
XINGFENG DENG
Anesoft: An Expert System for Canine Anesthesia
(Under the direction of DONALD NUTE)

AneSoft, an expert system for canine anesthesia, has been programmed directly from

human expertise and domain documents. The application is not large but somewhat

complex, and a useful high performance system has been implemented with a friendly

user interface. Designed both to provide expert recommendations and learner guidance,

AneSoft can generate a set of consultations for making anesthetic plans based on the

information about the patient. It can also assess anesthetic schemes made by the user,

explaining why any part of that scheme might be contraindicated and providing

suggestions for improving the scheme. In addition, AneSoft can produce any number of

cases as specified by the user with or without system recommended anesthetic plan, in a

well designed, consistent format. We take full advantage of LPA Win-Prolog to build

efficient declarative knowledge base and to develop procedural control and user interface.

The expert system will soon be ready for field-testing and we are optimistic that it will be

of considerable practical use.

INDEX WORDS: Expert system, Computer-based instruction, Anesthesiology

ANESOFT: AN EXPERT SYSTEM FOR CANINE ANESTHESIA

by

XINGFENG DENG

B.A., Nanjing University, 1989

Ph.D., Nanjing University, 1994

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2000

 2000

Xingfeng Deng

All Rights Reserved

ANESOFT: AN EXPERT SYSTEM FOR CANINE ANESTHESIA

by

XINGFENG DENG

Approved:

Major Professor

Date

Approved:

Dean of the Graduate School

Date

ACKNOWLEDGMENTS

I would like to acknowledge the following individuals for their help and support

during the writing of this thesis:

Donald Nute, my major professor, who gave me the space, time and

encouragement I needed in order to develop AneSoft from what started out as a vague

germ of an idea;

Dr. James Moore, Dr. Cynthia Trim and Dr. Christine Egger, without whose help

this project would have a much weaker basis in anesthesiology, and without whose

suggestions the program would have had a very different, and most likely not nearly as

efficient, control structure;

Dr. Suchi Bhandarkar, for his time, consideration, and decidedly helpful

comments;

My wife, Yun Jia, and my parents, Deng Dongshan and Su Meifang, for their

encouragement, ability to keep me on track, and willingness to listen to me ramble on;

My friends and fellow students, Yong Wei, Mingguang Xu and Shulei Sun, for

their camaraderie, their willingness and ability to act as sounding boards, and their

occasionally helpful comments on Prolog programming, the nature of expert system in

general, and the acceptability of anesthetic plans recommended by my program in

particular.

My sincere thanks and gratitude to you all.

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ……………………………………………………………… iv

LIST OF FIGURES …………………………………………………………………….. vii

CHAPTER

1 INTRODUCTION ……………………………………………………………. 1

1.1 Problem Domain of Anesoft ……………………………………... 1

1.2 Expert System Approach ………………………………………… 3

1.3 Related Systems ………………………………………………….. 6

1.4 Tools for AneSoft ………………………………………………. 10

1.5 Guidelines for Evaluating AneSoft ……………………………...11

2 KNOWLEDGE ACQUISITION ……………………………………………. 13

2.1 Preparations for Knowledge Acquisition ………………………..13

2.2 Sources of Expertise ……………………………………………. 15

2.3 Techniques to Facilitate Knowledge Acquisition ………………. 18

2.4 Process of Knowledge Acquisition …………………………….. 22

3 SYSTEM DESIGN AND IMPLEMENTATION …………………………… 24

3.1 Evolution of Anesoft …………………………………………… 24

3.2 Knowledge Base ……………………………………………….. 27

3.3 Inference Engine and Inference Process ……………………….. 35

3.4 User Interface …………………………………………………... 37

4 CONCLUSION ……………………………………………………………....48

4.1 Evaluation ………………………………………………………. 49

4.2 Lessons Learned …………………………………………………50

4.3 Future Enhancement of Anesoft …………………………………52

BIBLIOGRAPHY ……………………………………………………………………….53

vii

LIST OF FIGURES

3.1 Iterative Model Used for AneSoft ………………………………………… 25

3.2 Main Window of AneSoft ………………………………………………… 39

3.3 Form Window of AneSoft ………………………………………………… 42

3.4 Selection Window of AneSoft …………………………………………….. 45

3.5 Critique Window of AneSoft ……………………………………………… 47

CHAPTER 1

INTRODUCTION

In this thesis, the development of AneSoft, an expert system for selecting canine

anesthetic drugs and making anesthetic plans, will be discussed. There are four chapters

in this thesis. Chapter 1 introduces the domain problems and motivations for AneSoft,

reviews related systems, and outlines the advantages of AneSoft, the tools used for

developing it as well as the basic guidelines for evaluating the system. Chapter 2

addresses issues regarding the preparation for knowledge acquisition, the sources of

expertise, the process of knowledge acquisition, and other effective methods for

facilitating knowledge acquisition. Chapter 3 describes the implementation of AneSoft.

The evolution of AneSoft and the basic implementation process for AneSoft are

discussed. Chapter 4 concludes the thesis by presenting the results of preliminary

evaluation and suggesting future plans for AneSoft.

1.1 THE PROBLEM DOMAIN OF ANESOFT

Anesthesia is a state of unconsciousness induced in an animal. The three

components of anesthesia are analgesia (pain relief), amnesia (loss of memory), and

immobilization. The drugs used to achieve anesthesia usually have varying effects in

each of these areas. Some drugs alone can achieve all three. Others have only analgesic

2

or sedative properties and may be used individually for these purposes or in combination

with other drugs to achieve full anesthesia.

Anesthesia is not a matter that can be ventured into lightly, considering its

profound effects on an animal's physiology. Research shows that the use of anesthetic

drugs can significantly impact the central nervous system as well as other body systems.

Certain drugs or combinations of drugs, if misused, could cause serious effects,

sometimes to the extent of killing the animal (Paddleford 1999).

Anesthetic drug selection apparently plays a critical role in veterinary practice.

However, expertise in anesthetic selection, particularly knowledge about how to choose

appropriate anesthetic drugs for dogs in various conditions, is not always readily

available when veterinary students or practitioners need it. It was in response to this need

that the AneSoft project came into being.

At the outset of the project, it was determined that how to select anesthetic drugs

for dogs during preanesthetic, induction, and maintenance stages would be Anesoft’s

primary domain. It was also expected that once the system became fairly stable, the

domain might be expanded to encompass knowledge for making a complete anesthetic

plan, with intraoperative, adjunct, and recovery drugs included, and knowledge for

evaluating the plan.

1.2 EXPERT SYSTEM APPROACH

The objective of AneSoft is to help students or practitioners to learn how to

choose canine anesthetic drugs and make acceptable anesthetic plans in various

3

situations. Needless to say, this can be reached in more than one way. Below, I will

discuss five common approaches in which the study of canine anesthesiology may be

facilitated, focusing on the pros and cons of each approach.

First, the traditional lecture and/or test approach. With this approach, the

professor imparts knowledge to the students in a classroom setting. The latter absorb the

knowledge by taking notes and then demonstrate their mastery of the subject by passing

the exams. The advantage of this approach is that students may be able to have face-to-

face communication with their professor. The disadvantages are numerous, however. For

one thing, it tends to encourage cramming on the part of the students and might prevent

them from playing a more active role in the learning process. In addition, the students

cannot consult their teacher at any time when they have questions. Further, even with the

same instructor, the quality of the teaching might differ from session to session,

depending on the mood and energy level of the instructor.

Second, textbooks. Textbooks can provide necessary information on making

anesthetic plans. Students can access the knowledge presented in textbooks at any time.

The disadvantage of learning from textbooks is that it can be very inefficient—students

may need to browse through a whole textbook in order to find a solution to a specific

problem. Another drawback of this kind of learning is that it is not interactive. Students

do not get any feedback or evaluation on the anesthetic plans they made, making it

difficult for them to verify their knowledge or to know what progress they have made in

the subject area.

Third, the clinical training approach. Through clinical training, students can get

real-world experience in making anesthetic plans. This approach has its distinct

4

advantages; nevertheless, these advantages do come at a cost. Potential risks include, for

instance, the possibility that one small mistake made in selecting drugs might cause the

death of the animal. In clinical training, one can seldom go back to an earlier case to try

out a different plan. Nor is the availability of a wide range of cases guaranteed—more

likely, one only gets to work with a very limited number of situations. It is almost

impossible for learners to gain systematic knowledge in the subject area solely through

clinical training.

Last, the courseware approach. This approach does not have the disadvantages of

the first and second approaches, and yet it retains most of their advantages. One

advantage of the courseware is its portability that allows domain knowledge to be

transferred or reproduced easily. Transferring knowledge from one human expert to

others is usually an expensive and somewhat tedious process. We must go through this

process to build the courseware. However, once it is built, the knowledge it contains can

be transferred from user to user simply by making copies of it. Second, With this

approach, students can learn in an interactive way at any time at any place. The third

appealing aspect of using courseware in anesthesiology is that it produces more

consistent, reproducible results than does a human expert. An instructor may make

different decisions with identical situations because of difference in attention, weariness,

or other reasons. Courseware will always generate the same recommendations when

provided with the same inputs. Thus the quality of the instruction delivered via

courseware is consistent across sessions.

5

In addition, unlike clinical training, computer-based lessons generally entail few

risks. A computer program that helps students to learn how to construct acceptable

anesthetic plans is clearly a preferred choice over other approaches.

Yet even within the courseware approach, there are two main alternatives to

consider. One is to use standard authoring tools, such as Macromedia Authorware or

Director, to develop interactive lessons. The other option is to develop an expert system

using programming languages suitable for representing declarative knowledge, such as

Prolog, which was exactly what we did for AneSoft.

An expert system is a computer program that helps a user to solve a problem that

normally requires special expertise to solve. It focuses on simulating human reasoning

about a problem domain, rather than the actual domain itself, through representation of

human knowledge. (Plant and Stone 1991, Stefik 1995). The advantage of an expert

system lies in that it allows the learner to work through a problem in any of several

different ways—a feat that regular authoring tools are ill-suited to perform. The main

feature that distinguishes an expert system from the other tools is --its knowledge base,

which contains rules for representing systematic domain knowledge and enables the

expert system to analyze any choice the learner makes as he or she makes it. The second

advantage of an expert system is its ability to keep track of how the learner interacts with

the program; therefore later on the system can provide explanations for all the

recommendations it has made. In addition, expert systems cost less than human experts

equipped with similar expertise. As more and more advancements are being made in

artificial intelligence and computer-based related systems, there should be new

opportunities to apply expert systems technology to the area of anesthesiology. Once

6

AneSoft was established, students could use it to learn, practice or verify their knowledge

in anesthetic selection at any time. Other users could include any other non-experts who

want to know how to select anesthetic drugs and make appropriate anesthetic plans.

1.3 RELATED SYSTEMS

Although many expert systems have been developed for different applications,

few focus on the area of anesthetic selection. No expert systems for choosing veterinary

anesthetic drugs were found in a search of the literature. However, two systems should be

noted here because the topic of anesthetics is addressed in both and both were intended

for educational or training purposes.

ACCESS (The Anesthetic Computer Controlled Emergency Situation Simulator)

was developed by Aidan Byrne in England. The simulator is set up in a vacant operating

theater or a room usually reserved for resuscitation training. A resuscitation manikin is

used as a patient, since it looks realistic and allows practical skills such as external

cardiac massage and cardiac defibrillation to be performed. The manikin has a realistic

airway and is connected to a standard anaesthetic machine, complete with all the

necessary accessories.

Trainees are introduced to the scenario as if they were taking over a case from a

colleague. The condition of the patient and the state of the anesthetic are explained.

An anesthetic chart is provided, completed up to the point where the trainee takes

over. The trainee is then expected to manage the anesthetic as if the patient were real. The

tutors take the part of an interested but totally unhelpful anesthetic assistant. The

7

simulations are realistic, in that the trainees have to physically perform any actions

required. All the simulations are followed through until the patient becomes stable. The

feedback available to the trainees is the same as what they would get during a normal

working day, i.e., the clinical state of the patient, the readings of the instruments and the

behavior of the equipment. The tutors do not provide any suggestions as to diagnosis or

treatment. This stimulated our interest in developing an unsupervised learning module

for AneSoft. The system is currently in use in ten hospitals in the UK. (Byrne 1994)

The other related system is AlgoSim (The Difficult Airway Algorithm Tutorial).

Written by Rob Jones, M.D., this educational software was demonstrated at several

anesthesiology conventions and has exerted profound influences in the anesthetic

community. Customized versions of AlgoSim have been developed in other languages.

This interactive, hypermedia computer program for training medical students is

designed to present the famous ASA difficult airway algorithm in anesthesiology

(Benumof 1991) in an entertaining, yet supremely educational new format. The first part

of the program takes the user sequentially through the algorithm, with extensive

discussion of each step. The second section breaks the algorithm down into 11 discrete

pathways, or branches, in order to facilitate rapid recognition of clinical scenarios.

Finally, the simulator “puts it all together” by presenting the user with complex, real-life

scenarios requiring prompt airway intervention skills. Success is measured, not by an

arbitrary scoring system, but by patient outcome, as indicated by real-time pulse oximetry

simulation. After the smoke has cleareds, the program enables the user to review his or

her actions and compare them with the ASA algorithm standard. Since real-life airway

disasters are rare, and long-term learning requires repetition, the program allows one to

8

review each individual airway scenario as many times as necessary to obtain mastery of

the educational objective. The authors hope that the routine use of this training aid with

interactive hypertext-based help will expedite the acquisition of the difficult airway

algorithm. An impressive system, AlgoSim raise my interest in creating an HTML help

file for AneSoft, and the possibility of developing a hypertext reference component for a

later version of AneSoft.

The expert system discussed in this thesis, AneSoft, demonstrates the same

advantages as the above-mentioned systems. It frees anesthesiology professors from

routine instructions to tackle other anesthetic problems. It also allows the same staff to

train more students in the same time, or improves quality of training. Like AlgoSim,

AneSoft allows the students to practice at any time and at any place for as many times as

desired. Using AneSoft in training also saves money in raising experimental animals.

AneSoft also differs from these two systems in several aspects. First, its proposed

domain, which is the planning of anesthetic drugs rather than their actual administration,

dictates that AneSoft should not be a “virtual” simulator, as ACCESS is. Indeed,

throughout the program, students do not need to perform any physical action at all except

for clicking with their mouse. Secondly, it is assumed that the user will have already been

introduced to the fundamental concepts and rules in canine anesthesiology and will be

using AneSoft primarily as an aid for practicing their knowledge. Thus, detailed

discussion of the subject area is not included, the way it is included in AlgoSim. It asks

the user a series of questions and has a knowledge base that contains almost all the

heuristic rules for making anesthetic plans. The program has the ability to mimic human

reasoning in applying these rules to search through the problem solution space. Once a

9

recommendation is made, it can give an explanation to it. As a teaching tool, AneSoft

also differs from these two systems in several ways. First, it has a test case generator,

which can generate cases with or without system recommended plans. Second, it allows

the learner to choose between supervised or unsupervised learning mode. In supervised

learning mode, users get immediate feedback when he or she selects a drug or finishes

selecting drugs for a stage. While in unsupervised learning mode, the learner will not get

any feedback until he or she finishes making his or her own anesthetic plan. In each

mode, the program will compare the system recommended plan and the user’s anesthetic

plan, specifying which drugs should be selected or rejected and why. In addition, AneSoft

evaluates the drugs the user has just selected. For example, it lists all the contraindicated

drugs that the user has selected as well as all the indicated drugs that user has not yet

selected. In addition to guiding students in their study in this area, AneSoft can be used to

check or verify the anesthetic drugs selected in a clinic or hospital, where a professional

anesthesiologist is not readily available.

1.4 TOOLS FOR ANESOFT

Several reasons make LPA WIN-Prolog for Windows the preferred tool for

implementing AneSoft. (1) Prolog is an ideal language to represent knowledge and the

human reasoning processes. Compared with other languages, it excels in logical

reasoning programming thanks to its built-in inference engine and backtracking

mechanisms. These characteristics also render Prolog most suitable for developing AI

applications. (2) PCs running Windows operation system are widely used on the

10

University of Georgia (UGA) campus, and are easily available in computer labs at

UGA’s College of Veterinary Medicine. Using a Windows version of Prolog would

minimize portability problems. (3) LPA-Prolog provides predicates to allow developers

to build sophisticated graphical user interfaces (GUIs). This includes sets of predicates

both for creating windows with various styles and for handling user actions or inputs

when he or she interacts with the interface. LPA Prolog also comes with a dialog editor, a

rapid application development tool. This utility allows drag-and-drop editing, enabling

the programmer to create windows and controls quickly without writing a single line of

code. Thus, in addition to being a language suitable for representing declarative

knowledge, LPA Prolog is also capable of generating event-driven applications and of

building graphical user interfaces, just as languages like Visual Basic are. LPA Prolog’s

functionality is further extended by the fact that it can be coded to call .dll files and

execute external programs directly. (4) If AneSoft is distributed, there will be no need for

a run-time license.

At the beginning of AneSoft’s development phase, I considered taking advantages

of both Prolog (efficient inference engine and declarative knowledge base) and Visual

Basic (friendly user interface, rapid application development, and procedural control),

using the LPA Prolog’s Intelligence Server, a mechanism to provide an interface between

a Prolog program and a front­end GUI written in a language other than Prolog. Later on

when I finished implementing part of the program and tested it, I realized that this

approach would increase the system overhead and slow down the consultation process,

since information would need to be passed back and forth between Prolog and Visual

Basic programs. I redesigned the system and decided to build the interface in Prolog.

11

Indeed, using “pure” WIN-Prolog, one can build fairly sophisticated user interfaces

without resorting to external programs. Other programming languages or tools were used

for enhancing AneSoft. These included CGI technology, HTML, JavaScript and Java

Applets.

1.5 GUIDELINES FOR EVALUATING ANESOFT

Three evaluation criteria are used for AneSoft. These are the accuracy of domain

knowledge, the completeness of domain knowledge, and the ease of use. The first two

have been assessed by the domain experts --- Dr. Trim, Dr. Moore and Dr. Egger at

University of Georgia’s School of Veterinary Medicine. Ease of use has been evaluated

by experts and non-experts, most of whom are veterinary students at the University of

Georgia. The results of these evaluations are presented in Chapter 4.

12

CHAPTER 2

KNOWLEDGE ACQUISITION

To obtain domain knowledge from an expert or other sources is a time-consuming

task, but it is the core of expert system development because the accuracy and reliability

of the system depends, to a large extent, on effective collection of the domain expertise.

In this section, I’ll discuss my firsthand experience with knowledge acquisition for

developing AneSoft.

Knowledge acquisition can be viewed as the process of extracting, structuring,

and organizing knowledge from one or more sources to the knowledge base, and

sometimes even to the inference engine. Thus, although knowledge acquisition is usually

considered a separate phase in the cycle of the expert system development, it actually

occurs throughout the whole development process of an experts system as will be

discussed below.

2.1 PREPARATIONS FOR KNOWLEDGE ACQUISITION

Preparations needed to be made prior to knowledge acquisition for AneSoft. The

first preparatory task was to identify the sources of expertise. Within the field of

anesthesiology, how to select an anesthetic drug for dogs during preanesthetic, induction

and maintenance stages was defined as the system’s initial domain. Then the domain was

13

extended to include knowledge for making a complete anesthetic plan (intraoperative,

adjunct, and recovery drugs were included) and evaluating the plan. The sources of

expertise would be identified after the domain was defined. AneSoft would be built upon

expertise pulled from knowledge documents and human experts, which will be elaborated

later in section 3.2.

The second task was for me to familiarize myself with the domain by reading

relevant materials about the domain. It would be impossible to interview a veteran

anesthesiologist efficiently and effectively without some background knowledge. These

materials gave the developer a broad view of the domain. The reading helped me to

analyze the domain knowledge and formulate the interview questions. It also served to

enhance the dialog with the experts.

The last preparatory task was to acquaint the domain experts with expert system

technology. I spent time explaining the concepts of expert systems. This started with a

description of several existing systems in the application area of medicine, followed by a

proposal of what the AneSoft system might look like. Later after having finished the

prototyping, I demonstrated the system to the domain experts. The demonstration not

only gave them an understanding of an expert system’s capabilities and its use, but it also

stimulated their interest in developing an expert system.

14

2.2 SOURCES OF EXPERTISE

The sources of expertise came from books and domain experts. In this section, I will

explain the type of knowledge obtained from each source of expertise and the techniques

involved in obtaining the knowledge for AneSoft.

2.2.1 KNOWLEDGE ACQUISITION FROM KNOWLEDGE DOCUMENTS

Upon recommendations from domain experts, four books were used for

knowledge acquisition for AneSoft. They are Veterinary Anaesthesia (Hall et al 1991),

Clinical Veterinary Anesthesia: A Guide for the Practitioner (Short 1974), Manual of

Small Animal Anesthesia (Paddleford, 1999), and Veterinary Anesthesia (Lumb 1973).

All of these books were most useful in providing a checklist of the various factors

involved in recommending an anesthetic drug as well as a detailed analysis of each of

these factors. As a valuable source of information, these books were put into the

following use. Firstly, being a layman to the field of veterinary diagnosis and

prescription, I used these books to familiarize myself with the various anesthetic terms

and to get a general picture of the process of prescribing veterinary anesthetic drugs in

various situations. Secondly, when preparing the questionnaires to be used at the

interviews with the domain experts and structuring the information to be obtained from

the interviews, I consulted these books for detailed accounts of the proposed issues, such

15

as the side effects of a particular agent, and the dosage needed for a patient at a particular

age. The interviews with the domain experts focused on acquiring the general problem

solving strategies and heuristics; hence, specific information had to be filled in by these

books. Lastly, some indications and contraindications of anesthetic drugs from these

books were transcribed directly into Prolog rules to provide the information to be used by

the expert system.

As fundamental works for veterinary students, these books were undoubtedly

capable of providing much of the needed expertise for AneSoft.

2.2.2 KNOWLEDGE ACQUISITION FROM EXPERTS

The second source was advice and experience from Dr. Cynthia Trim, Dr. James

Moore and Dr. Christine Egger, all professors at the College of Veterinary Medicine at

the University of Georgia.

At my initial meeting with these domain experts, they explained that the first step

was to identify the factors that might affect the anesthetic selection. The way to do that,

they suggested, was to ask a series of questions. Thus, they advised me to read some of

the books in anesthesiology and formulate the questions to be asked which would be vital

to both the problem domain and a computer program. This initial meeting set the tone for

all later interviews to be conducted for the purpose of knowledge elicitation from the

domain experts. From my experience, the interviews bore the following characteristics:

First, each of the interviews had what is considered a structured format, meaning

that it was a systematic goal-oriented process. Before each interview, I would study all

16

available materials to identify topics for discussion with the experts. The topics, together

with information that I had gathered on each topic, from the books above or a previous

interview, and a specific set of questions that I might have with regard to a topic, were

then recorded in a written document. During the interview, I would ask the expert to

check off topics from the document to review and to critique the information I had

prepared. Meanwhile, I would write down the opinions given by the experts. After the

interview, I would review the notes, making sure that I understood the experts’ views and

their problem solving heuristics. If I had further questions I would note them down. Then,

I would try to get answers from books or consult experts at the next interview session.

Second, the scheduling of the interviews could be affected by knowledge

representation and system implementation. The processes of knowledge acquisition,

representation and system implementation and testing are actually interwoven. An

important advantage of expert system technology over traditional programming is its

potential for prototyping with an initially small set of facts and rules in the knowledge

base. This small set could be further improved or expanded as more knowledge was

acquired through subsequent interviews. The knowledge acquired from one interview

session could affect weeks of effort in trying either to represent and organize the

knowledge properly to make it usable by the inference engine, or to modify the inference

process so that it could make more efficient use of the knowledge. However, the

knowledge gained from any interview would be of little use if not organized properly, or

not integrated with the existing knowledge. The representation and organization of the

knowledge would in turn enhance the quality of the next interview. Sometimes an

interview could only be scheduled after certain “breakthroughs” had occurred in

17

development activities other than knowledge acquisition and new problems had resulted

therefrom. For example, after figuring out all the common questions to be asked about a

dog, I found that some of these questions had the same effect so far as the choice of

anesthetic was concerned. So for example, instead of inquiring about several individual

diseases, I combined categories of diseases into one generic question. This way, the

interview could be conducted more effectively and the system could be implemented

more efficiently.

Third, at every interview, I would report to the domain experts on the

development status of the system and explain some of its design considerations in order

to make them understand why some of the questions were being asked of them. This

practice proved extremely beneficial since the experts could suggest solutions to

problems related to the domain with the capabilities of the current system in mind, thus

making it easy for me to compile the rules. Meanwhile, the experts would test and review

the parts of the system that were currently functioning. Once they had a better sense of

what the current system looked like, they were in a better position to provide appropriate

solutions to problems. So at every step, I would seek suggestions from the experts before

continuing the development.

2.3 TECHNIQUES TO FACILITATE KNOWLEDGE ACQUISITION

After several interviews, the experts sometimes felt that they had provided most

of the heuristic rules. They said that this might be all that they could think of at that time.

18

At this stage, it is important to employ alternative ways to elicit more knowledge from

the experts in order to maximize the system’s performance.

2.3.1 TEST CASES

After I acquired and represented most of the domain knowledge from the experts

and the knowledge documents, I implemented the prototype of the expert system and also

a case generator for the system, even before the knowledge acquisition and knowledge

base were complete. The computer randomly generated cases with system recommended

plans were printed in a well designed format. These print-outs were then presented to the

domain experts. This gave the experts an opportunity to see how well the current system

behaved. The experts compared the system generated plans with their own plans. When

discrepancies were detected, the experts provided additional rules or refined existing

rules. They reviewed and verified the plans one by one. More knowledge was thus

elicited when they detected there was something missing in the system generated

anesthetic plans. Later on, case generator became a separate module in AneSoft.

2.3.2 EXPLANATIONS

Usually the explanatory facilities are implemented at the end of the development

process for expert systems. However, during the knowledge acquisition for AneSoft, I

felt a need to construct the explanations for the system concurrently with the knowledge

acquisition. The reason is, when I presented the system with an incomplete knowledge

19

base to the experts and there seemed to be a problem in the system recommended plan, it

usually took me much time to explain why the system generated this plan in everyday

English. The domain experts were not expected to check the program to find what rules

might be wrong since all rules were represented in Prolog clauses. After explanatory

facilities were implemented, knowledge acquisition sessions became more productive. In

addition, with all these explanations phrased in everyday English, the domain experts

were able to run the program to verify the rules themselves. Soon they themselves were

able to explore the current knowledge base, using the explanatory facilities to view the

rules being used and the information in the working database. Sometimes this process

triggered the experts into volunteering some additional information, exposing a whole

dimension to the problem in hand that had previously been overlooked.

2.3.3 WEB SITE

It should be noted that knowledge acquisition is a time-consuming process and

that interviews alone are not sufficient for the purpose. Experts usually have busy

schedules, which can make the scheduling of the interviews problematic. Hence

minimizing the meeting times is necessary from the domain experts’ point of view.

Often, the domain knowledge has become almost second nature to the experts, so much

so that they need time to think about the reasoning processes used in problem solving in

their domain. They also need time to think about the best way to present this knowledge

so that it can be formulated and programmed by the knowledge engineer later on. All

these problems require that interviews be supplemented with other means of knowledge

20

acquisition. With this goal in mind I set up a web site that included general information

about anesthesiology and expert system technologies. The site also described the goal for

AneSoft, the current status of AneSoft and problems encountered. Once a demo version

was ready, it was posted on this site. The experts could download the current build

anywhere at any time.

This web site proved to be useful for knowledge acquisition. First, it provided me

a means to gain background knowledge of the domain and mitigated the need to allocate

time at each interview session for that purpose. The interviews with the domain experts

could thus focus more on the acquisition of heuristic rules. Furthermore, by reflecting on

the issues posted on the site, both the experts and I could better prepare for the next

interview session. In addition, the site stimulated the experts’ interest in developing the

system after they were informed from the site of the goals and progress of AneSoft.

2.3.4 EVALUATION FORM

To reduce the amount of time spent in evaluating the current build of AneSoft, I

used CGI technology and developed an evaluation form which comes with AneSoft.

Users, including domain experts, could fill out the form and send it to the author directly

via the Internet. When the experts ran AneSoft and thought it necessary to modify or add

certain rules, they could easily launch this evaluation form in HTML format and write

down their suggestions in a text box. After they hit the Submit button, the suggestions

were automatically collected by the CGI program. An email message containing the

21

suggestions made by the experts would be sent to me. This Internet evaluation form

provided another valuable tool for knowledge acquisition on the AneSoft project.

2.4 PROCESS OF KNOWLEDGE ACQUISITION

Knowledge acquisition occurred throughout the whole AneSoft project and was

intertwined with the design, implementation, and evaluation phases. At the outset, a

simple decision making diagram was created to represent the knowledge for anesthetic

selection. The domain experts then examined it. After doing that, they generally gained a

better understanding as to how the system would reason. They could then assist in

perfecting the decision making diagram. After that the system was designed based on the

revised diagram.

During this stage, if questions arose with regard to the problem-solving process or

the knowledge obtained, the domain experts would be consulted for solutions. Newly

acquired knowledge would then be integrated into the existing knowledge base. The

program would then be revised. After the revisions were implemented, the program

would be executed to make sure it behaved correctly. In this stage, the necessary

information was added constantly and the design might undergo frequent changes. After

a successful implementation, the domain experts were asked to run the system and

evaluate it. System corrections were made according to their inputs. Then the design and

implementation were repeated. New information or features were also added at this time.

The main system development involved just one expert; therefore there was no

question of conflicts between experts. However, later during system validation when

22

other experts were reviewing AneSoft, there were disagreements concerning the rules in

the knowledge base. These were generally resolved by discussions between the domain

experts. I also played a role in resolving the differences by actually amending the existing

system based on one expert’s feedback and showing the results of the amendment to all

experts. This turned out to be a useful way of resolving the different opinions among the

experts as it demonstrated to them the different results of their different approaches, some

valid and some not.

After going through this cycle many times, the decision tree was expanded, a

subdomain added, the interface refined, and more information about anesthetics was

incorporated. As can be seen from above, though knowledge acquisition was, to a large

extent, a distinctive phase in the whole development cycle of the system, it interacted

with other development activities and took place throughout the entire development

process.

Judging by the experts’ reaction to the whole elicitation process, I can safely say

that they all enjoyed it and were stimulated by it.

23

CHAPTER 3

ANESOFT SYSTEM DESIGN AND IMPLEMENTATION

After knowledge was acquired, the next step would be representing the

knowledge as Prolog rules or facts. I would design and implement the whole expert

system in order to present the knowledge to users in a way that they could easily

understand. AneSoft, which consists of a knowledge base, an inference engine, and a user

interface, is an expert system implemented in LPA WIN-Prolog. Prolog was chosen as

the primary development tool due to its built-in inference engine, which can search the

knowledge base in a depth-first fashion automatically. In addition, we decided to use a

Windows-based version of Prolog—LPA Win-Prolog—considering the greater ease it

affords in graphical user interface (GUI) design.

This chapter will first delineate the evolution of AneSoft, the control structure for

AneSoft, the knowledge base and inference engine in AneSoft, and the user interface for

AneSoft.

3.1 EVOLUTION OF ANESOFT

As a computer program, AneSoft went through the life cycle typical of software

development. The steps include software design, prototyping, implementation, testing,

24

evaluation, enhancement and maintenance. There are several models we can follow.

What I adopted for AneSoft was the iterative model, which emphasizes that these

processes are interwoven, as illustrated in the following diagram (Figure 3.1):

Figure 3.1 Iterative Model Used for AneSoft

There were three stages of development for AneSoft. In the first stage, I

concentrated on the development of the knowledge base. The system at that time had no

graphical user interface other than a simple text input and output mechanism run on the

console. This text-based console allowed an easy understanding of how an expert system

worked and also allowed me to build prototypes quickly for knowledge acquisition. In the

second stage, after I felt that I had acquired most of the knowledge and tested it, I built a

Getting system
specifications

Knowledge acquisition

Implementation

Testing

Integration and
maintenance

25

Windows-based user interface in LPA WIN-Prolog. This graphical user interface made

the program much easier to use. Last, a final version of AneSoft was developed by

modifying the graphical user interface and adding more functionality to enhance the

application. On-line help and consultation reports in HTML format were developed for

the system. Using CGI technology, an evaluation form, initially used for knowledge

acquisition, was refined and incorporated into AneSoft in this stage. The form allows the

user to send comments to me directly via the Internet. It was also during this stage that

the Supervised Learning module, the Unsupervised Learning module and the Case

Generator module were added to AneSoft. Sharing the same knowledge base as the

standard expert system, these three modules add much to the expert system. By the time

of these additions, AneSoft went far beyond being just a standard expert system;--it

became a program with many useful capabilities for various purposes, especially for

education. Worth mentioning here is the Case Generator module, which can not only

assist professors in instruction and students in learning but also, as pointed out in the

previous chapter, proved quite useful in knowledge acquisition.

3.2 THE KNOWLEDGE BASE

3.2.1 THE KNOWLEDGE BASE FOR STANDARD EXPERT SYSTEM MODE

The knowledge base for AneSoft standard expert system module (anes_kb.pl)

includes rules for choosing individual anesthetic drugs, for selecting appropriate drugs for

each category of anesthesia, and for constructing complete anesthetic plans. Specifically,

26

the knowledge base for AneSoft consists of the following components: 1. Initial clauses

to unload any knowledge base rules that are already in memory before a new consultation

session begins. 2. A brief introduction indicating what the system is and how to use it. 3.

Clauses to configure the default settings for AneSoft. The default settings will, for

example, allow AneSoft to recommend anesthetic plans in standard expert system mode

and display the results in simple text format . While AneSoft is running, the user can

change these setting at any time by accessing the Settings menu. 4. A set of

recommendation rules (indication, contraindication, and incompatibility rules). 5. Clauses

from which recommendations and explanations can be constructed (clauses for rec/5,

rec/2, xkb_text/2, update_expl/1 and construct_expl/0).

The following is a typical rule for selecting individual drugs:

contraindicated(drug,atropine):-

(known(problems,`Pancreatitis`) % gastrointestinal

; % or

known(temperature,T), number_string(Num,T),Num > 103.5,

; % or

known(reason,`Parotid duct transplant`)

).

This rule advises against using atropine, assuming that any of these three

conditions are true, that is, if the dog has pancreatitis, if the body temperature of the dog

is greater than 103.5 degrees Fahrenheit, or if the reason for anesthesia is to perform a

27

parotid duct transplant. These conditions might be met or they might not, depending on

information obtained from the user.

Rules in the AneSoft knowledge base are hierarchically structured so as to reflect

the nature of human reasoning in the domain area. For example, consider the following

rules:

contraindicated(preanesthetic,meditomidine):-

(geriatric

;

sick

;

belongs_to(brachycephalic)

).

geriatric :-

known(year,A),number_string(Age,A),

(giant_breed,Age>6

;

Age>9

).

giant_breed :-

known(breed,Brd),member(Brd,[`Mostiff`,`Gt. Dane`,

`Rottweiler`,`Poberman`,`Wolfhound`,`Irish wolfhound`]).

In order to check for the first rule the program will first examine if the second rule

is satisfied, which in its turn will check if the third rule is satisfied by invoking the clause

28

giant_breed/0 and looking for information about the breed of the dog. After that, it is

possible to determine, through backward chaining, if the first rule is satisfied.

Typical rules for making anesthetic plans for each category of anesthesia are:

rec(Category,DrugList):-

get_pfd_list(Category,PfdList),

get_avail_list(Category,AvailList),

one_each(PfdList,AvailList,TypeDrugList),

get_drugs(Category,TypeDrugList,DrugList).

get_pfd_list(Category,PfdList):-

findall(Pfd,

indicated(Category,Pfd),

PfdList).

get_avail_list(Category,AvailList):-

findall((Type,D),

(Category(Type,D), % common protocol

 \+ contraindicated(type,Type),

 \+ contraindicated(drug,D),

 \+ contraindicated(Category,D)

),

 AvailList).

The above rules state that in order to make an anesthetic plan for a certain

category of anesthesia, the program will first check if there are preferred drugs for any

29

type within that category, for example anticholinergics in preanesthesia. At the same time

the program retrieves all drugs that are not contraindicated. If the preferred drugs are also

found among those not contraindicated, they will be selected even if they are not included

in the common protocol for dogs.

The explanations for AneSoft include the common anesthetic protocol for dogs

and how the system refines it based on the information the user provides. AneSoft

explains this plan refinement process by specifying the following: (1) Which drugs are

not in the common protocol but are selected and why (what indication rules apply); (2)

Which drugs are in the common protocol but are removed from our plan and why (what

indication rules apply so that other drugs replace the drugs in the common protocol, or

the drugs in the common protocol are contraindicated); (3) Preferred replacement drugs,

which are indicated; (4) Other replacement drugs; (5) What drugs are contraindicated and

can never be used for a particular patient.

3.2.2 RULES FOR OTHER MODES

Besides the Standard Expert System mode that recommends an anesthetic plan

based on information provided by the user, AneSoft runs in three other modes, namely

the Case Generator mode, the Supervised Learning mode, and the Unsupervised Learning

mode. Although the three modes share the knowledge base for standard expert system

mode, each of these modes has its special rules.

(1) Case Generator:

30

As elaborated in Chapter 2, this mode generates specified number of cases with or

without system recommended plans.

The predicate cases takes two arguments, number of cases and file name, from the

user. It first generates a working database randomly and writes to the file. After that, it

will generate the forms to display the anesthetic plans based on the information in the

working database or to evaluate anesthetic plans the user will provide later on. Depending

on the settings, the anesthetic plans may or may not be written to the file.

(2) Unsupervised Learning

Unsupervised learning mode allows the user to select anesthetic drugs without

any immediate feedback until the user finishes making his or her anesthetic plan.

The rules for unsupervised learning include the predicates for displaying the drugs

contraindicated but selected by the user, or the drugs indicated but not selected by the

user. They also include predicates to construct the user’s anesthetic plan, predicates to

evaluate the plan, and predicates that explain the criteria used for the evaluation.

(3) Supervised Learning

Supervised learning mode provides immediate feedback while the user is

selecting anesthetic drugs.

The Supervised Learning module utilizes all the rules in the Unsupervised

Learning module. In addition, it uses rules not found in the other module. Rules unique to

the Supervised Learning module generally fall into one of the following three categories.

(a) predicates for checking individual drugs.

31

The rule check_individual_drugs will check and see if the next drug the user

selects is appropriate by itself.

Upon invocation of this rule, the program will read in the name of the selected

drug and then check for the constraints for this drug in three steps.

First, the drug should be appropriate for dogs. If the opposite is found to be true,

AneSoft will display a warning message, deselect the item, and prompt the user to make

another selection.

Once the suitability of the drug for dogs is confirmed, AneSoft proceeds to verify

that it can be used for the intended stage, such as preanesthetic, induction or

maintenance:

In this step, the system first retrieves a list of drugs that can be used for the

needed anesthesia and then searches for the selected drug in the list. If not found in the

list, the drug in question will be eliminated from the pool of candidate drugs. A warning

message will be displayed and the user will be prompted for the next selection.

Otherwise, the program continues to check whether the drug is contraindicated.

After passing all the three checks, the selected drug will be determined as

appropriate in itself.

(b) predicates for checking combinations of drugs within each category of anesthesia.

The rule check_combination/1 examines the drugs in a specific category to see if

they can be used in combination with one another to produce the intended anesthesia.

For instance, atropine and glycopyrrolate cannot both be selected for preanesthesia. If

the user chooses both, a warning message will be issued.

32

All the constraints needed for performing this check are defined in the

check_combination_aux/5 predicate.

(c) predicates for checking combinations of drugs in the whole anesthetic plan.

With this kind of predicate, the system will perform a “global” check for the

entire anesthetic plan to see if it is appropriate. This kind of checking can ensure, for

example, that no more than two inhalant drugs are selected for each plan.

The knowledge base, as we know, is the heart of an expert system. Assuring the

quality of a knowledge base is the most important concern during the knowledge

engineering process because the quality of the knowledge base determines the overall

usefulness and correctness of an expert system. The knowledge for AneSoft was derived

from domain experts and existing studies on the management of anesthetic drugs, which

had been evaluated for correctness.

3.3 THE INFERENCE ENGINE AND INFERENCE PROCESS

AneSoft employs a backward-chaining inference approach (Stefik 1995), which is

built into LPA WIN-Prolog. With backward chaining, the system is given a specific goal

and the inference engine searches the knowledge base for a rule with the same goal.

Once the engine finds a matching rule, it sequentially searches through the static facts

and rules in the knowledge base and the dynamic information in the current working

database to determine if the premises of the rule are satisfied. If they are not satisfied, the

inference engine will start looking for another matching rule. The process continues until

either the premises of the matching rule are satisfied or the inference engine runs out of

33

rules. Suppose the chosen goal is to determine whether isoflurane is suitable for

induction. The inference engine will search through the knowledge base and find the

following rule with the matchimg goal :

indicated(induction,isoflurane):-

known(month,Month),number_string(NumOfMonth,Month),

NumOfMonth =<2.5.

This rule states that isoflurane is a preferred drug if the dog is two and a half

months or younger. If the condition is not met, the inference engine will backtrack until it

finds a solution. If the rules are hierarchically structured, as discussed in 3.3, the Prolog

inference engine will search through the entire knowledge base from the “top” rules

down to the “bottom” in a depth-first fashion.

AneSoft uses plan refinement schemes to make anesthetic decisions. Starting with

a common anesthetic protocol for dogs, the program checks to see if there are preferred

(indicated) drugs for the intended anesthesia or if there are any drugs contraindicated for

the dog in question. By adding new drugs into and removing existing drugs from the

protocol, a new anesthetic plan is constructed. All of these operations are enforced by the

inference process in AneSoft.

For example, the common protocol specifies three drugs for canine preanesthesia,

namely atropine for anticholinergic, acepromazine for sedative, and morphine for opioid .

In case of a dog with heart base tumor, atropine is contraindicated as stipulated in the

following rule :

34

contraindicated(preanesthetic,atropine):-

known(problems,`Heart base tumor`).

Since atropine is eliminated, the other drug in the anticholinergics group,

glycopyrrolate, is selected in its place. In the resulting plan glycopyrrolate,

acepromazine, and morphine are recommended for the dog.

3.4 THE USER INTERFACE

The user interface is a necessary component of an expert system as it handles all

the communications between the users and the inference engine. In Anesoft, the interface

consists of a set of forms where the user can input the raw data needed for a consultation.

It also includes screens where users can select their preferred drugs for each category of

anesthesia and for a specific scenario where anesthesia is needed. Once the user

completes a form, the data are translated into a format understandable by the inference

engine. When the inference engine reaches a conclusion, the user interface will pass this

information back to the user in natural languages so it can be understood by the latter. To

clear up any confusion the user might have regarding a specific conclusion, the user

interface supplies additional explanations as to how the inference engine reached the

conclusion.

Building a sophisticated user interface is crucial to the success of an expert

system. However, interface design can be a rather time-consuming process, placing

significant demands on developers of expert systems who are already busy enough with

knowledge acquisition and representation to ensure all the knowledge in the system is

35

correct. To solve this problem, a tool is needed that can allow knowledge engineers to

build a sophisticated user interface without consuming too much of their time. One of the

reasons that LPA WIN-Prolog was chosen as the development tool was because it

allowed rapid development of the user interface for AneSoft, especially with the aid of

the dialog editor.

LPA Win-Prolog (Prolog hereafter) provides an environment for the development

of graphical user interface (GUI) through the use of a set of predicates designed

specifically for building user interface. All that the knowledge engineer needs to do is to

create the windows and controls using the wdcreate and wccreate predicates and to write

handlers for them.

AneSoft utilizes what is called the SDI (single document interface) type of

layout. The main window consists of four menus providing access to lists of choices. The

screenshots below illustrate the user interface for AneSoft. The user requests a

consultation session by clicking the Start button. After a consultation, the caption of the

same button changes to “New Consultation”, prompting the user for another session of

consultation if he or she so desires.

The interface will be elaborated in section 3.5.2.

3.4.1 CONTROL STRUCTURE OF ANESOFT

As a computer program, AneSoft needs a mechanism to control the order of

executions of the clauses. This mechanism will determine which module to run at a given

time, depending on the existing conditions. For example, if the user selects the

36

unsupervised learning mode in system configuration, the control mechanism will notify

the Unsupervised Learning module to run after the user finishes filling out the form.

At the beginning of a consultation session, the user chooses system settings. The

default setting is for Anesoft to run in a standard expert system mode and display the

result in the main window in simple text format. If the user chooses to run the Case

Generator module, he or she will be prompted to enter the number of cases to be created

and the name of the file in which to save the case data. Otherwise, the user will need to

provide information about the patient by filling out some forms.

After the user completes the forms, the flow of control branches out into two

directions depending on system settings. In the Standard Expert System mode, a

recommended plan will be immediately presented in simple text or HTML format. In

either of the two learning modes, the user will need to select drugs from the list of drugs

for each category of anesthesia. The only difference between the supervised and the

unsupervised learning modes is that in the former, Anesoft provides just-in-time critique

of each of the drugs or group of drugs selected by the user while in the later, no such

feedback is offered.

3.4.2 THE FIVE PRIMARY WINDOWS

The main window of AneSoft appears when the user launches the program

(Figure 3.2).

37

Figure 3.2 Main Window of AneSoft

The initial screen introduces the user to the system and provides directions for the

user to follow. When the user finishes filling out the forms and/or selecting drugs,

consultation results will also be displayed in this window including the system

recommended anesthetic plan, a detailed explanation, and/or comments on the user’s

anesthetic plan. If the Case Generator mode is selected, once the cases are generated a

message will be displayed in the main window to that effect.

The menus at the top of the main window provide the user with system-level

controls. The File menu includes routines to save the consultation report (as a text file), to

print the report, and to terminate the AneSoft program.

The Edit menu provides facilities for selecting and copying text.

38

The View menu allows the user to view the current information in the working

database or the result of the current consultation in plain text. In addition, the user can

view both the current information and the result of the consultation using the system’s

default Web browser by selecting the View Current Consultation in HTML option. All

the options on the View menu are action sub-menus. They remain disabled until a

consultation is made.

The Settings menu contains two groups of options. The first group allows the

user to choose a mode in which AneSoft will be running. This includes five choices: (1)

Standard Expert System Mode, (2) Supervised Learning Mode, (3) Unsupervised

Learning Mode, (4) Case Generator Mode with System Recommended Anesthetic Plan,

(5) Case Generator Mode without System Recommended Anesthetic Plan. The second

group of options determines the format in which the consultation result will be

displayed. The user can choose to view the result later on in either text format in the main

window or in HTML format from a Web browser.

The Help menu provides access to an HTML help file that includes an anesthetic

glossary, instructions on how to use the system, and version and credits information

about the system.

39

In all modes except for the Case Generator mode, clicking the Start button on the

initial screen will bring up the Form Window (Figure 3.3). The main purpose of the Form

window is to obtain needed information from the user and then feed that information into

the inference engine.

Figure 3.3 Form Window of AneSoft

In the Form Window four kinds of controls are used for getting the user input.

With the radio buttons one choice is selected to the exclusion of all the others, With the

40

check boxes, users can select multiple options or select none. With list boxes, one or

more options can be selected from a list of items. With text boxes, the user can enter

values directly in the blank provided.

The data about the patient are organized into five “folders”, each of which focuses

on a specific aspect of the patient. These are the data a human expert normally seeks at a

face-to-face consultation.

The Basic Data screen is intended to retrieve the basic data about the dog, for

example, its breed, age, sex, heart rate, respiratory rate, and weight. Most of these are

required and dictate what kind of plans will be generated in the end.

The Lab Data screen includes the lab data about the dog, for example, its BUN

and K.

The Medications screen allows the user to check or select all the previous

medications administered to the dog, for example, fentanyl patch.

The Problems screen allows the user to check or select all medical problems for

the dog, current and anticipated, such as head trauma.

The Reasons screen lets the user specify the reasons for anesthesia. The user can

choose from three groups of possible reasons: (1) Diagnostic imaging, for example,

radiography; (2) Medical reasons, for example, bone marrow aspirate; (3) Surgical

reasons, for example, castration.

On each tab, hitting the Confirm and Consult button at the bottom of the screen

will trigger the system to validate the data entered by the user. If the system finds certain

required data missing or invalid data entered, an error message will display. Once user

input is validated, the system will proceed on one of the following two paths.

41

As pointed out earlier on, if the system was set to the Standard Expert System

mode at the beginning of the consultation session, a consultation result will show up right

away in the Main Window or in the target machine’s default Web browser, depending on

the view option chosen by the user. In contrast, if Anesoft currently runs in either of the

two learning modes, the system will take users to the Selection Windows (Figure 3.4),

where they will have the opportunity to practice selecting drugs for induction,

maintenance, preanesthetic, intraoperative, and recovery respectively. On each of the

Selection windows, the user is to select drugs for a specific category of anesthesia from a

list of drugs provided.

Figure 3.4 Selection Window of AneSoft

In the Supervised mode, each time the user chooses a drug from the list the

system will check to see if it is contraindicated or compatible with other drugs already

selected; if either condition is found to be true, a message box will pop up informing the

42

user why he or she can not choose that drug. The user can click the OK button in the box

to return to the list. By then, the drug in question will have become deselected.

At the clicking of the Next button, AneSoft assumes that the user has completed

selecting drugs for the needed anesthesia. At that point, it will check and see if there are

any invalid combinations of drugs selected. If all combinations are found valid, the user

is allowed to navigate to the next Selection Window.

The Critique Window (Figure 3.5) appears when the user completes selecting

drugs for all of the five categories. The Critique Window lists all the drugs that have been

selected but are contraindicated as well as those that have not been selected but are

indicated based on the information the user provided in the Form Window. When the user

clicks one of the drugs listed, a message will be displayed in the text box on the bottom,

explaining why the drug is indicated or contraindicated. By clicking the Continue

Critique button, the user can view the result of the current consultation, including the

user’s anesthetic plan, system recommended plan and the comments on the user’s plan.

43

Figure 3.5 Critique Window of AneSoft

44

45

CHAPTER 4

CONCLUSION

AneSoft, an anesthetic selection expert system, has been programmed directly

from human expertise and domain documents. The application is not large but fairly

complex and a useful high performance system has been produced with a friendly user

interface. In the development of the system, we took full advantage of what LPA WIN-

Prolog has to offer, including Prolog’s efficient inference engine and declarative

knowledge base, and the friendly user interface, potential for rapid application

development, and procedural control of the Windows-based version.

Our primary concern in Anesoft’s development was ensuring the accuracy of all

of its recommendations, for difficult cases as well as simple ones. This was eventually

achieved by a methodical approach with attention to detail in two main areas: obtaining a

good understanding of the domain, and a precise representation of this understanding in a

form that can be maintained. Instead of resorting to complex artificial intelligence

techniques, we employed straightforward (but detailed) logic programming, which

proved to be sufficient for our purposes. Such an approach was flexible enough to allow

the implementation of the system to adapt easily to the on-going modifications to the

initial designs.

46

4.1 EVALUATION

Three criteria were established to evaluate AneSoft: Correctness, completeness,

and ease of use. Correctness means AneSoft can recommend correct anesthetic plans as

human experts do. Completeness refers to how thoroughly AneSoft covers the subject of

making ansthetic plans. Ease of use addresses the questions of whether the interface is

intuitive, easy to follow, and provides effective communications between the user and

the system.

While the doman experts, other experts, and non-expert users all provided

valuable feedback regarding Anesoft, Dr. Trim, Dr. Moore, and Dr. Egger played a major

role in evaluating the program throughout the development cycle. With each build, they

carefully tested the system and inspected each solution to make sure that AneSoft

behaved as intended. Based on their suggestions, corrections, additions, and refinements

were made after each evaluation session. In the final evaluation, I tested the system and

submitted 20 representative results to the experts for review. In addition, I went over all

these results one by one with Dr. Egger. These experts all agreed that in terms of

completeness, the knowledge base of AneSoft covered a broad range of cases. They

estimated that approximately 90% of the results generated by AneSoft were correct and

that AneSoft is accurate enough to make anesthetic plans. All acknowledged the potential

effectiveness of AneSofte in assisting students in anesthesiology learning. Evaluations by

other experts and non-experts have been conducted primarily through the evaluation form

that comes with AneSoft.

47

At the time of the last evaluation session, both domain experts and non-experts

regarded AneSoft as a well-built system which runs as intended and is capable of making

appropriate recommendations. They all found the program easy to learn and use, having

had no trouble navigating through the program. However, they did detect some problems

with certain rules and suggest several improvements for AneSoft. One expert found, for

instance, that a couple of questions, recommendations and warning messages were poorly

worded and suggested they be rephrased.

As far as the rules were concerned, the AneSoft built at that time permitted the

user to choose a maximum of two inhalant drugs for each anesthetic plan. The experts

recommended that for each plan only one inhalant be allowed, which better reflects the

practice of the experts.

The above changes were all incorporated into the most recent build of Anesoft.

With these improvements, I feel that the original goals set forth for the development of

the system have been met.

4.2 LESSONS LEARNED

Three major lessons were learned from the project. The first is that high

performance expert systems can only be based on a good understanding of the domain.

Secondly, the implementation must allow for thorough debugging and frequent revisions

of the whole system. The knowledge engineer can hardly expect to obtain a sufficiently

good understanding of the domain at the outset of the project. Major changes to the

overall plan of the system are likely to take place as his/her understanding evolves and

48

matures in the course of the project. When the effects of other factors are equal, ease in

maintenance seems to be the way to go. In other words, when we have more than one

way to represent the domain knowledge, it is more practical to opt for the one that is

easiest to maintain, provided that both represent the domain equally well.

Finally, there is no one absolutely correct method of knowledge acquisition. The

exact methods used by individual knowledge engineers for knowledge acquisition and for

system implementation probably do not matter that much as long as the key

requirements—namely accuracy, completeness, ease in maintenance—are all met.

Current theories on building experts systems often do not take into account the significant

degree of personal variation present in the learning process and in building maintainable

systems. Certain schemes or methods, as a matter of fact, may work better for some

knowledge engineers and for some experts than they do for others. Before knowledge

acquisition and system implementation, I tried several methods which are recommended

in several books on techniques for expert systems. At last I used the one that best suited

my needs and proved to be effective in building AneSoft.

4.3 FUTURE ENHANCEMENT OF ANESOFT

First, the current knowledge base can certainly be expanded to allow more

information to be included in the final consultation results, such as information on how to

administer the drugs. Anesoft is more than an expert system; it is meant to be a teaching

tool as well. In future builds of AneSoft, more multimedia contents can be introduced

49

into the system to render the software even more user-friendly and realistic and the

learning process more engaging. In addition, it would be interesting to explore the

possibilities of developing the current help file into a full-fledged hypertext reference

component which is a mini-expert system in itself.

50

BIBLIOGRAPHY

Benumof, J.L. (1991) Management of the difficult adult airway. Anesthesiology 75:

1087-1110.

Byrne A. J., Hilton P. J., and Lunn J. N. (1994) Basic simulations for anaesthetists. A

pilot study of the ACCESS system. Anaesthesia. 49: 376-81.

Covington, Nute, and Vellino (1997) Prolog Programming in Depth. Second edition.

Englewood Cliffs, NJ: Prentice Hall.

Global Anesthesiology Server Network. (1999) http://www.gasnet.org

Hall, L. W. et al (1991) Veterinary Anaesthesia. Ninth edition. London, England: Balliere

Tindall.

Jackson, P. (1998) Introduction to Expert Systems. Third edition. Reading,

Massachusetts: Addison-Wesley Publishing Company.

Klein, M.; and L.B. Methlie (1990) Expert systems: A decision support approach.

51

Reading, Massachusetts: Addison­Wesley.

Logic Programming Associates (1997) Win­Prolog. Logic Programming Associates, Ltd.,

London, England.

Lumb, William V.; and Jones, E. W. (1973) Veterinary Anesthesia. Hager­

stown, MD: Harper and Row.

Nute, Donald; and M. Rauscher (1995) A Toolkit Approach to Developing Forest

Management Advisory Systems in Prolog. AI Applications 9(3): 39­58.

Paddleford, Robert R. ed. (1999) Manual of Small Animal Anesthesia. Hagerstown, MD:

Harper and Row.

Plant, R.E. and Stone, N.D., 1991. Knowledge-based Systems in Agriculture. New York:

McGraw-Hill Inc..

Short, C. E. (1974) Clinical Veterinary Anesthesia: A Guide for the Practitioner.

Hagerstown, MD: Harper and Row.

Stefik, M. (1995) Introduction to Knowledge Systems. Los Altos, CA: Morgan Kaufmann.

52

Trim, Cynthia M., (1999) AnestheticEmergencies and Complications. In Manual of Small

Animal Anesthesia, 2nd edition, pp.147-195. Philadelphia, Pennysvania: W.B. Saunders

Company.

Trim, Cynthia M., (1999) AnestheticEmergencies and Complications. In Manual of Small

Animal Anesthesia, 2nd edition, pp.196-226. Philadelphia, Pennysvania: W.B. Saunders

Company.

