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ABSTRACT 

The spray treatment planning project is designed to assist the pesticide management 

programs as a computerized decision support system for optimizing spray routes.  This 

optimization problem is simplified as the capacitated vehicle routing problem. Because the 

exhaustive search costs a great deal of time to solve the combinatorial optimization problems, 

Ant Metaheuristic is used to find the solution in a more efficient way. The algorithm of Ant 

Metaheuristic is originally developed based on the phenomenon of ants’ foraging behavior which 

is a kind of indirect communication by leaving pheromones.  The results from Ant Metaheuristic 

are compared with the results from the exhaustive search and the Genetic Algorithm. The 

software CASPER is found to be a useful tool for calculating the results for different routes. 

Although the Ant Metaheuristic result is not optimal like the exhaustive search, the result is 

considered to be good enough, taking into account the program runtime and efficiency. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Heuristic Search 

 

"Heuristic" is a word originally from the Greek word "eureka", which basically means 

"pertaining to finding". This word relates to many subjects of human interest. A simple example 

of heuristic is: if you can't find a solution guess one and explore its validity. ”Working 

backwards” in this way can often shed new light on a topic. This concept can be used in areas 

like computer science, psychology, philosophy, law, etc. The discussion here will deal only with 

its relation to computer science. In the field of computer science a heuristic is sometimes called 

an approximate algorithm. There are many different heuristic search algorithms such as hill 

climbing, best first search and A*. 

 A heuristic coding technique will usually generate good solutions, but doesn’t always 

find the best solution. It is a logic based algorithm which is designed to work quickly, but at the 

cost of providing the guaranteed best solution.  In some cases it may fail altogether. A 

metaheuristic is a higher-level strategy that works by guiding multiple heuristics in a search for 

improved solutions. Ant System Metaheuristic is used to solve the Capacitated Vehicle Routing 

Problem (CVRP). 

The underlying principle of a heuristic search is to try only the paths that seem to be 

getting us closer to our goal state, instead of trying all possible search paths. However at times it 
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can be difficult to detect which path is leading to the goal state, so some method of quantifying a 

given path’s potential quickness is called for.   

A heuristic search can estimate the next potential states’ "closeness" to a goal state. The 

measure of closeness is numerical so they can be compared and the path with the best measure of 

closeness can be selected. This method is good for a very large search space where exhaustively 

searching the entire space would not be feasible. To measure closeness, an evaluation function is 

needed which can score a node in the search tree based on how close to the goal state it seems to 

be. At best this will always be just a guess, but a good guess.   

For example, considering a minimum cost problem of driving from a starting city S to a 

goal city G (there are other cities between city S and city G), the straight line distance between a 

possible next city and the goal city could be used to evaluate the “closeness” of that candidate 

city. This method probably doesn’t accurately reflect the actual distance when traveling because 

the roads are not always straight, and it doesn’t take into account how this move will affect the 

travel time to other cities. Nonetheless it provides a quick way of guessing which helps guide the 

search. 

For an NP-Hard problem heuristics are one kind of solution approach. There are two 

subcategories: constructive and local search methods. Constructive algorithms generate solutions 

from scratch by iteratively adding solution components to an initially empty solution until the 

solution is complete. A local search starts from some initial solution and repeatedly tries to 

improve the current solution by introducing local changes. The first step in a local search 

algorithm is to define a neighborhood structure over the set of candidate solutions. Then the hill-

climbing or iterative improvement technique is used to find the local maxima as a current 

solution. For the hill-climbing technique the local maxima can be thought of as a hill peak in a 
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range of hills. The hill-climbing technique will find the tallest “hill peak” of the hills in a 

specified local search area, but that is not necessarily the highest peak in the entire hill range. 

The local maxima are not necessarily the true or global maxima. Note that any global maximum 

is also a local maximum; however a local maximum may or may not be the global maximum. 

The local search will repeatedly look for improved solutions and replace the current solution 

with improved solutions until no improved solutions can be found.   

1.2 The Problem 

 

To prevent the gypsy moth (Lymantria dispar L.) from devastating North America's forest, the 

US Forest Service has to spray pesticides by aircraft.  Using programs to find the optimal spray 

planning will highly increase the spray productivity. At first, GypsES (Gypsy Moth Expert 

System) was developed as a computerized decision support system for assisting the pesticide 

management programs.  Because GypsES used a geographical information system (GIS) 

framework for on-screen digitizing and aerial photographs, it was primarily used in the spray 

treatment planning by aircraft. However, GypsES could not determine the pesticide needed for 

an aerial spray treatment project. Determining pesticide needs for the treatment projects was 

mainly based on guesswork or historic information from other projects until CASPR (Computer 

Assisted Spray Productivity Routing) was developed in 1988. CASPR was used to implement the 

procedure for evaluating the efficiency of a single sprayed block.  Later on, CASPER was 

developed as an improved version of CASPR. CASPER requires the scheduled route as an input 

and then reports statistics related to spray efficiency. The project in this paper emphasizes how to 

get a good scheduled route as a part of spray treatment planning (STP). 
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To apply the pesticide to the forest efficiently, planning the spray procedure to find the 

optimal route is critical. The spray planning problem was simplified as the CVRP, and a heuristic 

search was used to find the optimal spray route. Among several heuristic methods the ant 

metaheuristic, or Ant Colony Optimization (ACO), was implemented. The results from ACO 

were compared with the results from the exhaustive search and another heuristic method known 

as Genetic Algorithm (GA).  

 

 

 

1.3 Ant Metaheuristic --- Ant Colony Optimization (ACO) 

1.3.1 Metaheuristic 

 

  For a single-run with a heuristic algorithm constructive methods may get a limited 

number of different solutions, especially for greedy construction heuristics. A local search may 

stop at local optima which may be far from the solution we want. Metaheuristic methods are 

used to overcome these problems. The disadvantages of the heuristic methods can be 

counteracted by simply generating multiple heuristic runs. This is known as a metaheuristic 

approach. When an acceptable answer cannot be found with a heuristic approach, a metaheuristic 

method can be employed.  

A metaheuristic is a set of algorithmic concepts that guides a series of heuristic methods. 

It could be considered to be a general-purpose heuristic method designed to guide a set of 

underlying problem-specific heuristics toward promising regions of the search space that contain 

high-quality solutions. This role makes it applicable to a wide set of different problems. It can be 
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thought of as a general algorithmic framework applied to different optimization problems with 

relatively few problem specific modifications.  A local search or construction heuristic could be 

considered a metaheuristic method. Other examples of metaheuristics are tabu search, 

evolutionary computation, and ant colony optimization. Using metaheuristics can increase the 

probability of good solutions in a reasonable amount of time by making use of combinatorial 

optimization. 

 

1.3.2 Ant Colony Optimization  

 

Ant Colony Optimization (ACO) is a metaheuristic that uses “virtual” ants that cooperate to find 

good solutions to difficult discrete optimization problems. Its idea originated from biology 

research of social insect societies like ant colonies. In the real world ants coordinate their 

activities by stigmergy, which is a kind of indirect communication by leaving chemicals called 

pheromones. According to Deneubourg, Goss, and their colleagues’ research (Deneubourg, Aron, 

Goss, & Pasteels, 1990; Goss et al., 1989) foraging ants can find the shortest path between their 

nest and a food source by marking the path they follow with pheromones.  

 The research on ants was conducted by carrying out a double bridge experiment. In this 

experiment there are two bridges between the ants’ nest and the food source (see Figure 1.3). 

One bridge is longer than the other, and ants are free to move between the nest and the food. At 

first the path the ants choose seems random, but after a period of time the ants start to converge 

upon the shorter of the two bridges. The convergence of the ants upon the shorter path is an 

emergent behavior. While ants move they lay down pheromones in a quantity proportional to the 

quality of the food source discovered. Other ants observe the pheromone trail and are attracted to 
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follow it.  Paths leading to rich nearby food sources will be more frequented and consequently 

the corresponding pheromone trails will grow faster. 

 The ACO model is based on this phenomenon. The basic ACO approach is to code 

“virtual” ants within the algorithm to cooperate and solve the routing problem by local sensing 

and depositing virtual pheromones along the paths, which are typically represented as arcs in 

connected graphs. 

 

Figure 1.1: Ants are the Insects the ACO Algorithm is Based on 

 

Figure 1.2: Ants Will Always Choose the Shorter Path 
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Figure 1.3: Two Paths between the Ants’ Nest and Food 

 

 

Figure 1.4: Ants deposit Pheromones 

 

The first ant metaheuristic called Ant System (AS) was introduced by Marco Dorigo and 

colleagues (Dorigo M., 1992). Then Elitist Ant System (EAS) was introduced as the first 

improvement of the initial AS (M.Dorigo, V.Maniezzo, and A. Colorni., 1996). Bernd 

Bullnheimer, Richard F. Hartl, and Christine Strauss proposed another improvement for AS 

which is called Rank-Based Ant System (Bullnheimer B., R.F. Hartl and C. Strauss, 1999). Later 

on, Dorigo, Gambardella and Stützle worked out various extended versions of the AS paradigm. 

Dorigo and Gambardella have proposed Ant Colony System (ACS). Stützle and Hoos have 

proposed MAX-MIN Ant System (MMAS) (Stützle T. and H. Hoos., 1997). Dorigo, 
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Gambardella and Stützle have also proposed new hybrid versions of ant colony optimization 

which include local search (Dorigo M., Gambardella L.M., Middendorf M. and Stützle T., 2002).  

Ant Colony Algorithms are typically used to solve minimum cost problems. The problem 

is usually represented as graphs of nodes and undirected arcs. The basic idea of the algorithm is 

that the virtual ants (referred to as ants hereafter) evaluate the cost of the arcs they have traversed 

by leaving pheromones on them, and eliminate any loops from their memorized arcs. In a given 

amount of time the shorter arcs will receive a greater deposit of pheromones.  A pheromone 

evaporation rule will be included which will help remove some poor quality solutions. The ant’s 

memory allows it to retrace the arc it has followed while searching for the destination node. At 

the beginning of the search process, a constant amount of pheromone is assigned to all arcs. 

When located at a node i an ant k uses the pheromone trail to compute the probability of 

choosing j as the next node. The ants will iteratively move from one node to next, causing 

increasing pheromone deposits while less frequented paths are subject to evaporation (this point 

will be explained in details in chapter 2). The more iterations, the better the solutions will be. 

Below are the basic steps for solving a problem by ACO: 

1) Represent the problem in the form of sets of components and transitions, or by a set 

of weighted graphs, on which “ants” can build solutions 

2) Define the meaning of the pheromone trails 

3) Define the heuristic preference for the ant while constructing a solution 

4) If possible implement an efficient local search algorithm for the problem to be solved. 

5) Choose a specific ACO algorithm and apply to the problem being solved 

6) Tune the parameters of the ACO algorithm. 
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ACO can be used for both static and dynamic combinatorial optimization problems. It 

tends to perform better than other global optimization techniques such as simulated annealing for 

routing problems. Its theoretical analysis is difficult due to its experimental research nature, and 

its coding is somewhat complicated. 
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CHAPTER 2 

BACKGROUND 

 

2.1 Problem Domain 

2.1.1 Traveling Salesman Problem 

 

The Traveling Salesman Problem (TSP) is stated as follows: given a number of cities and the 

costs of traveling from any city to any other city, find the cheapest round-trip route that visits 

each city exactly once and then returns to the starting city. 

According to graph theory, the equivalent formulation is: given a complete weighted 

graph (where the vertices would represent the cities, the edges would represent the roads, and the 

weights would be the distances of the roads) find a Hamiltonian cycle with the least weight. A 

Hamiltonian cycle (or Hamiltonian circuit, vertex tour, graph cycle) is a cycle that visits each 

vertex exactly once, excluding the start/end vertex. 

In the TSP problem it is required to return to the starting city. But even if we remove this 

requirement it does not change the computational complexity of the problem. It is said to be a 

NP-hard (Non-deterministic Polynomial-time hard) problem. To define the TSP problem as a 

NP-complete problem a threshold of cost needs to be determined. Any route that meets the stated 

requirements and has a cost below the threshold is a solution. An NP-hard problem is said to be 

at least as hard as any NP-complete problem. It is hypothesized that NP-complete problems 

could be solved in polynomial time on a deterministic Turing machine but this hypothesis has 

not been proven. 
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The problem is of considerable practical importance, and is common in transportation 

and logistics areas. A classic example is in printed circuit manufacturing: scheduling the route 

that the drill machine travels to drill holes in a printed circuit board (PCB). In robotic machining 

or drilling applications the "cities" are parts to machine or holes (of different sizes) to drill, and 

the "cost of travel" includes time for retooling the robot (single machine job sequencing 

problem). For the problem addressed in this paper the “cities” are blocks to be sprayed. 

 

Figure 2.1: A 532-city TSP Instance Created by Shen Lin of AT&T In 1987 

 

2.1.2 The Capacitated Vehicle Routing Problem 

 

 The Capacitated Vehicle Routing Problem (CVRP) is a subcategory of the Vehicle 

Routing Problem (VRP). The VRP combines an efficient set of multiple TSP routes to form an 

even more complex problem. In its simplest form the VRP involves some vehicles starting at a 

central depot, making some number of service stops, then returning to the central depot. The 

objective of the VRP is to minimize route length, service cost, travel time, or any combination of 



 - 12 - 

these variables. The VRP has a few variants which can be divided into several subcategories 

including CVRP, VRP with Time Windows, Split Delivery VRP, and Multiple Depot VRP.  

 The CVRP is similar to the VRP but with the additional constraint that all vehicles within 

the fleet have a uniform carrying capacity of a single commodity. The commodity demand along 

any route assigned to a vehicle must not exceed the capacity of the vehicle assigned to that route. 

As an NP-complete problem, the CVRP is a common topic in operation research. It is also 

related to mathematics, graph theory and transportation science. Solutions to this problem can be 

found using heuristic methods such as Branch-and-Cut (or Branch-and-Bound) and genetic 

algorithms.   

Of the many heuristic search methods used for this problem, a particularly well studied 

choice is the Branch-and-Cut method. This method is a decomposition-based separation 

methodology for capacity constraints that excels in solving small instances of the TSP efficiently. 

Specifically, when standard procedures fail to separate a candidate point it attempts to 

decompose it into a combination of TSP tours. Any successful tours are then examined to see if 

they violate capacity constraints. If there are not any successful tours the Farkas Theorem (T.K. 

Ralphs, L. Kopman, W.R. Pulleyblank & L.E. Trotter, 2003) uses a hyperplane to separate the 

point from the TSP polytope.  

Genetic algorithm (GA) is also a powerful method, and an even faster hybrid GA is under 

development. For that developmental hybrid GA the Initialization Heuristics (IH) are used to 

generate an initial population, while the other two heuristics RemoveSharp and LocalOpt can be 

applied to the GA offspring obtained either by crossover or by shuffling (G. Andal Jayalakshmi, 

S. Sathiamoorthy, and R. Rajaram, 2001).  
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Metaheuristic methods are also good for both the TSP and  the CVRP problems. The ant 

system metaheuristic combines an adaptive memory with a local heuristic function to repeatedly 

construct solutions to hard combinatorial optimization problems like the CVRP. This paper will 

deal with a metaheuristic method called Ant System Metaheuristic. 

 The problem this paper focuses on is a specific case of CVRP with a single aircraft. The 

specific case is stated as follows:  

1. Let G=(V,E) be a connected graph, where V={ 1V , 2V , 3V ,…, nV } is the block set and 

1V  denotes the vertex at which the airport is located; 

2. E={( iV , jV ), ji ≠ } is the sets of arcs between iV  and jV . Each arc has an associated 

weight ijd , which is the distance between  iV  and jV . 

3. Let a non-negative value iQ  be the load associated with iV . The load is the amount of 

pesticide that the given block needs.  

It was assumed that there is a fleet of homogeneous aircraft with pesticide tank capacity 

Q based at the airport and available. A trip is everything that occurs between the time the aircraft 

takes off from the airport and the time it returns to airport. A trip of spraying blocks means that 

an aircraft travels among several blocks and sprays them without going back to the airport to 

refill pesticide.  The CVRP in our project consists of determining aircraft spray routes starting 

and ending at the airport such that: 

• The load associated with any given block is sprayed by exactly one aircraft. 

• The sum of all loads in one trip of spraying blocks does not exceed Q. 

The linear combination of the number of aircraft and the total distance traveled by those 

aircraft was minimized. 

    



 - 14 - 

 

2.2 Detailed Ant System Metaheuristic  

 

The basic steps of Ant System are initialization, generate new solution, local search, and update 

pheromones. During initialization the distance matrix, pheromone matrix, a matrix with nearest 

neighbor lists of depth nn, a choice information matrix with combined pheromone and heuristic 

information, and the ant structure are created. The distance matrix contains the distances between 

each block. For example, distance_matrix[i][j] is the distance between block i and block j. Each 

block has its own nearest neighbor list which holds the nn blocks near it. Typically, depth nn is a 

small number ranging between 15 and 40 if the number of total blocks is bigger than 40. If the 

total blocks are less than 15 then depth nn is less than or equal to the number of total blocks. To 

get the nearest-neighbor list for a block i the first step is to sort the distance list id  in order of 

increasing distance to get '

id . When sorting id  the order of blocks at equal distance to block i 

does not matter and may be chosen randomly. The next step is to put the index of the r-th nearest 

block to block i in a matrix nn_list[i][r]. If the r-th nearest block to block i is block j, 

nn_list[i][r]=j.  

 After initializing a pheromone matrix, a choice information matrix, and an ant structure, 

ant tours can be constructed. The first step is to mark all blocks as unvisited. The next step is to 

assign each ant an initial block randomly, then assign them a complete tour using the ant system 

action choice rule. After that the ants are moved back to the initial block and each ant’s tour 

length is computed. Below is the equation for the pertinent rule. ijp  is the probability of selecting 

block jV  while the current ant is at block iV . If k

iNj ∉ , the value of ijp  is set to be 0. ijτ  

indicates how many local pheromones are currently deposited along arc ( iV , jV ). ijη  is defined 
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as the reciprocal of the cost along arc ( iV , jV ). Thus ijij d/1=η , where ijd  is the distance 

between block iV  and jV . α and β are biases to be adjusted as needed. They are parameters 

which determine the relative influence of pheromone trails and ijη  respectively.  

∑ ∈

=
k
iNl ijij

ijijk

ijp
βα

βα

ητ

ητ

][][

][][
, if  k

iNj ∈ , 

 The tour construction steps are repeated until a tour has been completed by all ants. After 

the solutions are constructed, a local search is used to improve the solutions. The local search is a 

general approach for hard combinatorial optimization problems. A local search tries to improve 

the current solution by local changes that iteratively explore neighborhoods of solutions.  The 

performance of a local search algorithm is affected primarily by the choice of an appropriate 

neighborhood structure. A neighborhood structure is represented by the function s
SN 2: a  

which assigns a set of neighbors SsN ⊆)(  to every Ss ∈ . )(sN  is also called the neighborhood 

of s .  

 Explicitly going through the set of all possible neighbors is difficult. A simple way of 

defining neighborhood structure is to implicitly define possible local changes that may be 

applied to arrive at a solution. That solution is a locally optimal but not guaranteed to be globally 

optimal. The rules that govern the choice of acceptable neighborhood solutions are the best-

improvement rule and the first-improvement rule. The best-improvement rule means to choose 

the neighborhood solution giving the best improvement of the objective function. The first- 

improvement rule chooses the first improved solution. There are three popular types of local 

search: 2-opt, 2.5-opt and 3-opt.  

 2-opt can also be called 2-exchange. In the TSP case with a known candidate solution, s , 

the 2-exchange neighborhood of a candidate solution s  consists of the set of all the candidate 
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solutions '
s  that can be obtained from s  by exchanging two pairs of arcs in all possible ways. A 

specific 2-opt example is shown in Figure 2.2 in which a set of arcs (b,c) and (a,f) are replaced 

by a different set of  arcs (a,c) and (b,f). The 3-opt neighborhood consists of those tours that can 

be obtained from a tour s  by replacing at most three of its arcs. Removing three arcs will 

generate three partial tours. Recombining three partial tours will produce a full tour in eight 

different ways. The 2.5-opt local search is a 2-opt local search under a restricted version of a 3-

opt move. While checking whether the 2-opt move will result in a better tour, it is also checking 

for an improved move by inserting the city between a block, i, and its successor. Specific 

examples of these local search algorithms are shown in the figures below. 

 

Figure 2.2: A 2-opt Example  

 

Figure 2.3: A 3-opt Example 
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Figure 2.4: A 2.5-opt Example 

 After the local search step is complete, the next and usually last step of the Ant System 

Algorithm is to update pheromones. There are two sub-procedures in the updating pheromone 

step: pheromone evaporation and pheromone deposit. Pheromone evaporation decreases the 

value of the pheromone trail on all the arcs (i,j) by a constant factor ρ. Then pheromone is 

deposited, or added, to the arcs belonging to the tours constructed by the ants. The global 

updating rule in for the Ant System Algorithm can be found below. Ψ  is the global best routing 

solution found so far. ρ is within the range of (0,1] and indicates the persistence of the 

pheromone while (1- ρ) indicates the evaporation of the pheromone. gbC  is the cumulative cost 

of all routes in Ψ . 

ij

old

ij

new

ij τρτρτ ∆+−= )1(  

1)( −=∆ gbij Cτ , if ( iV , jV ) Ψ∈  

2.2.1 Rank-Based Ant System  

 

 The difference between the original Ant System and Rank -Based Ant System is the 

method of updating pheromone trails. In this algorithm ants are ranked based on the quality of 

their solution, and pheromone deposit corresponds to the rank of the ant. Table 2.1 shows the 

difference between the two algorithms’ parameters. α, β and ρ are discussed earlier in this 
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chapter. 0τ  is the initial value for all ijτ . m  is the number of ants and nn
C  is the length of the 

tour generated by the nearest-neighbor heuristic. n  is the number of blocks and r is the ranking 

index.  

ACO 

algorithm 

α β ρ m 
0τ  

AS 1 2 to 5 0.5 n m/ nn
C  

AS-rank 1 2 to 5 0.1 n 0.5r(r-1)/ ρ nn
C  

Table 2.1: Parameter Setting for ACO Algorithms without Local Search 

 

The ants should be sorted by increasing tour length and the quantity of pheromone. An 

ant’s deposits are weighted according to the rank of the ant. These procedures should be done 

before updating the pheromone trails. If there is a tie between two, randomly order them. Only 

the w-1 best-ranked ants and the ant that produced the best-so-far tour can deposit pheromone. 

The ant which generated the best-so-far tour does not have to be among the set of ants of the 

current algorithm iteration. The weight of the best-so-far tour is w, which is typically 6. Thus the 

best-so-far tour’s contribution 1/ bs
C   is multiplied by w. The r-th ranked best ant of the current 

iteration deposit with a value 1/ r
C  multiplied by a weight given by the biggest number among 

{0, w-r}. Below is the formula for the Rank-Based Ant System pheromone update rule. bs
C  is 

the length of the best-so-far tour. The best-so far tour is the best tour found since the start of the 

algorithm. 

 

bs

ij

w

r

r

ijijij wrw ττττ ∆+∆−+← ∑
−

=

1

1

)( , 
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Where: 

r

ijτ∆ =1/ r
C  

bs

ijτ∆ =1/ bs
C  
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CHAPTER 3 

METHODOLOGY  

 

3.1 Approach  

 

  This project utilizes two phases with each phase using different methods. The emphasis is 

on phase 2 while phase 1 is just used to get the real optimal route for comparison. Phase 1 uses 

an exhaustive search, i.e. greedy search, to find the minimum total ferry distance. Because the 

total spray time is supposed to be non-variant regardless of how the route changes, the total flight 

time will be determined by the total ferry distance. Thus the total ferry distance is the criteria to 

choose the best route in the exhaustive search results. After reading the data files and performing 

initialization, the program will generate a permutation list of all the blocks. In the next step, 

assuming fuel is sufficient to fly to all the blocks, the exhaustive search tries every possible route 

and reports the one with minimum total ferry distance as the solution. Then the total fight time of 

the optimal route is calculated and the program will output the route with the time and distance 

statistics.  
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Figure 3.1: Program Flow of the Exhaustive Search 

 

Both the exhaustive search method and the ACO method use the same way to calculate the total 

flight time. The total flight time consists of two parts: the total spray time and the total ferry 

flight time. The total spray time is calculated by the formula: 

∑
=

÷×+×−=
N

i

i SpraySpeedlengthseTurningTimsTimeTotalSpray
1

)1(  

Where N is the number of blocks, ilength  is the length of the long side of the i-th block (every 

block is assumed rectangular), and 
SwathWidth

Width
s i= . iWidth  is the short side rectangular width 

of the i-th block 

 The total ferry time is determined by the total ferry distance since the ferry speed is a 

constant.  The total ferry distance is accumulated in every single trip. Every single trip refers to a 

trip between two blocks or a trip between a block and the airport. If the current pesticide carried 

Data Input, 
Initialization 

Generate the 
permutation list 

Calculate the total ferry 
distance for each list 

Output the list with 
minimum total ferry 

distance 

Output the statistics 
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by the aircraft is more than the pesticide needed by current block, only the distance between the 

last block and the current one will be accumulated. Otherwise, the trips back to the airport need 

to be included. Originally the needed pesticide was calculated by the block area, taking into 

account excluded areas such as lakes:  

(ac)exclusionsfor  accounting areablock  thec)rate(gal/an applicatio pesticide)Needed(gal Pesticide ×=

 

The result from the formula above is listed in Table 3.1. As the program evolved a new equation 

for pesticide needed was used that ignored areas that could be excluded from spraying such as 

lakes:  

(ac)exclusions ignoring areablock  thec)rate(gal/an applicatio pesticide)Needed(gal Pesticide ×=  

 

 The results from this formula can be found in Table 3.2. Comparing the current result 

from Table 3.2 with the previous one in Table 3.1 shows that block 7 needs less pesticide when 

the excluded areas were not counted in the spray area. The difference will result in different total 

spray times. The method shown in Table 3.2 is more practical and accurate. Therefore it is 

chosen to calculate the needed pesticide for every block.  

Block ID No. Pesticide Needed(gallon) 

1 316.47 

2 201.96 

3 415.47 

4 409.86 

5 489.06 

6 1021.02 

7 143.55 

8 65.34 

9 48.18 

10 68.97 

Total Pesticide Needed 3179.88 

Table 3.1 Needed Pesticide calculated by the area accouting for exclusions 
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Block ID No. Pesticide Needed(gallon) 

1 316.47 

2 201.96 

3 415.47 

4 409.86 

5 489.06 

6 1021.02 

7 136.29 

8 65.34 

9 48.18 

10 68.97 

Total Pesticide Needed 3172.62 

Table 3.2 Needed Pesticide calculated by the area ignoring exclusions  

 The total flight time is calculated by the following formula: 

TimeSpray  Total
SpeedFerry 

DistanceFerry  Total
Time Total +=  

 Phase 2 uses the ant metaheuristic to find the route with a nearly minimum total ferry 

distance. A rank-based ant system algorithm with static input data array is implemented in the 

program. Its model is a connected graph with blocks as nodes and routes between each node as 

arcs. After an iteration of ant tour constructing is finished results from a good tour will be 

recorded and compared with the results from last iteration. The tour with shorter total ferry 

distance will be claimed as the best-so-far tour. The program will continue to run iterations 

repeatedly and output the last best-so-far tour as the nearly optimal solution. The parameter 

values are decided by previous experiments by others researchers (recall from Chapter 2.2.1). 

Below is the ACO program module for phase 2: 

/* 
Construction graph: 
It comprises one component for each of the spray blocks and arcs weighted by distance. 
Constraints: 
Each block can be visited once and the vehicle capacities cannot be exceeded. 
Pheromone trails: 
Pheromone trails πij are associated only with connections.  The 
pheromone trail refers to the desirability of visiting block j directly 
after i. 
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*/ 
/*main*/ 
Procedure ACOforSTP 
InitializeData 
       While (termination condition not met) do 
/*The termination condition can be that the program has found a solution within a predefined 
distance from a lower bound on the optimal solution quality, a maximum number of tour 
constructions has been reached or a maximum number of algorithm iterations has been reached*/ 
               ConstuctAntSolutions 
               ApplyLocalSearch 
               UpdateStatistics 
               UpdatePheromones 
       End 
EndProcedure 
 
/*sub-procedure*/ 
Procedure InitializeData 
       ReadInstance  /*read data for blocks and the aircraft */ 
       ComputeDistances  /* create the distance matrix*/ 
       ComputeNearestNeighborLists /* create a matrix with nearest neighbor lists of depth nn */ 
       ComputeChoiceInformation /* create pheromone matrix, create choice information matrix 
with combined pheromone and heuristic information */ 
       InitializeAnts/* create ant structure, every ant has a memory storing tours, last tour length 
and visited blocks*/ 

       InitializeParameters/* set values for α, β, ρ, m, 0τ */ 

       InitializeStatistics/* Initialize Statistics matrix containing information like best-solution-so-
far*/ 
endProcedure 
 
Procedure ConstuctAntSolutions 
       EmptyAntMemory /* mark all blocks unvisited*/ 
       AssignInitialBlockForEachAnt /* each ant randomly chooses its initial block*/ 

       ConstructTourForEachAnt /* each ant chooses blocks by the value of  ijp  (please refer to 

chapter 2 for computing ijp )*/ 

       MoveAntBack 
       ComputeTourLengthForEachAnt 
endProcedure 
 
Procedure ApplyLocalSearch /*please refer to chapter 2 for local search*/ 
       NeighborhoodStructureConstruction 
       2optHeuristic 
       LocalOptimalSolution 
endProcedure 
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Procedure UpdatePheromones /*update pheromones by the depositing pheromone formula and 
evaporation rules*/ 
       Evaporate 
               For i=1 to n do 
                       For j=i to n do 
                               Pheromone[i][j]←(1-p)‧ Pheromone[i][j] 
                               Pheromone[j][i] ← Pheromone[i][j] 
                               endFor 
               endFor 
       endProcedure 
for k=1 to m do 
DepositPheromone(k) 
endFor 
ComputeChoiceInformation 
endProcedure 
 

3.2 Experiment Setup 

 

The phase 1 program was done in Java. The exhaustive search features a very long runtime. For 

the block file used in the program, there are ten blocks. Thus the search will go through 

3,628,800 (10!= 3628800) possible tours (the permutation of the ten blocks) to find the optimal 

solution. An ordinary computer with one 1.4-GHz CPU may run it for an extended length of time. 

In this case the program was run by a Multi-User Computing Server called Darwin in the 

Artificial Intelligence Center at UGA. Darwin has two Intel Xeon 3-GHz CPUs with 2 

instruction pipelines. The Windows XP Operation System sees it as a 4-CPU machine and will 

automatically distribute the work among the CPUs. The runtime of the entire program was 

several minutes when run by Darwin. The results will be stated in next chapter. 

 Phase 2 was done in Visual Basic 6. This program runs much faster than the exhaustive 

search. An ordinary computer with one 1.4-GHz CPU can run it in seconds. There were a few 

assumptions made to make the problem easier to program. First of all the assumption was made 

that there is only one aircraft and one airport. Second, the aircraft will always spray an entire 
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block before moving on to the next block. So it is impossible to spray one block then stop when 

not finishing the whole block and spray another one. Third, the shape of every block is similar to 

a rectangle whose length is the block’s minimum bounding rectangle’s length (the longest side in 

any direction) and its width is  the block’s minimum bounding rectangle’s width (shortest side in 

any direction). Length and width are measured in units of feet. The length and width data in the 

program is not the same “length” and “width” value in the original block data file. For every 

block, the “length” and “width” value are compared and the longer side is set to be the “length” 

in the program. For most of blocks in the original block data file, the length is longer than the 

width. But there is a block with its width longer than its length. Fourth, the aircraft will always 

spray along the long side. Fifth, the aircraft will always refuel completely and refill pesticide 

when returning to the airport.  

 The parameter setup is stated as following. α is 1, β is 2 and ρ is 0.1. w, which is the 

weight of the best-so-far tour, is 6 (recall from chapter 2). The number of ants is the same as the 

number of blocks since there are relatively few blocks. The number of nearest neighbors is set to 

be the same as the number of blocks as well. The algorithm can run for several iterations to 

return a good solution, but the maximum iteration number is set to be 10. Among the three kinds 

of local search, 2-opt is chosen since there are only a few blocks.  All the statistics such as the 

total flight time are calculated the same way they were for the exhaustive search method. 
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CHAPTER 4 

RESULTS 

 

The exhaustive search and the ACO produce different route planning. Both are different from the 

results of a GA program written by another colleague. At first comparing different spraying 

plans and finding the optimal is difficult because statistics such as the total flight time are 

calculated in different ways in different programs. As a result comparisons between different 

route plans are difficult. To achieve the same assumptions and method to calculate the statistics, 

a program in Java was written. When inputting the spray plan of blocks excluding airport visits, 

the program will output the plan including airport visits and it gives the total fight time as well. It 

reported the same route planning as GA's result but a different total fight time. Detailed results 

are listed in the appendix. Some statistics comparisons are listed in Table 4.1.  

  In fact, CASPER can compute the statistics when inputting the route excluding 

airport visits. Table 4.2 shows the statistics for each method generated from CASPER. The total 

product (the total needed pesticide) is 3173 gallons. It is rounded from the result of 3172.62 

gallons (the result from Chapter 3, Table 3.2). Comparing the three cases between Table 4.1 and 

Table 4.2, the total ferry time is exactly 3 hours different in each case. This difference is likely 

because CASPER is a higher fidelity program and makes different assumptions. However, that 

difference is not important because both tables show the same trend across the three methods. 

For both CASPER and the Java program the total flight time of GA is greater than that of ACO, 

which is greater than that of the exhaustive search (the method of computing the total flight time 
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used in ACO and the exhaustive search is shown the appendices). CASPER has a very advanced 

GUI compared to the Java program, which made it a major tool for computing the route statistics. 

  GA ACO Exhaustive Search 

Route (block only) {6,3,4,5,7,8,10,9,2,1 } {10,9,8,7,5,4,1,2,3,6} {1,2,4,5,7,8,9,10,6,3} 

The Total Ferry 
Distance (mile) 

496.0 460.6 411.5 

The Total Flight Time 
(hour) 

12.6 12.3 11.9 

 

Table 4.1 Statistics Comparisons by Java Program 

 GA ACO Exhaustive Search 

Route (block only) {6,3,4,5,7,8,10,9,2,1 } {10,9,8,7,5,4,1,2,3,6} {1,2,4,5,7,8,9,10,6,3} 

The Total Flight Time  

(hour) 
15.6 15.3 14.9 

Total Product (gal) 3173 3173 3173 

Table 4.2 Statistics Comparisons by CASPER 

 Comparing those results, the exhaustive search gives the optimal route with the minimum 

total flight time 11.9 (Java program)/14.9 (CASPER) hours. ACO and GA give nearly optimal 

solutions but not the optimal route. Another point to keep in mind is, GA and ACO may use 

different criteria for searching their solutions. It indicates they may search for different search 

space. ACO searches for the minimum total ferry time without visiting the airport and then 

computes the reported efficient route adding necessary visits to the airport. In the future, ACO 

could be improved to search for the minimum total ferry time with visiting the airport. GA can 

search with fuel constraint or without it. CASPER does not search for the optimal route. It only 

calculates the statistics after inputting the routes manually. 
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CHAPTER 5 

SUMMARY  

 

5.1 Conclusions 

 

 This project has been presented as an application of the ant system metaheuristic to solve 

the route planning part of the Spray Treatment Planning (STP) problem. The STP problem is to 

plan the most efficient way to spray the forest consisting of several blocks of trees so that the 

flight time is minimized and to assist managers in evaluating the productivity and efficiency of 

different spray treatment projects. Because of the limitation of aircraft pesticide tank capacity, an 

aircraft may require multiple trips back to the airport to spray a treatment area (a block).  

Different spraying routes may result in different total flight times.  The goal is to find spraying 

routes that improve the efficiency of the project.   

 A simplified model of the problem in the project is the CVRP. A typical CVPR may have 

multiple vehicles/aircrafts to serve. In our experiment, we assume there is only one aircraft to 

spray all blocks and there is only one airport. The straightforward way to solve the problem is to 

test every possible route and choose the one with minimum time.  This is called the greedy 

approach, i.e. exhaustive search. When the number of blocks is large enough, this approach takes 

a very long time to convergence. When dealing with a large number of blocks it is impractical to 

compute every possible route, so a heuristic search is needed. Among a lot of heuristic and/or 

metaheuristic methods, the ant system metaheuristic is an efficient algorithm for minimum cost 

problems.  
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 The work done for this project was primarily coding spray scheduling by ACO and an 

exhaustive search. The ACO program was written in Visual Basic 6 and tested with stable results. 

The exhaustive search program was written in Java and tested successfully. A small Java 

program was also written to calculate the statistics for all methods. Using that program the spray 

efficiency statistics for the whole set of blocks was obtained for comparison. The aim of the 

work done here was to develop a decision making program to aid CASPER by adding a 

scheduling model. The objective of the scheduling model is to get a good spray route so that the 

aircraft can accomplish its goal in the least amount of time. The shape of the block can influence 

the spray efficiency, and that effect has not yet been taken into account. Getting the minimum 

total ferry distance was the main goal of the work done in this paper, with the assumption that 

every block was rectangular.  

 According to the experiment, the Rank-Based Ant System based on ACO gives a good 

solution for ten blocks and one airport with less than a minute of runtime. The result was 

different from the result of GA, but the difference does not mean something is wrong with either 

method because of the nature of a heuristic search. A Heuristic search does not guarantee a true 

optimal solution.  

 

 GA and ACO reported different routes. ACO and the exhaustive search used the same 

method for computing total flight time, and were therefore easier to compare. Using the same 

program to compute the statistics for different routes would make comparison between GA and 

ACO easier.  This was done by inputting the routes reported by GA, ACO and the exhaustive 

search, into a separate program coded in Java written to report statistics. Afterward CASPER 

was used to the same end. Using CASPER as a common ground made comparison much easier, 
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even more so because CASPER provides a simple GUI. The comparison of statistics shows that 

the total flight times for ACO and GA are similar and they both can be considered good solutions. 

However neither gave the best solution, which was the solution given by the exhaustive search.  

   

 

5.2 Future Directions 

 

 This experiment is primarily based on minimum total ferry distance without visiting the 

airport. Adding the back trip to the airport cannot be implemented with a static data input. The 

result could be improved if a dynamic data input could be achieved. Then the airport could be 

added as a node in the CVRP model, and when the current pesticide carried by the aircraft is less 

than the pesticide needed by the next block the algorithm could direct the plane to the airport 

node. In the future, more constraints can be added and the distance array for ACO can be made 

dynamic so that the airport is included in the array when the aircraft has to refill spray pesticide. 

There are many other ACO algorithms to choose from and this experiment concentrated only on 

the Rank-Based Ant System. Other ACO algorithms could be run and benchmarked to get better 

solutions. Even beyond ACO other heuristic searches such as the tabu search could be attempted 

for comparison. 
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APPENDICES 

 

A Flight Plan Result from ACO code 

"Air Tractor 400(App. Rate=.33(gal/ac),Avg. Load=350 (gallons))" 

"Block data source: sample_blockdata.txt" 

 

start from the airport 

go to block 10.0 

go to block 9.0 

go to block 8.0 

go to block 7.0 

go to block 5.0 

go to airport 

go to block 5.0 

go to airport 

go to block 5.0 

go to block 4.0 

go to airport 

go to block 4.0 

go to block 1.0 

go to airport 

go to block 1.0 
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go to block 2.0 

go to block 3.0 

go to airport 

go to block 3.0 

go to airport 

go to block 3.0 

go to block 6.0 

go to airport 

go to block 6.0 

go to airport 

go to block 6.0 

go to airport 

go to block 6.0 

go to airport 

the total ferry distance is  460.5900000000001 

the total time is  12.28825 hours
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B  Date File Used  

Block data source 

1,483003.2293,4116981.4864,959,0,8024,5524,28.63,0.00,12.64,24.98,36.00,45.27,44.87,56.08,

57.32,58.29,59.12 

2,502251.0036,4110413.8127,612,0,5301,5212,16.35,12.64,0.00,13.00,25.29,32.80,32.29,43.46,

44.70,45.66,46.49 

3,523008.3857,4113061.3787,1259,0,9466,5911,3.90,24.98,13.00,0.00,23.05,23.76,20.56,32.83,

34.01,34.25,34.93 

4,523943.3668,4075980.7562,1242,0,11005,5806,21.43,36.00,25.29,23.05,0.00,15.81,22.96,27.0

4,28.22,31.16,32.38 

5,548039.4700,4084152.4641,1482,0,11889,5556,20.19,45.27,32.80,23.76,15.81,0.00,9.66,11.67

,12.91,15.43,16.62 

6,552922.0797,4098916.0143,3094,0,13540,11209,16.67,44.87,32.29,20.56,22.96,9.66,0.00,12.8

9,13.93,13.69,14.37 

7,566801.9919,4083496.0452,435,22,5360,4735,28.97,56.08,43.46,32.83,27.04,11.67,12.89,0.00

,1.26,4.77,6.04 

8,568794.0784,4083088.2945,198,0,3503,2984,30.13,57.32,44.70,34.01,28.22,12.91,13.93,1.26,

0.00,4.16,5.35 

9,572443.1959,4088696.0940,146,0,3705,2536,30.35,58.29,45.66,34.25,31.16,15.43,13.69,4.77,

4.16,0.00,1.28 

10,574180.4606,4089813.1696,209,0,3802,2730,31.04,59.12,46.49,34.93,32.38,16.62,14.37,6.04

,5.35,1.28,0.00 

=========================================================== 
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Aircraft details: 

AirTractor AT400 

.33,"App. Rate (gal/ac)" 

125,"Swath Width (ft)" 

140,"Application Speed (mph)" 

120,"Ferry Speed (mph)" 

30,"Avg. Turning Time (seconds)" 

350,"Avg. Load (gallons)" - pesticide capacity 

C  Part of program in Phase 2 

 

'The method of computing the total flight time used in ACO. 

Dim i, acoOutput As Long 

Dim totalSprayConsumption, curpest, remainedPest As Double 

Dim ToAirportNo, AirportLabel, airport_visits As Integer   

Dim t1, t2 As Double 

Dim TotalFerryDistance As Double 

Dim totalSpraytime As Double 

Dim currentdir As String 

TotalFerryDistance = 0 

totalSpraytime = 0 

totalSprayConsumption = 0 

airport_visits = 0 
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acoOutput = FreeFile 

currentdir = CurDir$ + "\AcoFileOutput.txt" 

Open currentdir For Append As #acoOutput 

Write #acoOutput, "Air Tractor 400(App. Rate=.33(gal/ac),Avg. Load=350 (gallons))" 

Write #acoOutput, "Block data source: sample_blockdata.txt" 

Write #acoOutput, " " 

Write #acoOutput, "Start from airport" 

 

AirportLabel = 1  

curpest = aircraft.AverageLoad    'curpest is the current spray in the aircraft tank 

 

For i = 0 To blockno_n - 1 

t1 = instance.Ewidth(i) / aircraft.SwathWidth 't1 is the number of swath. unit: ft 

totalSpraytime = totalSpraytime + (t1 - 1) * aircraft.TurningTime / 3600 + t1 * 

instance.Elength(i) * 0.00019 / aircraft.SpraySpeed 

'TurningTime unit :sec,Elength unit: ft,SpraySpeed:mph 

'1sec=1/3600 hour,1 foot = 0.000 189 394 mile 

 

If i = 0 Then      

TotalFerryDistance = instance.ToAirportDistanc(best_so_far_ant.tour(i)) 

End If 

 

'If the current spray is enough for the current block, the aircraft don’t fly to the airport. 
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 If (curpest > instance.SprayConsumption(best_so_far_ant.tour(i))) Then 

 Write #acoOutput, "Go to Block ID No." & (best_so_far_ant.tour(i) + 1)  

Write #acoOutput, " " 

        curpest = curpest - instance.SprayConsumption(best_so_far_ant.tour(i)) 

         

            If i = 0 Then 

TotalFerryDistance = instance.ToAirportDistanc(best_so_far_ant.tour(i)) 

            Else 

'instance.distance(k) is the distance between last block and the current block 

TotalFerryDistance = TotalFerryDistance + instance.distance(best_so_far_ant.tour(i - 1), 

best_so_far_ant.tour(i)) 

            End If 

    Else 

Write #acoOutput, "Go to Block ID No." & (best_so_far_ant.tour(i) + 1) 

'If the current spray is less than the block need, calculate the trips to the airport as airport_visits 

        airport_visits = Int((instance.SprayConsumption(best_so_far_ant.tour(i)) - curpest) / 

aircraft.AverageLoad) + 1 

             For ToAirportNo = 1 To airport_visits 

            Write #acoOutput, "Go to airport" 

            Write #acoOutput, "Go to Block ID No." & (best_so_far_ant.tour(i) + 1) 

            Next 

        'After refilling spray then applying to the current airport, calculate the spray left-over 
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remainedPest = (instance.SprayConsumption(best_so_far_ant.tour(i)) - curpest) Mod 

aircraft.AverageLoad 

        curpest = aircraft.AverageLoad - remainedPest 

            If i = 0 Then 

TotalFerryDistance = instance.ToAirportDistanc(best_so_far_ant.tour(i)) * (2 * airport_visits + 1) 

            Else 

TotalFerryDistance = TotalFerryDistance + instance.distance(best_so_far_ant.tour(i - 1), 

best_so_far_ant.tour(i)) + instance.ToAirportDistanc(best_so_far_ant.tour(i)) * 2 * airport_visits 

            End If 

    End If 

Next 

TotalFerryDistance = TotalFerryDistance + instance.ToAirportDistanc(best_so_far_ant.tour(i)) 

t2 = totalSpraytime + TotalFerryDistance / aircraft.FerrySpeed 't2 unit :hour 

Write #acoOutput, "go to airport " 

Write #acoOutput, " " 

Write #acoOutput, "The Total Ferry Distance is (unit:mile) " & TotalFerryDistance 

  Write #acoOutput, " " 

  Write #acoOutput, "The Total Spray time is (unit:hour) " & totalSpraytime 

  Write #acoOutput, " " 

 Write #acoOutput, "The total time is (unit:hour) " & t2 

  Write #acoOutput, " " 

Close #acoOutput 

MsgBox "the program is finished", vbOKOnly 


