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Abstract

The recent advancements in network data modeling such as bilinear mixed models have

opened doors to many other social researches that were not possible to explore earlier. In

this thesis, we demonstrate an application of a bilinear mixed model for a complex human

behavior such as overbidding in auctions, i.e. placing a bid of higher value than his or her

preset valuation of the item. We use an innovative approach of illustrating auction data in the

form of a network. The rich network framework allows us to consider bidder interdependence

and examine overbidders (termed in the study as Reactors) in the presence of bidders who

have influenced them to do so (termed here as Influencers). Results show that Reactors bid

on fewer items, but on those with high pre-auction estimated values. They also tend to bid

more in the second half of the auction as compared to the first half. Implications for the

auction house managers were also presented.
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Chapter 1

Introduction

With recent advancements in network data modeling such as the bilinear mixed model [6],

researchers are taking a fresh look at various social science issues that were not possible to

explore earlier. Particularly, with the ability to analyze second and third order dependencies,

these new models are helpful in determining complex social interactions such as relationships

between nations [8], trust between consumers [16] and in our case, inter-bidder influence in

auctions. Bidders often influence each other during auctions [1, 5, 11, 15, 19]. This result

into competitive arousal among bidders (also known as opponent effect), which leads to

overbidding: a bidder bids a higher value than his or her preset valuation of the item. In this

study, we analyze data from an online auction of fine artworks to determine the characteristics

of those who overbid during auctions, using a bilinear effect model.

In auctions of common value items such as fine art, exact valuation of the item is not

definite. Bidders have their own value belief based on the amount of information they gather

prior to the auction. During an auction, a bidder tends to change his own valuations based on

the value signals of other bids [15]. This leads to interdependence among bidder valuations,

which is the key to our study.

Traditional modeling techniques such as the general linear model are not adequate to

analyze such interdependent auction data. Further, recognizing bidder interdependence raises

the issues of second order dependencies (such as common-influencer effects or common-

reactor effects) or third order dependencies (such as transitivity and balance) among bidders.

This suggests using a modeling framework that is not only capable of incorporating these

1
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bidder dependencies, but is also able to include bidder level covariates. A bilinear effect

model [6, 8] is a natural choice for this situation.

A bilinear effect model is based on a generalized regression framework and is capable of

handling higher order dependencies simultaneously. It builds on the social relations model

[20, 22] that are capable of specifying random effects between subsequent bidders. It is

capable of simultaneously considering regressor variables; correlation between overbidders

that have same influential bidders, between overbidders bidding on the same item, and

between overbidders who are also the influencers of one another (reciprocal effect); as well

as third order dependencies such as transitivity, clustering and balance.

To facilitate any analysis, first, we need to capture the interdependence among bidders

in some form without losing any details. We represent bid history in the form of dyadic

relationships between bidders participating in auctions of common lots [4]. At a fundamental

level, two sequential bids from bidders i and j in a lot form a dyadic relationship between

them. Specifically, we study cases where bidder j overbids in the presence of bidder i . In

this study, we term bidder j as a Reactor and bidder i as an Influencer and yi,j as the level

of influence of bidder i over bidder j.

The online art auction data used in this study is exclusive at various levels. First, fine art

is unique and heterogeneous in nature as the artworks are different from each other. Second,

art items sold in these auctions range from a few thousand to a few millions of dollars.

This result into higher stakes both for the auction house managers and the participating

bidders and thus, making our study distinctive from other auction studies on low priced

items [3, 5, 11]. Third, at present, art connoisseurs are steadily growing in number due to

the investment attractiveness of artworks, thus making a strong case to study bidder behavior

in this context.

Prior studies on online auctions consider the bids as the manifestation of the bidder’s

strategy. It is guided by the choice of items the bidder wants to bid on, the timing of bid

(bidding early or bidding late) and the amount the bidder is willing to spend [17]. Recent
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studies [1, 4, 5] show that bidders influence others to overbid with their bid values and their

bidding aggressiveness. Kagel et al. [9] and Kagel and Richard [10] suggest that bidders

with weaker product information tend to demonstrate the tendency to overbid. Heyman

et al. [5] and Ariely and Simonson [1] further added that the competitive arousal between

bidders also plays a crucial role in overbidding, along with other psychological factors such

as quasi-endowment effect and escalation of commitment. In what type of lot (collection of

art items) do bidders overbid? Do they bid more in the first half or in the second half of the

auction? Are they selective in the lots on which they bid, or do they bid on many lots? In

this research, we attempt to answer these questions. We configure bidding data in a network

form yi,j where bidder i plays a crucial role in persuading bidder j to overbid.

There are three primary focuses in this thesis. First, it demonstrates an application of a

bilinear effects model for complex human behavior and emphasizes on the importance of new

and advanced statistical techniques available to the social science field. Second, it discusses

an interesting approach of representing bidding during an auction as a social network. Such a

data configuration captures bidder interactions in auctions that are important for our study.

Third, it advances the auction literature by investigating auction participants who overbid.

From the managerial perspective, these bidders are of great importance to the auction house

as their behavior has implications for the lot ordering, setting pre-auction estimates and

other auction design characteristics.

The rest of the thesis is setup as follows. First, we describe the auction data of our

research and discuss our unique approach of representing it as a social network. Second, we

discuss the bilinear effects model and explain how we use it to determine the characteristics

of overbidding participants. Third, we present the results. Finally, we discuss the implications

of our work and present directions for future research.



Chapter 2

Auction Data and Bidder Network

Online auctions1 have become a hot research topic in economics, marketing, management and

statistics. Particularly, with the availability of detailed bidding data from online auctions, we

are now able to investigate sophisticated human characteristics based on their behavior that

were not possible earlier. One of the main features of our study is the uniqueness of our online

auction data. We have collected the data from an online auction house called SaffronArt.com.

This auction house sells only Modern Indian Art and has become a prominent distribution

channel of that genre in recent years. More specifically, the data come from a three-day

auction where 199 art lots (a unique piece of art such as a painting, a drawing or a sculpture)

were sold. Unlike eBay auctions, this auction is in a first-price ascending format: The lots

are open at a specific date and time, but they are closed sequentially in a group of 20 to 25

lots during that same date. For example, lots 1-25 may close at 9:00am and lots 26-50 will

close at 9:30am. Further, to discourage devious online bidder behavior such as sniping2, the

auction has a soft closing time since the closing time extends by three minutes whenever a

bid comes during the last three minutes of the auction. This time extension continues until

no one bids during a span of three minutes.

1Laudon and Traver [12] estimate that online auction sales (C2C and B2C) will top
$36 billion by 2007. Revenue exceeded $6 billion in 2006 at eBay, the pioneering online
auction firm where everything from paperclips to Ferraris get sold. Even traditional auc-
tion houses like Christie’s (whose annual revenues are expected to top $4 billion in 2006)
are adopting the online model. (http://www.iht.com/articles/2006/07/12/news/auction.php)
(http://internet.seekingalpha.com/article/25034)

2Sniping is a strategic bidding activity where bids are submitted in the last moments of the
auction to allow minimal time to other bidders to react to this bid. Such behavior is prominent in
eBay auctions as the auction closes promptly at a specific time.

4
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2.1 Modern Indian Art

Modern Indian Art, with over $100 million in auction sales in 2006, is now one of the leading

emerging art markets in the world. Although traditional auctions for Modern Indian Art have

existed since 1995, it is only since 2000 that the market has exploded, with values realized

at auctions growing at a brisk 68.7% annually (coincidentally, this is when SaffronArt.com,

the source of our data, started its online auctions of Modern Indian Art). In 2006, online

auction sales of Modern Indian Art from SaffronArt.com ($36.76 million) had more sales (of

Modern Indian Art) than the traditional auction houses like Sotheby’s ($35.29 million) and

Christie’s ($33.08 million). Further, SaffronArt.com sold more art items (537) compared to

Sotheby’s (484) and Christie’s (329) in that year3. The top ten Indian artists sold 31% of

the lots and contributed to 57% of the total value realized at auctions since 1995. Two of

these artists are now ranked in the top 100 artists in the world based on their auction sales

in 2005. A new set of emerging artists (the new trendsetters, typically born after 1955) have

contributed 2% in value and 3% in lots and are becoming increasingly popular, commanding

ever higher prices.

2.2 Bidder Influence Network

Second and third order bidder interdependency affects bidder behavior in online auction [4].

Therefore, traditional statistical techniques such as linear models are not suitable for the

bidder analysis. To overcome this issue, we formulate a network data structure between the

bidders that captures their interdependencies during an auction.

Determining a bidder’s valuation change during an auction is also challenging. No prior

information is available on the private-value distribution of those participants who overbid.

Therefore, it is difficult to follow the changes made by these participants during auctions.

3In 2005, online auction sales of Modern Indian Art by SaffronArt.com were $18.06 million,
more than that of Sotheby’s ($10.49 million) and Christie’s ($14.89 million). SaffronArt.com also
sold more art items (390) compared to Sotheby’s (276) and Christie’s (248) in 2005.
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Operationally, a bidder’s limit or reservation price may be defined by the proxy bid, i.e. the

maximum value set with the proxy bidding system. Proxy bidding is a commonly available

feature in most online auction houses where bidders set a maximum amount they are willing

to pay for the auctioned item, and then lets the auction house to place proxy bids on their

behalf until that price. Bidders using this facility have a pre-determined value for the item

and use it to stay within that value limit [3]. After placing a proxy bid, if a bidder re-enters

the bidding process and places a normal (non-proxy) bid that is higher than the earlier proxy

bids, then this participant may be overbidding [11]. This process of bidder identification is

also conservative in nature, as bidders who set limits and later exceed them without using

the proxy bidding system cannot be tracked. Further, using proxy bidding as the operational

definition of a participant’s limit may not perfectly represent some bidders’ maxima, since

such a participant may use the system to test different bids or to simply try out the proxy

bid system. Ku and his colleagues [11] performed a survey of the bidders and found that

most of them use proxies to set their maxima. The respondents used terms such as maximum

personal limit, what we were willing to spend, the most I was willing to bid, and by how I

valued it to explain their proxy bids. This research attempts to study specific patterns of

overbidders rather than the just their presence. If the proxies were truly arbitrary actions

of the bidders, none of the bidder covariates will have significant effect on the occurrence of

overbidding. On the other hand, if overbidding is systematic, some definite characteristics of

the overbidders will surface.

In order to consider the interdependencies between bidders, proper representation of the

bidding data is necessary. The bid history is transformed into an N × N influence matrix

where N denotes the number of bidders participating in the auction. The value yi,j in each

cell of the influence matrix indicates the influence of bidder i over bidder j. There are at

least four ways yi,j can be measured.

The first approach, which is a very simplistic and conservative view, assigns a value of 1

to yi,j, indicating that bidder i (the Influencer) has bid prior to a normal bid from bidder j
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(the Reactor) but after bidder j’s proxy bids. Consider the bid history shown in Figure 2.1.

Anonymous 3 is the Reactor and he is reacting to the bids of Anonymous 25, Anonymous

47, raccoon and Anonymous 138. Therefore yi,Anonymous3= 1, where i is an element of the set

{Anonymous 25, Anonymous 47, raccoon, Anonymous 138}.
This approach considers every bidder i to have the same level of influence on bidder

j, which may not be true since the Reactor may not weight the bids of other participants

uniformly. For example, bidder aggressiveness of influencers (number of times they placed a

bid) may play an important role in the influence process. To capture this, one may assign yi,j

to be the total number of times bidder i has placed a bid before bidder j’s higher non-proxy

bid. In Figure 1, the value of yraccoon,Anonymous3 and yAnonymous25,Anonymous3 will be 2, and all

others with positive interaction will be 1.

Another possible indication of level of influence of Influencers over a Reactor is the

order in which these bidders have placed their bids. A participant whose bid is close to

that of the Reactor may provide more value information to him than the bids which were

placed earlier. This interaction can be captured by computing the difference between the

bid ranks (order of the bids) of the Reactor and his Influencers. For example, we will weight

yAnonymous25,Anonymous3 more than yracoon,Anonymous3 or

yAnonymous138,Anonymous3 since the last bids of Anonymous 25 and Anonymous 3 are sequential.

Building on the same notion, another more definite approach is to compute the difference

in time between the Reactor’s normal bid and bids of other participants placed prior to

his but after his proxy bid is calculated. The shorter the time difference, the larger is the

influence. A long time difference indicates that the reactor may have used other resources to

update his value belief, thus implying weaker influence. Therefore, yi,j is considered as:

yi,j =
1

∑B
h=1

(tk,j−tk,i)

nk,i,j
× 100

(2.1)

where yi,j is the influence of bidder i over bidder j ; the summation index h = 1,2, . . . , B

is the lot where bidder i has influenced bidder j to change his value belief of the auctioned

item, the variables tk,i and tk,j indicate the times at which bidder i and bidder j submitted
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Figure 2.1: Bid History from an Online Auction of Modern Indian Art.
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a bid on lot h, respectively; and nk,i,j refers to the total number of times bidder i has placed

a bid on lot h before bidder j changes his value on lot h.

Taking a conservative stand, this study uses the second approach to identify the effect of

bidder i over bidder j who is overbidding. Hence we label the overbidding participant (bidder

j ) as a Reactor to the influence of bidder i, termed an Influencer. Figure 2.2 illustrates the

underlying network structure with Reactors and Influencers as nodes. Here x1,2 indicates the

number of times bidder 1 (an Influencers) has placed a bid between the proxy and normal

bid of the bidder 2 (a Reactor).

Figure 2.2: SocioMatrix of Influencers and Reactors



Chapter 3

Bilinear Effects Model

This study assumes that the characteristics of Influencers and Reactors are homogeneous

within the bidder types. Since the bidder influence data is represented in the form of a socio-

matrix Y = [yi,j], there are certain modeling constraints that need to be addressed. First,

the model needs to accommodate bidder level covariates. Second, the model should allow

second order dependencies (such as reciprocity and common bidder effect in auctions where

two interdependent bidders have common Influencers or common Reactors ) and third order

dependencies (such as transitivity where the influential effect of a bidder i over bidder j is

dependent on the third bidder and balance, where the influential effect of bidder i over bidder

j is similar to that of other bidders over bidder j )1. Such higher-order patterns of dependence

are capable of providing useful information for predictive inference [8, 16]. To facilitate all

the above requirements, a bilinear random-effect model with Bayesian estimation is used.

3.1 General Modeling Process

This modeling approach is based on the earlier works that specify and analyze random effects

for the originator (Influencer) and the recipient (Reactors) in a social relations setting. It

starts with the description of a simple linear model and builds the complexities around it

sequentially. Consider modeling the dyadic influence data with a linear regression model of

the following form:

yi,j = β ′xi,j + εi,j (3.1)

1Please see Hoff [6] and Hoff and Ward [8] for more details on second order and third order
dependencies between bidders.

10
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where yi,j represents the influence of bidder i over bidder j, and xi,j represent the dyadic

level covariates. Since we also want to take into account various second and third order depen-

dencies, we assume the error component to have a covariance structure that is exchangeable

under identical permutations of the indices i,j of the Influencers and Reactors, respectively.

In our case, the influence of bidder i over bidder j is distinct from the influence of bidder

j over bidder i, i.e. yi,j and i,j are different from yj,i and j,i, we can represent the joint

distribution of the i,j’s or the residuals in terms of a linear random-effect model

εi,j = ai + bj + γi,j (3.2)

where ai represents the effect of an Influencer, bj represents the effect of a Reactor and

(ai, bj)
′ ∼ multivariate normal [MV N ](0,

∑
ab). Thus,

⎡
⎢⎢⎣

ai

bj

⎤
⎥⎥⎦ ∼ N

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0

0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

σ2
a σab

σba σ2
b

⎤
⎥⎥⎦

⎞
⎟⎟⎠

Further, we also consider (γi,j, γj,i)
′ ∼ MV N(0,

∑
γ). Therefore,

⎡
⎢⎢⎣

γi,j

γj,i

⎤
⎥⎥⎦ ∼ N

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0

0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

σ2
γ ρσ2

γ

ρσ2
γ σ2

γ

⎤
⎥⎥⎦

⎞
⎟⎟⎠

This leads to a covariance structure of the error given by

E(ε2
i,j) = σ2

a + σ2
b + σ2

γ E(εi,jεi,k) = σ2
a

E(εi,jεj,i) = ρσ2
γ + 2σab E(εi,jεk,j) = σ2

b

E(εi,jεk,l) = 0 E(εi,jεk,i) = σ2
ab

where i, j, k, and l represent distinct bidders, σ2
a represents the variance in the observations

due to the presence of common Influencers, σ2
b represents the variance in the observations

due to the presence of common Reactors and ρ represents the correlation of observations

within a influencer-reactor pair, and serves as a measure of reciprocity or mutuality2 in the

2This model is also known as the ”round-robin” model [20, 22].
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bidder influence data [6]. Since the goal is to analyze the characteristics of overbidders, only

the bidder specific covariates are considered in the model. Thus,

θi,j = β0 + ai + bj + γi,j (3.3)

The above equation 3.3 is modeled such that the dyadic data are unconditionally depen-

dent, but conditionally independent; given the random effects of Influencers and Reactors.

Therefore, E(yi,j|θi,j) = g(θi,j),

p(y12, y13, . . . , yn,n−1|θ12, θ13, . . . , θn,n−1) =
∏

i�=j p(yi,j|θi,j)

In our case, a Poisson model with log-link is appropriate, given that we measure the level

of influence yi,j as the sequential bid count between bidder i and bidder j. Thus,

g(θi,j) = εθ
i,j (3.4)

p(yi,j|θi,j) ∼ Poisson(eθi,j) (3.5)

Therefore, the covariance pattern for the observations is given by:

cov(yi1,ji
, yi2,j2) = E[cov(yi1,j1, yi2,j2|θi1,j1, θi2,j2)] + cov[E(yi1,j1|θi1,j1), E(yi2,j2|θi2, j2)] or

cov(yi1,ji
, yi2,j2) = E[0] + cov[g(θi1,j1), g(θi2,j2)] ≈ cov(θi1,j1, θi2,j2) × g(́β ´xi1,j1)g(́β ´xi2,j2),

where the pattern for cov(θi1,j1, θi2,j2) is the same as the εi,j’s in 3.2. Unlike a linear

regression, E(β̂) and cov(β̂) are also the functions of higher-order dependence along with

the first-order and second-order moments [6].

3.2 Modeling the Effect of Third-Order Dependence

Wasserman and Faust [21] suggest the existence of third-order dependence patterns such as

transitivity and balance in dyadic data like the bidder influence data. Transitivity describes

the interdependence between three bidders i, j and k such that a high likelihood of bidder i
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influencing bidder j and bidder j influencing bidder k leads to higher likelihood of bidder i

influencing bidder k. Furthermore, in an asymmetric data structure3 such as the one analyzed

here, a combination of three bidders i, j and k is considered balanced if the product of their

residuals εi,j, εj,k and εi,k is positive. For example, the bidder relationships are considered

balanced if both bidder i and bidder k influence bidder j, or none of them played any

influential role on bidder j. To capture the effect of these higher order dependencies in

the context of the regression setting, a latent K-dimensional vector zi for each bidder is

constructed and the inner product zt
izj is added to the error model equation 3.2 as suggested

by Hoff [6]. Thus,

εi,j = ai + bj + γi,j + zt
izj (3.6)

Based on the magnitude and direction of the latent vectors, the inner product z′izj will

capture different third-order dependence through the expectation of the third order moment

E(εi,jεj,kεk,j)
4. Further, the incorporation of zt

izj into the linear predictor allows additional

moments of εi,j . Thus,

E(ε2
i,j) = σ2

a + σ2
b + σ2

γ + Kσ4
z

E(εi,jεj,i) = ρσ2
γ + 2σab + Kσ4

z

E(εi,jεk,i) = Kσ6
z

Since the inner-product term is a fixed effect, it can be considered as a reduced-rank

interaction term. This is termed as the bilinear effect or multiplicative interaction.

To include this inner product of the bidder’s latent characteristics in the random effect

model, equation 3.3 is re-parameterized as

θi,j = β ′
infxinf,i + ai + β ′

reaxrea,i + bj + γi,j + z′izj (3.7)

3yi,j is not equal to yj,i
4For more information on how the values and directions of zi represent various third-order

dependencies, please refer to [6, 8, 16].
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where xrea,i are the Reactor specific covariates and xinf,i are the Influencer specific covari-

ates in the model.

3.3 Estimation Process

Bayesian estimation is performed to estimate the model shown in equation 3.7. A Markov

Chain Monte Carlo (MCMC) algorithm is used to sample values of the Influencer and

Reactor specific parameters from their posterior distribution. Like any MCMC process, the

estimation of the bilinear model is done by using a three-step process of sampling from the

desired target posterior distribution p(βinf , βrea,
∑

ab, Z, σ2
z ,

∑
γ |Y ). The three steps are:

1. Sampling of linear effects in the model:

(a) Sample βinf , βrea|β ′
inf , beta

′
rea,

∑
ab, Z, θ,

∑
γ

(b) Sample
∑

ab,
∑

γ from their full conditionals

2. Sampling of bilinear effects:

(a) For each bidder i = 1, 2, . . . n, sample zi|{zj : j �= i}, θ, β, s, r,
∑

z,
∑

γ

(b) Sample
∑

z from its full conditionals

3. Update {θi,j, θj,i} using Metropolis-Hastings step:

(a) Propose

⎛
⎜⎜⎝

θ∗i,j

θ∗j,i

⎞
⎟⎟⎠ ∼ MV N

⎛
⎜⎜⎝

⎛
⎜⎜⎝

ai + bj + z′izj

aj + bi + z′jzi

⎞
⎟⎟⎠ ,

∑
γ

⎞
⎟⎟⎠

(b) Accept

⎛
⎜⎜⎝

θ∗i,j

θ∗j,i

⎞
⎟⎟⎠ with probability

p(yi,j |θ∗i,j)p(yj,i|θ∗j,i)

p(yi,j |θi,j)p(yj,i|θj,i)
∧ 1

The ‘gbme’ function5, written in R (Hoff 2005b) is used to perform the above estimation

process and to determine the characteristics of auction participants who overbid (Reactors).

The prior distributions of the parameters are taken as [7]:

5http://www.stat.washington.edu/hoff/Code/GBME/
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Table 3.1: Evaluation of K-Latent Dimensions

K log p(Y |β́, â, b̂, Ẑ, Σ̂ε)
0 -399.45
1 -397.14
2 -392.71
3 -394.33
4 -398.98

• β ∼ MV N(0, 80 × I3×3)

• Σab ∼ inverse Wishart(I2×2, 4)

• σ2
u, σ

2
v ∼ iid inverse gamma(1,1), σ2

γ = (σ2
u + σ2

v)/4, ρ = (σ2
u − σ2

v)/(σ2
u + σ2

v)

We used K=2 (latent dimensions) in our analysis. Five different values of K, ranging

from 0 to 4, were tested with a four-fold cross-validation procedue as described by Hoff

in his seminal paper [6]. The predictive performance for all the K values were roughly the

same. The biggest improvement in the marginal likelihood criterion was from K=1 to K=2.

Therefore, K=2 was selected. Table 3.1 illustrates our findings.

3.4 Bidder Covariates Examined

Influencers and Reactors are examined in the context of three types of characteristics: lot

characteristics, auction characteristics and bidder behavior characteristics.

3.4.1 Lot Characteristics

Pre-auction estimates of the lots provided by the auction house and the type of lot (paper or

non-paper works) are the two lot (product) characteristics examined in this study. Before the

auction starts, potential bidders are exposed to various types of information about the lots.

Lot information and provenance provided by the auction house (in their printed catalogs
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and in their websites), and comments and suggestions of the art experts (in personal blogs,

art magazines, etc.), provide information on the value of the art items such as the estimated

price, artist information, and previous auction price history of similar paintings by the artists.

One of the most distinct contributions to price-formation during an art auction are the pre-

auction estimates [2, 18]. These estimates indicate the value of the items as suggested by

the auction house experts (like curators, art specialists, etc.). Mei and Moses [14] found

these value estimates to have high correlation with the final realized prices of the art items.

Therefore, higher the pre-auction estimates, greater is the tendency for the item to fetch a

higher price, and so higher stakes are associated with it. Such high stakes lead to higher

bidder propensity to clarify and justify their bids. Therefore, bidders look for other value

signals from different sources and are inclined to change their value belief during the auction

of these lots. Thus, we hypothesize that the bidders who act as reactors tend to bid on lots

that have high pre-auction estimates.

The media on which the art item is painted plays an important role in its maintenance

and longevity. For example, works on paper are typically of low price as compared to that of

works on canvas since paper tends to be more fragile than canvas. Therefore, low financial

risk is associated with the purchase of paper items and thus, we hypothesize that the Reactors

will tend to overbid on canvas works.

3.4.2 Artist Characteristics

Artist characteristics such as reputation and previous auction history of the artists play an

important role in the valuation of the art items. Established artists are highly reputed and

their works are well recognized in the art market. Most of their works have been resold many

times in the market and, thus, their value commonly known to all. Therefore, the works of

established artists present a low risk purchase opportunity for the bidders [18]. On the other

hand, emerging artists are new to the art market and their works are not well known. Further,

not enough works of these artists are sold to estimate their values confidently. Therefore, the
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values of the works of these artists are highly uncertain, making them high-risk purchases.

Thus, Reactors are hypothesized to bid in lots created by emerging artists where they will

seek for more information from other bidders.

Like artist reputation, historical market information such as the average price per square

inch of an artist’s lots or the total number of the artist’s lots sold in the previous year provide

a signal to the bidders about the market value of the artist [18]. If the value realized by the

lots of a particular artist in the previous year is low, present market value of the artist will

be low and uncertain. Since evaluators are unaware of how the market will react to the works

of these artists, they are high-risk purchases for the bidders. Similarly, if few of the artist’s

lots are sold in the previous year’s auctions, less information is available about the artist’s

present market value. Therefore, it is highly probable for bidders to rely upon other value

signals in these lots. Thus, it is hypothesized that Reactors will tend to bid on these lots.

3.4.3 Bidding Characteristics

Auction participants who overbid (Reactors) are assumed to wait and consult bids of others

participants (Influencers) to reduce any uncertainty they have about the value of a lot.

Thus, we conjecture that Reactors will bid more in the second half of the auction than in

the first half. Further, these bidders by the virtue of their behavior tend to be selective in

the types of lots on which they bid. Their attachment to the auctioned lots is an integral

reason for them to update their private value for the lot. Therefore, we hypothesize that they

will participate in auctions of fewer lots than other bidders (i.e. Influencers) will. We also

included a variable to control for the number of lots won by the bidders. This variable is used

to determine whether Reactors tend to win more due to overbidding than the Influencers.

In other words, whether overbidding truly translates to the success of the bidders.
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Results

The description of the bid data is presented in Table 4.1. In that particular auction, 199

lots were sold, and 42 bidders were observed to change their value belief for 63 lots during

a Modern Indian Art auction held in December 2005. Eighty bidders participated in the

auctions of these 63 lots creating 947 bid instances. Thus, an 80 × 80 bidder matrix is

created and only the influences on those forty-two bidders are considered.

Bidder level covariates are used in the model to determine the characteristics of those

who overbid. Table 4.2 presents the correlation between the bidder level covariates. Although

most of the correlations were moderate, correlation between the total number of lots won

by the bidder and the total number of bids placed in the second half of the auction is in

the higher side (0.734). This suggests that bidding early in the auction does not guarantee a

‘win’ and bidding late in the auction is a significant strategy for the winners in the auction.

Table 4.1: Data Description

No. of Lots Sold 199
No. of Bids 3080
Average No. of Bids per Lot[Range] 15.47 [2, 48]
Average Value of the Lots [Range] $56,282 [$2,850, $1,351,000]
Average First Bid of the Lots $19,343 [$650. $300,000]
Average No. of Bidders per Lot [Range] 6.35 [2, 14]
Average Time of Bids (Scaled 0-1) 0.4998
Average Time of Entry to the Auction 0.5386
Average Time of Exit to the Auction 0.8397

18
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Table 4.2: Correlation Matrix of the Bidder Covariates

(x1) (x2) (x3) (x4) (x5) (x6) (x7) (x8) (x9)

Total No. of

Lots won (x1) 1

Low pre-auction

estimates of the 0.243

Lots Bid (x2) 0.0299 1

No. of Lots sold

by the Artists in the

previous year’s 0.215 0.551 1

auction (x3) 0.0559 < .0001

No. of Lots by 0.373 -0.183 -0.182 1

Emerging Artist (x4) 0.0007 0.2657 0.0980

No. of Lots by 0.459 0.584 0.655 0.210 1

Established Artist (x5) < .0001 0.0092 < .0001 0.1725

No. of Paper 0.345 0.127 0.201 0.474 0.399 1

Works (x6) 0.0017 0.2331 0.6055 < .0001 < .0001

No. of Bids Placed

in the First Half 0.285 0.107 0.158 0.359 0.431 0.515 1

of the Auction(x7) 0.0105 0.6351 0.2972 < .0001 < .0001 < .0001

No. of Bids Placed

in the Second Half 0.734 0.204 -0.089 0.291 0.264 0.116 -0.201 1

of the Auctions(x8) < .0001 0.2851 0.5026 < .0001 < .0001 < .0001 0.0968

Total No. of Unique 0.528 0.239 0.243 0.666 0.673 0.693 0.606 0.304

Lots Bid (x9) < .0001 0.4630 0.3677 < .0001 < .0001 < .0001 < .0001 < .0001 1
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A Markov Chain Monte Carlo algorithm was run for the influence data. Each chain was

run for 200,000 iterations. However, since a large number of parameters (Influencer and

Reactor specific covariates, and terms capturing higher order dependencies) is analyzed in

the model, only every 50th iteration is stored in order to keep the output file to a reasonable

size, as suggested by MacEachern and Berliner [13]. Outputs from the first 20,000 iterations

were considered burn-in and were not recorded. The posterior means and quantile-based

95% confidence intervals are presented in Table 4.3 and Table 4.4. Log transformation of the

covariates were used in the analysis. The plots of marginal mixings are presented in Figures

4.1, 4.2 and 4.3. The plots of the posterior densities are also illustrated in Figures 4.4 and 4.5.

The variables order for the results is same as the correlation table. For example, bs1 = br1

= Total no. of lots won, bs2 = br2 = Low Pre-Auction Estimates of the Lots Bid and so on.

The parameter estimates illustrate that the effect of a pre-auction estimate is positive

and significant at 95% C.I. for the Reactors. This suggests that bidders who typically change

their value belief will bid on lots with high estimated values. Positive but non-significant

estimates for the number of paper works sought by the bidders indicate that the Reactors

tend not to bid on paper art items. Further, none of the artist related covariates were found

to be significant at 95% C.I. in explaining the behavior of the Reactors.

We also examined the bidder characteristics of the Influencers and Reactors by compared

their bidding frequency during each half of the auction. Results show that the coeffient for

the number of second half bids for the Reactors is positive and significant at 95% C.I., but

the coefficient for the first half bid frequency is not significant. This suggests that Reactors

tend to bid more in the second half of the auction than the first half. We also found these

coefficients to be non-significant for the Influencers, suggesting that there is no significant

difference in the bidding activity of the Influencers in the two halves of the auction. We

also examined the coefficient for the total number of unique lots bid by the two types of

bidder. We found that the coefficient for the Reactors is negative and significant at 95% C.I.

(coefficient= -12.1310) and the coefficient for Influencers is positive and significant at 95%
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C.I. (coefficient=2.2790). This suggests that that Reactors participate in auctions of fewer

lots as compared to the Influencers. A summary of the results is presented in Table 4.5.
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Table 4.3: Posteror Means and Quantile-Based 95% Confidence Interval for Influencer and
Reactor Level Covariate

Covariates Influencers Reactors

Total Number of Lots Won −0.0971 −3.9724
−0.0405 −1.2070

0.3892 0.3844
Low Pre-Auction Estimates of the Lots Bid −1.5897 0.6235

−0.5940 3.0415
0.3151 5.6251

No. of Lots Sold by the Artists in the −0.6772 −3.4006
Previous Year’s Auction 0.4740 −0.3595

1.5471 2.5692
No. of Lots by Emerging Artists −0.7331 −1.5737

0.4255 1.5785
1.5731 5.0032

No. of Lots by Established Artists −0.8061 −3.0646
0.4035 1.4460
1.6606 5.0095

No. of Paper Works −1.8352 −0.8961
−0.7275 4.4405

0.3990 7.9614
No. of Bids Placed in the First Half 0.1092 −0.2071

of the Auction 0.3700 1.7230
0.9595 3.3674

No. of Bids Placed in the Second Half −1.1192 3.7268
of the Auction −0.5150 5.4900

0.0920 7.3632
Total Number of Unique Lots Bid 0.1425 −17.8651

2.2790 −12.1310
4.0658 −5.7152
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Table 4.4: Posteror Means and Quantile-Based 95% Confidence Interval for Major Parameter
of the Bilinear-Effects Model

Parameters Posterior Mean and Quantile-Based 95% C.I.
Common Influencer Variance 2.1639

3.7710
6.6169

Common Reactor Variance 33.1427
49.5085
76.1923

Influencer-Reactor Variance −7.0140
−1.9805
−2.8638

Error Variance 13.4692
16.5935
20.0395

Reciprocity −0.9980
−0.9950
−0.9769

Variance of Latent Dimensions 0.0489
0.1440
0.4071

Variance of Inner Dimensions 0.0150
0.0550
0.3501

Log Likelihood of Yi,j, Yj,i Modeling Effects −392.719
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Table 4.5: Summary of the Findings

COVARIATES INFLUENCERS REACTORS

Total No. of Not significant Not significant

Lots Won

Low Pre-Auction The posterior mean indicates a The posterior mean indicates a

Estimates of the a positive, non-significant effect positive, significant effect suggesting

Lots Bid suggesting that Influencers that Reactors tend to bid on lots with

tend to bid on both low and high high pre-auction estimates.

estimated items

No. of Paper Not significant Not significant

Works

Artist’s Not significant Not significant

Reputation

Artist’s Price Not significant Not significant

History

Bid Frequency The posterior mean shows a positive The posterior mean shows a positive

at Each Half of but non-significant effect of the first half and significant effect of second half

the Auction bid freq. and negative and non-significant bid freq. and negative and non-significant

effect of the second half bid freq.This effect of the first half bid freq. This

indicates that there is no significant indicatesthat the Reactors tend to

difference in bidding frequency of the bid more in the second half as compared

Influencers on both halves of the auction to the first half of the auction.

Total No. of The posterior mean indicates a The posterior mean indicates a

Unique Lots Bid a positive and significant effect. negative, significant effect

suggesting that Influencers tend to bid on suggesting that Reactors tend to bid on

large number of lots. small number of lots.
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Chapter 5

Implications and Future Directions

This thesis focuses on investigating bidder characteristics using bilinear mixed models.

Bilinear mixed model for network data has opened doors to many research opportunities

in social sciences. We attempt to demonstrate one of its applications to investigate a com-

plex behavioral process, i.e. overbidding in online auctions. Bidding data is converted to a

bidder network framework to consider the second and third order dependencies. We consider

the bidder level covariates to determine the characteristics of overbidders, which we term

here as Reactors.

From the managerial perspective, this study provides interesting and useful insights for

the auction house managers to support their revenue generating efforts. Our work illustrates

the characteristics of Reactors in auctions. This information will be helpful to identify the

registered bidders and create customized promotions to attract them to future auctions.

Further, identifying bidders and tracking their bidding process will essentially allow the

auction house managers to optimize the ordering of the lots and attain higher revenue.

Although pre-auction estimates represent the expert’s valuation of the item, an auction

house may use it strategically to create a competitive bidding environment.

As with most research work, this study also has certain limitations that need to be

acknowledged. First, it is difficult to determine the overbidders if they have not used a proxy

bidding system. We used a very conservative measure of identifying such bidders by only

considering those who have placed a higher normal bid in the auction after placing a proxy

bid earlier. This measure is similar to one considered by Ku and his colleagues [11] in their

study on auction fever. Further, there are certain types of bidders who use proxy bidding as

30
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a part of their bidding strategy and use it excessively (referred as Agent Bidders by Bapna

et. al. [3]). Therefore, more advanced influence measures need to be considered in future

studies for a better understanding of overbidders and Influencers.

This study considers a bidder’s value change during an auction as a strategic element in

designing auctions that are more effective. Therefore, sophisticated models may be developed

in the future to predict which lots will attract overbidders and which will not. This may

help in further optimizing lot orders for auctions. Our study contributes by investigating

competition among bidders from the bidder level. Further studies on this topic are essential

to understand bidding dynamics in auctions. Although it was not possible in this study,

one may effectively identify overbidding or value change of bidders by taking a survey of

bidders prior to the auction and record their pre-auction valuation for the items on which

they intend to bid. This will essentially indicate whether a particular bidder has changed his

valuation or not. Finally, further similar studies in auctions of other products like real estate

will validate our findings on Influencers and Reactors.

We hope that this study will encourage other researchers to investigate the process of a

bidder’s value change more closely using other statistical techniques. We also hope that this

will promote future applications of bilinear effects models and other advanced techniques in

other areas of social sciences.
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