

SPRAY TREATMENT PLANNING USING THE ANT SYSTEM METAHEURISTIC

by

RUCEN DENG

(Under the Direction of Walter D. Potter)

ABSTRACT

The spray treatment planning project is designed to assist the pesticide management

programs as a computerized decision support system for optimizing spray routes. This

optimization problem is simplified as the capacitated vehicle routing problem. Because the

exhaustive search costs a great deal of time to solve the combinatorial optimization problems,

Ant Metaheuristic is used to find the solution in a more efficient way. The algorithm of Ant

Metaheuristic is originally developed based on the phenomenon of ants’ foraging behavior which

is a kind of indirect communication by leaving pheromones. The results from Ant Metaheuristic

are compared with the results from the exhaustive search and the Genetic Algorithm. The

software CASPER is found to be a useful tool for calculating the results for different routes.

Although the Ant Metaheuristic result is not optimal like the exhaustive search, the result is

considered to be good enough, taking into account the program runtime and efficiency.

INDEX WORDS: Heuristic Search, Ant System Metaheuristic, Capacitated Vehicle Routing

Problem, Traveling Salesman Problem, Ant Colony Optimization

SPRAY TREATMENT PLANNING USING THE ANT SYSTEM METAHEURISTIC

by

RUCEN DENG

B.S., Huazhong University of Sci. and Tech., China, 2004

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2006

© 2006

Rucen Deng

All Rights Reserved

SPRAY TREATMENT PLANNING USING THE ANT SYSTEM METAHEURISTICS

by

RUCEN DENG

Major Professor: Walter D. Potter

Committee: Khaled Rasheed

Suchi M. Bhandarkar

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

August 2006

iv

DEDICATION

This thesis is dedicated to my family for they are always there with encouragement and

support.

v

ACKNOWLEDGEMENTS

I would like to thank Dr. Potter and all of the professors and friends for their support and

guidance.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS...v

LIST OF TABLES... viii

LIST OF FIGURES ... ix

CHAPTER

1 Introduction..1

1.1 Heuristic Search ...1

1.2 The Problem ...3

1.2 Ant Metaheuristic ---Ant Colony Optimization(ACO)4

2 Background ..10

2.1 Problem Domain...10

2.2 Detailed Ant System Metaheuristic..14

3 Methodology..20

3.1 Approach ..20

3.2 Experiment Setup ...25

4 Results..27

5 Summary..29

5.1 Conclusions ..29

5.2 Future Directions ..31

REFERENCES ..32

vii

APPENDICES ...36

A Flight Plan Result from ACO code..36

B Data File Used..38

C Part of Program in Phase 2...39

viii

LIST OF TABLES

Page

Table 2.1: Parameter Setting for ACO Algorithms without Local Search18

Table 3.1: Needed Pesticide Calculated by the Area Accounting for Exclusion...........................22

Table 3.2: Needed Pesticide Calculated by the Area Ignoring Exclusions....................................23

Table 4.1: Statistics Comparisons by Java Program..28

Table 4.1: Statistics Comparisons by CASPER...28

ix

LIST OF FIGURES

Page

Figure 1.1: Ant are the Insects the ACO algorithm is Based on..6

Figure 1.2: Ant Will Always Choose the Shorter Path..6

Figure 1.3: Two Paths between the Ants’ Nest and Food..7

Figure 1.4: Ants deposit Pheromones ..7

Figure 2.1: A 532-city TSP Instance Created by Shen Lin of AT&T In 1987..............................11

Figure 2.2: A 2-opt Example ...16

Figure 2.3: A 3-opt Example ...16

Figure 2.4: A 2.5-opt Example ..17

Figure 3.1: Program Flow of the Exhaustive Search ..21

 - 1 -

CHAPTER 1

INTRODUCTION

1.1 Heuristic Search

"Heuristic" is a word originally from the Greek word "eureka", which basically means

"pertaining to finding". This word relates to many subjects of human interest. A simple example

of heuristic is: if you can't find a solution guess one and explore its validity. ”Working

backwards” in this way can often shed new light on a topic. This concept can be used in areas

like computer science, psychology, philosophy, law, etc. The discussion here will deal only with

its relation to computer science. In the field of computer science a heuristic is sometimes called

an approximate algorithm. There are many different heuristic search algorithms such as hill

climbing, best first search and A*.

 A heuristic coding technique will usually generate good solutions, but doesn’t always

find the best solution. It is a logic based algorithm which is designed to work quickly, but at the

cost of providing the guaranteed best solution. In some cases it may fail altogether. A

metaheuristic is a higher-level strategy that works by guiding multiple heuristics in a search for

improved solutions. Ant System Metaheuristic is used to solve the Capacitated Vehicle Routing

Problem (CVRP).

The underlying principle of a heuristic search is to try only the paths that seem to be

getting us closer to our goal state, instead of trying all possible search paths. However at times it

 - 2 -

can be difficult to detect which path is leading to the goal state, so some method of quantifying a

given path’s potential quickness is called for.

A heuristic search can estimate the next potential states’ "closeness" to a goal state. The

measure of closeness is numerical so they can be compared and the path with the best measure of

closeness can be selected. This method is good for a very large search space where exhaustively

searching the entire space would not be feasible. To measure closeness, an evaluation function is

needed which can score a node in the search tree based on how close to the goal state it seems to

be. At best this will always be just a guess, but a good guess.

For example, considering a minimum cost problem of driving from a starting city S to a

goal city G (there are other cities between city S and city G), the straight line distance between a

possible next city and the goal city could be used to evaluate the “closeness” of that candidate

city. This method probably doesn’t accurately reflect the actual distance when traveling because

the roads are not always straight, and it doesn’t take into account how this move will affect the

travel time to other cities. Nonetheless it provides a quick way of guessing which helps guide the

search.

For an NP-Hard problem heuristics are one kind of solution approach. There are two

subcategories: constructive and local search methods. Constructive algorithms generate solutions

from scratch by iteratively adding solution components to an initially empty solution until the

solution is complete. A local search starts from some initial solution and repeatedly tries to

improve the current solution by introducing local changes. The first step in a local search

algorithm is to define a neighborhood structure over the set of candidate solutions. Then the hill-

climbing or iterative improvement technique is used to find the local maxima as a current

solution. For the hill-climbing technique the local maxima can be thought of as a hill peak in a

 - 3 -

range of hills. The hill-climbing technique will find the tallest “hill peak” of the hills in a

specified local search area, but that is not necessarily the highest peak in the entire hill range.

The local maxima are not necessarily the true or global maxima. Note that any global maximum

is also a local maximum; however a local maximum may or may not be the global maximum.

The local search will repeatedly look for improved solutions and replace the current solution

with improved solutions until no improved solutions can be found.

1.2 The Problem

To prevent the gypsy moth (Lymantria dispar L.) from devastating North America's forest, the

US Forest Service has to spray pesticides by aircraft. Using programs to find the optimal spray

planning will highly increase the spray productivity. At first, GypsES (Gypsy Moth Expert

System) was developed as a computerized decision support system for assisting the pesticide

management programs. Because GypsES used a geographical information system (GIS)

framework for on-screen digitizing and aerial photographs, it was primarily used in the spray

treatment planning by aircraft. However, GypsES could not determine the pesticide needed for

an aerial spray treatment project. Determining pesticide needs for the treatment projects was

mainly based on guesswork or historic information from other projects until CASPR (Computer

Assisted Spray Productivity Routing) was developed in 1988. CASPR was used to implement the

procedure for evaluating the efficiency of a single sprayed block. Later on, CASPER was

developed as an improved version of CASPR. CASPER requires the scheduled route as an input

and then reports statistics related to spray efficiency. The project in this paper emphasizes how to

get a good scheduled route as a part of spray treatment planning (STP).

 - 4 -

To apply the pesticide to the forest efficiently, planning the spray procedure to find the

optimal route is critical. The spray planning problem was simplified as the CVRP, and a heuristic

search was used to find the optimal spray route. Among several heuristic methods the ant

metaheuristic, or Ant Colony Optimization (ACO), was implemented. The results from ACO

were compared with the results from the exhaustive search and another heuristic method known

as Genetic Algorithm (GA).

1.3 Ant Metaheuristic --- Ant Colony Optimization (ACO)

1.3.1 Metaheuristic

 For a single-run with a heuristic algorithm constructive methods may get a limited

number of different solutions, especially for greedy construction heuristics. A local search may

stop at local optima which may be far from the solution we want. Metaheuristic methods are

used to overcome these problems. The disadvantages of the heuristic methods can be

counteracted by simply generating multiple heuristic runs. This is known as a metaheuristic

approach. When an acceptable answer cannot be found with a heuristic approach, a metaheuristic

method can be employed.

A metaheuristic is a set of algorithmic concepts that guides a series of heuristic methods.

It could be considered to be a general-purpose heuristic method designed to guide a set of

underlying problem-specific heuristics toward promising regions of the search space that contain

high-quality solutions. This role makes it applicable to a wide set of different problems. It can be

 - 5 -

thought of as a general algorithmic framework applied to different optimization problems with

relatively few problem specific modifications. A local search or construction heuristic could be

considered a metaheuristic method. Other examples of metaheuristics are tabu search,

evolutionary computation, and ant colony optimization. Using metaheuristics can increase the

probability of good solutions in a reasonable amount of time by making use of combinatorial

optimization.

1.3.2 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic that uses “virtual” ants that cooperate to find

good solutions to difficult discrete optimization problems. Its idea originated from biology

research of social insect societies like ant colonies. In the real world ants coordinate their

activities by stigmergy, which is a kind of indirect communication by leaving chemicals called

pheromones. According to Deneubourg, Goss, and their colleagues’ research (Deneubourg, Aron,

Goss, & Pasteels, 1990; Goss et al., 1989) foraging ants can find the shortest path between their

nest and a food source by marking the path they follow with pheromones.

 The research on ants was conducted by carrying out a double bridge experiment. In this

experiment there are two bridges between the ants’ nest and the food source (see Figure 1.3).

One bridge is longer than the other, and ants are free to move between the nest and the food. At

first the path the ants choose seems random, but after a period of time the ants start to converge

upon the shorter of the two bridges. The convergence of the ants upon the shorter path is an

emergent behavior. While ants move they lay down pheromones in a quantity proportional to the

quality of the food source discovered. Other ants observe the pheromone trail and are attracted to

 - 6 -

follow it. Paths leading to rich nearby food sources will be more frequented and consequently

the corresponding pheromone trails will grow faster.

 The ACO model is based on this phenomenon. The basic ACO approach is to code

“virtual” ants within the algorithm to cooperate and solve the routing problem by local sensing

and depositing virtual pheromones along the paths, which are typically represented as arcs in

connected graphs.

Figure 1.1: Ants are the Insects the ACO Algorithm is Based on

Figure 1.2: Ants Will Always Choose the Shorter Path

 - 7 -

Figure 1.3: Two Paths between the Ants’ Nest and Food

Figure 1.4: Ants deposit Pheromones

The first ant metaheuristic called Ant System (AS) was introduced by Marco Dorigo and

colleagues (Dorigo M., 1992). Then Elitist Ant System (EAS) was introduced as the first

improvement of the initial AS (M.Dorigo, V.Maniezzo, and A. Colorni., 1996). Bernd

Bullnheimer, Richard F. Hartl, and Christine Strauss proposed another improvement for AS

which is called Rank-Based Ant System (Bullnheimer B., R.F. Hartl and C. Strauss, 1999). Later

on, Dorigo, Gambardella and Stützle worked out various extended versions of the AS paradigm.

Dorigo and Gambardella have proposed Ant Colony System (ACS). Stützle and Hoos have

proposed MAX-MIN Ant System (MMAS) (Stützle T. and H. Hoos., 1997). Dorigo,

 - 8 -

Gambardella and Stützle have also proposed new hybrid versions of ant colony optimization

which include local search (Dorigo M., Gambardella L.M., Middendorf M. and Stützle T., 2002).

Ant Colony Algorithms are typically used to solve minimum cost problems. The problem

is usually represented as graphs of nodes and undirected arcs. The basic idea of the algorithm is

that the virtual ants (referred to as ants hereafter) evaluate the cost of the arcs they have traversed

by leaving pheromones on them, and eliminate any loops from their memorized arcs. In a given

amount of time the shorter arcs will receive a greater deposit of pheromones. A pheromone

evaporation rule will be included which will help remove some poor quality solutions. The ant’s

memory allows it to retrace the arc it has followed while searching for the destination node. At

the beginning of the search process, a constant amount of pheromone is assigned to all arcs.

When located at a node i an ant k uses the pheromone trail to compute the probability of

choosing j as the next node. The ants will iteratively move from one node to next, causing

increasing pheromone deposits while less frequented paths are subject to evaporation (this point

will be explained in details in chapter 2). The more iterations, the better the solutions will be.

Below are the basic steps for solving a problem by ACO:

1) Represent the problem in the form of sets of components and transitions, or by a set

of weighted graphs, on which “ants” can build solutions

2) Define the meaning of the pheromone trails

3) Define the heuristic preference for the ant while constructing a solution

4) If possible implement an efficient local search algorithm for the problem to be solved.

5) Choose a specific ACO algorithm and apply to the problem being solved

6) Tune the parameters of the ACO algorithm.

 - 9 -

ACO can be used for both static and dynamic combinatorial optimization problems. It

tends to perform better than other global optimization techniques such as simulated annealing for

routing problems. Its theoretical analysis is difficult due to its experimental research nature, and

its coding is somewhat complicated.

 - 10 -

CHAPTER 2

BACKGROUND

2.1 Problem Domain

2.1.1 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is stated as follows: given a number of cities and the

costs of traveling from any city to any other city, find the cheapest round-trip route that visits

each city exactly once and then returns to the starting city.

According to graph theory, the equivalent formulation is: given a complete weighted

graph (where the vertices would represent the cities, the edges would represent the roads, and the

weights would be the distances of the roads) find a Hamiltonian cycle with the least weight. A

Hamiltonian cycle (or Hamiltonian circuit, vertex tour, graph cycle) is a cycle that visits each

vertex exactly once, excluding the start/end vertex.

In the TSP problem it is required to return to the starting city. But even if we remove this

requirement it does not change the computational complexity of the problem. It is said to be a

NP-hard (Non-deterministic Polynomial-time hard) problem. To define the TSP problem as a

NP-complete problem a threshold of cost needs to be determined. Any route that meets the stated

requirements and has a cost below the threshold is a solution. An NP-hard problem is said to be

at least as hard as any NP-complete problem. It is hypothesized that NP-complete problems

could be solved in polynomial time on a deterministic Turing machine but this hypothesis has

not been proven.

 - 11 -

The problem is of considerable practical importance, and is common in transportation

and logistics areas. A classic example is in printed circuit manufacturing: scheduling the route

that the drill machine travels to drill holes in a printed circuit board (PCB). In robotic machining

or drilling applications the "cities" are parts to machine or holes (of different sizes) to drill, and

the "cost of travel" includes time for retooling the robot (single machine job sequencing

problem). For the problem addressed in this paper the “cities” are blocks to be sprayed.

Figure 2.1: A 532-city TSP Instance Created by Shen Lin of AT&T In 1987

2.1.2 The Capacitated Vehicle Routing Problem

 The Capacitated Vehicle Routing Problem (CVRP) is a subcategory of the Vehicle

Routing Problem (VRP). The VRP combines an efficient set of multiple TSP routes to form an

even more complex problem. In its simplest form the VRP involves some vehicles starting at a

central depot, making some number of service stops, then returning to the central depot. The

objective of the VRP is to minimize route length, service cost, travel time, or any combination of

 - 12 -

these variables. The VRP has a few variants which can be divided into several subcategories

including CVRP, VRP with Time Windows, Split Delivery VRP, and Multiple Depot VRP.

 The CVRP is similar to the VRP but with the additional constraint that all vehicles within

the fleet have a uniform carrying capacity of a single commodity. The commodity demand along

any route assigned to a vehicle must not exceed the capacity of the vehicle assigned to that route.

As an NP-complete problem, the CVRP is a common topic in operation research. It is also

related to mathematics, graph theory and transportation science. Solutions to this problem can be

found using heuristic methods such as Branch-and-Cut (or Branch-and-Bound) and genetic

algorithms.

Of the many heuristic search methods used for this problem, a particularly well studied

choice is the Branch-and-Cut method. This method is a decomposition-based separation

methodology for capacity constraints that excels in solving small instances of the TSP efficiently.

Specifically, when standard procedures fail to separate a candidate point it attempts to

decompose it into a combination of TSP tours. Any successful tours are then examined to see if

they violate capacity constraints. If there are not any successful tours the Farkas Theorem (T.K.

Ralphs, L. Kopman, W.R. Pulleyblank & L.E. Trotter, 2003) uses a hyperplane to separate the

point from the TSP polytope.

Genetic algorithm (GA) is also a powerful method, and an even faster hybrid GA is under

development. For that developmental hybrid GA the Initialization Heuristics (IH) are used to

generate an initial population, while the other two heuristics RemoveSharp and LocalOpt can be

applied to the GA offspring obtained either by crossover or by shuffling (G. Andal Jayalakshmi,

S. Sathiamoorthy, and R. Rajaram, 2001).

 - 13 -

Metaheuristic methods are also good for both the TSP and the CVRP problems. The ant

system metaheuristic combines an adaptive memory with a local heuristic function to repeatedly

construct solutions to hard combinatorial optimization problems like the CVRP. This paper will

deal with a metaheuristic method called Ant System Metaheuristic.

 The problem this paper focuses on is a specific case of CVRP with a single aircraft. The

specific case is stated as follows:

1. Let G=(V,E) be a connected graph, where V={ 1V , 2V , 3V ,…, nV } is the block set and

1V denotes the vertex at which the airport is located;

2. E={(iV , jV), ji ≠ } is the sets of arcs between iV and jV . Each arc has an associated

weight ijd , which is the distance between iV and jV .

3. Let a non-negative value iQ be the load associated with iV . The load is the amount of

pesticide that the given block needs.

It was assumed that there is a fleet of homogeneous aircraft with pesticide tank capacity

Q based at the airport and available. A trip is everything that occurs between the time the aircraft

takes off from the airport and the time it returns to airport. A trip of spraying blocks means that

an aircraft travels among several blocks and sprays them without going back to the airport to

refill pesticide. The CVRP in our project consists of determining aircraft spray routes starting

and ending at the airport such that:

• The load associated with any given block is sprayed by exactly one aircraft.

• The sum of all loads in one trip of spraying blocks does not exceed Q.

The linear combination of the number of aircraft and the total distance traveled by those

aircraft was minimized.

 - 14 -

2.2 Detailed Ant System Metaheuristic

The basic steps of Ant System are initialization, generate new solution, local search, and update

pheromones. During initialization the distance matrix, pheromone matrix, a matrix with nearest

neighbor lists of depth nn, a choice information matrix with combined pheromone and heuristic

information, and the ant structure are created. The distance matrix contains the distances between

each block. For example, distance_matrix[i][j] is the distance between block i and block j. Each

block has its own nearest neighbor list which holds the nn blocks near it. Typically, depth nn is a

small number ranging between 15 and 40 if the number of total blocks is bigger than 40. If the

total blocks are less than 15 then depth nn is less than or equal to the number of total blocks. To

get the nearest-neighbor list for a block i the first step is to sort the distance list id in order of

increasing distance to get '

id . When sorting id the order of blocks at equal distance to block i

does not matter and may be chosen randomly. The next step is to put the index of the r-th nearest

block to block i in a matrix nn_list[i][r]. If the r-th nearest block to block i is block j,

nn_list[i][r]=j.

 After initializing a pheromone matrix, a choice information matrix, and an ant structure,

ant tours can be constructed. The first step is to mark all blocks as unvisited. The next step is to

assign each ant an initial block randomly, then assign them a complete tour using the ant system

action choice rule. After that the ants are moved back to the initial block and each ant’s tour

length is computed. Below is the equation for the pertinent rule. ijp is the probability of selecting

block jV while the current ant is at block iV . If k

iNj ∉ , the value of ijp is set to be 0. ijτ

indicates how many local pheromones are currently deposited along arc (iV , jV). ijη is defined

 - 15 -

as the reciprocal of the cost along arc (iV , jV). Thus ijij d/1=η , where ijd is the distance

between block iV and jV . α and β are biases to be adjusted as needed. They are parameters

which determine the relative influence of pheromone trails and ijη respectively.

∑ ∈

=
k
iNl ijij

ijijk

ijp
βα

βα

ητ

ητ

][][

][][
, if k

iNj ∈ ,

 The tour construction steps are repeated until a tour has been completed by all ants. After

the solutions are constructed, a local search is used to improve the solutions. The local search is a

general approach for hard combinatorial optimization problems. A local search tries to improve

the current solution by local changes that iteratively explore neighborhoods of solutions. The

performance of a local search algorithm is affected primarily by the choice of an appropriate

neighborhood structure. A neighborhood structure is represented by the function s
SN 2: a

which assigns a set of neighbors SsN ⊆)(to every Ss ∈ .)(sN is also called the neighborhood

of s .

 Explicitly going through the set of all possible neighbors is difficult. A simple way of

defining neighborhood structure is to implicitly define possible local changes that may be

applied to arrive at a solution. That solution is a locally optimal but not guaranteed to be globally

optimal. The rules that govern the choice of acceptable neighborhood solutions are the best-

improvement rule and the first-improvement rule. The best-improvement rule means to choose

the neighborhood solution giving the best improvement of the objective function. The first-

improvement rule chooses the first improved solution. There are three popular types of local

search: 2-opt, 2.5-opt and 3-opt.

 2-opt can also be called 2-exchange. In the TSP case with a known candidate solution, s ,

the 2-exchange neighborhood of a candidate solution s consists of the set of all the candidate

 - 16 -

solutions '
s that can be obtained from s by exchanging two pairs of arcs in all possible ways. A

specific 2-opt example is shown in Figure 2.2 in which a set of arcs (b,c) and (a,f) are replaced

by a different set of arcs (a,c) and (b,f). The 3-opt neighborhood consists of those tours that can

be obtained from a tour s by replacing at most three of its arcs. Removing three arcs will

generate three partial tours. Recombining three partial tours will produce a full tour in eight

different ways. The 2.5-opt local search is a 2-opt local search under a restricted version of a 3-

opt move. While checking whether the 2-opt move will result in a better tour, it is also checking

for an improved move by inserting the city between a block, i, and its successor. Specific

examples of these local search algorithms are shown in the figures below.

Figure 2.2: A 2-opt Example

Figure 2.3: A 3-opt Example

 - 17 -

Figure 2.4: A 2.5-opt Example

 After the local search step is complete, the next and usually last step of the Ant System

Algorithm is to update pheromones. There are two sub-procedures in the updating pheromone

step: pheromone evaporation and pheromone deposit. Pheromone evaporation decreases the

value of the pheromone trail on all the arcs (i,j) by a constant factor ρ. Then pheromone is

deposited, or added, to the arcs belonging to the tours constructed by the ants. The global

updating rule in for the Ant System Algorithm can be found below. Ψ is the global best routing

solution found so far. ρ is within the range of (0,1] and indicates the persistence of the

pheromone while (1- ρ) indicates the evaporation of the pheromone. gbC is the cumulative cost

of all routes in Ψ .

ij

old

ij

new

ij τρτρτ ∆+−=)1(

1)(−=∆ gbij Cτ , if (iV , jV) Ψ∈

2.2.1 Rank-Based Ant System

 The difference between the original Ant System and Rank -Based Ant System is the

method of updating pheromone trails. In this algorithm ants are ranked based on the quality of

their solution, and pheromone deposit corresponds to the rank of the ant. Table 2.1 shows the

difference between the two algorithms’ parameters. α, β and ρ are discussed earlier in this

 - 18 -

chapter. 0τ is the initial value for all ijτ . m is the number of ants and nn
C is the length of the

tour generated by the nearest-neighbor heuristic. n is the number of blocks and r is the ranking

index.

ACO

algorithm

α β ρ m
0τ

AS 1 2 to 5 0.5 n m/ nn
C

AS-rank 1 2 to 5 0.1 n 0.5r(r-1)/ ρ nn
C

Table 2.1: Parameter Setting for ACO Algorithms without Local Search

The ants should be sorted by increasing tour length and the quantity of pheromone. An

ant’s deposits are weighted according to the rank of the ant. These procedures should be done

before updating the pheromone trails. If there is a tie between two, randomly order them. Only

the w-1 best-ranked ants and the ant that produced the best-so-far tour can deposit pheromone.

The ant which generated the best-so-far tour does not have to be among the set of ants of the

current algorithm iteration. The weight of the best-so-far tour is w, which is typically 6. Thus the

best-so-far tour’s contribution 1/ bs
C is multiplied by w. The r-th ranked best ant of the current

iteration deposit with a value 1/ r
C multiplied by a weight given by the biggest number among

{0, w-r}. Below is the formula for the Rank-Based Ant System pheromone update rule. bs
C is

the length of the best-so-far tour. The best-so far tour is the best tour found since the start of the

algorithm.

bs

ij

w

r

r

ijijij wrw ττττ ∆+∆−+← ∑
−

=

1

1

)(,

 - 19 -

Where:

r

ijτ∆ =1/ r
C

bs

ijτ∆ =1/ bs
C

 - 20 -

CHAPTER 3

METHODOLOGY

3.1 Approach

 This project utilizes two phases with each phase using different methods. The emphasis is

on phase 2 while phase 1 is just used to get the real optimal route for comparison. Phase 1 uses

an exhaustive search, i.e. greedy search, to find the minimum total ferry distance. Because the

total spray time is supposed to be non-variant regardless of how the route changes, the total flight

time will be determined by the total ferry distance. Thus the total ferry distance is the criteria to

choose the best route in the exhaustive search results. After reading the data files and performing

initialization, the program will generate a permutation list of all the blocks. In the next step,

assuming fuel is sufficient to fly to all the blocks, the exhaustive search tries every possible route

and reports the one with minimum total ferry distance as the solution. Then the total fight time of

the optimal route is calculated and the program will output the route with the time and distance

statistics.

 - 21 -

Figure 3.1: Program Flow of the Exhaustive Search

Both the exhaustive search method and the ACO method use the same way to calculate the total

flight time. The total flight time consists of two parts: the total spray time and the total ferry

flight time. The total spray time is calculated by the formula:

∑
=

÷×+×−=
N

i

i SpraySpeedlengthseTurningTimsTimeTotalSpray
1

)1(

Where N is the number of blocks, ilength is the length of the long side of the i-th block (every

block is assumed rectangular), and
SwathWidth

Width
s i= . iWidth is the short side rectangular width

of the i-th block

 The total ferry time is determined by the total ferry distance since the ferry speed is a

constant. The total ferry distance is accumulated in every single trip. Every single trip refers to a

trip between two blocks or a trip between a block and the airport. If the current pesticide carried

Data Input,
Initialization

Generate the
permutation list

Calculate the total ferry
distance for each list

Output the list with
minimum total ferry

distance

Output the statistics

 - 22 -

by the aircraft is more than the pesticide needed by current block, only the distance between the

last block and the current one will be accumulated. Otherwise, the trips back to the airport need

to be included. Originally the needed pesticide was calculated by the block area, taking into

account excluded areas such as lakes:

(ac)exclusionsfor accounting areablock thec)rate(gal/an applicatio pesticide)Needed(gal Pesticide ×=

The result from the formula above is listed in Table 3.1. As the program evolved a new equation

for pesticide needed was used that ignored areas that could be excluded from spraying such as

lakes:

(ac)exclusions ignoring areablock thec)rate(gal/an applicatio pesticide)Needed(gal Pesticide ×=

 The results from this formula can be found in Table 3.2. Comparing the current result

from Table 3.2 with the previous one in Table 3.1 shows that block 7 needs less pesticide when

the excluded areas were not counted in the spray area. The difference will result in different total

spray times. The method shown in Table 3.2 is more practical and accurate. Therefore it is

chosen to calculate the needed pesticide for every block.

Block ID No. Pesticide Needed(gallon)

1 316.47

2 201.96

3 415.47

4 409.86

5 489.06

6 1021.02

7 143.55

8 65.34

9 48.18

10 68.97

Total Pesticide Needed 3179.88

Table 3.1 Needed Pesticide calculated by the area accouting for exclusions

 - 23 -

Block ID No. Pesticide Needed(gallon)

1 316.47

2 201.96

3 415.47

4 409.86

5 489.06

6 1021.02

7 136.29

8 65.34

9 48.18

10 68.97

Total Pesticide Needed 3172.62

Table 3.2 Needed Pesticide calculated by the area ignoring exclusions

 The total flight time is calculated by the following formula:

TimeSpray Total
SpeedFerry

DistanceFerry Total
Time Total +=

 Phase 2 uses the ant metaheuristic to find the route with a nearly minimum total ferry

distance. A rank-based ant system algorithm with static input data array is implemented in the

program. Its model is a connected graph with blocks as nodes and routes between each node as

arcs. After an iteration of ant tour constructing is finished results from a good tour will be

recorded and compared with the results from last iteration. The tour with shorter total ferry

distance will be claimed as the best-so-far tour. The program will continue to run iterations

repeatedly and output the last best-so-far tour as the nearly optimal solution. The parameter

values are decided by previous experiments by others researchers (recall from Chapter 2.2.1).

Below is the ACO program module for phase 2:

/*
Construction graph:
It comprises one component for each of the spray blocks and arcs weighted by distance.
Constraints:
Each block can be visited once and the vehicle capacities cannot be exceeded.
Pheromone trails:
Pheromone trails πij are associated only with connections. The
pheromone trail refers to the desirability of visiting block j directly
after i.

 - 24 -

*/
/*main*/
Procedure ACOforSTP
InitializeData
 While (termination condition not met) do
/*The termination condition can be that the program has found a solution within a predefined
distance from a lower bound on the optimal solution quality, a maximum number of tour
constructions has been reached or a maximum number of algorithm iterations has been reached*/
 ConstuctAntSolutions
 ApplyLocalSearch
 UpdateStatistics
 UpdatePheromones
 End
EndProcedure

/*sub-procedure*/
Procedure InitializeData
 ReadInstance /*read data for blocks and the aircraft */
 ComputeDistances /* create the distance matrix*/
 ComputeNearestNeighborLists /* create a matrix with nearest neighbor lists of depth nn */
 ComputeChoiceInformation /* create pheromone matrix, create choice information matrix
with combined pheromone and heuristic information */
 InitializeAnts/* create ant structure, every ant has a memory storing tours, last tour length
and visited blocks*/

 InitializeParameters/* set values for α, β, ρ, m, 0τ */

 InitializeStatistics/* Initialize Statistics matrix containing information like best-solution-so-
far*/
endProcedure

Procedure ConstuctAntSolutions
 EmptyAntMemory /* mark all blocks unvisited*/
 AssignInitialBlockForEachAnt /* each ant randomly chooses its initial block*/

 ConstructTourForEachAnt /* each ant chooses blocks by the value of ijp (please refer to

chapter 2 for computing ijp)*/

 MoveAntBack
 ComputeTourLengthForEachAnt
endProcedure

Procedure ApplyLocalSearch /*please refer to chapter 2 for local search*/
 NeighborhoodStructureConstruction
 2optHeuristic
 LocalOptimalSolution
endProcedure

 - 25 -

Procedure UpdatePheromones /*update pheromones by the depositing pheromone formula and
evaporation rules*/
 Evaporate
 For i=1 to n do
 For j=i to n do
 Pheromone[i][j]←(1-p)‧ Pheromone[i][j]
 Pheromone[j][i] ← Pheromone[i][j]
 endFor
 endFor
 endProcedure
for k=1 to m do
DepositPheromone(k)
endFor
ComputeChoiceInformation
endProcedure

3.2 Experiment Setup

The phase 1 program was done in Java. The exhaustive search features a very long runtime. For

the block file used in the program, there are ten blocks. Thus the search will go through

3,628,800 (10!= 3628800) possible tours (the permutation of the ten blocks) to find the optimal

solution. An ordinary computer with one 1.4-GHz CPU may run it for an extended length of time.

In this case the program was run by a Multi-User Computing Server called Darwin in the

Artificial Intelligence Center at UGA. Darwin has two Intel Xeon 3-GHz CPUs with 2

instruction pipelines. The Windows XP Operation System sees it as a 4-CPU machine and will

automatically distribute the work among the CPUs. The runtime of the entire program was

several minutes when run by Darwin. The results will be stated in next chapter.

 Phase 2 was done in Visual Basic 6. This program runs much faster than the exhaustive

search. An ordinary computer with one 1.4-GHz CPU can run it in seconds. There were a few

assumptions made to make the problem easier to program. First of all the assumption was made

that there is only one aircraft and one airport. Second, the aircraft will always spray an entire

 - 26 -

block before moving on to the next block. So it is impossible to spray one block then stop when

not finishing the whole block and spray another one. Third, the shape of every block is similar to

a rectangle whose length is the block’s minimum bounding rectangle’s length (the longest side in

any direction) and its width is the block’s minimum bounding rectangle’s width (shortest side in

any direction). Length and width are measured in units of feet. The length and width data in the

program is not the same “length” and “width” value in the original block data file. For every

block, the “length” and “width” value are compared and the longer side is set to be the “length”

in the program. For most of blocks in the original block data file, the length is longer than the

width. But there is a block with its width longer than its length. Fourth, the aircraft will always

spray along the long side. Fifth, the aircraft will always refuel completely and refill pesticide

when returning to the airport.

 The parameter setup is stated as following. α is 1, β is 2 and ρ is 0.1. w, which is the

weight of the best-so-far tour, is 6 (recall from chapter 2). The number of ants is the same as the

number of blocks since there are relatively few blocks. The number of nearest neighbors is set to

be the same as the number of blocks as well. The algorithm can run for several iterations to

return a good solution, but the maximum iteration number is set to be 10. Among the three kinds

of local search, 2-opt is chosen since there are only a few blocks. All the statistics such as the

total flight time are calculated the same way they were for the exhaustive search method.

 - 27 -

CHAPTER 4

RESULTS

The exhaustive search and the ACO produce different route planning. Both are different from the

results of a GA program written by another colleague. At first comparing different spraying

plans and finding the optimal is difficult because statistics such as the total flight time are

calculated in different ways in different programs. As a result comparisons between different

route plans are difficult. To achieve the same assumptions and method to calculate the statistics,

a program in Java was written. When inputting the spray plan of blocks excluding airport visits,

the program will output the plan including airport visits and it gives the total fight time as well. It

reported the same route planning as GA's result but a different total fight time. Detailed results

are listed in the appendix. Some statistics comparisons are listed in Table 4.1.

 In fact, CASPER can compute the statistics when inputting the route excluding

airport visits. Table 4.2 shows the statistics for each method generated from CASPER. The total

product (the total needed pesticide) is 3173 gallons. It is rounded from the result of 3172.62

gallons (the result from Chapter 3, Table 3.2). Comparing the three cases between Table 4.1 and

Table 4.2, the total ferry time is exactly 3 hours different in each case. This difference is likely

because CASPER is a higher fidelity program and makes different assumptions. However, that

difference is not important because both tables show the same trend across the three methods.

For both CASPER and the Java program the total flight time of GA is greater than that of ACO,

which is greater than that of the exhaustive search (the method of computing the total flight time

 - 28 -

used in ACO and the exhaustive search is shown the appendices). CASPER has a very advanced

GUI compared to the Java program, which made it a major tool for computing the route statistics.

 GA ACO Exhaustive Search

Route (block only) {6,3,4,5,7,8,10,9,2,1 } {10,9,8,7,5,4,1,2,3,6} {1,2,4,5,7,8,9,10,6,3}

The Total Ferry
Distance (mile)

496.0 460.6 411.5

The Total Flight Time
(hour)

12.6 12.3 11.9

Table 4.1 Statistics Comparisons by Java Program

 GA ACO Exhaustive Search

Route (block only) {6,3,4,5,7,8,10,9,2,1 } {10,9,8,7,5,4,1,2,3,6} {1,2,4,5,7,8,9,10,6,3}

The Total Flight Time

(hour)
15.6 15.3 14.9

Total Product (gal) 3173 3173 3173

Table 4.2 Statistics Comparisons by CASPER

 Comparing those results, the exhaustive search gives the optimal route with the minimum

total flight time 11.9 (Java program)/14.9 (CASPER) hours. ACO and GA give nearly optimal

solutions but not the optimal route. Another point to keep in mind is, GA and ACO may use

different criteria for searching their solutions. It indicates they may search for different search

space. ACO searches for the minimum total ferry time without visiting the airport and then

computes the reported efficient route adding necessary visits to the airport. In the future, ACO

could be improved to search for the minimum total ferry time with visiting the airport. GA can

search with fuel constraint or without it. CASPER does not search for the optimal route. It only

calculates the statistics after inputting the routes manually.

 - 29 -

CHAPTER 5

SUMMARY

5.1 Conclusions

 This project has been presented as an application of the ant system metaheuristic to solve

the route planning part of the Spray Treatment Planning (STP) problem. The STP problem is to

plan the most efficient way to spray the forest consisting of several blocks of trees so that the

flight time is minimized and to assist managers in evaluating the productivity and efficiency of

different spray treatment projects. Because of the limitation of aircraft pesticide tank capacity, an

aircraft may require multiple trips back to the airport to spray a treatment area (a block).

Different spraying routes may result in different total flight times. The goal is to find spraying

routes that improve the efficiency of the project.

 A simplified model of the problem in the project is the CVRP. A typical CVPR may have

multiple vehicles/aircrafts to serve. In our experiment, we assume there is only one aircraft to

spray all blocks and there is only one airport. The straightforward way to solve the problem is to

test every possible route and choose the one with minimum time. This is called the greedy

approach, i.e. exhaustive search. When the number of blocks is large enough, this approach takes

a very long time to convergence. When dealing with a large number of blocks it is impractical to

compute every possible route, so a heuristic search is needed. Among a lot of heuristic and/or

metaheuristic methods, the ant system metaheuristic is an efficient algorithm for minimum cost

problems.

 - 30 -

 The work done for this project was primarily coding spray scheduling by ACO and an

exhaustive search. The ACO program was written in Visual Basic 6 and tested with stable results.

The exhaustive search program was written in Java and tested successfully. A small Java

program was also written to calculate the statistics for all methods. Using that program the spray

efficiency statistics for the whole set of blocks was obtained for comparison. The aim of the

work done here was to develop a decision making program to aid CASPER by adding a

scheduling model. The objective of the scheduling model is to get a good spray route so that the

aircraft can accomplish its goal in the least amount of time. The shape of the block can influence

the spray efficiency, and that effect has not yet been taken into account. Getting the minimum

total ferry distance was the main goal of the work done in this paper, with the assumption that

every block was rectangular.

 According to the experiment, the Rank-Based Ant System based on ACO gives a good

solution for ten blocks and one airport with less than a minute of runtime. The result was

different from the result of GA, but the difference does not mean something is wrong with either

method because of the nature of a heuristic search. A Heuristic search does not guarantee a true

optimal solution.

 GA and ACO reported different routes. ACO and the exhaustive search used the same

method for computing total flight time, and were therefore easier to compare. Using the same

program to compute the statistics for different routes would make comparison between GA and

ACO easier. This was done by inputting the routes reported by GA, ACO and the exhaustive

search, into a separate program coded in Java written to report statistics. Afterward CASPER

was used to the same end. Using CASPER as a common ground made comparison much easier,

 - 31 -

even more so because CASPER provides a simple GUI. The comparison of statistics shows that

the total flight times for ACO and GA are similar and they both can be considered good solutions.

However neither gave the best solution, which was the solution given by the exhaustive search.

5.2 Future Directions

 This experiment is primarily based on minimum total ferry distance without visiting the

airport. Adding the back trip to the airport cannot be implemented with a static data input. The

result could be improved if a dynamic data input could be achieved. Then the airport could be

added as a node in the CVRP model, and when the current pesticide carried by the aircraft is less

than the pesticide needed by the next block the algorithm could direct the plane to the airport

node. In the future, more constraints can be added and the distance array for ACO can be made

dynamic so that the airport is included in the array when the aircraft has to refill spray pesticide.

There are many other ACO algorithms to choose from and this experiment concentrated only on

the Rank-Based Ant System. Other ACO algorithms could be run and benchmarked to get better

solutions. Even beyond ACO other heuristic searches such as the tabu search could be attempted

for comparison.

 - 32 -

REFERENCES

Detailed Explanation of Traveling Salesman Problem: http://www.tsp.gatech.edu/index.html

http://en.wikipedia.org

Dorigo, M. (1992). Optimization, Learning and Natural Algorithms [in Italian]. PhD thesis,

Dipartimento di Elettronica, Politecnico di Milano, Milan

Dorigo, M., Maniezzo, V., & Colorni, A. (1991). Positive feedback as a search strategy.

Technical report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Milan

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant System: Optimization by a colony of

cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 26(1), 29-41

Dorigo M. & L.M. Gambardella. (1997). Ant Colonies for the Traveling Salesman Problem.

BioSystems, 43:73-81.

Dorigo M., G. Di Caro & L. M. Gambardella. (1999). Ant Algorithms for Discrete Optimization.

Artificial Life, 5(2):137-172.

 - 33 -

Stützle T. and H. Hoos. (1997). The MAX-MIN Ant System and Local Search for the Traveling

Salesman Problem. Proceedings of ICEC'97 - 1997 IEEE 4th International Conference on

Evolutionary Computation, IEEE Press, 308-313.

Stützle T. and H. Hoos. (1997). Improvements on the Ant System: Introducing the MAX-MIN Ant

System. ICANNGA97 - Third International Conference on Artificial Neural Networks and

Genetic Algorithms, University of East Anglia, Norwich, UK, Wien: Springer Verlag.

Bullnheimer B., R.F. Hartl and C. Strauss. (1999). An Improved Ant system Algorithm for the

Vehicle Routing Problem. Annals of Operations Research, Vol89, Number 0, 319--328

Dorigo M., Gambardella L.M., Middendorf M. and Stützle T. (2002). Guest editorial: special

section on ant colony optimization. Evolutionary Computation, IEEE Transactions, Vol6, Issue 4,

317- 319

Karl F. Doerner, Richard F. Hartl, Guenter Kiechle, Maria Lucka, and Marc Reimann. (2004).

Parallel Ant Systems for the Capacitated Vehicle Routing Problem. EvoCOP 2004, LNCS 3004,

72--83

G. Andal Jayalakshmi, S. Sathiamoorthy, and R. Rajaram. (2001). A Hybrid Genetic Algorithm-

A New Approach to solve Traveling Salesman Problem. International Journal of Computational

Engineering Science, Vol.2 No.2, 339--355

 - 34 -

T.K. Ralphs, L. Kopman, W.R. Pulleyblank & L.E. Trotter. (2003). On the capacitated vehicle

routing problem. Mathematical Program., vol. 94, 343-- 359

W.D.Potter, etc. (2004) STP: An Aerial Spray Treatment Planning System, Technical report,

Artificial Intelligence Center, University of Georgia, Athens, GA

Deneubourg, J.L., Aron, S., Goss, S., & Pasteels, J.M. (1990). The Self-organizing Exploratory

Pattern of The Argentine Ant. Journal of Insect Behavior, 3, 159-168

Goss, S., Aron, S., Deneubourg, J.L., & Pasteels, J.M. (1989). Self-organized shortcuts in the

Argentine Ant. Naturwissenschaften, 76, 579-581

Marco Dorigh, Thomas Stutzle. (2004) Ant Colony Optimization. The MIT Press, 2004

Garey, Michael R., Johnson, David S. (1979) Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman New York, 1979

Michael Rice. (2005) A New Hybrid Computational Intelligence Algorithm for Optimized

Vehicle Routing Application in Geographic Information Systems, PhD thesis, Department of

Geography, University of Georgia, Athens, GA

Potter, W.D., Deng, X., Li, J. (2000) A web-based expert system for gypsy moth risk assessment,

Computer and Electronics in Agriculture, 27(2000): 95-105.

 - 35 -

Shoshana, A., Julien, B. (1999). Approximation algorithm for the capacitated traveling salesman

Problem with pickups and deliveries, Naval Research Logistics, 46: 655-670.

Potter, W.D., Ramyaa, Li, J., Ghent, J., Twardus, D., Thistle, H. (2002). STP: an aerial spray

treatment planning system, SoutheastCon, 2002. Proceedings IEEE, 300-305.

Formal definition of NP-completeness: http://en.wikipedia.org/wiki/NP-complete

 - 36 -

APPENDICES

A Flight Plan Result from ACO code

"Air Tractor 400(App. Rate=.33(gal/ac),Avg. Load=350 (gallons))"

"Block data source: sample_blockdata.txt"

start from the airport

go to block 10.0

go to block 9.0

go to block 8.0

go to block 7.0

go to block 5.0

go to airport

go to block 5.0

go to airport

go to block 5.0

go to block 4.0

go to airport

go to block 4.0

go to block 1.0

go to airport

go to block 1.0

 - 37 -

go to block 2.0

go to block 3.0

go to airport

go to block 3.0

go to airport

go to block 3.0

go to block 6.0

go to airport

go to block 6.0

go to airport

go to block 6.0

go to airport

go to block 6.0

go to airport

the total ferry distance is 460.5900000000001

the total time is 12.28825 hours

 - 38 -

B Date File Used

Block data source

1,483003.2293,4116981.4864,959,0,8024,5524,28.63,0.00,12.64,24.98,36.00,45.27,44.87,56.08,

57.32,58.29,59.12

2,502251.0036,4110413.8127,612,0,5301,5212,16.35,12.64,0.00,13.00,25.29,32.80,32.29,43.46,

44.70,45.66,46.49

3,523008.3857,4113061.3787,1259,0,9466,5911,3.90,24.98,13.00,0.00,23.05,23.76,20.56,32.83,

34.01,34.25,34.93

4,523943.3668,4075980.7562,1242,0,11005,5806,21.43,36.00,25.29,23.05,0.00,15.81,22.96,27.0

4,28.22,31.16,32.38

5,548039.4700,4084152.4641,1482,0,11889,5556,20.19,45.27,32.80,23.76,15.81,0.00,9.66,11.67

,12.91,15.43,16.62

6,552922.0797,4098916.0143,3094,0,13540,11209,16.67,44.87,32.29,20.56,22.96,9.66,0.00,12.8

9,13.93,13.69,14.37

7,566801.9919,4083496.0452,435,22,5360,4735,28.97,56.08,43.46,32.83,27.04,11.67,12.89,0.00

,1.26,4.77,6.04

8,568794.0784,4083088.2945,198,0,3503,2984,30.13,57.32,44.70,34.01,28.22,12.91,13.93,1.26,

0.00,4.16,5.35

9,572443.1959,4088696.0940,146,0,3705,2536,30.35,58.29,45.66,34.25,31.16,15.43,13.69,4.77,

4.16,0.00,1.28

10,574180.4606,4089813.1696,209,0,3802,2730,31.04,59.12,46.49,34.93,32.38,16.62,14.37,6.04

,5.35,1.28,0.00

===

 - 39 -

Aircraft details:

AirTractor AT400

.33,"App. Rate (gal/ac)"

125,"Swath Width (ft)"

140,"Application Speed (mph)"

120,"Ferry Speed (mph)"

30,"Avg. Turning Time (seconds)"

350,"Avg. Load (gallons)" - pesticide capacity

C Part of program in Phase 2

'The method of computing the total flight time used in ACO.

Dim i, acoOutput As Long

Dim totalSprayConsumption, curpest, remainedPest As Double

Dim ToAirportNo, AirportLabel, airport_visits As Integer

Dim t1, t2 As Double

Dim TotalFerryDistance As Double

Dim totalSpraytime As Double

Dim currentdir As String

TotalFerryDistance = 0

totalSpraytime = 0

totalSprayConsumption = 0

airport_visits = 0

 - 40 -

acoOutput = FreeFile

currentdir = CurDir$ + "\AcoFileOutput.txt"

Open currentdir For Append As #acoOutput

Write #acoOutput, "Air Tractor 400(App. Rate=.33(gal/ac),Avg. Load=350 (gallons))"

Write #acoOutput, "Block data source: sample_blockdata.txt"

Write #acoOutput, " "

Write #acoOutput, "Start from airport"

AirportLabel = 1

curpest = aircraft.AverageLoad 'curpest is the current spray in the aircraft tank

For i = 0 To blockno_n - 1

t1 = instance.Ewidth(i) / aircraft.SwathWidth 't1 is the number of swath. unit: ft

totalSpraytime = totalSpraytime + (t1 - 1) * aircraft.TurningTime / 3600 + t1 *

instance.Elength(i) * 0.00019 / aircraft.SpraySpeed

'TurningTime unit :sec,Elength unit: ft,SpraySpeed:mph

'1sec=1/3600 hour,1 foot = 0.000 189 394 mile

If i = 0 Then

TotalFerryDistance = instance.ToAirportDistanc(best_so_far_ant.tour(i))

End If

'If the current spray is enough for the current block, the aircraft don’t fly to the airport.

 - 41 -

 If (curpest > instance.SprayConsumption(best_so_far_ant.tour(i))) Then

 Write #acoOutput, "Go to Block ID No." & (best_so_far_ant.tour(i) + 1)

Write #acoOutput, " "

 curpest = curpest - instance.SprayConsumption(best_so_far_ant.tour(i))

 If i = 0 Then

TotalFerryDistance = instance.ToAirportDistanc(best_so_far_ant.tour(i))

 Else

'instance.distance(k) is the distance between last block and the current block

TotalFerryDistance = TotalFerryDistance + instance.distance(best_so_far_ant.tour(i - 1),

best_so_far_ant.tour(i))

 End If

 Else

Write #acoOutput, "Go to Block ID No." & (best_so_far_ant.tour(i) + 1)

'If the current spray is less than the block need, calculate the trips to the airport as airport_visits

 airport_visits = Int((instance.SprayConsumption(best_so_far_ant.tour(i)) - curpest) /

aircraft.AverageLoad) + 1

 For ToAirportNo = 1 To airport_visits

 Write #acoOutput, "Go to airport"

 Write #acoOutput, "Go to Block ID No." & (best_so_far_ant.tour(i) + 1)

 Next

 'After refilling spray then applying to the current airport, calculate the spray left-over

 - 42 -

remainedPest = (instance.SprayConsumption(best_so_far_ant.tour(i)) - curpest) Mod

aircraft.AverageLoad

 curpest = aircraft.AverageLoad - remainedPest

 If i = 0 Then

TotalFerryDistance = instance.ToAirportDistanc(best_so_far_ant.tour(i)) * (2 * airport_visits + 1)

 Else

TotalFerryDistance = TotalFerryDistance + instance.distance(best_so_far_ant.tour(i - 1),

best_so_far_ant.tour(i)) + instance.ToAirportDistanc(best_so_far_ant.tour(i)) * 2 * airport_visits

 End If

 End If

Next

TotalFerryDistance = TotalFerryDistance + instance.ToAirportDistanc(best_so_far_ant.tour(i))

t2 = totalSpraytime + TotalFerryDistance / aircraft.FerrySpeed 't2 unit :hour

Write #acoOutput, "go to airport "

Write #acoOutput, " "

Write #acoOutput, "The Total Ferry Distance is (unit:mile) " & TotalFerryDistance

 Write #acoOutput, " "

 Write #acoOutput, "The Total Spray time is (unit:hour) " & totalSpraytime

 Write #acoOutput, " "

 Write #acoOutput, "The total time is (unit:hour) " & t2

 Write #acoOutput, " "

Close #acoOutput

MsgBox "the program is finished", vbOKOnly

