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ABSTRACT 

In recent years, risk management has become one of the most crucial areas in the 

financial industry. The main interest of financial researchers is how to measure risk 

effectively and reliably. For this purpose, Value-at Risk (VaR) has been designed to 

make such measurements. However, VaR measurements are not usually accurate, 

especially for multi-dimensional portfolios. Because the dependency structures among 

each asset in a given portfolio cause the measuring problem, we need to find valid ways 

to overcome or avoid potential obstacles. In this thesis, Copula models are built step by 

step to predict VaR(α) of multi-dimensional portfolios. Additionally, our common 

Copula models are applied in real cases in order to see their universality, namely, to see 

how large the portfolio’s dimensions can be before the model fails, and to see which 

models predict VaR(α)s more accurately. We use backtesting, a criterion with two 

hypothesis test called Unconditional Coverage Test and Conditional Coverage Test, for 

additional verification. 
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Chapter 1 

Introduction 

1.1  Background 

In financial markets, the relationship between risk and return plays a key role when 

analyzing and building investment portfolios scientifically. Over the past hundred years, 

risk prediction and management have become more and more prevalent in modern financial 

markets. By applying mathematical models and ideas and quantifying the investment 

process, many long lasting problems in options, futures and other derivatives were no 

longer an issue and a prosperous financial market is a cornerstone of society. In real world 

investment, securitization is of particular interest because of its role in the financial crisis 

that started in 2007. The crisis has its origins in financial products created from mortgages 

in the United States, but rapidly spread from the US to other countries and from the virtual 

financial markets to the real economy. Many financial institutions failed. Some others had 

to be rescued by national governments and are still recovering from the bankruptcy crisis. 

The underlying cause can be dated to 1960s (John C. Hull, 2007), when US banks started 

to package mortgage-backed securities and sold the named portfolios to their target clients. 

However, this named portfolios sometimes only brought about profits for the banks, instead 

of investors or other financial institutions, which made the young market be filled with 

crisis of confidence. From that time, regulators and investors increased their research into 

using quantitative tools to measure risk.  

One of the most popular ways to measure risk is Value-at Risk (VaR). During the 1990’s, 

VaR was widely adopted for measuring market risk in trading portfolios. All the financial 

institutions released their own VaR measurements almost every day. On the basis of VaR 

measures, JP Morgan replaced a cumbersome system of notional market risk limits with a 
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simple system of VaR called 𝐑𝐢𝐬𝐤𝐌𝐞𝐭𝐫𝐢𝐜𝐬,-, which comprised a detailed description of 

the techniques and a routine updated covariance matrix for several hundred key factors. 

They made the service free to the public which contributes in advocating VaR to the widest 

audience. 

With the further development of VaR measurements in recent decades, regulatory building-

block VaR measure and proprietary VaR measures of investment banks are challenged with 

applicable issues. More specifically, even if we neglect the autocorrelation among the 

dependence structures, the joint distribution of risk factors brings normality assumptions 

into the consideration. Hence, Copula methods are introduced for solving the dependence 

problems and making the prediction and measurements of portfolio riskiness on options 

and other derivatives more stable. In this thesis, we build time series models and use 

backtesting as a criterion to help investors manage their assets more effectively and safely. 

1.2  Objective 

The VaR of a multi-dimensional portfolio is usually hard to predict, because the 

dependency structure of the distributions exists in higher dimensional cases. Furthermore, 

the relationships between each asset in the portfolios also need to be specified. The 

objective of this thesis work is to check the variability and stability of our copula models 

by backtests, which examine the adequacy of VaR measures. In this way, more 

sophisticated and safe risk measurements can be obtained for our equity securities 

portfolios. We used datasets collected online through R programming from NASDQ and 

NYSE, and the structures of portfolios were analyzed using a financial perspective. In order 

to make our conclusion more general, we applied different copula methods onto different 

multi-dimensional stock portfolios. Gaussian Copulas, Archimedean Copulas and 

Hierarchical Archimedean Copulas (HAC/NAC) are covered in Chapters 2,3 and 4 

respectively. Then, we used both unconditional and conditional coverage tests as criteria 

for checking the goodness of our models. These methods highly rely on an understanding 

of statistical distributions, because multivariate distributions need to be modeled and 

estimated by copulas for the joint distributions of asset returns. In addition, time series 
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models like multivariate DCCGARCH, GO-GARCH were selected to predict the risks in 

advance and their parameters were also simulated. Although this thesis focuses on practical 

applications, theoretical modeling parts are also worth consideration in the preparing 

process. Thus, Chapters 3 and 4 are mainly restricted to statistical concepts and our 

inference in financial markets, in an order from VaR measurements to Copula methods. 

After that, Chapter 5 is focused on copula modeling process. Chapter 6 provides a detailed 

description of the usage in an empirical study. In the last chapter, brief conclusions are 

formed based on the outputting results.  
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Chapter 2 

Brief Introduction to Value at Risk measurements 

2.1  Basics 

As previously stated, Value-at-Risk (VaR) is a well-known measure for qualifying and 

controlling the risk of a portfolio. Basically, investors will get insight of how much they 

may earn or lose on their investments by the statistical characteristics and the momentum 

of the assets. VaR, first conceived in 1993 partly in response to various financial disasters 

(Glyn A. Holton, 2002), is used as an internal risk management tool for many financial 

institutions.  

Assume that 𝐿/01 represents the possible profits and losses (P&L) of a portfolio in the 

following periods up to date t + 1, and 𝐹/01 represents the distribution function of 𝐿/01. 

Under this denotation, mathematically, the VaR of the portfolio of the assets can be 

determined using a given 𝛼 by:  

𝑉𝑎𝑅/ = 	𝐹/0191 𝛼 = inf 𝑥 ∈ ℝ;	𝐹/01 𝑥 ≥ 𝛼 . 

The goal of VaR analysis is to approximate the means, variance and correlations of returns. 

More generally, one needs to specify the characteristic statistics for the joint assets 

portfolio. The change in the value of the portfolio is assumed to be of the form: 

𝐿/01 = 	𝜎/𝑍/01 

𝜎/E = 	𝜔/,Σ/𝜔/ 

where 𝜔/  indicates the weight of each component of the whole assets and 𝑍/  is an 

independent and identically distributed random variable (i.i.d. r.v.) which complies to N 

(0,1). Σ/  is of main interest in our analysis. Basically, it stands for the variance of 

innovations fitted by Maximum Likelihood Estimation in our time series modeling process. 

As for multi-dimensional portfolios, 𝜎/E replaces Σ/ with weighted vectors 𝜔/ multiplied. 
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In practical application, we are going to use the former information collected for the loss 

function to predict the potential future movement of the P&L. However, this is difficult to 

fulfill and thus the above VaR equation is mostly shown here as a brief introduction to 

basic VaR modeling, we still need to introduce effective methods for achieving the goals 

we have mentioned. 

2.2  Common Methodologies for Calculating VaR 

2.2.1 Parametric approach 

This method is also referred to as the Delta-Normal method. The initial assumption made 

is that the daily geometric returns of the market variables with a mean return of zero. 

Historical data are of high importance since 𝜎/E and the covariance matrix Σ/ both rely on 

the trends and distributions of them.  

By this method, VaR is computed by multiplying the vector of the first derivatives of the 

value V of the portfolio with respect to the risk factor variables R (“delta”), and then 

multiplying by parameter 𝜎  and the critical value with respect to the standard normal 

distribution at level 𝛼. This description can be manifested as below: 

𝑉𝑎𝑅H = 	Δ	×	𝜎𝑍H𝑑𝑅 . 

This method was introduced by the JPMorgan’s 𝑹𝒊𝒔𝒌𝑴𝒆𝒕𝒓𝒊𝒄𝒔,-, in which MSCI ESG 

research for Volkswagen Rating can be a good example. However, as from the assumption, 

this Delta-Normal method is valid for linear exposures but inaccurate for non-linear 

portfolios or for skewed distributions. 

2.2.2 Historical Simulation 

The Historical Simulation method directly involves using past data as a guide to what might 

happen in the future. The set of possible future scenarios is fully represented by the things 

happened over a specific historical window. In this method, we do not need to make any 
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distributional assumption, although parameter fitting may be performed on the resulting 

distribution.  

 

We apply the current weights to the historical asset returns by going back in time such as 

over the last year.  We thus obtain a distribution of the change of portfolio returns from 

today’s value. Usually, some of the changes will involve losses and some of them involve 

profits. Ordering the changes from worst to best, and then, by obtaining the 99% VaR, for 

example, one can say that 1% of the profits or losses are in the lowest group among the 

returns of the whole year, and 99% are higher ones. 

 

2.2.3 Monte Carlo Simulation method 

Monte Carlo Simulation method is by far the most powerful and flexible (Franke, 2008). 

No assumption of linearity or specific distribution has to be made in advance. In addition, 

it can incorporate most of the pragmatic distributional properties, such as fat tails and time 

varying volatilities. Also, longer observed periods are also valid under Monte Carlo 

simulation method. 

 

This method can be briefly summarized by two steps: 

a) A stochastic process is specified for the financial variables; 

b) Simulate the fictitious prices for all financial variables of interest, ordering them 

and find the largest return as the 𝑉𝑎𝑅H among the lowest group that is below the 

critical value 𝛼*100%. 

 

There are many other approaches developed in recent decades, like Delta-Gamma method, 

and Monte- Carlo method based on it. In all, one should select the most suitable techniques 

in view of the basic properties of the data and the purpose willing to be achieved.  
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Chapter 3 

Copula 

3.1  Basics 

Generally, the risk associated with a portfolio may be originated from market risk, credit 

risk and operational risk. A conventional procedure to model joint distributions of financial 

returns is by approximating them with multivariate normal distributions, which implies the 

structures returns dependency is always reduced to a fixed type. Nevertheless, empirical 

evidence for the normal assumptions are barely verified and an alternative model is needed, 

with more flexible dependency structures and arbitrary marginal distributions. Fortunately, 

all of the above requirements can be achieved by turning to copulas.  

The definition of Copula is straightforward. The flexibility of copulas basically follows 

from Sklar’s Theorem (1959), which says that each joint distribution can be “decomposed” 

into its marginal distribution accompanying with a copula “responsible” for the dependence 

structure:  

F 𝑥1, 𝑥E, … , 𝑥X = 𝐶𝑜𝑝𝑢𝑙𝑎 𝐹1 𝑥1 , 𝐹E 𝑥E , … , 𝐹X 𝑥X 𝜃 . 

Copula(.) is an alternative expression of the multivariate joint distribution F 𝑥1, 𝑥E, … , 𝑥X ; 

𝜃is a parameter of the Copula structure; and 𝐹_ 𝑥_  is the marginal distribution function 

with i=1,2,3…d. As imagined, copula simplifies the estimation of a multivariate joint 

distribution and we accept the marginal distributions to be different from normal 

distribution. Moreover, copula allows the time-varying dynamic change in the model. With 

different methods, copula can be defined in many ways to be applied under many different 

situations.
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3.2  Introduction to different types of Copulas 

This section briefly reviews definitions of those commonly used copulas. Some important 

properties of copulas are also reviewed. Firstly, consider the general definition of copula: 

Definition 1 (Copula) 

A function mapping from [0,1]X	𝑡𝑜	[0,1] is called function C(.) with properties: 

• C 𝜇1, 𝜇E, … , 𝜇X  is monotone increasing when all the elements 𝜇_ ∈ 0,1 . 

• C 1,1,1, … , 𝜇_, 1, … ,1 = 𝜇_ for all 𝜇_ ∈ 0,1 , with i = 1,2, … d. 

• The copula is set to be zero if one of the 𝜇_ is zero. 

• If 𝜇_ < 	𝜇_
, , for all 𝜇1, 𝜇E, … , 𝜇X 	and	(𝜇k

, , … , 𝜇X
, ) ∈ [0,1]X , the following 

inequality exists: 

…
E

_l

−1 _l0⋯0_o

E

_o

𝐶 𝑥1X, 𝑥EX ≥ 0, 

where 𝑥1X = 𝜇_ and 𝑥EX = 𝜇_
, . 

The function C(.) is thus called a d dimensional copula and has a d dimensional multivariate 

uniform transformation. The fourth property states that any d-dimensional copula on a unit 

cube  [0,1]X	is an C-Volume of rectangle [0,	𝜇_] x [0, 𝜇_
, ], which is non-negative. 

Accordingly, as referred to Nelson (2006), Cherubini, Luciano, and Joe (1997), if F(.) 

belongs to a class of elliptical distributions, then the corresponding C(.) is an elliptical 

copula. However, in most real situations, this type of copulas cannot be obtained explicitly 

since the inverse marginal distribution function  𝐹91(. )  and the cumulative density 

function are usually with integral forms which can hardly be calculated. One of the most 

reliable ways to overcome this drawback is using Archimedean Copula as an alternative 

(Ostap, Alexander, 2014), which, however, also has its internal flaws with restricted to 

limited dimensions of the portfolios. This issue will be discussed more in latter chapters 

and quantified to figure out the applicable dimensions.  

By Sklar’s theorem, an elliptical copula is a copula with respect to a known elliptical 
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distribution, detailed introduction about the distribution can be found in Fang, Kotz and 

Ng’s (1990) work. Generally, elliptical copula contains Gaussian Copula and t Copula, 

which are both popular used in risk management because of their easy implementation. 

Definition 2 (Gaussian Copula) 

The Gaussian copula represents the dependence structure of the multivariate normal 

distribution. This means if we have a vector X = (𝑥1, 𝑥E, … , 𝑥X),~𝑁X(𝜇, Σ) , where 

𝑥_~𝑁(𝜇_, 𝜎_), for i=1, 2, …d, then a copula exists as: 

𝐹s 𝑥1, 𝑥E, … , 𝑥X = 𝐶 𝐹1 𝑥1 , 𝐹E 𝑥E , … , 𝐹X 𝑥X 	, 

or, equivalently, the elliptical copula determined by F is: 

𝐶 𝑢1, 𝑢E, … , 𝑢X = 𝐹s 𝐹191 𝑢1 , 𝐹E91 𝑢E , … , 𝐹X91 𝑢X 	, 

and as defined, 𝐹s(. )  is the multivariate joint function for X, and 𝐹_ 𝑥_  is its 

corresponding marginal distribution. In the second equation, let 𝐹_  be CDF of the ith 

margin and 𝐹_91  be its inverse function (Quantile function). Convenience in obtaining 

conditional distributions is another advantage in using them for prediction (Frees and Wang, 

2005). Next, let Y be a function of X, where Y=G(X) and 𝐺_ 𝑋 = (𝑥 − 𝜇_ 𝜎_). In this 

case, Yi ~N (0,1), and Y = (𝑦1, 𝑦E, … , 𝑦X),~𝑁X(0,Ψ),  which means we standardized X to 

comply to a multivariate normal distribution and Ψ is a correlation matrix associated with 

Σ. 

A copula can be defined as the following: 

𝐹y 𝑦1, 𝑦E, … , 𝑦X = 𝐶z{|}} Φ 𝑦1 ,Φ 𝑦E , … ,Φ 𝑦X . 

For simplification, we use 𝑢_ = Φ 𝑦_  as an alternative, then the above formula is rewritten 

as (Franke, Hafner, 2008): 

𝐶z{|}} 𝑢1, 𝑢E, … , 𝑢X = 𝐶z{|}} Φ 𝑦1 ,Φ 𝑦E , … ,Φ 𝑦X  

= 𝐹y 𝑦1, 𝑦E, … , 𝑦� = 𝐹y Φ91 𝑢1 ,Φ91 𝑢E , … ,Φ91 𝑢X  
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= …
��l |l

9�
2𝜋 9XE Ψ 91E exp −

1
2 𝑟

,Ψ91𝑟 𝑑𝑟1 …
��l |o

9�
𝑑𝑟X. 

Since the standardized function G(X) is increasing, according to Definition 1, it follows 

that C= CGauss. Through this way, the Gaussian copula is obtained. 

Definition 3 (t Copula) 

Similar to the derivation of Gaussian Copula, t copula is derived on X~𝑡X(𝜈, 𝜇, Σ), and 

given by: 

𝐶� 𝑢1, 𝑢E, … , 𝑢X = Ψ 91E
Γ(𝜈 + 𝑑2 )(Γ 𝜈

2 )X91(1 + 1𝜈 𝜁
,Ψ91𝜁)9

�0X
E

(Γ 𝜈 + 1
2 )X (1 + 1𝜈 𝜁�

E)9
�0X
EX

��1

	. 

 

Also, Ψ is a correlation matrix associated with covariance matrix Σ, 𝜈 is the degree of 

freedom and 𝜁� = 𝑡�91 𝑢�  (Franke, Hafner, 2008):. Note that the Gaussian Copula and t 

Copula both pertain to elliptical copula family. 

Definition 4 (Gumbel Copula): 

The Gumbel Copula is not constructed based on Sklar’s Theorem, instead, it belongs to 

Archimedean Copulae and is related to Laplace transforms of univariate distribution 

functions. Gumbel Copula is widely applied in financial market. Its generator and functions 

are: 

Φ x, θ = exp −𝑥
1
� 	 , 1 ≤ 𝜃 < ∞, 𝑥 ∈ 0,∞ 	, 

𝐶� 𝑢1, 𝑢E, … , 𝑢X = exp	[−{ (−𝑙𝑜𝑔𝑢�)�}]
X

��1

1
�
. 
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In contrary to the elliptical copula, Gumbel copula visually leads to asymmetric contour 

diagrams, as shown in Figure 1 (d=2). The Gumbel copula shows stronger linkage between 

positive values, in the meantime, it also shows more variability and more mass in the 

negative tail.  

 

Figure 1 pdf contour plots, Gaussian Copula( top left), Clayton (top right), Frank (bottom left), Gumbel (bottom right) 

 

Definition 5 (Clayton Copula):  

𝐶� 𝑢1, 𝑢E, … , 𝑢X = exp	[ 𝑢�9�) − 𝑑 + 1
X

��1

�

. 

Then, for 𝑥 ∈ 0,∞ , the generator belonging to Clayton Copula is : 	Φ x, θ =

(𝜃𝑥 + 1)91/�, where θ ∈ −1,0) ∪ (0,∞ . While Gumbel copula puts more weights on 

the upper tail, Clayton Copula gives more clusters to the lower tail. 

Definition 6 (Ali-Milkhail-Haq Copula) 

Ali-Milkhail-Haq (AMH) Copula is also a well-known copula, whose function is denoted 

as following: 



 

12 

𝐶� 𝑢1, 𝑢E, … , 𝑢X =
𝑢�X

��1

1 − 𝜃{ (1 − 𝑢�)}X
��1

	. 

If θ = 0, then AMH copula is simplified as a product copula, which is the simplest copula. 

If θ = 1, there exists a significant lower tail dependence. What needs to be mentioned here 

is that AMH copula can only be effective in bivariate cases (Nelsen 1999), so it will not be 

considered and discussed in Chapter 4 and 6, our modeling and testing processes. 

Some other Copulas, like Joe (1997) copula, Frank (1979) are either owns similar 

properties as copulas we have discussed or not used commonly, so we will not repeatedly 

consider their applications in the financial market. Summary of the common Archimedean 

Copulas is shown in Table 1. 

Table 1: Summary of 3 Archimedean Copulas for df >2 

Copula Family Parameter 

Interval 

Generator 

Φ t, θ  

Inverse of 

Generator 

Φ91 u  

Frailty 

Distribution 

Clayton(1978) θ ≥ 0 (1 + 𝑡)91/� 𝑢9� − 1 Gamma 

Frank(1979) θ ≥ 0 −θ91ln	(1
+ 𝑒9/ 𝑒9θ − 1 ) 

−ln �
� ¡91
�� 91

  
Log series 

Gumbel(1960) θ ≥ 1 exp	(−𝑢1/�) (−lnt)� Positive Stable 

 

Definition 7 (Hierarchical/ Nested Archimedean Copula) 

Hierarchical Archimedean Copula is a recently developed copula method which defines 

the whole dependence structure in a recursive way. In other words, analysts are allowed to 

apply different copula measures in different levels. This provides us the possibility to 

arbitrarily choose a combination of copulas we want for different levels, and thus make the 

most perfect predictions.  
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The special case, so called fully nested Archimedean Copula function is: 

𝐶 𝑢1, 𝑢E, … , 𝑢X = 𝜙X91 𝜙X9191 ∘ 𝐶 𝜙1, … , 𝜙X9E 𝑢1, 𝑢E, … , 𝑢X91 + 𝜙X9191 𝑢X 	. 

In this formula, 𝜙_ indicates copula the generator at different copula levels.  

3.3  Copula Estimation 

The estimation of a copula based multivariate distribution involves both the estimation of 

the copula parameters θ and the estimation of the margins Fj . If we are only interested in 

the dependency structure, then the estimated parameter vector is independent of any 

predicted models for each margin. When it comes to nonparametric marginal distributions, 

it can be shown the consistency and normality of maximum likelihood estimators (MLE). 

In addition, according to Franke, Hardle and Hafner’s work, the goodness and properties 

of 𝜃 mainly rely on the estimation of the margins.  

More specifically, suppose a d-dimensional random variable X with parametric marginal 

distributions 𝐹� 𝑥�; 𝛿� , j= 1,2,…,d. where 𝛿� is one of the components of the parameter 

vector. Then according to the informal definition of copula we have discussed in the former 

section, the distribution of X can be decomposed as: 

𝐹s 𝑥1, 𝑥E, … , 𝑥X = 𝐶{𝐹1 𝑥1; 𝛿1 , 𝐹E 𝑥E; 𝛿E , … , 𝐹X 𝑥X; 𝛿X ; 𝜃} 

and the associated PDF as: 

f 𝑥1, 𝑥E, … , 𝑥X; 𝛿1, 𝛿E, … , 𝛿X, 𝜃

= 𝑐{𝐹1 𝑥1; 𝛿1 , 𝐹E 𝑥E; 𝛿E , … , 𝐹X 𝑥X; 𝛿X ; 𝜃} 𝑓�(𝑥�; 𝛿�)
X

��1

 

where c(𝑢1, 𝑢E, … , 𝑢X) =
§o¨© |l,|ª,…,|o

§|l…§|o
 . 

Now we are interested in finding the MLE of the parameters of marginal functions and the 

copula function. Firstly, we can denote the parameter vector as: Ω = (𝛿1, 𝛿E, … , 𝛿X, 𝜃),, 

where 𝛿�′𝑠 are parameters for the ith marginal distributions, and 𝜃 belongs to the copula 



 

14 

function. 

Then the likelihood function is given by: 

L Ω 𝑥1, 𝑥E, … , 𝑥, = f 𝑥1,/, 𝑥E,/, … , 𝑥X,/|𝛿1, 𝛿E, … , 𝛿X, 𝜃
,

/�1

	. 

Subsequently the log-likelihood function is derived as: 

l Ω 𝑥1, 𝑥E, … , 𝑥,

= log	(𝑐{𝐹1 𝑥1,/; 𝛿1 , 𝐹E 𝑥E,/; 𝛿E , … , 𝐹X 𝑥X,/; 𝛿X ; 𝜃}
,

/�1

)

+ 𝑙𝑜𝑔
X

��1

,

/�1

𝑓� 𝑥�,/; 𝛿� . 

 

In the above formulas, we pick d observations for each sample 𝑥/ = (𝑥1,/, 𝑥E,/, … , 𝑥X,/). 

Here, t=1, 2, ..., T. 

In order to obtain the MLE, we firstly need to estimate the parameter vector Ω. By Full 

Maximum Likelihood (FML) Estimation, estimating Ω is equal to solve the equation: 

𝜕𝑙(Ω|X)
𝜕𝛿_

=
𝜕𝑙(Ω|X)
𝜕θ = 0. 

However, in practice, it costs too much time if the dimension is not moderate. Another 

popular estimating method is called the Inference for Margins (IFM), unlike the former 

one step FML method, this method estimates the parameter from the marginal distributions 

𝛿� in the first step; secondly, it estimates the dependence parameter θ through the pseudo 

log likelihood function. The main advantage of IFM method is that it highly reduces the 

computational and notational complexity (Franke, Hardle and Hafner, 2008). 

Next estimating method is the Canonical Maximum Likelihood, differing from FML and 
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IFM method, it estimates parameters through an empirical distribution function 𝐹³ x =
1

,01
𝑙(𝑥�,/ < 𝑥),

/�1 . After margins are estimated, they are collected to form a pseudo 

sample and are used to estimate the copula. Notice that the estimation for marginal 

distributions is nonparametric.  

With margins prepared, we are ready to estimate the required parameters of copula. 

In terms of elliptical copulas, we usually have two estimating methods, one is Gaussian 

Copula estimation and the other is t-Copula estimation. Once giving the copula density 

function, we are able to estimate the covariance matrix Σ by the pseudo log-likelihood 

function. In this way, we can get the estimator of copula parameters. 

As for t-copula estimation, one possible method is based on the estimation of Kendall’s τ 

with methods of moments. 

Each element 𝜑_� of the correlation matrix is estimated by: 

φ·¸ = sin
𝜋
2 𝜌» 𝑢_, 𝑢� . 

Then if the estimated correlation matrix Ψ is fixed, we are able to estimate the degree of 

freedom ν through ML. In order to obtain the value of φ·¸, we also need to estimate the 

Kendall’s τ coefficient for each pair of observation i and j. For pseudo sample{𝑢/}/�1, , we 

have each u = (𝑢1, 𝑢E, … , 𝑢X), ∈ [0,1]X.  Then, the estimator of this coefficient is as 

following: 

𝜌» 𝑢_, 𝑢� =
𝑇
2

91

𝑠𝑖𝑔𝑛(𝑢_,/l −
1À/lÀ/ªÀ,

𝑢_,/ª) 𝑢�,/l − 𝑢�,/ª . 

In this way, 𝜈 can be estimated with the arg max of the pseudo log-likelihood function. 

On basis of the theoretical results, regular copula estimation methods contain the following 

ones: Kendall’s tau, Blomqvist’s beta, minimum distance estimators, the maximum-

likelihood estimator, a simulated maximum-likelihood estimator, CML, FML and IFM. All 
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of these methods can be utilized under either known or unknown margins. Although the 

maximum likelihood method requires the simulated residuals for copula fitting process 

should be within the interval [0,1], it does not mean that we cannot make use of ML method 

if residuals are not satisfied with the constraint. In fact, pseudo-observations are generated 

here in R to solve the problem. 

On the one hand, under known margins, maximum-likelihood estimator provides us the 

most precise results (Hofert, M., Mächler, M., & Mcneil, A. J., 2012). In addition, in 

programming software like R, if we consider running time and numerical stability during 

backstage calculation, ML estimator is also desirable to the extent of current dimensions. 

On the other hand, if pseudo-observations have to be produced, there has barely no gap 

between ML estimator and other estimators. No matter how accurate the estimating method 

is, we still cannot simulate copula precisely without a proper marginal distribution. As for 

how to choose the margins when simulating copula, we will discuss it in the following part. 

3.4  Defining marginal distributions in multi-dimensional copulas 

As discussed, copula methods are introduced to decompose the continuous joint 

distribution of dependence structure into separate marginal distributions. Commonly used 

dispersion structures include: autoregressive of order 1, exchangeable, Toeplitz, and 

unstructured. The corresponding positive definite correlation matrices are listed one by one 

below, in the case that the degree of freedom equals to 5: 

1 𝜌1 𝜌1E 𝜌1Á 𝜌1Â

𝜌1 1 𝜌1 𝜌1E 𝜌1Á

𝜌1E 𝜌1 1 𝜌1 𝜌1E

𝜌1Á 𝜌1E 𝜌1 1 𝜌1
𝜌1Â 𝜌1Á 𝜌1E 𝜌1 1

, 

1 𝜌1 𝜌1 𝜌1 𝜌1
𝜌1 1 𝜌1 𝜌1 𝜌1
𝜌1 𝜌1 1 𝜌1 𝜌1
𝜌1 𝜌1 𝜌1 1 𝜌1
𝜌1 𝜌1 𝜌1 𝜌1 1

, 

1 𝜌1 𝜌E 𝜌Á 𝜌Â
𝜌1 1 𝜌1 𝜌E 𝜌Á
𝜌E 𝜌1 1 𝜌1 𝜌E
𝜌Á 𝜌E 𝜌1 1 𝜌1
𝜌Â 𝜌Á 𝜌E 𝜌1 1

,and 

1 𝜌1 𝜌E 𝜌Á 𝜌Â
𝜌1 1 𝜌Á 𝜌Â 𝜌Ã
𝜌E 𝜌Á 1 𝜌1 𝜌E
𝜌Á 𝜌Â 𝜌1 1 𝜌Á
𝜌Â 𝜌Ã 𝜌E 𝜌Á 1

 

where 𝜌�’s are dispersion parameters.  
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Some practitioners used one of the correlation matrices (usually autoregressive of order 1 

and simple exchangeable Archimedean (Jun Yan, 2007)) as a direct proxy for multivariate 

dependency. However, it is widely acknowledged that prices, returns, and other financial 

parameters and variables are not always normally distributed. In fact, many of them have 

fat tails and exhibit the so called “tail dependence”. (see Figure 2 for the visualized proofs). 

In Figure 2, we selected one of the most active securities on NASDQ, the Alphabet Inc., 

which is quoted as GOOG, as our example. As known, it is a public company with the 

highest market value on the planet. From the curves shown in this figure, skewed t 

distribution fits the real log-return density function the best, while others have more or less 

deviations. Although skewed t gives a better fit, it underestimates the peak point as others 

do. If time permits, we can find infinite univariate case like this.  

 

Figure 2 Density function of log-return of Google (red) with fitted normal distribution (yellow), skewed normal (blue) 
and skewed t (green) 

 

Therefore, there is of necessity to build an accurate multivariate distribution before 

modeling a reliable copula. This raises a concern of how to choose a proper marginal 

distribution, and, once chosen, how to calibrate the given data to fit it. 

 

Now, let us take a close look at the definition of skewed t distribution in the form of normal 
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mixture. This concept prepares us with the knowledge of how to select marginal 

distributions believable. 

Definition 8 (Normal Mean-Variance Mixture Representation of Skewed t Distribution)  

Let µ and φ be two parameters in multivariate space ℝ�, and Σ be a d x d real positive 

semi-definite matrix, and the degree of freedom ν > 2. Then the d dimensional skewed t 

distributed random variable X can be denoted as: 

X	~	𝑆𝑇X 𝜐, 𝜇, Σ, 𝜑 , 

Given this denotation, X is a multivariate normal mean-variance mixture variable with its 

distribution given by: 

X ≝ 	µ +Wφ+ 𝑊𝑍, 

where 

1. Z ~ 𝑁X 𝜇, Σ , a d dimensional multivariate normal distribution with mean 0 and 

covariance matrix Σ. 

2. W ~ InverseGamma(𝜐/2, 𝜐/2), with pdf: f x = ËÌÍ�Ì�l��
Î
Ï

Ð H
. It is worth noting that W 

and Z are mutually independent.  

Then, with W given, the distribution of X can be rewritten as: 

X|W~𝑁X 𝜇 +𝑊𝜈,𝑊Σ 	, 

which complies a d dimensional multivariate normal distribution, with EX=µ + φ �
�9E

 and 

Cov X = E W Σ + var W ν𝜈Ô.  

If the degree of freedom ν is fixed, it is possible to calibrate elliptical distribution to suit 

our financial data. Many researchers like McNeil et al. (2005) and Hu (2005) have 

conducted algorithms to achieve the goal. Generally, algorithms, like Expectation 

Maximization (EM), approximately conduct estimations of Maximum Likelihood method. 



 

19 

From these researches, it can be learnt that calibrating the joint distribution is much faster 

and mathematically solid than modifying existing copulas. From Definition 8, this normal 

mean-variance mixture distribution has more flexibility to calibrate parameters to suit 

different type of portfolios.  

In short, from the definition of the normal form of the skewed t distribution, since Σ is 

positive semi-definite, it has non-zero tail dependence. Furthermore, adopting skewed t 

distribution gives heavier tails at either upper or lower part for the margins. Therefore, in 

real equity swaps practitioners prefer skewed t distribution to skewed normal as the 

margins to fit copulas. In the latter modeling chapter, we will also utilize this marginal 

distribution for parametric simulation.  
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Chapter 4   

Modeling Log-Returns with Multivariate Time Series and 

Copula Methods 

4.1  Expression of the portfolio’s Log-Returns  

In this section, we will build a reliable model to predict VaR on a profit and loss view of a 

linear portfolio. Traditionally, the return of an asset is usually specified by its log 

transformation since raw data vibrated drastically from one period to the other, which 

makes it hard to grab their properties. Statistically, this log transformation will make the 

time-varying data much more stable in terms of variance. In financial time series, log-

returns is basically defined as: 

LogRet/01 = log
𝑃/01 − 𝑃/

𝑃/
= log 𝑃/01 − 𝑃/ 	, 

where 𝑃/ is the time point price (market value of the aimed asset) at t and LogRet is our 

interested profits or losses. 

 

Contrary to the previous static process, log-returns are predicted through a time-varying 

model and assumed to be time dependent. 

 

As usual, the Value-at-Risk at level 𝛼 of a portfolio is defined as the 𝛼-quantile value from 

the CDF of profit & loss function. Here, some concepts need to be clarified in preparation. 

Profit & Loss function: 

 

𝐿/01 = 𝑉/01 − 𝑉/ = 𝑤_𝑆_,/{exp	(𝑋_,/01 − 1}
X

_�1

	, 



 

21 

where 𝐿/01 is the profit & loss of a linear portfolio, 𝑉/ is the value of the portfolio at time 

point t. 𝑋_,/01  is our target log-returns of ith asset, 𝑤_  is the weight of ith asset in our 

established portfolio and S is its corresponding “market value”. 

 

Then, given a so called safety threshold x, the CDF of L without the time index can be 

expressed as: 

𝐹Ø 𝑥 = 𝑃 𝐿 ≤ 𝑥 	. 

Hereby, the nominal VaR is given by: 

𝑉𝑎𝑅 𝛼 = 𝐹Ø91 𝛼 . 

From these two equations, it can be summarized that the distribution of L depends on the 

distribution of log-returns. Therefore, modeling the distributions of them is the first thing 

to do before extracting the 𝛼𝑡ℎ quantile from 𝐹Ø. As mentioned, log-returns of portfolios 

are assumed to be time-dependent, thus the target process {𝑋/} can be modeled as: 

 

𝑋_,/ = 𝜇_,/ + 𝜎_,/𝜖_,/	, 𝑖 = 1,2, … , 𝑑	. 

 

where 𝜖_,/′𝑠  are mutually i.i.d innovations produced by copula modeling processes. 

E(𝜖_,/)=0 and Var(𝜖_,/)=1. With known historical information of the stochastic process, we 

have 𝜇_,/ = 𝐸(𝑋_,/|ℱ/91)  and 𝜎_,/E = 𝐸 𝑋_,/ − 𝜇_,/
E|ℱ/91 . Next, for the innovation 

vector 𝜀 = 𝜖1, 𝜖E, … , 𝜖X , its marginal distribution are estimated from copula family, 

which is shown below: 

𝐹Þ 𝜖1, 𝜖E, … , 𝜖X = 𝐶� 𝐹1 𝜀1 , … , 𝐹X 𝜀X . 

 

Now, all of the parameters in the log-return model are able to be obtained. In order to 

achieve the prediction, following steps need to be proceeded in order: 

1. Estimation of the residuals 𝜀/. 

2. Specification and Simulation of marginal distributions. 

3. Decomposition of the dependency structure.  

4. Estimation of the supposed mean and variance vectors. 
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4.2  Time Series Modeling Process 

This section will focus on accomplishing the three steps listed above by using multivariate 

time series models. The basic idea of time series models is predicting the current or 

uncertainty behaviors with known information. Since financial products, like equity 

securities, options, securitized financial derivatives, etc., being swapped on second markets 

satisfy the constraints of stochastic processes (see Figure 3 as an example), it is valid to 

utilize the time series models to predict parameters we are interested. 

 

4.2.1 Brief Introduction to Univariate GARCH model 

Modeling risks had been a key issue for many financial institutions for several years, 

because the variances of data change constantly. Thanks to the development of the 

generalized autoregressive conditional heteroscedasticity (GARCH) model, it is possible 

to model the time-varying variance of oscillated economic data. GARCH models are tools 

for forecasting and analyzing the volatility of time series that varies over time. Therefore, 

to predict the final Log-Returns, using GARCH models should be a wise choice. 

 
Figure 3 Log-Returns of our 3-dimensional portfolio, amazon, shell and ford. 
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To get a deeper understanding of Univariate GARCH model, we firstly need to know more 

about ARMA model. ARMA is a model combined autoregressive (AR) process with 

moving average (MA) process. General ARMA model was firstly proposed by Peter 

Whittle in 1951. The so called ARMA(p,q) model then can be written as: 

 

𝑋/ = 𝜙 + 𝛼1𝑋/91 + 𝛼E𝑋/9E + ⋯+ 𝛼ß𝑋/9ß + 𝛽1𝜀/91 + ⋯+ 𝛽á𝜀/9á + 𝜀/	, 

 

where 𝜙 denotes the grand mean of the interested variable 𝑋/ (Whittle, 1951). 𝛼1, … , 𝛼ß 

are parameters for AR(p) process, while 𝛽1, … , 𝛽á  are parameters belonging to MA(q) 

process. 𝜀/Ô𝑠 are explained as the given historical log-returns, which are white noise terms 

with 𝜀/~𝑁(0, 𝜎E). 

 

Since GARCH model is designed to predict time-varying variance, 𝜎/E is set to be the target 

variable and inert into ARMA(p,q) model given above. By replacing 𝑋/ in ARMA model 

with 𝜎/E , Generalized Autoregressive Heteroscedasticity (GARCH) model (Bollerslev, 

1986) is achieved: 

 

𝜎/E = 𝛼â + 𝛼1𝜀/91E + 𝛼E𝜀/9EE + ⋯+ 𝛼á𝜀/9áE + 𝛽1𝜎/91E + ⋯+ 𝛽ß𝜎/9ßE 	. 

 

Detailed explanations of the parameters in GARCH model are the same as those in 

ARMA(p,q) model. In real applications, MLE is usually preferred to predict those 

parameters.  

 

Set η = (𝛼â, 𝛼1, … , 𝛼á, 𝛽1, … , 𝛽ß),, with 𝜎/E as the conditional variance at time t and log-

returns 𝜀/
á , then the conditional likelihood is: 

𝑙ä 𝜂 = 𝑙/ 𝜂
�

/�á01
= −

𝑛 − 1
2 log 2𝜋 −

1
2 𝑙𝑜𝑔𝜎/E

�

/�E

−
1

2
𝜀/
á + 1
𝜎/E

�
/�á01

	. 

 

Under certain technical conditions, ML estimators will be achieved as consistent through 

twice derivatives. In our thesis research, functions in R packages rugarch and rmgarch 
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take response of estimating the parameters. Together, for the univariate case, if GARCH 

(1,1) is considered, we have: 

𝜎/E = 𝛼â + 𝛼𝜀/91E + 𝛽𝜎/91E  

=
𝜀/91E + 𝛽𝜀/9EE + 𝛽E𝜀/9ÁE + ⋯

1 + 𝛽 + 𝛽E +⋯
	. 

 

Here, we substituted 𝛼  with 1-𝛽  , since, from the R output, 𝛽 + 𝛼  equals to 0.995 

approximately in most cases. 

 

4.2.2 DCC-GARCH model and GO-GARCH model 

The financial objects covered in the thesis are stock portfolios consisting of exchangeable 

shares. Thus, multivariate GARCH models are appropriate and they are built based on the 

created univariate GARCH specification objects.  

 

Now suppose that we have a d dimensional time-varying process 𝑥/, with the mean of each 

element 𝑥_,/ equals to 𝜇_,/. If information is available until time t-1, then  

 

𝑥/|ℱ/91 = 𝜇/ + 𝜀/. 

 

Notice the error term 𝜀/ is time-varying and depends on the historical residuals estimated 

by GARCH models. With the increase of portfolios’ dimensions, the dependence structure 

generated by unequal error vectors are more and more complex, which makes the 

prediction less reliable. A straightforward idea to solve it is to reduce or amalgamate the d 

x d symmetric time-dependent covariance matrix 𝐻/ in to a d*(d+1)/2 dimensional vector. 

Currently most commonly used multivariate GARCH models are operated based on this 

idea to deal with the time-varying covariance matrix (Alexander, 2001). More specifically, 

take a closer look at a three-dimensional example with GARCH (1,1) applied. One 

GARCH model is established with Vec Specification, which is the basis of DCC and GO-

GRACH specification. Basic ideas of Vec Specification will be defined below. 

 



 

25 

Set 𝐻/  as the conditional covariance matrix with elements 𝐻__,/ ; ϕ be the grand mean; 

α	and	β be the two corresponding parameters for 𝜎/ and 𝜀/, respectively.  

 

𝐻/ =
ℎ11,/ ℎ1E,/ ℎ1Á,/
ℎE1,/ ℎEE,/ ℎEÁ,/
ℎÁ1,/ ℎÁE,/ ℎÁÁ,/

	. 

 

Next, define vech(.) as an operator that stacks the upper triangular part of a symmetric 3 x 

3 matrix into a 𝑑∗ = 3(3 + 1)/2 dimensional vector. This vector is thus denoted as 𝒉𝒕 =

𝒗𝒆𝒄𝒉(𝐻/). Then we have: 𝒉𝒕 = 𝒗𝒆𝒄𝒉	(𝐻/) = (ℎ11,/, ℎ1E,/, ℎ1Á,/, ℎEE,/, ℎEÁ,/, ℎÁÁ,/), , this 

definitely gives us a simpler structure of the covariance matrix. The simplified model can 

thus be rewritten explicitly as: 

 

ℎ11,/
ℎ1E,/
ℎ1Á,/
ℎEE,/
ℎEÁ,/
ℎÁÁ,/

=

𝜙1
𝜙E
𝜙Á
𝜙Â
𝜙Ã
𝜙í

+

𝛼11 𝛼1E 𝛼1Á 𝛼1Â 𝛼1Ã
𝛼E1 𝛼EE 𝛼EÁ 𝛼EÂ 𝛼EÃ
𝛼Á1 𝛼ÁE 𝛼ÁÁ 𝛼ÁÂ 𝛼ÁÃ
𝛼Â1 𝛼ÂE 𝛼ÂÁ 𝛼ÂÂ 𝛼ÂÃ
𝛼Ã1 𝛼ÃE 𝛼ÃÁ 𝛼ÃÂ 𝛼ÃÃ

𝜀1,/91E

𝜀1,/91𝜀E,/91
𝜀1,/91𝜀Á,/91
𝜀E,/91E

𝜀E,/91𝜀Á,/91
𝜀Á,/91E

+

𝛽11 𝛽1E 𝛽1Á 𝛽1Â 𝛽1Ã
𝛽E1 𝛽EE 𝛽EÁ 𝛽EÂ 𝛽EÃ
𝛽Á1 𝛽ÁE 𝛽ÁÁ 𝛽ÁÂ 𝛽ÁÃ
𝛽Â1 𝛽ÂE 𝛽ÂÁ 𝛽ÂÂ 𝛽ÂÃ
𝛽Ã1 𝛽ÃE 𝛽ÃÁ 𝛽ÃÂ 𝛽ÃÃ

ℎ11,/91
ℎ1E,/91
ℎ1Á,/91
ℎEE,/91
ℎEÁ,/91
ℎÁÁ,/91

	. 

 

On this basis, Engle (2002) proposed a model called Dynamic Conditional Correlation 

(DCC) model to solve time-varying correlations.  

 

Suppose we have returns 𝑒/	from d-dimensional portfolios with mean zero and conditional 

covariance matrix 𝐻/, 𝛿/~ ∙ (0, 𝐼). Then the DCC-model is given by: 

𝑟/ = 𝜇/ + 𝑒/ 

𝑒/ = 𝐻/
1
E𝛿/ 
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𝐻/ = 𝐷/𝑅/𝐷/	. 

Notation: 

𝑟/: log returns of the portfolio, d x 1 vector; 

𝐻/
l
ª: can be obtained through the DCC specification process; 

𝐷/: d x d diagonal matrix of conditional standard deviations of 𝑒/ at time t; 

𝑅/: d x d correlation matrix of 𝑒/ at time t. It should be positive definite. All the elements 

should not be larger than 1. 

 

Next, the main task of the DCC-GARCH model is to estimate the error term 𝛿/. Currently, 

there is still no unanimous of which multivariate distribution fit the parameters in GARCH 

models the best. In our thesis, the multivariate Gaussian distribution is selected to extract 

𝛿/. And, maximum likelihood method is used for estimation. 

 

Although DCC-GARCH model is designed to overcome the restrictions that general 

GARCH models are executed on the hypothesis of constant correlation (Weide, 2002), the 

conditional variances of DCC specification are still estimated from its univariate 

correspondence. This should be an issue especially for large covariance matrices. In view 

of this, Alexander (1990’s) designed new approaches called Orthogonal GARCH (O-

GARCH) and Generalized Orthogonal GARCH (GO-GARCH) model successively from 

1994 to 2001. These models assume that there exists at least one orthogonal matrix to link 

the observed data linearly to a set of independent components, which can be explained as 

econometric factors that will influence the financial activities. Since the transformed 

components are assumed to be independent, it is logical to get the conditional variances 

from a cluster of univariate GARCH models. Nevertheless, just like a concept called 

Inverse, no one can guarantee there must exists the linkage (an inverse). And, this “map & 

inverse map” idea is challenged with certain identification concerns. Suppose the diagonal 

elements of H are not all distinct, then the transformed orthogonal matrix, say P, will no 

longer be coincide with with the linkage Z.  And the estimation of the matrix solely hinges 

on the sample data set, instead of the historical information. On the contrast, GO-GARCH 

has prominent advantages over its ancestor. It allows Z to be given by any possible 

invertible matrix. Estimation of this matrix requires the historical information to solve the 
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identification problems and thus gives rise to introducing higher dimensional portfolios in 

our investigation at an affordable money and time costs. In our modeling process, GO-

GARCH will be preferred in higher dimensions while DCC-GARCH is used in lower ones. 

 

The key assumption of GO-GARCH is that the observed economic process {𝑥/}  is 

governed by a linear combination of independent economic components {𝑦/}: 

 

𝑥/ = Z𝑦/	, 

 

with Z as the linear map that links original data with independent components, 

	𝑦/	~	𝑁 0, 𝐻/ . The conditional covariance of {𝑥/} are given by: 

 

𝑉/ = 𝑍𝐻/𝑍,. 

 

After applying the linkage, similar to the definition of DCC-GARCH model, we have 𝑅/ =

𝐷/91𝑉/𝐷/91. Considering the bivariate case, we set the linkage map 𝑍� as: 

 

𝑍� =
1 0

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 	. 

 

In this way, 𝜃  measures the extent to which the observed data are mapped to the 

independent components. For example, if 𝜃 = 0, the map is not invertible and the model 

is failed to be established; whereas, if 𝜃 = 𝜋/2, the original data are already uncorrelated 

and we do not have to transform them. The conditional covariance matrix is given by: 

 

𝜎1/E = ℎ1/ 

𝜎E/E = ℎ1/𝑐𝑜𝑠E𝜃 + ℎE/𝑠𝑖𝑛E𝜃	. 

 

Restricted to the available reference, Z is chosen to be constant over time for the prediction 

of covariance in this thesis. Since the direction of Z does not ever change during the process, 

this constant assumption is valid for use. 
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4.2.3 Summarization of the modeling procedure 

As discussed, modeling process will move forward to the Log-Return equation. 

𝑋_,/ = 𝜇_,/ + 𝜎_,/𝜖_,/	, 𝑖 = 1,2, … , 𝑛 

Step 1: Build Univariate GARCH model to specify the conditional variance. 

Step 2: Use the results from Step 1 to fit DCC-GARCH model. 

Step 2∗:Model the time series data with GO-GARCH model. 

Step 3: Extract residuals, expectations and covariance matrix from either Step 2 or Step 2∗. 

Step 4: Simulate residuals on known multivariate distribution to avoid calculating failures. 

Step 5: Specify marginal distributions, fit copulas and obtain estimated parameters. 

Step 6: Check if the copula-generated distributions fit well by contour plots. 

Step 7: Estimate Log Returns for the forecast and predict VaR(α). 

Step 8: Use backtesting to test the goodness of selected copula estimations at the very 

dimension and try to fix the problems. 

 

Following these detailed procedures, we can model the Log Returns reliably, but which 

copulas output better results is still open to doubt. More significantly, to what extent the 

copula methods can be effective need to be verified as well. In next chapter, we will address 

a solution through practical cases.  
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Chapter 5   

Check the Goodness of Copula Methods 

5.1  Basics of Backtesting 

With the improvement of the predictive modeling methods in measuring risks, researchers 

have developed many ways to examine the reliability of the models. Since 1998, regulatory 

guidelines have required banks with substantial trades to launch tests to gauge the accuracy 

of their VaR models (Sean, 2005). Abide by the guidelines, scholars designed a variety of 

backtests to examine the adequacy of VaR measures. Basically, the backtesting procedures 

evaluate the quality of the forecast of a risk model by comparing the actual results with 

those generated by the VaR models. While these tests differ in details, most of them focus 

on particular transformations of the reported VaR and realized losses. Currently, backtests 

can be classified by whether they examine an unconditional coverage property or 

independence property of a VaR measure. Sometimes, we are also interested in checking 

the validity of VaR models at a series of quantiles, rather than a given single quantile. 

Furthermore, backtests in terms of pre-specified loss functions are also worth concern since 

sometimes the past data on profits or loss give us a nominal good fit but still need to be 

checked statistically.  

 

Specifically, consider a event that the loss of a portfolio exceeds its reported VaR, VaR(α) 

at quantile α. Denoting the profit or loss of the portfolio between time t to t+1 as 𝑟/,/01, the 

so called “hit” function 𝐼/01(α) can be defined as (Christoffersen,1998): 

 

𝐼/01(α) = 	
1			𝑖𝑓		𝑟/,/01 ≤ −VaR(α)
0			𝑖𝑓		𝑟/,/01 > −VaR(α). 

Thereupon, the hit function sequence, e.g. (1,0,1,0,0,0,0,1), tells us the times that the loss 

of the portfolio has excess the labeled VaR(α) during the observed period. In addition, 
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from the sampling sequence, we can know the corresponding time pause intervals between 

the exceeded points. For instance, the vector (1,0,1,0,0,0,0,1) owns two time-pause 

intervals, 1 for the first interim (with one zero occurred between 1s) and 4 for the second 

interim (with four zero occurred between 1s). 

 

5.2  Unconditional Coverage Tests 

Traditionally, some proposed VaR tests solely keen on the property of unconditional 

coverage. In other words, those tests are interested in the times that reported VaRs have 

violated. If the violations are much different from α×100% of the total observing days, the 

tests are rejected.  

 

Early unconditional coverage tests include Kupiec’s (1995) proportion of failure (POF) test 

and the “traffic light” method as a surcharge factor. 

 

For POF test, if the number of recorded violations differ considerably from α×100% of 

the sample size, it is reasonable to doubt the accuracy of the underlying model.  For 

example, suppose a financial institution reported a 1% VaR of $10,000,000 over a 1-day 

horizon, then the institution would be expected to realize a loss in excess of $10,000,000 

for 1% of the trading times. The current regulatory framework requires that financial 

institutions use their own internal risk models to calculate and report their 1% value-at-risk, 

VaR (0.01), over a 10-day horizon. In other words, if more than ten violations of the 1% 

VaR are recorded in a 250-day span, which accounts to 4% of the sample period, the VaR 

model is thus claimed inaccurate, and immediate steps are required to improve the risk 

management system. Given time period t, which means we have t observations, Kupiec’s 

test statistics can be written as: 

 

POF = 2log	(
1 − 𝛼
1 − 𝛼

/9k H 𝛼
𝛼 ) 

𝛼 =
1
𝑡 𝐼 𝛼  
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I α = 𝐼_(𝛼)
/

_�1

	. 

 

Where 𝛼 is the estimated proportions of the exceedance during time period t, 𝐼_(𝛼) is the 

“hit” function at time i. Now, consider the test statistics POF, if 𝛼×100% is exactly equal 

to the criterion value α×100%, there is no evidence to say the VaR model is inadequate. 

But, if the estimator 𝛼 is biased, we will have sufficient evidence to say that the proposed 

VaR measure either overestimate or underestimate the risk of the portfolio.  

 

Apart from POF statistic, we can also design another one by transforming the predicted 

percent of violation 𝛼 on given time period as a scaled version. Under the assumption that 

the VaR measure is accurate, then, 

 

z =
𝑡(𝛼 − 𝛼)
𝛼(1 − 𝛼)

	, 

where z ~ N (0,1). And the hypothesis test can be conducted the same way as what POF 

statistic does. 

 

5.3  Independence Tests 

In light of the failure of unconditional coverage test to detect dependency property of VaR 

measure, we need to find the specialized independency tests to examine the independency 

property of VaR hit series, 𝐼/(𝛼).  

 

Earlier, Christoffersen (1998) developed Markov test to examine whether or not the 

likelihood of a VaR violation depends on the occurrence of violations on the historical days. 

For instance, if more 1% VaR violations come out after a violation, this might manifest the 

likelihood of 1% VaR following a violation will be increased.  

 

Recently, Christoffersen and Pelletier (2004) noticed that the interim between two VaR 

violations exhibits no duration dependency, that is, the chance that a violation occurs in the 
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next ten-day period should never rely on whether a violation occurred in the past 10 to 100 

days.  

 

According to Christofersen’s researches, likelihood ratio test for independence of 

exceedances is worthy of conducting, we firstly define 𝑞∗ as the likelihood, then: 

𝑞â∗ = 𝑃ù 𝐼/ = 0 𝑖/91 = 0  

 	𝑞1∗ = 𝑃ù 𝐼/ = 0 𝑖/91 = 1 	. 

These two probabilities give us the conditional coverage test we will talk about in the next 

part. The actual probabilities of experiencing and not experiencing exceedance are 

differentiated by the exceedance at time t-1 (0 means no exceedance while 1 means 

exceedance occurred). The null hypothesis thus is: 𝐻â:	 𝑞â∗ = 𝑞1∗ = 𝑞∗ . 

 

Hence, if a VaR measure is observed over n+1 periods, there will be n consecutive 

observations and the relationship is: 𝑛ââ + 𝑛â1 + 𝑛1â + 𝑛11 = 𝑛. And, the null hypothesis 

can thus be transformed as: �ûû
�ûû0�ûl

= �lû
�lûüýll

. 

Our likelihood ratio is: 

Λ =
（1 − 𝑞∗)�ûl0�ll	(𝑞∗)�ûû0�lû

（1 − 𝑞â∗)�ûl	(𝑞â∗)�ûû（1 − 𝑞1∗)�ll	(𝑞1∗)�lû
	. 

 

With – 2log 𝛬 ~𝜒E(1,0) . We want to use this statistic to check if the independence 

property of the portfolio is fulfilled. 

 

5.4  Joint Tests of Unconditional Coverage and Independence 

This joint test sometimes is also called conditional coverage test and is used to be compared 

with the testing results of previously described POF method and its transformed tests. We 

denote the Conditional Coverage (CC) test by the following formula: 

 

𝐿## = 𝐿ß$% + 𝐿_Xß	. 
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Notice that both of the two terms on the right side can be used separately, because they 

represent the POF test and Independency test, respectively. And their joint influence lead 

to the so called CC test. 

 

In all, a backtesting process is the test to check whether or not the fitted VaR exceedance 

is equal to the so called empirical threshold at a given confidence value 𝛼. If failed to reject, 

we can conclude the given model fits well, otherwise, the model needs to be modified or 

abandoned. 

 

In R, the function ‘VARTest’ from package ‘rugarch’ helps do the backtesting test. 
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Chapter 6   

Reliability Verification of Copula Methods 

6.1  Data Summary 

In our study, different dimensional cases are selected to build portfolios. The purpose of 

our work contains two tips: 1. The influence of dimensions on the goodness of copula 

methods. 2. The accuracy of different copulas on estimation.  

 

To achieve our purpose, time point price data of stocks on NASDAQ and NYSE are 

extracted online by R functions. The time period we used is from Jan. 1st, 2005 to Jan. 13th 

2016. After collected, the stocks are clustered and assigned into different portfolios. As 

mentioned before, the raw datasets are transformed to log forms for time series analysis. 

Techniques treated with the data (BAC as an example) are shown below to get the log-

returns of each stock. 

 
##BAC 

bac<-BAC[,4] 

bac[,1]<-diff(log(bac[,1])) 

bac<-bac[-1,] 

bac<-as.xts(bac) 

 

Next, take portfolio {BAC, DAL, DG} as an example to see the details of the transformed 

dataset. The following output shows the first 6 rows of this portfolio’s historical log-returns.  

 

                        boa.logRet        delta.logRet       dollargeneral.logRet 

2009-11-16   -0.0069074058    0.024067026          0.016146980 

2009-11-17   -0.0063211336   -0.011328000         -0.002600738 

2009-11-18    0.0361184964   -0.017880425         -0.021496858 
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2009-11-19   -0.0166516336    -0.022150743          0.014091030 

2009-11-20     0.0006216973    0.003944778          0.014757125 

2009-11-23     0.0123534616    0.014332493          0.008152845 

 

Now, we examine the data included in our analysis to get a brief overview of them. Table 

2 summarizes the portfolios chosen as the sample. The first column is the dimensions of 

the samples in our research, which cover 3, 5 and 9 dimensional cases.  

 

Portfolio 

Dimensions 

Samples Sample size 

(rw size) 

Proportions Markets 

3 Amazon, Ford, Shell 1000 (250) 

 

1:1:1 

 

NYSE, 

NASDAQ BA, SPY, GS 

DDD,SPY,GS 

BAC, DAL, DG 

APPL, GOOG, MSFT 

5 APPLE, NFLX,DDD,BA,TUC 1750 (500) 1:1:1:1:1 NYSE, 

NASDAQ 
AMZN, FORD, GS, SHELL, SPY 

DDD,TUC,FORD,BAC,MSFT 

WMT, C, WMAR, MS, ACET 

SHELL,CITI,BAC,MS,ACUR 

APPLE, DAL, ENZN, SPY, 

NFLX 

9 APPLE, WMT, NFLX, 

SPY,C,F,AMZN,MSFT,GS 
2550 (250) 1:1:1:1:1:1:1:1:1 NYSE 

ACET, C, ACUR, BAC, 

MS, DDD,TUC, SH, SPY 

WSTL, C, ACUR, BA, MS, 

DDD, TUC, WMAR, 

ENZN 

Table 2 Description of the sampling portfolios 

 

The second column lists all the portfolios. We have 5 samples for 3 dimensional portfolios, 

6 for 5 dimensional case, and 3 for the 9 dimensions. Although the raw data are collected 

for more than 2800 days, we only extract 1000, 1750 and 2550 of them for 3, 5 and 9 

dimensional cases, respectively. What needs to be specified here is that the title “rw size” 

stands for Rolling Window sizes. The so called Rolling Window analysis is an algorithm 
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on moving time intervals that helps us estimate time series data forward stably. In addition, 

all of the assets in each portfolio are equally proportional, which are equity securities of 

listed companies on NYSE and NASDAQ.  

 

In order to ensure random sampling and typical, we selected elements of the portfolios by 

random sampling methods. For instance, portfolio {Amazon, Ford, Shell} is built with 

three representative stocks from Standard & Poor’s 500 Index, and the stocks are selected 

randomly by industries. A portfolio like {AAPL, GOOG, MSFT} consists of three 

technical corporations and it is designed to see if the functions of copulas will be affected 

by high related assets. For higher dimensional cases, we firstly opted a “stock pool” from 

Standard & Poor’s 500 Index with different industries (stratifications) and then randomly 

group assets together to form portfolios for our analysis.  

 

Although nominally some portfolios have highly related equity securities while others 

seem not, we cannot simply conclude that the trends of the assets are mutually influenced. 

For example, referring to the financial statements of Ford and Amazon, Vanguard Group, 

Inc. is the biggest shareholder of Amazon and the third biggest shareholder of Ford by the 

first season of 2016. Thus, it is believed that the two stocks are more or less correlated with 

each other and the relationship would be manifested on the second market. More details 

can be found in the output for each case. 

 

6.2  Accuracy test for Copula Estimation on trivariate cases 

In this section, we put our models into practice and check if they are reliable for real usage. 

The modeling process of portfolio {BAC, DAL, DG} with Gumbel Copula will be 

introduced in detail and backtesting results with further analysis are given with more 

attention. This portfolio contains tickers from three different sectors. A 750-day rolling 

analysis is conducted with 250-day rolling window, 1:1:1 weights and a 5% significant 

level. With the residual vectors estimated by GARCH model, we can then fit the residual 

distributions prepared for copula simulation. Figures 4, 5, and 6 give us a visualized view 

of how to choose the multivariate distributions for the simulated residuals. As for the curves 

in these plots, the blue ones represent the log-return residuals estimated by GO-GARCH 
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(1,1) model, while the yellow curves stand for normal distribution with parameters 

extracted from GO-GARCH (1,1). The green and black ones are for skewed-t distribution 

and skewed normal distribution, respectively. From these plots, it is obvious that skewed-

t distribution fits the estimated residuals the best, not only for the two tails, but also at the 

peak point. However, since simulating residuals on skewed-t distribution is time wasting 

and expensive, t distribution is preferred in most cases. (Franke, Hardle and Hafner, 2008). 

 

 
Figure 4 Residual plot for BAC fitted by GO-GARCH(1,1) 
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Figure 5 Residual plot for DAL fitted by GO-GARCH(1,1) 

 

Figure 6 Residual plot for DG fitted by GO-GARCH(1,1) 
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For other trivariate cases, t distribution is also the best choice for log-return residuals. Due 

to the limit of the space, we do not report all the plots here but only display portfolio {BAC, 

DAL, DG}’s as an illustration. 

 

After simulating the residuals, we are ready to fit copulas with them and get aimed 

parameters for the final VaR exceedance tests. Prior to applying backtesting, plotting 

parameters and variables is an easy way to check the goodness of the copula models as 

well. Figure 7 displays 750 residuals for the portfolio {BAC, DAL, DG} estimated from 

four commonly used Elliptical Copulas and Archimedean Copulas. In Figure 7, the first 

panel is for Gumbel, the second reports normal copula, the third one displays t copula, and 

the last plot is for Clayton Copula. It can be seen that normal and t copulas produce a 

roughly elliptical results, while the results of Gumbel copula are less partial to the outward. 



 

40 

 

 

 

Figure 7 scatter plot of Gumbel copula fitted residuals (1st panel), of normal copula (2nd panel), t copula (3rd), and 

clayton (4th) 
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As discussed at the start of Chapter 6, the goodness of fit is evaluated through backtesting 

for the VaR results. Both Unconditional Coverage Test and Conditional Test are conducted 

and compared for analysis. Charts in this section contain the results of backtesting methods 

for each applicable copula with expected coverage at 5%. To be more convincing, we made 

use of 3, 5 and 9 dimensional portfolios one by one as the cases for the tests. According to 

the definition, AMH Copula is only available at bivariate case (Franke, 2007), so it would 

not be involved in our analysis. Figure 8 visualizes the VaR prediction made by Gumbel 

Copula, although a few points exceed the criterial threshold, most of them remain 

acceptable. The rolling analysis is based on 750 days. Again, due to the limit of space, we 

only plot the VaR prediction with Gumbel Copula at here, VaR predictions for other 

copulas are of the similar format. Note the red line is the estimated VaR(α). 

 

 
Figure 8 VaR 5% prediction for trivariate portfolio {BAC, DAL, DG} with Gumbel Copula 

 

The summary of the backtesing results for this portfolio is given in Table 3: 
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Portfolio: {BAC, DAL, DG} 

copula unconditional conditional Exceedance 

Gumbel 0.5480806 0.7367212 5.6% (42 out of 750) 

Clayton NA NA NA 

Gaussian 0.4590989 0.4405354 5.6% (42 out of 750) 

t copula 0.06521229 0.1360852 4.53% (34 out of 750) 

NAC 0.5632115 0.5253472 5.5% (41 out of 750) 

Table 3 Bactesting results of portfolio {BAC, DAL, DG}, with 5 copula methods applied on 5% significant level 

 

For this portfolio, 5 copulas are applied to estimate the log-returns. After simulating all the 

parameters by DCC-GARCH (1,1) model, Maximum Likelihood Estimation was 

introduced to estimate the Copula parameters, with skewed t distribution defined as the 

margins. The parameters to be estimated consist of marginal parameters β and copula 

parameter α. As suggested from Table 3, all the tests, except for Clayton Copula, fail to 

reject the null hypothesis that we expect exactly 5% of the 750 days (approximately 37 

days) of exceedance. It is worth noting that the Nested Archimedean Copula in this case is 

iterated with a Gumbel generator. From the results, NAC with Gumbel generator gives us 

the best testing result, with 41 days or 5.6% out of the 750 days, while t Copula produces 

results with the most difference to our null hypothesis. As for Gaussian and Gumbel 

Copulas, they actually pass the test with the same exceedance result, that is, 5.6% or 42 

days out of 750 observed days. More importantly, Clayton Copula generates NA results 

since the copula parameter is not permitted to be negative unless the dimension of 

portfolios is less than 3. This error appears to be caused by the data itself, yet it also 

uncovers the restriction of Clayton Copula. 

 

The next portfolio we design contains three “cornerstones” from NASDAQ, and they are 

Amazon, Ford and Shell. Referring to their financial statement of the first season of 2016, 
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the components of their top ten shareholders are almost the same, which means investment 

banks or other personal investors believed these three stocks are not correlated too much 

and investing a portfolio with the stocks might be a wise choice.  

 

Portfolio: {AMZN, Ford, SHELL} 

copula unconditional conditional Exceedance 

Gumbel 0.3544971 0.7822533 4.53% (34 out of 750) 

Clayton 0.8027796 0.4134458 5.2% (39 out of 750) 

Gaussian 0.9333781 0.3770437 5.06% (38 out of 750) 

t copula 0.5515784 0.1781517 4.53% (34 out of 750) 

NAC 0.9333781 0.9950386 5.06% (38 out of 750) 

Table 4 Bactesting results of portfolio {AMZN, F, SH}, with 5 copula methods applied on 5% significant level 

 

From Table 4, all the tests fail to reject the null hypothesis, which means all of the copulas 

fit this model quite well. Compared with the last case, the p-values and exceedance 

numbers here look better and more reliable. More specifically, NAC with Clayton 

generator and Gaussian Copula perform the best results, while Gumbel and t copula 

provides the weakest fitness, say, 4.53% or 34 days out of 750 observed days. Figure 9 

shows the VaR prediction at 5% significant level, where the rolling window is still 250 

days. Since the information manifested by the plot is highly similar for all the cases in 3 

dimensions, we will not plot another one for the following 3 dimensional cases in this 

section any more. 
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Figure 9 Estimated VaR 5% ( solid line), P&L and Exceedance 

 

 

Portfolio: {BA, SPY, GS} 

copula unconditional conditional Exceedance 

Gumbel 0.0652123 0.1644217 6.5% (49 out of 750) 

Clayton 0.0037568 0.0058276 7.5% (56 out of 750) 

Gaussian 0.3673953 0.4207369 5.7% (43 out of 750) 

t copula 0.0315854 0.07015144 6.8% (51 out of 750) 

NAC 0.0213867 0.06917631 6.9% (52 out of 750) 

Table 5 Backtesting results of portfolio {BA, SPY, GS}, with 5 copula methods applied on 5% significant level 
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Table 5 displays backtesting results for portfolio {BA, SPY, GS}. At this time, the three 

stocks are from financial sectors with difference in focused businesses. We combine the 

three stocks together with 1:1:1 weights and 1000 log-return observations. From the table, 

Gaussian Copula fits the best, and Gumbel Copula ranks the second. As the above two 

cases, NAC iterated with Clayton as a generator performs better results than copulas like 

Gumbel or Clayton. In addition, as for Gumbel, t and NAC with Clayton, Conditional 

Coverage (CC) Tests fails to reject the null hypothesis, while Unconditional Coverage (UC) 

tests reject it. Based on the theoretical knowledge mentioned before, CC test has better 

performance over its counterpoints. Both CC and UC tests reject the null hypothesis under 

the model built with Clayton Copula, which convince us the restriction of Clayton Copula. 

 

 

Portfolio: {DDD, SPY, GS} 

copula unconditional conditional Exceedance 

Gumbel 0.5515784 0.7822533 4.5% (34 out of 750) 

Clayton NA NA NA 

Gaussian 0.1386943 0.3316343 3.87% (29 out of 750) 

t copula 0.1386943 0.3316343 3.87% (29 out of 750) 

NAC 0.4418941 0.6722767 4.4% (33 out of 750) 

Table 6 Backtesting results of portfolio {DDD, SPY, GS}, with 5 copula methods applied on 5% significant level 

 

In this portfolio, Clayton Copula fail to model the VaR’s once more because its parameters 

become negative again during the modeling process. Gumbel Copula and NAC fit better 

than the other two copulas. 
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In this section, VaR exceedance tests are taken on trivariate cases. Modeling processes are 

put into effect with fitted residuals and margins. Given the tables and plots, we can generate 

the following brief conclusions: 

• Although skewed t distribution fits the residuals estimated from time series models 

the best, in real cases, t distribution is usually preferred because of costs. 

• From the scatterplots of copula fitted residuals, we know that Gumbel Copula and 

Gaussian Copula produce more equally distributed residuals, while residuals 

estimated from t and Clayton copula assemble more on the tails. 

• For trivariate cases, NAC, Gumbel, elliptical, and Clayton copulas pass the 

Exceedance tests, which means they are workable for portfolios at this dimension 

level. 

• Clayton Copula has some calculating restrictions which prevent it from being 

effective for particular data. 

• NAC performs better than generator copulas themselves on backtesting, which 

means it can be a stable estimating method at this dimension level. 

 

6.3  Accuracy tests for Copula estimation on 5 dimensional cases 

With the backtesting results and short conclusions on trivariate cases, we extend the Copula 

methods to higher dimensions to see if the methods are still reliable. In this section, 5 

dimensional portfolios are established and analyzed. The weight of each asset in each 

portfolio is 1:1:1: 1:1. Since the increase of dimension makes the covariance matrix larger, 

we design a 1750 sample size with rolling window as 500 days. This will provide us more 

historical information compared with the 750-day experimental design. GO-GARCH (1,1) 

model is preferred at this time, and the residuals are then simulated on t distribution to 

provide data for copula estimation. The margins of copulas are still chosen as skewed t 

distribution, as discussed in Chapter 3.  

 

Consider a portfolio {AAPL, NFLX, DDD, BA, TUC}, we temporarily named it as 

complex.5d portfolio since the assets are selected from different sectors with complex 

backgrounds. The raw data are collected from Jan. 2005 to Dec. 2015.  
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Figure 10 displays the contour plots of fitted copulas on the given complex.5d portfolio. 

From this figure, we can see that the copulas overlap most estimated residuals. 

 

 
Figure 10 Estimated Residuals stretched with fitted Copulae: Gumbel  copula, clayton and normal 

 

 

Figure 11 plots the time-varying θ	estimated by t copula. It can be seen that θ oscillates a 

lot over the time period. This phenomenon occurs because the price of Apple’s equity 

security experienced huge increase during this observing period and thus made the whole 

portfolio face higher risk than the others. Figure 12 suggests the same point of view. P & 

L returns are witnessed a wide shake, with the corresponding 𝑉𝑎𝑅(𝛼) changed as well.  
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Figure 11 estimated t copula parameter theta 

 

 
Figure 12 VaR prediction at 5% level ( red line) and estimated Log-Returns 
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Although this portfolio has large covariance matrix and experiences a huge oscillation, 4 

copulas models the P & L fairly satisfying according to Table 7, except that Clayton Copula 

fails to pass the Exceedance tests. The reason of the failure is that its marginal parameters 

turned to be negative again. 

 

 

Portfolio: {AAPL, NFLX, DDD, BA, TUC} 

copula unconditional conditional Exceedance 

Gumbel 0.3208206 0.5854642 4.4% (55 out of 1250) 

Clayton NA NA NA 

Gaussian 0.7440254 0.803617 4.8% (60 out of 1250) 

t copula 0.9481972 0.7883348 4.96% (62 out of 1250) 

NAC 0.7893542 0.8231094 4.4% (55 out of 1250) 

Table 7 Backtesting results of portfolio {AAPL, NFLX}, with 5 copula methods applied on 5% significant level 

 

In order to figure out if these copulae really work well on 5 dimension, another 4 portfolios 

are designed, with internal weights as 1:1:1:1:1. Assumptions and constraints of the model 

are as same as the definitions past sections. Because the modeling process were introduced 

repeatedly in complex.5d portfolio case and previous 3 dimensional examples, we will only 

print out the backtesting results and make further inference. 

 

The backtesting results of the 4 designed portfolios are presented in Tables 8, 9, 10 and 11, 

with five different Copulas applied for each portfolio. At 5% significant level, all these 

copula methods predict Value-at-Risk pretty good. The decision regarding which copula 

fits the dependency structure the best can hardly be made for portfolio {AMZN, F, GS, 

SHELL, SPY} and {DDD, TUC, F, BAC, MSFT}, because either Archimedean Copula or 

Elliptical Copula fails to reject the null hypothesis.   
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Portfolio: {AMZN, FORD, GS, SHELL, SPY} 

copula unconditional conditional Exceedance 

Gumbel 0.4063832 0.6386581 5.5% (69 out of 1250) 

Clayton 0.9481972 0.7883348 4.96% (62 out of 1250) 

Gaussian 0.8450712 0.9801981 4.9% (61 out of 1250) 

t copula 0.4063832 0.6386581 5.5% (69 out of 1250) 

NAC 0.8964532 0.9354267 4.9% (61 out of 1250) 

Table 8  Backtesting results of portfolio {AMZN, FORD, GS, SH, SPY}, with 5 copula methods applied on 5% 
significant level 

 

 

Portfolio: {DDD, TUC, FORD, BAC, MSFT} 

copula unconditional conditional Exceedance 

Gumbel 0.115282 0.2105959 6% (75 out of 1250) 

Clayton 0.8462265 0.7121321 5.1% (64 out of 1250) 

Gaussian 0.1386943 0.3316343 5.6% (70 out of 1250) 

t copula 0.1386943 0.3316343 5.7% (71 out of 1250) 

NAC 0.4418941 0.6722767 6% (75 out of 1250) 

Table 9 Backtesting results of portfolio {DDD, TUC, F, BAC, MSFT}, with 5 copula methods applied on 5% sig. level 
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Portfolio: {WMT, C, WMAR, MS, ACET } 

copula unconditional conditional Exceedance 

Gumbel 0.05237355 0.1324256 6.24% (78 out of 1250) 

Clayton NA NA NA 

Gaussian 0.2592072 0.146309 4.3% (54 out of 750) 

t copula 0.03932489 0.107305 6.3% (9 out of 750) 

NAC 0.9481972 0.866156 4.96% (62 out of 750) 

Table 10 Backtesting results of portfolio {WMT, C, WMAR, MS, ACET}, with 5 copula methods applied on 5% 
significant level 

 

Portfolio: {SHELL, CITI, BAC, MS, ACUR } 

copula unconditional conditional Exceedance 

Gumbel 0.05237355 0.1520078 6.24% (78 out of 1250) 

Clayton 0.3208206 0.073336 4.4% (55 out of 1250) 

Gaussian 0.3208206 0.569273 4.4% (55 out of 1250) 

t copula 0.9483278 0.0510023 5.04% (63 out of 1250) 

NAC 0.4690168 0.04213229 4.56% (57 out of 750) 

Table 11 Backtesting results of portfolio {SH, CITI, BAC, MS, ACUR}, with 5 copula methods applied on 5% 
significant level 

 

The results of VaR Exceedance tests of portfolios {WMT, C, WMAR, MS, ACET} and 

{SH, CITI, BAC, MS, ACUR} can be found in Tables 10 and 11. Note that in Table 11, 

when predicting VaR with Gaussian Copula, DCC-GARCH (1,1) was firstly tried, yet the 

likelihood estimating process failed to converge, so we turned to GO-GARCH (1,1), which 
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provides accurate parameters. Furthermore, for {SH, CITI, BAC, MS, ACUR}, NAC fails 

to pass the CC test but passes the UC test, this information convinces us that independency 

check is necessary in verifying copula fitting. 

 

 

Figure 13 Estimated VaR 5% ( solid line), P&L and Exceedance 

 

 

Figure 13 visualizes the 𝑉𝑎𝑅(5%) ( the solid red line) with the points stand for time-point 

P&L. The data are estimated from 1750-day log-returns with 500-day rolling window.    
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Portfolio: {AAPL, DAL, EMZN, SPY, NFLX } 

copula unconditional conditional Exceedance 

Gumbel 0.022374765 0.04202986 8% (100 out of 1250) 

Clayton NA NA NA 

Gaussian 0.002615453 0.00519584 6.96% (87 out of 1250) 

t copula 0.115282 0.2235687 6% (75 out of 1250) 

NAC 0.6524971 0.8679374 5.3% (66 out of 1250) 

Table 12 Backtesting results of portfolio {AAPL,DAL,EMZN, SPY, NFLX}, with 5 copula methods applied on 5% 
significant level 

For Portfolio {AAPL, DAL, EMZN, SPY, NFLX}, Gumbel and Gaussian Copulas fail to 

pass the UC and CC tests. With no exception, the estimated parameters of Clayton Copula 

are negative again, which results in NA outputs. In this case, Nested Archimedean Copula 

with Gumbel generator passes the tests with 5.3% or 66 exceedance out of the 1250 days. 

This improves our belief on the goodness of NAC because it gives us more accurate 

estimations. 

 

From the discussion in this section, we can summarize the following tips: 

 

• Archimedean Copula, Elliptical Copula and NAC are reliable estimating methods 

on 5 dimensional VaR prediction, even some assets experience huge oscillations. 

• The Copulas’ passing rates of backtesting decrease a little compared with that on 

3 dimension. 

• Conditional Coverage test is more reliable since Independence properties cannot 

be checked through UC test and pure exceedance numbers and rates. 

• Overall, NAC estimates better parameters for VaR prediction on 5 dimensional 

cases. 

• Clayton Copula has calculating restrictions so that it cannot be widely used. 
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6.4  Extended accuracy checks for higher dimensional cases 

In this section, higher dimensional portfolios are designed and our modeling process is 

executed on these cases. For dimensions larger than 5, Archimedean copulas are able to 

capture different kinds of tail dependencies, whereas their functional symmetry (also called 

exchangeability) exerts negative influence on the stability of calculations especially for 

higher dimensional portfolios. Thus we need to use NAC or HAC to avoid the drawback.  

 

As described in Table 2, three portfolios are designed for 9 dimensional cases. Higher 

dimensions make the dependency structures more complex, so we can increase the sample 

size to a 2550-day period with 250-day rolling windows. Also, the margins of each copula 

are defined as following skewed t distribution. We select ‘itau’ as the method for copula 

estimations rather than ML method, because it ensures the stability of calculation at higher 

dimensions. The following tables represent the backtesting results of our copula models. 

Unfortunately, regarding the results of UC or CC test, none of them provide solid evidence 

to show any copula is effective at this dimension. 

 

Portfolio: {AAPL, WMT,NFLX, SPY, C, F, AMZN, MSFT, GS } 

copula unconditional conditional Exceedance 

HAC Gumbel 0.2428564 0.4969938 4.5% (103 out of 2300) 

Gaussian 0.00 0.00 1.7% (38 out of 2300) 

NAC Clayton NA NA NA 

HAC Clayton 0.02281092 0.02024528 4% (92 out of 2300) 

t Copula 0.001822061 0.003110557 1.8% (40 out of 2300) 

Table 13 Backtesting results of 9d portfolio {AAPL,, GS }, with 5 copula methods applied on 5% significant level 

Note that in Table 13, NAC with Clayton generator produce NAs because maximum 

likelihood method generates infinite elements in the covariance matrix. Only HAC Gumbel 
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is reliable regarding UC and CC tests, and there are 4.5% or 103 exceedance out of 2300 

P&L predictions. 

 

Portfolio: {ACET, C, ACUR, BAC, MS, DDD, TUC, SH, SPY } 

copula unconditional conditional Exceedance 

HAC Gumbel 0.003 0.01 3.7% (86 out of 2300) 

Gaussian 0.00 0.00 1.5% (34 out of 2300) 

NAC Clayton NA NA NA 

HAC Clayton 0.0073 0.025 3.4% (80 out of 2300) 

t Copula 0 0 1.5% (35 out of 2300) 

Table 14 Backtesting results of 9d portfolio {ACET,..., SPY }, with 5 copula methods applied on 5% sig. level 

 

Portfolio: {WSTL, C, ACUR, BA, MS, DDD, TUC, WMAR, ENZN } 

copula unconditional conditional Exceedance 

HAC Gumbel 0.02 0.005 3.7% (86 out of 2300) 

Gaussian 0.00 0.00 1.7% (30 out of 2300) 

NAC Clayton NA NA NA 

HAC Clayton 0.002 0.007 3.7% (85 out of 2300) 

t Copula 0 0 1.8% (42 out of 2300) 

Table 15 Backtesting results of 9d portfolio {WSTL,..., ENZN }, with 5 copula methods applied on 5% sig. level 
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For portfolios shown in Tables 14 and 15, none of the Copula method is effective, they all 

reject the null hypothesis at a level close to zero, let alone the failed execution of NAC 

with Clayton generator. 

 

Hereby, our concern is to which dimension can Copula methods be efficient in describing 

the portfolios dependency structures. After repeating the test procedures, only NAC is 

effective on 6 dimension, while others are not stable. For portfolios with dimensions more 

than 6, like 7, 8, or 9, it is groundless to stick to use Copula methods for VaR prediction. 
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Chapter 7   

Conclusion 

Currently in financial investment and risk management areas, predicting VaR at a given 

significant level α  accurately is always of main concern, especially when considering 

multi-dimensional portfolios. While it is known that Copulas can solve the dependency 

structure problem, no literature gives exact conclusion on the accuracy of each Copula 

method or their applicable dimensions. In this thesis, a modeling idea is presented and the 

verification of its accuracy is executed. Main conclusions of our thesis can be summarized 

as a list below: 

 

• Elliptical Copulas and Archimedean Copulas can be good ways for dealing with 

dependency structures of portfolios reached to 5 dimension, while Hierarchical 

Archimedean Copulas is still efficient in VaR(α)  prediction on 6 dimensional 

portfolios. 

• With the increase of dimensions, the accuracy of Copulas decreases constantly, 

while NAC and HAC are preferred because of its nested structures, which ensures 

the stability and validity. 

• Skewed t distribution is the most accurate margins for fitting Copulae. 

• Clayton Copula is restricted to many calculating restrictions and thus has limitation 

in practical usage. 

• GO-GARCH model is more efficient and stable in higher dimensional cases while 

other multivariate time series specifications are stable only at low dimensions and 

univariate cases. 

 

As for the modeling process, we combine time series models with Copula estimation. The 

reason is that we need accurate data before decomposing the dependency structure into the 

combination of a copula with marginal functions of the provided residuals. To achieve this 
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purpose, multivariate GARCH is proven to be effective ways to fit the raw residuals, 

covariance matrix, and estimated means we want. The whole modeling procedures are 

formulated based on the Value-at-Risk equation, or, Log-returns equation: 𝑋_,/ = 𝜇_,/ +

𝜎_,/𝜖_,/	, 𝑖 = 1,2, … , 𝑛.  

 

In addition, graphics are important tools to help us explore the properties and make 

inference in our study. The selections of simulating multivariate distributions, of Copulas’ 

margins and the goodness of Copula methods, for example, are all rely on plots. 

In this study, the optimizing methods are discussed to be maximum likelihood method at 

first, whereas with the increase of dimensions, ‘ml’ are no longer reliable and we turn to 

‘itau’, further studies can be focused on the impact of optimizing methods as well. 
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