these different patterns we 

determined that Patterns 2 and 3 violated assumptions under the M-H test. Which pattern 

generates the most realistic data? Our intuition tells us that Pattern 3 may be the most 

realistic because it would seem that hooks closer together would be correlated and would 

be more strongly correlated than hooks far apart. However, we do not know how turtles 

actually interact with hooks on a line we cannot be sure that Pattern 3 is the most 

realistic. In either case, if we continue to use the exact version or either of the asymptotic 

versions of the M-H test these could lead to incorrect inferences. The poor performance 

of the exact M-H test was clearly shown in Tables 5.1 and 5.2.  

We would like to find a generalization of the M-H test that relaxes some of the 

assumptions and that can calculate sparse correlated binary data. The best case scenario 

would be if we could find a generalization of the M-H test that would accurately analyze 

data from any of those three patterns that we created simply because we don’t have the 

actual hook level data to test to see how the real data behaves. It turns out that Liang’s 

test statistics do just that. Either version of his test statistics shows evidence of good 

performance analyzing the turtle data. The result shows that C hook is recommended to 
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use. C hooks caught significantly fewer turtles and caught significantly more fish when 

compared to J hooks. 

 

6.1     FUTURE RESEARCH 

One can develop complex regression models including Bayesian methods, Case-

control models, and generalized linear mixed-effects models to analyze these data. The 

comparison of the inferences from such models and the inferences obtained from these 

MH methods can be suggested as future work. 

A limited amount of hook-level data is available and methods to analyze hook 

level data can be developed and compared with line level approach developed in this 

thesis. One approach to analyzing hook level data while minimizing the data collection 

demands is to just collect the location at which a turtle was caught and the result of a 

neighboring hook. Then such data could potentially be analyzed using methods 

appropriate for matched-case-control designs. 
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Diagram 1:  Example of a Generic Longline from Beverly and Chapman (2007), with 

permission.
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Figure 1:  Frequency Histogram for Number of Turtles Caught 
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Figure 2:  Frequency Histogram for Number of Fish Caught 
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Figure 3:  Frequency Histogram for Number of Turtles Caught on J Hooks
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Figure 4:  Frequency Histogram for Number of Turtles Caught on C Hooks 
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Figure 5:  Frequency Histogram for Number of Fish Caught on J Hooks 
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Figure 6:  Frequency Histogram for Number of Fish Caught on C Hooks 
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Figure 7:  Frequency of Turtles Caught 
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Figure 8:  Frequency of Marketable Fish Caught 
 


