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ABSTRACT 

This dissertation consists of three studies in risk management and finance applied in 

agriculture. The studies address several important issues ranging from the provision and 

innovation of agricultural insurance to the credit risk migration in agricultural lending. 

The first study proposes a temperature-humidity index insurance product and examines 

whether this product can effectively protect against the risk of reduced milk production caused 

by heat stress.   Results suggest that even when premiums are loaded and the insurance purchaser 

is faced with both geographical and temporal basis risk, a temperature-humidity index insurance 

product would provide risk management benefits to a representative south-central Georgia dairy 

producer.  

The second study compares the risk reduction performance between GRP and MPCI for 

cotton and soybean in Georgia and South Carolina under three premium rating schemes. Results 

suggest that even in agricultural heterogeneous production regions, GRP is still viable if adverse 

selection and moral hazard inherent in MPCI create a large positive wedge.  

The third study introduces two variants of Markov chain models to analyze farm credit 

risk migration as alternatives to the traditional discrete time model cohort method. Results 

indicate that Markov chain models provide more accurate and reliable migration probability 

 



estimates by capturing indirect and transient changes in farm credit risk ratings that are omitted 

under the cohort method. Metric comparisons between the cohort migration matrix and each of 

the variant of Markov chain models are found to be much more substantial in magnitude in farm 

credit risk transition compared to the comparison results obtained for corporate bond ratings 

migration. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Agricultural production has always been a risky endeavor. Farmers constantly have to 

deal with unfavorable weather conditions, variability in prices of inputs and outputs, livestock 

disease outbreaks, etc. These risks will in turn affect their ability of loan payment. Thus, lending 

institutions are less willing to provide loans to farmers, since the probability of default is very 

high. For a long time U.S. policy makers have been concerned with helping farmers to manage 

agricultural production risk through insurance institutions. Reduction in agricultural production 

risk not only benefits farmers but also, in turn, lending institutions. Meanwhile, lending 

institutions have been studying and developing financial models to accurately estimate the credit 

risk from farm borrowers.  

U.S. government involvement in the provision of crop insurance goes back to the 1930s. 

Title V of the Agricultural Adjustment Act of 1938 established the Federal Crop Insurance 

Corporation (FCIC) to provide crop farmers with Multiple Peril Crop Insurance (MPCI) policies 

that protect against individual farm yield losses. The first policies were written for wheat 

production in 1939. The program’s actuarial performance later, however, proved disappointing. 

The program was actually terminated in 1943 and then resurrected in 1945 (Kramer). 

The major reforms in Federal Crop Insurance started from the Federal Crop Insurance 

Act of 1980 which provided for nationwide expansion of a comprehensive crop insurance plan. 

The Act authorized the FCIC to extend the insurance to all commercial crops in all agricultural 
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counties and permitted the federal government to subsidize farmer premium payments. The 

Federal Agricultural Improvement and Reform Act of 1994 modified the Federal Crop Insurance 

Program by authorizing a premium - free new Catastrophic (CAT) coverage level available to 

farmers. The Act also created the Noninsured Assistance Program (NAP), a permanent disaster 

payment program for crops not covered by crop insurance.1 The Federal Agricultural 

Improvement and Reform (FAIR) Act of 1996 required the Secretary of Agriculture to establish 

an independent office, which is now the Risk Management Agency (RMA), for supervision of 

the FCIC. The FAIR Act implemented farm program contract payments that do not increase as 

agricultural prices fall, shifting farm policy toward a greater emphasis on risk management and, 

in particular, on crop insurance. This shift has resulted in the introduction of new types of 

insurance policies; especially those that provide both yield and price protection (Harwood and 

Novak). The Agricultural Risk Protection (ARPA) Act of 2000 essentially maintains the same 

structure of subsidies that was largely put in place during the last century. It increased crop 

insurance premium subsidies substantially and changed them on coverage levels above 65 

percent from a per-acre dollar amount to a percent of premium. Different percent subsidies are 

applied to different coverage levels, with subsidy percentages decreasing with the increase in 

coverage levels (Babcock, Hart and Hayes). 

Credit risk migration analysis helps track an individual’s historical risk rating from one 

category to another within a given period of time. Credit risk migration, per se, has received a 

great deal of academic attention especially in corporate finance. Numerous studies have 

examined how credit ratings assigned to bonds and other publicly traded securities by rating 

agencies such as Moody’s and Standard & Poor’s transition over time. Compared to the 

                                                 
1 Source: http://www.usda.gov/news/releases/1999/02/crop           
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traditional measurement of historic loan default rate, the credit risk estimates obtained from the 

migration approach provide richer, broader information on the risk stability and quality of a 

lender’s loan portfolio, especially when based on more extensive historical data (Katchova and 

Barry). 

Deriving transition probabilities is a natural use of the output of an institutional risk 

rating system. These systems are widely used by lending institutions, and in the future will form 

the basis for credit risk measurement in determining the regulatory requirements for economic 

capital held by many banks and other types of financial institutions (Basel Committee on 

Banking Supervision). However, similar to estimating the traditional default rates, the migration 

approach utilizes extensive historical data. Such data histories are seldom available. Actually one 

major reason that credit risk migration analysis is relatively unexplored in agricultural lending is 

mostly due to the limitation arising from the proprietary nature of the data. The small portfolios 

and thus sample size for many lenders, and the tendency for the lenders to change their rating 

system and approaches over time hinder the analysis of credit risk migration in agricultural 

lending (Gloy, LaDue, and Gunderson).  

In addition, agricultural lending has several unique characteristics compared to other 

types of lending in corporate finance. Agriculture has a lengthy production cycle, which often 

leads to less frequent, seasonal payments of loans (Barry). Agriculture is also capital intensive 

with 87% of the total assets consisting of farm real estate and machinery.2 In addition, financial 

performance of farms can be highly correlated, especially for farms in the same geographic and 

climatic region. Because financial institutions, especially agricultural lenders, usually do not hold 

random portfolios of loans, geographic and industry correlations lead to higher correlations in 

default and losses (Bliss). 
                                                 
2 Source: USDA statistics for 2002. 
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1.2 Problem Statement 

Since the mid-1980s, MPCI yield guarantees have been based on the actual production 

history (APH) yield for the insured unit.3 In recent years, various APH-based revenue insurance 

products have also been offered through the FCIP.4  For 2004, APH-based insurance products 

(MPCI and the various APH-based revenue insurance products) accounted for over 90% of FCIP 

premiums.  Several studies have described how APH-based insurance products are subject to 

misclassification (adverse selection) and moral hazard problems (Quiggin, Karaginannis, and 

Stanton; Smith and Goodwin; Coble et al.; Just, Calvin, and Quiggin). In addition, APH-based 

insurance products have high transaction costs related to establishing and verifying APH yields 

and conducting on-farm loss adjustment. 

Missclassification and moral hazard problem create a “wedge” between the premium cost 

and the expected indemnity for insureds (Wang, Hanson, and Black).  Missclassification can 

cause either positive or negative wedges.  In some cases, insureds will be misclassified to their 

detriment so that they face a premium cost that exceeds the expected indemnity (positive wedge).  

In other cases, insureds may be misclassified to their benefit (negative wedge).  Moral hazard 

problems always create positive wedges.  Federal premium subsidies increase participation in the 

FCIP by masking the impact of positive wedges (Wang, Hanson, and Black).  However, some 

potential insureds face positive wedges that more than offset the federal premium subsidy.  Thus, 

despite significant federal premium subsidies, APH-based insurance products can still have a 

negative expected value for many potential insureds (Skees 2001). 

Skees said “Government-subsidized agricultural insurance is costly, complex, and leads 

to potentially significant inefficiencies. If efficiency is a performance goal, there are no 
                                                 
3 The APH yield is a rolling 4-10 year average of realized yields on the insured unit. 
4APH-based revenue insurance products are generally offered only for crops with exchange-traded futures contracts.  
Indemnities are triggered by the product of farm-level yield losses and a price index based on futures market prices. 
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successful experiences with government supported farm-level crop insurance in the world.” 

(Skees 2000). 

Premium subsidies, a prominent feature of the U.S. crop insurance program since the 

early 1980s, have increased recently, lowering the cost of crop yield and revenue insurance 

coverage to producers. ARPA 2000 set APH-based crop insurance products subsidy percentages 

that depend on the coverage level as follows: 59 percent subsidy for coverage levels of 65 and 70 

percent; 55 percent subsidy for coverage levels of 75 percent; 48 percent for 80 percent coverage; 

and 38 percent for 85 percent coverage. This setup has two implications. First, the move of 

premium subsidy from per-acre base to a constant subsidy rate for a given coverage will make 

the subsidy per-acre vary, and likely increase, thus increasing the incentives for participation 

especially at higher coverage levels. Second, the decline in percentage of the premium subsidy is 

generally less than the increase in the dollar amount of insurance premium. Thus per-acre 

subsidies in dollars so increase as coverage levels increase. The total effect of the new premium 

subsidy setup encourages farmer to purchase higher coverage levels (Babcock, Hart and Hayes).  

While increase in premium subsidy rates reduce producers’ costs and increase 

participation, it also greatly increases the government expenditure. As producers have moved to 

higher coverage levels and to products with higher premiums, subsidies have increased both as a 

total dollar amount and a proportion of total premium. 

At the proportional level, between crop years 1995 and 1998, premium subsidies rates 

were constant and accounted for 50 to 57 percent of total premium. At the total dollar amount 

level, in 1995, the first year after enactment of the crop insurance reform that introduced CAT 

coverage (premium entirely subsidized), premium subsidy expenditures were about $890 million. 

In 1996, as the increased buy-up participation and increased crop prices lifted total premium, the 
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annual premium subsidy amount rose to $980 million even though CAT participation declined. 

In 1997, premium subsidies decreased to about $900 million as crop prices fell and as CAT 

participation continued to decline while buy-up participation held constant. In 1998, total 

premium subsidies increased with a rise in buy-up insured acres (Agricultural Outlook). 

Regarding credit risk migration analysis, although there are numerous studies in 

corporate finance, they usually employ a straightforward discrete time (cohort) approach in 

developing migration matrices, which has even become an “industry standard” approach used 

even by the large corporate rating agencies (Lando and Skodeberg; Schuermann and Jafry).  

Cohort method is straightforward and easy to apply. However, this approach ignores any rating 

change activity within sub-periods of a given time frame and focuses only on migrations 

observed at the two time endpoints (i.e. the beginning and the end of a time period). The 

omission of “transient” class migrations in-between the endpoints might reduce the reliability of 

the cohort approach in consistently producing accurate and efficient estimates of migration rates. 

There have been relatively few studies of agricultural loan credit risk migration, although 

anticipating changes in credit risk is crucial to a lender’s financial performance. Lenders incur 

substantial costs monitoring credit risk. The loan servicing costs associated with high risk 

borrowers have been estimated at nearly 100 basis points (Gloy, Gunderson, and LaDue). If 

changes in a borrower’s credit risk are identified early, the lender can protect his/her interest, 

address the situation with the borrower’s management, and probably avoid the costs incurred by 

the default. Anticipating credit risk changes also allows the lender to direct scarce monitoring 

resources to the loans that are the most likely to transit to a higher credit risk category.  
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1.3 Rationale 

High subsidized crop insurance products transfer the cost from agricultural producers to 

taxpayers, an expensive drain on public purse. Moreover, subsidized insurance can lead to 

distorted production incentives due to asymmetric information via moral hazard and adverse 

selection. 

In the late 20 century, more and more prudent researchers notice the problems associated 

with the high subsidized farm-level yield insurance products.  They diligently probe and propose 

innovative agricultural insurance designs to correct the problems. Among the innovations being 

widely discussed are area yield and weather index insurance products, which belong to the 

family of index insurance products. 

These innovations can ameliorate the asymmetric information problems because the 

underlying indexes are transparent, objective, and reliable based on long time series of historical 

data. Any individual subjective action can hardly affect the trigger level for indemnity payment 

since the indemnity payment depends on an index related to the risk being hedged rather than the 

risk itself.  

Area yield insurance is essentially a put option on an index, the expected area yield. For 

the current implemented area yield insurance in U.S., the Group Risk Plan (GRP) and area 

revenue insurance, Group Risk Income Protection (GRIP), the area is defined by county 

boundaries. Indemnities are triggered only when the county yields or revenues are below a preset 

critical yield or threshold. 

Weather index insurance is designed to insure specific event which causes the result, say 

“crop deficit” rather than the result itself. Obviously this implies that crop yield loss does not 

need to be proven in order to receive indemnity from an insured specific event (Turvey).  
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Applications of weather derivatives5 originated in the energy sector. In late ’90s firms 

explored the possibility of hedging against weather-related variability though weather derivatives. 

The impetus for developing weather markets was stimulated by the deregulation of the US 

energy sector, when local monopolies had to start competing on broader markets and find 

measures to stabilize fluctuating revenues. Since early 1997, market participants in the electricity 

and natural gas sectors have used temperature-based derivatives to offset their exposure to 

extreme temperatures. Tailored over-the-counter contracts are based on a specified temperature 

index such as cumulative heating degree days (HDD) or cumulative cooling degree days (CDD) 

for a given location over a given period of time. In September 1999, the Chicago Mercantile 

Exchange began trading standardized monthly cumulative HDD and CDD futures and options 

contracts. Contracts were originally traded for Atlanta, Chicago, Cincinnati, Dallas, Des Moines, 

Las Vegas, New York, Philadelphia, Portland, and Tucson6. 

Applications of weather derivatives in the energy sector are logically extended to 

agricultural sectors since weather events are still a major source of economic risk for agricultural 

production. In order to develop weather derivatives for agriculture, just as weather derivatives 

for energy sectors, the weather variables need to be measurable, adequate, objective, transparent, 

reliable and easily assessable with relatively low less cost. In addition, the existence of a 

complex relationship between the agricultural product and the weather factor must be carefully 

explored (Vedenov and Barnett). This normally does not happen in energy sectors. For instance, 

the relationship between temperature and demand for heating is simple and straightforward: the 

lower the HDD the lower the demand for energy. In agricultural production the relationship is 

                                                 
5 Weather index insurance and weather derivative are conceptually equivalent. However, they are sold though 
different conduits. Weather derivative is sold through financial exchanges and weather index insurance is sold 
though insurance channels. 
6 Source: http://www.financewise.com/public/edit/energy/weather99/wthr99-exchangep.htm. retrieved in March 
2005. 
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more complicated since differences in products, crop growth and development stages, and soil 

texture among others have different responses to the same weather factor. In addition, the more 

skilled and advanced cultivating techniques and the greater entrepreneurial influence on yields 

make the proportion of production variability generated by the specific weather elements 

smaller. Generally speaking, the development of weather derivatives in agricultural production is 

not restricted by the availability of the data since most developed and developing countries have 

extensive and reliable weather records. The crucial issue for the application of weather 

derivatives in agriculture lies in the actual presence of a clear and reliable relationship between 

the weather factor and the agricultural production variable. The designed weather derivatives 

need to explain a large proportion of the variation in production; otherwise they lose their 

attractiveness as a hedging device. Hence, appropriate identification of the relationship between 

the weather variables and production is vital (Stoppa and Hess). 

Regarding credit risk migration analysis, several studies in corporate finance have 

adopted a duration “Markov chain” approach based on survival analysis to address the deficiency 

of the cohort method (Lando and Skodeberg; Israel, Rosenthal, and Wei). The Markov chain 

approach has been used to capture intra-year risk-rating changes to calculate annualized 

migration rates, which are then averaged across time periods to construct an overall (summary) 

migration matrix.   Formal ratings and re-ratings generally occur annually even though true 

changes in risk occur more frequently.  The intra-year bond migration rates help to fill this 

information gap.   

In farm finance where farmers do not maintain records of intra-year changes in financial 

conditions, the Markov chain approach could be applied to the treatment of annualized migration 

rates in constructing the migration matrix for each time period.  This modification is relevant 
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considering that actual credit risk transition assessment practices by farm lenders usually lean 

toward averaging of multi-year financial ratios and measures (Novak and LaDue).  For instance, 

one such method acknowledged by lenders is the 3x1 method which measures the transition from 

a credit rating based on the average financial performance during the first 3 years to the risk 

rating given to the borrower on the 4th year (Barry, Escalante, and Ellinger).   

The practical relevance of introducing the alternative Markov chain models for farm 

credit risk migration analysis is established through the following arguments.  First, while annual 

data are generally used in the re-rating process, a lender’s monitoring of a borrower’s 

performance can reveal likely changes in farmers’ risk positions during the year, i.e. marking 

risk to changes in growing and/or market conditions, especially for higher risk borrowers.  Thus, 

subjective transitions may occur much more frequently, and the Markov process helps in 

quantifying such movements.  Second, our study’s results will show that multi-year averaging of 

annualized financial data and the discrete-time (cohort) framework used in developing the 

summary migration matrix will result in the significant understatement of transition probability 

rates.  Thirdly, such probability estimates would, in turn, produce understated, if not misleading, 

estimates of overall portfolio default probability rates, which is one of several loan portfolio 

quality indicators that lenders could generate from the migration framework (Katchova and 

Barry).  Finally, our statistical test results indicate that distinctions between cohort and Markov 

chain matrices are even more pronounced when applied to farm finance conditions than when 

applied in corporate bond analysis.   

1.4 Objectives 

This dissertation is composed of three related studies in risk management and finance in 

agriculture. The primary objective is to seek ways to reduce production risk or credit risk for the 
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relevant parties, being producers or lending agencies. The specific objectives are, however, more 

pertinent to each separate studies. The three studies are (1) Using Weather-Based Index 

Insurance to Protect against Dairy Production Losses Caused by Heat Stress; (2) Testing the 

Viability of Area Yield Insurance for Cotton and Soybeans in the Southeast; and (3) Markov 

Chain Models for Farm Credit Risk Migration.  

The first study proposes a temperature-humidity index (THI) insurance product and 

examines whether this product can effectively protect against the risk of reduced milk production 

caused by heat stress.  Specifically, it:  (1) develops a THI insurance product to protect against 

milk production risk faced by dairy producers in south-central Georgia; (2) prices the THI 

insurance product; and (3) assesses the risk reduction impacts of the THI insurance product for a 

representative Georgia dairy farm. 

The second study compares farm-level risk reduction from MPCI with that from an area 

yield insurance product like GRP for selected South Carolina cotton and soybean production 

regions and Georgia cotton production regions.  Specifically, it: (1) constructs the restricted 

optimal and optimal GRP and MPCI with three coverage levels under three different premium 

rating schemes; (2) assesses the viability of GRP relative to MPCI under the expected utility 

framework. 

The third study proposes Markov chain models for farm credit risk migration using farm-

level financial data from the Illinois Farm Business and Farm Management System. Specifically, 

it: (1) tests the validity of Markov chain assumption for the farm credit migration data set; (2) 

estimates the credit migration rates and portfolio default probabilities under cohort and markov 

chain models using the 2x1 measurement method the farm lenders’ 3x1 method ; and (3) 

assesses the reliability of estimates under Markov chain models. 
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1.5 Organization 

The dissertation consists of five chapters. Chapter 1 reviewed the history of the Federal 

Crop Insurance Program and the associated problems inherent in the current APH-based 

insurance products. It also provided some background on farm credit risk migration. The 

rationale of the study and objectives were also presented. Chapter 2 offers a general overview of 

the literature on current federal insurance products including APH-based insurance and index 

insurance products, and credit risk migration on farm lending. Chapter 3 focuses on the theory of 

economic decision-making under conditions of uncertainty. It reviews different risk 

measurements and decision making criteria. Chapter 4, 5, and 6, are dedicated for the specific 

analysis on each separate study. Each of the three chapters is independently presented as an 

integrated essay. Chapter 7 finally summarizes the results and offers some concluding remarks.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Review on Current Major Implemented Crop Insurance Products 

The Federal Crop Insurance Program came into existence in 1938. The first insurance 

policy was written for wheat in 1939. Since then the Federal Crop Insurance Program has 

experienced a great change, termination due to disappointing performance, and passage of new 

authorizing legislation. The Federal Crop Insurance Act of 1980 initiated significant changes in 

the scope, delivery and purpose of the Federal Crop Insurance Program. Later, the Federal 

Agricultural Improvement and Reform Act of 1994 and 1996, and Agricultural Risk Protection 

Act of 2000 strengthened the safety net for agricultural producers by providing more affordable 

risk management tools and products. 

Currently the U.S. crop insurance products can be defined by two determinants: (1) What 

is insured – yield, price, or revenue; (2) What is the insured yield based on – APH-based or 

index-based? The summary of different major insurance products is presented in Table 2.1.  

APH-Based Insurance Products 

APH-based or farm-level insurance products provide risk protection against shortfalls in 

production or revenue occurring at the insured farm due to various weather or market causes.  

Multiple Peril Crop Insurance (MPCI) is based on the Actual Production History (APH) 

which is reported by the insured. It is a farm-level yield insurance product. It insures producers 

against yield losses due to natural causes such as drought, excessive moisture, hail, wind, frost, 

insects, and disease. The farmer decides the target yield he/she wishes to insure from 50 to 75 
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percent (in some areas 85 percent of the APH). The farmer also can select the percent of the 

predicted price he/she wants to insure between 55 and 100 percent of the crop price established 

annually by RMA. The farmer is paid an indemnity based on the shortfall of the realized yield 

relative to the target yield. Indemnities are calculated by multiplying this shortfall by the insured 

percentage of the established price selected when crop insurance was purchased (RMA online). 

Catastrophic Coverage (CAT) pays 55 percent of the established price of the commodity 

on crop losses in excess of 50 percent. The premium on CAT coverage is paid by the Federal 

Government; however, producers must pay a $100 administrative fee for each crop insured in 

each county. Limited-resource farmers may have this fee waived. CAT coverage is not available 

on all types of policies (Knight and Coble; RMA online). If farmers buy higher levels of 

coverage, the federal government will subsidize a portion of the premium. While MPCI covers 

most crops in the U.S., it is not available for some specific crops in specific regions. For those 

crops, the Noninsured Crop Disaster Assistance Program (NAP), managed by USDA's Farm 

Service Agency, provides financial assistance to producers of noninsurable crops when low 

yields, loss of inventory, or prevented planting occurs due to natural disasters (RMA online). 

Producers must enroll acreage prior to planting and area average yield must be reduced by at 

least 35% before any payments are made to individuals (Knight and Coble). 

Income Protection (IP) was developed by the Federal Crop Insurance Corporation 

(FCIC), under the USDA, as a pilot program in 1996. IP protects producers against reductions in 

gross income when either price or yield declines from early-season expectations. The target 

revenue or revenue guarantee of IP is equal to APH yield times a base price times a coverage 
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level. Base prices are calculated using futures contracts7 in early season before harvest (RMA 

online; Edward and Hofstrand).   

Crop Revenue Coverage (CRC) was developed by American Agrisurance, Inc. and was 

approved by FCIC as a pilot program in 1996. The revenue guarantee of CRC equals the APH 

yield, times the higher of the base price or harvest price, times the coverage level. Harvest prices 

are calculated using futures contracts after harvest to reflect market conditions during harvest8 

(RMA online; Edward and Hofstrand). 

Revenue Assurance (RA) was developed by the Iowa Farm Bureau and approved by the 

FCIC as a pilot program in 1997. RA policies have two distinct options: Revenue Assurance-

Base Price (RA-BP) and Revenue Assurance-Harvest Price (RA-HP). RA-BP contracts are 

written in a manner similar to IP, in which the level of the revenue guarantee is determined 

solely by the February futures prices, and does not increase even if the futures price rises by 

harvest. The difference between IP and RA-BP is that IP only allows enterprise units while RA-

BP allows basic, optional, enterprise, and whole farm units. The producer may elect to purchase 

RA insurance with the harvest price (HP) option (RA-HP), under which the revenue guarantee 

does increase if the harvest price is higher than the February price, just as it does under CRC. 

The differences are: (1) CRC can be used to insure basic, optional, and enterprise units while 

RA-HP has these units along with a whole farm unit. (2) Under CRC, there are price increase 

                                                 
7 For example, Chicago Board of Trade futures contracts are used for CRC contracts for corn and soybeans. For corn, 
the base price equals the average of settlement prices of the December corn contract during the month of February. 
For soybeans, the base price equals the average of settlement prices of November soybean contract during the month 
of February. Base prices are released in early March prior to the deadline for purchasing crop insurance. 
8 For example, for corn, the settlement prices for the December contract from CBOT are averaged during October. 
For soybeans, the settlement prices for the November contract are averaged during October. 
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limits when updating the revenue guarantee9. RA-HP does not have limits (RMA online; Edward 

and Hofstrand). 

Index-Based Insurance Products 

Group Risk Plan (GRP) is a type of index insurance product. It uses a county index, 

county yield, as the base for determining a loss. When the county yield for the insured crop, as 

determined by the National Agricultural Statistics Service (NASS)10, falls below the trigger level 

chosen by the insured farmer, an indemnity is paid. GRP coverage is available for many primary 

crops in major production areas thought the United States (Skees, Black, and Barnett). Coverage 

levels are available from 70 percent up to 90 percent of the expected county yield with 5 percent 

increment (RMA online). GRP protection involves less paperwork and costs less than the farm-

level coverage described above. However, since payments are based on the county yield loss not 

the individual farmer's loss, individual crop losses may not be covered if the county yield does 

not suffer a similar level of loss. This raises the problem of basis risk.  

Gross Risk Income Protection (GRIP), like GRP, is another index insurance plan. It 

makes indemnity payments only when the average county revenue for the insured crop falls 

below the revenue chosen by the farmer. The coverage for the county yield can be selected 

between 70 percent and 90 percent with 5 percent increment. The amount of payment the farmer 

receives depends on the level of protection selected when the farm is enrolled. The value of 

protection can be as high as 90 percent of the RMA maximum protection level and as low as 60 

percent. For GRIP the maximum protection level is the average futures prices for the five 

business days prior to March 1, multiplied by the expected county yield (RMA online; Edward 

and Hofstrand). 

                                                 
9 For instance, the limits are $1.50 for corn and $3.00 for soybean. 
10 NASS releases county yields in March of the year following harvest. 
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2.2 Comparison between APH-Based Insurance and Index-Based Insurance  

MPCI, IP, CRC, and RA are APH-based insurance products since the yield guarantee is 

based on farm-level yield (APH); GRP and GRIP are index-based insurance products since the 

yield guarantee is based on an index, county-level yield. 

Since APH-based insurance products, such as MPCI, provide crop producers with 

protection against many natural causes risk, what is the incentive and where is the market for 

purchasing index-based insurance products? 

Index-based insurance products have several advantages relative to APH-based insurance 

products. The major advantage is that index-based insurance products are not susceptible to the 

common insurance problems of moral hazard and averse selection due to asymmetric 

information. 

Moral hazard occurs when, because they have purchased insurance, policyholders change 

their behavior in such a way that the frequency and/or severity of a loss are increased. 

Policyholders intend to forego good management after purchasing farm-level yield insurance 

since losses will be covered by the insurance. Since moral hazard increases the frequency and/or 

severity of loss for the policyholder, the insurer’s exposure to risk is increased. In the short run, 

the indemnity payment will be higher than anticipated when premium rates were established. 

Over time, the insurer will respond by increasing premium rates for all policyholders. This does 

not correct the moral hazard but exacerbates the problem. Those who are not engaged in moral 

hazard may choose to quit purchasing insurance rather than pay the higher premium rate. As 

premiums are ratcheted up over time, those engaged in moral hazard are more and more 

disproportionately represented in the pool of insurance purchasers. In the extreme case, only 
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those who intend to engage in moral hazard will purchase insurance at a very high premium rate 

(Barnett 2004). 

Adverse selection occurs when the insurer can not accurately classify potential 

policyholders according to their risk exposure. As a result of the risk exposure heterogeneity, 

potential policyholders who have been misclassified to lower risk exposure, but actually belong 

to higher risk exposure, are more likely to purchase insurance; while potential policyholders who 

have been misclassified to higher risk exposure, but actually belong to lower risk exposure, are 

less likely to purchase insurance. Barnett (2004) names the former “misclassified to their 

benefit” and the latter “misclassified to their detriment”. Since the pool of insurance purchasers 

is disproportionately composed of those who are misclassified to their benefit, indemnities are 

higher than anticipated when premium rates were established. Over time, the insurer will respond 

by increasing premium rates for all policyholders. This again does not correct the problem but 

makes it worse. Each successive increase in premium rate will result in the insurance pool more 

and more disproportionately composed of those misclassified to their benefit. In the extreme case, 

only those who are misclassified to their benefit will purchase insurance at a very high premium 

rate (Barnett 2004). 

A number of studies have identified moral hazard and/or adverse selection problems in 

the APH-based insurance products offered by FCIP.  (Skees and Reed; Quiggin, Karaginannis, 

and Stanton; Smith and Goodwin; Coble et al.; Just, Calvin, and Quiggin).  These problems have 

led to higher premium rates, though often masked by federal premium subsidy, and inequities in 

program benefits (Skees 2001; Glauber and Collins). 

Index-based insurance products, however, are not susceptible to moral hazard and 

adverse selection. On the one hand, the indemnity payments are based on an index over which 
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the policyholders have no control, so the moral hazard problem is solved since the policyholders 

are not able to change their behavior to affect the frequency and/or severity of the loss. On the 

other hand, the policyholders have no better information about the index than the insurer.  Their 

risk exposures to the index are more homogeneous and easily classified, so the adverse selection 

problem is solved. 

In addition, index-based insurance products take advantage of objective and long data 

series. In practice, it is extremely difficult to verify the accuracy of the farm-level yield data 

which are reported by the potential policyholders. Even if they are accurately reported, it is hard 

to estimate the true expected yield based only on limited (often four to ten years) historical yield 

data.  Barnett et al. demonstrated the potential for error in MPCI estimates of expected yield 

based on a representative corn farm.  Index-based insurance products, however, are typically 

easily accessible, transparent, and verifiable. For example, the estimate of expected county yield 

used in GRP is based on at least 45 years of publicly accessible NASS county yield data. Using 

long series of data greatly reduces the potential of overestimating or underestimating the true 

expected value. Less volatility of the county yields also ensures the result of more accurate 

estimate of the true expected value than farm-level yield. Other benefits of index insurance 

products include no need for farm-level loss adjustment and lower transaction costs (Barnett 

2004). 

While index-based insurance products have many advantages over the APH-based 

insurance products, they also have one extremely important limitation named as basis risk. 

Basis Risk in futures market reflects the difference between the prices in the futures 

market and the spot market. For index-based insurance products, basis reflects the difference 

between the realized index and the farm-level yield. Because farm-level yields are not perfectly 
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correlated with the insured index, purchasers of index-based insurance are exposed to some 

degree of basis risk. For instance, it is possible for the purchaser of an area yield insurance policy 

to experience production losses on his/her farm and yet not receive an indemnity because there 

has been no shortfall in the area average yield.  Similarly, it is possible for a policyholder to 

receive an indemnity on an area yield insurance policy when no farm-level losses have occurred.  

Basis risk on area yield insurance policies is generally lower (higher) the more homogeneous 

(heterogeneous) the production area (Barnett et al.).  Variability in elevation, soil type, drainage, 

and other relevant factors will cause farm-level yields to be less correlated with the area average 

yield (Chaffin and Black). Thus the advantage of using index insurance products could be 

dwarfed by high basis risk. 

2.3 Literature Reviews on Index-Based Insurance Products 

In 1920, Chakravati proposed an area yield insurance program for India.  Independently, 

Halcrow, in 1949, suggested an area yield insurance design for the United States.  These 

proposals were largely ignored until 1990 when Barnaby and Skees presented arguments for area 

yield insurance and described how such a program might operate.  In 1991, Miranda formalized 

these earlier ideas into a theoretical framework for evaluating the effectiveness and equity of area 

yield crop insurance.  Specifically, Miranda showed that if iy~  is projected orthogonally onto y~  

then 

     ( ) iiii yy εµβµ ~~~ +−=−                                                     

(2.1) 

where iy~ is the realization of the stochastic yield on farm i with ( ) iiyE µ=~ ,  is the realization 

of the stochastic county yield with

y~

( )yE ~=µ .  This implies that  
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which is consistent with the notion of β in the capital asset pricing model (CAPM).  

 In his empirical analysis, Miranda compared farm-level yield insurance (such as MPCI) 

with area yield insurance for 102 soybean farms in western Kentucky.11  As with all analyses 

published to date, Miranda’s analysis was constructed such that both the farm-level yield 

insurance and area yield insurance contracts were actuarially fair in sample.  This allows one to 

evaluate the relative performance of the contracts by considering only reductions in the 

variability of net yield. 

Miranda defined a “full coverage” area yield insurance contract as having coverage set at 

88.5% and scale set at 100%.  An “optimal coverage” contract was defined as having coverage 

set at 95% and scale optimized to minimize the variance of net yield.  On average, the purchase 

of “optimal coverage” area yield insurance reduced the variance of net yield more than the 

purchase of farm-level yield insurance.   However, the “full coverage” area yield insurance 

contract did not reduce the variance of net yield as much as the farm-level yield insurance 

contract.  

Smith, Chouinard, and Baquet compared farm-level yield insurance to three different area 

yield insurance contracts for a sample of 123 dryland wheat farms in Chouteau County, Montana.  

The first area yield insurance contract had coverage restricted between 70% and 90%, and scale 

between 90% and 150% as in GRP.  The second contract, which they called “almost ideal,” had 

scale restricted to 100% while coverage was optimized to minimize the variance of net yield.  

The third area yield insurance contract, which they called “ideal,” optimized both coverage and 

                                                 
11 With the exception of Barnett et al., all of the articles reviewed here compared MPCI with the standard area-yield 
insurance contract (without a disappearing deductible) described in Miranda (1991) rather than with the actual GRP 
contract.  
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scale to minimize the variance of net yield.  They found that even the contract with restricted 

coverage and scale reduced net yield variability more than a farm-level yield insurance contract 

with 75% coverage. The “almost ideal” contract reduced net yield variability almost as much as 

a farm-level yield insurance contract with 90% coverage.  The “ideal” area yield insurance 

contract reduced net yield variability only slightly more than the “almost ideal” contract but at 

significantly higher premium cost. 

Barnett et al. analyzed the viability of area-yield insurance for 66,686 corn farms in 10 

states (Indiana, Illinois, Iowa, Kansas, Kentucky, Michigan, Minnesota, Nebraska, Ohio, and 

Texas) and 3,152 sugar beet farms in North Dakota and Minnesota.  They compared the 

performance of farm-level yield insurance at 65%, 75%, and 85% coverage with three different 

area yield insurance contracts.  The first area yield insurance contract had coverage set at 90% 

and scale at 100%.  The second contract had coverage restricted between 70% and 90%, and 

scale between 90% and 150% as in GRP.  The third contract had coverage restricted between 

70% and 130% while scale was restricted only to be nonnegative.  For the second and third area 

yield insurance contracts, optimal values for coverage and scale were calculated across all farms 

in the state.  These optimal values were then applied to all farms in the state.  In reality, each 

individual farmer would presumably attempt to optimize coverage and scale for his/her farm.  

However, given the relatively short time-series of available farm-level yield data, Barnett et al. 

decided that farm-level in sample optimizations of coverage and scale would be unrealistically 

favorable to area yield insurance.  They argue that optimizing these choice variables at the state 

level provides a more conservative estimate of the risk reduction generated by area yield 

insurance. 
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For corn Barnett et al. found that their first contract (coverage set at 90% and scale at 

100%) provided more risk reduction than farm-level yield insurance with 65% coverage for all 

states except Nebraska, Texas, and Michigan.  Their second contract (coverage restricted 

between 70% and 90%, and scale between 90% and 150%) provided more risk reduction than 

farm-level yield insurance with 65% coverage for all states except Nebraska and Michigan and 

more risk reduction than farm-level yield insurance with 75% coverage in Illinois, Indiana, Iowa, 

Kentucky, Minnesota, and Ohio.  Their third contract (coverage restricted between 70% and 

130% and scale restricted only to be nonnegative) provided more risk reduction than farm-level 

yield insurance with 65% coverage for all states except Michigan, more risk reduction than farm-

level yield insurance with 75% coverage in all states except Texas and Michigan, and more risk 

reduction than farm-level yield insurance with 85% coverage in Illinois, Iowa, Kentucky, and 

Ohio. 

The analysis of area yield insurance for sugar beets was segregated by processors rather 

than by state.  For farmers who produced for the Southern Minn cooperative in southwestern 

Minnesota, all three area yield insurance contracts provided more risk reduction than farm-level 

yield insurance with 75% coverage.  The third contract provided more risk reduction than farm-

level yield insurance with 85% coverage.  For farmers who produced for American Crystal in the 

mid- and northern Red River Valley, all three area yield insurance contracts generated more risk 

reduction than farm-level yield insurance with 65% coverage.  Only the third contract generated 

more risk reduction than farm-level yield insurance with 75% coverage.  None of the contracts 

generated as much risk reduction as farm-level yield insurance with 85% coverage.  For farmers 

who produced for the Min-Dak cooperative in the southern Red River Valley, none of the area 

yield insurance contracts generated as much risk reduction as farm-level yield insurance with 
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65% coverage.  Barnett et al. attribute differences in the performance of area yield insurance 

across geographic regions to differences in the extent of heterogeneity of soil productivity, 

drainage, and other production factors. 

In the turn of the new millennium there are increasing interests and discussions about 

applying weather index insurance products to protect against weather-related agricultural 

production losses. A number of studies have investigated the potential agricultural applications 

of weather index insurance.  

Martin, Barnett and Coble found that precipitation index insurance could provide 

effective protection against cotton yield and quality losses due to excess late-season precipitation 

in the delta region of Mississippi. Turvey examined the economics and pricing of weather index 

insurance in Ontario and suggested that temperature- and precipitation-based insurance contracts 

could be used to insure against yield losses for some crops. Vedenov and Barnett investigated the 

feasibility of using weather index insurance to protect against shortfalls in corn and soybean 

yields in Iowa and Illinois and cotton yields in Mississippi and Georgia. Their findings were 

mixed causing them to caution against “blanket assessments” of the feasibility of weather index 

insurance in agricultural applications. Cao examined the feasibility of weather insurance for corn 

in Georgia and she found that the ability of weather insurance to reduce yield loss risk for 

farmers in Georgia is limited. 

There are also some pilot programs using weather index insurance to provide risk 

protection in agricultural production. AGROASEMEX, the state agricultural reinsurance 

company in Mexico has used weather index contracts to transfer part of its weather-related crop 

insurance risk into international capital markets.  AGRICORP, the state agricultural insurance 

corporation in Canada offered Forage Pilot Program in Ontario in 2002 to protect the forage loss 
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due to drought. Under the Forage Pilot Program, indemnities were triggered once the rainfall 

measured from May through August is less than 80% of the long-term average for the area. The 

pilot program turned out to be very successful in promoting the participation rates and matured 

to a normal insurance product in 2003/2004. 

The World Bank in recent years has been leading studies and pilot programs, in 

collaboration with the International Food Research Institute, several universities and private 

consulting firms, to explore the feasibility and applicability of weather index insurance in 

developing countries. Current participating counties include Ethiopia, Morocco, Nicaragua, 

Tunisia, Argentina, and Mongolia. There are various reasons why most weather index insurance 

pilot programs are initiated and tested in developing counties. First, agricultural production in 

developing countries is highly, if not completely, tied with the weather-related conditions. It is 

more vulnerable to bad weather. Moreover, most developing countries are not climatic and/or 

geographically diversified. Thus weather-related yield losses are usually systemic. Second, in 

developing countries, weather data is of high quality and easier to obtain than area yield data. It 

may be less expensive to set up a weather system to measure weather events than set up a 

procedure to estimate the area yield. Third, developing counties have limited fiscal resources. In 

many developed countries, the U.S. for example, agricultural production is highly subsidized. 

The opportunity cost of transferring those limited fiscal resources to agricultural production may 

be significantly greater in developing countries. Finally, developing countries have far less 

access to the global risk-sharing markets and lack enforcement and the institutional regulatory 

environment to attract outside capital inflow.  

Most current weather index insurance pilot programs in developing counties are 

promising. For example, Skees et al. tracked the rainfall-yield relationship by assigning specific 
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weights to different growth phase, taking into account that different growth stages need different 

water. They found that a rainfall index insurance scheme could be feasible in Morocco.  

2.4 Literature Review on Farm Credit Risk Migration 

Credit migration analysis is still a relatively unexplored concept in agricultural lending.  

One of the major causes that limit its exploration is due to the lack of proper extensive historical 

data. However, a number of farm lenders, such as the Farm Credit System institutions, are 

compiling the data needed to use migration as a tool for analyzing their loan portfolios although 

their data histories tend to be shorter at less than five years in length and the updating of the 

borrower’s financial data can be sporadic. 

Barry, Escalante, and Ellinger estimated credit ratings from a farm record-keeping 

association – Illinois Farm Business and Farm Management system – which provided 

longitudinal farm-level financial data. They also introduced the measurement of transition 

probability matrices and financial stress rates for farm businesses using several time horizons 

and credit risk classification variables. Their study demonstrated the practical relevance of the 

migration framework in the assessment of credit portfolio qualities and its potential appeal to 

farm lenders. 

Sherrick, Barry, and Ellinger used credit value-at-risk (VaR) techniques to calculate 

empirical estimates of the cost of insuring against credit risk in pools of agricultural mortgage 

loans.  Katchova and Barry have demonstrated the application of the CreditMetrics migration 

model in estimating farm lenders’ economic capital requirements to protect them against 

unexpected losses and provisions for allowances to cover expected losses under the New Basel 

Capital Accord.  Another study applied ordered logit techniques to a panel farm-level dataset to 

identify significant determinants of farm credit migration probabilities among demographic, 
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financial performance and macroeconomic variables (Escalante, et al.).  Phillips and Katchova 

also tested for the presence of rating drift by conditioning farm transition rates on business cycles 

and previous migration trends.   
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Table 2.1: Crop Insurance Products in U.S.

What is the yield based on 
What is insured  

APH-based 
(farm-level yield) 

Index-based 
(county-level yield) 

Yield Insurance  MPCI 

 

GRP 
no guarantee 

increase  IP, RA-BP GRIP Revenue Insurance 
 guarantee 

increase 
 
 CRC, RA-HP  
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CHAPTER 3 

DECISION MAKING UNDER UNCERTAINTY 

This chapter reviews several decision making criteria that have been and are continuously 

being widely employed in risk management.  

3.1. Value-at-Risk 

Value at risk is a dollar measure of the minimum loss that would be expected in a 

portfolio with a given probability within a period of time (Chance). The basic idea behind value-

at-risk is to determine the probability distribution of the underlying source of risk and to isolate 

the worst given percentage of outcomes. Figure 3.1 illustrates the principle behind VaR where 

the distribution of the hypothetical portfolio change in value is continuous and follows a standard 

normal distribution. 5% VaR is 1.65 standard deviations from the expected change in portfolio 

value, which, in this example, is 0. Table 3.1 provides a simple illustration with a discrete 

classification of the change in the value of a hypothetical portfolio, assuming initial portfolio is 

worth of $10,000,00012. In that example, VaR at 5% is $ 3,000,000. It would be interpreted as 

follows: There is a 5 percent probability that over the given time period, the portfolio will lose at 

least $3 million or the final portfolio will worth at most $7 million. 

                                                 
12 The example is from Chance, 2004. The original example does not have the initial value and the second column. 
We insert them to express VaR either in terms of minimum loss or maximum revenue . 
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3.2 Expected value criterion 

This might be the oldest, simplest and most naïve criterion but it has been widely used in 

the area of life insurance. By this criterion, one evaluates the value of a risky wealth, say a 

lottery x~ , simply by calculating its expected value, i.e.  

      )~()~( xExV =                                                         

(3.1) 

where )~(xV  denotes the value of x~ and )~(xE  is the usual expected value, which by 

definition is 

∑
=

=
n
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ii xxpxE

1
)()~(      for discrete case                                      (3.2a)              

      for continuous case                                 (3.2b) ∫=
b

a

dxxxfxE )()~(

where pi is the mass probability function of x~ if the risk is discrete and f(x) is the probability 

density function of x~  if the risk is continuous. 

Suppose that one has an initial wealth of  and final wealth 0w fw~ after taking the lottery 

x~ , then his/her value of final wealth fw~ by the expected value criterion is simply 

)~()~()~()~( xEwxwExwVwV f +=+=+= 000                           (3.3) 

To illustrate a case where the expected value criterion is adequate, consider an individual 

who faces a risk of disaster described as follows13: 

x~  )~(xp  

0 0.9 

                                                 
13 This example is from Eeckhoudt and Gollier 1995. 
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-1000 0.1 

Then 100−=)~(xE and 22 300== )~()~( xxVar σ  

Of course, )~(xσ  is far from negligible. Suppose now that there are 10,000 people that 

face the same risk independently in the area where this individual resides. If these 10,000 people 

form an insurance company with the idea of reimbursing the losers from the contributions of 

everyone, each member must make a contribution of  
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Employing the well known findings from mathematical statistics, 100−=)~(cE and 

22 3== )~()~( ccVar σ . 

The risk of disaster is very small relative to its expected value and it would be zero for all 

practical purposes if the number of individuals approaches to infinity. In this case, where there is 

a large portfolio of independent risks, each risk can be evaluated, without risk, by its expected 

value. 

This criterion is completely reasonable for evaluating lotteries that are part of a large 

portfolio of identical and independent risks. For a single lottery or lotteries with dependent risks, 

this criterion is not a very good indicator of value and can be misleading. 

For example, consider an individual who uses the expected value criterion to make a 

decision between two lotteries A and B, each associated with two different outcomes as 

following: 

Lotteries x~  )~(xp  )~(xE  

0 0 
A 

10,000 1 
10,000 

B -4,000 0.3 11,400 
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  18,000 0.7 
Based on the expected value criterion, a decision maker will always choose lottery B. 

However in reality, offered a choice between A and B, many individuals would naturally prefer 

A without worrying about any possible losses. 

3.3 Mean-Variance Criterion 

The expected value criterion successfully captures the “return” of the lottery but, 

unfortunately, is completely unable to judge its risk, thus leading to the consideration of other 

criteria such as mean-variance. 

 The mean-variance criterion was promoted by Markowitz. Since then it has been widely 

used as a tool for portfolio optimization in financial sectors. This criterion recognizes the role of 

expected value in evaluating a lottery but supplements it by considering the risk (variance) of the 

lottery. 

)]~(),~([)~( fff wwEfwV 2σ=                                                    

(3.4) 

The form of function f provides some important information about the preferences of the 

decision-maker. 

Skipping some lengthy derivation and proof, for a risk averse decision-maker, 0>
∂
∂
E
f  

and 02 <
∂

∂

σ
f , a special case of function f is  

)]~()~()~( fff wkwEwV 2σ−=                                                       

(3.5) 
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where k is a constant which measure the degree of risk aversion. The larger k is the higher is the 

degree of risk aversion. 

To illustrate a case with mean-variance criterion, consider an individual who uses this 

criterion to make a decision between two lotteries A and B, each associated with two outcomes 

described below:14

1.0=k  fw~  )~( fwp  )~( fwE  )~( fw2σ  )~( fwV  Conclusion

-6 0.5 A 10 0.5 2 64 -4.4 

-10 0.5 B 20 0.5 5 225 -17.5 

A is 
preferred to 

B 

 

Under the mean-variance criterion, both return captured by the expected value and risk 

captured by the variance are considered. Note A is preferred to B by mean-variance criterion but 

B is preferred to A by expected value criterion. 

The mean-variance criterion, as well as the expected value criterion, takes into account 

all possible outcomes and their respective probabilities. They are attractive mainly due to their 

great simplicity and very intuitive nature. In reality, the mean-variance criterion is mainly used 

when one can assume that the risky wealth is normally distributed. However, is it true that a 

decision-maker is only concerned about the first moment (mean) and the second moment 

(variance) of a lottery/portfolio? Do higher moments matter? What if the return of the 

lottery/portfolio is not normally distributed?15 An expected utility criterion is more flexible with 

different assumptions about the functional form of utility relative to the risky wealth as long as 

the utility is an increasing monotonic transformation of wealth. 

                                                 
14 This example is from Eeckhoudt and Gollier 1995. 
15 Barnett (1993) gave an example of irrational choice between two lotteries using mean-variance when the returns 
associated with the two lotteries are not normally distributed. 
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3.4 Expected Utility  

The expected utility theory was initiated by Bernoulli in 1738 and put into axiomatic 

form by Von Neumann and Morgenstern in 1944. Since then expected utility theory has become 

the dominant paradigm for modeling decision-making under risk and uncertainty. The theory 

itself is rich if not all-inclusive and it deserves its own book. In this section, its implications are 

highlighted and two specific expected utility models, which are used in the first two studies in 

Chapter 4 and 5, are reviewed.  

The expected utility replaces the objective values of fw~ by the subjective measurement 

)~( fwU , an increasing monotonic transformation function of wealth fw~ , but keeps the values of 

the original corresponding probability. The evaluation of the final wealth fw~ by its expected 

utility following the definition of expected value is  

∑
=

+=
n

i
iif pxwwV

1
0 )()~(           for discrete case                                     (3.6)       

    for continuous case                                (3.7) ∫ +=
b

a
f dxxfxwUwV )()()~( 0

Here it is easily seen that V is a linear function of the probabilities pi but not of the value 

of the final wealth represented by xw ~+0 . Once this evaluation criterion is adopted, it is natural 

to ask the question: how much certainty wealth (without the lottery) would yield a decision-

maker with utility function U the same level of satisfaction as taking the lottery. If denoting this 

certainty equivalent by  then its mathematical definition, by using continuous case, is: ∗w

                                                           (3.8) ∫ +=∗
b

a

dxxfxwUwU )()()( 0
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Taking the advantage of the fact that U, being monotonic, has an inverse function, we can 

solve for  and express is as: ∗w

⎟
⎠
⎞⎜

⎝
⎛ += ∫−∗ b

a
dxxfxwUUw )()( 0

1                                                 (3.9) 

A relevant concept of certainty equivalent is risk premium, which is defined as: 

∗−= wwE f )~(π    or                                                   (3.10a) 

π−=∗ )~( fwEw                                                          (3.10b) 

Risk premium π  is used to determine the risk attitude of the decision maker. 0>π  

implies the decision-maker is risk averse and the higher it is the more risk averse is the decision-

maker. 0=π  implies the decision-maker is risk neutral and 0<π  implies risk loving. When 

0>π , it measures how much a decision-maker would be willing to sacrifice from his/her 

expected final wealth to achieve certainty equivalent, eliminating the uncertainty, to arrive at the 

expected utility level. So (3.8) can be rewritten as: 

∫ +=−
b

af dxxfxwUwEU )()())~(( 0π                                        

(3.11) 

Figure 3.1 displays a generic utility function, which is concave implying the decision 

maker is risk averse.  is certainty equivalent and ∗w )~( fwE is the expected final wealth. The 

difference between the two, π, is the risk premium. Note according to Jensen’s inequality, 

))~(()~(()( ff wEUwUEwU <=∗ . 

For illustration purpose, suppose a decision-maker uses a Cramer’s utility 

function, 2
1

)( fwU = , and an initial wealth of 5 along with a lottery defined by: 
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x~  fw~  )~(xp  

-4 1 0.2 
+4 9 0.8 

 

Then the expected utility is 2.6. Its certainty equivalent is 6.76, and the expected final 

wealth is 7.4, so the risk premium is 0.64.16 This example illustrates that for the decision-maker, 

he/she prefers to sacrifice $0.64 or 8.65% from his/her expected final wealth of $7.4, to achieve 

the expected utility level at 2.6 without uncertainty. 

Other than risk premium, absolute risk aversion and relative risk aversion are two widely 

used measures for the degree of risk aversion. Arrow and Pratt have been able to show in two 

famous articles that the risk premium is tied with absolute risk aversion or relative risk aversion 

depending on if the risk is additive or multiplicative. Absolute risk aversion and relative risk 

aversion are defined as: 

aA

rA

)~('
)~("

f

f
a wU

wU
A −=        and     f

f

f
r w

wU
wU

A ~
)~('
)~("
×−=  17                              (3.12) 

Depending on the assumptions about the curvature of the absolute risk aversion over 

wealth, there are decreasing absolute risk aversion (DARA) if 0~ <
∂
∂

f

a

w
A

, constant absolute risk 

aversion (CARA) if 0~ =
∂
∂

f

a

w
A

, and increasing absolute risk aversion (IARA) if 0~ >
∂
∂

f

a

w
A

. 

                                                 
16 The expected utility is 6.2)9)(8.0()1)(2.0())~(( 2

1
2
1

=+=fwUE , its certainty equivalent satisfies 

76.66.2)( 2
1

=⇒= ∗∗ ww . The expected final wealth is 4.7)9)(8.0()1)(2.0()~( =+=fwE . So the risk premium is 

64.0)~( =−= ∗wwE fπ  
17 It is proved that by approximation afw A2

~
2
1 σπ ≅ if the risk is additive and rfw A2

~
'

2
1 σπ ≅ if the risk is multiplicative. 

(Eeckhoudt and Gollier) 
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Correspondingly, there are decreasing relative risk aversion (RARA), constant relative risk 

aversion (CARA) and increasing relative risk aversion (IARA)) if 0)()(~ >=<
∂
∂

f

r

w
A . 

The negative exponential function has a constant absolute risk aversion coefficient. 

Mathematically it is defined as: 

)exp()( ff wwU β−−=  or )exp(1)( ff wwU β−−=                            (3.13) 

The absolute risk aversion coefficient, β=aA ,18 is a constant. Constant absolute risk 

aversion utility functions imply the absolute risk aversion coefficient and the risk premium of 

any given additive risk are constant function of wealth. In other words the additive change in an 

individual’s wealth will not affect his/her absolute attitude to risk. 

The constant relative risk aversion coefficient utility function is mathematically defined 

as: 
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(3.14) 

The relative risk aversion coefficient, rAr = ,19 is a constant. Constant relative risk 

aversion utility functions imply the relative risk aversion coefficient and the risk premium in 

fraction of the wealth of any given multiplicative risk are constant function of wealth. In other 

                                                 
18 since and , )exp()(' ff wwU ββ −= )exp()("

2

ff wwU ββ −−= β=−=
)('
)("
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words the multiplicative change in an individual’s wealth will not affect his/her relative attitude 

to risk. 
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   Table 3.1: Probability Distribution of Changes in Portfolio Value 

 Loss in Portfolio Value Final Portfolio Value Probability Cumulative Probability 

-$3,000,000 and lower $7,000,000 and lower .05 .05 

-$2,000,000 to -$2,999,999 $7,000,000 to $7,999,999 .10 .15 

-$1,000,000 to -$1,999,999 $8,000,000 to $8,999,999 .15 .30 

$0 to -$999,999 $9,000,000 to -$9,999,999 .20 .50 

$0 to $999,999 $10,000,000 to $10,999,999 .20 .70 

$1,000,000 to $1,999,999 $11,000,000 to $11,999,999 .15 .85 

$2,000,000 to $2,999,999 $12,000,000 to $12,999,999 .10 .95 

$3,000,000 and higher $13,000,000 and higher .05 1.00 
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Figure 3.1: Value-at-Risk for Normality Distributed Change in Portfolio 
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Figure 3.2: Generic Concave Expected Utility 
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CHAPTER 4 

USING WEATHER-BASED INDEX INSURANCE TO PROTECT AGAINST  

DAIRY PRODUCTION LOSSES CAUSED BY HEAT STRESS 

In recent years weather-based financial derivatives have received increased attention.  For 

economic agents exposed to weather-related financial losses, weather derivatives provide a 

mechanism for sharing those risks with a broader pool of investors.  Energy companies began to 

use temperature-based weather derivatives in early 1997 to hedge their financial risk associated 

with extreme temperatures.  An example is Heating Oil Partners use of temperature-based 

derivatives to manage unpredictable revenue losses due to abnormally warm winters causing 

reduced demand for oil (Forrest). Thus far, natural gas, oil, and electric companies have been the 

largest users of weather derivatives. However, agricultural applications of such products are 

increasingly being discussed since many agricultural production enterprises are highly sensitive 

to extreme weather conditions (Chen, Roberts, and Thraen; Mahul; Martin, Barnett, and Coble, 

2001; Miranda and Vedenov; Skees et al.; Turvey; Varangis, Skees, and Barnett; and Vedenov 

and Barnett).

In the U.S., government-subsidized insurance products are the primary risk management 

tools used by agricultural producers. The Federal Crop Insurance Program facilitates the offer of 

insurance products that protect crop producers against yield and revenue risks from various 

sources including weather-related risks. However, the program has struggled with problems such 

as moral hazard and adverse selection (Skees and Reed; Quiggin, Karaginannis, and Stanton; 
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Smith and Goodwin; Coble et al.; Just, Calvin, and Quiggin).  While the Federal Crop Insurance 

Program has also pilot-tested products that protect against livestock price risk, there are currently 

no federally-facilitated products that protect against livestock production risks.  Livestock 

producers, however, are also exposed to a variety of risk factors including weather-related risks. 

For example, extreme heat or cold can cause death losses or, for confinement operations, large 

expenditures for cooling or heating (Martin, Barnett, and Coble 2000).  

This article proposes a temperature-humidity index (THI) insurance product and 

examines whether this product can effectively protect against the risk of reduced milk production 

caused by heat stress.20  Specifically, the article:  (1) develops a THI insurance product to protect 

against milk production risk faced by dairy producers in south-central Georgia; (2) prices the 

THI insurance product; and, (3) assesses the risk reduction impacts of the THI insurance product 

for a representative Georgia dairy farm. 

An overview of weather index insurance is presented in the next section, followed by a 

discussion of the relationship between the THI and dairy production. The subsequent section 

describes the design of the proposed index insurance product. Empirical analysis section 

describes the data utilized in the study, the decision criterion used to optimize key insurance 

choice variables, the impacts of geographical and temporal basis risk on THI insurance risk 

reduction, and a description of alternative risk reduction measures. The final section presents the 

empirical results.   

                                                 
20 While the instrument proposed is conceptually analogous to a weather derivative, we use the term “weather 
insurance” because it would likely be sold through traditional insurance channels rather than exchange markets. 
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4.1 Weather Index Insurance 

Weather-based index insurance contracts pay an indemnity conditional on the realization 

of an index that is defined as either a single weather variable or a mathematical function of 

multiple weather variables.  The index is measured at a weather station over a specified period of 

time.21 Unlike conventional insurance products, the indemnity on weather index insurance is not 

directly tied to realized farm-level production.  In this sense, weather index insurance is similar 

to the area-based Group Risk Plan (GRP) and Group Risk Income Protection (GRIP) index 

insurance products offered under the Federal Crop Insurance Program. 

Using daily weather data available from the National Climate Data Center (NCDC) one 

can construct objective and transparent weather insurance indices that cannot be manipulated by 

insurance purchasers.  These data are available for many weather stations across the U.S. that are 

associated with the National Oceanic and Atmospheric Administration (NOAA).  Since 

indemnities are based strictly on the realized values of specified weather variables measured at a 

given weather station, there is no need for purchaser-specific loss adjustment.  This greatly 

reduces transaction costs relative to conventional insurance products.  Further, since the data 

used to construct the weather index are widely available, there are no information asymmetry 

problems such as adverse selection and moral hazard. 

On the other hand, since payoffs of weather index insurance contracts are not directly tied 

to production shortfalls, agricultural purchasers of weather insurance would be exposed to some 

degree of basis risk. The basis risk in this context reflects the fact that the producer may not 

receive an indemnity even if he/she suffers a production loss, or, alternatively, may receive an 

indemnity even though no loss has occurred. 

                                                 
21 More complicated weather indices can be constructed as weighted averages across multiple weather stations. 
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A number of empirical studies have investigated potential agricultural applications of 

weather index insurance. Skees et al. found that a rainfall index insurance scheme could be 

feasible in Morocco and Argentina. AGROASEMEX, the state agricultural reinsurance company 

in Mexico has used weather index contracts to transfer part of its weather-related crop insurance 

risk into international capital markets.  Martin, Barnett and Coble (2001) found that precipitation 

index insurance could provide effective protection against cotton yield and quality losses due to 

excess late-season precipitation in the delta region of Mississippi. Turvey examined the 

economics and pricing of weather index insurance in Ontario and suggested that temperature- 

and precipitation-based insurance contracts could be used to insure against yield losses for some 

crops. Vedenov and Barnett investigated the feasibility of using weather index insurance to 

protect against shortfalls in corn and soybean yields in Iowa and Illinois and cotton yields in 

Mississippi and Georgia. Their findings were mixed causing them to caution against “blanket 

assessments” of the feasibility of weather index insurance in agricultural applications. 

4.2 Temperature-Humidity Index and Dairy Production 

Dairy cows that are exposed to high ambient temperature and high humidity usually 

respond with reduced milk production. West, Mullinix, and Bernard found that when 

temperature and humidity increased, cows consumed less feed and produced less milk.  Also, at a 

given high temperature, cows exposed to low humidity performed better than those exposed to 

high humidity. 

The THI is a commonly used measure of heat stress that incorporates the effects of both 

temperature and relative humidity.  It is calculated as 

 ( )( ) ( )5855.055.0 −××−−= TDRHTDTHI                                (4.1) 

 45



where THI is the daily mean temperature-humidity index, TD is the mean dry bulb temperature 

in degrees Fahrenheit, and RH is the daily mean relative humidity in decimals (NOAA 1976).  

Johnson et al. suggest that milk production will be reduced whenever THI exceeds a value of 72.  

Though many studies have examined the effect of heat stress on same day milk production, other 

studies suggest that the more significant impact might occur a few days after dairy cows are 

exposed to extreme heat stress (Linvill and Pardue; West, Mullinix and Bernard).  

We are aware of only one study that considers the application of weather index insurance 

to managing livestock production risk. Chen, Roberts, and Thraen examined the use of THI 

insurance contracts to hedge milk production losses for hypothetical dairy farms in Ohio, Illinois, 

New York, and Wisconsin.  The relationship between daily THI and same day milk production 

loss was based on a model proposed by St-Pierre, Cobanov, and Schnitkey. Daily THI data were 

then used to simulate several years of daily milk production losses using this deterministic model.  

Thus, simulated milk production losses were identical for days with the same daily average THI.  

Each hypothetical dairy farm was assumed to purchase a THI insurance product for the entire 

period during which milk production was assume to be affected by heat stress.  The risk 

reduction generated by the insurance contract was assessed using a mean-variance utility 

measure.  Also, for each hypothetical dairy farm, the impact of geographical basis risk was 

assessed by comparing the risk reduction generated from THI insurance contracts based on 

different weather stations. 

This study expands and improves on the work of Chen, Roberts, and Thraen as described 

below. The analysis is extended to dairy production in the southeastern U.S. – a region 

characterized by high summer temperatures and humidity.  Based on recent research findings, 

this study examines the relationship between the daily THI and lagged milk production.  Because 
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of the limited availability of daily milk production data, this study fits a milk production function 

similar to that used by Chen, Roberts, and Thraen. However daily milk production is simulated 

by incorporating the random errors from the estimated milk production function to bootstrap 

around the predicted milk production based on the daily THI. Thus, days with the same daily 

average THI will not necessarily have the same simulated milk production.  Failure to 

incorporate these idiosyncratic elements of milk production risk will cause the correlation 

between simulated farm-level milk production and the THI to be overstated.  To test for 

robustness of results across alternative measures of risk reduction, this study presents results 

based on three different measures.  In addition, this study analyzes the impacts of both 

geographical and temporal basis risks by considering THI insurance contracts based on different 

weather stations and by allowing separate contracts to be purchased for different subperiods 

during the entire period for which milk production is affected by heat stress. 

4.3 Index Insurance Design 

Milk production risk can be orthogonally decomposed into systematic risk related to heat 

stress and idiosyncratic risk caused by other factors uncorrelated with heat stress. Then 

εβµ ~~~ ++= zy                                                               (4.2) 
 

where y~ denotes the summation  of daily random realizations of total milk production 

(measured in pounds) per cow over a period of T days, 
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where is the random realization on day t of THI measured at the farm.  Realizations of 

greater than Threshold are expected to cause reduced milk production. The coefficient

f
ti

f
ti β , 

 47



which measures the sensitivity of milk production to the systematic risk of heat stress, is 

expected to be negative, where 
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 In principle, a THI insurance product could be created based on the farm-specific index 

z~ .  However, the transaction costs of such an insurance product would be rather high since it 

would require that a weather station be located at each farm.  Thus, for practical applications, the 

index insurance product would be based on THI measured at the closest weather station. 

The proposed insurance product would function much like a call option on the THI.  In 

particular, define a standard contract that pays an indemnity conditional on the realization of the 

THI according to the following schedule: 

                             (4.5) 
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where tn~  is the indemnity for day t, is the THI realization on day t measured not at the farm as 

in (4.3) but rather at the weather station referenced in the insurance contract,  is the strike, 

and 

ti

strikei

λ  is a choice variable that defines the upper bound of the layer of over which indemnities 

are paid.  The contract triggers an indemnity whenever  exceeds . For the standard 

contract, the daily maximum indemnity 

ti

ti strikei

( )strikei−λ  is paid whenever  exceeds ti λ . Thus, the 

standard contract can be uniquely identified by fixing the two parameters  and strikei λ .22  The 

total indemnity paid on the index insurance contract over a period of T days is 

                                                 
22 A standard contract is presented here for ease of exposition.  Later a choice variable is introduced that allows the 
purchaser to scale the insurance liability up or down to meet individual needs. 
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                                                                               (4.6) 

Similar index insurance contract designs are presented in Martin, Barnett, and Coble (2001) and 

Vedenov and Barnett. As shown, the indemnity is denominated in increments of THI. The 

indemnity can be converted into pounds of milk production as 

( .,|~),(~
1
∑
=

=
T

t
strikettstrike iinin λλ )

n~|| ×β  or into monetary units as 

np ~|| ×× β , where p is a given price per pound of milk. 

The premium on the standard THI contract is a function of , strikei λ , and the probability 

distribution of .  The distribution can be estimated based on historical THI data either by fitting 

a standard parametric distribution or by using a nonparametric approach such as kernel 

smoothing.  For this study, kernel smoothing is used to derive a continuous probability density 

function  of .  Formally, for index realizations i

ti

)(ih ti t ; t = 1,…,J and J = T × years of available 

THI data, the kernel density function of the index is calculated as  

                                                          ∑
=

⎟
⎠
⎞

⎜
⎝
⎛

∆
−

∆
=

J

t

tiiK
J

ih
1

1)( 23                                                    (4.7) 

where  is a kernel function, and ∆ is a degree of smoothness or bandwidth (Härdle).  The 

expected payoff and hence the actuarially fair premium for the contract can be determined by  
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If one further assumes that a proportional premium load γ  ( 0≥γ ) is applied to the actuarially 

fair premium to cover transaction costs, return on investment, and reserve-building, then the 

loaded premium is  

                                                 
23 Since the distribution of THI is stationary, the kernel density functions h(i) for each period were estimated using 
all available years of daily THI data from 1949 to 2000. 
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                                                .),()1(),,( ~ λµγγλπ strikenstrike ii +=                               (4.8b) 

4.4 Empirical Analysis 

Data 

Historical data on daily average temperature and daily average relative humidity were 

collected at four locations:  Tifton, Georgia; Macon, Georgia; Atlanta, Georgia; and Tallahassee, 

Florida.  The temperature and humidity data for Tifton were collected from automated weather 

stations operated by the College of Agricultural and Environmental Sciences at the University of 

Georgia.  The temperature and humidity data for Macon, Atlanta, and Tallahassee were collected 

from the NCDC. These data were available for the period 1992-2002 for Tifton and 1949-2000 

for Macon, Atlanta, and Tallahassee.  The daily temperature and relative humidity data were 

used to calculate daily THI according to (4.1).  

Data on daily average milk production per cow were obtained from the University of 

Georgia’s Coastal Plain Experiment Station located at Tifton, Georgia. The data were from a 

study on the effects of hot, humid weather on milk temperature, dry matter intake, and milk yield 

of lactating dairy cows (West, Mullinix and Bernard). The study was conducted for 85 days 

between April 28 and July 21, 1993.  The 22 Holstein cows that completed the experiment were 

housed and fed under the same conditions and had no fans or misters for cooling. Feeding and 

management methods were kept consistent both across animals and across testing days so that 

variation in daily milk production would be affected primarily by ambient environmental 

conditions (West et al.). The study found a two-day lag between heat stress events and the largest 

subsequent reductions in daily average milk production.  We conducted a cluster analysis of the 

data generated by this study and determined that milk production could be categorized into 2 

time periods with May 31 as a distinct separation date.  Therefore, the 36 days prior to and 
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including May 31 were designated as the “cool” period.  The 49 days after May 31 were 

designated as the “hot” period. 

For this analysis a relationship between the daily THI and two-day lagged daily milk 

production was fit using the Tifton daily milk production data and the corresponding daily THI 

at Tifton. The quadratic regression results were 

                   ε++−=+ D5.3704-THI0.0530-THI7.0358157.0971y 2
ttt 2

~                      (4.9) 

where  is the THI measured on day t, tTHI 2
~

+ty  is the daily average milk production in pounds 

per cow measured two days subsequent to day t, and D is a binary variable that takes a value of 0 

during the cool period and 1 during the hot period.24  The R2 for the regression is 0.8777.  All 

coefficients are significant at a 5% level of significance. A Shapiro-Wilk test failed to reject the 

null hypothesis that ε  was normally distributed. The distribution of ε  was estimated to have a 

mean of zero and a standard deviation of 3.10. 

Using the relationship between the THI and milk production estimated in (4.9) it is 

possible to simulate daily milk production for a representative dairy farm in the region.  To 

utilize a longer time series of available THI data, it was assumed that the representative dairy 

farm was located in Macon (approximately 100 miles north of Tifton). For the representative 

Macon dairy farm, 52 years of daily milk production were simulated based on the available 52 

years of daily Macon THI data. Bootstrapping was used to reintroduce the idiosyncratic risk ε  

into the simulated 4,420 estimates (85 days × 52 years) of daily milk production.  Figure 4.1 

displays the simulated relationship between 2
~

+ty  and at Macon. tTHI

                                                 
24 Since the available milk production data are for the period April 28 through July 21, the THI data used in the 
analysis are for the period April 26 through July 19. 
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 Decision Criteria 

Dairy farmers manage investment portfolios that include, but are not necessarily limited 

to, the assets that constitute the dairy operation.  A dairy farmer who adds a weather index 

insurance product with a loaded premium to his/her investment portfolio expects, as a result, to 

have lower expected returns on the portfolio but also less risk (measured by the variance of 

returns on the portfolio). 

Suppose a representative dairy producer’s investment portfolio consists only of dairy 

production assets and THI insurance contracts.  Further suppose that this producer values 

investment returns according to the mean-variance criterion:  

                 )var()( RkREV ×−=
2
1                                               (4.10) 

where R is returns and k is assumed to be positive, implying that the individual is risk averse 

(Eeckhoudt and Gollier).  If the portfolio does not include a THI insurance contract, returns are 

calculated as  

                                                             ypR ~=                                                              (4.11a) 

where p is the market price of milk. 

Consider a choice variable 0>φ that can be used to scale the liability of the THI 

insurance contract relative to the liability of the standard contract.  This variable is conceptually 

analogous to the scale variable in GRP (Skees, Black, and Barnett).  Contracts specified with φ  

less than (greater than) one have less (more) liability than the standard contract.  Thus, if the 

portfolio includes a THI insurance contract, returns are calculated as   

( ) ( )[ ]γλπλβφ ,,,|~||~
strikestriket

net iiinpypR −+=                            (4.11b)                       

where n~  and π  are defined in (4.6) and (4.8b). 
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 For given , strikei λ , and γ , the producer’s objective is to choose the value of φ  that 

maximizes ( ) ( )RVRVV net=∆ − . The optimal φ  is calculated (see derivation in the Appendix A) 

as 
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Notice that if the premium load 0=γ , then 
n

z
nz
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ρφ =∗ which is analogous to an optimal hedge 

ratio for futures contracts.  If the THI insurance is not actuarially fair (i.e., 0>γ ), then  is 

lower than if 

∗φ

0=γ .  

The risk reduction analysis was performed under the assumption that the THI insurance 

contracts are bought by a representative dairy farmer located at Macon. The farmer can purchase 

THI insurance based on weather stations at Macon, Atlanta, or Tallahassee.  It is further assumed 

that the market price of milk is $15 per hundredweight. 

Basis Risk 

Basis risk occurs because the indemnities on a THI insurance contract are not perfectly 

correlated with the actual losses experienced by milk producers. Purchasers of a THI insurance 

contract would be exposed to at least two types of basis risk.  Geographic basis risk occurs 

because the temperature and humidity data used to construct the index are measured at a location 

other than the farm.  Temporal basis risk may occur because the probability distribution of daily 

THI is not stationary across days in the insurance period and/or because heat stress has different 

effects on milk production during different time periods. 

To help assess the impact of geographic basis risk, an initial scenario is constructed 

where the representative Macon dairy farmer is assumed to purchase THI insurance based on the 
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Macon weather station.  Since the Macon THI data were used to simulate milk production for the 

representative Macon dairy farmer, this scenario has, by construction, no geographical basis risk. 

From a practical standpoint, this is obviously an unrealistic scenario.  However, it is instructive 

since it establishes a baseline that can be used to assess the impact of geographic basis risk on the 

efficacy of THI insurance. 

It is assumed that the farmer can also purchase THI insurance based on measurements 

taken at the Atlanta and Tallahassee weather stations. Purchasing THI insurance based on these 

two locations exposes the representative farmer to some degree of geographic basis risk. Table 

4.1 reports descriptive statistics for THI at each of the three locations. The correlations between 

Macon and Atlanta are consistently higher than those between Macon and Tallahassee. This is as 

expected since Atlanta is only about 80 miles north of Macon while Tallahassee is approximately 

200 miles south of Macon. This implies that for a representative dairy farm in Macon, THI 

insurance based on Tallahassee would be expected to have higher geographic basis risk than THI 

insurance based on Atlanta. 

In addition to geographical basis risk, there are at least two possible sources of temporal 

basis risk.  First, due to seasonality, the probability distribution for daily THI may not be 

stationary across days in the insurance period.  For example, based on the 52 years of available 

weather data, the mean THI values for the 85-day study period are 71.50, 73.74, and 75.06 for 

Atlanta, Macon, and Tallahassee, respectively.  However, when measured separately the mean 

THI values at the same locations are 67.37, 69.67, and 71.36, respectively, for the cool period 

and 74.73, 76.54, and 77.78, respectively, for the hot period.  Thus, a potential insurance 

purchaser would likely prefer to choose different strikes for different time periods. 
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Second, heat stress may have different effects on milk production during different time 

periods. Following a heat stress event, milk production is more likely to return to normal levels 

during the cool period than during the hot period (West, Mullinix, and Bernard).  This suggests 

that the sensitivity of milk production to heat stress may vary across different time periods. 

A tradeoff exists between temporal basis risk and transaction costs.  At one extreme, 

temporal basis risk could be largely eliminated by using separate insurance contracts for each 

day. However, the transaction costs would likely be unacceptably high. On the other hand, if 

only a single THI insurance contract were available for the entire 85-day period under 

consideration, temporal basis risk would be higher, though transaction costs would be lower.  For 

this analysis, we first consider a single THI insurance contract for the entire 85-day period and 

then two separate THI insurance contracts – one each for the cool period and hot period. 

Risk Reduction Measures 

Three different measures were used to assess the robustness of the risk reduction 

performance of the THI insurance contract: mean-variance (MV), certainty-equivalent revenues 

(CER), and value-at-risk (VaR).  MV is a widely-used measure of relative risk and return in 

many finance applications.  It assumes that decision-makers value investment results based only 

on the first two moments of the distribution of returns.  For a specified utility function, CER is 

the level of return that if received with certainty would be equal to the expected utility of the 

risky investment.  While it allows for consideration of higher moments of the return distribution, 

CER also requires one to make assumptions about the decision-maker’s utility function over 

returns. VaR measures the minimum return (or maximum loss) that would be expected from an 

investment with a given probability.  It is typically used when one believes that investors are 

concerned primarily about downside risk (Hogan and Warren; Markowitz). 
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The mean-variance criterion is presented in (4.10).  Expectations and variances of R and 

Rnet
  were calculated by numerical integration of corresponding kernel density functions.  These 

calculations were done separately for each of the three contracts; the single contract that covers 

the entire 85 day period, the cool period contract, and the hot period contract.5

Certainty-equivalent revenues were calculated by using a negative exponential utility 

function: 

    ( )RAU α−−= exp1                                                       (4.13) 

where the absolute risk aversion coefficient  was calibrated so as to correspond to a aA

prespecified risk premium θ (Babcock, Choi, and Feinermean; Schnitkey, Sherrick, and Irwin; 

Vedenov and Barnett).  More specifically, for a given level of risk premium θ, the parameter  aA

was selected so that the expected utility of the revenue without THI is equal to the utility of the 

certain revenue ( )RE×− )1( θ , i.e., 

( )( ) ( ) ( )( ) ( ) ( )( )REUREARARU aaR ×−=×−×−−=−−= θθ 11exp1exp1E)(E .       (4.14) 

Once  was determined, the certainty-equivalent revenues (CER) without and with the THI aA

contract were calculated as 

    )(E)( RUCERU Rwithout = , and                      (4.15a) 

    .                                            (4.15b) )()( net
Rwith RUECERU =

For a given distribution of revenues R, the value-at-risk at an %α  level is defined as a 

level of revenue VaRα  such that αα =< )Pr( VaRR and can be calculated by using the 

cumulative distribution function (CDF) of R (Manfredo and Leuthold).  For this analysis, the 

series of revenues without and with the THI contract in (11a) and (11b), respectively, are used to 

generate the corresponding empirical CDFs by integrating their empirical density function 
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obtained by the kernel smoothing procedure. VaR is then calculated for both distributions at 

2.5%, 5%, and 10% levels for both single and separate contracts. 

4.5 Results 

For given combinations of  and MV parameter k, the optimal scale variable  was strikei ∗φ

calculated by fixing λ = 95 and load factor γ = 10%.  Table 4.2 presents the optimized 

combinations of  and∗
strikei  ∗φ  for each weather station.  These are the combinations that yield the 

largest reduction in the mean-variance measure V∆  for a specific level of k.  The maximum daily 

indemnity that can be received on the THI insurance contract in (4.5) is ( )strikeip −λβφ || .  

Thus, the liability for the T days covered by the THI insurance contract is ( )strikeipT −λβφ || . 

Liabilities and premiums measured in dollars per cow are also presented in table 4.2. From these 

data the premium rates can be calculated as premium divided by liability.  For the single contract 

at the strikes indicated, the premium rates are 13.3%, 9.5%, and 13.6% for Macon, Atlanta, and 

Tallahassee, respectively.  The average premium rates for the separate contracts at the strikes 

indicated are 9.2%, 8.7%, and 9.0% for Macon, Atlanta, and Tallahassee, respectively.25

Optimized combinations of  and∗
strikei  ∗φ  were calculated for both a single contract for the 

entire time period and separate contracts for the cool and hot periods.  For the separate contracts 

the optimal  was higher in the hot season than in the cool season.  This suggests the need for 

separate contracts to reduce the impact of temporal basis risk.  Also, for a specific k and a given 

weather station, each optimized combination of  

∗
strikei

∗
strikei and  for the separate contracts 

consistently generated lower premium rates than for the single contract. 

∗φ

                                                 
25 For the separate contracts the average premium rates are calculated as the sum of the premiums for the two 
contracts divided by the sum of the liabilities for the two contracts.   
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The optimal  are lowest at Atlanta and highest at Tallahassee. This finding is ∗
strikei

consistent with the relative levels of THI at these locations.  The values of  for Macon are ∗φ

consistently higher than those for the two other locations.  This reflects the fact that there is no 

geographical basis risk with the THI insurance contract based on Macon while geographical 

basis risk does exist with contracts based on the other two locations.  Further, as shown in (4.12) 

∗φ  increases with higher levels of k.  

Tables 4.3 - 4.5 present risk reduction from purchasing THI insurance as measured by 

MV, CER, and VaR, respectively.  The CER and VaR measures in Tables 4.4 and 4.5 are 

calculated using ∗
strikei  and  from table 4.2 for k = 0.2.  Each of the tables presents results under ∗φ

three scenarios:  no purchase of THI insurance; purchase of a single THI insurance contract over 

the entire period; and purchase of separate THI insurance contracts for the cool and hot periods.  

For both the single and separate contract scenarios, the simple difference change relative to the 

no insurance scenario is presented for both the MV and CER measures.26  Positive (negative) 

changes imply that the representative dairy producer is better (worse) off as a result of 

purchasing THI insurance. 

In general, the findings are robust across the three measures of producer well-being.  

Regardless of the measure used, the representative risk-averse dairy producer is generally made 

better off by purchasing THI insurance even though the premium included a 10% proportional 

load.  The only exception is for the single THI contract based on Tallahassee.  In this case, both 

the MV measure when k =  0.1 and the VaR0.10 measure indicate that the insurance purchase 

would make the representative dairy producer slightly worse off.  As discussed below, this 
                                                 
26 Simple difference changes in VaR are affected by the curvature of the revenue distribution and thus, are not 
meaningful measures of risk reduction. 
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reflects the fact that the contract based on Tallahassee has more geographic basis risk than 

contracts based on the other locations.  Given this basis risk and the assumed risk preference, the 

risk reduction generated by the index insurance is not sufficient to offset the effect of the 10% 

premium load. 

The impact of geographical basis risk can be seen by comparing results from a Macon 

THI insurance contract (which has no geographical basis risk) to those from Atlanta and 

Tallahassee.  If the representative dairy producer purchases an index insurance product, he/she is 

always better off purchasing the insurance based on Macon.  Geographical basis risk reduces, but 

does not eliminate, the benefits of the index insurance product.  In general, the representative 

dairy producer is better off with index insurance purchased on Atlanta rather than Tallahassee.  

This reflects the fact that Macon is geographically closer to Atlanta than to Tallahassee and thus, 

the THI in Macon is more highly correlated with the THI in Atlanta than the THI in Tallahassee.  

Exceptions to this general finding occur with both the single and separate contracts for the 

VaR0.05 measure and the single contract for the VaR0.025 measure.     

The results also demonstrate the importance of temporal basis risk.  With the exceptions 

of VaR0.05 and VaR0.025 for Tallahassee and VaR0.05 for Atlanta, the risk reduction measures 

suggest that the representative dairy producer is better off using separate contracts rather than a 

single contract.  The exceptions demonstrate an interesting characteristic of the VaR measure 

relative to the other measures.  While the other measures are based on the entire revenue 

distribution, the VaR measure is based only on the lower tail.  Table 4.2 shows that the optimal 

strike for the single contract is always lower than the optimal strike for the hot period.  This 

implies that during the hot period the optimized single contract will trigger payments more 

frequently than the optimized hot period contract.  Revenue occurrences in the lower tail of the 
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revenue distribution are associated with extreme heat stress events that are much more likely to 

occur during the hot period.  Since the optimized strike on the single contract “overprotects” 

during the hot season, the VaR for the extreme lower tail of the distribution can be higher for the 

single contract than for the separate contracts.27  This outcome is less likely to occur for higher 

levels of α (e.g., α = 0.10 in table 4.4). 

                                                 
27 It is interesting to note that this occurs most noticeably for the contract with the highest geographical basis risk 
(Tallahassee).  All other things equal, the higher the basis risk (either geographical or temporal) the more likely that 

 (for a risk-averse decision-maker) will overprotect.  Setting  so that the contract triggers more often 
increases the likelihood that the contract will, in fact, trigger when a farm-level loss event occurs.  Thus, setting 

 more “in the money” compensates, to some extent, for basis risk. 

∗
strikei strikei

strikei
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Table 4.1:THI Descriptive Statistics 

 Entire Period (April 26-July 19)  Cool period (April 26-May 31)  Hot period (June 1-July 19) 
Weather 
Station 

Location 
THI 

Mean 
THI 

variance 

Correlation 
with 

Macon THI  
THI 
mean 

THI 
variance 

Correlation 
with 

Macon THI 

 
 
 

THI 
mean 

 
THI 

variance

Correlation 
with 

Macon THI 
Macon 73.74 30.51  1  69.67   

         
            

26.45 1  76.54 12.40 1 
Atlanta 71.50 32.28 0.9363 67.37 27.53 0.9142  74.73 14.07 0.8670
Tallahassee 75.06 23.87 0.8764 71.36 21.37 0.7376 77.78 8.06 0.6688
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     Table 4.2: Optimized Parameters of the THI Insurance Contracts 
 Single Contract  Separate Contracts 

Weather Station 
Location 

∗
strikei  ∗φ  

Liability 
($/cow) 

Premium
($/cow)  

∗
)(coolstrikei ∗

)(hotstrikei  ∗
coolφ  ∗

hotφ  
Liability 
($/cow) 

Premium 
($/cow) 

k = 0.1 
Macon            

            
            

73 1.03 $50.56 $6.78 73 75 1.23 1.20 $56.47 $5.19
Atlanta 72 0.67 $34.38 $3.28 70 73 0.71 0.73 $37.51 $3.26
Tallahassee 74 0.67 $31.39 $4.29 74 76 0.88 0.83 $37.99 $3.40

k = 0.2 
Macon            

            
            

73 1.07 $52.52 $7.00 73 75 1.27 1.23 $58.19 $5.33
Atlanta 72 0.69 $35.41 $3.37 70 73 0.74 0.75 $38.81 $3.37
Tallahassee 74 0.71 $33.27 $4.53 74 76 0.93 0.87 $39.78 $3.56

k = 0.3 
Macon            

            
            

73 1.08 $53.01 $7.07 73 75 1.28 1.24 $58.77 $5.38
Atlanta 72 0.69 $35.41 $3.41 70 73 0.75 0.76 $39.24 $3.40
Tallahassee 74 0.72 $33.74 $4.61 74 76 0.94 0.89 $40.38 $3.62

     

   Notes: 
=β -0.175 for the entire 85-day period; =β -0.178 for the cool period; and =β -0.177 for the hot period.     1. 

   2. In the historical data, the highest daily relative humidity was 100% and the highest daily temperature was 95 degrees Fahrenheit.     
Thus, λ was set equal to 95. 

(   3. )∗−= strikeipTLiability λβφ ||  where T is the number of days in the insurance period.  For the separate contracts the total 
liability is the sum of the liabilities for each contract. 
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Table 4.3: Mean-Variance (MV) 

  Single Contract  Separate Contracts 

Location 
MV Without THI 
Contract ($/cow)

MV With THI 
Contract ($/cow)

Change 
($/cow)  MV With THI 

Contract ($/cow) 
Change 
($/cow) 

 k = 0.1 
Macon       

       
       

$868.14 $870.36 $2.21 $871.40 $3.26
Atlanta $868.14 $869.59 $1.45 $870.51 $2.36
Tallahassee $868.14 $868.06 ($0.08) $868.54 $0.39
 k = 0.2 
Macon       

       
      

$860.78 $869.23 $8.45 $870.40 $9.62
Atlanta $860.78 $865.63 $4.85 $866.39 $5.61
Tallahassee $860.78 $863.12 $2.34 $863.52 $2.74
 k = 0.3 
Macon       

       
      

$853.42 $868.18 $14.75 $869.44 $16.02
Atlanta $853.42 $861.70 $8.27 $862.31 $8.88
Tallahassee $853.42 $858.26 $4.84 $858.55 $5.13

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Higher (lower) value of MV corresponds to lower (higher) risk exposure. The higher the value of k, the more risk 
averse the insurance purchaser. 
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Table 4.4: Certainty Equivalent Revenues (CER) 

   Single Contract  Separate Contracts 
 

Location 
CER without THI 
Contract ($/cow) 

CER with THI 
Contract ($/cow) 

Change 
($/cow) 

 
 

CER with THI 
Contract  ($/cow) 

Change 
($/cow) 

 Risk Premium = 2% 

Macon      
       

      

$870.22 $872.77 $2.56  $875.32 $5.11
Atlanta $870.22 $872.49 $2.28 $872.75 $2.54
Tallahassee $870.22 $871.93 $1.71 $872.10 $1.89
 Risk Premium = 5% 
Macon      

       
      

$866.42 $873.86 $7.44  $874.76 $8.34
Atlanta $866.42 $872.07 $5.65 $873.41 $6.99
Tallahassee $866.42 $868.36 $1.94 $871.02 $4.60
 Risk Premium = 10% 
Macon      

       
      

$864.28 $873.45 $9.17  $874.26 $9.98
Atlanta $864.28 $870.53 $6.25 $873.36 $9.08
Tallahassee $864.28 $867.15 $2.87 $869.37 $5.09

 

 

 

 

 

 

 

 

 

 

 

Note: Higher (lower) value of CER corresponds to lower (high) risk exposure.  The higher the risk premium, the more 
risk averse the insurance purchaser. 
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Table 4.5: Value-at-Risk (VaR) 

 
Location 

VaR Without THI 
Contract ($/cow) 

Single THI Contract 
VaR ($/cow)  

Separate THI Contracts 
VaR ($/cow) 

 VaR0.025

Macon    
     

     

$850.27 $862.96 $864.30
Atlanta $850.27 $856.15 $858.37
Tallahassee $850.27 $856.67 $855.02
 VaR0.05

Macon     
     

     

$854.41 $864.50 $865.74
Atlanta $854.41 $858.92 $858.39
Tallahassee $854.41
 

$860.36 $859.11
VaR0.10

Macon    
     

     

$861.98 $865.63 $866.68
Atlanta $861.98 $864.66 $865.65
Tallahassee $861.98 $861.75 $863.03

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Higher (lower) value of VaR corresponds to lower (higher) risk exposure. 
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        Figure 4.1: Simulated Daily Milk Production and Daily THI at Macon.
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CHAPTER 5 

TESTING THE VIABILITY OF AREA YIELD INSURANCE FOR COTTON AND 

SOYBEANS IN THE SOUTHEAST 

 From its inception in 1938 the U.S. Federal Crop Insurance Program (FCIP) has provided 

Multiple Peril Crop Insurance (MPCI) policies that protect against individual farm yield losses.  

Since the mid-1980s, MPCI yield guarantees have been based on the actual production history 

(APH) yield for the insured unit.  The APH yield is a rolling 4-10 year average of realized yields 

on the insured unit. 

In recent years, various APH-based revenue insurance products have also been offered 

through the FCIP.28  For 2004, APH-based insurance products (MPCI and the various APH-

based revenue insurance products) accounted for over 90% of FCIP premiums.  Several studies 

have described how APH-based insurance products are subject to misclassification (adverse 

selection) and moral hazard problems (Quiggin, Karaginannis, and Stanton; Smith and Goodwin; 

Coble et al.; Just, Calvin, and Quiggin). In addition, APH-based insurance products have high 

transaction costs related to establishing and verifying APH yields and conducting on-farm loss 

adjustment. 

Missclassification and moral hazard problems create a “wedge” between the premium 

cost and the expected indemnity for insureds (Wang, Hanson, and Black).  Missclassification can 

cause either positive or negative wedges.  In some cases, insureds will be misclassified to their 

detriment so that they face a premium cost that exceeds the expected indemnity (positive wedge).  
                                                 
28APH-based revenue insurance products are generally offered only for crops with exchange-traded futures contracts.  
Indemnities are triggered by the product of farm-level yield losses and a price index based on futures market prices. 
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In other cases, insureds may be misclassified to their benefit (negative wedge).  Moral hazard 

problems always create positive wedges.  Federal premium subsidies increase participation in the 

FCIP by masking the impact of positive wedges (Wang, Hanson, and Black).  However, some 

potential insureds face positive wedges that more than offset the federal premium subsidy.  Thus, 

despite significant federal premium subsidies, APH-based insurance products can still have a 

negative expected value for many potential insureds (Skees 2001). 

Area yield insurance is an alternative insurance product that is not susceptible to many of 

the problems that plague APH-based insurance products.  Area yield insurance is essentially a 

put option on the average yield for a production region.  Indemnities are triggered by shortfalls in 

the area average yield rather than farm-level yields.  For this reason, area yield insurance 

requires no risk classification.  If the area is sufficiently large, area yield insurance is also not 

susceptible to moral hazard problems since the actions of an individual farmer will have no 

noticeable impact on the area average yield.  Area yield insurance also has relatively low 

transaction costs since there is no need to establish and verify APH yields for each insured unit 

nor is there any need to conduct on-farm loss adjustment. 

Because farm-level yields are not perfectly correlated with the area average yield, 

purchasers of area yield insurance are exposed to some degree of basis risk.  It is possible for the 

purchaser of an area yield insurance policy to experience production losses on his/her farm and 

yet not receive an indemnity because there has been no shortfall in the area average yield.  

Similarly, it is possible for a policyholder to receive an indemnity on an area yield insurance 

policy when no farm-level losses have occurred.  Basis risk on area yield insurance is generally 

lower (higher) the more homogeneous (heterogeneous) the production area (Miranda).  
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Variability in elevation, soil type, drainage, and other relevant factors will cause farm-level 

yields to be less correlated with the area average yield (Chaffin and Black). 

Since 1993 an area yield insurance product called the Group Risk Plan (GRP) has been 

offered through the FCIP for selected crops and regions.  In recent years, an area-based revenue 

insurance product called the Group Revenue Insurance Policy (GRIP) has also been offered for 

selected crops (all of which have exchange-traded futures contracts) and regions.  Both GRP and 

GRIP areas are defined based on county political boundaries.  GRP policies (and the yield 

component of GRIP policies) settle based on National Agricultural Statistics Service (NASS) 

estimates of county average yields.  

This article compares farm-level risk reduction from MPCI with that from an area yield 

insurance product like GRP for selected South Carolina cotton and soybean production regions 

and Georgia cotton production regions.  MPCI premium rates are relatively high in this region.  

While this reflects the inherent production risk, anecdotal evidence suggests that MPCI premium 

rates also reflect significant positive wedges caused by adverse selection and moral hazard 

problems. 

Soybean GRP is currently available for 19 counties in South Carolina however no 

policies have been sold since 1999.  GRP is not currently available for cotton production in 

either South Carolina or Georgia.  Area-yield insurance purchasers in the Southeast would likely 

be exposed to relatively high levels of basis risk since the region is characterized by significant 

geographic variability in production factors such as soil quality, drainage, and production 

practices (e.g., irrigated versus dryland production).  Despite this, if MPCI premium rates contain 

positive wedges that are sufficiently large, area-yield insurance may be a viable alternative for 

many producers in the region.  
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Previous studies have compared the risk reduction performance of MPCI and GRP under 

the assumption that both products are actuarially fair in sample (Miranda; Smith, Chouinard, and 

Baquet; Barnett et al.).  The results from such studies are biased in favor of MPCI since, for most 

farmers, actual MPCI premium rates contain much larger positive wedges than GRP premium 

rates (Barnett et al.).  The analysis presented here extends previous work by relaxing the 

assumption that premium rates are actuarially fair. 

The article is organized as follows.  The next section compares MPCI and GRP insurance 

policies by briefly describing how indemnities and actuarially fair premium rates are calculated 

for each.  The subsequent section focuses on data and procedures used in the empirical 

comparison of farm-level risk reduction from MPCI and GRP insurance policies.  This is 

followed by a discussion of empirical results.   

5.1 Comparing MPCI and GRP Insurance Contracts 

For simplicity, suppose that insurance indemnities and premiums are paid in units of 

production per acre.  The MPCI indemnity is then calculated as  

   ( ) ( )0,~max|~~
iiciMPCI yycoverageyn −=                    (5.1)

  

where MPCIn~  is the indemnity per acre, iy~ is the realization of the stochastic yield on farm i with 

( ) iiyE µ=~ , and coveragey iic ×= µ .  For MPCI, 50% ≤ coverage ≤ 85% in 5% increments and 

iµ  is the APH yield described earlier. 

The actuarially fair premium  is the expectation of (5.1) f
MPCIπ

   ( )( ) ( )( )0,~max|~~
iiciMPCI

f
MPCI yyEcoverageynE −==π .      (5.2) 
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The liability (the maximum possible indemnity) is  so the actuarially fair premium rate  

is 

icy f
MPCIρ

     ( )( )
ic

iicf
MPCI y

yyE 0,~max −
=ρ                                              (5.3) 

The GRP indemnity is calculated as 

  ( ) ( )
scaleyfcast

y
yy

scalecoverage,yn
c

c
GRP ××⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
= 0,

~
max|~~                (5.4) 

where GRPn~  is the indemnity per acre, y~  is the realization of the stochastic county yield, yfcast is 

the forecast of the county yield per acre, the critical yield coverageyfcastyc ×= , and scale is a 

choice variable selected by the insured.  Currently, for GRP, 70% ≤ coverage ≤ 90% in 5% 

increments and 90%  ≤ scale ≤ 150%.29  The GRP indemnity contains a disappearing deductible.  

In the extreme, if y~  is zero, the indemnity will be 100% of the liability ( )scaleyfcast×  

regardless of the insureds choice of coverage (Skees, Black, and Barnett). 

 The actuarially fair premium is 

  ( )( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
××⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
== scaleyfcast

y
yy

Escalecoverage,ynE
c

c
GRP

f
GRP 0,

~
max|~~π    (5.5) 

and the actuarially fair premium rate  is f
GRPρ

  

( )
( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

×

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
××⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −

= 0,
~

max
0,

~
max

c

cc

c

f
GRP y

yy
E

scaleyfcast

scaleyfcast
y

yy
E

ρ             (5.6) 

 For farm i and insurance scenario j, the yield net of insurance premiums and indemnities 

is 

                                                 
29 As indicated in Barnett et al., terms are used somewhat inconsistently in the area yield insurance literature.  For 
example, the term “coverage” is sometimes used to mean what is here called “scale.” Throughout this article, we use 
the terminology found in Skees, Black, and Barnett which is consistent with that used for the actual GRP product.  
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     ijiji
net
ij nyy ~~~ +−= π           (5.7) 

where j is either MPCI, GRP, or no insurance purchasing.  In the case of no insurance purchasing 

i
net
ij yy ~~ = . 

Empirical Analysis  

Data 

Farm-level cotton and soybean yield data were obtained from the USDA’s Risk Management 

Agency (RMA).  These data are the 4 to 10 year yield histories used to establish APH yields for 

MPCI purchasers.  The data are aggregated to the level of an enterprise unit meaning that for a 

given crop/year combination, the data include all of the acreage and production assigned to a 

given taxpayer identification number within the county.  The data are for the 10-year period 

1991-2000.  To be included in the analysis, each farm had to have yield data for at least the last 6 

consecutive years of the period (i.e., 1995-2000).  The APH yield is calculated as the simple 

average of the annual yields. 

Historical county-level yield data were collected from NASS.  These data were available 

for cotton production in Georgia for the period 1971-2000 and for cotton and soybean production 

in South Carolina for the period 1972-2000.  To be included in the analysis the county had to 

have at least 20 available farm observations that meet the conditions indicated above.30

For Georgia cotton, 26 counties located in four crop reporting districts (CRDs) were 

included in the analysis.  These counties, shown in figure 1, accounted for 57% of Georgia 

cotton production in 2001.  As indicated in table 1, the lowest yields in 2001 occurred in CRD 60 

where cotton is produced primarily under dryland conditions. The highest yields occurred in 
                                                 
30 Counties with more than 6 total years of missing county yield data or more than 3 consecutive years of missing 
county yield data were excluded from the analysis.  Any missing county yields were replaced by the average yield 
for the crop reporting district (CRD) of which the county is a part.  All missing county yield data occur prior to 1991.  
Thus, the substitution of CRD yields for missing county yields may affect actual unsubsidized and subsidized GRP 
premium rates but does not affect GRP indemnities during the 1991-2000 period analyzed. 
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CRD 70 which has significant irrigation.  CRDs 50 and 80, located in the south central part of 

the state, have both dryland and irrigated production.  For South Carolina, six counties located in 

two CRDs were included in the cotton analysis and seven counties located in the same two CRDs 

were included in the soybean analysis (see figures 2 and 3).  Both cotton and soybean yields 

were similar across the two CRDs in 2001.   

Scatter plots showed no time trend in the county-level soybean yield data, so the county 

yield forecast yfcast can be calculated simply as the in-sample average yield.  On the other hand, 

cotton county yield data in both states display a significant time trend. To account for the 

temporal component, a simple detrending procedure was implemented by fitting a log-linear 

trend model 

(6)    )()~log( 010 Ttyt −+= αα  

where t is the year and T0 is 1971 for Georgia cotton and 1972 for South Carolina cotton.  

Detrended yields were then calculated as:  

(7)    2000ˆ
ˆ

~
y

y
y

y
t

tdet
t =  

where  is the predicted value for year t from (6).  tŷ

Premium Rating 

Three different MPCI and GRP premium rates are considered in this analysis:  1) in-sample 

actuarially fair premium rates; 2) actual unsubsidized premium rates; and, 3) actual subsidized 

premium rates. 

For an MPCI contract, the actuarially fair premium  is the expectation of (1) f
MPCIπ

(8)  ( )( ) ( )( )0,~max|~~
iiciMPCI

f
MPCI yyEcoverageynE −==π . 
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Since the liability (i.e., the maximum possible indemnity) is , the actuarially fair premium rate 

 is 

icy

f
MPCIρ

 (9)   ( )( )
ic

iicf
MPCI y

yyE 0,~max −
=ρ . 

Similarly, for a GRP contract, the actuarially fair premium is the expectation of (2) 
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For each MPCI contract, actuarially fair premium rates were calculated according to (9) 

as the in-sample average loss costs (indemnities divided by liability) for each farm over the 6-10 

year period for which farm-level yields are available.  The actual unsubsidized and subsidized 

premium rates for MPCI were obtained from 2001 RMA FCI-35 coverage and rate tables 

available on the RMA website (U.S. Department of Agriculture).  Unsubsidized GRP premium 

rates were calculated using the available NASS data and procedures similar to those used for the 

actual GRP program as described by Skees, Black, and Barnett.31  For the counties were GRP is 

currently available, actual GRP premium rates can be obtained. However, to maintain 

consistency, generated GRP premium rates were used for all counties included in the analysis. 

For those South Carolina counties where soybean GRP is currently available, the GRP premium 

                                                 
31 Relative to actual GRP premium rating procedures the primary differences in the procedures used to generate 
GRP premium rates for this analysis are: 1) no geographic smoothing of premium rates was imposed; and, 2) 
coverage level rate relativities were based on a distribution estimated using kernel smoothing procedures rather than 
the combination of empirical and parametric procedures described by Skees, Black, and Barnett. 
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rates from our procedure were similar to the actual GRP premium rates.  Subsidized MPCI and 

GRP premium rates were calculated by applying the actual subsidy percentages at each coverage 

level (shown in table 2) to the calculated unsubsidized premium rates. 

To generate unsubsidized GRP premium rates at various coverage levels, it is necessary 

to estimate the probability density function of trend-adjusted county-level yields for each 

crop/county.  Several studies have described procedures for estimating crop yield distributions 

(Just and Weninger; Sherrick et al.). Some have used parametric distributions with known 

attributes, such as the beta distribution or the log-normal distribution (Nelson and Preckel; 

Tirupattur, Hauser, and Chaherli). Others use non-parametric approaches (Ker and Goodwin).  

For this analysis, county-level yield distributions were estimated non-parametrically using a 

kernel-smoothing approach. Formally, for realizations , ty Tt ...,,1= , of county yield, the 

kernel density function of the county-level yield was calculated as:  

(12)                                            ( ) ⎟
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⎞

⎜
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=

t
T

t

yy
K

T
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1  

where  is a kernel function and ∆ is a degree of smoothness or bandwidth (Härdle).  The 

expected indemnity, which is the long-run estimate of the breakeven premium, can then be 

determined by  

)(⋅K

(13a)  ∫= dyyhscalecoverage,ynscalecoverage, )()|(~)(π . 

Following actual GRP rating procedures, a proportional reserve load is applied to the breakeven 

premium to generate the unsubsidized premium  

(13b)  ∫×= dyyhscalecoverage,ynscalecoverage, )()|(~
9.0

1)(π . 

The subsidized premium can then be determined as  
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(13c) ⎥⎦
⎤

⎢⎣
⎡ ×−= ∫ dyyhscalecoverage,ynsubsidyscalecoverage, )()|(~

9.0
1%)1()(π . 

Finally, for all three cases, premium rates are calculated as premiums divided by the liability 

. ( )scaleyfcast×

Decision Criterion 

Previous studies have, by construction, used GRP and MPCI premiums that are actuarially fair 

in-sample.  Thus, each insurance product could be compared against other products and against a 

no insurance scenario by simply considering the resulting variance of net yield (net of insurance 

premiums and indemnities).  Given that wedges exist for MPCI policies and federal premium 

subsidies exist for all FCIP policies, an assumption of actuarial fairness is not very realistic.  

However, when the assumption of actuarial fairness is relaxed, the variance of net yield is no 

longer sufficient for evaluating the relative performance of the insurance products.  Therefore, 

we asume that farmers value revenues according to the mean-variance criterion  

(14)   ( ) ( )RkREV var
2
1

×−=  

where R is revenue and k is assumed to be positive, implying that the individual is risk averse 

(Eeckhoudt and Gollier).  For this analysis, revenue is calculated as 

(15)     net
ijij ypR ~=  

where  is revenue for farm i and insurance scenario j, ijR net
ijy~  is as defined in (3), and p is a 

constant price per unit for each commodity.32

For MPCI, coverage was fixed at 65%, 75%, and 85%.  GRP coverage and scale were 

optimized at either the state or CRD level. When only a short time-series of farm-level yields are 

                                                 
32 The price for cotton is the 2001 New York Board of Trade November average price on the December contract. 
The price for soybeans is the 2001 Chicago Board of Trade October average price on the November contract. 
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available, farm-level optimization of GRP coverage and scale data is problematic.  Thus, 

consistent with Barnett et al., this study employs the more conservative approach of optimizing 

these parameters at a state or CRD level and then applying the optimized values to every farm in 

the state or CRD.  If the production region is very heterogeneous (i.e., basis risk is high) GRP 

should perform better when coverage and scale are optimized at the CRD level rather than at the 

state level.    

The optimal values of GRP coverage and scale are those that maximize the acreage-

weighted sum ϕ  of differences between the mean-variance valuation of GRP revenues relative 

to the valuation of revenues with no insurance at the farm level.  Specifically 

(16) 
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where V is as defined in (14) and  are weights that reflect planted acreage of the crop on farm i 

in 2000. The optimal scale and coverage were found simultaneously using the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm (Greene; Miranda and Fackler). 

ia

Optimal GRP coverage and scale were first calculated within current policy constraints; 

i.e., 70% ≤ coverage ≤ 90% and 90%  ≤ scale ≤ 150%.  These constraints were then relaxed so 

that the optimal coverage and scale were allowed to take any non-negative values.33

Certainty-Equivalent Revenues 

                                                 
33 If the optimal coverage is higher than 90%, the subsidized premium is calculated using the subsidy percentage for 
90% coverage. 
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The relative performance of MPCI and GRP insurance contracts was evaluated based on 

certainty-equivalent revenues (CER) from the constant relative risk aversion utility function 

(17)     
( ) 1whenlog
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RU
 

where R is as defined in (15) and γ  is the measure of relative risk aversion.  

For this analysis γ  was calibrated to correspond to a prespecified risk premium θ 

(Babcock, Choi, and Feinermean; Schnitkey, Sherrick, and Irwin; Vedenov and Barnett).  More 

specifically, for a given level of risk premium θ, the parameter γ  was computed numerically so 

that the expected utility of the revenue without the insurance contract was equal to the utility of 

certain revenue ( )RE×− )1( θ , i.e., 
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where  is the expected revenue without insurance. Once the parameter )(RE γ  has been 

determined, the CERs without and with the insurance contracts can be calculated as 

(19a)    )()( RUCERU Rwithout E= ; and  

(19b)    . )()( net
Rwith RUCERU E=

For this analysis, CERs were calculated for each farm i and then averaged over the area using the 

2000 farm-level planted acreage  as weights.  ia

Results 

Table 3 presents optimal GRP coverage and scale for a given region (state or CRD) when the 

premium rates are calculated under the three premium rating schemes (actuarially fair in-sample, 

actual unsubsidized, and actual subsidized), respectively .  The third and fourth columns present 

 78



optimal coverage and scale levels when these choice variables are restricted as in the existing 

GRP policy.  In every case, the restricted optimal coverage is at the upper limit of 90%.  In half 

the regions considered for each rating scheme, the restricted optimal scale for cotton is at the 

upper limit of 150%.  In two of the regions considered, the restricted optimal scale for soybeans 

is at the lower limit of 90%. 

Since GRP is not exposed to moral hazard problems, there is no conceptual rationale for 

imposing constraints on the choice of coverage and scale.  In fact, Barnett et al. point out that the 

current politically-imposed restrictions on GRP coverage and scale are analogous to restricting 

choices of strike and hedge ratio for those who use futures and options contracts to hedge price 

risk.  Skees, Black, and Barnett attribute the current restrictions on these GRP choice variables to 

the fact that RMA decision-makers have backgrounds in farm-level crop insurance and are thus 

uncomfortable with allowing high levels of coverage and scale.  It may be that upper bounds on 

these choice variables are also intended to limit federal premium subsidies for GRP. 

Unrestricted optimal coverage and scale levels are presented in the fifth and sixth 

columns of table 3.  When coverage and scale are unrestricted, the optimal coverage is always 

significantly higher than in the restricted case while the optimal scale is generally lower.  This 

finding suggests that under current GRP restrictions, policy-holders would use higher levels of 

scale to partially compensate for the upper bound on coverage.  The upper bound on coverage 

means that the restricted GRP policy will not trigger an indemnity as often as policyholders 

would wish.  Increasing scale allows policyholders to compensate for this to some degree by 

increasing the indemnity that is paid whenever the restricted GRP policy does trigger a payment. 
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 Table 4 presents the average premium rates34 for 75% MPCI and for the restricted and 

unrestricted optimal GRP coverage levels reported in table 3.  Because of the very high coverage 

levels, the premium rates for unrestricted optimal GRP are prohibitively high.  For this reason, 

the subsequent comparison of MPCI and GRP performance focuses only on the restricted 

optimal GRP policy.  

Table 4 demonstrates the limitations of performance comparisons conducted with 

premium rates that are actuarially fair in-sample.  On average, across all the crops and regions 

studied, the actual unsubsidized premium rate for the restricted optimal GRP is 57% higher than 

the in-sample actuarially fair premium rate.  The impact of positive wedges in actual MPCI 

premium rates is shown by the fact that the actual unsubsidized premium rate for 75% MPCI is 

on average 286% higher than the in-sample actuarially fair premium rate. 

Table 5 shows the performance of GRP and MPCI, measured by CERs, when premium 

rates are actuarially fair in-sample.  The table shows CERs without insurance and then the 

change in the CER with restricted optimal GRP and MPCI at 65%, 75%, and 85% coverage.  

Positive (negative) changes imply that producers are better (worse) off as a result of purchasing 

the specific insurance contract. The higher (lower) the coverage on the MPCI contract, the higher 

(lower) the change in CERs.   

Except for one GRP case when the risk premium is only 5%, producers are always better 

off by purchasing an insurance product (either MPCI or GRP).  The CERs without insurance 

purchasing decrease (increase) as the risk premium increases (decreases).  The higher (lower) the 

risk premium the higher (lower) the change in CERs from insurance purchasing.  In most cases, 

even the MPCI policy with 65% coverage performs better than the restricted optimal GRP.  The 

                                                 
34 Premium rates were calculated at county base and the average premium rates at CRD- or state-level, comprising 
of the corresponding counties, were then presented in table 4.  
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only exceptions are for Georgia cotton in CRD 70 when the risk premium is 10% and 15% and 

Georgia cotton in CRD 60 when the risk premium is 15%. 

Table 6 demonstrates the importance of extending the analysis beyond in-sample 

actuarially fair premium rates to consider actual premium rates.  The results presented here are 

based on actual unsubsidized premium rates.  The changes in CERs are now frequently negative 

(particularly for lower risk premiums), indicating that producers are made worse off by 

purchasing insurance at actual unsubsidized premium rates.  More importantly, though the 

restricted optimal GRP contract often generates a negative change in CERs, its performance 

relative to MPCI is much better than when premium rates were calculated to be actuarially fair 

in-sample.  In most cases, the restricted optimal GRP policy performs better than MPCI at any 

level of coverage (MPCI at 65% coverage always performs better than MPCI at higher levels of 

coverage).  This would seem to confirm that previous work, based on premium rates that were 

actuarially fair in-sample, likely generated results that were biased in favor of MPCI.  Note that 

for South Carolina soybeans, 85% coverage is not available for MPCI.   

Table 7 presents results based on actual subsidized premium rates.  At the 5% risk 

premium, restricted optimal GRP performs better than MPCI at any level of coverage (again, 

65% MPCI coverage performs better than MPCI at higher levels of coverage) with the exception 

of cotton in Georgia CRD 50.  At the 10% risk premium MPCI at 65% coverage performs better 

than restricted optimal GRP for cotton in Georgia CRD 50, cotton in South Carolina CRD 30, 

and all South Carolina soybean production regions.  At the 15% risk premium MPCI at 65% 

coverage also performs better than restricted optimal GRP when GRP coverage and scale are 

optimized at the state level.  These findings suggest that when the comparison is based on actual 

subsidized premium rates, GRP is a viable alternative to MPCI in many cotton producing regions 
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of Georgia and South Carolina.  The results for South Carolina soybeans are somewhat less 

compelling and depend on assumptions about the magnitude of risk aversion. 
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Table 5.1: Crops and Counties Selected for Analysis 

 

Crop   State/District Counties Selected Number of Farmers 
Included 

Average Acreage 
Per County (2001) 

Average 
Yield/Acre  (2001) 

Cotton GA/D50 Bleckley, Dodge, Laurens, Pulaski 146 19100.00 631 lbs 
     

      

     

  

      

  

  

  

 

Cotton GA/D60 Bullock, Burke, Candler, Emanuel, 
Jefferson, Jenkins, Screven 
 

275 27985.71 616 lbs

Cotton 
 

GA/D70 
 

Early, Mitchell, Thomas 
 

160 43666.67 
 

868 lbs 

Cotton GA/D80
Ben Hill, Brooks, Coffee, Colquitt, 
Cook, Crisp, Dooly, Irwin, Tift, Turner, 
Wilcox, Worth 

861 37700.00 708 lbs

Cotton 
 

SC/D30 
 

Darlington, Dillon, Marlboro 
 

101 30000.00 
 

700 lbs 

Cotton 
 

SC/D50 
 

Calhoun, Lee, Orangeburg 
 

110 27766.67 
 

662 lbs 

Soybean 
 

SC/D30 
 

Darlington, Dillon, Florence, Horry 
 

145 42950.00 
 

20.5 bu 

Soybean SC/D50 Clarendon, Lee, Sumter 123 28366.67 21.0 bu 
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Table 5.2:  MPCI and GRP Premium Subsidy Percentages by Coverage Level 

   
  Premium Subsidy Percentages 
Coverage  MPCI GRP 

50%    
    
    
    
    
    
    
    
    

67% NA
55% 64% NA
60% 64% NA
65% 59% NA
70% 59% 64%
75% 55% 64%
80% 48% 59%
85% 38% 59%
90% NA 55%
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Table 5.3: Restricted and Unrestricted Optimal Coverage and Scale levels of GRP Contracts 
under Three Premium Rating Schemes 

 Restricted Optimal GRP  Optimal GRP 
Crop State/CRD Coverage 

(70% - 90%) 
Scale 

(90% - 150%)  Coverage Scale 

In Sample Actuarially Fair Premium Rates 

Cotton GA/50 90.00% 150.00%  172.76% 139.80% 
Cotton GA/60 90.00% 150.00%  120.70% 179.37% 
Cotton GA/70 90.00% 117.97%  144.52% 113.74% 
Cotton GA/80 90.00% 139.34%  161.15% 135.89% 
Cotton GA/All 90.00% 150.00%  140.96% 135.95% 
Cotton SC/30 90.00% 106.24%  141.12% 100.85% 
Cotton SC/50 90.00% 150.00%  144.35% 134.31% 
Cotton SC/All 90.00% 127.32%  138.97% 119.85% 

Soybean SC/30 90.00% 90.00%  142.50% 65.40% 
Soybean SC/50 90.00% 98.36%  140.55% 90.54% 
Soybean SC/All 90.00% 90.00%  139.93% 90.68% 

Actual Unsubsidized Premium Rates 

Cotton GA/50 90.00% 150.00%  154.66% 125.58% 
Cotton GA/60 90.00% 150.00%  127.06% 176.06% 
Cotton GA/70 90.00% 119.96%  124.91% 112.09% 
Cotton GA/80 90.00% 129.74%  141.44% 113.45% 
Cotton GA/All 90.00% 150.00%  131.88% 134.75% 
Cotton SC/30 90.00% 90.00%  140.89% 90.83% 
Cotton SC/50 90.00% 150.00%  137.91% 128.17% 
Cotton SC/All 90.00% 115.20%  138.33% 113.29% 

Soybean SC/30 90.00% 90.00%  143.57% 60.11% 
Soybean SC/50 90.00% 107.72%  137.74% 87.31% 
Soybean SC/All 90.00% 90.00%  145.39% 71.68% 

Actual Subsidized Premium Rates 

Cotton GA/50 90.00% 150.00%  184.68% 145.94% 
Cotton GA/60 90.00% 150.00%  164.72% 187.33% 
Cotton GA/70 90.00% 129.46%  166.78% 162.35% 
Cotton GA/80 90.00% 146.98%  173.57% 183.56% 
Cotton GA/All 90.00% 150.00%  162.78% 185.18% 
Cotton SC/30 90.00% 105.00%  166.57% 134.66% 
Cotton SC/50 90.00% 150.00%  155.58% 167.81% 
Cotton SC/All 90.00% 129.36%  162.38% 153.31% 

Soybean SC/30 90.00% 90.00%  167.50% 70.00% 
Soybean SC/50 90.00% 107.72%  147.87% 85.87% 
Soybean SC/All 90.00% 90.00%  145.39% 71.68% 
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Table 5.4: Premium Rates for Insurance Contracts under Three Premium Rating Schemes 

 

In Sample Actuarially Fair 
Premium Rates 

 Actual Unsubsidized  
Premium Rates 

 Actual Subsidized  
Premium Rates 

Crop State/CRD Restricted 
Optimal 

GRP 
Optimal 

GRP 
MPCI 
75%  

Restricted 
Optimal 

GRP 
Optimal 

GRP 
MPCI 
75% 

 
 

Restricted 
Optimal 

GRP 
Optimal 

GRP 
MPCI 
75% 

    
             
             
             
             
             
             
             
             

            
             
             

         
Cotton GA/50 7.94% 42.17% 10.75% 9.90% 40.31% 29.65% 4.46% 23.22% 13.34%
Cotton GA/60 9.45% 23.95% 14.56% 10.93% 27.44% 21.44% 4.92% 19.85% 9.65%
Cotton GA/70 7.86% 39.09% 4.69% 7.35% 25.63% 18.93% 3.06% 20.81% 8.52%
Cotton GA/80 5.65% 40.38% 6.22% 8.03% 33.84% 20.91% 3.06% 21.41% 9.41%
Cotton GA/All 6.85% 32.91% 8.10% 8.64% 29.32% 21.68% 3.89% 19.60% 9.75%
Cotton SC/30 3.88% 25.92% 4.68% 9.35% 32.80% 17.34% 4.21% 19.85% 7.80%
Cotton SC/50 6.08% 30.97% 5.50% 8.01% 32.00% 22.38% 2.52% 18.09% 10.07%
Cotton SC/All

 
5.03% 26.81% 5.11% 8.65% 31.91% 19.96% 3.89% 19.23% 8.98%

Soybean SC/30 1.74% 26.54% 5.43% 4.49% 33.66% 32.89% 2.02% 20.13% 14.80%
Soybean SC/50 2.58% 27.42% 6.04% 3.53% 30.43% 29.85% 1.59% 16.18% 13.43%
Soybean SC/All 2.13% 26.07% 5.71% 4.05% 34.65% 31.49% 1.82% 15.59% 14.17%
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Table 5.5: Certainty Equivalent Revenues with Actuarially Fair Premium Rates 

 

CERs Change in CERs with Insurance 

Crop/District State/CRD Without 
Contract 

 Restricted 
Optimal 

GRP 

MPCI 
65% 

MPCI 
75% 

MPCI 
85% 

Risk Premium 5% 
Cotton GA/50 $215.60  $1.62 $2.54 $3.47 $5.07 
Cotton GA/60 $211.60  $4.75 $6.33 $7.43 $8.54 
Cotton GA/70 $255.60  $1.43 $1.96 $3.36 $5.39 
Cotton GA/80 $232.22  $1.09 $2.94 $4.33 $6.13 
Cotton GA/All $229.23  $2.07 $3.55 $4.84 $6.49 
Cotton SC/30 $241.95  -$2.01 $0.87 $3.24 $5.78 
Cotton SC/50 $220.82  $2.26 $2.46 $3.69 $5.18 
Cotton SC/All $233.19  $1.78 $2.71 $4.32 $6.30 
Soybean SC/30 $103.16  $0.02 $1.26 $1.88 $2.72 
Soybean SC/50 $115.62  $0.54 $2.06 $2.69 $3.62 
Soybean SC/All $109.33  $0.28 $1.66 $2.28 $3.17 

Risk Premium 10% 
Cotton GA/50 $204.25  $3.11 $6.21 $8.18 $11.46 
Cotton GA/60 $195.74  $12.40 $15.83 $18.21 $20.49 
Cotton GA/70 $242.63  $3.44 $2.60 $8.12 $12.38 
Cotton GA/80 $219.03  $3.53 $7.30 $10.44 $14.19 
Cotton GA/All $215.60  $5.35 $8.84 $11.72 $15.16 
Cotton SC/30 $227.23  $2.69 $7.35 $11.56 $16.41 
Cotton SC/50 $209.37  $4.96 $6.16 $8.81 $11.85 
Cotton SC/All $219.83  $3.56 $6.85 $10.42 $14.52 
Soybean SC/30 $97.33  $0.14 $3.15 $4.53 $6.28 
Soybean SC/50 $108.17  $1.50 $5.22 $6.64 $8.64 
Soybean SC/All $102.70  $0.80 $4.17 $5.58 $7.45 

Risk Premium 15% 
Cotton GA/50 $192.67  $10.92 $11.04 $14.08 $18.85 
Cotton GA/60 $177.04  $39.31 $28.54 $32.24 $35.67 
Cotton GA/70 $230.91  $8.35 $8.19 $13.18 $19.34 
Cotton GA/80 $206.27  $6.40 $12.18 $17.04 $22.54 
Cotton GA/All $201.73  $12.00 $15.28 $19.75 $24.80 
Cotton SC/30 $212.94  $3.54 $12.29 $18.83 $25.98 
Cotton SC/50 $197.89  $7.65 $10.65 $14.79 $19.29 
Cotton SC/All $206.70  $5.13 $11.61 $17.16 $23.21 
Soybean SC/30 $91.62  $0.29 $5.41 $7.53 $10.13 
Soybean SC/50 $100.77  $2.42 $8.88 $11.07 $14.03 
Soybean SC/All $96.15  $1.33 $7.13 $9.29 $12.06 
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Table 5.6: Certainty Equivalent Revenues with Actual Unsubsidized Premium Rates 

CERs Change in CERs with Insurance 

Crop/District State/CRD Without 
Contract 

 Restricted 
Optimal 

GRP 

MPCI 
65% 

MPCI 
75% 

MPCI 
85% 

Risk Premium 5% 
Cotton GA/50 $215.60  -$10.72 -$9.83 -$20.19 -$40.78 
Cotton GA/60 $211.60  -$2.79 $4.58 -$2.99 -$21.25 
Cotton GA/70 $255.60  $4.63 -$14.07 -$24.92 -$45.96 
Cotton GA/80 $232.22  -$6.74 -$10.94 -$21.39 -$42.59 
Cotton GA/All $229.23  -$5.20 -$7.73 -$17.57 -$38.04 
Cotton SC/30 $241.95  -$13.38 -$11.66 -$20.26 -$37.65 
Cotton SC/50 $220.82  -$7.65 -$14.22 -$25.57 -$48.52 
Cotton SC/All $233.19  -$11.39 -$12.73 -$22.46 -$42.16 
Soybean SC/30 $103.16  -$3.37 -$9.70 -$18.10 NA 
Soybean SC/50 $115.62  -$7.66 -$6.98 -$15.01 NA 
Soybean SC/All $109.33  -$6.72 -$8.35 -$16.57 NA 

Risk Premium 10% 
Cotton GA/50 $204.25  -$7.91 -$6.58 -$16.13 -$37.11 
Cotton GA/60 $195.74  $4.27 $13.97 $7.52 -$9.83 
Cotton GA/70 $242.63  $7.04 -$11.69 -$20.89 -$39.55 
Cotton GA/80 $219.03  -$5.47 -$7.12 -$16.00 -$35.50 
Cotton GA/All $215.60  -$2.74 -$2.88 -$11.31 -$25.07 
Cotton SC/30 $227.23  -$11.08 -$7.84 -$14.26 -$29.28 
Cotton SC/50 $209.37  -$3.69 -$11.10 -$21.23 -$42.89 
Cotton SC/All $219.83  -$9.07 -$9.19 -$17.15 -$34.92 
Soybean SC/30 $97.33  -$7.36 -$8.26 -$14.42 NA 
Soybean SC/50 $108.17  -$0.68 

 

-$4.15 -$11.56 NA 
Soybean SC/All $102.70  -$2.70 -$6.22 -$13.00 NA 

Risk Premium 15% 
Cotton GA/50 $192.67  -$5.89 -$2.00 -$10.62 -$28.47 
Cotton GA/60 $177.04  $21.36 $26.64 $21.37 $5.13 
Cotton GA/70 $230.91  $11.33 -$8.72 -$16.17 -$33.32 
Cotton GA/80 $206.27  $3.43 -$2.55 -$9.80 -$26.64 
Cotton GA/All $201.73  $3.73 $3.32 -$3.62 -$12.82 
Cotton SC/30 $212.94  -$11.07 -$3.32 -$7.49 -$20.30 
Cotton SC/50 $197.89  $0.05 -$7.01 -$15.74 -$36.07 
Cotton SC/All $206.70  -$8.26 -$4.85 -$10.91 -$26.84 
Soybean SC/30 $91.62  -$4.53 -$6.26 -$13.09 NA 
Soybean SC/50 $100.77  -$5.57 -$0.68 -$7.42 NA 
Soybean SC/All $96.15  -$1.83 -$3.50 -$10.28 NA 
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Table 5.7: Certainty Equivalent Revenues with Actual Subsidized Premium Rates 

 

CERs Change in CERs with Insurance 

Crop/District State/CRD Without 
Contract 

 Restricted 
Optimal 

GRP 

MPCI 
65% 

MPCI 
75% 

MPCI 
85% 

Risk Premium 5% 
Cotton GA/50 $215.60  $12.86 $25.12 $21.92 $6.09 
Cotton GA/60 $211.60  $19.05 $15.09 $14.31 $0.38 
Cotton GA/70 $255.60  $19.05 -$2.53 -$5.93 -$22.32 
Cotton GA/80 $232.22  $9.17 $0.88 -$1.93 -$18.33 
Cotton GA/All $229.23  $7.65 $3.76 $1.35 -$14.44 
Cotton SC/30 $241.95  $0.38 -$0.77 -$2.39 -$15.43 
Cotton SC/50 $220.82  $10.34 -$1.68 -$4.89 -$22.70 
Cotton SC/All $233.19  $3.86 -$1.15 -$3.43 -$18.44 
Soybean SC/30 $103.16  -$0.86 -$1.52 -$4.61 NA 
Soybean SC/50 $115.62  $1.03 $0.89 -$2.03 NA 
Soybean SC/All $109.33  $0.02 -$0.33 -$3.33 NA 

Risk Premium 10% 
Cotton GA/50 $204.25  $14.89 $31.70 $29.39 $14.43 
Cotton GA/60 $195.74  $27.05 $24.78 $25.19 $12.18 
Cotton GA/70 $242.63  $21.93 $0.27 -$1.40 -$15.80 
Cotton GA/80 $219.03  $11.64 $5.14 $4.00 -$10.71 
Cotton GA/All $215.60  $10.97 $9.01 $8.11 -$6.14 
Cotton SC/30 $227.23  $1.44 $3.53 $4.19 -$6.56 
Cotton SC/50 $209.37  $13.45 $1.88 $0.01 -$16.52 
Cotton SC/All $219.83  $5.64 $2.85 $2.46 -$10.69 
Soybean SC/30 $97.33  -$0.35 $0.25 -$2.15 NA 
Soybean SC/50 $108.17  $1.96 $4.00 $1.79 NA 
Soybean SC/All $102.70  $0.42 $2.11 -$0.20 NA 

Risk Premium 15% 
Cotton GA/50 $192.67  $22.82  $39.46 $37.81 $23.61 
Cotton GA/60 $177.04  $38.58  $37.69 $39.35 $27.29 
Cotton GA/70 $230.91  $25.04 $3.48   $3.58 -$9.03 
Cotton GA/80 $206.27  $13.68 $9.99 $10.53 -$2.59 
Cotton GA/All $201.73  $16.92  $15.49 $16.12 $3.31 
Cotton SC/30 $212.94  $2.15 $7.82 $11.06 $1.91 
Cotton SC/50 $197.89  $16.57 $6.29 $5.87 -$9.37 
Cotton SC/All $206.70  $7.24 $7.52 $9.07 -$2.28 
Soybean SC/30 $91.62  -$0.13 $2.47 $0.76 NA 
Soybean SC/50 $100.77  $2.86 $7.66 $6.16 NA 
Soybean SC/All $96.15  $0.81 $5.04 $3.44 NA 
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Figure 5.1: Georgia Counties Producing Cotton Included in the Study 
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Figure 5.2: South Carolina Cotton Producing Counties Included in the Study 
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Figure 5.3: South Carolina Soybean Producing Counties Included in the Study 

 

 92



 

 

CHAPTER 6 

MARKOV CHAIN MODELS FOR FARM CREDIT RISK MIGRATION 

In corporate finance, migration analysis has been employed extensively as an important 

analytical decision aid for investors, lenders and asset managers. Major rating companies such as 

Moody’s and Standard and Poor’s have routinely measured and reported rating migration rates 

for bonds and other publicly traded securities. Transition or migration analysis is based on the 

extrapolation into the future of historic rates of movement (i.e. transition probabilities) among 

risk rating classes.  The decision tool, a summary migration matrix, is a compilation of 

longitudinal (time–series) averages of transition rates from matrices for subsets of shorter time 

periods.  The time period matrices are, in turn, are constructed from a panel transitions data set.  

Analysts and investors use such matrices to determine likelihoods of intertemporal changes in 

the quality of bond and security issues that are factored into portfolio risk management decisions.     

Migration analysis is essential to the credit risk component of economic capital 

management employed by the top tier of financial institutions and recently adopted by the new 

Basel Accord as the vanguard method of determining regulatory capital (Altman and Saunders). 

Commercial lenders use transition rating matrices to develop probability estimates of financial 

stress/loan default rates and other indicators of their loan portfolio quality.  Migration rates for 

commercial loans, agricultural loans and other types of loans, however, are more difficult to 

compile due to shorter data histories, less updated term loan underwriting histories, and use of 

relatively newer risk rating systems (Barry, Escalante, and Ellinger).  Nonetheless, credit rating 
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transition rates offer richer, broader information on risk stability and loan portfolio quality than 

historic loan default rates derived using traditional measurement methods (Katchova and Barry).  

Numerous studies on credit risk migration in corporate finance and limited number of 

studies in agricultural lending employed a straightforward discrete time (cohort) approach in 

developing migration matrices, which has even become an “industry standard” approach used 

even by the large corporate rating agencies (Lando and Skodeberg; Schuermann and Jafry).  

Notably, the cohort approach ignores any rating change activity within sub-periods of a given 

time frame and focuses only on migrations observed at the two time endpoints (i.e. the beginning 

and the end of a time period). The omission of “transient” class migrations in-between the 

endpoints reduces the reliability of the cohort approach in consistently producing accurate and 

efficient estimates of migration rates. 

In recent years, a duration “Markov chain” approach based on survival analysis is 

emerging in corporate finance to address the deficiency of the cohort method (Lando and 

Skodeberg; Israel, Rosenthal, and Wei).  Our study applies the same Markov chain model 

variants they used (time homogenous and non-homogenous Markov chain models) to the 

estimation of farm credit risk migration rates using farm-level financial data from the Illinois 

Farm Business Farm Management (FBFM) system.  The farm data will be tested initially for 

conformity with the Markov property of independence, which is a precondition for the adoption 

of such models.  These tests will include eigenvalue/eigenvector analyses and a semi-parametric 

multiplicative hazard model to test the existence of rating drift that violates the Markov chain 

assumption. 
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In this analysis, we start with a 2 x 1 migration framework to lay out the theoretical 

strengths and arguments of the proposed alternative Markov chain models.35 The lenders’ 3x1 

migration framework is later used to verify the merits of the alternative methods.     

The rest of the paper proceeds as follows:  The next sections provide a description of this 

study’s farm financial dataset and demonstrate the estimation of an aggregate cohort migration 

matrix using the 2x1 measurement method. The subsequent section tests for validity of the 

Markov chain process assumption as applied to this study’s farm credit risk migration data set. 

The next sections present the estimation of the Markov chain matrices, develop portfolio default 

probability estimates under the cohort and Markov chain models, use the farm lenders’ 3x1 

method to validate earlier findings.   

6.1 Farm Credit Risk Ratings Data 

 In the absence of lender data, this study utilizes farm-level financial data as a proxy for 

actual loan performance.36  These financial data come from a database of certified usable annual 

farm financial and family living records compiled under the Illinois FBFM system for the period 

1985 to 2001.  While the FBFM system has an annual membership of about 7,000 farms, 

stringent procedures enforced for the certification of the soundness and acceptability of both sets 

of financial and family living records usually reduce the database to about 500 to 1,500 farms in 

each year.  For purposes of this analysis, we initially considered selecting only those farm 

observations that have consistently been certified by the FBFM throughout the 17-year period.  

                                                 
35 The testing and application of the Markov chain process will require at least three consecutive annual data for 
each farm.  In each 3-year period, the 2x1 method is the simplest migration measurement approach that is consistent 
with the farm lenders’ practice of analyzing risk migration from multi-year averages to a one-year transition horizon 
(such as the 4th year in the 3x1 method). 
36 Use of farm record data as proxy for lender data could yield higher rates of transition across risk classes due to the 
omission of the influence of lenders’ discretionary judgment that could stabilize movements among risk classes as 
well as their use of risk mitigation techniques in developing loan packages, and the inclusion of non-borrowing 
farms that might not meet lenders’ credit risk assessment standards, and the (Barry, Escalante, and Ellinger). 
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However, this approach significantly reduced the sample size.  Hence, this study instead utilizes 

unbalanced annual datasets where sample composition was allowed to vary over time periods to 

include farms that were not present in most other time period data sets.  Other studies have used 

this approach to ensure a sample size that is large enough to produce statistically reliable results. 

(Bangia, et al.; Barry, Escalante, and Ellinger) 

 The credit risk classification variable used in this analysis is a farm’s risk rating 

determined through a uniform rating model for term loans reported by Splett, et al.  This model 

was developed for the Sixth Farm Credit District lenders in the early 1990s using a joint 

experience and statistical approach.  Five financial ratios recommended by the Farm Financial 

Standards Council representing a farm’s solvency, repayment capacity, profitability, liquidity, 

and financial efficiency are used in this model.  The measurement procedures, pre-determined 

weights assigned to each component of the rating model, and the intervals used to classify the 

scores into 5 credit classes (where class 1 is the most favorable, lowest risk rating class and class 

5 is the highest risk rating, default class)37 as specified in Splett, et al. will be used in this 

analysis (See also Barry, Escalante, and Ellinger; Escalante, et al.). 

6.2 Developing the Cohort Migration Matrix 

The cohort method, which calculates migration rates under a discrete-time framework is 

currently the standard approach used by most industry rating companies.  It has been employed 

in several earlier migration studies in corporate and farm finance literature.  Under this method, 

migration rates are calculated over a specific time horizon t∆  by considering the change from Ni 

farm observations that belong to rating category i at the start of the time horizon to Nij farms that 

                                                 
37 Class 5 farms include both those in “default” or other cases of high credit risk.  Since the sample composition is 
allowed to vary in this study from each 3-year grouping to another, defaulting farms in a particular period most 
likely have not remained in the database when the successive groups of observations are determined.  These cases 
are analogous to those that belong to the “withdrawn” rating class used by S&P and Moody’s. 
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migrate to rating category j at the end of the time horizon.  The probability estimate, , which 

corresponds to the probability of migrating from category i to j over 

t
ijP∆

t∆ is  

i

ijt
ij N

N
P =∆ˆ                          (6.1) 

In any given period, the migration possibilities for each farm are either upward migration to a 

more favorable risk rating category, downward migration to a higher risk category, or retention 

in their current rating class.   

Several potential measurement approaches represent different amounts and time 

sequences of data employed in the measurement process (Barry, Escalante, and Ellinger).  

Empirical works on corporate bond migration usually employ the year-to-year transition 

approach (movement from a year t to a year t + 1 classification).  This study will initially use the 

2x1 measurement approach (movement from credit class based on the average of years t1 and t2 

to risk rating in t3) to introduce and develop the proposed alternative migration frameworks.  

This measurement approach is the simplest version of the farm lenders’ multi-year averaging 

approach in tracking migration to a one-year horizon. Later, we will adopt the 3x1 measurement 

approach actually used by farm lenders that measures the transition from a credit score rating 

based on the average of the first three years to the risk rating given to the borrower on the 4th 

year (Barry, Escalante, and Ellinger), to validate the strengths and relevance of our proposed 

models.   

Given the sample farms in this analysis, the 2x1 approach resulted into fifteen migration 

matrices, constructed from data on three consecutive years, over the 17-year sample period. A 

data set for each 3-year period consists of farms that were consistently in the FBFM record 

system during those 3 consecutive years. This procedure produced a total of 8,751 farm 
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observations for all 15 three-year groupings (details of the breakdown will be presented later in 

Table 6.6). The transition rates are calculated based on the farms’ risk classifications using the 

average financial data for 1st two years (t1 and t2) and the risk classifications at t3.  The averages 

of the transition rates calculated for each of the fifteen 3-year groupings are then summarized 

into an overall unconditional transition matrix reported in Table 6.2 where the diagonals 

correspond to the retention rates and the matrix elements above (below) the diagonal represent 

downward (upward) migration.  This summary transition matrix, thus, represents credit risk 

migration tendencies over the entire sample period from which loan portfolio quality indications 

can be deduced. 

6.3 Time Measurement Issues and the Markov Chain Process 

 Time horizon measurement is an important consideration in migration analysis.  

Normally fewer rating changes are omitted when using shorter time horizons.  However, shorter 

duration could also result in lower rating volatility enhanced by the interplay of business cycle 

effects.  Moreover, shorter duration is subject to “noise” which would eventually be cancelled 

out in the long term (Bangia, et al.).  More longitudinal, detailed data histories in corporate 

finance allow for migration studies to analyze time horizons that are shorter than one year.   

Farm finance studies on migration, however, have to contend with limited data histories 

that are more aggregated since farmers do not maintain records of intra-year changes in financial 

conditions.  Moreover, farm lenders usually resort to averaging of multi-year financial ratios and 

measures (Novak and LaDue), such as the 3 x1 method earlier described. 

In this study we adopt a duration “Markov chain” approach based on survival analysis 

that has been used in corporate finance studies to factor in intra-year changes in risk ratings in 

constructing year-to-year transition matrices (Lando and Skodeberg; Israel, Rosenthal, and Wei). 
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In our analysis the Markov chain process will be applied to the treatment of annualized migration 

rates in determining migration matrices for each time period that altogether determine a farm 

loan portfolio’s summary migration matrix.  This approach is expected to produce more reliable, 

accurate transition probability estimates than those obtained by farm lenders using multi-year 

averaging of annualized financial data under the cohort method.  

A Markov process is a sequence of random variables ,...}2,1,0|{ =tX t with common 

space S whose distribution satisfies 

.}|Pr{},,|Pr{ ..., SAXAXXXXAX tttttt ⊂∈=∈ +−−+ 1211            (6.2)                     

In this process movement from one state to another is dependent (only) on what happened 

in the previous n states.  The number of previous states (n) affecting the choice in the current 

state determines the order (n) of the process (Voskoglou). In this analysis we consider the first-

order process where the current state is influenced solely by the previous state.  Using equation 

6.2, the distribution of Xt+1 conditional on the history of the process through time t is completely 

determined by Xt and is independent of the realization of the process prior to time t.  A Markov 

chain is a process with a finite state-space S = {1, 2, 3,… ,n} and is completely characterized by 

its transition probabilities  

SjiiXjXP ttij ∈=== + ,}|Pr{ 1                                           (6.3)    

Most corporate finance studies that adopt the Markov chain process in transition 

probability modeling have assumed their data sets’ compliance with the first-order Markov 

process without performing the necessary validating tests (Jarrow, Lando, and Turnbull; Lando 

and Skodeberg; Schuermann and Jafry).   Phillips and Katchova tested for the Markov chain 

property of a sample of Illinois FBFM farms for the same 17-year period used in this study.  

Using an overall singular value metric test to determine significant differences between 
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unconditional and conditioned matrices (which will be discussed in detail later), their results 

indicate the violation of the Markov property of independence and established significant trend 

reversal tendencies, a reverse form of path dependence.  In this study, we validate the presence 

of Markovian behavior in the Illinois farm dataset using two test methods:  eigenvalue/vector 

analysis and semi-parametric multiplicative hazard tests. 

Analysis of Eigenvalues and Eigenvectors 

The analysis of eigenvalues and eigenvectors38 has been a widely used approach to test 

the Markovian property of a matrix (Bangia, et al.). The information of any transitional matrix 

could be divided into its eigenvalues and eigenvectors, written as 

       ,                                                           (6.4) T
nn×××= UΛUP nnnn

where P is the transitional matrix; is a diagonal matrix where each element on the diagonal 

represents one eigenvalue of P; T is the time horizon; and U is a matrix with columns 

 representing P’s eigenvectors that correspond to each element of . Moreover, 

any transition matrix can be taken to k

Λ

nuuu ,,, 21 L Λ

th power by increasing its eigenvalues to its kth power while 

leaving its eigenvectors unchanged.  This will modify the above P expression into 

T
nn

k
nn

k
×××= UΛUP nn .                                                         (6.5)   

Under this approach, two conditions have to be satisfied to confirm that the transition matrices 

follow the Markov chain process.  In this study, we test these conditions following the analytical 

framework used by Bangia, et al..  The first condition requires that eigenvalues (ei) should 

“decay exponentially” with increasing time horizons.  This can be shown graphically by ranking 

                                                 
38 Eigenvalues are a special set of scalars (also known as characteristic roots) associated with a linear system of 
equations such as a matrix equation.  Each eigenvalue is paired with a corresponding eigenvector.    Any square 
matrix has at least one nonzero vector v such that Mv = λv. In this case, v is said to be an eigenvector of the matrix 
with an eigenvalue λ.   
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the eigenvalues of the transition matrices in the order of their magnitude.  A linear relationship 

between log(ei) and time horizon T in these plots would provide evidence of Markovian behavior. 

The second condition requires an identical set of eigenvectors for all transition horizons.  

This can be verified graphically by separately plotting for each transition horizon the eigenvector 

element values against the different rating categories considered in the empirical transition 

matrices.  The existence of the Markovian property in the dataset is verified if identical plots are 

obtained for the different time horizons.  Bangia, et al. applied this criterion by analyzing the 

plots of the 2nd eigenvector of matrices for different transition horizons.39  

Figure 6.1 presents a plot of the 2nd to 5th eigenvalues of the empirical matrices with 

transition horizons varying from 1 to 4 years. The calculated eigenvalues show a strong log-

linear relationship over the increasing transition horizons, thus providing evidence that farm 

credit migration rates tend to follow the Markov chain process. This finding is corroborated by 

the results of the eigenvector analysis presented in Figure 6.2.  The plots provide the trends 2nd 

eigenvector values for the transition matrices across rating categories using different time 

horizons.  The similarity of the 2nd eigenvector plots again fails to reject the Markov chain 

process assumption.  Notably, our results are consistent with the findings of Bangia, et al. 

Semi-parametric multiplicative hazard model 

A second test of the Markovian property uses a quantifiable measure to confirm the 

trends in the earlier eigenvalue and eigenvector graphs.  The semi-parametric multiplicative 

hazard (SPMH) approach can detect the incidence of Markovian behavior in every possible 

                                                 
39 The choice of the 2nd eigenvector is justified as follows:  All transition matrices have at least one eigenvalue of 
unity, which is of the highest magnitude and stems from the nature of transition matrices where the sum of the row 
elements equal to one. The remaining eigenvalues have magnitudes smaller than unity. The unity eigenvalue implies 
that the transition matrix will decay to steady state eventually and the 2nd largest eigenvalue provides an indicator of 
the speed of such decay (Jafry and Schuermann). 
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direction of a rating migration instead of calculating an overall statistic for matrix comparisons 

(such as the singular value metric test employed by Phillips and Katchova). 

The SPMH framework used in this study is based on the testing procedures used by 

Lando and Skodeberg in their bond migration analysis. The key assumption is that the each 

rating migration can be influenced by a previous migration direction (upward, downward, or 

retention). The statistical formulation of the SPMH model used here is defined as follows: 

))(,()()( tZttYt hjhhj αλ = ,                                               (6.6)   

where ))(,( tZthjα has the multiplicative form   

))(exp()())(,( tZttZt hjhjhj βαα 0= .                                (6.7)    

In the above expressions, )(thjλ denotes the migration probability from category h to j during 

time t;   denotes an indicator process which takes on a value of 1 when the process is in 

category h and 0 otherwise; 

)(tYh

)(thj0α  is the time-varying baseline hazard that is obtained when 

 is 0; and the covariate  is designed to track the last rating change which takes on a 

value of 1 when such change is the transition process being evaluated (i.e. one of the three 

possible changes: upward/downward/retention) and a value of 0 if otherwise. For example, if the 

focus of the analysis is only on observations that experienced a previous upgrade in their credit 

risk classification, then  

)(tZ )(tZ

⎩
⎨
⎧

=
otherwise0

upwardismigrationlast1
,
,

)(tZ                           (6.8)   

The parameter of interest here is the regression coefficient hjβ  for each migration possibility. If 

the coefficient estimates hjβ  are not significantly different from zero, the Markovian chain 
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assumption will not be rejected.  Positive, significant hjβ  estimates will support path dependence 

or momentum (reversal) tendencies that are contrary to the Markov chain process assumption. 

 In this analysis we use the same 3-year groupings used earlier in developing the cohort 

matrix.  However, instead of the 2x1 method, the SPMH framework requires the measurement of 

two year-to-year (1x1) transitions:  movement from t1 to t2 and from t2 to t3.  The direction of the 

risk rating changes from t1 to t2 of every 3-year period is used to classify each farm under three 

categories of previous transitional direction:  upgrades, retention, and downgrades.  Matrices are 

then developed for each of these three categories for every 3-year period using risk rating 

changes during the period t2 to t3.  These matrices are called conditioned matrices since they are 

conditional upon previous migration trends. Thus, given 15 three-year periods developed in this 

dataset and 3 previous migration categories, we produce a total of 45 conditioned matrices.  The 

transition probabilities in these matrices correspond to the variable )(thjλ  in equation 6.6.  

Ordinary least squares (OLS) regression techniques are applied to the various runs of 

equation 6.6 (using logarithmic transformations of both sides of the equation) as applied to each 

rating class in t2 and its migration possibilities in t3.40  For example, farms that experienced a 

rating downgrade during the period t1 to t2 and were in class 2 at the end of t2 would have 3 

“neighboring” migration possibilities at t3:  an upgrade to class 1 (trend reversal), retention in 

class 2, or a downgrade to class 3 (a case of sustained momentum or path dependence). 

                                                 
40 .  Lando and Skodeberg performed the SPMH tests only on probable momentum situations.  Specifically, they 
limited their analysis only on succeeding downgrade situations for previous downgrades and consequent upgrades 
for previous upgrades.  This approach, however, excludes other possibilities of trend reversals and the absence of 
both reversal and momentum tendencies. In our analysis we consider more migration possibilities, although we 
limited our analysis only to migration to neighboring risk rating classes since most migration activities during the 
short duration period (year-to-year) are concentrated among these classes anyway.  Regression runs for migration 
activities beyond neighboring classes will utilize much fewer usable observations that will produce results that are 
not statistically reliable. 
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Table 6.3 reports the OLS coefficient estimates obtained with their corresponding 

standard errors and p values.  The results are classified according to the previous migration trend 

categories and include all “neighboring” migration possibilities given each farm’s risk 

classification at the end of t2. 

The regression results for all possible migration directions/possibilities associated with 

each rating class in t2 are actually interdependent.  Either an insignificant or a significant 

negative coefficient for any migration possibility during the period t2 to t3 would suggest that a 

probable significant consequential trend (trend reversal or path dependence) will occur in another 

migration possibility for that rating class at t2.  The key is to identify this possibility through a 

significant positive coefficient result.  If no such result is obtained for all migration directions 

associated with a particular rating class at t2, then no evidence of path dependence is established.  

To illustrate, based on the results in Table 6.3, for farms that experienced previous downgrading 

from t1 to t2 and ended up in class 2 at t2, significant negative coefficient results were obtained 

for retention (in class 2) and downgrade (to class 3) possibilities.  The remaining direction, an 

upgrade to class 1, however, produced a positive coefficient result.  These results indicate that 

class 2 farms in t2 that were previously downgraded provide evidence of significant trend 

reversal.  The same result has been obtained for class 3 farms in the previous downgrade 

category.  In the pervious rating upgrade category, similar results of significant trend reversal 

were obtained for farms that were rated as classes 1 and 4 at t2. 

 In both previous class downgrade and upgrade categories, only two out four t2 rating 

classes produced significant trend reversal results.  Farms in rating classes 4 and 5 in the 

previous class downgrade category and classes 2 and 3 in the previous class upgrade category 

did not produce significant positive coefficient results for any t2-t3 migration possibility.  Thus, 
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no overwhelming evidence among the previous upgrade and downgrade categories supports the 

rejection of the Markov chain assumption. 

 The previous retention cases provide further evidence supporting the non-rejection of the 

Markov chain assumption.  The results for 4 out of 5 t2 rating classes (1 to 4) indicate no 

significant consequential or sustained retention trends.  Only class 5 farms showed a tendency 

toward significant upgrading tendencies during the last 2 years of every three-year period.   

6.4 Developing the Markov Chain Models  

The “cohort” transition matrix presented in Table 6.2 was derived using the conventional, 

“industry standard” matrix generation method.  This approach, however, does not depict 

accurately actual migration trends due to the omission of certain important information.  First, 

the cohort method is primarily concerned with comparing rating categories at both ends of the 

time horizon (averaged t1-t2 versus t3 in the 2x1 method in the 2x1 method). Any rating class 

change occurring in-between the endpoints (for instance, transition changes between t1 and t2 in 

the 2x1 method) is ignored. Secondly, the cohort model only considers direct migration between 

classes. For instance, if direct migrations are recorded only from risk rating class 1 to 2 and from 

class 2 to 3 but none in the direction of class 1 to 3, the cohort method will yield a zero migration 

rate for the latter case.   

On the other hand, the Markov chain models capture such indirect transition from class 1 

to 3 through the successive downgrades recorded in the above direct migration examples.  In this 

case, the Markov chain approach calculates a non-zero maximum-likelihood estimator for the 

transition rate for class 1 to 3. The estimated probability would most likely be a very small, but 

definitely a non-zero, value. The following sections discuss the two variants of the Markov chain 

migration approach. 
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The Time Homogeneous Markov Chain Model 

A distinct feature of the time homogeneous approach is its non-emphasis of period or 

time-specific identification.  Under this model, only the length of the time interval matters.  This 

feature suggests, for instance, that 2x1 transition rates recorded from 1992 to 1994 will carry the 

same weight as those calculated for the period 1993 to 1995. This strong assumption on time 

homogeneity will be revisited and relaxed in the other Markov chain model in the next section. 

Following Lando and Skodeberg, we define P(t) as a KK × transition matrix of Markov 

chain processes for a given time horizon (where K represents the number of rating category 

states) whose ijth  element is the probability of migrating from state i to state j in a time period of 

t. The generator matrix is a Λ KK × matrix for which 
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Λ)Λexp()(P                                   (6.9)    

where the exponential function is a matrix exponential, which would be approximated by the 

infinite summation defined by the most right-hand side expression. 

The entries of the generator  satisfy Λ
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The second equation merely guarantees that the sum of the rows of the matrix is equal to one.  

The problem of estimating the transition matrix is then transformed to estimating the 

generator matrix . We are left with obtaining the estimates of the entries of . The maximum 

likelihood estimator of is given by 

Λ Λ
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where  is the total number of transitions over the period T from credit category i to j and  

is the number of observations assigned credit category i at time s. The numerator counts the 

number of observed transitions from i to j. The denominator, the integral of , effectively 

collects all observations assigned with category i over the period T. Thus, within the duration of 

time T, any period spent in a particular rating class will be picked up through the denominator. 

To illustrate, suppose a farm spent only a portion of the time period T in transit from class 1 to 2 

before eventually landing in class 3 at the end of T.  The portion of time spent in class 2 will be 

factored into the estimation of the transition rates for classes 1 to 3. In the cohort method this 

“transient” migration information is ignored. These indirect transition activities are captured in 

this model for which positive, though possibly very small, transition rates are estimated. 

)(TNij

)(sYi

)(sYi

 Table 6.4 presents the summary matrix for the time homogeneous approach generated as 

the average of 15 three-year matrices utilizing the same three-year groupings used for the 2 x 1 

cohort matrices averaged to produce the matrix reported in Table 6.2.  However, in lieu of the 

discrete time formula in equation 6.1, the average transition rates in Table 6.4 are calculated 

using the maximum likelihood estimator defined in equation 6.11 where T=3.  

The Time Non-Homogeneous Markov Chain Model 

The time homogeneity assumption of the previous model is relaxed in this version of the 

Markov chain transition matrix. Again following Lando and Skodeberg, we define  as the 

transition probability matrix from time s to t. The ij

),(P ts

th element of this matrix corresponds to the 

transition probability from rating class i in time s to rating class j in time t. Given a sample of m 

transitions over the period from s to t, the maximum likelihood estimator of  could be 

derived using the following nonparametric product-limit estimator (Klein and Moeschberger) 

),( tsP
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where Tk is a jump in the time interval from s to t. The matrix component of the above equation 

is constructed as follows: 
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where the numerator of each off-diagonal entry, )( kij TN∆ , denotes the number of specific 

transitions moving away from rating class i to some other class (like j) at time Tk.  The numerator 

of the diagonal entry, , counts the total number of transitions away from i at time T)( ki TN •∆ k 

while the denominator, , is the number of farms at rating class i right before time T)( ki TY k.  

In other words, the diagonal entries of the matrix count, at any time Tk, the fraction of 

farms in class i migrating away from that rating class, regardless of which class they migrated to. 

The off-diagonal entries count the fraction of rating class i farms that migrate away to another 

specific rating class at time Tk. Note that the sum of the rows of the matrix  in 

equation 6.12 is equal to one. Moreover, when there is only one transition case between time s 

and t (i.e. ), the resulting product-limit estimator (equation 6.12) collapses the non-

homogenous transition matrix into a cohort (discrete-time) matrix. In essence, the time non-

homogeneous transition matrix is a more time microscopic (detail-oriented) version of the cohort 

migration matrix method applied to extremely shorter time intervals. 

)(ˆ
kTAI ∆+

1=m
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Table 6.4 presents the summary matrix of average transition rates developed from 15 

three-year matrices using the same three-year groupings of the cohort matrix in Table 6.2 and 

generated using the matrix estimator defined in equation 6.12. )(ˆ
kTA∆

Comparing Cohort and Markov Chain Transition Matrices 

In order to determine significant differences among the three matrices presented in Tables 

6.2 and 6.4, we apply singular value decomposition (SVD) analysis, a metric test based on 

singular values (Jafry and Schureman). Appendix B presents details of the derivation of the SVD 

statistic, )P~(S , calculated for the cohort (Table 6.2) and the Markov chain (Table 6.4) matrices.  

These values will be labeled as )P~( dS , )P~( hS , and )P~( nhS  with the superscripts d, h, and nh 

denoting discrete-time, time homogenous, and time non-homogenous methods, respectively. The 

pair-wise differences between the )P~(S s are calculated as 

          )P~()P~()P~,P~( hdhdhd
svd SSm −=−  

(14)   )P~()P~()P~,P~( nhdnhdnhd
svd SSm −=−  

          )P~()P~()P~,P~( nhhnhhnhh
svd SSm −=−  

In order to determine significant differences between any pair of matrices under 

comparison based on the resulting distance metrics, ,  we use 1000 bootstrapping samples 

(random draws with replacement) of 15 observations from the original three-year groupings to 

calculate 1000 singular values 

svdm

)(k
svdm  where k=1, … 1000. This will give us a bootstrap 

distribution of singular value based distances from which we can calculate the confidence 

interval for the singular value metric. Significant differences between any pair of matrices will 

be determined by checking whether zero is within the estimated α−1  confidence interval.  
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6.5 Results 

The results of pair-wise differences between the )P~(S s calculated for the summary 

matrices reported in Tables 6.2 and 6.4 indicate the greater relevance of Markov chain models to 

farm credit risk migration analysis.  Using the formulas defined in equation 6.14, the mean 

difference ( ) between the cohort and time homogenous matrices is 0.1924; the mean 

difference between the cohort and the time non-homogeneous matrices is 0.1956; and the 

smallest mean difference is obtained at 0.0031 between the two Markov chain matrices.   

svdm

The resulting 95% confidence intervals for each of these differences are (0.1776, 0.2072) 

for the cohort and time homogeneous matrices, (0.1700, 0.2211) for the cohort and time non-

homogeneous matrices, and (-0.0207, 0.0270) for the two Markov chain matrices. Only the last 

confidence interval includes zero in its range, thereby indicating that while the cohort matrix is 

significantly different from the two Markov chain matrices, the time homogeneous and non-

homogeneous matrices are not really significantly different from zero at the 0.05 confidence 

level.  

Our results are consistent with the findings obtained by Schuermann and Jafry for the 

three methods using S&P bond ratings data for the period 1981-2001.  The compelling result is 

that the mean difference values they obtained (difference ( ) values of 0.012, 0.014 and 

0.002 for comparisons between cohort and time homogenous matrices, cohort and time non-

homogenous matrices, and time homogenous vs. non-homogenous matrices, respectively) are 

much lower than the values we reported here.  The disparity of mean difference values obtained 

for corporate bond ratings and for farm credit risk ratings suggests that farm finance conditions 

create a greater necessity for making important distinctions between discrete and Markov time 

models of migration. Examining the three types of matrices reported in Tables 6.2 and 6.4, the 

svdm
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Markov chain matrices produced higher average retention rates of 60.02% and 59.71% for the 

time homogenous and non-homogenous methods, respectively.  The average retention rate for 

the cohort matrix is only 42.72%.  In contrast, corporate bond retention rates range from 70% to 

75% for matrices derived under the same three methods (Lando and Skodeberg).   

The more practical and crucial evidence presented here, however, is the capture of 

“transient” migration events using the Markov chain approaches.  In the cohort matrix in Table 

6.2, for example, the average transition probability rates for migrating from class 5 to 1 and vice 

versa are 0.25% and 0.11%, respectively.  When indirect transitions were captured in the other 

two models, the transition estimates were higher.  The time homogenous approach produced a 

rate of 3.11% for class 5 to 1 migrations and 0.75% for the reverse migration.  The equivalent 

rates under the time non-homogenous approach were 2.56% and 0.50%, respectively. Elsewhere 

in the alternative Markov chain matrices, upgrading, retention, and downgrading rates were 

much higher than their counterparts in the cohort matrix.  In a later section, we will recall these 

matrices to calculate default probability estimates, which is an important portfolio quality 

indicator that can be obtained from the migration analytical framework.   

6.6 Replication Using the Farm Lenders’ 3 x 1 Method 

We validate the relevance of the alternative Markov chain matrices relative to the 

conventional cohort method by shifting from a 2 x 1 migration measurement approach to the 

farm lenders’ 3 x 1 method.  This study’s 17-year sample period is re-grouped into subset time 

periods of 4 consecutive years producing a total of 14 four-year groups, involving an aggregate 

size of 6,131 farm observations.  Under the cohort method, migration rates are recalculated as the 

transition from the credit class associated with the average of each farm’s farm financial 

measures from t1 to t3 to the farm’s credit classification in t4.  Migration rates under the Markov 
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chain time homogenous approach were calculated using the maximum likelihood estimator 

defined in equation 6.11 where T=4 given the 3x1 method used. The time non-homogeneous 

migration matrices were estimated using the matrix estimator defined in equation 6.12.  

The summary matrices for these three methods are presented in Table 6.5.  

)(ˆ
kTA∆

As in the previous analysis, we calculate the pair-wise differences between the SVD 

statistics )P~(S s calculated for the three matrices.  Our results indicate that the mean difference 

( ) between the cohort and time homogenous matrices is 0.1863; the mean difference 

between the cohort and the time non-homogeneous matrices is 0.1925; and the two Markov 

chain matrices have a mean difference of 0.0062.

svdm

41  Again these results remain well above the 

mean difference values obtained by Schuermann and Jafry using corporate bond ratings 

migration.  Moreover, the same trends in retention rates and cell-to-cell comparisons between the 

cohort and Markov chain migration matrices noted when the 2x1 method was used for the cohort 

matrix are also evident in the results for the 3x1 method. The following section wraps up the 

argument in favor of the alternative Markov chain models through the estimation of loan default 

probabilities.  

Loan Stress/Default Probabilities 

Table 6.6 presents a breakdown of the loan stress/default probability estimates for the 2 x 

1 and 3 x 1 measurement methods under the cohort and Markov chain models.42 These estimates 

represent the overall frequencies of migrating to (or remaining in) Class 5.  They are calculated 

                                                 
41 The resulting 95% confidence intervals for each of these differences are (0.1677, 0.2048) for the cohort and time 
homogeneous matrices, (0.1700, 0.2150) for the cohort and time non-homogeneous matrices, and (-0.0149, 0.0273) 
for the two Markov chain matrices. As in the previous analysis, only the last confidence interval includes zero in its 
range. 
42 The time homogeneous and non-homogeneous methods produced the same loan default probability estimates 
since both methods track the same number of farms that migrate either directly or indirectly to Class 5. 
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as the weighted averages of the frequencies for Class 5 ratings using annual proportion of farm 

numbers as weights (Barry, Escalante, and Ellinger; Katchova and Barry). 

   The results in Table 6.6 show that probability estimates obtained under the Markov 

chain model are always above the levels produced by the cohort model for both the 2x1 and 3x1 

methods.43  Results for the 2x1 method indicate that the “cohort” overall estimate of 5.10% is 

understated by 0.43% compared to 5.53% estimated using the Markov chain approach.  The 

discrepancy is larger in the 3 x1 migration method where the Markov chain model produced an 

overall estimate of 7.47%, which is more than 1% higher than the “cohort” estimate of 6.37%.  

For purposes of loan portfolio assessment and financial planning for lenders, more conservative 

estimates of loan stress/default probability might be preferred to adopt more cautious, prudent 

lending plans and policies that should provide sufficient cushion against unexpected losses.  This 

stance has greater relevance in a more volatile, uncertain credit environment, much like the 

challenging lending conditions confronted by all farm lenders. 

                                                 
43 The differences in un-weighted default probability estimates (class 5 transitions divided by total farm number in 
each time period) are even much larger (ranging from 1 to 3 percentage points) than when weighted estimates were 
compared. 
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Table 6.1: Credit Scoring Classification Intervals (Source: Splett, et al.) 

 
VARIABLES (Measures)/Classes Interval Ranges Weights 

   
LIQUIDITY (Current Ratio)   
1 >2.00  
2 1.60-2.00  
3 1.25-1.60  
4 1.00-1.25  
5 <1.00 ______x0.10=______
SOLVENCY (Equity-Asset Ratio)   
1 >0.80  
2 0.70-0.80  
3 0.60-0.70  
4 0.50-0.60  
5 <0.50 ______x0.10=______
PROFITABILITY (Farm Return on Equity)   
1 >0.10  
2 0.06-0.10  
3 0.04-0.06  
4 0.01-0.04  
5 <0.01 ______x0.10=______
REPAYMENT CAPACITY (Capital Debt-Repayment Margin Ratio)  
1 >0.75  
2 0.50-0.75  
3 0.25-0.50  
4 0.05-0.25  
5 <0.05 ______x0.10=______
FINANCIAL EFFICIENCY (Net Farm Income from Operations Ratio)  
1 >0.40  
2 0.30-0.40  
3 0.20-0.30  
4 0.10-0.20  
5 <0.10 ______x0.10=______
   

=Total Score (Numeric)_____________
 

Credit Score Classes 
Class1                                                                                                                           1.00-1.80 
Class2                                                                                                                           1.81-2.70 
Class3                                                                                                                           2.71-3.60 
Class4                                                                                                                           3.61-4.50 
Class5                                                                                                                           4.51-5.00 
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Table 6.2:  Summary 2 x 1 Transition Matrix under the Cohort Method, 1985-2001  

Period 2 Farm Credit Risk Classes (Percent) Period 1 

Farm Credit Risk Classes 1 2 3 4 5 

1 75.14 16.47 6.53 1.75 0.11 

2 24.68 43.52 19.69 10.14 1.97 

3 12.23 27.39 39.70 14.46 6.21 

4 3.57 24.49 35.16 27.43 9.36 

5 0.25 9.21 37.78 24.98 27.79 
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Table 6.3: Results of Semi-Parametric Multiplicative Hazard Tests 

Rating Class at 
the end of time 

period t2

Rating Class at 
end of time 

period t3

Coefficient 
Estimate 

Standard 
Error P value 

Evidence of Path 
Dependence (PD) 
or Trend Reversal 

(TR) 
A.  Conditional on a Previous Class Rating Downgrade (for the period t1 to t2) 

1 0.64182 0.21937 0.0054 
2 -0.28655 0.07214 0.0003 

 
2 

3 -0.57744 0.14822 0.0003 

 
Trend Reversal 

2 0.48543 0.14165 0.0014 
3 -0.46897 0.06500 <0.0001 

 
3 

4 -0.50018 0.17272 0.0060 

 
Trend Reversal 

3 0.09780 0.12003 0.4200 
4 -0.30214 0.15349 0.0561 

 
4 

5 -0.86189 0.22402 0.0006 

 
No PD/TR 

4 0.01806 0.14935 0.9049 5 
 5 -0.52561 0.20272 0.0157 

No PD/TR 

B.  Conditional on a Previous Class Rating Upgrade (for the period t1 to t2) 
1 -0.39923 0.06170 <0.0001  

1 2 0.35208 0.15826 0.0340 
Trend Reversal 

1 -0.92026 0.19554 <0.0001 
2 -0.14832 0.08106 0.0741 

 
2 

3 0.05729 0.16633 0.7322 

 
No PD/TR 

2 -0.53309 0.14408 0.0006 
3 0.00854 0.09000 0.9296 

 
3 

4 0.20711 0.18678 0.2740 

 
No PD/TR 

3 -0.16916 0.12003 0.1757 
4 0.12119 0.18692 0.5206 

 
4 

5 0.80925 0.27882 0.0068 

 
Trend Reversal 

C.  Conditional on a Previous Class Rating Retention (for the period t1 to t2) 
1 0.03544 0.09622 0.7153  

1 2 -0.48819 0.14527 0.0022 
No consequential 

trend 
1 -0.23210 0.23719 0.3332 
2 0.04826 0.08377 0.5675 

 
2 

3 -0.26131 0.16172 0.1134 

No consequential 
trend 

2 -0.22721 0.15603 0.1526 
3 0.13407 0.09389 0.1603 

 
3 

4 -0.23162 0.18608 0.2203 

No consequential 
trend 

3 -0.05535 0.12071 0.6490 
4 0.14587 0.16493 0.3819 

 
4 

5 -0.08845 0.28397 0.7575 

No consequential 
trend 

4 0.53268 0.13686 0.0008  
5 5 0.31145 0.25929 0.2409 

Significant 
upgrading trend 
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    Table 6.4:  Summary 3x1 Transition Matrices under the Markov Chain Models, 1985-2001  

Period 2 Farm Credit Risk Classes (Percent) Period 1 

Farm Credit Risk Classes 1 2 3 4 5 

A.  Time Homogeneous Markov Chain Model 

1 76.22 13.50 7.45 2.08 0.75 

2 17.10 58.05 15.83 6.64 2.38 

3 8.88 15.53 61.01 9.92 4.66 

4 6.05 14.59 20.91 52.23 6.23 

5 3.11 8.96 22.59 12.74 52.60 

B.  Time Non-Homogeneous Markov Chain Model 

1 77.89 12.90 6.79 1.92 0.50 

2 16.26 59.45 15.66 6.39 2.24 

3 7.72 16.20 61.04 9.83 5.20 

4 5.27 13.32 22.89 51.15 7.37 

5 2.56 9.85 25.99 12.59 49.02 
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Table 6.5:  Summary 3x1 Transition Matrices under the Cohort and Markov Chain Models, 
1985-2001  

Period 2 Farm Credit Risk Classes (Percent) Period 1 

Farm Credit Risk Classes 1 2 3 4 5 

A.  Cohort (Discrete-Time) Model 

1 76.74 15.41 6.52 1.23 0.10 

2 28.99 40.23 21.05 8.08 1.66 

3 8.78 28.43 38.82 14.94 9.02 

4 3.21 18.93 38.83 24.24 14.79 

5 0.29 7.84 30.00 28.80 33.07 

B.  Time Homogeneous Markov Chain Model 

1 74.27 14.10 8.45 2.45 0.73 

2 16.81 57.42 17.48 6.78 1.51 

3 9.79 14.94 60.10 10.43 4.75 

4 6.72 12.80 21.46 53.42 5.61 

5 3.77 9.80 23.06 11.48 51.88 

C.  Time Non-Homogeneous Markov Chain Model 

1 78.03 12.88 6.72 1.89 0.49 

2 16.17 59.43 15.71 6.54 2.15 

3 7.42 16.35 61.33 9.87 5.03 

4 5.19 13.03 23.46 50.94 7.39 

5 2.54 10.16 26.61 12.53 48.15 
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Table 6.6:  Loan Stress/Default Probability Estimates under Cohort and Markov Chain Models, 
1985-2001. 

2 x 1 Method  

(percent) 

3 x 1 Method  

(percent) 

Time 

Perioda

No. of Farms, 

2 x 1 

 Method 

No. of Farms, 

3 x 1  

Method Cohort Markov  Cohort Markov  

1 201 174 0.03 0.05 0.21 0.23 

2 310 229 0.30 0.31 0.06 0.08 

3 345 311 0.11 0.16 0.10 0.11 

4 486 404 0.13 0.15 0.96 1.00 

5 586 480  0.97 1.05 0.11 0.18 

6 656 530 0.17 0.22 0.16 0.28 

7 745 570 0.30 0.32 0.47 0.52 

8 800 456 0.43 0.47 0.52 0.83 

9 566 423 0.16 0.23 0.36 0.70 

10 516 406 0.16 0.24 0.49 0.63 

11 609 474 0.24 0.24 1.02 0.62 

12 675 565 0.35 0.31 0.45 0.49 

13 768 610 0.38 0.47 0.41 0.57 

14 756 539 0.48 0.53 1.05 1.25 

15 732  0.86 0.80   

Total 8,751  5.10 5.53 6.37 7.47 

Notes:  a The time periods were labeled in generic terms to apply to the two measurement 
methods.  The 2 x 1 method uses three-year groupings, hence, time period 1 corresponds to 
1985-1987, time period 2 is 1986-1988, and so forth.  On the other hand, the 3x1 method uses 
four-year groupings, hence, time period 1 is for 1985-1988, time period 2 is for 1986-1989, and 
so forth. 
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Figure 6.1:  Decay of Eigenvalues with Different Transition Horizons 
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   Figure 6.2: 2nd Eigenvector Element Values of Matrices for Different Transition Horizons
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

7.1 Summary and Conclusion 

This dissertation is comprised of three studies on risk management and finance in 

agriculture. Though specific focuses are different in each study, the primary objective is to find 

out ways to reduce relevant risks, being production or credit risk, for the relevant parties. General 

results indicate that index-based insurance products are potentially effective to reduce 

agricultural production risk for agricultural producers in Southeast U.S.. Markov chain models 

are proven to provide better estimation of credit risk migration using the Illinois FBFM database. 

The first study focuses on a proposed THI insurance product to protect against shortfalls 

in milk production due to heat stress. THI has been identified, in dairy science, as a composite 

index that negatively affects dairy cows’ milk production when dairy are exposed to high 

ambient temperature and humidity. High THI above 72 is found significantly reduce the dairy 

physical performance and milk production. It, however, has not been studied as a potential 

insurance tool to hedge against the milk production loss due to heat stress. One crucial issue of 

using weather-based insurance requires the existence of clear relationship and high correlation 

between the weather phenomenon and the realized yield loss. Otherwise basis risk will be so 

high that loose its competitiveness with traditional insurance products. Considering the intrinsic 

relationship between THI and dairy milk production, we expect that THI will work effectively as 

an index-based insurance product to insure against milk loss due to the heat stress. 
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This study constructed the THI insurance products at three locations in Atlanta GA, 

Macon GA, and Tallahassee, FL, where three hypothetical insurance companies are located. A 

representative farm in Macon is assumed being able to purchase THI insurance products from 

any of the three insurance companies which construct the contracts based on the local THI 

measurements. Due to the lack of lengthy milk production data history, a bootstrapping 

procedure is used to simulate the longer series of milk production data conditional on THI and, at 

the same time, account for the idiosyncratic effects in milk production. This overcomes the 

problems of a simple deterministic model to simulate milk production that overstates the 

correlation between farm-level milk production and the THI.  Thus, the approach used here 

provides a more realistic analysis of the impacts of THI insurance purchasing. 

 In addition, this study applies recent findings from the dairy science literature that 

suggest that the largest impact on milk production occurs approximately two days after a heat 

stress event.  This makes THI capture more portions of milk production losses due to heat stress 

and ensures THI a better risk hedging device.  

 This study explicitly analyzes the impacts of both geographical and temporal basis risk. 

Geographical basis risk has been widely recognized and studied in most index-based insurance 

literatures. Temporal basis risk, however, has not caught enough attention. Results in this study 

indicate that temporal basis risk does exist and can not be ignored. Its effects can be reduced by 

using separate cool period and hot period THI insurance contracts rather than a blanket single 

contract. 

 The insured may have different objectives and therefore use different risk evaluation 

criteria. This study uses Mean-variance, expected utility certainty equivalence, and value-at-risk 
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to assess the robustness of the effectiveness of THI. Finding indicates the general robustness 

across different measures of producer well-being. 

The second study emphasizes the feasibility of another index-based insurance product, 

area yield insurance product GRP, in the Southeast U.S. It particularly compares the risk 

reduction performance of GRP and MPCI for cotton and soybeans in South Carolina and Georgia.  

The regions considered is characterized by heterogeneity in production factors such as soil 

quality and drainage and thus, in principal, should not be as well suited to GRP as more 

homogeneous production regions such as the corn belt.  However, the region is also 

characterized by relatively high MPCI premium rates due, in part, to positive wedges caused by 

moral hazard and adverse selection problems.   

The findings suggest that when the comparison is based on the actual subsidized 

premium rates that farmers would expect to pay for these insurance products (rather than 

hypothetical actuarially fair premium rates), GRP is often very competitive with MPCI.  A 

limitation of this analysis is that it cannot account for losses due to prevented planting, replanting, 

or poor quality.  These losses are covered to some extent by MPCI but are not covered by GRP. 

In order to compare the risk reduction performance of GRP and MPCI under more 

realistic conditions and treat both fairly, this study presented results based on three premium 

rating schemes:  1) actuarially fair in sample premium rates (as in previous studies); 2) actual 

unsubsidized premium rates; and, 3) actual subsidized premium rates.  Comparing results across 

these three premium rating schemes provides insight into the magnitude of bias that exists in 

studies where premium rates are constructed to be actuarially fair in sample.  The bias favorably 

improves the risk reduction performance of MPCI. 
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Since premium rates are not breakeven, the relative performance of MPCI and GRP 

cannot be evaluated by simply comparing reductions in the variance of net yield.  Thus, this 

study extends previous efforts by evaluating the relative performance of MPCI and GRP using 

certainty equivalent revenues under an expected utility framework. 

With actual subsidized premium rates, GRP performs better than MPCI for some crops 

and regions. This indicates although GRP basis risk may be relatively high in the southeastern 

U.S. due to heterogeneous agricultural production conditions, the significant positive wedge in 

MPCI premium rates make GRP a viable alternative for farmers in the region.   

 The third study presents arguments establishing the relevance of Markov chain models in 

the estimation of credit risk transition probability matrices for farm businesses.  The pre-

condition of a Markov chain process was validated through an analysis of the 

eigenvalue/eigenvector of the farm credit risk transition matrix and the semi-parametric 

multiplicative hazard tests.  Our results do not provide strong evidence to reject the Markov 

property of independence assumption.   

 This study’s empirical evidence supports the application of Markov chain models to farm 

finance in lieu of cohort models that incorporate the farm lenders’ multi-year averaging 

tendencies in credit risk analysis.  More substantial mean differences in singular value 

decomposition (SVD) are produced between farm credit risk migration matrices developed under 

the cohort and Markov chain models than when similar comparisons are made in corporate 

finance literature using bond ratings migration.  This suggests that the derivation of farm credit 

risk migration rates under the “cohort” model could result in more costly omission of important 

indirect, transient changes in farm credit risk ratings. The understatement of transition 

probability estimates would, in turn, produce lower, if not misleading, indicators of farm loan 
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portfolio quality such as portfolio default probability estimates.  For instance, we have shown 

tendencies to produce lower estimates of loan portfolio default probability under the cohort 

model than when the Markov chain method is used.   

Given the highly volatile and largely uncertain farm operating environment where abrupt 

changes in weather, market, or macroeconomic conditions could influence ad hoc modifications 

of business plans and decisions, lenders would certainly need more accurate, if not conservative, 

indicators of loan portfolio quality that need to be factored into their own financial plans and 

lending policies.   This study has shown that Markov chain models of migration could provide a 

more accurate, reliable representation of farm credit risk migration activities than the 

conventionally used cohort model, which could produce omission of important risk transition 

information that could be much more costly in farm finance as they are in corporate finance.   

7.2 Recommendation for further Research 

Results from any study can not be extended to other studies blankly. Cautions need to be 

taken to make general conclusions. Though our current results favor the application of index-

based insurance products to insure against agricultural production risks and the application of 

Markov chain models to estimate the credit risk migration, they are not conclusive. 

Basis risk is always the primary concern in index-based insurance and it cannot be 

eliminated. The trade-off between basis risk and contract transparency must be considered. 

Weather-based insurance in agricultural production further requires better knowledge of 

agronomy into the weather-yield relationship to achieve satisfactory performance of weather 

insurance. Thus any study on index-based insurance, especially weather-based insurance, needs 

to be done on a commodity – and location – specific basis. 
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As for credit risk migration analysis in agricultural lending, our results are based on the 

farm record keeping association data. Though there is advantage of using these external farm 

financial data, it is not clear how closely the estimated credit ratings to the internal credit ratings 

assigned by agricultural lenders. The credit risk evaluation process, the factors considered in 

credit evaluation, and the loan officers’ involvement in the process all make it unlikely that the 

internal credit risk ratings will exhibit the same variability as those estimated from the external 

farm financial data. Further studies can use internal data, if available, to replicate the current 

study to estimate the credit risk migration under cohort and Markov chain models to verify our 

results. 

In addition, further study are warranted to determine if migration probabilities differ 

significantly across business cycles, types of agricultural production and geographical locations 

of farm business and agricultural borrowers. In order to do that, longer series of data history and 

national or regional data set encompassing multiple states would be required. 
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APPENDICES 

Appendix A: Derivation of optimal choice variable φ  

To derive , substitute ∗φ netR from (4.11b) into (4.10)  

(A.1)     
( ) ( ).)1(||~||~var

2
1)1(||~||~

)var(
2
1)(

~~ nn

netnetnet

nypknypE

RkREV

µγβφβφµγβφβφ +−+×−+−+=

×−=
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By construction the systematic heat stress component of milk production risk z~ and the 

idiosyncratic component of milk production risk ε~ are independent. This implies that ε~  and 

n~ are also uncorrelated. Thus, )~,~cov()~,cov()~,~cov()~,~cov()~,~cov( nznnznzny βεβεβ =+=+=  

and (A.2) can be rewritten as 
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The first order condition of (A.3) with respect toφ  is 
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Appendix B:  Derivation of the Singular Value Decomposition Statistic 

The diagonals of any migration matrix represent retention rates or the probability that no 

cross-state migration has occurred while off-diagonal elements capture the probabilities of 

migrating to other classes during a specific period of time. An identity matrix (denoted as I) 

could be treated as a specific migration matrix where only retention cases are observed and 

cross-state migrations are not realized. Since the migration framework is concerned about 

activity or dynamics, we then derive the dynamic part of migration called mobility matrix 

(denoted as P~ ) by subtracting the identity matrix from the original matrix (denoted as P ).  That is  

IPP~ −=                                                            (6.14)    

Then following Schuermann and Jafry, we calculate the singular values (denoted as )P~(S ) 

of P~  

)P~`P~()P~( eigS =                                                          (6.15)                      

where  is the eigenvalue of the corresponding matrix. Then the average of the singular 

values of the mobility matrix 

)(•eig

P~  is donated as )P~(S . 
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