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Abstract

In model-based survey sampling hierarchical Bayesian (HB) methods have gained immense

popularity. One of the major reasons for this popularity remains the convenience in imple-

mentation of HB models using MCMC methods even when the models are complex. An

inevitable part of this approach is the elicitation of priors for the parameters involved in

the model. Authentic expert information can be incorporated by assigning suitable subjec-

tive prior distribution to the parameters. In Bayesian analysis nonsubjective or objective

priors are assigned to the parameters when reliable subjective information is unavailable.

In survey sampling, situations often arise when subjective prior information is unavailable;

in such situations noninformative or objective Bayesian methods have great relevance. In

this dissertation we study various noninformative HB models which combine information

from multiple sources. These models are extensively used in small area estimation. In the

first chapter we discuss the outline of the dissertation. In the next two chapters we provide

robust small area estimation models which account for possible presence of outliers under

two different scenarios. In the fourth chapter we develop robust Bayesian predictors of small

area means which account for the possibility when random small area effects are not present

for some small areas. In the fifth chapter we develop various HB methods which combine



information from different surveys. The methods proposed in this dissertation involve im-

proper priors. We have analytically shown that the posterior distributions based on these

priors are proper under mild conditions.

Index words: Combining Surveys, Hierarchical Bayes, Mixture Models, Objective
Priors, Outliers, Small Area Estimation.
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Chapter 1

Introduction

In the past few decades, small area estimation has garnered considerable attention from

the researchers of various fields. The importance of small area statistics lies in its wide

applications, e.g., in agriculture, education, health care, and other government programs.

Government agencies need reliable small area statistics for allocation of funds at national,

state, county and other sub-national levels. The U.S. Census Bureau created the Small Area

Income and Poverty Estimation (SAIPE) program to get accurate information on income

and poverty statistics at various small area levels. In 1994 updated SAIPE county level,

school district level estimates were used to allocate more than 7 billion dollars of Federal

fund for disadvantaged children (Title I of the Elementary and Secondary Education Act,

Citro and Kalton, 2000). In 1998, Statistical Methodology Division of Office of National

Statistics, U.K. developed SAEP (Small Area Estimation Project), which aims at deriving

political-ward level (about 2000 households) estimates for different variables of interest. The

data was collected from General Household Survey and Family Resource Survey (Heady and

Clarke, 2003).

Since health features differ from county to county, race to race, health planning is always

done at state or county level, i.e., at small area level, demand of reliable small area statistics

is often high among the health policy makers. To study the health status of the residents
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and to assess the utilization of the health care resources in the state and regional level, the

National Health Interview Survey is conducted every year in U.S. by the National Center

for Health Statistics (Malec et al., 1997). Every year in U.S., the National Health Planning

Research and Development act requires the health system agencies to conduct surveys in

order to collect and analyze data related to the health status of the people in their respective

territories (Nandram, 1999 and Rao, 2003). For state level treatment planning, the U.S.

Substance Abuse and Mental Health Administration obtains state level and sub-state level

small area estimates for about 20 outcomes related to treatment and mental health using

data from National Household Survey of Drug Use and Health Administration. The National

Immunization program utilizes estimates of immunization rates for different ethnic groups

in various small geographical areas (Malec et al., 1997). The National Center for Health

Statistics was the first to apply implicit model-based synthetic estimation on National Health

Interview Survey (Gonzalez, 1973).

In small area estimation, indirect estimators are developed by borrowing strength from

the related areas or other sources through a suitable model. Indirect estimators are deemed

more reliable than direct estimators since borrowing information appropriately leads to an

increase in effective sample size. Indirect estimators may also use values of the variable of

interest from a different time period, especially when the surveys are repeated over a pe-

riod of time. Model-based approaches are widely used in indirect estimation. Model-based

estimators utilize auxiliary information related to the study variable to borrow information

from the related areas through an implicit or explicit linking model. The choice of a model

plays an important role. If the model does not perform well then the resulting small area

estimates could be biased and less effective.
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Many small area models are special cases of a linear mixed model. Consider the following

general linear mixed model,

Y = Xβ + Zv + e,

where Y is the vector of response variable, X is the matrix of explanatory variables, v is the

vector of random effects and e is the vector of unobserved random error. The matrices X

and Z are known. The regression coefficient β is usually assumed to be fixed but there are

cases when some or all components of β are considered as random (Jiang and Lahiri, 2006).

It is also assumed that v and e are independently normally distributed, which is expressed

by v ∼ N(0, G), e ∼ N(0, R). The covariance matrices R and G usually involve unknown

variance components.

Depending on the availability of the values of the response variable and auxiliary infor-

mation, small area models are classified into two basic models; namely, area level model and

unit-level model. When unit specific information on the response and auxiliary data is avail-

able, unit level model could be applied. For area-level models, only summary information

for the small area is needed. Both of these models could be considered as special cases of

the general linear mixed model. Mixed models typically include area specific random effects

in order to capture the between area variation, which remain unexplained by the auxiliary

information. Popularity of mixed models in small area estimation is due to their effectiveness

in incorporating various sources of information.

Several methods have been developed to estimate small area quantities from both fre-

quentist and Bayesian perspective. In this dissertation, we focus on hierarchical Bayesian

(HB) approach for small area estimation. In this approach, complex models can be handled

relatively easily with the MCMC technique. Moreover, the uncertainty associated with the

estimators can be easily computed. Specification of priors for the model parameters in the

model is one of the main concerns of Bayesian approach. Subjective priors are recommended
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when they are available, however, in practice these priors are often unavailable. All the

methods developed in this dissertation are based on nonsubjective or objective priors.

In the next three chapters of this dissertation we develop robust Bayesian small area

estimation methods. Survey estimates can be highly sensitive to the presence of outliers in

the data, particulary in the context of small area estimation, when it is likely to have smaller

sample sizes for some areas. In Chapter 2, we propose a robust hierarchical Bayesian small

area estimation method for unit-level data. We also develop an outlier detection method

which successfully detects the outliers in the data. In their seminal work, Fay and Herriot

(1979) model assume that the random area effects are normally distributed although the

justification of such assumption is not clear. In Chapters 3 and 4 we relax this normality

assumption and propose two different alternatives to the standard Fay-Herriot model with

the justification of proposing these models.

Various surveys are conducted every year by different survey agencies to estimate number

of occupied households in United States. Although the objective of each survey may be the

same but the results differ to a considerable extent. Such a situation may create ambiguity

among the policy makers who make decisions based on these estimates. This motivates us

to develop a methodology which combines these estimates and provide a single accurate es-

timate every year. We propose different methods to combine these estimates, some of these

methods use auxiliary information and incorporate them in the model. In Chapter 5, we

study the performances of these methods and assess them in terms of gain in precision.
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Chapter 2

Bayesian small area estimation for

unit-level data in presence of

outliers

2.1 Introduction

Small area estimation has secured an important place in survey sampling due to its wide

range of applicability in both government and private sectors. Sample surveys are conducted

to provide adequately accurate estimates of population characteristics of interest, such as

population mean, total etc. Situations frequently arise when researchers need estimates of

such parameters for various subpopulations or subdomains beyond those for the entire pop-

ulation. A subdomain could be a geographical region, such as state, county, municipality,

health service area or a socio-demographic group, for instance, a certain age-sex-race group

of a population.

If an estimator uses the domain specific sample data only, then it is referred to as a direct

estimator. Precision of a direct estimator depends on the domain specific sample size, and

consequently it may not be reliable if the domain sample size is small. A domain is regarded
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as a small area or small domain if the domain sample size is not large enough to produce

a direct estimator with adequate precision. Model-based indirect estimators, based on a

reasonable model are considered to be more reliable in small area estimation. Precision of

a direct estimator may not be adequate when the sample size for some subpopulations are

small. Indirect estimators combine information from related areas or other sources thorough

a linking model which increases the effective sample size and helps improving the precision.

A linking model can be implicit or explicit. Both implicit and explicit models link the small

areas through population level auxiliary information, explicit models incorporate between

area variation by considering area specific effects in the model. In the context of explicit

small area models linear mixed models are very popular. Application of linear mixed models

in small area estimation has been widely discussed in Ghosh and Rao (1994), Rao (2003),

Jiang and Lahiri (2006) and Datta (2009). Empirical Bayes (EB), Empirical Best Linear

Unbiased Prediction (EBLUP) and Hierarchical Bayes (HB) are the well known methods in

small area estimation.

Presence of outliers may affect small area estimates significantly if the estimation method

does not account for it. Discarding the outliers may not always be an acceptable solution

since it involves the risk of losing valuable information, particularly when the outliers rep-

resent some part of the population (Chambers, 1986). Sinha and Rao (2009) have shown

that performance of well known methods such as EBLUP is highly affected by the presence

of outliers. In their proposed robust method, they use Huber’s influence function to reduce

the adverse effect of outliers in the estimation process. Chambers et al. (2013) proposed

robust small area estimation method based on M-Quantile estimation approach and discuss

the success of their method by comparing its performance with other classical frequentist

methods.

In this chapter, we propose an HBmethod for estimating small area means using unit-level

data. The basic setup of our model is similar to the nested error regression model (Battese,

Harter and Fuller, 1988). We suggest that sampling errors follow a two-component normal
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mixture model. Previously, Gershunskaya and Lahiri (2009) discussed a two-component nor-

mal mixture model for unit-level data and proposed a frequentist robust estimation method.

Our method assumes that outliers come from a distribution which has a larger variance

compared to the rest of the data. We impose this condition by our choice of prior for the er-

ror variance components. We propose noninformative priors for the model parameters since

elicitation of subjective priors require authentic historical data, which may not always be

available or accessible. Since our choices of priors include improper priors, the propriety of

the posterior distribution is needed to be ensured. We provide a set of sufficient conditions

under which we analytically show the resulting posterior distribution is proper.

In the following section we briefly discuss unit-level nested error regression model. In

Section 2.3 we introduce our proposed method and describe implementation procedures.

Results of simulation studies are reported in Section 2.4. We analyze, in Section 2.5, the

county level corn data previously introduced and analyzed by Battese et al. (1988). In

Section 2.7 a detailed proof of the propriety of the posterior distribution resulting from the

proposed model is provided.

2.2 Unit-Level Models

Let yij be the value of the response variable y and xij = (xij1, . . . , xijp)
T be the value of

the auxiliary variable x for the jth unit of the ith small area. A basic unit-level nested error

regression model (Battese et al., 1988) is given by

yij = xT
ijβ + vi + eij, j = 1, . . . , Ni, i = 1, . . . ,m, (2.2.1)

where Ni is the number of units in the ith small area and m is the number of small areas.

In this model, sampling errors eij’s and model error vi’s are independently distributed and

eij’s and identically distributed as N(0, σ2
e) random variables. Random small area effects

vi
iid∼ N(0, σ2

v), i = 1, . . . ,m. The vector of regression coefficients is denoted by β (p× 1).
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In this setup, we are assuming a noninformative sampling of the units, so the model

given by (2.2.1) is also appropriate for the sampled units. A unit-level model assumes that

auxiliary information is available for each unit in the population. However, to estimate the

small area totals or means of the response variable, based on (2.2.1), in addition to the values

of the auxiliary variables for the sampled units, it is sufficient to know the population means

of the auxiliary variables only.

In the finite population sampling scenario, if Ni is large for the ith small area, then the

finite population small area mean (θi = N−1
i

Ni∑
j=1

yij) for that area is approximated by:

θi ≈ X̄i
T
β + vi, (2.2.2)

where X̄i = (X̄i1, . . . , X̄ip); X̄
T
ik represents the population mean of the kth auxiliary variable

for the ith small area, k = 1, . . . , p.

There are many applications of the unit-level nested error regression models. Battese

et al. (1988) used model (2.2.1) and performed a variance components analysis to estimate

mean areas under corn and soybeans for the counties in North Central Iowa. Datta and

Ghosh (1991) proposed a hierarchical Bayesian prediction method for general linear mixed

model framework, focussing on small area estimation. The model proposed by Datta and

Ghosh (1991) is given by:

1. conditional on β, v, λ= (λ1, . . . , λt)
T and r , Y ∼ N(Xβ + Zv, 1

r
Ω),

2. conditional on λ and r, v ∼ N(0, 1
r
D(λ)),

where Y is an N × 1 vector of response variable, the matrices X (N × p) and Z (N × s) are

known. The matrix related to sampling variance covariance Ω is a known positive definite

matrix. Structure of the positive definite matrix D(λ) is known but λ = (λ1, . . . , λt)
T

is unknown. To complete the hierarchical Bayes model specification, Datta and Ghosh

(1991) used the following prior distributions: β, r, λ1r,. . . ,λtr are mutually independent

with β ∼ Uniform(Rp), r ∼ Gamma(1
2
go,

1
2
ao)

1; λir ∼ Gamma(1
2
gi,

1
2
ai), i = 1, . . . , t where

8



ai, gi ≥ 0, i = 0, . . . t. For Z = ⊕m
i=11Ni

and D(λ) = λIm, this model reduces to Bayesian

nested error regression model. You and Rao (2003) applied Bayesian nested error regression

model with a vague prior for the regression coefficients.

2.3 A Hierarchical Mixture Model for Unit-Level

Data

2.3.1 Proposed Model

As before, suppose, there are m small areas. Let ni denote the number of sampled units for

ith small area, yij be the random variable denoting the response for the jth sampled unit in

the ith small area and xij = (xij1, . . . , xijp)
T be the p×1 vector of auxiliary variables for that

unit. In order to account for possible presence of representative outliers in the unit-level

data, we propose the following model:

(I) conditional on β = (β1, . . . , βp)
T , vi, zij, pe, σ

2
1, σ

2
2 and σ2

v ,

yij ∼ zijN(xTijβ+vi, σ
2
1)+(1− zij)N(xTijβ+vi, σ

2
2) for j = 1, . . . , Ni, i = 1, . . . ,m.

(II) The indicator variables zij’s are iid with P (zij = 1|pe) = pe and P (zij = 0|pe) = 1−pe,

j = 1, . . . , ni, i = 1, . . . ,m. Also, zij’s are independent of vi’s, β, σ
2
1, σ

2
2 and σ2

v .

(III) Conditional on β, z, pe, σ
2
1, σ

2
2 and σ2

v , vi
iid∼ N(0, σ2

v) for i = 1, . . . ,m.

In this chapter, we carry out an objective Bayesian analysis by assigning non-informative

priors to the model parameters. However, subjective priors could also be assigned when such

subjective information is available. The following noninformative priors to the parameters are

suggested: β, (σ2
1, σ

2
2), pe and σ2

v are assumed to be mutually independent, β ∼Uniform(Rp),

σ2
v ∼ Uniform(0,∞), π(σ2

1, σ
2
2) ∝ 1

(σ2
2)

2 I(σ
2
2 > σ2

1) and pe ∼Uniform(0, 1). In the proposed

model, we assume that the outlying observations come from a distribution with the larger

sampling variance. This assumption prompts us to assign the proposed prior for (σ2
1, σ

2
2).
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Since stage (I) of the model is a mixture model, it is important to use a partially proper prior

for the variance parameters σ2
1 and σ2

2. By partially proper prior we mean that conditional

on σ2
1 (σ2

1 > 0), σ2
1 has a proper density, and conditional on σ2

2 (σ2
2 > 0), σ2

1 has a proper

density.

Since improper prior distribution has been used in the HB model above, it is important to

ensure the propriety of the resulting posterior distribution in order to avoid misleading results

based on improper posteriors (cf. Hobert and Casella, 1996). In the following theorems, we

provide sufficient conditions for the propriety of the resulting posterior distribution based

on the proposed model. Let, n =
∑m

i=1 ni.

Theorem 2.3.1 The following conditions are sufficient for the propriety of the posterior

distribution under the proposed model:

(a) ni ≥ 2 for i = 1, . . . ,m,

(b) n ≥ 2m+ 2p− 1,

(c) m ≥ p+ 6.

A detailed proof of Theorem 2.3.1 is provided in Section 2.7. While the Theorem 2.3.1

appears to be too restrictive, the following corollary and the lemma show that it is not the

case.

Corollary 2.3.2 If there exists a set S of µ (1 ≤ µ ≤ m) small areas, such that

(a) li ≥ 2, li being the number of sampled units from the ith small area, i ∈ S,

(b)
∑
i∈S

li ≥ 2µ+ 2p− 1;

(c) µ ≥ p+ 6,

then the posterior distribution under the proposed model will be proper.

Proof of Corollary 2.3.2: Let us state the following Lemma which has also been used

in the proof of Theorem 2.3.1.
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Lemma 2.3.3 Let θ ∼ π(θ) and d|θ ∼ f(d|θ), we partition d as d = (d(1)T , d(2)T )T . If the

posterior distribution of θ|d(1) is proper, then the posterior distribution of θ|d is also proper.

Proof of Lemma 2.3.3: Let π(θ|d) and π(θ|d(1)) be the posterior distributions of θ based on

d and d(1) respectively. Let, f(d(1)|θ) =
∫
f(d(1), d(2)|θ) dd(2). Then,

π(θ|d) ∝ f(d|θ)π(θ) and

π(θ|d(1)) ∝ f(d(1)|θ)π(θ),

We assume that,
∫
π(θ|d(1)) dθ < ∞. This is equivalent to,

∫
f(d(1)|θ)π(θ) dθ < ∞. Now,

∫ ∫
f(d|θ)π(θ) dθ dd(2) =

∫ [ ∫
f(d|θ) dd(2)

]
π(θ) dθ

=

∫
f(d(1)|θ)π(θ) dθ

< ∞.

This necessarily implies that
∫
f(d|θ)π(θ) dθ < ∞. This ensures that

∫
π(θ|d) dθ < ∞.�

Suppose, there exists µ (≤ m) small areas which satisfy the conditions (a), (b) and (c)

of Theorem 2.3.1. Let Sµ be the set of those small areas and Sc
µ contain rest of the small

areas. Let us partition the responses for the sampled units as follows:

Y (1) = {yij : i ∈ Sµ; j = 1, . . . , ni} and Y (2) = {yij : i ∈ Sc
µ; j = 1, . . . , ni}.

Let θ be the set of model parameters. From Theorem 2.3.1 we can say that f(θ|Y (1)) is

proper. Now, applying Lemma 2.3.3, we can say f(θ|Y ) = f(θ|Y (1), Y (2)) is proper. Hence

the proof of Corollary 2.3.2.

Once we ensure the propriety of the posterior resulting from the model, we can per-

form Gibbs sampling to implement the model. For Gibbs sampling, we need the full set of

conditional posterior distributions.
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According to our proposed model, the joint pdf of y = {yij; j = 1, . . . , ni, i = 1. . . . ,m},

z = {zij; j = 1, . . . , ni, i = 1. . . . ,m}, β, v = (v1, . . . , vm)
T , σ2

1, σ
2
2, σ

2
v , z, pe is

f(y, z, β, v, pe, σ
2
1, σ

2
2, σ

2
v)

∝
exp

(
−1

2

m∑
i=1

ni∑
j=1

(
(yij−xT

ijβ−vi)
2

σ2
1

zij +
(yij−xT

ijβ−vi)
2

σ2
2

(1− zij)
))

(σ2
1)

m∑
i=1

ni∑
j=1

zij
2

(σ2
2)

m∑
i=1

ni∑
j=1

(1−zij)

2

×
exp

(
−1

2

m∑
i=1

v2i
σ2
v

)
(σ2

v)
m
2

×p

m∑
i=1

ni∑
j=1

zij

e (1− pe)

m∑
i=1

ni∑
j=1

(1−zij)

×I(σ2
1 < σ2

2)

(σ2
2)

2
.

In order to implement Gibbs sampling (Gelfand and Smith, 1990), we need the following

full set of conditional distributions:

(I) β|y, z, σ2
1, σ

2
2, σ

2
v , pe, v ∼ Np

(
Sβ

m∑
i=1

ni∑
j=1

(yij − vi)xij

(zij
σ2
1

+
1− zij
σ2
2

)
, Sβ

)
,

where Sβ =
[ m∑
i=1

ni∑
j=1

xijx
T
ij

(zij
σ2
1

+
1− zij
σ2
2

)]−1

.

(II) vi|y, β, z, σ2
1, σ

2
2, σ

2
v , pe ∼ N

(
φi

ni∑
j=1

(yij − xT
ijβ)

(zij
σ2
1

+
1− zij
σ2
2

)
, φi

)
,

where φi =
( 1

σ2
v

+
ni∑
j=1

{zij
σ2
1

+
1− zij
σ2
2

})−1

, i = 1, . . . ,m.

(III) zij|y, β, σ2
1, σ

2
2, σ

2
v , pe, v ∼ Bernoulli(p∗ij), j = 1, . . . , ni, i = 1, . . . ,m, where

p∗ij =

pe
σ1

exp
(
− (yij−xT

ijβ−vi)
2

2σ2
1

)
pe
σ1

exp
(
− (yij−xT

ijβ−vi)2

2σ2
1

)
+

(1− pe)

σ2

exp
(
− (yij−xT

ijβ−vi)2

2σ2
2

) .

(IV) pe|y, z, β, σ2
1, σ

2
2, σ

2
v , v ∼ Beta

( m∑
i=1

ni∑
j=1

zij + 1,
m∑
i=1

ni∑
j=1

(1− zij) + 1
)
.

(V)
1

σ2
v

|y, z, β, σ2
1, σ

2
2, pe, v ∼ Gamma(m

2
− 1, 1

2

m∑
i=1

v2i ).
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(VI) σ2
1|y, z, β, σ2

2, σ
2
v , v, pe ∼ π(σ2

1|y, z, β, σ2
2, σ

2
v , v, pe)

∝
exp

(
−

m∑
i=1

ni∑
j=1

(yij−xT
ijβ−vi)

2

2σ2
1

zij

)

(σ2
1)

m∑
i=1

ni∑
j=1

zij
2

I(σ2
1 < σ2

2).

(VII) σ2
2|y, z, β, σ2

1, σ
2
v , v, pe ∼ π(σ2

2|y, z, β, σ2
1, σ

2
v , v, pe)

∝
exp

(
−

m∑
i=1

ni∑
j=1

(yij−xT
ijβ−vi)

2

2σ2
2

(1− zij)

)

(σ2
2)

2+
m∑
i=1

ni∑
j=1

(1− zij)

2

I(σ2
1 < σ2

2).

Generating samples from (I)−(V) is straightforward, based on standard distributions such

as normal, beta, gamma and Bernoulli. Steps (VI) and (VII) correspond to truncated

gamma distribution. (VI) and (VII) may admit a closed form depending on the values

of
∑m

i=1

∑ni

j=1 zij. Given the values of the other parameters, we generate samples from (VI)

as follows:

• When
∑m

i=1

∑ni

j=1 zij ≥ 3, we draw σ2
1 from a truncated Inverse-Gamma (IG) distri-

bution with shape = (
∑m

i=1

∑ni

j=1 zij − 2)/2, rate = 1
2

[∑m
i=1

∑ni

j=1(yij − xT
ijβ− vi)

2zij

]
and the upper truncation point σ2

2.

• When
∑m

i=1

∑ni

j=1 zij = 1 or 2, we generate samples from the importance density

g(σ2
1)=

1

2
√
σ2
1

√
σ2
2

I(σ2
1 < σ2

2) and perform an acceptance-rejection sampling to generate

samples for σ2
1.

• When
∑m

i=1

∑ni

j=1 zij = 0, we draw σ2
1 from Uniform(0, σ2

2).

Similarly, given the other parameters, we draw samples for σ2
2 as follows:

• We draw σ2
2 from a truncated Inverse-Gamma (IG) distribution with shape =

(
∑m

i=1

∑ni

j=1(1 − zij)/2)+1 and rate =
[

1
2

∑m
i=1

∑ni

j=1(yij − xT
ijβ − vi)

2(1 − zij)
]
and

the lower truncation point σ2
1, if at least one zij ̸= 1, j = 1, . . . , ni and i = 1, . . . ,m.
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• We draw σ2
2 from a Pareto distribution with shape = 1 and scale = σ2

1 if zij = 1, for

all i, j.

The objective of our method is to estimate the small area means. Recall θi is the finite

population mean for the ith small area. If the number of population units in the ith small

area, Ni is large, θi ≈ X̄i
T
β + vi, where X̄i = (X̄i1, . . . , X̄ip)

T , X̄ik represents the population

mean of the kth auxiliary variable for the ith small area, k = 1, . . . , p.

Gibbs sampling technique can be implemented in order to obtain the Bayes estimates of

small area means and other model parameters. Let, {β(d), v(d) = (v
(d)
1 , .., v

(d)
m ),

σ
2(d)
1 ,σ

2(d)
2 , σ

2(d)
v , z(d), p

(d)
e } be the dth draw from the posterior distribution generated from

the Gibbs sampler based on our proposed model, d = b + 1, . . . , b + D, where b and D are

the burn-in sample size and the total size of the Gibbs sampler respectively. Now, the HB

estimator of θi based on our proposed model is:

θ̂i
HB

=
1

D

b+D∑
d=b+1

θ
(d)
i ,

where, θ
(d)
i = X̄i

T
β(d) + v

(d)
i . Similarly, a measure of variability, the posterior variance for θi

is computed as (Rao, 2003):

V̂i
HB

=
1

D − 1

b+D∑
d=b+1

(θ
(d)
i − θ̂HB

i )2, i = 1, . . . ,m.

2.3.2 Outlier Detection

In our proposed model, we assume that the outliers come from the distribution with larger

variance. Based on this assumption, we propose to use P (zij = 0|y), j = 1, . . . , ni, i =

1, . . . ,m as a measure of outlier detection. If the posterior probability P (zij = 0|y) is

high for an observation then we suspect that the observation might have come from the

distribution with the larger variance.
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For φ being the vector of model parameters, we estimate P (zij = 0|y) by E[P (zij =

0|y, φ)|y],

P̂ (zij = 0|y) = 1

D

b+D∑
d=b+1

{
1− p∗ij(φ

d)
}
, (2.3.1)

where φ(d) is the dth posterior draw, and b and D are the same as defined in the previous

section. We have previously defined p∗ij in Section 2.3.1, while stating the full conditional

distribution of zij in (III).

2.4 Simulation Study

We assess our methodology in two different ways. In Section 2.4.1, we study the performance

of our outlier detection method by generating single data sets under different scenario. In

Section 2.4.2, we assess our method through a model-based repetitive simulation.

2.4.1 Implementation of the outlier detection method

In this Section we study the performance of our proposed model through simulation, under

different scenarios. We generate values yij of the response variable from the following model

yij = β0 + β1x1ij + β2x2ij + vi + eij j = 1, . . . , ni, i = 1, . . . ,m, (2.4.1)

where m represents the number of small areas and ni is the number of sampled units from

the ith small area. The area specific random effects, vi’s are generated from N(0, 42) for all i.

The auxiliary variables x1 and x2 are generated from N(12, 32) and N(10, 92), respectively;

they are generated only once for the entire study. Sampling errors (eij) are generated based

on the following two simulation setups:
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(i) eij’s are generated from the mixture distribution: γN(0, 12) + (1 − γ)N(0, 52) for all

i, j. We generate γ’s from a Bernoulli distribution where P (γ = 1) = pe. We choose

pe = 0.9.

(ii) eij’s are are generated from N(0, 12).
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Figure 2.1: (a) Histograms of the posterior simulations for different parameters and (b)
outlier detection, under simulation setup (i), when m = 50, ni = 5 for all i. The blue
dots represent observations from the outlying distribution N(0, 52) and red stars represent
observations from N(0, 12).

In the literature, the distribution with larger variance is often referred to as “contami-

nated distribution” or “outlier distribution”. We study the performance of our model for the

scenario when outliers are present as well as for the scenario when no outliers are present.

Performance of the proposed method may depend on the number of small areas (m) as

well as the number of selected units (ni) from each small area. So we perform the simulation

study for m = 50, ni = 5 for all i and also for m = 30, ni = 3 for all i. Choice of the

regression coefficients β0 = 10, β1 = 2 and β2 = 2.9 remains fixed throughout the simulation

study. Sufficient conditions of Theorem 2.3.1 are satisfied, for our choices of m, ni’s and p

(number of covariates/ auxiliary variables in the model including intercept).
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Figure 2.2: (a) Histograms of the posterior simulations for different parameters and (b)
outlier detection, under simulation setup (i), when m = 30, ni = 3 for all i. The blue
dots represent observations from the outlying distribution N(0, 52) and red stars represent
observations from N(0, 12).

We illustrate our methodology by analyzing the county crop data of Battese et al. (1988)

in Section 2.5. Battese et al. (1988) utilized two auxiliary variables to predict county crops

which is our reason to use two auxiliary variables in the simulation study. To carry out our

proposed Bayesian method to the simulated data sets for different simulation setups, we run

5 independent chains (each of length 10, 000) of Gibbs sampler, we discard the first 50%

draws of each chain. Potential scale reduction factors are calculated for β0, β1, β2, σ
2
1, σ

2
2,

σ2
v and pe to examine convergence of the Gibbs sampler. Model parameters are estimated

by posterior means and estimates of the standard errors of the parameters are obtained by

calculating the standard deviations of the posterior draws for different parameters. We cal-

culate and plot outlier probabilities for each observation.
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Figure 2.3: Histograms of the posterior simulations for different parameters under simulation
setup (ii), (a) m = 50, ni = 5 for all i and (b) m = 30, ni = 3 for all i.

Table 2.1 shows posterior mean, standard deviation and quantiles of the simulated draws

for simulation setup (i) when m = 50 and ni = 5 for all i. In Figure 2.1 we see the histogram

plots of the simulated values from the posterior distribution after discarding the first half of

each independent Gibbs sampling chain. The simulation results indicate that the estimates

are reasonably close to the true values. We expected the data to contain around 10% of the

values from the distribution with larger variance. Hence we do not expect much information

on σ2
2 from the data. That could be a reason for getting a larger posterior standard deviation

associated with the estimate of σ2
2. From Table 2.2, we see that the parameter estimates

obtained by our method are also close when sample size is small. From Figure 2.1 (b) and

Figure 2.2 (b), we see that the posterior probabilities of being in the outlier distribution

are considerably high for some of the observations, which is an indication that our outlier

detection method has detected the outliers properly.

Figures 2.3 (a) and (b) show that posterior distribution of pe is nearly as flat as the

assumed prior. By estimating pe we estimate proportion of observations coming from the
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Table 2.1: Summary of posterior simulations for simulation setup (i), when m = 50, ni = 5.
True Posterior Posterior Simulated Quantiles

Parameter Values Mean sd 2.5% Median 97.5%
βo 10.00 9.30 0.58 8.13 9.31 10.43
β1 2.00 2.03 0.03 1.98 2.03 2.08
β2 2.90 2.91 0.01 2.89 2.91 2.93
σ2
1 1.00 0.85 0.16 0.54 0.84 1.18

σ2
2 25.00 21.02 6.90 11.5 19.79 37.95

σ2
v 16.00 11.97 2.63 7.82 11.62 18.07

pe 0.90 0.83 0.05 0.73 0.84 0.91

Table 2.2: Summary of posterior simulations for simulation setup (i), when m = 30, ni = 3.
True Posterior Posterior Simulated Quantiles

Parameter Values Mean sd 2.5% Median 97.5%
βo 10.00 10.42 1.14 8.13 10.43 12.596
β1 2.00 1.98 0.06 1.86 1.98 2.11
β2 2.90 2.91 0.02 2.88 2.91 2.95
σ2
1 1.00 1.08 0.40 0.47 1.01 2.04

σ2
2 25.00 30.86 19.17 11.58 26.05 78.43

σ2
v 16.00 19.27 6.05 10.75 18.21 34.15

pe 0.90 0.82 0.08 0.63 0.83 0.93

“true” underlying distribution (distribution with smaller variance). In our simulation setup

(ii), we note that the parameter pe is not a part of the model. Hence, there is little informa-

tion contained about the outlier distribution in the data. This suggests that the posterior

distribution of pe may look very similar to its prior. For sampling scheme (i), the posterior

distribution of pe changed significantly from its prior because we expect around 10% of the

observations to come from the outlier distribution.
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Table 2.3: Summary of posterior simulations for simulation setup (ii), when m = 50, ni = 5.
True Posterior Posterior Simulated Quantiles

Parameter Values Mean sd 2.5% Median 97.5%
βo 10.00 10.14 0.62 8.94 10.13 11.38
β1 2.00 1.96 0.03 1.91 1.96 2.02
β2 2.90 2.90 0.01 2.88 2.897 2.91
σ2
1 1.00 1.04 0.27 0.32 1.09 1.44

σ2
2 25.00 1.56 3.32 1.10 1.40 2.68

σ2
v 16.00 14.60 3.22 9.58 14.16 22.04

pe 0.90 0.43 0.30 0.014 0.39 0.98

Table 2.4: Summary of posterior simulations for simulation setup (ii) when m = 30, ni = 3.
True Posterior Posterior Simulated Quantiles

Parameter Values Mean sd 2.5% Median 97.5%
βo 10.00 10.45 1.13 8.27 10.49 12.71
β1 2.00 1.99 0.05 1.89 1.99 2.01
β2 2.90 2.889 0.017 2.86 2.889 2.922
σ2
1 1.00 0.78 0.34 0.096 0.81 1.41

σ2
2 25.00 1.67 4.49 0.86 1.35 3.84

σ2
v 16.00 22.75 6.83 12.93 21.58 39.50

pe 0.90 0.48 0.29 0.02 0.47 0.97

2.4.2 Model-based simulation

In this section we compare two hierarchical Bayesian (HB) methods through a simulation

study. We generate a population of m small areas with Ni units in ith area. In this study

the choices of m are m = 20, 40 and choices of Ni’s are Ni = 80, 200. Population values are

generated from:

Yij = β0 + β1Xij + vi + eij j = 1, . . . , Ni, i = 1, . . . ,m, (2.4.2)

where Yij and Xij are population level response value and auxiliary information for the

jth population unit in the ith small area. Here Xij’s are drawn from N(1, 12), the choices

β0 = β1 = 1 remain same for the entire study. Random effect vi’s are generated from N(0, 1).
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As in Section 2.4.1, eij’s are drawn from a two component normal mixture distribution

γN(0, 12) + (1 − γ)N(0, 52), where P (γ = 1)=pe. We set values of pe, as pe = 0.9, 0.8 and

0.5. The choices pe=0.9, 0.8 and 0.5 imply that 10%, 20% and 50% eij’s are drawn from

N(0, 52) respectively. We also generate another population whose sampling errors are all

drawn from N(0, 12).

Once the population data sets are created, we randomly select ni observations (without

replacement) from each area and construct a sample data set (ni = 4, 10). We generate 100

such data sets from the same population. We apply our method and the method by Datta

and Ghosh (1991) to estimate small area means for each area based on the sample data sets.

Let θ̂i be the estimated small area mean for the ith area and θi be the true population mean

for the ith area. We compute average squared deviation: 1
m

m∑
i=1

(θ̂i − θi)
2 for each data set.

In Table 2.5 we present overall mean of these 100 average squared deviations based on all

sample data sets under different simulation configurations.

From the results presented in Table 2.5, we note that when the samples are drawn from

a population with contamination, mean average squared deviations are considerably smaller

for the proposed method. On the other hand, if the population does not have contamination,

the average mean squared deviations for the two competing methods are almost the same.

2.5 Data Analysis

In this section, we illustrate the proposed methodology by analyzing the county crop data

previously analyzed by Battese et al. (1988) and Datta and Ghosh (1991), Prasad and Rao

(1990). The basic purpose of their analysis was to predict the areas under corn and soybeans

in terms of number of hectares, for 12 counties in North Central Iowa. Number of hectares of

corn and soybeans in the 37 sample segments of 12 counties were obtained by farm interview

survey, conducted by USDA. The auxiliary variables considered by Battese et al. (1988)

were the number of pixels classified as corn and soybean. The auxiliary information was
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Table 2.5: Overall mean squared deviations for two methods under different simulation con-
figuration. DG ≡ Datta and Ghosh method and NM ≡ New Method.

Population Sample Contamination level
size size None 10% 20 % 50%

DG NM DG NM DG NM DG NM

m=20
ni = 4 0.18 0.17 0.70 0.37 0.60 0.32 0.97 0.79

Ni = 80
ni = 10 0.08 0.08 0.27 0.15 0.38 0.16 0.73 0.38

ni = 4 0.22 0.23 0.66 0.34 0.44 0.28 1.31 0.91
Ni = 200

ni = 10 0.10 0.10 0.29 0.13 0.31 0.16 0.84 0.42

m=40
ni = 4 0.19 0.19 0.41 0.24 0.61 0.34 0.58 0.47

Ni = 80
ni = 10 0.08 0.08 0.25 0.11 0.36 0.18 0.47 0.32

ni = 4 0.21 0.21 0.53 0.30 0.64 0.34 0.90 0.61
Ni = 200

ni = 10 0.09 0.09 0.25 0.13 0.36 0.16 0.67 0.34

obtained from the LANDSAT satellite data. Selected sampled segments for some counties

are as low as one.

Battese et al. (1988) considered the reported hectares of corn for the second segment

(unit) of the Hardin county as unusual and deleted the observation while analyzing the

data. Sinha and Rao (2009) did not exclude that observation from the data and studied the

performance of their proposed robust method. We apply our proposed model to the corn

data based on 37 observations. There are two predictors in the data, namely, the number of

pixels per segment classified as corn and soybeans.

In this application, we have m = 12, n = 37 and p = 3 (considering the intercept). Out

of 12 counties in the data, 9 counties have sample size at least 2. Total sample size for these

9 counties is 34. Hence, we can apply our model to the data set since the sufficient conditions

in Theorem 2.3.1 are satisfied.
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Since, Ni’s (population unit for ith county) are large in this data, we predict the mean

hectares of corn per segment by predicting

θi = β0 + β1X̄1i + β2X̄2i + vi, (2.5.1)

where population mean number of pixels classified as corn (X̄1i) and soybean (X̄2i) for each

county which are reported in Battese et al. (1988).

Table 2.6: Bayesian inference for the county corn data (Battese et al., 1988).

Posterior Posterior Posterior Quantiles
Parameter Mean sd 2.5% Median 97.5%

β0 28.6168 32.0841 -37.7516 29.6295 88.7162
β1 0.3552 0.0651 0.2315 0.3540 0.4880
β2 -0.0645 0.0749 -0.2061 -0.0667 0.0865
σ2
1 182.5974 96.5756 26.3237 168.9364 407.1334

σ2
2 922.9761 6662.8240 217.9412 474.3761 3575.0814

σ2
v 209.5564 196.9220 18.8630 158.8570 704.2600

pe 0.5975 0.2808 0.0413 0.6521 0.9756

We simulate samples from the posterior distribution by applying Gibbs Sampling. We

run 5 chains and 10, 000 iterations each. The summary of the posterior simulations is pre-

sented in Table 2.6. Histograms of the posterior simulation are also presented in Figure 2.4

(a). In order to check the convergence, we calculated potential scale reduction factor for

each parameter to confirm the convergence. From Figure 2.4 (b) we see that our method

successfully identifies that the second observation of Hardin county is an outlier. We should

further note from the posterior mean and the posterior standard deviation of pe that these

quantities are very close to the mean and the standard deviation of a Uniform(0, 1) dis-

tribution. This essentially indicates that there are not many outliers in the data. This is

also confirmed by the histogram of pe in Figure 2.4 (a). The robust maximum likelihood

estimates of the regression parameters obtained and reported by Sinha and Rao (2009) are:

β̂0 = 29.14, β̂1 = 0.3576 and β̂2 = −0.0694, which are very close to our HB estimates re-

ported in Table 2.6. We compare our estimates of mean hectares of corn and standard error
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Table 2.7: Predicted hectares of corn along with measure of prediction error obtained from
two different methods.

Proposed Method Sinha-Rao (2009) Method∗

Posterior
County HB estimate sd REBLUP RMSPE

Cerro Gordo 124.25 10.63 123.7 9.8
Hamilton 125.98 10.48 125.3 9.7
Worth 108.06 11.88 110.3 9.5
Humboldt 112.72 10.46 114.1 8.6
Franklin 142.10 8.40 140.8 7.3
Pocahontas 111.39 7.71 110.8 7.2
Winnebago 114.19 8.06 115.2 7.0
Wright 122.27 7.52 122.7 7.7
Webster 114.28 6.82 113.5 6.3
Hancock 123.77 6.28 124.1 6.3
Kossuth 108.48 6.95 109.5 6.1
Hardin 135.21 7.38 136.9 6.3

*Reported in Table 8 of Sinha and Rao (2009).

of our estimate (measured by posterior standard deviation) with the estimates reported in

Sinha and Rao (2009) in Table 2.7. We find that while the point estimates are in remarkably

close agreement, majority of the posterior standard deviations are higher than RMSPE of

Sinha and Rao (2009), some are almost 20% larger.

2.6 Discussion

Our proposed hierarchical Bayesian mixture model accounts for possible presence of outliers

in the data. We show that estimates obtained by our proposed model are reasonably close

to the true values and the outlier detection method discussed in this chapter successfully

recognize any outliers if they are present in the data. We plan to compare our Bayesian

methods with the robust frequestist methods thorough an extensive model-based simulation

study. In our proposed model for unit-level data, we assume that random area effects are
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Figure 2.4: (a) Histograms of the posterior simulations for different parameters and (b)
outlier detection for county crop corn data (Battese et al., 1988). The black solid circles in
(b) represent observations from Hardin county.

modeled by a normal distribution. However, outliers may exist among random area effects.

In order to address this issue, Datta and Lahiri (1995) proposed a Cauchy prior for the

outlying small area random effects. Our goal of future research is to propose and study

a hierarchical Bayesian model which would account for possible presence of outliers in the

random area effects. We plan to do this by using a two-component mixture of normal

distribution for the random effects.

2.7 Proof of the Theorem

Proof of Theorem 2.3.1: We assume that there are at least two sampled units for each small

area, i.e. ni ≥ 2, i = 1, . . . ,m; and n ≥ 2m+2p−1, where n =
∑m

i=1 ni. At first, we consider

the case when n = 2m+ 2p− 1, the argument can be extended to the case n > 2m+ 2p− 1

by applying Lemma 2.3.3. Under the proposed model, the joint pdf of yij’s, j = 1, . . . , ni,
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i = 1, . . . ,m; v (m× 1), β (p× 1), σ2
1, σ

2
2, σ

2
v and pe is given by

f(y, v, β, σ2
2, σ

2
1, σ

2
v , pe)

∝
∑
Ω

[ m∏
i=1

{ ni1∏
k=1

pe√
σ2
1

exp

(
− 1

2

(yijk − xT
ijk
β − vi)

2

σ2
1

)}

×
{ ni∏

k=ni1+1

(1− pe)√
σ2
2

exp

(
− 1

2

(yijk − xT
ijk
β − vi)

2

σ2
2

)}]

× 1

(σ2
v)

m
2

exp

(
− 1

2

m∑
i=1

v2i
σ2
v

)
× 1

(σ2
2)

2
I(σ2

1 < σ2
2) (2.7.1)

The summation
∑
Ω

and the quantities ni1, ni2, i = 1, . . . ,m are explained below. Let zij = 1,

if the jth sampled unit of the ith small area corresponds to the mixture component σ2
1 and

zij = 0 otherwise. Ω contains all possible choices of z = (z11, . . . , zmnm) vector. Hence the

cardinality of Ω is 2n. For a given z, let ni1 =
∑ni

j=1 zij and ni2 = ni − ni1 for i = 1, . . . ,m.

Then ni1 is the number of units from the ith small area whose sampling variance corresponds

to the mixture component σ2
1. The remaining ni2 units from the ith small area corresponds

to the mixture component σ2
2.

Define, S1 = {i : ni1 > 0} and S2 = {i : ni2 > 0}. Clearly, S1 ∪ S2 = {1, . . . ,m} and S1 ∩ S2

may not be an empty set. Let mi be the cardinality of Si, i = 1, 2, then m ≤ m1+m2. Note

that ni1 or ni2 can be zero for some i. Define, n∗
1 =

∑
i∈S1

ni1 and n∗
2 =

∑
i∈S2

ni2.

From (2.7.1), a typical term under the sum over Ω is,

φ(y, v, β, σ2
1, σ

2
2, σ

2
v , pe)

= C × pn
∗
1

e (1− pe)
n∗
2 × 1

(σ2
1)

n∗
1
2

× exp

(
− 1

2σ2
1

∑
i∈S1

ni1∑
k=1

(yijk − xT
ijk
β − vi)

2

)

× 1

(σ2
2)

n∗
2
2

× exp

(
− 1

2σ2
2

∑
i∈S2

ni∑
k=ni1+1

(yijk − xT
ijk
β − vi)

2

)

× 1

(σ2
v)

m
2

exp

(
−1

2

m∑
i=1

v2i
σ2
v

)
× I(σ2

1 < σ2
2)

(σ2
2)

2
, (2.7.2)
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where C is a generic constant. In order to check the integrability of f(y, v, β, σ2
2, σ

2
1, σ

2
v , pe)

with respect to β, v, σ2
1, σ2

2, σ2
v , pe in (2.7.1), we need to check the integrability of each

typical term in (2.7.1) with respect to β, v, σ2
1, σ2

2, σ2
v , pe.

Integrability of φ(y, v, β, σ2
1, σ

2
2, σ

2
v , pe) with respect to pe is obvious.

∫
φ(y, v, β, σ2

1, σ
2
2, σ

2
v , pe) dpe

= C × 1

(σ2
1)

n∗
1
2

× exp

(
− 1

2σ2
1

∑
i∈S1

ni1∑
k=1

(yijk − xT
ijk
β − vi)

2

)

× 1

(σ2
2)

n∗
2
2

× exp

(
− 1

2σ2
2

∑
i∈S2

ni∑
k=ni1+1

(yijk − xT
ijk
β − vi)

2

)

× 1

(σ2
v)

m
2

exp

(
−1

2

m∑
i=1

v2i
σ2
v

)
× I(σ2

1 < σ2
2)

(σ2
2)

2
(2.7.3)

Let us partition y andX as follows, y1 =coli∈S1col1≤k≤ni1
yijk ; X1 =coli∈S1col1≤k≤ni1

xT
ijk

and y2

=coli∈S2colni1+1≤k≤ni
yijk ; X2 =coli∈S2colni1+1≤k≤ni

xT
ijk
. Also, Z1 =

m⊕
i=1

1ni1
and Z2 =

m⊕
i=1

1ni2
.

We rewrite (2.7.3) as:∫
φ(y, v, β, σ2

2, σ
2
1, σ

2
v , pe) dpe

= C × 1

(σ2
1)

n∗
1
2

× exp

(
− 1

2σ2
1

(y1 −X1β − Z1v)
T (y1 −X1β − Z1v)

)
× 1

(σ2
2)

n∗
2
2

× exp

(
− 1

2σ2
2

(y2 −X2β − Z2v)
T (y2 −X2β − Z2v)

)

× 1

(σ2
v)

m
2

exp

(
−1

2

m∑
i=1

v2i
σ2
v

)
× I(σ2

1 < σ2
2)

(σ2
2)

2
(2.7.4)

Note that, there are m1 and m2 components of v are involved in Z1v and Z2v respectively.

Let the rank of X1 (n
∗
1× p) and X2 (n

∗
2× p) be p1 and p2 respectively, where p1+ p2 ≥ p. We

now state the lemma below

Lemma 2.7.1 If n = 2m+2p− 1 and m ≥ p+6, then one of the following conditions must

hold. (a) n∗
1 ≥ m1 + p1, m1 > 3 or (b) n∗

2 ≥ m2 + p2, m2 > 3.
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The proof of Lemma 2.7.1 is provided in Section 2.7.1. Without loss of generality, for the

rest of the proof, we assume that n∗
1 ≥ m1 + p1 and m1 > 3. Had we assumed n∗

2 > m2 + p2,

m2 > 3, it will lead us to establish the same results. Note that we do not have to make

separate assumptions for n∗
1 and m1, they come from the assumptions n ≥ 2m+ 2p− 1 and

m ≥ p+ 6.

Without loss of generality, we assume that the rows of X1 are arranged such that the first

p1 rows are linearly independent. These rows constitute a sub matrix of X11(p1×p), the rest

of the rows of X1 can be expressed as A21X11 for some matrix A21((n
∗
1− p1)× p1). Similarly,

we assume that first p2 rows of X2 are so arranged that they are linearly independent. Since,

p2 ≥ p−p1, we further assume that the first (p−p1) of these p2 rows are linearly independent

of the rows of X11, we denote this portion of X2 as the sub matrix X211((p− p1)× p).

Let, X212 consists next p2 − (p− p1) linearly independent rows of X2, and X22 contains the

remaining (n∗
2 − p2) rows. Hence,

X1 =

 X11

A21X11

 and X2 =


X211

X212

X22


where, rank(X11) = p1.

According to the construction of the matrices,X212 = H

X11

X211

 for someH =

(
H21 H22

)
,

note that H21 ̸= 0. we can write, X22 = A22

X211

X212

 for some A22((n
∗
2 − p2)× p2).

We consider the transformation: ρ1 = X11β and ρ2 = X211β; ρ =

ρ1

ρ2

.

Now, X1β =

 X11

A21X11

 β =

 Ip1

A21

X11β = M1ρ1, where M1 =

 Ip1

A21

 and rank(M1) =

p1.
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Similarly,

X212β = H

X11β

X211β

 = H

ρ1

ρ2

 = Hρ and

X22β = A22

X211

X212

 β = A22

 ρ2

Hρ

 = A22

 0 I

H21 H22


ρ1

ρ2

 = A∗
22ρ,

hence, X2β=


X211

X212

X22

 β =


ρ2

Hρ

A∗
22ρ

 =

 ρ2

Gρ

, where G=

 H

A∗
22

, we partition y2 and Z2

according to the partitioned rows of X2, i.e., y2 =


y211

y212

y22

 =

y211

y∗2

, where y∗2 =

y212

y22



and Z2 =


Z211

Z212

Z22

 =

Z211

Z∗
22

, where Z∗
22 =

Z212

Z22

.

After these transformations, we can rewrite the right hand side of (2.7.4) as

= C × 1

(σ2
1)

n∗
1
2

exp

(
− 1

2σ2
1

(y1 −M1ρ1 − Z1v)
T (y1 −M1ρ1 − Z1v)

)
× 1

(σ2
2)

p−p1
2

exp

(
− 1

2σ2
2

(y211 − ρ2 − Z211v)
T (y211 − ρ2 − Z211v)

)
× 1

(σ2
2)

n∗
2−(p−p1)

2

exp

(
− 1

2σ2
2

(y∗2 −Gρ− Z∗
2v)

T (y∗2 −Gρ− Z∗
2v)

)
× 1

(σ2
v)

m
2

exp

(
−vTv

2σ2
v

)
× I(σ2

1 < σ2
2)

(σ2
2)

2

= φ̃(y1, y211, y
∗
2, v, ρ1, ρ2, σ

2
1, σ

2
2, σ

2
v , pe). (2.7.5)
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We integrate with respect to y∗2, ρ2 and σ2
2 respectively,

∫
φ̃(y1, y211, y

∗
2, v, ρ1, ρ2, σ

2
1, σ

2
2, σ

2
v , pe) dy

∗
2 dρ2 dσ

2
2

= C × 1

(σ2
1)

n∗
1
2

exp

(
− 1

2σ2
1

(y1 −M1ρ1 − Z1v)
T (y1 −M1ρ1 − Z1v)

)
× 1

(σ2
v)

m
2
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(
−vTv

2σ2
v

)
×
∫

I(σ2
1 < σ2

2)

(σ2
2)

2
dσ2

2

= C × 1

(σ2
1)

n∗
1+2

2

exp

(
− 1

2σ2
1

(y1 −M1ρ1 − Z1v)
T (y1 −M1ρ1 − Z1v)

)
× 1

(σ2
v)

m
2

exp

(
−vTv

2σ2
v

)
. (2.7.6)

As we mentioned earlier, there are m1 components of v involved in Z1v. We can write

those m1 components as v(1) = (vi1 , . . . , vim1
)T . Now, Z1v can be reduced to Z

(1)
1 v(1), where

Z
(1)
1 =

m1⊕
j=1

1nij1
. Clearly, rank(Z

(1)
1 ) = m1 and n∗

1 =
∑m1

j=1 nij1. We integrate out v(2)={vl :

l ∈ S \ S1},

∫
φ̃(y1, y211, y

∗
2, v, ρ1, ρ2, σ

2
1, σ

2
2, σ

2
v , pe) dy

∗
2 dρ2 dσ

2
2 dv

(2)
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1+2
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2σ2
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T
1 M1)
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× exp
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(2.7.7)

where y∗1 = y1 − Z
(1)
1 v(1) and ρ̂1 = (MT

1 M1)
−1MT

1 y
∗
1.
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We integrate with respect to ρ1;

∫
φ̃(y1, y211, y

∗
2, v, ρ1, ρ2, σ

2
1, σ

2
2, σ

2
v , pe) dy

∗
2 dρ2 dσ

2
2 dv

(2)dρ1

= C × 1

(σ2
1)

n∗
1−p1+2

2

exp

(
−(y1 − Z

(1)
1 v(1))TR1(y1 − Z

(1)
1 v(1))

2σ2
1

)

× 1

(σ2
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m1
2

exp

(
−v(1)Tv(1)

2σ2
v

)
(2.7.8)

where R1 =
(
I −M1(M

T
1 M1)

−1MT
1

)
Before we proceed, let us state the following lemma.

Lemma 2.7.2 The following results hold: (a) rank [R1Z
(1)
1 ] = rank

(
M1 Z

(1)
1

)
- rank(M1),

(b) rank(R2) = n∗
1− rank

(
M1 Z

(1)
1

)
.

Proof of Lemma 2.7.2 is given in Section 2.7.1. From Lemma 2.7.2, we have rank(R2) =

n∗
1− rank

(
M1 Z

(1)
1

)
= n∗

1− (p1+m1−1). rank

(
M1 Z

(1)
1

)
= rank(M1) + rank(Z

(1)
1 )− q1

= p1 +m1 − q1, where q1 being the number of independent columns of M1 which are in the

column space of Z
(1)
1 .

Note that, X1 = M1X11 ⇒ C(X1) ⊆ C(M1). Again, M1 = X1X
T
11(X11X

T
11)

−1 ⇒ C(M1) ⊆

C(X1). Hence, C(M1) = C(X1).

Since there is an intercept term in the model, the vector 1n∗
1
∈ C(X1), which is also obtained

by adding the columns of Z
(1)
1 . Therefore, q1 is at least 1. Now, we assume that,

m1∑
l=1

nil1∑
j=1

(Xiljk − X̄il.k)
2 > 0; k = 2, . . . , p, (2.7.9)

Xiljk being the value of the kth auxiliary variable for the jth unit of the ithl small area,

where, il ∈ S1 and X̄il.k = 1
nil1

∑nil1

j=1 Xiljk . If the auxiliary variables come from a continuous

distribution then the condition (2.7.9) will be satisfied.

This assumption ensures that none of the last p− 1 columns of X1 (apart from the intercept

term the other columns of X1) can be spanned by the columns of Z
(1)
1 . Hence, q1 = 1
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and rank[M1Z1] = m1 + p1 − 1. From Lemma 2.7.2, rank(R2) = n∗
1 − rank

(
M1 Z

(1)
1

)
=

n∗
1 − (p1 +m1 − 1) = n∗

1 − (p1 +m1) + 1 ≥ 1.

Note that we need rank(R2) > 0, otherwise R2 will be a null matrix and yT1 R2y1 will be

zero with probability 1. Let, Q1 = Z
(1)T
1 R1Z

(1)
1 = (R1Z

(1)
1 )T (R1Z

(1)
1 ), since R1 is symmetric

and idempotent. Therefore, rank(Q1) = rank[R1Z
(1)
1 ] = rank

(
M1 Z

(1)
1

)
− rank(M1) =

m1 + p1 − 1− p1 = m1 − 1 = t1 (say).

Let, P1 be an orthogonal matrix such that, P T
1 Q1P1 = diag(λ1, λ2, . . . , λt1 , 0, . . . , 0), where,

λ1 > λ2 · · · > λt1 > 0 are the positive eigen values of Q1. We use the transformation,

w=P1v
(1), Also, we write P1v̂

(1) = ŵ.

∫
φ̃(y1, y211, y

∗
2, v, ρ1, ρ2, σ

2
1, σ

2
2, σ

2
v , pe) dy

∗
2 dρ2 dσ

2
2 dv

(2) dρ1

= C × 1

(σ2
1)

n∗
1−p∗1+2

2

exp

{
−wTw

2σ2
v

}
× 1

(σ2
v)

m1
2

exp

{
−yT1 R2y1

2σ2
1

}

× exp

{
−
∑t1

j=1 λj(wj − ŵj)
2

2σ2
1

}
, (2.7.10)

where P T
1 v̂

(1) = ŵ. We integrate out (wt+1, . . . , wm1):

∫
φ̃(y1, y211,y

∗
2, v, ρ1, ρ2, σ

2
1, σ

2
2, σ

2
v , pe) dy

∗
2 dρ2 dσ

2
2 dv

(2) dρ1

m∏
k=t1+1

dwk

= C × 1

(σ2
1)

n∗
1−p∗1+2

2

exp

{
−yT1 R2y1

2σ2
1

}
exp

{
−
∑t1

j=1 λj(wj − ŵj)
2

2σ2
1

}

× 1

(σ2
v)

t1
2

exp

{
−
∑t1

j=1w
2
j

2σ2
v

}
. (2.7.11)

We integrate with respect to σ2
1 and σ2

v using inverse gamma density integration result. For

that we need the shape parameters
n∗
1−p1
2

and ( t1
2
− 1) to be positive, i.e., we need n∗

1 > p1

and t1 > 2 ⇒ m1 > 3. Since we already assumed n∗
1 > p1 + m1 and m1 > 3, the shape
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parameters will be positive. By carrying out integration with respect to σ2
1 and σ2

v we have,

∫
φ̃(y1, y211,y

∗
2, v, ρ1, ρ2, σ

2
1, σ

2
2, σ

2
v , pe) dy

∗
2 dρ2 dσ

2
2 dv

(2) dρ1 (2.7.12)

m∏
k=t1+1

dwk dσ
2
1 dσ

2
v

= C × 1{
yT1 R2y1 +

∑t1
j=1 λj(wj − ŵj)2

}n∗
1−p1
2

× 1(∑t1
j=1 w

2
j

) t1−2

2

≤ C × 1{
yT1 R2y1 + λt1

∑t1
j=1(wj − ŵj)2

}n∗
1−p1
2

× 1(∑t1
j=1 w

2
j

) t1−2

2

(2.7.13)

Note that,

t1∑
j=1

w2
j ≤ 2

t1∑
j=1

[
(wj − ŵj)

2 + ŵj
2
]

⇒
t1∑
j=1

(wj − ŵj)
2 ≥ 1

2

t1∑
j=1

w2
j −

t1∑
j=1

ŵj
2.

Let us denote
∑t1

j=1 ŵj
2 by d2, then for any ϵ > 0,

∫
φ̃(y1, y211,y

∗
2, v, ρ1, ρ2, σ

2
1, σ

2
2, σ

2
v , pe) dy

∗
2 dρ2 dσ

2
2 dv

(2) dρ1 (2.7.14)

×
m∏

k=t+1

dwk dσ
2
1 dσ

2
v

≤ C1 ×
1

{yT1 R2y1}
n∗
1−p1
2

×
I
(∑t1

j=1w
2
j ≤ 2d2 + ϵ

)
(∑t1

j=1w
2
j

) t1−2
2

+ C2 ×
1

λ
(n∗

1−p1)

2
t1

[
1
2

∑t1
j=1w

2
j − d2

]n∗
1−p1
2

×
I
(∑t1

j=1w
2
j > 2d2 + ϵ

)
(∑t1

j=1w
2
j

) t1−2
2

(2.7.15)

C1 and C2 are positive constants.
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Consider the following transformation,

(w1, . . . , wt1) → (α, θ1, . . . , θt1−1),

w1 = α cos θ1 cos θ2 . . . cos θt1−2 cos θt1−1

w2 = α cos θ1 cos θ2 . . . cos θt1−2 sin θt1−1

...

wt1−1 = α cos θ1 sin θ2

wt1 = α sin θ1,

0 < α < ∞; -π
2
< θi <

π
2
, i = 1, . . . , t1−2 and 0 < θt1−1 < 2π. The jacobian of transformation

is given by J = αt1−1(cos θ1)
t1−2(cos θ2)

t1−3 . . . cos θt1−2.

Now, the right side of (2.7.14) is:

= C1 ×
1

(yT1 R2y1)
(n∗

1−p1)

2

× αt1−1

(α2)t1−2
× (cos θ1)

t1−2 . . . (cos θt1−2) I(α
2 ≤ 2d2 + ϵ)

+ C2 ×
1

λ
(n∗

1−p1)

2
t1 [α

2

2
− d2]

n∗
1−p1
2 (α2)

t1−2
2

(cos θ1)
t1−2 . . . (cos θt1−2) I(α

2 > 2d2 + ϵ)

Therefore,

∫
φ̃(y1, y211,y

∗
2, v, ρ1, ρ2, σ

2
1, σ

2
2, σ

2
v , pe) dy

∗
2 dρ2 dσ

2
2 dv

(2) dρ1

×
m∏

k=t+1

dwk

t1−1∏
j=1

dθj dσ
2
1 dσ

2
v

≤ C1
1

(yT1 R2y1)
n∗
1−p1
2

∫ √
(2d2+ϵ)

0

αt1−1

(α2)
t1−2

2

dα

+ C2

∫ ∞

√
(2d2+ϵ)

αt1−1

(λt1)
(n∗

1−p1)

2

[
1
2
α2 − d2

] (n∗
1−p1)

2 (α2)
t1−2

2

dα (2.7.16)
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= C1
1

(yT1 R2y1)
n∗
1−p1
2

∫ √
(2d2+ϵ)

0

α dα

+ C2
1

(λt1)
(n∗

1−p1)

2

∫ ∞

√
(2d2+ϵ)

α[
1
2
α2 − d2

] (n∗
1−p1)

2

dα

= C1
1

(yT1 R2y1)
n∗
1−p1
2

(
2d2 + ϵ

2

)
+ C2

1

(λt1)
(n∗

1−p1)

2

× 1

ϵ
n∗
1−p1−2

2

< ∞ (2.7.17)

Since, we assumed n∗
1 ≥ m1 + p1 and m1 > 3, hence n∗

1 > p1 + 2.

So far we have proved that any arbitrary typical term in (2.7.1) satisfying conditions (a), (b)

and (c) is integrable. Hence, we can conclude, f(y, v, β, σ2
1, σ

2
2, σ

2
v , pe) (in (2.7.1)) is integrable

with respect to v, β, σ2
1, σ

2
2, σ

2
v , pe if condition (a), (b) and (c) are satisfied.

2.7.1 Proof of the Lemmas

Lemma 2.7.1 If n = 2m+2p− 1 and m ≥ p+6, then one of the following conditions must

hold. (a) n∗
1 ≥ m1 + p1, m1 > 3 or (b) n∗

2 ≥ m2 + p2, m2 > 3.

Proof At first we note that at least one of these two conditions n∗
1 ≥ m1+p1 and n∗

2 ≥ m2+p2

holds. In order to establish that, let us assume, n∗
1 ≤ m1 + p1 − 1 and n∗

2 ≤ m2 + p2 − 1, i.e.,

n = n∗
1 + n∗

2 ≤ m1 + p1 +m2 + p2 − 2 < 2m + 2p− 1, which contradicts to our assumption

that n = 2m+ 2p− 1.

Note that, n∗
1 =

∑
i∈S1

ni1 ≤ 2m1 + 2p − 1. If possible, let n∗
1 > 2m1 + 2p − 1, that is, m1

small areas have more than 2m1 + 2p − 1 observations. Since we previously assumed that

(in Theorem 2.3.1) ni ≥ 2, for all i. Hence the remaining (m−m1) small areas have at least

2(m − m1) observations overall. Therefore, n = n∗
1 + n∗

2 > 2m1 + 2p − 1 + 2(m − m1) =

2m + 2p − 1, which is a contradiction to the previous assumption that n = 2m + 2p − 1.

With similar arguments we can establish n∗
2 ≤ 2m2 + 2p− 1.
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Now we consider various scenarios and prove that either (a) or (b) holds.

Case - I: n∗
1 ≥ m1 + p1 and m1 ≤ 3.

We know n∗
1 ≤ 2m1 + 2p − 1. Hence, n∗

1 ≤ 6 + 2p − 1 = 2p + 5. Also, n∗
2 = n − n∗

1 ≥

n− (2p+ 5) = 2m− 6 ≥ m+ p ≥ m2 + p2.

Now, let us assume, m2 ≤ 3, n∗
2 ≤ 2m2 + 2p− 1 ⇒ n∗

2 ≤ 2p+ 6 ≤ p− 1 +m < m+ p, which

contradicts to our earlier assertion n∗
2 ≥ m + p. Hence m2 > 3. Therefore, n∗

2 ≥ m2 + p2,

m2 > 3; i.e. condition (b) holds.

Case - II: n∗
2 ≥ m2 + p2 and m2 ≤ 3. With the similar arguments, as in Case - I, it can be

shown that condition (a) holds in this case.

Case - III: n∗
2 < m2 + p2, m2 > 3 or m2 ≤ 3. In this case, n∗

1 = n − n∗
2 > 2m + 2p − 1 −

(m2 + p2) ≥ 2m + 2p −m − p − 1 ≥ m1 + p1 − 1. Hence, n∗
2 < m2 + p2 =⇒ n∗

1 ≥ m1 + p1.

Again, let us assume, m1 ≤ 3. Now, n∗
1 ≤ 2m1 + 2p − 1 ≤ 2p + 5 =⇒ n = n∗

1 + n∗
2 ≤

(2p+5)+ (m2+ p2− 1) ≤ 2p+5+m+ p− 1 = 3p+m+4 ⇒ n = 2m+2p− 1 ≤ 3p+m+4

⇐⇒ m ≤ p + 5, which contradicts to our earlier assumption that m ≥ p + 6. Therefore

m1 ̸≤ 3 in this case, i. e. m1 > 3. Hence, n∗
2 < m2 + p2 ⇒ n∗

1 ≥ m1 + p1 and m1 > 3, i.e.,

condition (a) holds.

Case - IV: n∗
1 < m1 + p1, m1 > 3 or m1 ≤ 3. It can be proved that condition (2) will hold

in this scenario. Hence, under the proposed model at least one of the conditions stated

will hold. �

Lemma 2.7.2 The following results hold: (a) rank [R1Z
(1)
1 ] = rank

(
M1 Z

(1)
1

)
- rank(M1),

(b) rank(R2) = n∗
1 − rank

(
M1 Z

(1)
1

)
.

Proof (a) Here, R1 = I −M1(M
T
1 M1)

−1MT
1 ⇒ R1Z

(1) = Z
(1)
1 −M1(M

T
1 M1)

−1MT
1 Z

(1)
1 ⇒

MT
1 (R1Z

(1)
1 ) = 0 ⇒ columns of M1 are orthogonal to the columns of R1Z

(1)
1 . Therefore,

rank

(
R1Z

(1)
1 M1

)
= rank(R1Z

(1)
1 ) + rank(M1).
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Now,

(
R1Z

(1)
1 M1

)
=

(
Z

(1)
1 M1

)  I 0

−(MT
1 M1)

−1MT
1 Z

(1)
1 I



⇒ rank

(
R1Z

(1)
1 M1

)
= rank

(
Z

(1)
1 M1

)
(since

 I 0

−(MT
1 M1)

−1MT
1 Z

(1)
1 I

 is non singu-

lar) ⇒ rank(R1Z
(1)
1 ) = rank

(
Z

(1)
1 M1

)
− rank(M1).

(b) R2 = R1 −R1Z
(1)
1 (Z

(1)T
1 R1Z

(1)
1 )−Z

(1)T
1 R1, R2 is idempotent.

Therefore, rank(R2) = rank(R1) − rank(R1Z
(1)
1 ) = (n∗

1 − rank(M1)) − (rank[M1Z
(1)
1 ] −

rank(M1)) = n∗
1− rank

(
Z

(1)
1 M1

)
. �

37



Chapter 3

A two-component normal mixture

alternative to the Fay-Herriot

model

3.1 Introduction

In order to improve the precision of a direct estimate in small domains or small areas,

model-based small area estimation techniques are used by many government agencies. Fay

and Herriot (1979) proposed a basic area level model which utilizes auxiliary information to

borrow information from related areas. The U.S. Census Bureau and other agencies apply

area-level models to estimate per capita income and poverty counts for various small areas.

Their proposed model is given by:

yi = θi + ei,

θi = xT
i β + vi; i = 1, . . . ,m, (3.1.1)
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where the sampling error ei’s independently follow N(0, Di), vi’s are iid with N(0, σ2
v). The

area specific auxiliary data for the ith area is xi = (xi1, . . . , xiq)
T and yi is a regular survey

estimate of the ith small area mean. The regression coefficient β is a q-component vector.

The sampling variances Di’s are assumed to be known.

Datta and Lahiri (1995), Bell et al. (2006) and Xie et al. (2007) argued that normal-

ity assumption on the random effects may not be appropriate when outliers are present.

Datta and Lahiri (1995) suggested a t-distribution for the random effects when the degrees

of freedom is known. Xie et al. (2007) proposed a hierarchical Bayesian method when de-

grees of freedom of t-distribution is unknown. They assumed a gamma prior for the degrees

of freedom. The hyperparameters involved in this gamma distribution need to specified,

which calls for authentic expert opinion. Bell et al. (2006) argued that under practical cir-

cumstances limited information is obtained from the data regarding degrees of freedom and

recommended avoiding using a such a prior. They analyzed a data for several fixed values

the degrees of freedom instead of assuming a prior and compared the results.

To this end, we propose an alternative robust extension of the Fay-Herriot model. We

suggest that the area specific random effects follow a two-component normal mixture dis-

tribution. Our model assumes that the outlying areas follow a normal distribution with

larger variance. We consider hierarchical Bayesian approach by assigning objective priors

to the parameters involved in the model. In this context, we provide sufficient conditions

for the posterior distribution to be proper since some of the proposed priors are improper.

We implement the proposed method using Markov chain Monte Carlo (MCMC) integration

technique.

The chapter is organized as follows. In Section 3.2 we describe the proposed model and

discuss the implementation procedure. We analyze a real data applying our proposed method

and describe the results in Section 3.3. A detailed proof of the propriety of the posterior

distribution under the proposed model is provided in Section 3.5.
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3.2 Two-component normal mixture model

A two component normal mixture extension of Fay-Herriot model is given by:

yi = θi + ei

θi = xT
i β + δiv1i + (1− δi)v2i, i = 1, . . . ,m, (3.2.1)

where δi, v1i, v2i are independently distributed with P (δi = 1|p) = p, v1i ∼ N(0, A1) and

v2i ∼ N(0, A2). Here β is a (r × 1) vector of regression parameters. The sampling errors

e1, . . . , em are independently normally distributed with ei ∼ N(0, Di), i = 1, . . . ,m, where

the sampling variance Di’s are assumed to be known. We further assume that ei’s, v1i’s,

v2i’s and δi’s are independently distributed. In (3.2.1), xi = (xi1, . . . , xir)
T is the auxiliary

data corresponding to the ith area. We define, X = (x1, . . . , xm)
T .

We consider the following class of improper priors,

π(β,A1, A2, p) = A−α1
1 A−α2

2 I(0 < A1 < A2 < ∞), (3.2.2)

where α1, α2 are suitably chosen. We impose the restriction A1 < A2, so that we do not have

a label switching problem leading to a lack of identifiability. The area specific random effects

corresponding to the outlying areas in the model are assumed to follow a normal distribution

with larger variance, which remains the motivation behind imposing such a restriction.

Since the model involves improper priors, we provide sufficient conditions that ensure the

resulting posterior distribution from the proposed model will be proper.

Theorem 3.2.1 The resulting posterior distribution from model (3.2.1) will be proper if,

(a) m > r + 2(2− α1 − α2), (b) α2 > 1 and 2− α1 − α2 > 0, where rank(X) = r.

A detailed proof of Theorem 3.2.1 is given in Section 3.5.
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The joint conditional pdf of θ = (θ1, . . . , θm)
T , β = (β1, . . . , βr)

T , δ = (δ1, . . . , δm)
T , A1,

A2 and p is given by:

π(θ, β, δ, p|y) ∝

{
m∏
i=1

exp

{
−(yi − θi)

2

2Di

}} m∏
i=1

[{
1√
A1

× exp

{
−(θi − xT

i β)
2

2A1

}}δi

×
{

1√
A2

× exp

{
−(θi − xT

i β)
2

2A2

}}1−δi

pδi(1− p)1−δi

]
× A−α1

1 A−α2
2 × I(0 < A1 < A2). (3.2.3)

From (3.2.3), we get the following full conditional distributions,

(I) θi|β,A1, A2, δ, p, y
ind∼

N
(D−1

i yi + (A−1
1 δi + A−1

2 (1− δi))x
T
i β

D−1
i + (A−1

1 δi + A−1
2 (1− δi))

,
1

D−1
i + (A−1

1 δi + A−1
2 (1− δi))

)
,

i = 1, . . . ,m;

(II) β|θ, δ, A1, A2, p, y ∼ N

([
m∑
i=1

{
δi
A1

+ (1−δi)
A2

}
xix

T
i

]−1 [ m∑
i=1

{
δi
A1

+ (1−δi)
A2

}
xiθi

]
,[

m∑
i=1

{
δi
A1

+ (1−δi)
A2

}
xix

T
i

]−1)
;

(III) p|θ, δ, A1, A2, β, y ∼ Beta

(
m∑
i=1

δi + 1,m−
m∑
i=1

δi + 1

)
;

(IV) A1|A2, θ, β, δ, p, y has the pdf f1(A1), where,

f1(A1) ∝ A
−(α1+

∑m
i=1

δi
2
)

1 exp

{
−

m∑
i=1

δi(θi − xT
i β)

2

2A1

}
I(A1 < A2)

(V) A2|A1, θ, β, δ, p, y has the pdf f2(A2), where,

f2(A2) ∝ A
−(α2+

∑m
i=1

(1−δi)

2
)

2 exp

{
−

m∑
i=1

(1− δi)(θi − xT
i β)

2

2A2

}
I(A1 < A2)

(VI) P (δi = 1|θ, β, p, δ(−i), y) =
p× exp

{
− (θi−xT

i β)2

2A1

}
A

− 1
2

1

p× exp
{
− (θi−xT

i β)2

2A1

}
A

− 1
2

1 + (1− p)× exp
{
− (θi−xT

i β)2

2A2

}
A

− 1
2

2

,

i = 1, . . . ,m
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The distributions (IV) and (V) are truncated inverse gamma distributions. In (VI),

δ(−i) =(δ1,. . . ,δi−1,δi+1,. . . ,δm)
T .

Our goal is to estimate θi, i.e., small area mean for ith area, i = 1, . . . ,m. We implement

Gibbs sampling using the conditional distributions (I)−(VI) in order to find posterior mean

and standard deviations of θi’s.

3.3 Data Analysis

United States Census Bureau conducts various surveys every year to obtain direct estimates

of poverty rates for each county. Government agencies need these estimates to allocate funds.

Due to small sample size, the standard errors corresponding to the direct estimates are large

for many counties. In order to provide estimates with better accuracy, advanced small area

estimation techniques are recommended. These methods connect the direct estimates with

other sources of information using suitable models.

We have county-level direct estimates of poverty rates for 3141 counties out of 3143

counties in the United States. These estimates are obtained from the American Community

Survey (ACS). These direct estimates are five year combined estimates (2007 − 2011) of

poverty rate for each county. We also have standard errors associated to these estimates.

From previous studies, we have learned about possible association between poverty rates and

foodstamp participation rates. For this data, the correlation between foodstamp participa-

tion rate and the direct estimates of poverty rates is 0.81. This high correlation motivated

us to choose foodstamp participation rate as an auxiliary variable. The data set is publicly

available but the identification of the counties are suppressed.

We apply our proposed method to this data set and demonstrate the results in Table 3.1.

Our choice of α1 and α2 are 0.3 and 1.3 respectively. We have also performed further anal-

ysis with other choices of α1 and α2 within the feasible range, but results did not change

significantly. From Table 3.1, we see that the posterior mean of Â2 = 0.00619 is almost ten
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times of Â1 = 0.00054. In addition to that, the estimate p̂ = 0.93 indicates that there are

about 7% small areas which have different area specific variability compared to the rest of

the areas. We computed the ratios of the sampling variances of the direct estimates to the

Table 3.1: Hierarchical Bayes estimates of the model parameters (for the ACS county level
poverty rates data).

Posterior Posterior Posterior Quantiles
Parameter Mean sd 2.5% Median 97.5%

β1 0.04649 0.00130 0.04401 0.04646 0.04908
β2 0.66048 0.00751 0.64587 0.66066 0.67479
A1 0.00054 0.00003 0.00049 0.00054 0.00059
A2 0.00619 0.00103 0.00454 0.00609 0.00854
p 0.92748 0.02367 0.89627 0.92958 0.95304

posterior variances of the estimates corresponding to the HB estimates of the county level

poverty rates. The average of these ratios is 1.4787, which implies that we have achieved a

significant amount of gain in terms of precision (almost 50% on average) using the proposed

method, over the direct survey estimates. We also apply Fay-Herriot model to the data and

observed that on average there is about 3% gain in precision. From Figure 3.3, we see that

the estimates obtained from Fay-Herriot model and the propsed two-component mixture

model do not agree for some small areas.

3.4 Discussion

In this chapter, we proposed a robust alternative to Fay-Herriot model. The proposed hi-

erarchical Bayesian estimation procedure is straightforward. Other robust alternative is a

t-distribution for the random effects, which requires information regarding the degrees of

freedom. Xie et al. (2007) proposed a method to estimate degrees of freedom, however Bell

et al. (2006) pointed out some issues associated with specifying this prior.

Our proposed method does not require any subjective information regarding the parame-

ters. We provide sufficient conditions for the propriety of the resulting posterior distribution.
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Figure 3.1: Histograms of the posterior simulations for (a) A1 and (b) A2.

We illustrate the method through a data analysis. We have also shown that there is a sig-

nificant gain in precision using this method over the direct survey estimates.

3.5 Proof of the Theorem

Proof of Theorem 3.2.1: Note that under the proposed mixture model, the likelihood function

of the model parameter β, A1, A2 and p based on the marginal distribution of y1, . . . , ym is

given by,

L(β,A1, A2, p) = C ×
m∏
i=1

[
p

(A1 +Di)
1
2

exp

{
−(yi − xT

i β)
2

2(A1 +Di)

}
+

(1− p)

(A2 +Di)
1
2

exp

{
−(yi − xT

i β)
2

2(A2 +Di)

}]
, (3.5.1)

where C is a generic positive constant not depending on the model parameters. Suppose for
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Figure 3.2: Histogram of the posterior simulations for p.

0 < a < b < ∞ we have a ≤ Di ≤ b, i = 1, . . . ,m. Since
1

(A1 +Di)
1
2

is decreasing in Di and

exp

{
−(yi − xT

i β)
2

2(A1 +Di)

}
is increasing in Di, from (3.5.1)

L(β,A1, A2, p) ≤ C ×
m∏
i=1

[
p

(A1 + a)
1
2

exp

{
−(yi − xT

i β)
2

2(A1 + b)

}
+

(1− p)

(A2 + a)
1
2

exp

{
−(yi − xT

i β)
2

2(A2 + b)

}]
. (3.5.2)

Let S1 denote a set of indices {i1, . . . , ik1}, where 0 ≤ k1 ≤ m, if k1 > 0, i1, . . . , ik1 are

distinct indices from i = 1, . . . ,m. Similarly, let S2 denote a set indices j1, . . . , jk2 , where

0 ≤ k2 ≤ m, and if k2 > 0, j1, . . . , jk2 are distinct indices from i = 1, . . . ,m. Furthermore,

S1 ∩ S2 = ϕ.
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Figure 3.3: Estimates obtained from the proposed two-component mixture model and the
Fay-Herriot model.

With this notation a typical term from the product of the m factors on the right hand

side of (3.5.2) has the following form:

t(β,A1, A2, p) =
pk1(1− p)k2

(A1 + a)
k1
2 (A2 + a)

k2
2

exp

{
−1

2

[∑
j∈S1

(yj − xT
j β)

2

A1 + b
+
∑
j∈S2

(yj − xT
j β)

2

A2 + b

]}
(3.5.3)

Integrating with respect to p from a typical term of the posterior we get,

g(β,A1, A2) = C × A−α1
1 A−α2

2

(A1 + a)
k1
2 (A2 + a)

k2
2

I(0 < A1 < A2 < ∞)

× exp

{
−1

2

[∑
j∈S1

(yj − xT
i β)

2

A1 + b
+
∑
j∈S2

(yj − xT
i β)

2

A2 + b

]}
. (3.5.4)
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To ensure the propriety of the posterior distribution, it is sufficient to verify the inte-

grability of (3.5.4) for each S1 and S2. Let us define, M1 =
(
xi1 , . . . , xik1

)T
. Suppose r1 =

rank(M1). Note that, r1 = 0 if k1 = 0. When, r1 > 0, suppose {α1, . . . , αr1} ⊂ {i1, . . . , ik1},

so that
{
xα1 , . . . , xαr1

}
is linearly independent. Suppose {γ1, . . . , γr−r1} ⊂ {j1, . . . , jk2} such

that
{
xα1 , . . . , xαr1

, xγ1 , . . . , xγr−r1

}
is linearly independent. Let us define the r × r matrix

F =
(
xα1 , . . . , xαr1

, xγ1 , . . . , xγr−r1

)T
, which is non-singular. Consider the non-singular linear

transformation of β by ϕ = Fβ. From, (3.5.4),

g(β,A1, A2) ≤ C × A−α1
1 A−α2

2

(A1 + a)
k1
2 (A2 + a)

k2
2

I(0 < A1 < A2 < ∞)

× exp

{
−1

2

[
r1∑
u=1

(yαu − xT
αu
β)2

(A1 + b)

]}

× exp

{
−1

2

[
r−r1∑
t=1

(yγt − xT
γtβ)

2

(A2 + b)

]}
. (3.5.5)

Note that, for u = 1, . . . , r1, x
T
αu
β = ϕu, and for t = 1, . . . , r − r1, x

T
αt
β = ϕr1+t. The

generic constant C absorbs the jacobian of transformation from β to ϕ.

∫
g(β,A1, A2)dβ ≤ C × A−α1A

1 A−α2
2

(A1 + a)
k1
2 (A2 + a)

k2
2

I(0 < A1 < A2 < ∞)

× (A1 + b)
r1
2 × (A2 + b)

(r−r1)
2 . (3.5.6)

Note that, for 0 < a < b, 0 < A1 < A2, A1 + a ≤ A1 + b ≤ b
a
(A1 + a) and A2 + a ≤

A2 + b ≤ b
a
(A2 + a). Then from (3.5.6), we get,

∫
g(β,A1, A2)dβ ≤ C × A−α1

1 A−α2
2

(A1 + a)
k1
2 (A2 + a)

k2
2

I(0 < A1 < A2 < ∞)

× (A1 + a)
−(k1−r1)

2 × (A2 + a)
−(k2−r+r1)

2

= C h(A1, A2). (3.5.7)
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We will now explore the integrability of the function h(A1, A2) in (3.5.7). In (3.5.7), it

is possible that k1 − r1 = 0 or k2 − r + r1 = 0. To ensure the integrability of h(A1, A2)

with respect to A1, we need 1 − α1 > 0. Actually, this will also be a sufficient condition.

Similarly, if k2 − r + r1 = 0, to ensure the integrability of h(A1, A2) with respect to A2, we

need (1− α2) < 0. Note that, since 0 < A1 < A2,

h(A1, A2) ≤
A−α1A−α2

(A1 + a)
k1+k2−r

2

=
A−α1

1 A−α2
2

(A1 + a)
m−r

2

. (3.5.8)

∫ ∞

0

∫ ∞

0

h(A1, A2) dA1 dA2 ≤
∫ ∞

0

A−α1
1

(A1 + a)
m−r

2

(∫ ∞

A1

A−α2
2 dA2

)
dA1

= (α2 − 1)

∫ ∞

0

A−α1−α2+1
1

(A1 + a)
m−r

2

dA1 since α2 − 1 > 0

= (α2 − 1)

∫ ∞

0

A2−α1−α2−1
1

(A1 + a)
m−r

2
−(2−α1−α2)+(2−α1−α2)

dA1

< ∞, (3.5.9)

since, (2− α1 − α2) > 0 and m−r
2

− (2− α1 − α2) > 0.

Note that the conditions α2 > 1 and 2−α1 −α2 > 0 will necessarily imply that α1 < 1. We

noted that the condition α1 < 1 would be a necessary and sufficient condition for integrability

of h(A1, A2) with respect to A1. Under the conditions 2 − α1 − α2 > 0, α2 > 1, if we take

α1 = 0, then we need 1 < α2 < 2; and if we take α1 =
1
2
, then we need 1 < α2 <

3
2
.

Since the integrability conditions for g(β,A1, A2) do not depend on the indices {i1, . . . , ik1}

and {j1, . . . , jk2} and on the values k1 and k2, the conditions α2 > 1, 2 − α1 − α2 > 0 and

m > r + 2(2− α1 − α2) will be sufficient to ensure the propriety of the posterior. �
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Chapter 4

Robust Bayesian small area

estimation for area-level data

4.1 Introduction

In sample surveys, direct estimates based on sample data are computed in order to pro-

vide estimates of the population characteristics. When the focus is on a subpopulation,

the precision associated to these direct estimates may not be adequate if the sample size

corresponding to the subpopulation is not large enough. A small area can be referred to as

a small geographic area or a demographic group if the corresponding sample size is small.

Since many government and private agencies use small area estimates of required quantities

in order to make policies or business strategies, it is necessary to produce reliable small area

statistics. To fulfill this increasing demand, a great amount of research has been conducted

in the past few decades.

In model-based small area estimation, the objective is to improve the precision of direct

estimates by borrowing information from related areas or other surveys in order to improve

the precision of direct estimates through appropriately chosen model. These models use rel-

evant auxiliary information as covariates. In this context, linear mixed models are perhaps
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the most commonly used small area models. Popular small area models such as Fay-Herriot

model (Fay and Herriot, 1979) and nested error regression model (Bettese, Harter and Fuller,

1988) are special cases of linear mixed models.

Several approaches have been proposed for estimation of the model parameters and pre-

diction of the small area quantities of interest. Empirical Bayes (EB) and hierarchical Bayes

(HB) methods are among the most commonly used estimation methods. It is also important

to estimate the variability associated with the estimators. In frequentist approach, approxi-

mate expressions of Mean Square Error (MSE) estimators are used (see, for example, Prasad

and Rao, 1990; Datta and Lahiri, 2000). In HB approach, posterior standard deviations are

usually considered as measure of variability of the estimates.

Model assumptions are inevitable part of small area estimation. Unless an appropriate

model is specified results may not be accurate. Fay-Herriot (1979) model incorporates area

specific random effect term to account for between area variability. These area specific ran-

dom effects are assumed to follow normal distribution with unknown variance. Datta and

Lahiri (1995) argued against the justification of the assumption of normality for the random

effects, particularly in presence of outliers. They proposed a robust estimation method by

proposing Cauchy prior for the outlying random effects to account for outliers. Fabrizi and

Trivasano (2010) proposed a robust estimation method and suggested exoponential power

distribution for random effects.

Datta et al. (2011) discussed the possibility of the random effects not being present and

proposed a testing procedure to determine necessity of keeping the random effects in the

model for a given data. When the test is not significant a simpler model can be used to

produce estimates with better precision. In a different article, Datta et al. (2014) discussed

situations when the test is significant but there may still be some areas which does not have

any small area effect. To address this problem, Datta et al. (2014) suggested an HB model

with a spike-and-slab prior for the random effects. This prior assumes that for each small

area random effects may be degenerate at zero with certain probability.
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To this end, we suggest a double exponential (Laplace) prior, centered at zero, for the

random effects. Double exponential priors are used in Bayesian Lasso regression for variable

selection purpose (cf. Park and Casella (2008)). In classical linear regression, penalized

least square estimators such as LASSO (Tibshirani, 1996), Ridge and Bridge (Frank and

Friedman, 1993) estimators are often used for regression shrinkage and variable selection.

Recently, the Bayesian counterpart of some of these frequestist variable selection methods

have been developed (Park and Casella 2008; Polson et al., 2014). Methods have also been

developed for random effects selection along with variable selection. Bondell et al. (2010),

Ibrahim et al. (2011) and Fan and Li (2012) developed efficient techniques for random ef-

fects selection under mixed model setup. In the small area context when there are some

areas which may not have area specific effect, double exponential prior may be chosen as an

alternative to spike-and-slab prior. Double exponential distribution has a spike at its center,

which remains as the primary motivation of choosing this distribution.

The choice of priors and hyperprior is an important part of a hierarchical Bayesian model.

Elicitation of appropriate subjective priors entails proper expert opinion, which may or may

not be available. Even if available, authenticity of the subjective information should also be

judged. One can also develop priors based on past data. However, historical data may not

also be easily available, for example, in the context of official statistics, historical records

sometimes are not accessible due to legal restrictions. In this chapter, we suggest objective

priors to the parameters. Specifically, flat priors for both regression parameters and variance

of the random effects parameters are assigned. Since both of these priors are improper we

analytically show the propriety of the posterior distribution under mild conditions.

As we mentioned before, Fabrizi and Trivasano (2010) proposed a robust Fay-Herriot

model where they assumed that the area specific random effects follow an exponential power

distribution. They also considered double exponential distribution which is special case of ex-

ponential power distribution. They used diffuse uniform priors for the parameters. However,

the justification of choosing diffuse prior and the choices of the bounds was not elaborately
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explained. Berger (2006) pointed out that the results based on uniform priors of bounded

sets may highly depend on the choice of bound(s) if the posterior distribution corresponding

to the model is improper. This entails the requirement of checking the propriety of posterior

distribution based on improper uniform prior distribution.

We extend the Fay-Herriot model by assigning a double exponential prior for the random

effects. The tail of a double exponential distribution is thicker than the tail of a normal

distribution and it has a spike at the center. We exploit these two properties to produce a

robust estimator. Our approach does not require any subjective information and it becomes

computationally simple and efficient when we utilize the normal-mixing representation of

a double exponential distribution (Andrews and Mallows, 1974) previously used in Park

and Casella (2008). In Section 4.2 we discuss the Fay-Herriot model and subsequently de-

scribe the proposed extension. In Section 4.3, we perform a simulation study to evaluate the

performance of our method. In Section 4.4, we discuss a possible extension of our model.

4.2 Fay-Herriot model and an extension

4.2.1 Fay-Herrot model

Fay and Herriot (1979) proposed a two-level model to improve the precision of direct esti-

mates for small areas using area specific auxiliary data. Suppose there are m small areas

and Yi is the direct estimate of population characteristics for the ith area, i = 1, . . . ,m. Let

θi be the true value of that population characteristics. Their proposed model is given by,

Yi = θi + ei

θi = xT
i β + vi; i = 1, . . . ,m, (4.2.1)

where xi = (xi1, . . . , xip)
T represents area specific auxiliary data for the ith area. In

model (4.2.1), the area specific random effects are denoted by vi’s, vi ∼ N(0, σ2
v) and sampling
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error for ith small area ei ∼ N(0, Di), i = 1, . . . ,m. The regression parameter β (p× 1) and

random effect variance σ2
v are unknown. Sampling variance Di’s are assumed to be known.

The Fay-Herriot model considers the area specific random effects term vi to explain between

area variability, it is particularly necessary when the auxiliary data fails to explain this

variability. Rao (2003) and Jiang and Lahiri (2006) elaborately discuss various frequentist

methods to implement Fay-Herriot model. In order to get hierarchical Bayes estimates of

the small area quantities Bayesian formulation of Fay-Herriot model has been suggested by

Ghosh (1992), Datta et al. (2005), Datta and Ghosh (2012). The following formulation

assumes a noninformative uniform prior for β and A.

Model MFH : yi|θi, β, A ∼ N(θi, Di), for i = 1, . . . ,m, independently;

θi|β,A ∼ N(xT
i β,A), for i = 1, . . . ,m, independently;

π(β,A) ∝ 1, β ∈ Rp, A ∈ (0,∞). (4.2.2)

The resulting posterior distribution based on this model will be proper if m > p+2. More

generally, a sufficient condition for propriety of the posterior distribution for a Bayesian Fay-

Herriot model with prior π(β, σ2
v) ∝ A−α is m > p − 2α + 2, where α ∈ [0, 1) (Datta and

Ghosh, 2012).

4.2.2 A Normal-double exponential model

The Fay-Herriot model assumes normal distribution for the random effect. In this chapter

we suggest a double exponential distribution for the random small area effects. When there

are some areas that have no area specific effect, a predictor using this model will function

as a sparse predictor. This can be considered to be an application of Bayesian Lasso (Park

and Casella, 2008) for random effects selection. On the other hand, prediction based on such

a model is expected to be more robust in presence of outliers due to the fact that double

exponential distribution has a thicker tail than a normal distribution.

53



In the following model we suggest a double exponential prior for the area specific random

effects. We utilize the normal scale mixture representation of double exponential distribution

(Andrews and Mallows, 1974) as discussed in Park and Casella (2008). Suppose there

are m small areas, let yi be the direct estimate and Di be the sampling variance associated

with the estimate for the ith area. Now, our suggested model is,

Model MDE: yi|β, vi, A ∼ N(xT
i β + vi, Di),

vi|β,A ∼ DE(0, A), i = 1, . . . ,m, (4.2.3)

where xi = (xi1, . . . , xip)
T and vi’s are area specific auxiliary variable and the random effect

for the ith area, respectively. The model parameters β and A are unknown. In order to

produce Bayes predictor for the small area quantities θi = xT
i β + vi, i = 1, . . . ,m, we assign

the following noninformative prior for β and A,

π(β,A) ∝ 1, β ∈ Rp and A ∈ (0,∞). (4.2.4)

The proposed prior for β and A are improper. Improper priors do not guarantee a proper

posteriors. In order to avoid improper posteriors, it is necessary to verify the propriety of

the posterior distribution. To this end, we state the following theorem which provides a

sufficient condition for the propriety of the posterior distribution.

Theorem 4.2.1 The posterior distribution resulting from the proposed model (4.2.3) with

prior π(β,A) ∝ 1, will be proper if m > p+ 2.

A proof of Theorem 4.2.1 is provided in Section 4.6. Earlier in Section 4.2, we mention

that m > p+ 2 is also a sufficient condition for the propriety of the posterior resulting from

Fay-Herriot model with flat prior for the unknown model parameters.
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Theorem 4.2.1 shows that the number of small areas m needed to yield a proper posterior

for the new model is as many as it is required to yield a proper posterior for the Bayesian

Fay-Herriot model with flat priors.

4.2.3 Computation

Implementation of the model proposed in Section 4.2.2 is straightforward. The implementa-

tion procedure is very much along the line of Park and Casella (2008). In order to apply the

Bayesian Lasso for regression, Park and Casella (2008) utilized the following representation

of double exponential distribution:

λ

2
√
A

exp

{
−λ|vi|√

A

}
=

1√
2π

∞∫
0

1√
(Aτ 2i )

exp

{
− v2i
2(Aτ 2i )

}
× λ2

2
exp

(
−λ2τ 2i

2

)
dτ 2i . (4.2.5)

Motivated by this representation we introduce m latent variables τ 2 = (τ 21 , . . . , τ
2
m) and

rewrite model (4.2.3) as follows.

(I) Conditional on β and vi, yi ∼ N(xT
i β + vi, Di), i = 1, . . . ,m, Di’s are known.

(II) Conditional on A and τ 2i , vi|A, τ 2i ∼ N(0, Aτ 2i ), i=1,. . . ,m.

We assign the following priors to τ 2i given β and A:

π(τ 2i ) =
λ2

2
exp

(
−λ2τ 2i

2

)

The prior distribution π(β,A) ∝ 1, remains the same. The value of λ is known. We

choose λ2 = 2, which makes var(vi|A) = A.
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The joint pdf based on the model is,

f(y, v, β, A, τ 2) ∝
m∏
i=1

{
exp

{
−(yi − xT

i β − vi)
2

Di

}
× 1

(Aτ 2i )
1
2

× exp

{
− v2i
2(Aτ 2i )

}}

×
m∏
i=1

{
λ2

2
exp

{
−1

2
λ2τ 2i

}}
. (4.2.6)

Let π(τ 2i |β, v, A) be the conditional posterior distribution of τ 2i given β, v, A, y, from (4.2.6),

π(τ 2i |β, v, A, y) ∝
1

(Aτ 2i )
1
2

× exp

{
− v2i
2(Aτ 2i )

}
× λ2

2
exp

{
−1

2
λ2τ 2i

}
∝ 1

(Aτ 2i )
1
2

× exp

{
−1

2

[
v2i

(Aτ 2i )
+ λ2τ 2i

]}
. (4.2.7)

Let us consider the transformation z =
1

τ 2i
, hence,

π(z∗|β, v, A, y) ∝ 1

z
3
2

× exp

{
−1

2

[
v2i z

2 + λ2A

Az

]}

= C × 1

z
3
2

× exp

−v2i
2


(
z − λ

√
A

vi

)2
Az




= C × 1

z
3
2

× exp

−v2i
2


(
z − λ

√
A

vi

)2
Az




= C × 1

z
3
2

× exp

−λ2

2


(
z − λ

√
A

vi

)2
z(λ

√
A

vi
)2


 ,

i.e., z =
1

τ 2i
|β, v, A, y ∼ Inverse-Gaussian(

λ
√
A

vi
, λ2), for i = 1, . . . ,m. The conditional

distributions for the other parameters in the model are:

1. β|y, v, A, τ 21 , . . . , τ 2m ∼ Np

(
(XTD−1X)XTD−1(y − v), (XTD−1X)−1

)
,
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2. vi|β,A, τi, y ∼ N

(
Di(yi − xT

i β)

(Aτ 2i +Di)
,

(
1

Di

+
1

Aτ 2i

)−1
)
, i = 1, . . . ,m,

3. A|β, v, τ 21 , . . . , τ 2m, y ∼ Inverse-Gamma(
m

2
− 1,

1

2

m∑
j=1

v2j
τ 2j

).

These full conditional distributions can be used to implement Gibbs sampling in order to

get the estimates of the model parameters and predict the small area characteristics.

4.3 Simulation from a sparse random effect model

The goal of developing a small area estimation technique is to estimate the small area

quantities accurately and precisely. In this section, we compare the accuracy and precision of

two methods based on the estimates obtained from several simulated data sets. We simulate

sample data sets from different models with appropriately chosen values of the parameters

involved in the model. The two competing methods are implemented to estimate the small

area means and then the average square deviation from the true small area mean is measured

by computing average squared deviations:

1

m

m∑
i=1

(
θ̂i − θ∗i

)2
, (4.3.1)

where θ∗i is the true small area mean and θ̂i be the estimated small area mean for ith small

area, i = 1, . . . ,m. In order to compare the variability associated with estimates obtained

from the two methods we compute the ratio of the posterior standard deviations.
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Let there are m small areas, yi’s are the direct estimates and Di’s are the known sampling

variances. The first simulation model S1 is defined below,

Model S1 : Yi = θi + ei,

θi = xT
i β + δivi; i = 1, . . . ,m,

sampling error ei’s are generated from N(0, Di), with Di’s chosen between 5 to 15; δi’s are

iid Bernoulli random variables with P (δi = 1) = p∗. The auxiliary variables x = (x1, x2, x3),

xT
1 , x1 and x2 are generated from N(3, 0.92), χ2

2 and Gamma(2, 2). The choice of β in the

entire simulation study remains β = (1, 2, 3.3, 4.1)T . In model S1, vi’s are generated from

δiI0+(1−δi)N(0, σ2
v), where I0 represents a distribution degenerate at zero. We generate

100 data sets from model S1 for m = 50, 100, p∗ = 0.2, 0.5 and 0.8 and σ2
v = 22, 42, 52,

92 and 102. By choosing smaller values of p∗, we intend to ensure that many small areas to

have vi = 0. The results are demonstrated in Table 4.1 and Table 4.2. In Table 4.2 we see

that for larger values of σ2
v and smaller values of p∗ the new method performs considerably

better.

The model S1 is a two-level model. The first level of the hierarchical model coincides

with the first level of both Fay-Herriot model and its new proposed extension. However, the

second level of each competing model differs from the second level of model S1. Hence the

generating model does not favor any of the competing models. From Table 4.3 the variability

associated with the estimates obtained from the new method is at least as good as that of

Fay-Herriot model. It is clear from some chosen values of p∗ and σ2
v , the new methods

provides estimates with more precision.

4.4 Exponential power prior

Polson et al. (2014) studied the performance of exponential power prior for regression coef-

ficients and named the estimators based on such priors as Bayesian Bridge estimators. They

58



Table 4.1: Average Squared Prediction Error for two different methods. Data sets are sim-
ulated from model with m = 50 and different choices of p∗ and σ2

v. FH ≡ Fay-Herriot and
DE ≡ Double-Exponential

p∗ Method σ2
v = 22 σ2

v = 42 σ2
v = 52 σ2

v = 92 σ2
v = 102

DE 1.6807 3.0912 3.6623 4.9106 5.1446
0.2

FH 1.7015 3.2035 3.9435 6.0245 6.3512
DE 2.6914 5.0504 5.8938 7.6133 7.8183

0.5
FH 2.6287 4.9992 5.8978 7.9431 8.2118
DE 3.3661 5.8708 6.5853 8.0521 8.2425

0.8
FH 3.2438 5.7336 6.5414 8.1683 8.3608

Table 4.2: Average Squared Prediction Error for two different methods. Data sets are simu-
lated from model with m = 100 and different choices of p∗ and σ2

v. FH ≡ Fay-Herriot model
and DE ≡ Double-Exponential model

p∗ Method σ2
v = 22 σ2

v = 42 σ2
v = 52 σ2

v = 92 σ2
v = 102

DE 1.1038 2.1744 2.7162 4.2643 4.5086
0.2

FH 1.1074 2.3679 3.0492 5.3865 5.8170
DE 1.7899 4.4283 4.8250 5.3400 6.4901

0.5
FH 1.8072 4.6072 5.1375 5.9904 7.3310
DE 2.6090 5.2354 6.0462 7.9422 7.7978

0.8
FH 2.5913 5.1939 6.0385 8.08 7.9156

suggested an efficient Gibbs sampling procedure to implement this method. In the context

of robust small area estimation exponential power prior for the area specific random effect

has previously been suggested by Fabrizi and Trivasano (2010).

59



Table 4.3: Ratio of posterior standard deviations (FH/DE) for two different methods based
on the data sets are simulated from model with m = 50, 100 and different choices of p∗ and
σ2
v.

p∗ m σ2
v = 22 σ2

v = 42 σ2
v = 52 σ2

v = 92 σ2
v = 102

m = 50 1.02 1.02 1.03 1.05 1.06
0.2

m = 100 1.04 1.04 1.04 1.08 1.08
m = 50 1.01 1.03 1.03 1.03 1.02

0.5
m = 100 1.02 1.05 1.04 1.03 1.05
m = 50 1.00 1.01 1.02 1.02 1.02

0.8
m = 100 1.01 1.03 1.02 1.02 1.02

An exponential power (EP) distribution center at 0 and scale σ and power φ is denoted

by EP(0, σ, φ) has the following form,

f(x|σ, φ) = c
1

σ
exp

{
−
∣∣∣x
σ

∣∣∣φ} where x ∈ R, σ ∈ R+ and φ > 0 . (4.4.1)

Fabrizi and Trivasano (2010) used a slightly different formulation of exponential power. For,

φ = 1, the distribution (4.4.1) is equivalent to a double exponential distribution with mean 0

and variance σ2. The, choice φ = 2 leads to a normal distribution with mean 0 and variance

σ2.

An exponential power distribution (4.4.1) with suitable choice of φ has heavier tail than

double exponential distribution. That motivates us to study the following extension of Fay-

Herriot model.

Model MEP : yi|β, vi, A ∼ N(xT
i β + vi, Di),

vi|β,A ∼ EP (0,
√
A,φ), i = 1, . . . ,m,

π(β,A) ∝ 1, β ∈ Rp and A ∈ (0,∞). (4.4.2)
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This is, of course a generalization of (4.2.3). Since, (4.4.2) involves improper priors we

state the following theorem which provides a sufficient condition for the propriety of the

posterior distribution resulting from the model.

Theorem 4.4.1 The posterior distribution resulting from the model (4.4.2) with 0 < φ < 2,

will be proper if m > p+ 2.

Proof: The joint pdf obtained from the model (4.4.2) is:

f(y, v, β, A) ∝ C × exp

{
−1

2
(y∗ −Xβ)TD−1(y∗ −Xβ)

}
× 1(√

A
)m exp

{
−

m∑
i=1

∣∣∣∣ vi√
A

∣∣∣∣φ
}
,

(4.4.3)

where y∗ = y − v, y = (y1, . . . , ym)
T , v = (v1, . . . , vm)

T and X is an (m× p) matrix. Let us

consider the transformation, u− 1
φ =

√
A, the Jacobian of transformation is,

u−( 2
φ
+1)

φ
. Hence,

f(y, v, β, u) = C × exp

{
−1

2
(y∗ −Xβ)TD−1(y∗ −Xβ)

}
× exp

{
−u

m∑
i=1

|vi|φ
}

× u
m−2
φ

−1. (4.4.4)

Now,

∫
f(y, β, v, u) du = C × exp

{
−1

2
(y∗ −Xβ)TD−1(y∗ −Xβ)

}
×
∫

exp

{
−u

m∑
i=1

|vi|φ
}

× u
m−2
φ

−1 du

= C × exp

{
−1

2
(y∗ −Xβ)TD−1(y∗ −Xβ)

}

×

( m∑
i=1

|vi|φ
)m−2

φ

−1

(4.4.5)
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Before proceeding further we state the following inequality,

m∑
i=1

|ai|φ ≥

(
m∑
i=1

a2i

)φ
2

, where 0 < φ < 2, ai ∈ R, i = 1, . . . ,m. (4.4.6)

Using (4.4.6), we have,

∫
f(y, β, v, u) du ≤ C × exp

{
−1

2
(y∗ −Xβ)TD−1(y∗ −Xβ)

}

×

( m∑
i=1

v2i

)m−2
2

−1

(4.4.7)

The right side of (4.4.7) is equivalent to (4.6.2) in Section (4.6). It has been shown that

the right side is integrable with respect to β and v. If we follow the steps similarly as in

the proof of Theorem 4.2.1 it can be shown that the right side of (4.4.7) is integrable when

m > p+ 2. �

4.5 Discussion

In this chapter, we propose an objective Bayesian small area model which accounts for the

presence of sparsity in the random effects. We perform a comparison study through simula-

tion and conclude that our method performs well when area specific random effects are absent

for some small areas. We provide sufficient condition for propriety of the posterior resulting

from the model. The sufficient condition is same as the sufficient condition for propriety of a

posterior for a Bayesian Fay-Herriot model (Datta and Ghosh, 2012). We discuss possibility

of further extension of the model using exponential power prior for the random effects, we

also provide a sufficient condition the propriety of the posterior distribution resulting from

the model.
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4.6 Proof of the Theorem

Proof of Theorem 4.2.1: The joint pdf obtained from model MDE is given by:

f(y, β, v, A) = C × exp

{
−1

2
(y∗ −Xβ)TD−1(y∗ −Xβ)

}
× 1

A
m
2

× exp

{
−

m∑
i=1

|vi|√
A

}
,

(4.6.1)

where y∗ = y−v, y = (y1, . . . , ym)
T , v = (v1, . . . , vm)

T and X = (x1, . . . , xp) is of order m×p

matrix, we assume rank(X) = p. Consider the transformation w =

∑m
i=1 |vi|√
A

, the jacobian

of transformation is
(
∑m

i=1 |vi|)2

w3
. Therefore,

f(y, β, v, w) = C × exp

{
−1

2
(y∗ −Xβ)TD−1(y∗ −Xβ)

}
× wm−3

(
m∑
i=1

|vi|)m−2

× exp {−w} .

Now,

∫
f(y, β, v, w) dw = C × 1

(
m∑
i=1

|vi|)m−2

× exp

{
−1

2
(y∗ −Xβ)TD−1(y∗ −Xβ)

}

×
∫

wm−3 × exp {−w} dw

= C × 1

(
m∑
i=1

|vi|)m−2

× exp

{
−1

2
(y∗ −Xβ)TD−1(y∗ −Xβ)

}
,

since m− 2 > 0.

≤ C × 1

(
m∑
i=1

v2i )
m−2

2

× exp

{
−1

2
(y∗ −Xβ)TD−1(y∗ −Xβ)

}
(4.6.2)

Since the inequality (
m∑
i=1

|vi|)2 ≥ (
m∑
i=1

v2i ) ⇐⇒ 1

(
m∑
i=1

|vi|)m−2

≤ 1

(
m∑
i=1

v2i )
(m−2)

2

holds for vi ∈ IR,

for all i and m− 2 > 0.
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The exponent in (4.6.2) can be expressed as

(y∗ −Xβ)TD−1(y∗ −Xβ) = y∗
{
D−1 −D−1XT (XTD−1X)−1XTD−1

}
y∗

+ (β − β̂)T (XTD−1X)(β − β̂),

where β̂=(XTD−1X)−1XTD−1y∗, Therefore,

∫
f(y, β, v, w) dw dβ ≤ C × 1

(
m∑
i=1

v2i )
m−2

2

× exp

{
−1

2
y∗TQy∗

}

×
∫

exp

{
−1

2
(β − β̂)T (XTD−1X)(β − β̂)

}
dβ

= C × 1

(
m∑
i=1

v2i )
m−2

2

× exp

{
−1

2
y∗TQy∗

}
, (4.6.3)

whereQ =
{
D−1 −D−1XT (XTD−1X)−1XTD−1

}
. SinceD is nonsingular, rank(Q) =rank(QD)

= rankQ∗, where Q∗ = (I − D−1X(XTD−1X)−1XT ), which is symmetric and idempotent.

Hence, rank(Q∗) = tr(I)− tr(D−1X(XTD−1X)−1XT ) = m− p = t (say).

Let, Pm×m be an orthogonal matrix such that, P TQP =diag(λ1, . . . , λt, . . . , 0), where λ1 ≥

λ2 ≥ . . . λt > 0 and t = m− p. Consider, u = P Tv, therefore,

y∗TQy∗ = (y − v)TQ(y − v)

= (y − Pu)TQ(y − Pu) = (P Ty − u)TP TQP (P Ty − u)

= (s− u)TP TQP (s− u) where s = P Ty

=
t∑

j=1

λj(sj − uj)
2.
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Hence from (4.6.3),

∫
f(y, β, u, w) dw dβ ≤ C × 1

(
m∑
i=1

u2
i )

m−2
2

exp

{
−1

2

t∑
j=1

λj(sj − uj)
2

}
(4.6.4)

Now, at first we integrate (4.6.5) with respect to um

∫
f(y, β, u, w) dw dβ dum ≤ C × exp

{
−1

2

t∑
j=1

λj(sj − uj)
2

}

×
∫ ∞

−∞

1

(
m∑
i=1

u2
i )

m−2
2

dum

= C × exp

{
−1

2

t∑
j=1

λj(sj − uj)
2

}

×
∫ ∞

−∞

1

(
m−1∑
i=1

u2
i + u2

m)
m−2

2

dum

= C × exp

{
−1

2

t∑
j=1

λj(sj − uj)
2

}

×
∫ ∞

−∞

1({√∑m−1
i=1 u2

i

}2

+ u2
m

)m−3+1
2

dum

= C × exp

{
−1

2

t∑
j=1

λj(sj − uj)
2

}

× 1(∑m−1
i=1 u2

i

)m−2−1
2

(4.6.5)

(since m− 3 > 0).
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Similarly, after successive integration with respect to um−1, . . . ut+1,

∫
f(y, β, u, w) dw dβ

m∏
i=t+1

dui ≤ C × exp

{
−1

2

t∑
j=1

λj(sj − uj)
2

}

× 1(∑t
i=1 u

2
i

)m−2−(m−t)
2

= C × exp

{
−1

2

t∑
i=1

λj(sj − uj)
2

}

× 1(∑t
i=1 u

2
i

) t−2
2

(4.6.6)

since t− 2 > 0, i.e., m− p > 2. Let, min
1≤j≤t

λj =
1

δ2
> 0,

∫
f(y, β, u, w) dw dβ

m∏
i=t+1

dui

t∏
i=1

dui ≤ C ×
∫

exp

{
−1

2

t∑
j=1

λj(sj − uj)
2

}

× 1(∑t
i=1 u

2
i

) t−2
2

t∏
i=1

dui

≤ C ×
∫

exp

{
− 1

2δ2

t∑
i=1

(sj − uj)
2

}

× 1(∑t
i=1 u

2
i

) t−2
2

t∏
i=1

dui. (4.6.7)

If Xi ∼ N(µi, σ
2), independently, i = 1, . . . , t then

t∑
i=1

X2
i

σ2
∼ χ2

t (α), where α =
t∑

i=1

µ2
i

σ2
is the

non-centrality parameter and t is the degrees of freedom. Using this fact in (4.6.7),
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∫
f(y, β, u, w) dw dβ

m∏
i=t+1

dui

t∏
i=1

dui ≤ C ×
∫

exp

{
− 1

2δ2

t∑
i=1

(sj − uj)
2

}

× 1(∑t
i=1 u

2
i

) t−2
2

t∏
i=1

dui

= C × E

[
1

(χ2
t (α))

t−2
2

]

= C ×
∞∑
i=0

exp{−λ
2
}(λ

2
)i

i!
× E

[
1

(χ2
t+2i)

t−2
2

]

≤ C ×
∞∑
i=0

exp{−λ
2
}(λ

2
)i

i!
× E

[
1

(χ2
t )

t−2
2

]
(4.6.8)

In (4.6.8), we use the fact that for λ2 ≥ λ1 > 0,

E
[
g(χ2

λ2
)
]
≤ E

[
g(χ2

λ1
)
]
, (4.6.9)

where g(x) is a nonnegative decreasing function in x. The result (4.6.9) holds for χ2 random

variables since χ2
λ2

st

≥ χ2
λ1

for λ2 ≥ λ1. In our case, g(x) =
1

x
t
2
−1

is decreasing in x since

t > 2, i.e., m > p+ 2. From the right hand side of (4.6.8),

C ×
∞∑
i=0

exp{−λ
2
}(λ

2
)i

i!
× E

[
1

(χ2
t )

t−2
2

]

= C ×

(
∞∑
i=0

exp{−λ
2
}(λ

2
)i

i!

)(∫ ∞

0

exp
{
−w

2

}
w

t
2
−1

w
t−2
2

dw

)

= C × 2 < ∞. (4.6.10)
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Hence,

∫
f(y, β, u, w) dw dβ

m∏
i

dui < ∞.

=⇒
∫

f(y, β, v, A) dv dβdA < ∞, (4.6.11)

which implies the posterior distribution f(β, v, A|y) is proper. �
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Chapter 5

Hierarchical Bayesian Methods for

Combining Surveys

5.1 Introduction

In order to estimate the number of occupied housing units (households), many surveys

are conducted by the United States Census Bureau. In Table 5.1, we report the household

estimates from 2002 to 2011, obtained by the Current Population Survey (CPS), the Housing

Vacancy Survey (HVS), the American Community Survey (ACS) and the American Housing

Survey (AHS). Differences among the survey estimates are noticeable in Table 5.1. Estimates

obtained by the CPS are consistently high over the years and the estimates from the HVS

and the AHS are typically low. In order to combine the estimates obtained by these surveys,

we propose and discuss various hierarchical Bayesian (HB) models. In this chapter, we study

and compare the combined estimates obtained from these HB methods.
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Table 5.1: Estimates of households, obtained in different surveys (numbers in 1000s).

Survey 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
CPS/ASEC 111278 112000 113343 114384 116011 116783 117181 117538 119927 121084

HVS 104994 105636 106971 108667 109736 110173 110475 112295 112899 113533
ACS 107367 108420 109902 111091 111617 112378 113101 113616 114567 114992
AHS . 105842 . 108871 . 110692 . 111806 . 114907

Table 5.2: Standard errors of the estimates obtained in different surveys (numbers in 1000s).

Survey 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
CPS/ASEC 260 260 235 234 261 261 261 262 262 262

HVS 185 182 179 204 194 187 181 174 173 171
ACS . . . 144 146 144 147 161 163 180
AHS . 165 . 218 . 231 . 238 . 396

5.2 A hierarchical Bayesian model to combining sev-

eral unbiased survey estimates

Let θ be a population characteristic of interest and suppose estimates of θ are available

from m different surveys. Moreover, suppose that these surveys are repeated over time,

annually or biennially. Thus some surveys may not have been conducted over every time

point of interest. While one or more surveys are conducted at every time point 1 to T , not

all surveys are done at every time point. Suppose the ith survey is conducted at time points

belonging to a set Si ⊂ {1, 2, . . . , T}. We assume that,
m∪
i=1

Si = {1, 2, . . . , T}, i.e., at least

one of the surveys is conducted every year. To estimate θt, the population characteristic of

interest at time t, we consider the following model:

yit = θt + eit, t ∈ Si ⊂ {1, 2, . . . , T}, (5.2.1)
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where, yit is the estimate of θt from the ith survey at the tth time point. We assume that

sampling errors eit ∼ N(0, σ2
it), t ∈ Si, i = 1. . . . ,m, are independently distributed. We

assume that σ2
it’s are known. Now, we propose the following random walk model for θt:

θt = θt−1 + e∗t , t = 1, 2, . . . , T, (5.2.2)

where, e∗t ’s are independently distributed with a truncated normal distribution truncated

above 0, with variance σ2
e∗ . We assume that σ2

e∗ and θo are unknown. Our proposed hierar-

chical Bayesian model for estimating the number of households is:

Model M1 : yit|θ0, θt, σ2
e∗

ind∼ N(θt, σ
2
it), t ∈ Si, i = 1, . . . ,m,

θt = θt−1 + e∗t , t = 1, . . . , T,

e∗t |σ2
e∗

iid∼ truncated N(0, σ2
e∗), (5.2.3)

with lower truncation point 0. In model M1, values of σ
2
it’s are known. The values of θ0 and

σ2
e∗ are not available, so we assign the following noninformative priors to those parameters:

θo and σ2
e∗ are independently distributed with Uniform(0,∞).

Since we assume improper prior to some parameters in the model, the propriety of the

posterior distribution resulting from the model need to be ensured. Theorem 5.2.1 provides

sufficient conditions for the propriety of the posterior density for the model stated above.

From Table 5.2 we see that standard errors are not available from the American Commu-

nity Survey from 2002−2004. Also, the American Housing Survey estimates along with the

standard errors are missing at every alternative year from 2002−2011 (Tables 5.1 and 5.2).

Let us introduce indicator variables δit’s, such that, δit = 1 if data from the ith survey is

available at time t and δit = 0 otherwise, i = 1. . . . ,m and t = 1, . . . , T . We also define, nt

=
m∑
i=1

δit, t = 1, . . . , T .
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Theorem 5.2.1 The posterior distribution resulting from the proposed model will be proper

if (a) nt > 0 for all t, and (b) the number of time points T > 3.

Proof of the theorem is provided in Section 5.6.1. Since there are some missing yit’s along

with σ2
it’s, we define the variable r such that, rit = 0 if σ2

it is missing and rit =
1
σ2
it
otherwise.

The following full conditional distributions obtained below will be essential to perform a

Gibbs Sampling.

(a) θT |θ0, θ1, . . . , θT−1, σ
2
e∗ , y ∼ truncated Normal with mean =

m∑
i=1

riTyiT + σ−2
e∗ θT−1

m∑
i=1

riT + σ−2
e∗

and

variance = (
m∑
i=1

riT + σ−2
e∗ )

−1 with lower truncation point θT−1.

(b) θt|θ0, θ1, ., θt−1, θt+1, ., θT , σ
2
e∗ , y ∼ truncated Normal with

mean =

m∑
i=1

rityit + σ−2
e∗ (θt−1 + θt+1)

m∑
i=1

rit + 2σ−2
e∗

and variance = (
m∑
i=1

rit+2σ−2
e∗ )

−1 truncated in (θt−1,θt+1);

t = 1, . . . , T − 1.

(c) θ0|θ1, . . . , θT , σ2
e∗ , y ∼ truncated Normal with mean = θ1 and variance = σ2

e∗ truncated

in (0,θ1).

(d) σ2
e∗ |θ0, . . . , θT , y ∼ Inverse-Gamma (IG) with shape =T

2
− 1, rate =

T∑
t=1

(θt − θt−1)
2

2
.

(If X ∼ Inverse-Gamma(α, β), then the pdf of X is f(x) ∝ x−α−1 exp{−β
x
}, where α is the

shape and β is the rate parameter.)

We perform a Gibbs sampling to get the HB estimates of θt’s. Table 5.4 presents the

proposed HB estimates and posterior standard deviations of θt’s. Figure 5.1 shows the

proposed combined estimates and the survey estimates. From Table 5.3 we get the estimates

of θ0 and σ2
e∗ obtained by our method. In Figure 5.3, we plot histograms based on the

simulated values from the posterior distribution of σ2
e∗ . In Table 5.6 we provide some details

about the simulated values from the posterior distribution of σ2
e∗ . Table 5.5 and Figure 5.2

(b) show that the posterior standard deviations associated with the Bayes estimates of
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Figure 5.1: Proposed HB estimates based on model M1 and other survey estimates.

θt obtained by our method are considerably lower than the standard errors of the survey

estimates. This implies we achieve significant gain in precision by applying model M1.

Table 5.3: Summary of the posterior simulations (numbers in 1000s).

Posterior Posterior Simulated Quantiles
Parameter Mean sd 2.5% Median 97.5%

θ0 105756.25 995.92 105296.47 105993.36 106489.93
σ2
e∗ 2369485.65 1921155.29 1300676.22 1854130.76 2774842.83
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Figure 5.2: (a) Proposed HB estimates based on models M1 and M2 (with and without
log transformation) and other survey estimates. (b) Posterior standard deviations of the
proposed HB estimates based on models M1 and M2, and the standard errors corresponding
to the other survey estimates.

5.2.1 Log Transformation

Since the values of household estimates are large and positive, we consider the following

transformation: let, y∗it = log(yit) and θ∗t = log(θt). Now, we can rewrite equation (5.2.1) as,

y∗it = θ∗t + ϵit, t ∈ Si ⊂ {1, 2, . . . , T}.

We assume that sampling errors ϵit ∼ N(0, τ 2it). Previously, we assumed that Var(yit|θt) =

σ2
it, where σ2

it’s are known. Now, τ 2it = Var(y∗it|θ∗t ) = Var(log(yit|θt)) ≈ σ2
it

y2it
, using Taylor

series expansion. We obtain, the values of τ 2it’s using this approximation. Similarly, as in

equation (5.2.2), we assume,

θ∗t = θ∗t−1 + εt, t = 1, 2, . . . , T,
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Table 5.4: HB estimates and posterior standard deviations based on model M1 (numbers in
1000s).

Year θ̂t Posterior Year θ̂t Posterior
sd sd

2002 106909.21 103.48 2007 112110.28 92.93
2003 107002.75 93.73 2008 112877.75 103.76
2004 109300.26 141.15 2009 113443.00 97.42
2005 110688.17 94.65 2010 114823.40 107.55
2006 111775.22 103.65 2011 115433.41 107.08

Table 5.5: Posterior standard deviations and the standard errors (numbers in 1000s).

Year Proposed method (M1) CPS/ASEC HVS ACS AHS
Posterior sd s.e s.e s.e s.e

2002 103.48 260 185 . .
2003 93.73 260 182 . 165
2004 141.15 235 179 . .
2005 94.65 234 204 144 218
2006 103.65 261 194 146 .
2007 92.93 261 187 144 231
2008 103.76 261 181 147 .
2009 97.42 262 174 161 238
2010 107.55 262 173 163 .
2011 107.08 262 171 180 396

where, εt’s are independently distributed with a truncated normal distribution truncated

above 0, with variance σ2
ε . We assume that σ2

ε and θ∗o are unknown. Now, with this re-

parametrization, the proposed hierarchical Bayesian model in Section 5.2 could be rewritten

as,

Model M2 : y∗it|θ∗0, θ∗t , σ2
ε

ind∼ N(θ∗t , τ
2
it), t ∈ Si, i = 1, . . . ,m,

θ∗t = θ∗t−1 + εt, t = 1, . . . , T,

εt|σ2
ε

iid∼ truncated N(0, σ2
ε), (5.2.4)
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Figure 5.3: Histograms of the posterior simulations for σ2
e∗ (a) based an all simulated values

(b) after dropping upper 2.5% observations (c) after dropping observations larger than 106

(d) after dropping observations smaller than 106.

with lower truncation point 0. We assume that, σ2
ε and θ∗o are independently distributed

with σ2
ε ∼ Uniform(0,∞) and θ∗o ∼ Uniform(−∞,∞).

The resulting posterior distribution from this model will be proper if the sufficient condi-

tions stated in Theorem 5.2.1 are satisfied. In order to estimate the parameters in this model,

we use Gibbs sampling technique. Full conditional posterior distributions could be obtained

by simple modifications of the full conditional distributions mentioned in Section 5.2. We

run 5 chains and 10, 000 iterations for each chain. We discard first 50% observations of each

chain and compute our estimates based on the remaining observations. Table 5.7 shows the

summary of the posterior inference for σ2
ε . Histograms based on the posterior simulations

for σ2
ε are shown in Figure 5.4.
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Table 5.6: Details about the posterior simulations of σ2
e∗.

Simulated values of Proportion
σ2
e∗ |y

< 106 0.10696
106 − 5× 106 0.82868

5× 106 − 9× 106 0.05176
> 9× 106 0.0126

Using the estimates of θ∗t (say, θ̂∗t ), we can get the estimates of θt (say, θ̂t) by the trans-

formation θ̂t = E
[
exp(θ̂∗t )|y

]
. In Table 5.8 we present the estimates of θt and the posterior

standard deviations corresponding to the estimates. From Figure 5.2(a) we see that the

estimates obtained by considering a log transformation almost coincide with the estimates

obtained without considering a transformation. This applies to the posterior standard devi-

ations as well (Figure 5.2(b)).

Table 5.7: Summary of the posterior simulation for σ2
ε (numbers in 1000s)

Posterior Posterior Simulated Quantiles
Parameter Mean sd 2.5% Median 97.5%

σ2
ε 0.00019 0.00015 0.00006 0.00015 0.00058

Table 5.8: HB estimates and posterior standard deviations (numbers in 1000s).

Year θ̂t Posterior Year θ̂t Posterior
sd sd

2002 107012.90 103.46 2007 112166.94 93.08
2003 107100.13 94.67 2008 112943.28 103.66
2004 109426.22 140.62 2009 113486.02 97.81
2005 110739.88 94.46 2010 114901.45 107.21
2006 111831.94 103.30 2011 115523.07 108.31
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Figure 5.4: Histograms of the posterior simulations for σ2
ε (a) based an all simulated values

(b) after dropping upper 2.5% observations.

5.3 A Hierarchical Bayesian method using auxiliary

data

Population size and the number of occupied households have a natural relationship. That

motivates us to use total population size as an auxiliary variable in order to improve the

survey estimates. We assume that number of households and total population size is linearly

related. Before we describe the model we define the following quantities:

Zt =

m∑
i=1

ritD
−1
it yit

m∑
i=1

ritD
−1
it

, Dt =

(
m∑
i=1

rit
Dit

)−1

i = 1, . . . ,m, t = 1, . . . , T, (5.3.1)

where, rit = 1 if the ith survey produces estimator yit and variance of the estimator in year

t, and it is 0 otherwise. The sampling variance corresponding to yit is denoted by Dit.
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Let θt represents the true number of households at time t. Let us consider the following

model,

Model M3 : Zt|θt ∼ N(θt, Dt), θt = xT
t β + δt

δt|σ2
δ ∼ N(0, σ2

δ ), t = 1, . . . , T, (5.3.2)

where xt = (1, Pt)
′
, Pt is the total population in the United States at time t. We assign a

flat prior for the unknown quantities β (2× 1) and σ2
δ in model M3,

π(β, σ2
δ ) ∝ 1, β ∈ R2, σ2

δ ∈ R+ (5.3.3)

The posterior distribution resulting from this model will be proper if T ≥ p+ 3, p being

the dimension of β. Here, p = 2 and T = 10 hence the sufficient condition for propriety of

the posterior is satisfied for this data.

The model (5.3.2) can be implemented by applying a Gibbs sampler using the following full

conditional distributions. Let δ = (δ1, . . . , δT )
T , Z = (Z1, . . . , ZT )

T , D = diag(D1, . . . , DT )

(I) β|Z, δ, σ2
δ ∼ N2((X

TD−1X)−1XTD−1(Z − δ), (XTD−1X)−1)

(II) δt|Z, β, σ2
δ ∼ N

(
D−1

t (Zt − xT
t β)

D−1
t + σ−2

δ

,
1

D−1
t + σ−2

δ

)
, t = 1, . . . , T.

(III)
1

σ2
δ

|Z, β, δ ∼ Gamma

(
T

2
− 1,

1

2

T∑
t=1

δ2t

)
.

Results obtained by implementing model M3 are described in Table 5.9 and in Figure 5.5.
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Table 5.9: Estimates obtained by weighted average of the survey estimates and the model
estimates obtained by using model M3 (numbers in 1000s).

Posterior

Year Zt

√
Dt θ̂t sd

(t)
2002 106909.21 150.74 107213.4 149.13
2003 107002.75 110.62 108212.1 110.08
2004 109300.26 142.40 110012.7 140.55
2005 110688.17 94.68 109145.2 94.51
2006 111775.22 106.50 110012.7 105.92
2007 112110.28 95.24 111876.6 94.19
2008 112877.75 104.55 112852.3 102.78
2009 113443.00 98.14 113878.9 97.38
2010 114823.40 108.07 114819.6 106.81
2011 115433.41 107.82 115740.7 107.50
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Figure 5.5: Estimates obtained by weighted average of the survey estimates and the model
estimates by using model M3
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5.4 Some new models accounting for sampling bias

From Figure 5.1 we see that there is a considerable difference in the survey estimates of

households ever year. To verify whether the surveys estimate the same quantity, we conduct

hypothesis test to test the equality of µit = E(yit) among the surveys for each t, where

yit is the estimate of number of occupied household obtained from the ith survey at the tth

year, for i = 1 . . . ,m and t = 1, . . . , T . For each year the null hypothesis that the surveys

are estimating the same quantity was rejected convincingly. Motivated by this result we

introduce a bias term for each survey in the new model described below.

yit = θit + eit,

θit = ht + αi + bit,

ht = β0 + βxt + ηt, t ∈ Si, i = 1, . . . ,m, (5.4.1)

where αi is the bias associated with the ith survey, ht is the true number of households at

the year t. We impose an additive constraint
m∑
i=1

αi = 0 among the biases in the model.

In the model, eit ∼ N(0, Dit), bit ∼ N(0, σ2
b ), ηt ∼ N(0, σ2

η), independently. The sampling

variances Dit’s are known but the model variances σ2
b and σ2

η are unknown. Let, µi = β0+αi,

i = 1, . . . ,m. Since,
m∑
i=1

αi = 0, 1
m

m∑
i=1

µi = β0.
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We rewrite model (5.4.1) in the following form.

Model M4 : yit|αi, ht, bit ∼ N(ht + αi + bit, Dit), t ∈ Si, i = 1, . . . ,m,

ht =
1

m

m∑
i=1

µi + βxt + ηt,

ηt|σ2
η ∼ N(0, σ2

η),

bit|σ2
b ∼ N(0, σ2

b ), t = 1, . . . , T, i = 1, . . . ,m,

π(µ, β, σ2
b , σ

2
η) ∝ 1,

1

m

m∑
i=1

µi = β0, where µi = β0 + αi. (5.4.2)

where, µ = (µ1, . . . , µm)
T , β ∈ R and σ2

b , σ
2
η ∈ R+.

Theorem 5.4.1 The posterior distribution resulting from Model M4 will be proper if T > 4

and m(T − 1) > 5.

The proof of the theorem is provided in Section 5.6.2. The proof is provided for a balanced

case assuming data are available for all m surveys over T time points. This proof can be

modified for an unbalanced case as well.

The joint pdf of y, µ, β, η, b, σ2
b , σ

2
η from model M4 is given by,

π(y, µ, β, η, b, σ2
b , σ

2
η) = C × exp

{
−1

2
(y −Xw − Z1η − b)TD−1(y −Xw − Z1η − b)

}
× 1

(σ2
η)

T
2

× exp

{
−1

2

ηTη

2σ2
η

}
× 1

(σ2
b )

n
2

× exp

{
−1

2
× bT b

2σ2
b

}
, (5.4.3)

where, Z1 =
T⊕
t=1

1nt , nt =
m∑
i=1

= δit, where δit = 1 if data from ith survey is available at time

t and δit = 0 otherwise; n =
T∑
t=1

nt. Here, w = (µ1, . . . , µm, β)
T and,
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X =



In1 x11n1

In2 x21n2

...

InT
xT1nT


.

We denote the identity matrix of order nt × nt by Int .

In (5.4.3), y = (y11, . . . , yn11, y12, . . . , yn22, . . . , ynTT )
T , η = (η1, . . . , ηT )

T

D = diag(D11, . . . , Dn11, D12, . . . , Dn22, . . . , DnTT ), b = (b11, . . . , bn11, b12, . . . , bn22, . . . , bnTT )
T .

Let us define, f = y−Z1η− b, g = y−Xw− b and h = y−Xw−Z1η. The full conditional

distributions obtained from (5.4.3) are given below,

(I) w|y, η, b, σ2
η, σ

2
b ∼ N((XTD−1X)−1XTD−1f, (XTD−1X)−1),

(II) η|y, w, b, σ2
η, σ

2
b ∼ N

(
(σ−2

η IT + ZT
1 D

−1Z1)
−1ZT

1 D
−1g, (σ−2

η IT + ZT
1 D

−1Z1)
−1
)
,

(III) b|y, w, η, σ2
η, σ

2
b ∼ N

(
(σ−2

b In +D−1)−1D−1h, (σ−2
b In +D−1)−1

)
,

where n = (
T∑
t=1

nt),

(IV)
1

σ2
η

|y, w, b, η, σ2
b ∼ Gamma

(
T

2
− 1,

ηTη

2

)
,

(V)
1

σ2
b

|y, w, b, η, σ2
η ∼ Gamma

(
n

2
− 1,

bT b

2

)
.

We implement a Gibbs sampler using these conditional distributions. Estimates of ht ob-

tained from model M4 and the standard deviation associated with the estimates from 2002

to 2011 are given in the first and third column of Table 5.10. From the fourth column of

Table 5.10, we see that the posterior standard deviations associated with the estimates are

on average larger than the sampling standard errors. This may be caused by using too many

parameters in the model.
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We consider another model which is almost same as Model M4 but involves less number

of parameters.

Model M5 : yit|ht, αi ∼ N(ht + αi, Dit),

ht =
1

m

m∑
i=1

µi + βxt + ηt,

ηt|σ2
η ∼ N(0, σ2

η), t ∈ Si, i = 1, . . . ,m,

π(µ, β, σ2
η) ∝ 1,

1

m

m∑
i=1

µi = β0, where µi = β0 + αi. (5.4.4)

Notation used in modelM5 has the same meaning as that defined before. The required full

conditional distributions for model M5 can be obtained with a little modification to the full

conditional distributions corresponding to model M4. We implement model M5 and compute

the estimates of number of households and the posterior standard deviations associated with

the estimates given in Table 5.10. From Table 5.10 we see that while the posterior standard

deviations are considerably small for model M5, the point estimates obtained using model

M5 are similar to the estimates obtained from model M4 to a large extent. In Table 5.11

we estimate the bias for the surveys, where α1 represents bias for CPS/ASEC, α2 represents

bias for HVS, α3 is the bias for ACS and α4 is the bias for AHS. In Table 5.12 we show the

bias adjusted survey estimates.

5.5 Discussion

In this chapter we study various estimation methods which combine estimates from different

surveys. We have shown that considerable gain in terms of precision can be achieved using

some of these methods. In the last section, we considered bias in the model and performed

an exploratory analysis. Number of households estimated by different surveys differ con-

siderably, which may create ambiguity among the researchers and impact decisions of the
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Table 5.10: HB estimates based on model M4 and M5 (numbers in 1000s)

Estimate Posterior SD
Year M4 M5 M4 M5

2002 107156.26 107136.87 251.31 151.33
2003 107840.94 107786.69 211.06 112.93
2004 109140.83 109129.91 241.40 142.17
2005 110703.93 110869.47 183.58 94.77
2006 111730.94 111796.26 206.31 109.90
2007 112477.30 112495.83 172.28 95.77
2008 113046.61 113024.20 197.38 107.80
2009 113923.89 113934.36 180.77 97.56
2010 115131.95 115032.04 204.64 110.53
2011 115974.39 115788.58 188.92 108.81

Table 5.11: HB estimates of bias for each survey using model M5

Posterior
i α̂i sd
1 4233.42 7441.85
2 -2156.89 7441.54
3 -182.91 7446.68
4 -1893.62 7440.90

government organizations. Our proposed methods successfully combine the survey estimates

which could be helpful to the researchers.
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Table 5.12: Bias corrected estimates of households from 2002−2011 for three different surveys
based on model M5 (numbers in 1000s).

Survey 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
CPS/ASEC 107044.58 107766.58 109109.58 110150.58 111777.58 112549.58 112947.58 113304.58 115693.58 116850.58

HVS 107150.89 107792.89 109127.89 110823.89 111892.89 112329.89 112631.89 114451.89 115055.89 115689.89
ACS 107549.91 108602.91 110084.91 111273.91 111799.91 112560.91 113283.91 113798.91 114749.91 115174.91
AHS . 107735.62 . 110764.62 . 112585.62 . 113699.62 . 116800.62

5.6 Prof of the theorems

5.6.1 Proof of Theorem 5.2.1

From model M1, the joint posterior distribution of θ0, θ1, θ2,. . . ,θT is given by,

π∗(θ0, θ1, . . . , θT , σ
2
e∗ |y)

= C × exp

{
−1

2

m∑
i=1

∑
t∈Si

rit(yit − θt)
2

}

× 1

(σ2
e∗)

T
2

× exp

{
− 1

2σ2
e∗

T∑
t=1

(θt − θt−1)
2

}
T∏
t=1

I(θt > θt−1), (5.6.1)

where C is a generic positive constant, rit = 0 if σ2
it is missing and rit =

1

σ2
it

if σ2
it is available,

t ∈ Si, i = 1, . . . ,m.

Now, from (5.6.1),

∫
π∗(θ0, θ1, . . . , θT , σ

2
e∗|y)dθ0

T∏
t=1

dθtdσ
2
e∗

≤
∫

π(θ0, θ1, . . . , θT , σ
2
e∗|y)dθ0

T∏
t=1

dθtdσ
2
e∗ , (5.6.2)
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where,

π(θ0, θ1, . . . , θT , σ
2
e∗ |y)

= C × exp

{
−1

2

m∑
i=1

∑
t∈Si

rit(yit − θt)
2

}

× 1

(σ2
e∗)

T
2

× exp

{
− 1

2σ2
e∗

T∑
t=1

(θt − θt−1)
2

}
. (5.6.3)

From the right hand side of (5.6.3),

m∑
i=1

∑
t∈Si

rit(yit − θt)
2

= (θ∗ − µ)TΣ−1(θ∗ − µ) +
m∑
i=1

∑
t∈Si

rity
2
it −

T∑
t=1

r.tµ
2
t , (5.6.4)

where, θ∗ = (θ1, . . . , θT )
T , µ = (µ1, . . . , µT )

T , µt = (
m∑
i=1

rit)
−1(

m∑
i=1

rityit), t = 1, . . . , T and

Σ = diag(r.1, r.2, . . . , r.T ), where, r.t =
m∑
i=1

rit, t = 1, . . . , T . Note that, we have assumed

nt > 0, nt =
m∑
i=1

δit, where δit = 1 if data from ith survey is available at time t and δit = 0

otherwise. This implies, r.t > 0, for all t. Also,

T∑
t=1

(θt − θt−1)
2 = (θ0 − θ1)

2 +
T∑
t=2

(θt − θt−1)
2

= (θ0 − θ1)
2 + θ∗T (BTB)θ∗, (5.6.5)

where, B is a (T − 1× T ) matrix and rank(BTB) = T − 1.
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Hence,

π(θ0, θ1, . . . , θT , σ
2
e∗ |y)

≤ C × exp

{
−1

2
(θ∗ − µ)TΣ−1(θ∗ − µ)

}
× 1

(σ2
e∗)

T
2

exp

{
−1

2

[
(θ0 − θ1)

2 + θ∗T (BTB)θ∗
]

σ2
e∗

}
(5.6.6)∫

π(θ0, θ1, . . . , θT , σ
2
e∗|y)dθ0

≤ C × exp

{
−1

2
(θ∗ − µ)TΣ−1(θ∗ − µ)

}
× 1

(σ2
e∗)

(T−1)
2

× exp

{
− 1

2σ2
e∗
θ∗T (BTB)θ∗

}
. (5.6.7)

Let ξ1, . . . , ξT be the T positive eigenvalues of Σ such that ξ1 < ξ2 < · · · < ξT . Let R be an

orthogonal matrix such that,

RTΣR = diag(ξ1, . . . , ξT ) < 2ξT I

⇒ Σ < 2ξT I

⇒ −(θ∗ − µ)Σ−1(θ∗ − µ) < −(θ∗ − µ)T (θ∗ − µ)

2ξT
, (5.6.8)

Hence,

∫
π(θ0, θ1, . . . , θT , σ

2
e∗|y)dθ0

≤ C × exp

{
−1

2

(θ∗ − µ)T (θ∗ − µ)

2ξT

}
× 1

(σ2
e∗)

(T−1)
2

× exp

{
− 1

2σ2
e∗
θ∗T (BTB)θ∗

}
, (5.6.9)

Let P be an orthogonal matrix such that, P T (BTB)P = diag(λ1, . . . , λT−1, 0), where λi’s

are positive eigenvalues of BTB. Consider the transformation, θ∗ = Pα, where α =
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(α1, . . . , αT )
T . Also, define ν = Pµ. Now, from (5.6.9),

∫
π̃(θ0, α1, . . . , αT , σ

2
e∗ |y)dθ0

≤ C × exp

{
−1

2

(α− ν)T (α− ν)

2ξT

}
× 1

(σ2
e∗)

(T−1)
2

× exp

{
− 1

2σ2
e∗
θ∗T (BTB)θ∗

}

= C × exp

{
−1

2

T∑
i=1

(αi − νi)
2

2ξT

}

× 1

(σ2
e∗)

(T−1)
2

× exp

{
− 1

2σ2
e∗

T−1∑
i=1

λiα
2
i

}

= C × exp

{
−1

2

T−1∑
i=1

α2
i

(
1

2ξT
+

λi

σ2
e∗

)
− 2αi

νi
2ξT

}

× 1

(σ2
e∗)

(T−1)
2

exp

{
−1

2

T−1∑
i=1

ν2
i

2ξT

}
× exp

{
−1

2

(αT − νT )
2

2ξT

}

= C × exp

−1

2

T−1∑
i=1

(
1

2ξT
+

λi

σ2
e∗

)(
αi −

νi
2ξT

(
1

2ξT
+

λi

σ2
e∗

)−1
)2


× 1

(σ2
e∗)

(T−1)
2

× exp

{
1

2

T−1∑
i=1

ν2
i

(2ξT )2

(
1

2ξT
+

λi

σ2
e∗

)−1

− 1

2

T−1∑
i=1

ν2
i

2ξT

}

× exp

{
−1

2

(αT − νT )
2

2ξT

}
(5.6.10)

Therefore,

∫
π̃(θ0, α1, . . . , αT , σ

2
e∗|y) dθ0

T∏
i=1

dαi

≤ C × 1

(σ2
e∗)

(T−1)
2

(
1

2ξT
+

λmin

σ2
e∗

)− (T−1)
2

× exp

{
−1

2

T−1∑
i=1

ν2
i λi

(σ2
e∗ + 2ξTλi)

}

≤ C × 1

(σ2
e∗ + 2ξTλmin)

(T−1)
2

, (5.6.11)
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where, λmin = min(λ1, . . . , λT−1). Finally,

∫
π̃(θ0, α1, . . . , αT , σ

2
e∗ |y) dθ0

T∏
i=1

dαidσ
2
e∗

≤ C

∫
1

(σ2
e∗ + 2ξTλmin)

(T−1)
2

dσ2
e∗

< ∞, (5.6.12)

since
T − 1

2
> 1, i.e., T > 3 provided by the sufficient condition. Hence the proof. �

5.6.2 Proof of Theorem 5.4.1

The proof is provided for a balanced case assuming data are available for all m surveys over

T time points. From (5.4.1) and the formulation of model M4,

yit = µi + βxt + bit + ηt + eit, (5.6.13)

where, bit
iid∼ N(0, σ2

b ), ηt
iid∼ N(0, σ2

η) and eit
ind∼ N(0, Dit), Dit’s are known, i = 1. . . . ,m,

t = 1, . . . , T .

Let, yt = (y1t, . . . , ymt)
T , bt = (b1t, . . . , bmt)

T , µ = (µ1, . . . , µm)
T , et = (e1t, . . . , emt)

T .

Let, 1m = (1, . . . , 1)T and let Jm = 1m1
T
m be an (m×m) matrix.

Then,

yt = µ+ (xt1m)β + ηt1m + bt + et,

⇒ y = Xβ∗ + ϵ, (5.6.14)

where, β∗ = (µ1, . . . , µm, β)
T , ϵ = Rη + b + e, η = (η1, . . . , ηT )

T , and R = IT ⊗ 1m, IT is

(T × T ) identity matrix. From (5.6.14),

V ar(ϵ) = Σ = D + σ2
bImT + σ2

ηIT ⊗ Jm, (5.6.15)
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where D = diag(D11, . . . , DmT ) and ImT is an (mT ×mT ) diagonal matrix. Based on this

re-parametrization, we rewrite model M4 as,

y|σ2
b , σ

2
η, β

∗ ∼ N(Xβ∗,Σ),

π(σ2
b , σ

2
η, β

∗) = 1. (5.6.16)

Hence, the joint posterior distribution based on (5.6.16) is given by,

π(σ2
η, σ

2
b , β

∗|y) = C × 1

|Σ| 12
exp

{
−1

2
(y −Xβ∗)TΣ−1(y −Xβ∗)

}
, (5.6.17)

where C is a positive generic constant.

∫
π(σ2

η, σ
2
b , β

∗|y) dβ∗ = C × |XTΣ−1X|− 1
2

|Σ| 12

× exp

{
−1

2
yT (Σ−1 − Σ−1X(XTΣ−1X)XTΣ−1)Ty

}
(5.6.18)

⇒
∫

π(σ2
η, σ

2
b , β

∗|y) dβ∗ ≤ C × |XTΣ−1X|− 1
2

|Σ| 12
. (5.6.19)

Using the matrix version of Schwartz inequality (Harville, 2008) we have,

|XTX|2 = |XTΣ− 1
2Σ

1
2X|2

≤ |XTΣ−1X||XTΣX|

i.e., |XTΣ−1X|−
1
2 ≤ |XTΣX| 12

|XTX|
. (5.6.20)

From (5.6.19) and (5.6.20),

∫
π(σ2

η, σ
2
b , β

∗|y)d β∗ ≤ C × |XTΣX| 12
|XTX||Σ| 12

. (5.6.21)
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Let, ω1 = min
1≤i≤m
1≤t≤T

(Dit) and ω2 = max
1≤i≤m
1≤t≤T

(Dit) . From (5.6.15),

Σ = D + σ2
bImT + σ2

ηIT ⊗ Jm,

≥ ω1ImT + σ2
bImT + σ2

ηIT ⊗ Jm,

= IT ⊗
[
ω1Im + σ2

bIm + σ2
ηJm

]
, (5.6.22)

where Im is an (m×m) diagonal matrix. Therefore,

|Σ|−
1
2 ≤

[
(ω1 + σ2

b +mσ2
η)(ω1 + σ2

b )
(m−1)

]−T
2 (5.6.23)

Also,

XTΣX ≤
T∑
t=1

XT
t

[
ω2ImT + σ2

bImT + σ2
ηIT ⊗ Jm

]
Xt

= (ω2 + σ2
b )Ψ + σ2

η Γ, (5.6.24)

where Ψ =
T∑
t=1

XT
t Xt, Γ =

T∑
t=1

XT
t JmXt and Xt =

(
Im xt1m

)
. Here, rank(Γ) = 2. The

matrix Ψ (m+1×m+1) is of full rank, i.e,, rank(Ψ) = m+1. Hence, rank(Ψ− 1
2ΓΨ

1
2 ) = 2.

Let, L be an orthogonal matrix such that, L(Ψ− 1
2ΓΨ

1
2 )LT = diag(λ1, λ2), where λ1 and λ2

are two positive eigen values of Ψ− 1
2ΓΨ

1
2 .

|XTΣX| ≤ |Ψ||(ω2 + σ2
b )Im + σ2

η(Ψ
− 1

2ΓΨ
1
2 )|

= |Ψ|||(ω2 + σ2
b )LLT + σ2

ηL(Ψ
− 1

2ΓΨ
1
2 )LT |

= |Ψ|||(ω2 + σ2
b )LLT + σ2

ηdiag(λ1, λ2)|

≤ |Ψ|(ω2 + σ2
b + λ∗σ2

η)
2(ω2 + σ2

b )
m−1, (5.6.25)
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where, λ∗ = max(λ1, λ2). Now, from (5.6.21), (5.6.23) and (5.6.25),

∫
π(σ2

η, σ
2
b , β

∗|y)d β∗ ≤ C × |XTΣX| 12
|Σ| 12

≤ C ×
(ω2 + σ2

b + λ∗σ
2
η)(ω2 + σ2

b )
(m−1)

2

(ω1 + σ2
b +mσ2

η)
T
2 (ω1 + σ2

b )
(m−1)T

2

≤ C ×
(ω∗ + ω∗σ2

b + ω∗λ∗σ
2
η)(ω

∗ + ω∗σ2
b )

(m−1)
2

(ω∗∗ + ω∗∗σ2
b + ω∗∗σ2

η)
T
2 (ω∗∗ + ω∗∗σ2

b )
(m−1)T

2

, (5.6.26)

where, ω∗ = max(ω2, λ
∗, 1) and ω∗∗ = min(ω1,m, 1). Hence,

∫
π(σ2

η, σ
2
b , β

∗|y)d β∗ ≤ C ×
(1 + σ2

b + σ2
η)(1 + σ2

b )
(m−1)

2

(1 + σ2
b + σ2

η)
T
2 (1 + σ2

b )
(m−1)T

2

, (5.6.27)

where C is generic constant. Therefore,

∫
π(σ2

η, σ
2
b , β

∗|y) dβ∗ ≤ C × ((1 + σ2
b + σ2

η)
− (T−2)

2 (1 + σ2
b )

− (m−1)(T−1)
2 . (5.6.28)

Now,

∫
π(σ2

η, σ
2
b , β

∗|y) dβ∗ dσ2
η dσ

2
b

≤ C ×
∫
(1 + σ2

b )
− (m−1)(T−1)

2

[∫ ∞

0

(1 + σ2
b + σ2

η)
− (T−2)

2 dσ2
η

]
dσ2

b

= C ×
∫

(1 + σ2
b )

− (m−1)(T−1)
2 ×

[
(1 + σ2

b )
4−T
2

]
dσ2

b , (5.6.29)

provided the sufficient condition T > 4 holds. Therefore,

∫
π(σ2

η, σ
2
b , β

∗|y) dβ∗ dσ2
η dσ

2
b

≤ C ×
∫
(1 + σ2

b )
(3+m−mT )

2 dσ2
b

≤ C ×
[
(1 + σ2

b )
] 3+m−mT

2
+1
∣∣∣∞
0

< ∞, (5.6.30)
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since,
3 +m−mT

2
+1 < 0 which is ensured by the sufficient condition m(T −1) > 5. Hence

the posterior distribution resulting from model M4 is proper. This proof can be modified for

the unbalanced case. �
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Chapter 6

Conclusion

In this dissertation, we propose robust Bayesian small area estimation techniques for both

unit-level and area-level data sets. In Chapter 2, we performed an extensive simulation

study and showed that the proposed method for unit-level data performed considerably

well in presence of outliers. Also, when there were no outliers in the data, the proposed

method performed almost as good as the method proposed by Datta and Ghosh (1991). In

Chapter 3 we proposed a two-component normal mixture distribution for the random area

specific effects in a basic area-level model. The purpose of proposing such a model was to

provide a robust alternative to the Fay-Herriot model. In Chapter 4, we proposed double

exponential distribution for the random small area effects for area-level data and discussed

how this new model may perform well when area specific random effects are absent for

some areas. In Chapter 5, we proposed various HB methods to combine survey estimates

obtained from different sources. We discussed various noninformative HB models which

combine information from multiple sources. We have shown that these models can be used

to improve the direct survey based estimates. In future, we would like to develop efficient

model selection techniques which select the appropriate model for a given data set. These

techniques will be helpful for survey researchers particularly when the scope of external

evaluations are restrictive.
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