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Abstract

With the development of computing and internet technology, data sets with stupendously

large numbers of observations are more and more common. One technique to handle the big

data is to aggregate classical data to symbolic data, like lists, intervals, lists with probabilities

and intervals with probabilities (histograms). Building clustering methods for symbolic data

has been an active area over the past decade. In this dissertation, we first review regression

and clustering methods for interval data. Then, we develop a regression approach to single-

factor analysis of variance and implement it in the software R. Finally, the clustering method

proposed by Chavent (1998, 2000) is coded and implemented in R and applied to both

simulated and practical data. Advantages and disadvantages of using different distances for

clustering are also discussed.
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Chapter 1

Introduction

Data we analyze are classical data most of the time. Observations of classical data on p

random variables are points in p-dimensional space Rp. For instance, the ith observation

from a data set with n observations and p variables X1, ..., Xp is (xi1, ..., xip)1×p, where

xi1, ..., xip are points in p-dimensional space. In contrast, symbolic data with p variables are

p-dimensional hypercubes in Rp. From Billard and Diday (2006), they can be multi-valued,

interval-valued, modal multi-valued, modal interval-valued, etc.

The concept of symbolic data was first raised by Diday (1987). Diday (1995), Diday

and Emilion (1996, 1998), Diday et al. (1996) and Emilion (1997) set up a mathematical

framework for symbolic data. There are three important types of symbolic data: multi-

valued data, i.e., list data (e.g., {black, grey}), interval-valued data (e.g., [10, 25]) and

modal interval-valued data, i.e., histogram interval-valued data (e.g., {[0, 10), 1/10; [10,20),

7/10; [20,30), 1/5}).

Typically, symbolic data come from two circumstances: the data are collected in a sym-

bolic data format, or the data are classical observations aggregated to become symbolic data.

An example of inherently symbolic data is the price of a certain item in an area. Since the

price can vary from store to store, the format used to record the price can be either in a
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list format, e.g., {Price 1,...,Price n}, or in an interval-valued format, e.g., [Lowest price,

Highest price]. The other circumstance under which symbolic data occurs is that data sets

nowadays are becoming larger and larger, such as data sets from the internet, population

data, geographic data, etc. There can be millions or even billions of observations in one data

set. Using current methods to perform analyses on these kinds of data sets can be incredibly

time consuming, even with modern computers. Moreover, many of them will fail to give use-

ful results (e.g., a paired t-test on a matched-pair sample with millions of observations may

always be rejected due to the large sample size, which results in type I error). However, our

main interests are usually in features of certain groups rather than each individual, so it is

more reasonable to aggregate the original data which results in symbolic data. For example,

a merchant may record hundreds of pieces of visiting histories for a single person visiting its

website, but the merchant may only be interested in shopping habits of people from different

areas. Therefore, all those records related to one area can be aggregated. More examples of

symbolic data can be found in Billard and Diday (2006).

This dissertation will mainly focus on interval-valued data, especially regression and

clustering methods for interval-valued data. Interval-valued data play an important role

among all types of symbolic data. It is the most common form of symbolic data, and the

techniques used to analyze it can be generalized to other types of symbolic data more readily.

Unlike classical data, interval-valued data have an internal structure which will cause extra

variation which must be included when the data are analyzed. In fact, classical data are a

special case of interval-valued data by setting the lower bound equal to the upper bound for

each observation from interval-valued data.

Billard and Diday (2000), Lima Neto et al. (2004, 2008), de Carvalho et al. (2004),

Billard and Diday (2006) and Lima Neto et al. (2005, 2010) proposed several methods to

implement linear regression analyses for interval-valued data, but they all used points as

classical surrogates only and hence could not capture the internal variance of each interval.
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Later, a new method was presented by Xu (2010) using the symbolic sample covariance

suggested by Billard (2008). The new method utilized the total variation in the data and

was proved, by Xu (2010), to be superior to former methods. However, analysis of variance

(ANOVA) methodology for interval-valued data has not been discussed yet; this is needed

when we have data with one or more categorical predictor variables and an interval-valued

outcome.

Developing clustering methods for symbolic data is another area of interest. Chavent

(1998, 2000) introduced a divisive monothetic clustering method for interval data by using

Hausdorff (1937) distance. Kim (2009), and Kim and Billard (2011, 2012) developed both

the divisive monothetic and divisive polythetic clustering methods for histogram data by

extending the Gowda and Diday (1991, 1992) and Ichino and Yaguchi (1994) distances. In

this dissertation, more Hausdorff related distances are added for the divisive monothetic

clustering method and comparisons between different Hausdorff distances are made by both

simulation studies and using the practical data. The method is implemented in R with

options being able to choose different Hausdorff distances.

Chapter 2 gives a literature review of symbolic data: the concept and important types of

symbolic data are introduced; descriptive statistics of two important types of symbolic data

are given; current regression methods for symbolic data are reviewed; necessary concepts

for clustering methods for interval-valued data are also reviewed. In Chapter 3, one-way

ANOVA for interval-valued data and a regression approach to one-way ANOVA are proposed,

and are applied to a real data set. The clustering algorithm and the comparison among

different Hausdorff distances are given in Chapter 4. Finally, Chapter 5 discusses the possible

future research including more work in ANOVA for interval-valued data and extension of the

clustering method to histogram data.
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Chapter 2

Literature Review

In order to set up some groundwork for later chapters, we need review some of the current

literature. In Section 2.1, the definition of symbolic data is introduced along with some

examples. Section 2.2 displays four types of symbolic data and their descriptive statistics.

In Section 2.3, several currently available regression methods for symbolic data and their

advantages and disadvantages are discussed. Some preliminaries for clustering methods for

symbolic data are considered in Section 2.4.

2.1 What Are Symbolic Data?

Classical data with p variables are points in a p-dimensional space Rp. For example, for a

data set with n observations and p variables X1, ..., Xp, the ith observation is (xi1, ..., xip)1×p,

where xi1, ..., xip are points in p-dimensional space. However, symbolic data with p vari-

ables are p-dimensional hypercubes in Rp, or a Cartesian product of p distributions. Lists

(e.g., xij = {fair, worse}), intervals (e.g., xij = [1.5, 2.5]) and histograms (e.g., xij =

{[1, 3), 0.1; [3, 6], 0.9}) are all examples of symbolic data. The concept of symbolic data

was first raised by Diday (1987) and since then has been applied to principal component

7



analysis, regression analysis and cluster analysis.

Three Important Types of Symbolic Data

Let us start with three important kinds of symbolic data. Expanded details can be found in

Bock and Diday (2000) and Billard and Diday (2006), with a non-technical introduction in

Billard (2011).

Definition 2.1.1. A multi-valued symbolic random variable X takes one or more

values from those values’ domain X as a list. The possible number of values in X is finite,

and values can be categorical or quantitative values.

Definition 2.1.2. An interval-valued symbolic random variable X takes values from

an interval. That is, X = ξ = [a, b] ⊂ R1, with a ≤ b, a, b ∈ R1. The interval can be closed

or open at either end, i.e., (a, b), [a, b], [a, b), or (a, b].

Definition 2.1.3. Let X be a quantitative random variable that can take values on a fi-

nite number of non-overlapping intervals [ai, bi), i = 1, 2, ..., with ai ≤ bi. An outcome for

observation wu for a histogram interval-valued random variable takes the form

X(wu) = ξu = {[aui, bui), pui; i = 1, ..., su}

where su < ∞ is the number of intervals forming the support for the outcome X(wu) for

observation wu, and pui is the weight for the particular subinterval [aui, bui), i = 1, ..., su,

with
∑su

k=1 pui = 1. The intervals [ai, bi) can be open or closed at either end.

Let us look at some examples. Suppose we have a dataset from a high school counseling

program. Each row represents a student from that high school. For each student, personal

information like Student ID, Gender and Race are recorded. Concerns that a student may

talk to his/her counselor may be: College to attend/Career (A), Stress/Anxiety (B), Aca-

demic difficulties (C), Family problems (D) and Other (E). The grade point average (GPA)

8



Table 2.1: Sample Counseling Program Survey Dataset

ID Gender Race Concerns GPA . . .
1 Female White A [3.5,4] . . .
2 Male Asian A,B,C [3.1,3.5] . . .
3 Male White A,C,D [2.8,3.5] . . .
4 Female Hispanic A,B,D,E [2.5,2.9] . . .
5 Male African American A [3,3.8] . . .
...

...
...

...
...

...

of the student for each term is also recorded. Other variables like age of the student, whether

they feel the counselor helpful, their plans after high school, etc., are also of interest. We

will not discuss them here.

Table 2.1 is a dataset that contains typical symbolic data. For instance, the variable

Concerns has five potential values and may take more than one value from these five values,

since a student may have several concerns when consulting with his/her counselor. Another

example is GPA. Usually, a school will give the counselor a student’s cumulative GPA.

However, it will be more informative if a student’s GPAs of each term are collected. This

will be discussed again in more details later.

Table 2.2: Sample Credit Card Holders Dataset

Name Gender Annual Income Financial Own . . .
Assets House

D. Mike Male [$12,000, $15,000) C,S No . . .
J. Susan Female [$60,000, $80,000) C,S,R Yes . . .

L. Charles Male [$100,000, $200,000) C,S,R,O Yes . . .
K. Richard Female [$15,000, $20,000) C Yes . . .
W. John Female [$20,000, $40,000) C,S No . . .

...
...

...
...

...
...

9



Table 2.2 is another example of symbolic data. When applying for a credit card, a person’s

financial condition will be asked, such as the total annual income and types of financial

assets owned elsewhere. It is always sensitive to ask people’s annual incomes and people

tend not to tell the exact amount of their incomes, so it will make them more comfortable if

several income ranges are provided. Therefore, Annual Income is an interval-valued variable.

Also, people usually have more types of financial assets other than just saving or checking

accounts. Financial assets include Checking Account (C), Savings Account (S) including

Money Market and CDs, Retirement Account (R) and Other Investments (O) including

stocks, bonds, brokerage accounts, etc. Financial Assets is a typical list data. Both of them

are symbolic data.

The following two examples are from Billard and Diday (2006).

Table 2.3: Sample Mushroom Data

Species Pileus Cap Stipe Stipe
Width Length Thickness

arorae [3.0, 8.0] [4.0, 9.0] [0.50, 2.50]
arvenis [6.0,21.0] [4.0, 14.0] [1.00, 3.50]
benesi [4.0, 8.0] [5.0, 11.0] [1.00, 2.00]
bernardii [6.0, 7.0] [4.0, 7.0] [3.00, 4.50]
bisporus [5.0, 12.0] [2.0, 5.0] [1.50, 2.50]
...

...
...

...

The data of Table 2.3 provide measurements (in cm) of certain features of some species

of mushrooms, like the Width of the Pileus Cap, and the Length and Thickness of the

stipe. These measurements are interval valued. For example, the width of the pileus cap

for mushrooms of the arorae species is from 3.0 to 8.0 cm. Since we are only interested in

the species of mushrooms instead of each individual mushroom, it is more reasonable and

manageable to aggregate the data of each mushroom into intervals by their species.

The data of Table 2.4 are aggregated from classical data of medical records of individuals
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Table 2.4: Health Insurance

Type × Gender Age Weight . . .
Dental Males {[0, 40), 4/9; {[150, 200), 4/9; . . .

[40, 99], 4/9 } [200, 275], 5/9}
Dental Females {[0, 40), 1/3; {[140, 160), 2/3; . . .

[40, 99], 2/3} [160, 180], 1/3}
Medical Males {[0, 20), 1/6; {[0, 120), 1/9; . . .

[20, 40], 2/89; [120, 180), 7/8;
[40, 60), 2/9; [180, 240), 1/2;}
[60,99], 7/18}

Medical Females {[0, 20), 1/7; {[50, 100), 1/7; . . .
[20, 40], 2/7; [110, 140], 5/14;
[40, 60), 3/14; {[140, 170), 1/2}
[60, 99], 5/14}

Optical Males {[40, 60), 1/2; {[140, 160), 1/2; . . .
[60, 99], 1/2 } [160, 200], 1/2}

Optical Females {[60, 99])} {[140, 160), 1/2; . . .
[160, 180], 1/4}

retained by a health insurance company. For each individual, there are usually demographic

variables such as gender, marital status, age, information on parents (such as the number

alive), siblings, number of children, employer, health provider, etc. Many other variables

such as a record of geographical location variables, basic medical variables and other health

related variables are recorded. For illustration, only age and weight are shown in Table 2.4.

This is a typical histogram interval-valued dataset. For males receiving dental care, 4/9 of

them are between age 0 and 40 and 4/9 are between age 40 and 99. Also, 4/9 of them weigh

between 150 and 200 pounds and the rest weigh between 200 and 275 pounds.
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Comparison With Classical Data

Typically, symbolic data come from two situations: the data are collected in a symbolic data

format (lists, intervals, histograms, etc.) or the data are aggregated to symbolic data from

classical data during later processing.

The data of Table 2.1 and 2.2 are collected in a symbolic data format. In the past, we

analyzed these data by replacing them with surrogate values, e.g., point values. The GPA of

student 1 in Table 2.1 will be replaced by the cumulative GPA, 3.75, for example. The first

person in Table 2.2 will have the income as $13,500, which is the midpoint of the range or he

will have the income level as 1, which is the categorical data we create for the lowest range.

However, by doing so, we lose important information in the original data. The range of the

interval and the internal variation of the interval no longer exist. For the counseling program

example, the GPAs of each term are collected in the form of lists, or intervals stating the

minimum and maximum term GPA since entry to the school. If student M has term GPAs

as 3.4, 3.5, 3.5 and 3.6 while student N has term GPAs as 2.0, 4.0, 4.0 and 4.0, they will

have the same cumulative GPAs. However, the variation of student N’s GPAs is larger than

student M’s GPAs, which reveals that student N is an excellent student most of the time

except for one semester. This may be due to his/her temporary naughtiness, illness, family

accident, etc. If it is due to an illness, we can conclude that student N is better than M in

academia in spite of their having the same cumulative GPAs.

Again, for the credit card example, the lowest range and the highest range in Ta-

ble 2.2 are [$12, 000, $15, 000) and [$100, 000, $200, 000), respectively. If they are just re-

placed by categorical data like 1 and 5, they will be processed equally as points during

later analysis. However, it is obvious that the range of [$12, 000, $15, 000) is $3,000 while

the range of [$100, 000, $200, 000) is $100,00. Both the range and the internal variance of

[$100, 000, $200, 000) are larger than those of [$12, 000, $15, 000). This information should

be applied into any analysis rather than being ignored.
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The second situation is when the number of the original data is so huge that they must

be summarized and organized before being analyzed. With the development of computer

technology, large datasets are becoming more and more common nowadays. It is too time

consuming and usually hard to calculate statistics from large datasets by classical statistical

algorithms and methodologies; and can be unnecessary especially when our interests are

in units of certain groups instead of each individually observed data. Under these circum-

stances, large datasets can be aggregated into symbolic data and then be analyzed. The

data of Table 2.3 and 2.4 are formed in this way.

2.2 Density Function and Descriptive Statistics

Some definitions and notations need to be introduced to derive density functions and de-

scriptive statistics of symbolic data. Details can be found in Bock and Diday (2000), Billard

and Diday (2006). Many of the contents below and in this chapter can be found in Le-

Rademacher (2008), Kim (2009) and Xu (2010).

Suppose we have a data matrix X with n observations and p variables. Let Xj denote

the jth variable and X(i) denote the ith observation, where j = 1, ..., p and i = 1, ..., n. The

realization of the jth variable of the ith observation is denoted by xij for classical data and

is denoted by ξij for symbolic data.

Definition 2.2.1. Let Xj be the domain of Xj. Then the random variables Xj, j = 1, ..., p,

have domain X = X1 × ... × Xp. Every point x = (x1, ..., xp) in X is called a description

vector.

Definition 2.2.2. Let the random variables Xj, j = 1, ..., p, have domain X = X1× ...×Xp.

The p-dimensional subspace D = (D1, ..., Dp) ⊆ X is a description set, where Dj ⊆ Xj.

If D = D1 × ...×Dp is the Cartesian product of the sets Dj, then D is called a Cartesian

description set.
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Definition 2.2.3. The symbolic description of an observation is given by the description

vector d. If each Dj is a set of one value only, i.e., x = (x1, ..., xp) ≡ d = ({x1}, ..., {xp}),

then x is called an individual description.

A logical dependency rule v can be written as

v : [x ∈ A]⇒ [x ∈ B]

for A ⊆ D,B ⊆ D, and x ∈ X where v is a mapping of X onto 0, 1, with v(x) = 0 if the rule

is not satisfied by x and 1 otherwise. The set of all rules v operating on X is denoted as VX .

Definition 2.2.4. The virtual description, vir(d), of the description vector d is the set

of all individual description vectors x that satisfy all the logical dependency rules v in X .

This can be written as

vir(d) = {x ∈ D|v(x) = 1 for all v in VX}.

Multi-Valued Variables

Suppose there are n observations for the random variable Xj where Xj is a multi-valued

random variable and ξ is a realization of Xj. If Y is a value in Xj, then the observed

frequency of Y taking value ξ is

OY (ξ) =
n∑
i=1

|{x ∈ vir(di)|xj = ξ}|
|vir(di)|

(2.1)

where |A| is the number of individual descriptions in the space A. In Equation (2.1), any i

for which vir(di) is empty is ignored.

Then, the empirical distribution function of Y is

FY (ξ) =
1

n′
∑
ξk≤ξ

OY (ξk)
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where n′ = (n− n0) with n0 being the number of i for which |vir(di)| = 0.

When the variable Y is quantitative, the symbolic sample mean is

Ȳ =
1

n′

∑
ξk∈Xj

ξkOY (ξk),

and the symbolic sample variance is

S2
j =

1

n′

∑
ξk∈Xj

(ξk − Ȳ )2OY (ξk).

Interval-Valued Variables

Among all the types of symbolic data, interval-valued symbolic data play an important role.

Not only is it the most common type, but also the techniques used to analyze them can be

applied to other types of data more readily.

In Section 2.1, it has been mentioned that symbolic data usually arise from two aspects:

the data are collected in a symbolic format, or the data are aggregated to symbolic data from

classical data. For interval-valued data, if they are collected in a symbolic format, sometimes

it is due to its original format (like income range, GPA range) while sometimes it is due to

the impossibility of measuring some characteristic accurately as an exact value. Instead, an

interval format like [x−∆1, x+ ∆2],∆1 6= ∆2 is usually more reasonable.

Besides the empirical density function, sample mean and sample variance (from Bertrand

and Goupil, 2000), the sample covariance for interval-valued data will also be discussed in this

section. The sample covariance was obtained by Billard (2007, 2008). All of these definitions

are based on the assumption that values across each interval are uniformly distributed.

Again, let Xj denote the jth variable and X(i) denote the ith observation of an interval-

valued data sample, where j = 1, ..., p and i = 1, ..., n. The realization of the jth variable

of the ith observation is denoted by ξij taking an interval of values [aij, bij], where aij ≤ bij.
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We assume Y is uniformly distributed over the interval Xij = [aij, bij] for all the individual

description vectors x ∈ vir(di). Then, for each ξ,

P{Y ≤ ξ|x ∈ vir(di)} =


0, ξ < aij,

ξ−aij
bij−aij , aij ≤ ξ < bij,

1, bij ≤ ξ.

Also, it is assumed that each observation is equally likely to be observed with probability

1/n. Then, the empirical distribution function of Y is

FY (ξ) =
1

n

n∑
i=1

P{Y ≤ ξ|x ∈ vir(di)}

=
1

n

∑
i:ξ∈ξij

(
ξ − aij
bij − aij

+ |(i|ξ ≥ bij)|)

 .

By taking the derivative with respect to ξ, the empirical density function of Y is

fY (ξ) =
1

n

∑
i:ξ∈ξij

(
1

bij − aij
); (2.2)

see Bertrand and Goupil (2000). Also, from Bertrand and Goupil (2000), the symbolic

16



sample mean can be achieved from Equation (2.2) as

X̄j =

∫ ∞
−∞

ξf(ξ)dξ

=
1

n

n∑
i=1

[
1

bij − aij

∫ ∞
−∞

ξdξ

]
=

1

2n

n∑
i=1

[
(

1

bij − aij
)(ξ2|bijaij)

]
=

1

2n

n∑
i=1

b2
ij − a2

ij

bij − aij

=
1

2n

n∑
i=1

(bij + aij). (2.3)

The symbolic sample variance is

S2
j =

∫ ∞
−∞

(ξ − X̄j)
2f(ξ)dξ

=

∫ ∞
−∞

ξ2f(ξ)dξ − X̄j
2
. (2.4)

Replacing f(ξ) in Equation (2.4) with Equation (2.2), we have

∫ ∞
−∞

ξ2f(ξ)dξ =
1

n

n∑
i=1

[
1

bij − aij

∫ ∞
−∞

ξ2dξ

]
=

1

3n

n∑
i=1

[
1

bij − aij
ξ3|bijaij

]
=

1

3n

n∑
i=1

[
b3
ij − a3

ij

bij − aij

]
=

1

3n

n∑
i=1

(a2
ij + aijbij + b2

ij). (2.5)
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Substituting Equations (2.5) and (2.3) into Equation (2.4), we have

S2
j =

1

3n

n∑
i=1

(a2
ij + aijbij + b2

ij)−
1

4n2

[
n∑
i=1

(aij + bij)

]2

=
1

3n

n∑
i=1

(a2
ij + aijbij + b2

ij)− X̄2
j . (2.6)

Note that when aij = bij = xij, Equation (2.6) is equal to that of classical sample variance,

i.e.,

S2
j =

∑n
i=1 x

2
ij

n
−
(∑n

i=1 xij
n

)2

.

In Billard (2007, 2008), Total Sum of Squares (TotalSS) is further divided into Within

Sum of Squares (WithinSS) and Between Sum of Square (BetweenSS) terms. That is,

TotalSS = WithinSS +BetweenSS; (2.7)

the Total Sum of Squares, TotalSS, is simply

TotalSS = nS2
j .

The S2
j in Equation (2.6) can be rewritten as

S2
j =

1

3n

n∑
i=1

[(aij − X̄j)
2 + (aij − X̄j)(bij − X̄j) + (bij − X̄j)

2]. (2.8)

When n = 1, Equation (2.8) is

S2
j (n = 1) =

1

3
[(aij − X̄j)

2 + (aij − X̄j)(bij − X̄j) + (bij − X̄j)
2]. (2.9)

Then, Equation (2.9) is the internal variation of a single observation Xij. By summing over
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i = 1, ..., n, the overall Within Sum of Squares can be obtained as

WithinSS =
1

3

n∑
i=1

[(aij − X̄j)
2 + (aij − X̄j)(bij − X̄j) + (bij − X̄j)

2]. (2.10)

Substituting Equation (2.3) into Equation (2.10), we have

WithinSS =
1

12

n∑
i=1

(bij − aij)2. (2.11)

The Between Sum of Squares is the variation between observations, i.e., the variation of

interval midpoints, i.e., we have

BetweenSS =
n∑
i=1

[
1

2
(aij + bij)− X̄j]

2 =
n∑
i=1

(X̄ij − X̄j)
2. (2.12)

Therefore, the result of Equation (2.7) follows by substituting Equations (2.11) and (2.12)

into Equation (2.7).

Note that the WithinSS is the sum of n variations of a uniform distribution, which

coincides with the assumption that Y is uniformly distributed over the intervalXij = [aij, bij].

Similarly, the covariance function between two interval-valued symbolic variables can be

achieved. Without loss of generality, choose (X1, X2) as a pair of random variables from the

sample data. The cross-variation between observations (Xi1, Xi2), i = 1, ..., n, i.e., the Sum

of Products (SP) is

WithinSP =
n∑
i=1

(bi1 − ai1)(bi2 − ai2)

12

and

BetweenSP =
n∑
i=1

(
ai1 + bi1

2
− X̄1

)(
ai2 + bi2

2
− X̄2

)
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where X̄1 and X̄2 can be found by Equation (2.3). Therefore,

TotalSP = WithinSP +BetweenSP

=
1

6

n∑
i=1

[2(ai1 − X̄1)(ai2 − X̄2) + (ai1 − X̄1)(bi2 − X̄2)

+(bi1 − X̄1)(ai2 − X̄2) + 2(bi1 − X̄1)(bi2 − X̄2)]. (2.13)

The covariance function between Xi1 and Xi2 is

Cov(X1, X2) = TotalSP/n. (2.14)

It is easy to verify that when X1 = X2, i.e, ai1 = ai2 and bi1 = bi2, Equation (2.14) is equal

to S2
1 = S2

2 , which can be derived from Equation (2.6). Also, when ai1 = bi1 and ai2 = bi2,

Equation (2.14) becomes 1
n

∑n
i=1(ai1 − X̄1)(ai2 − X̄2), which is the covariance function for

classical data.

After obtaining the variance and covariance, it is obvious that the correlation coefficient

between X1 and X2 is

Corr(X1, X2) =
Cov(X1, X2)

S1S2

.

2.3 Regression Methods for Symbolic Data

Several methods have been proposed to implement linear regression analyses for interval-

valued symbolic data. The first method was raised by Billard and Diday (2000) using centers

of intervals when fitting regression models (CM), and parameter estimates from models using

centers were used to calculate the prediction interval when a new observation is available.

Then, a center and range method (CRM) (Lima Neto et al., 2004, de Carvalho et al., 2004

and Lima Neto and de Carvalho, 2008) utilized not only centers but also ranges of intervals
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to fit regression models. Centers and ranges are used separately to do the fitting. Later on,

Billard and Diday (2006) improved the CRM by fitting centers and ranges simultaneously

as a bivariate model either without interaction (BCRMO) or with interaction (BCRMI).

Center Method

The first approach to fit a linear regression model to interval-valued data was introduced by

Billard and Diday (2000). They obtained the centers of each interval and fitted regression

models using the centers as for a classical method. After obtaining parameter estimates, they

applied the fitted model to both lower and upper bounds of a new observation to achieve an

interval predicted response. This approach is called the center method (CM).

Let Xj denote the jth variable of an interval-valued data sample, let X(i) denote the ith

observation, and let Y be the response, where i = 1, ..., n, and j = 1, ..., p. The ith observed

value of Xj is Xij = [aij, bij] and the ith observed value of Y is Yi = [ci, di]. Hence,

Xc
ij =

aij + bij
2

, Y c
i =

ci + di
2
·

The regression model is

Yc = Xcβc + εc

where Xc = (Xc(1), ...,Xc(n))′, Yc = (Y c
1 , ..., Y

c
n )′, βc = (βc0, β

c
1, ..., β

c
p)
′, εc = (εr1, ..., ε

r
n)′ and

Xc(i) = (1, Xc
i1, ..., X

c
ip) for i = 1, ..., n.

Now, the least squares estimator of βc is achieved by using the classical method, as

β̂c = ((Xc)′Xc)−1(Xc)′Yc.

Then, for a given X∗ = (1, [a∗1, b
∗
1], ..., [a∗p, b

∗
p]), the predicted value of Y is Ŷ ∗ = [Ŷ ∗a , Ŷ

∗
b ]
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where

Ŷ ∗a = β̂c0 + β̂c1a
∗
1 + · · ·+ β̂cpa

∗
p, Ŷ ∗b = β̂c0 + β̂c1b

∗
1 + · · ·+ β̂cpb

∗
p.

Center and Range Method

Lima Neto et al. (2004, 2008) and de Carvalho et al. (2004) put forward the center and

range method (CRM) to estimate parameter β using both centers and ranges of intervals

separately. After having parameter estimates for both centers and ranges, these estimates

can be applied to the calculation of predicted response when given a new observation.

The regression model on centers is the same as CM’s,

Yc = Xcβc + εc,

where Xc, Yc, βc and εc are defined in Section 2.3.

In addition to building a model on centers of intervals, CRM also builds a model on

ranges of intervals. Let Xr
ij = bij − aij and Y r

ij = di − ci be the ranges of the interval-valued

data, where i = 1, ..., n, j = 1, ..., p.

The regression model on ranges is

Yr = Xrβr + εr

where Xr = (Xr(1), ...,Xr(n))′, Yr = (Y r
1 , ..., Y

r
n )′, βr = (βr0 , β

r
1 , ..., β

r
p)
′, εr = (εr1, ..., ε

r
n)′

and Xr(i) = (1, Xr
i1, ..., X

r
ip) for i = 1, ..., n. Hence, the least squares estimators of βc and

βr are, respectively,

β̂c = ((Xc)′Xc)−1(Xc)′Yc, β̂r = ((Xr)′Xr)−1(Xr)′Yr.
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For a given X∗ = (1, [a∗1, b
∗
1], ..., [a∗p, b

∗
p]), the predicted value of Y is Ŷ ∗ = [Ŷ ∗a , Ŷ

∗
b ], where

Ŷ ∗a = Ŷ c∗ − Ŷ r∗

2
, Ŷ ∗b = Ŷ c∗ +

Ŷ r∗

2
, (2.15)

with Ŷ c∗ = β̂c0 + β̂c1(
a∗1+b∗1

2
) + · · ·+ β̂cp(

a∗p+b∗p
2

), Ŷ r∗ = β̂r0 + β̂r1(b∗1 − a∗1) + · · ·+ β̂rp(b
∗
p − a∗p).

Bivariate Center and Range Method

The CRM assumes that centers and ranges are independent and fits models on them sepa-

rately. In order to break this assumption, Billard and Diday (2006) fitted centers and ranges

simultaneously as a bivariate model, either with (BCRMI) or without (BCRMO) interaction

terms between the center and range variables.

The BCRMO gives the model

 Yc

Yr

 =

 Xcrβc + εc

Xcrβr + εr

 (2.16)

where Xcr = (Xcr
1 , ...,X

cr
n )′, Xcr

i = (1, Xc
i1, ..., X

c
ip, X

r
i1, ..., X

r
ip) for i = 1, ..., n. The Xc, Yc,

εc, Xr, Yr and εr are defined in Section 2.3 and Section 2.3. The least squares estimators

of βc and βr are

β̂c = (Xcr′Xcr)−1Xcr′Yc, β̂r = (Xcr′Xcr)−1Xcr′Yr. (2.17)

Then, the predicted response for a given Xcr∗ = (1, Xc∗
1 , ..., X

c∗
p , X

r∗
1 , ..., X

r∗
p )′ is Ŷ ∗ =

[Ŷ ∗a , Ŷ
∗
b ] as defined in Equation (2.15), but now

 Ŷc∗

Ŷr∗

 =

 Xcr∗β̂c

Xcr∗β̂r

 . (2.18)
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The BCRMI adds interaction terms between the center and range variables into the

model. The model given by BCRMI is the same as Equation (2.16) except

Xcr
i = (1, Xc

i1, ..., X
c
ip, X

r
i1, ..., X

r
ip, X

c
i1 ×Xr

i1, ..., X
c
ip ×Xr

ip) for i = 1, ..., n.

Similarly, parameter estimates and predicted response given a new observation can be derived

from Equations (2.17) and (2.18), respectively.

It is obvious that the CRM and BCRM methods have some improvements by taking

into account both centers and ranges of interval-valued data while the CM method concerns

center points only. However, there are two main problems with both of these methods.

First, these methods are essentially the same as the classical method by converting intervals

to points and fitting the model afterward. They can not fully capture the internal variance

of each interval using range only, hence they lose information. Secondly, there is no reason

that the predicted response of a range is guaranteed to be positive. If a negative predicted

range is achieved, the lower bound will be bigger than the upper bound of the predicted

response.

Constrained Method

In order to solve the second problem mentioned at the end of Section 2.3, Lima Neto et

al. (2005, 2010) suggested the constrained method. The constrained method includes the

constrained center method (CONCM) and the constrained center and range method (CON-

CRM). The regression models are the same as those in Section 2.3 and Section 2.3. The only

difference is that constraints βcj , β
r
j ≥ 0, j = 0, 1, ..., p, were added into the models.

To ensure the positiveness of least squares estimates of the parameters β, Lima Neto et

al. (2005, 2010) used an algorithm introduced by Lawson and Hanson (1974). The algorithm

identifies the values which coincide with the constraints and changes them to non-negative
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values using a re-weighting process. However, the fact that all parameters are compelled

to be non-negative can not always reveal the nature of data and will produce inaccurate

estimates of the regression parameters, if the true βj < 0.

Symbolic Covariance Method

A new method was proposed by Xu (2010) describing a symbolic covariance method (SCM)

to address the two main issues mentioned in Section 2.3. This new method is based on the

symbolic sample covariance in Equation (2.14) suggested by Billard (2008). Due to the use

of the symbolic sample covariance, the new method can utilize all the variations in the data.

Also, the new method suggested a min/max step to address the issue of a lower bound being

bigger than an upper bound in predictions.

We first consider the classical case where there are p predictor variables X1, ..., Xp. The

regression model is

Yi = β0 + β1Xi1 + · · ·+ βpXip + εi, i = 1, ..., n, (2.19)

where Yi is the dependent response, X(i) = (Xi1, ..., Xip)
′ are predictor variables for the ith

observation, β0 is the intercept parameter, β = (β1, ..., βp) are regression parameters and εi

are independent error terms following N(0, σ2). The intercept parameter in Equation (2.19)

is

β̂0 = Ȳ − β̂1X̄1 − · · · − β̂pX̄p (2.20)

where Ȳ and X̄j, j = 1, ..., p, are the sample means of Yi, i = 1, ..., n, and Xij, respectively.

Equation (2.19) can be centered as

Yi − Ȳ = β1(Xi1 − X̄1) + · · ·+ βp(Xip − X̄p) + εi, i = 1, ..., n.
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Therefore, the least squares estimator of β is given by

β̂ = ((X− X̄)′(X− X̄))−1(X− X̄)′(Y − Ȳ) (2.21)

where X = (X1, ...,Xp)n×p, Y = (Y1, ..., Yn)′, X̄ = (1, ..., 1)′1×n(X̄1, ..., X̄p)1×p and Ȳ =

(1, ..., 1)′1×nȲ .

It is easy to show that

(X− X̄)′(X− X̄) =


∑n

i=1(X1i − X̄1)2 · · ·
∑n

i=1(X1i − X̄1)(Xpi − X̄p)

...
...

...∑n
i=1(Xpi − X̄p)(X1i − X̄1) · · ·

∑n
i=1(Xpi − X̄p)

2


p×p

=

(
n∑
i=1

(Xj1i − X̄j1)(Xj2i − X̄j2)

)
p×p

= (n× Cov(Xj1 , Xj2))p×p , j1, j2 = 1, ..., p,

and

(X− X̄)′(Y − Ȳ) =

(
n∑
i=1

(Xji − X̄j)(Yi − Ȳ )

)
p×1

= (n× Cov(Xj, Y ))p×1 , j = 1, ..., p.

Hence, Equation (2.21) is equivalent to

β̂ = (n× Cov(Xj1 , Xj2))
−1
p×p × (n× Cov(Xj, Y ))p×1 (2.22)

where (n× Cov(Xj1 , Xj2)) is the (j1, j2)th element of the p× p matrix (X− X̄)′(X− X̄) and

(n× Cov(Xj, Y )) is the jth element of the p× 1 matrix (X− X̄)′(Y− Ȳ), j1, j2, j = 1, ..., p.

Under the situation of classical data, β̂ can be obtained by putting data into Equation
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(2.21). However, under the situation of interval-valued data, we have to use the symbolic

covariance function given in Equations (2.13)-(2.14) in Section 2.2. Again, suppose the

observed realizations of (Y,Xj) are the intervals Yi = [ci, di] and Xij = [aij, bij], i = 1, ..., n,

j = 1, ..., p. Then, the symbolic covariance function from Billard (2008) is

Cov(Xj1, Xj2) =
1

6n

n∑
i=1

[2(aij1 − X̄j1)(aij2 − X̄j2) + (aij1 − X̄j1)(bij2 − X̄j2)

+(bij1 − X̄j1)(aij2 − X̄j2) + 2(bij1 − X̄j1)(bij2 − X̄j2)] (2.23)

and

Cov(Y,Xj) =
1

6n

n∑
i=1

[2(ci − Ȳ )(aij − X̄j) + (ci − Ȳ )(bij − X̄j)

+(di − Ȳ )(aij − X̄j) + 2(di − Ȳ )(bij − X̄j)] (2.24)

where

Ȳ =
1

n

n∑
i=1

(ci + di)/2, X̄j =
1

n

n∑
i=1

(aij + bij)/2, j1, j2, j = 1, ..., p.

Substituting Equation (2.23) and Equation (2.24) into Equation (2.22), we can obtain the

estimators of β; and substituting β̂ into Equation (2.20), we can obtain the estimator of β0.

When given a predictor X∗ = ([a∗1, b
∗
1], ..., [a∗p, b

∗
p]), the predicted response is

Ŷ = β̂0 + β̂(X∗)′.

Suppose Ŷ = [Ŷa, Ŷb], Ŷa ≤ Ŷb, it is easy to show that

Ŷa = min
X∈X

(
β̂0 + β̂(X∗)′

)
, Ŷb = max

X∈X

(
β̂0 + β̂(X∗)′

)
(2.25)

where X = {a∗j ≤ xj ≤ b∗j , j = 1, ..., p}.
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The new symbolic covariance method utilizes the total variation in the data and its

performance is superior to classical methods (CM, CRM, BCRM) according to the simulation

study by Xu (2010). Also, the assumption that observations within an interval are uniformly

distributed across that interval can not always hold in real life. If the assumption is broken,

it is very likely that classical methods will meet even greater problems. Therefore, the SCM

method is preferred and the research in Chapter 3 of this dissertation is based on this method.

2.4 Preliminary for Clustering Methods for Interval-

Valued Data

One technique used to analyze data sets is to partition observations into r clusters so that

observations within one group are as homogeneous as possible while observations between

groups are as heterogeneous as possible. Gowda and Diday (1991, 1992) suggested dis-

similarity measures for multi-valued and interval-valued data; Ichino and Yaguchi (1994)

proposed dissimilarity measures for multi-valued and interval-valued data with extensions

to Minkowski distances; De Carvalho (1994, 1998) gave dissimilarity measures for interval-

valued data by extending the Ichino-Yaguchi measure; Hausdorff (1937) distance for interval-

valued data was used by Chavent (2000) and Billard and Diday (2006) for clustering analysis.

Williams and Lambert (1959) and Lance and Williams (1968) introduced divisive mono-

thetic clustering methods for classical binary data. A divisive monothetic clustering method

for symbolic data was first developed by Chavent (1998, 2000) for interval data. Kim (2009,

2012) extended the divisive monothetic clustering method to histogram-valued data. This

dissertation focuses on the hierarchical divisive monothetic clustering method for interval-

valued data.
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Dissimilarity and Distance Measures

More details and examples of the contents in Section 2.4 can be found in Billard and Diday

(2006) and Kim (2009). Let Xj denote the jth variable and X(i) denote the ith observation

of an interval-valued data sample, where j = 1, ..., p and i = 1, ..., n. The realization of the

jth variable of the ith observation is denoted by ξij taking an interval of values [aij, bij], where

aij ≤ bij. We assume the X values are uniformly distributed over the interval Xij = [aij, bij].

Definition 2.4.1. If X(i1) and X(i2) are two observations in Ω where Ω = {X(1), ...,X(n)},

i1, i2 = 1, ..., n, a dissimilarity measure between X(i1) and X(i2), d(X(i1),X(i2)), is a

measure satisfying the following conditions:

1. d(X(i1),X(i2)) = d(X(i2),X(i1));

2. d(X(i1),X(i2)) > d(X(i1),X(i1)) = d(X(i2),X(i2)) for all X(i1) 6= X(i2);

3. d(X(i1),X(i1)) = 0 for all X(i1) ∈ Ω.

Condition 1 tells us that dissimilarity measures are symmetric, conditions 2 and 3 show

that a dissimilarity measure between two different observations is positive while it is zero

between the same two observations.

Definition 2.4.2. A distance measure is a dissimilarity measure as defined in Definition

2.4.1 and further satisfies the following conditions:

4. If d(X(i1),X(i2)) = 0, then X(i1) = X(i2);

5. d(X(i1),X(i2)) ≤ d(X(i1),X(i3)) + d(X(i3),X(i1)) for all X(i1),X(i2),X(i3) ∈ Ω.

Condition 5 is called the triangular inequality.

Definition 2.4.3. The Hausdorff distance between two interval-valued observations X(i1)

and X(i2), i1, i2 = 1, ..., n, for the variable Xj is

dj(X(i1),X(i2)) = max{|ai1j − ai2j|, |bi1j − bi2j|}, j = 1, ..., p. (2.26)
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Definition 2.4.4. The Euclidean Hausdorff distance between two interval-valued ob-

servations X(i1) and X(i2), i1, i2 = 1, ..., n, is

d(X(i1),X(i2)) = {
p∑
j=1

[dj(X(i1),X(i2))]2}1/2 (2.27)

where dj(X(i1),X(i2)), j = 1, ..., p, are the Hausdorff distances defined in Equation (2.26).

Definition 2.4.5. The Span Normalized Euclidean Hausdorff distance between two

interval-valued observations X(i1) and X(i2), i1, i2 = 1, ..., n, is

d(X(i1),X(i2)) =

{
p∑
j=1

[
dj(X(i1),X(i2))

|Yj|

]2
}1/2

(2.28)

where the span is |Yj| = maxi(bij)−mini(aij) and dj(X(i1),X(i2)) is the Hausdorff distance

defined in Equation (2.26).

The Span Normalized Euclidean Hausdorff distance is based on the length of the maxi-

mum deviation. This is also called the span normalization.

Definition 2.4.6. The Normalized Euclidean Hausdorff distance between two interval-

valued observations X(i1) and X(i2), i1, i2 = 1, ..., n, is

d(X(i1),X(i2)) =

{
p∑
j=1

[
dj(X(i1),X(i2))

Hj

]2
}1/2

(2.29)

where

H2
j =

1

2n2

n∑
i1=1

n∑
i2=1

[dj(X(i1),X(i2))]2, j = 1, ..., p,

and where dj(X(i1), X(i2)) is the Hausdorff distance defined in Equation (2.26).

If the data are classical, then the Normalized Euclidean Hausdorff distance is equivalent

to a Normalized Euclidean distance on R2, with Hj corresponding to the standard deviation

30



of Xj. This is also called the dispersion normalization.

Suppose we have interval-valued observations X(i), i = 1, ..., n, X(i) ∈ Ω, where Ω =

{X(1), ...,X(n)}.

Definition 2.4.7. A partition of Ω is a set of subsets {C1, ..., Cr} that satisfies

1. Cu ∩ Cv = φ, for all u 6= v = 1, ..., r;

2.
⋃r
u=1Cu = Ω.

The subsets of a partition are also called clusters.

Definition 2.4.8. A hierarchy on Ω is a set of subsets H = {C1, ..., Cr} that satisfies

1. Ω ∈ H;

2. for all single observations X(u) in Ω, {X(u)} ∈ H;

3. Cu
⋂
Cv ∈ {φ,Cu, Cv} for all u 6= v = 1, ..., r.

Condition 3 tells us that either two clusters are disjoint, or one is contained in the other.

Definition 2.4.9. Divisive clustering is a top-down clustering process. It divides the

entire dataset into as many clusters as necessary to produce the hierarchy H = {C1, ..., Cr}.

Clustering Criteria

This hierarchical divisive clustering criteria can also be found in Billard and Diday (2006).

Suppose we have n interval-valued observations X(i) ∈ Ω = {X(1), ...,X(n)}, with X(i) =

(Xi1, ..., Xip), i = 1, ..., n. Let Cr
u be the uth cluster from the rth stage of clustering. In the

first stage, we start by dividing C1
1 = Ω into two clusters (C2

1 , C
2
2). In the second stage, we

divide one of these two clusters, e.g., C2
1 , into two sub-clusters, (C3

1 , C
3
2), hence producing

three clusters for the third stage. The third cluster in the third stage, C3
3 , inherits from C2

2
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in the second stage. This procedure can be followed as many times as necessary until there

is only one observation left in each cluster. Let Pr = {Cr
1 , ..., C

r
r} represent the partition of

Ω at the rth stage.

Definition 2.4.10. Suppose we have the cluster Cr
u = {X(1)ru, ...,X(nru)

ru}, where nru is

the number of observations in the uth cluster from Pr. Then, the within-cluster variation

I(Cr
u) is given by

I(Cr
u) =

1

2λ

nru∑
i1=1

nru∑
i2=1

wi1wi2d
2(i1, i2) ≡ 1

λ

nru∑
i1<i2=2

nru∑
i2=1

wi1wi2d
2(i1, i2) (2.30)

where d2(i1, i2) is a distance or dissimilarity measure between the observations X(i1)ru and

X(i2)ru in Cr
u, i1, i2 = 1, ..., nru, and where wi is the weight associated with the observation

X(i)ru, and where λ =
∑nru

i=1wi.

When observations are evenly weighted, i.e., wi = 1/n, i = 1, ..., n, Equation (2.30)

becomes

I(Cr
u) =

1

2nrun

nru∑
i1=1

nru∑
i2=1

d2(i1, i2). (2.31)

Definition 2.4.11. The total within-cluster variation for partition Pr = {C1, ..., Cr} is

W (Pr) =
r∑

u=1

I(Cr
u) (2.32)

where I(Cr
u) is the within-cluster variation for Cr

u given in Equation (2.30).

Suppose at stage r, we divide Cr
u∗ into two clusters (Cr+1

u∗ , C
r+1
u∗+1); then,

Pr+1 = Pr ∪ {Cr+1
u∗ , C

r+1
u∗+1} − {Cr

u∗}.
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Hence, at stage r + 1, from Equation (2.32),

W (Pr+1) = W (Pr) + I(Cr+1
u∗ ) + I(Cr+1

u∗+1)− I(Cr
u∗).

Therefore,

W (Pr)−W (Pr+1) = I(Cr
u∗)− I(Cr+1

u∗ )− I(Cr+1
u∗+1). (2.33)

The purpose of clustering is that within the same group, distances among observations

are as small as possible, i.e., total within-cluster variation is as small as possible. The

total within-cluster variations at stage r and r + 1 are W (Pr) and W (Pr+1), respectively.

When moving from stage r to r + 1, we want to minimize W (Pr+1), which is equivalent to

maximizing W (Pr)−W (Pr+1). Maximizing W (Pr)−W (Pr+1) is equivalent to maximizing

I(Cr
u∗)− I(Cr+1

u∗ )− I(Cr+1
u∗+1) according to Equation (2.33).
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Chapter 3

Analysis Of Variance For

Interval-Valued Data

In Section 2.3, we have put forward regression methods for symbolic data. However, when

dealing with several categorical predictor variables (or factors), another useful method is

analysis of variance (ANOVA).

In this chapter, Section 3.1 will give a brief review of ANOVA for classical data, and of

ANOVA being done as a multiple regression. The ANOVA for interval-valued data and how

it can be done as a multiple regression will be shown in Section 3.2. Finally, a practical

data set to which the methods will be applied is described briefly in Section 3.3 in order to

illustrate how to do ANOVA for interval-valued data.

3.1 Preliminaries

One-way ANOVA

Most of the contents in Section 3.1 are from Wu and Hamada (2000). An ANOVA is a

sophisticated way to analyze data with one or more categorical predictor variables and a
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continuous outcome. Classically, the linear model for a one-way layout is

yij = µ+ τi + εij, i = 1, ..., p, j = 1, ..., ni, (3.1)

where yij is the jth observation with treatment i, µ is the overall mean, τi is the ith treatment

effect, the errors εij are independent N(0, σ2) with mean 0 and variance σ2, p is the number

of treatments, and ni is the number of observations with treatment i. Table 3.1 shows the

ANOVA table summarizing relevant statistics for the linear model Equation (3.1), where

N =
∑p

i=1 ni.

Table 3.1: One-way ANOVA Table for Classical Data

Degrees of Sum of Mean
Source Freedom Squares Squares F
Treatment p− 1

∑p
i=1 ni(ȳi· − ȳ··)2 MST = SST

p−1
MST
MSE

Residual N − p
∑p

i=1

∑ni

j=1(yij − ȳi·)2 MSE = SSE
N−p

Total N − 1
∑p

i=1

∑ni

j=1(yij − ȳ··)2

The ANOVA statistics for the one-way layout can be derived using the decomposition

yij = µ̂+ τ̂i + εij

= ȳ·· + (ȳi· − ȳ··) + (yij − ȳi·)

where

µ̂ = ȳ··, τ̂i = ȳi· − ȳ··, εij = yij − ȳi·;

we have

yij − ȳ·· = (ȳi· − ȳ··) + (yij − ȳi·). (3.2)
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By squaring both sides of Equation (3.2) and summing over i and j, it can be verified that

p∑
i=1

ni∑
j=1

(yij − ȳ··)2 =

p∑
i=1

ni(ȳi· − ȳ··)2 +

p∑
i=1

ni∑
j=1

(yij − ȳi·)2,

which is

SSTotal = SST + SSE

where

SSTotal =

p∑
i=1

ni∑
j=1

(yij − ȳ··)2, (3.3)

SST =

p∑
i=1

ni(ȳi· − ȳ··)2, (3.4)

and

SSE =

p∑
i=1

ni∑
j=1

(yij − ȳi·)2. (3.5)

Note that the SSE of Equation (3.5) and SSTotal of Equation (3.3) here can also be

written, respectively, as

SSE =

p∑
i=1

nis
2(yi) (3.6)

and

SSTotal = Ns2(y) (3.7)

where s2(yi) is the sample variance of the yij’s with treatment i and s2(y) is the sample

variance of all yij’s. Rewriting SSE and SSTotal in this way is very useful when deriving

the ANOVA table for interval-valued data. The statistics of Table 3.1 can be rewritten as

in Table 3.2.
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Table 3.2: Rewritten One-way ANOVA Table for Classical Data

Degrees of Sum of Mean
Source Freedom Squares Squares F
Treatment p− 1

∑p
i=1 ni(ȳi· − ȳ··)2 MST = SST

p−1
MST
MSE

Residual N − p
∑p

i=1 nis
2(yi) MSE = SSE

N−p
Total N − 1 Ns2(y)

Regression Approach to a Single-Factor ANOVA

An ANOVA model Equation (3.1) is a linear model (see, e.g., Kutner et al., 2005), i.e.,

yij = µ+ τ1xij1 + · · ·+ τpxijp + εij, i = 1, ..., p, j = 1, ..., ni, (3.8)

where yij is the jth observation with treatment i, µ is the overall mean, τi is the ith treatment

effect, the errors εij are independent N(0, σ2) with mean 0 and variance σ2, p is the number

of treatments, ni is the number of observations with treatment i and

xij1 =

 1 if observation yij from factor level 1,

0 otherwise,

...

xijp =

 1 if observation yij from factor level p,

0 otherwise.
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By Christensen (1996), Equation (3.8) can also be written in matrix form as

E



y(1)

y(2)

...

y(p)


N×1

=



1n1 1n1 0n1 · · · 0n1

1n2 0n2 1n2 · · · 0n2

...
...

...
...

1np 0np 0np · · · 1np


N×(p+1)



µ

τ1

τ2

...

τp


(p+1)×1

= XN×(p+1)β(p+1)×1

where y(i) = (yi1, ..., yini
)′ and N =

∑p
i=1 ni.

It is easy to show that rank[XN×(p+1)] = p < p+ 1; hence,

rank[X′X(p+1)×(p+1)] ≤ rank(XN×(p+1)) < p+ 1.

Therefore, X′X is not invertible. In order to solve this problem, the constraint

p∑
i=1

τi = 0 (3.9)

has to be added. Note that Equation (3.9) can also be expressed as τp = −τ1− τ2− · · · τp−1.

Thus, we shall use only the parameters µ, τ1, ..., τp−1 for the linear model. Then, Equation

(3.8) is now

yij = µ+ τ1xij1 + · · ·+ τp−1xij,p−1 + εij, i = 1, ..., p, j = 1, ..., ni,
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with

xij1 =


1 if observation yij from factor level 1,

−1 if observation yij from factor level p,

0 otherwise,

...

xij,p−1 =


1 if observation yij from factor level p− 1,

−1 if observation yij from factor level p,

0 otherwise.

The matrix form is now

E



y(1)

y(2)

...

y(p)


N×1

=



1n1 1n1 0n1 · · · 0n1

1n2 0n2 1n2 · · · 0n2

...
...

...
...

1np−1 0np−1 0np−1 · · · 1np−1

1np −1np −1np · · · −1np


N×p



µ

τ1

τ2

...

τp−1


p×1

= XN×pβp×1 (3.10)

where y(i) = (yi1, ..., yini
)′ and N =

∑p
i=1 ni. Therefore, the least squares estimator of βp×1

in Equation (3.10) is given by

β̂ = (X′X)−1X′Y

where X and Y are defined in Equation (3.10).
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3.2 ANOVA for Interval Data

In order to distinguish between ANOVA tables for classical and interval-valued data, some

notation has to be introduced first. Let Yij = [aij, bij] be the jth observation with treatment

i. Again, we assume that the spread of observations within the interval [aij, bij] is uniform.

One-Way ANOVA

For interval-valued data Yij, the linear model for the one-way layout is

Yij = µ+ τi + εij, i = 1, ..., p, j = 1, ..., ni, (3.11)

where µ is the overall mean, τi is the ith treatment effect, the errors εij are independent

N(0, σ2) with mean 0 and variance σ2, p is the number of treatments, and ni is the number

of observations with treatment i.

By analogy with Table 3.2, Table 3.3 is the ANOVA table for the linear model Equation

(3.28), where N =
∑p

i=1 ni, Ȳi· is the mean of observations for the ith treatment, Ȳ·· is the

mean of all observations, S2(Yi) is the sample variance of Yij’s with treatment i and S2(Y )

is the sample variance of all Yij’s. We observe that the entries in both tables are similar.

However, in contrast to the entries in Table 3.2 for classical data, those in Table 3.3 are

calculated for interval data, as follows.

Table 3.3: One-way ANOVA Table for Interval Data

Degrees of Sum of Mean
Source Freedom Squares Squares F
Treatment p− 1

∑p
i=1 ni(Ȳi· − Ȳ··)2 MST = SST

p−1
MST
MSE

Residual N − p
∑p

i=1 niS
2(Yi) MSE = SSE

N−p
Total N − 1 NS2(Y )
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From Bertrand and Goupil (2000), we can obtain

Ȳi· =
1

2ni

ni∑
j=1

(aij + bij),

Ȳ·· =
1

2N

p∑
i=1

ni∑
j=1

(aij + bij),

S2(Yi) =
1

3ni

ni∑
j=1

(a2
ij + aijbij + b2

ij)−
1

4n2
i

[

ni∑
j=1

(aij + bij)]
2,

S2(Y ) =
1

3N

p∑
i=1

ni∑
j=1

(a2
ij + aijbij + b2

ij)−
1

4N2
[

p∑
i=1

ni∑
j=1

(aij + bij)]
2. (3.12)

Therefore,

µ̂ = Ȳ··, τ̂i = Ȳi· − Ȳ··.

It can be proved that

NS2(Y ) =

p∑
i=1

ni(Ȳi· − Ȳ··)2 +

p∑
i=1

niS
2(Yi), (3.13)

which is

SSTotal = SST + SSE

where

SSTotal = NS2(Y ), (3.14)

SST =

p∑
i=1

ni(Ȳi· − Ȳ··)2, (3.15)

and

SSE =

p∑
i=1

niS
2(Yi). (3.16)

The detailed proof is in this chapter’s appendix.
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For the particular case of classical observations, with aij = bij = yij, we can show that

SSE =

p∑
i=1

niS
2(Yi)

=

p∑
i=1

ni{
1

3ni

ni∑
j=1

(a2
ij + aijbij + b2

ij)−
1

4n2
i

[

ni∑
j=1

(aij + bij)]
2}

=

p∑
i=1

ni{
1

3ni

ni∑
j=1

(y2
ij + yijyij + y2

ij)−
1

4n2
i

[

ni∑
j=1

(yij + yij)]
2}

=

p∑
i=1

ni∑
j=1

y2
ij −

p∑
i=1

niȳ
2
i

=

p∑
i=1

ni∑
j=1

(yij − ȳi·)2, (3.17)

and

SSTotal = NS2(Y )

= N{ 1

3N

p∑
i=1

ni∑
j=1

(a2
ij + aijbij + b2

ij)−
1

4N2
[

p∑
i=1

ni∑
j=1

(aij + bij)]
2}

= N{ 1

3N

p∑
i=1

ni∑
j=1

(y2
ij + yijyij + y2

ij)−
1

4N2
[

p∑
i=1

ni∑
j=1

(yij + yij)]
2}

=

p∑
i=1

ni∑
j=1

y2
ij −Nȳ2

··

=

p∑
i=1

ni∑
j=1

(yij − ȳ··)2. (3.18)

It is not surprising that SSE and SSTotal now are the same as those with classical data as

defined in Section 3.1.
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Regression Approach to a Single-Factor ANOVA

The linear model for interval-valued data is

Yij = µ+ τ1xij1 + · · ·+ τpxijp + εij, i = 1, ..., p, j = 1, ..., ni, (3.19)

where Yij is the jth observation with treatment i, µ is the overall mean, τi is the ith treatment

effect, the errors εij are independent N(0, σ2) with mean 0 and variance σ2, p is the number

of treatments, ni is the number of observations with treatment i and

xij1 =

 1 if observation yij from factor level 1,

0 otherwise,

...

xijp =

 1 if observation yij from factor level p,

0 otherwise.

By analogy with the symbolic covariance method (SCM) proposed by Xu (2010, Section

2.3), Equation (3.19) can be centered as

Yij − Ȳ = τ1(xij1 − x̄1) + · · ·+ τp(xijp − x̄p) + εij, i = 1, ..., p, j = 1, ..., ni, (3.20)

where Ȳ is the sample mean of Yij and x̄l, l = 1, ..., p, is the sample mean of xijl for a given

l. The matrix form of Equation (3.20) is

E(Y − Ȳ) = (X− X̄)β (3.21)
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where

Y =


Y11

...

Ypnp


N×1

Ȳ =


Ȳ

...

Ȳ


N×1

β =


τ1

...

τp


p×1

X =



1n1 0n1 · · · 0n1

0n2 1n2 · · · 0n2

...
...

...

0np 0np · · · 1np


N×p

X̄ =


n1

N
· · · np

N

...
...

n1

N
· · · np

N


N×p

with N =
∑p

i=1 ni. Hence,

X− X̄ =



(1− n1

N
)1n1 −n2

N
1n1 · · · −np

N
1n1

−n1

N
1n2 (1− n2

N
)1n2 · · · −np

N
1n2

...
...

...

−n1

N
1np −n2

N
1np · · · (1− np

N
)1np


N×p

.

It is obvious that rank(X− X̄) < p, so that

rank[(X− X̄)′(X− X̄)p×p] ≤ rank(X− X̄) < p.

Hence, (X− X̄)′(X− X̄) is not invertible. The constraint

p∑
i=1

τi = 0,

i.e.,

τp = −τ1 − τ2 − · · · − τp−1, (3.22)
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has to be added. Now, Equation (3.20) becomes

Yij − Ȳ = τ1(xij1 − x̄1) + · · ·+ τp−1(xij,p−1 − x̄p−1) + εij, i = 1, ..., p, j = 1, ..., ni, (3.23)

with

xij1 =


1 if observation yij from factor level 1,

−1 if observation yij from factor level p,

0 otherwise,

...

xij,p−1 =


1 if observation yij from factor level p− 1,

−1 if observation yij from factor level p,

0 otherwise.

The matrix form of Equation (3.23) is E(Y − Ȳ) = (X− X̄)β still, except that now

Y =


Y11

...

Ypnp


N×1

Ȳ =


Ȳ

...

Ȳ


N×1

β =


τ1

...

τp−1


(p−1)×1

X =



1n1 · · · 0n1

...
...

0np−1 · · · 1np−1

−1np · · · −1np


N×(p−1)

X̄ =


n1−np

N
· · · np−1−np

N

...
...

n1−np

N
· · · np−1−np

N


N×(p−1)

(3.24)

Therefore, the least squares estimator of parameter β is

β̂ = [(X− X̄)′(X− X̄)]−1(X− X̄)′(Y − Ȳ) (3.25)
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where X, X̄, Y and Ȳ are from Equation (3.24).

Since (X− X̄) is a matrix with classical entries, so [(X− X̄)′(X− X̄)]−1 can be obtained

easily. The way to obtain (X− X̄)′(Y− Ȳ) is similar to that in Xu (2010, Section 2.3), i.e.,

(X− X̄)′(Y − Ȳ) = (n× Cov(Xl, Y ))(p−1)×1 , l = 1, ..., p− 1. (3.26)

Recall that xijl for Equation (3.23) is

xijl =


1 if observation yij from factor level l,

−1 if observation yij from factor level p, i = 1, ..., p, j = 1, ..., ni, l = 1, ..., p− 1,

0 otherwise;

so

xijl = Ii=l − Ii=p, i = 1, ..., p, l = 1, ..., p− 1,

which is a special case of interval-valued data with both lower and upper bounds equal to

xijl. From Billard (2008),

Cov(Xl, Y ) =
1

6N

p∑
i=1

ni∑
j=1

[2(aij − Ȳ )(xijl − X̄l) + (aij − Ȳ )(xijl − X̄l)

+(bij − Ȳ )(xijl − X̄l) + 2(bij − Ȳ )(xijl − X̄l)]. (3.27)

Substituting Equation (3.27) into Equation (3.26) and substituting Equation (3.26) into

Equation (3.25), we obtain the estimators of β, β̂ = (τ̂1, ..., τ̂p−1)′. According to Equation

(3.22) and Equation (3.19), it follows that

τ̂p = −τ̂1 − τ̂2 − · · · τ̂p−1,
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and

µ̂ = Ȳ − τ̂1x̄1 − · · · − τ̂px̄p.

3.3 Application

The original classical data set contains information for 144 chickens. The data are collected

starting from the 18th week since the chicken’s birth. Three different diets are fed to the

chicken layers. Each diet is fed to 48 chickens. The diets consist of differing amounts of

protein (low, medium, high) added to the diet. The different diets represent different costs

of producing layers. The layer body weight (variable Y1) is measured for each chicken once

every three to four weeks (16 times in total) from week 18 to 75. The average daily feed

intake (variable Y2) is recorded for each chicken weekly from week 18 to week 76. The egg

weight (variable Y3) is recorded weekly from week 20 to 76. The number of eggs per week

(variable Y4) is also recorded weekly from week 19 to 76. The percent of egg production

(number of eggs per 100 hens per day) (variable Y5) is recorded from week 19 to 76. The

producer is interested in whether different diets will cause differences among chickens by

variable Y1 to Y5. Details of the experiment and the data can be found in Shim et al. (2013).

Except for the missing and unrecorded data, there are 2274 values for Y1, 8329 values

for Y2, 7916 values for Y3, 8199 values for Y4 and 8191 values for Y5. For Y1 (see Table 3.4),

all the values that are measured in the same week from the same diet are aggregated into

an interval. Further, the interval’s lower bound is the 5th percentile and the upper bound is

the 95th percentile of the values so that extreme values in two tails can be excluded and the

spread within the interval can be more similar to a uniform distribution. For Y2 to Y5 (see

Table 3.5), they are aggregated into intervals by each diet and by every four weeks. Since

Y2 to Y5 are measured weekly, aggregating them by every four weeks instead of weekly can

keep the number of intervals at a reasonable magnitude (not too big and not too small).
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Five one-way ANOVAs are applied on the interval-valued chicken data, with Y1, Y2, Y3,

Y4 and Y5 being responses and different diets being treatments. Table 3.6 to Table 3.10 are

the ANOVA tables of these five variables.

Table 3.6: One-Way ANOVA Table for Body Weight Y1

Degrees of Sum of Mean
Source

Freedom Squares Squares
F p-value

Diet 2 0.686 0.343 9.03 0.0005

Residual 45 1.725 0.038

Total 47 2.411

Table 3.7: One-Way ANOVA Table for Daily Feed Intake Y2

Degrees of Sum of Mean
Source

Freedom Squares Squares
F p-value

Diet 2 1583.06 791.53 3.52 0.038

Residual 45 10128.09 225.07

Total 47 11711.15

Table 3.8: One-Way ANOVA Table for Egg Weight Y3

Degrees of Sum of Mean
Source

Freedom Squares Squares
F p-value

Diet 2 302.82 151.41 7.20 0.002

Residual 42 883.16 21.03

Total 44 1185.98
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Table 3.9: One-Way ANOVA Table for Number of Eggs per Week Y4

Degrees of Sum of Mean
Source

Freedom Squares Squares
F p-value

Diet 2 6 3 1.10 0.34

Residual 45 122.25 2.72

Total 47 128.25

Table 3.10: One-Way ANOVA Table for Egg Production Y5

Degrees of Sum of Mean
Source

Freedom Squares Squares
F p-value

Diet 2 1175.60 587.80 1.06 0.35

Residual 45 24954.29 554.54

Total 47 26129.90

The p-values from Tables 3.6, 3.7 and 3.8 indicate significant treatment effects. This

means different diets will cause different layer body weights (Y1), different average daily feed

intakes (Y2) and different egg weights (Y3). However, diet does not have a significant effect

on the number of eggs per week (Y4) and egg productions (Y5). The predicted overall means

and treatment effects are listed in Table 3.11.
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Table 3.11: Estimation of Overall Mean and Treatment Effects

Response µ̂ Diet 1 Diet 2 Diet 3

Y1 1.466 0.149 -0.005 -0.144

Y2 94.109 5.659 2.216 -7.875

Y3 56.213 3.057 0.227 -3.285

Y4 5.125 0.250 0.250 -0.500

Y5 73.065 3.720 3.274 -6.994

3.4 Appendix

Definition of εij

Recall that Yij = [aij, bij] is the jth observation with treatment i. For interval-valued data

Yij, the linear model for the one-way layout is

Yij = µ+ τi + εij, i = 1, ..., p, j = 1, ..., ni, (3.28)

where µ is the overall mean, τi is the ith treatment effect, the errors εij are independent

N(0, σ2) with mean 0 and variance σ2, p is the number of treatments, and ni is the number

of observations with treatment i.

In Section 3.2, εij is not defined. In fact, εij can be defined as

εij , Yij − µ− τi = [aij − µ− τi, bij − µ− τi]. (3.29)

Then,

ε̂ij = [aij − Ȳi·, bij − Ȳi·].
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Figure 3.1: Histogram of A Variable Simulated from N(0, 1)

That is, as for the Yij, the realizations of the error terms are also intervals. Also, as for

Yij, it is assumed that the error terms aggregated into each interval are uniformly spread

within each such interval. Note however the probability distribution of the errors and Yij’s

are still normally distributed. See Figure 3.1 for the histogram of a variable simulated from

N(0, 1). Values are uniformly spread within each small segment while they still follow a

normal distribution with mean as zero and variance as one.

Also, let us define the square of an interval as

[aij, bij]
2 ,

a2
ij + aijbij + b2

ij

3
. (3.30)

When aij = bij, Equation (3.30) is the square of a classical point.
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Therefore, the sum of squares of residuals can be written as

SSE =

p∑
i=1

ni∑
j=1

ε̂2ij

=

p∑
i=1

ni∑
j=1

1

3
[(aij − Ȳi·)2 + (aij − Ȳi·)(bij − Ȳi·) + (bij − Ȳi·)2] (3.31)

based on Equations (3.29) and (3.30).

On the other hand, the SSE from ANOVA Table 3.3 is

SSE =

p∑
i=1

niS
2(Yi)

where S2(Yi) can be rewritten as

S2(Yi) =
1

3ni

ni∑
j=1

[(aij − Ȳi·)2 + (aij − Ȳi·)(bij − Ȳi·) + (bij − Ȳi·)2]

according to Equation (2.8). Hence, the SSE from Table 3.3 is

SSE =

p∑
i=1

niS
2(Yi)

= ni
1

3ni

ni∑
j=1

[(aij − Ȳi·)2 + (aij − Ȳi·)(bij − Ȳi·) + (bij − Ȳi·)2]

=
1

3

ni∑
j=1

[(aij − Ȳi·)2 + (aij − Ȳi·)(bij − Ȳi·) + (bij − Ȳi·)2]. (3.32)

Equations (3.31) and (3.32) are the same term. Therefore, definitions from Equations (3.29)

and (3.30) hold here.
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Proof of Equation (3.13)

We have

NS2(Y ) =

p∑
i=1

ni(Ȳi· − Ȳ··)2 +

p∑
i=1

niS
2(Yi).

Then, from Equation (3.12) and simplifying the left hand side (LHS) of Equation (3.13), we

have

NS2(Y ) = N{ 1

3N

p∑
i=1

ni∑
j=1

(a2
ij + aijbij + b2

ij)−
1

4N2
[

p∑
i=1

ni∑
j=1

(aij + bij)]
2}

=
1

3

p∑
i=1

ni∑
j=1

(a2
ij + aijbij + b2

ij)−
N

4
(ā·· + b̄··)

2. (3.33)

Substituting the values for Ȳi·, Ȳ·· and S2(Yi) from Equation (3.12) into the right hand side

(RHS) of Equation (3.13), we can show that

p∑
i=1

ni(Ȳi· − Ȳ··)2 +

p∑
i=1

niS
2(Yi)

=

p∑
i=1

ni[
1

2
(āi· + b̄i·)−

1

2
(ā·· + b̄··)]

2

+

p∑
i=1

ni{
1

3ni

ni∑
j=1

(a2
ij + aijbij + b2

ij)−
1

4n2
i

[

ni∑
j=1

(aij + bij)]
2}

=
1

4

p∑
i=1

ni[(āi· + b̄i·)− (ā·· + b̄··)]
2

+
1

3

p∑
i=1

ni∑
j=1

(a2
ij + aijbij + b2

ij)−
1

4

p∑
i=1

ni(āi· + b̄i·)
2. (3.34)

We want to show Equations (3.33) and (3.34) are equal. After cancelling out common terms,

this is equivalent to showing

−N(ā·· + b̄··)
2 =

p∑
i=1

ni[(āi· + b̄i·)− (ā·· + b̄··)]
2 −

p∑
i=1

ni(āi· + b̄i·)
2. (3.35)
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The right hand side of Equation (3.35) is

p∑
i=1

ni[(āi· + b̄i·)
2 − 2(āi· + b̄i·)(ā·· + b̄··) + (ā·· + b̄··)

2]−
p∑
i=1

ni(āi· + b̄i·)
2

= −2

p∑
i=1

ni(āi· + b̄i·)(ā·· + b̄··) +

p∑
i=1

ni(ā·· + b̄··)
2

= −2(ā·· + b̄··)

p∑
i=1

ni(āi· + b̄i·) +N(ā·· + b̄··)
2

= −2(ā·· + b̄··)

p∑
i=1

(

ni∑
j=1

aij +

ni∑
j=1

bij) +N(ā·· + b̄··)
2

= −2(ā·· + b̄··)(Nā·· +Nb̄··) +N(ā·· + b̄··)
2

= −N(ā·· + b̄··)
2. (3.36)

Thus, Equation (3.36) is equal to the left hand side of Equation (3.35), and our result is

proved.

�

R Code For One-Way ANOVA for Interval-Valued Data

The code is adapted from Xu (2010) and it has been modified to be used for one-way ANOVA

for interval-valued data. The F-test for ANOVA has also been added.

intANOVA <- function(Y,X)

# The code is adapted from Xu (2010).

# It has been modified to be used for ANOVA.

# The F-test for one-way ANOVA is added.

# Y: Response, interval-valued

# X: Treatment, integer or character

# The data must be sorted by treatment (1,2,3,... or a,b,c,...).

{
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n=length(unique(X)) # number of levels within the factor

m=length(X) # number of observations

XX=rep(0,m*2*(n-1)) # Design matrix

dim(XX)=c(m,2,n-1) # Transfer design matrix into interval format

for (i in 1:(n-1))

{

XX[,,i][X==i,]=1

XX[,,i][X==n,]=-1

}

dim(Y)=c(m,2,1)

d=abind(Y,XX,along=3);

p=length(d[1,1,]); #number of variables including y and xi’s.

x=rep(0,m*p*2);

dim(x)=c(m,2,p);

cov=matrix(0,p,p); #covariance matrix;

corr=matrix(0,p,p); #correlation coefficient matrix;

temp=matrix(0,p,2);

xbar=c(1:p); #mean for variables:x1, x2, ..., xp;

#read in data to x;

for (i in 1:p)

{

x[,,i]=matrix(0,m,2);

x[,,i]=d[,,i];

}

#calcualte mean of variables;

for (i in 1:p)
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{

for (j in 1:2)

{

temp[i,j]=mean(x[,j,i]);

}

xbar[i]=mean(temp[i,]);

}

for (k in 1:p)

{

for (l in 1:p)

{

sum=0;

for (i in 1:m)

{

sum=sum+2*(x[i,1,k]-xbar[k])*(x[i,1,l]-xbar[l])+

(x[i,1,k]-xbar[k])*(x[i,2,l]-xbar[l])+

(x[i,2,k]-xbar[k])*(x[i,1,l]-xbar[l])+

2*(x[i,2,k]-xbar[k])*(x[i,2,l]-xbar[l]);

}

cov[k,l]=sum/6/m;

}

}

#get lower triangle part of corr matrix;

for (k in 1:p)

{

for (l in k:p)

{
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corr[k,l]=cov[k,l]/sqrt(cov[k,k])/sqrt(cov[l,l]);

}

}

#get upper triangle part of corr matrix;

for (k in 2:p)

{

for (l in 1:(k-1))

{

corr[k,l]=corr[l,k]

}

}

covxy=matrix(cov[-1,1],(p-1),1);

covxx=matrix(cov[-1,-1],(p-1),(p-1));

covyy=matrix(cov[1,1])

beta=solve(covxx)%*%covxy;

dbar=c(1:p);

for (i in 1:p)

{

dbar[i]=mean(d[,,i])

}

ybar=dbar[1];

xbar=dbar[2:p];

beta0=ybar-t(beta)%*%xbar;

beta0=as.numeric(beta0)

tau_p=-(sum(beta))

betaall=rbind(beta,tau_p);

rownames(betaall)=c(1:n)
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# F test

sstotal = as.numeric(m*covyy)

sst = 0

for (i in 1:n)

{

sst = sst + table(X)[i]*betaall[i]^2

}

sst = as.numeric(sst)

sse = sstotal-sst

mst = sst/(n-1)

mse = sse/(m-n)

F = mst/mse

p.value = 1-pf(F,n-1,m-n)

anova = c(sst, sse, sstotal, mst, mse, p.value)

list(mu=beta0,tau=betaall,"SST SSE SSTotal MST MSE Pr(>F)"=anova)

}
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Table 3.4: Chicken Data Variable Y1

Diet Week Y1

1 18 [1.04,1.29]
1 21 [1.30,1.69]
1 25 [1.30,1.73]
1 29 [1.26,1.82]
1 33 [1.30,1.82]
1 37 [1.32,1.85]
1 41 [1.35,2.02]
1 45 [1.35,1.96]
1 49 [1.28,1.96]
1 53 [1.35,2.00]
1 57 [1.39,2.09]
1 61 [1.37,2.03]
1 65 [1.36,2.04]
1 69 [1.38,2.09]
1 72 [1.38,2.11]
1 75 [1.35,2.12]
2 18 [1.04,1.27]
2 21 [1.35,1.59]
2 25 [1.30,1.60]
2 29 [1.23,1.59]
2 33 [1.21,1.66]
2 37 [1.17,1.62]
2 41 [1.17,1.64]
2 45 [1.19,1.68]
2 49 [1.18,1.71]
2 53 [1.23,1.74]
2 57 [1.25,1.81]
2 61 [1.26,1.77]
2 65 [1.26,1.81]
2 69 [1.32,1.82]
2 72 [1.31,1.83]
2 75 [1.30,1.83]
3 18 [1.06,1.28]
3 21 [1.27,1.64]
3 25 [1.16,1.69]
3 29 [1.08,1.70]
3 33 [1.02,1.61]
3 37 [0.99,1.55]
3 41 [1.01,1.58]
3 45 [1.00,1.62]
3 49 [1.02,1.60]
3 53 [1.03,1.50]
3 57 [1.09,1.59]
3 61 [1.04,1.59]
3 65 [1.06,1.62]
3 69 [0.99,1.62]
3 72 [1.06,1.65]
3 75 [0.97,1.62]
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Table 3.5: Chicken Data Variable Y2 - Y5

Diet Week Y2 Y3 Y4 Y5

1 16-19 [43.24,103.27] [0.00,2.00] [0.00,28.57]
1 20-23 [77.59,117.77] [41.20,57.98] [0.00,7.00] [0.00,100.00]
1 24-27 [78.00,114.26] [49.41,62.48] [5.00,7.00] [71.43,100.00]
1 28-31 [81.64,120.07] [52.19,64.83] [4.00,7.00] [57.14,100.00]
1 32-35 [82.20,114.53] [51.61,65.07] [5.00,7.00] [71.43,100.00]
1 36-39 [82.10,118.56] [50.29,65.82] [5.00,7.00] [71.43,100.00]
1 40-43 [90.77,116.86] [52.73,66.46] [6.00,7.00] [85.71,100.00]
1 44-47 [88.77,116.96] [51.79,65.61] [5.00,7.00] [71.43,100.00]
1 48-51 [90.20,115.33] [52.74,65.59] [6.00,7.00] [85.71,100.00]
1 52-55 [89.76,121.60] [53.36,66.15] [5.00,7.00] [71.43,100.00]
1 56-59 [88.59,121.63] [53.02,67.49] [5.00,7.00] [71.43,100.00]
1 60-63 [84.63,118.70] [54.33,69.33] [5.00,7.00] [71.43,100.00]
1 64-67 [83.97,118.29] [55.43,68.27] [4.00,7.00] [57.14,100.00]
1 68-71 [84.40,117.93] [55.16,69.56] [3.00,7.00] [42.86,100.00]
1 72-75 [84.39,116.53] [55.29,69.13] [4.00,7.00] [57.14,100.00]
1 76-79 [89.70,120.36] [55.54,70.26] [3.00,7.00] [42.86,100.00]
2 16-19 [33.71,99.34] [0.00,1.00] [0.00,14.29]
2 20-23 [76.04,110.97] [41.70,55.49] [0.00,7.00] [0.00,100.00]
2 24-27 [80.40,114.57] [50.07,58.71] [5.00,7.00] [71.43,100.00]
2 28-31 [77.84,117.76] [49.81,59.70] [5.00,7.00] [71.43,100.00]
2 32-35 [70.37,114.83] [49.32,60.69] [5.00,7.00] [71.43,100.00]
2 36-39 [74.93,117.59] [49.32,60.22] [4.00,7.00] [57.14,100.00]
2 40-43 [76.59,114.69] [49.90,60.89] [4.00,7.00] [57.14,100.00]
2 44-47 [82.77,116.44] [50.74,61.06] [5.00,7.00] [71.43,100.00]
2 48-51 [81.66,117.70] [50.53,61.63] [5.00,7.00] [57.14,100.00]
2 52-55 [84.36,121.70] [50.49,62.88] [5.00,7.00] [71.43,100.00]
2 56-59 [83.53,121.87] [50.97,63.86] [5.00,7.00] [71.43,100.00]
2 60-63 [85.20,120.06] [54.09,64.66] [5.00,7.00] [71.43,100.00]
2 64-67 [83.17,116.99] [55.05,66.48] [5.00,7.00] [71.43,100.00]
2 68-71 [82.71,115.29] [54.50,64.76] [5.00,7.00] [71.43,100.00]
2 72-75 [77.37,115.76] [54.00,64.99] [4.00,7.00] [57.14,100.00]
2 76-79 [75.63,120.59] [53.00,63.73] [4.00,7.00] [57.14,100.00]
3 16-19 [36.64,94.37] [0.00,2.00] [0.00,28.57]
3 20-23 [73.00,109.51] [40.70,54.35] [0.00,7.00] [0.00,100.00]
3 24-27 [66.73,120.83] [45.94,56.13] [5.00,7.00] [71.43,100.00]
3 28-31 [59.01,112.67] [46.76,56.92] [4.00,7.00] [57.14,100.00]
3 32-35 [53.37,105.29] [46.35,57.53] [3.00,7.00] [42.86,100.00]
3 36-39 [58.14,111.41] [46.86,56.94] [3.00,7.00] [42.86,100.00]
3 40-43 [60.77,112.46] [48.10,57.93] [3.00,7.00] [42.86,100.00]
3 44-47 [60.11,112.17] [48.18,58.33] [3.00,7.00] [42.86,100.00]
3 48-51 [55.36,110.49] [48.03,58.43] [3.00,6.00] [42.86,85.71]
3 52-55 [63.43,118.29] [47.77,58.92] [3.00,7.00] [42.86,100.00]
3 56-59 [74.30,119.36] [48.43,59.98] [3.00,7.00] [42.86,100.00]
3 60-63 [70.77,118.36] [49.38,60.68] [3.00,7.00] [42.86,100.00]
3 64-67 [61.50,114.53] [49.62,60.32] [3.00,7.00] [42.86,100.00]
3 68-71 [56.40,111.46] [48.88,59.35] [2.00,7.00] [28.57,100.00]
3 72-75 [60.34,107.49] [48.36,60.23] [2.00,6.00] [28.57,85.71]
3 76-79 [57.37,113.59] [48.83,59.63] [3.00,7.00] [42.86,100.00]
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Chapter 4

Hierarchical Divisive Monothetic

Clustering Method for

Interval-Valued Data

As discussed in Billard and Diday (2006), there are numerous clustering methods for both

classical data and symbolic data. Clustering structures can be either hierarchical or agglom-

erative. If the clustering process starts with each observation being a cluster of size one and

aggregates clusters at each stage, which is a bottom-up process, then it is agglomerative

clustering. If two clusters from the same stage have at least one observation in common,

i.e., their intersection is not the null set, condition 3 in Definition 2.4.8 will not be met and

the agglomerative clustering structure will be pyramidal. This agglomerative process is in

contrast to the top-down divisive clustering defined in Definition 2.4.9. In this dissertation,

the focus in on divisive clustering. When performing divisive clustering, we can partition

the data according to either one single variable (monothetic method) or all variables si-

multaneously (polythetic method). Also, we need to determine the distance measure to be

used.
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Chavent (1998, 2000) developed the first divisive monothetic clustering method for in-

terval data by using Hausdorff (1937) distances. Billard and Diday (2006) demonstrated the

algorithm in-depth by analyzing practical data using different Hausdorff distances. However,

the algorithm has not been implemented in the software package R, and comparisons among

different Hausdorff distances have never been made.

In this chapter, the hierarchical divisive monothetic method is applied to interval-valued

data using different Hausdorff distances defined in Section 2.4. There are other distances like

Gowda-Diday (1991, 1992) and Ichino-Yaguchi (1994) distances which can also be used in

divisive clustering method. Gowda-Diday distance utilizes three terms to capture the relative

size, relative content and relative measure between two intervals. Ichino-Yaguchi distance

also calculates the difference between two intervals by using three terms. Besides that, meet

and join operators are applied on these three terms by Ichino-Yaguchi distance. Although

Gowda-Diday and Ichino-Yaguchi distances are able to capture the difference between two

intervals in a comprehensive way by doing calculation on three terms, the drawback in

computing time is obvious. Hausdorff distance, on the other hand, is easy to understand

and calculate, and more importantly, needs less computing time when it is implemented.

This dissertation focuses on the Hausdorff distance.

Section 4.1 gives the detailed algorithm of applying the method to interval-valued data.

Simulations are run in Section 4.2 in order to compare different Hausdorff distances and

learn their advantages and disadvantages. In Section 4.3, the method is applied to some

practical data sets. Finally, some notes to which attention needs to be paid given taken in

Section 4.4.
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4.1 Clustering Algorithm

Let X = (X1, ..., Xp) be an interval-valued data set with Xij = [aij, bij], aij ≤ bij, i = 1, ..., n,

j = 1, ..., p, where Xj is the jth variable. Let X(i) denote the ith observation of an interval-

valued data set and X(i) = (Xi1, ..., Xip).

Suppose we have n interval-valued observations X(i) ∈ Ω = {X(1), ...,X(n)} where Ω is

a set of all observations. Let Cr
u be the uth cluster from the rth stage of clustering. At stage

r, Ω =
⋃r
u=1C

r
u with Cr

u containing observations Cr
u = {Xru(1), ...,Xru(nru)} where Xru(i′),

i′ = 1, ..., nru, is the i′th observation in the uth cluster and nru is the number of observations

in the uth cluster.

Recall the four different Hausdorff distances between two interval-valued observations

X(i1) and X(i2), i1, i2 = 1, ..., n, introduced in Section 2.4:

• Hausdorff distance

dj(X(i1),X(i2)) = max{|ai1j − ai2j|, |bi1j − bi2j|}, j = 1, ..., p; (4.1)

• Euclidean Hausdorff distance

d(X(i1),X(i2)) = {
p∑
j=1

[dj(X(i1),X(i2))]2}1/2; (4.2)

• Span Normalized Euclidean Hausdorff distance

d(X(i1),X(i2)) =

{
p∑
j=1

[
dj(X(i1),X(i2))

|Yj|

]2
}1/2

(4.3)

where the span is |Yj| = maxi(bij)−mini(aij);
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• Normalized Euclidean Hausdorff distance

d(X(i1),X(i2)) =

{
p∑
j=1

[
dj(X(i1),X(i2))

Hj

]2
}1/2

(4.4)

where

H2
j =

1

2n2

n∑
i1=1

n∑
i2=1

[dj(X(i1),X(i2))]2, j = 1, ..., p.

We have introduced the clustering criteria in Section 2.4. The hierarchical divisive mono-

thetic clustering algorithm for interval-valued data is as follows (an illustration can be found

in Billard and Diday, 2006):

Step 1.

Within the uth cluster at the rth stage, sort observations according to the jth variable as

follows:

First, calculate the nru means by

X̄ru
ij =

aruij + bruij
2

, i = 1, ..., nru,

where Xru
ij = [aruij , b

ru
ij ] is the ith observation for variable j from the uth cluster at the rth

stage, and nru is the number of observations in the uth cluster at the rth stage. Then,

reorder the observations {Xru(1), ...,Xru(nru)} by increasing mean values X̄ru
ij to obtain:

{Xru
(1), ...,X

ru
(nru)}.

Step 2.

After Step 1, cut the cluster at the qth cut-point:

Cut Cr
u = {Xru

(1), ...,X
ru
(nru)} into Cr+1

u = {Xru
(1), ...,X

ru
(q)} and Cr+1

u+1 = {Xru
(q+1), ...,X

ru
(nru)}.
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Calculate

∆ru
jq , I(Cr

u)− I(Cr+1
u )− I(Cr+1

u+1)

where ∆ru
jq is the amount that the total within-cluster variation decreased from Pr to Pr+1 if

we use the jth variable and cut-point q for the uth cluster at the rth stage, and where I(Cr
u)

is given in Equation (2.30). In Equation (2.30), d(i1, i2) can be one of the distances given in

Equations (4.1), (4.2), (4.4) and (4.3).

Note: If the Hausdorff distance (Equation (4.1)) is used, we use the same variable in Step

1 for calculating distances; if the Euclidean Hausdorff distance (Equation (4.2)) is used,

distances between observations do not depend on the chosen variable, and hence remain the

same across all variables; if the Span Normalized Euclidean Hausdorff distance (Equation

(4.3)) and Normalized Euclidean Hausdorff distance (Equation (4.4)) are used, either the

distances can be recalculated at each cluster since, from Equation (4.3) and Equation (4.4),

the normalization factors Yj and Hj can rely on the (sub)cluster size, or the distances can

keep invariant like the Euclidean Hausdorff distance since the normalization factors can rely

on the data size. More details will be discussed in later sections.

Step 3.

Within the uth cluster at the rth stage, repeat Step 1 and Step 2 for all j = 1, ..., p, q =

1, ..., nru − 1, and obtain

∆ru = maxj,q(∆
ru
jq ), j = 1, ..., p, q = 1, ..., nru.

Step 4.

At the rth stage, repeat Step 3 for u = 1, ..., r, and obtain

∆r = maxu(∆
ru), u = 1, ..., r.
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Step 5.

At the rth stage, choose (u∗, j∗, q∗) such that ∆ru∗
j∗q∗ = ∆r.

If |{∆ru∗
j∗q∗}| > 1, i.e., if ∆ru∗

j∗q∗ is not unique, then select (u∗∗, j∗∗, q∗∗) such that

dj∗∗(X
ru∗∗

q∗∗j∗∗ , X
ru∗∗

q∗∗+1,j∗∗) = max
u∗,j∗,q∗

[dj∗(X
ru∗

q∗j∗ , X
ru∗

q∗+1,j∗)]

where dj(i1, i2) is the Hausdorff distance given in Equation (4.1);

if |{∆ru∗
j∗q∗}| = 1, i.e., ∆ru∗

j∗q∗ is unique, then (u∗∗, j∗∗, q∗∗) = (u∗, j∗, q∗). The cut-point is

cr =
X̄ru∗∗
q∗∗j∗∗ + X̄ru∗∗

q∗∗+1,j∗∗

2

where X̄ru
ij is given in Step 1.

Step 6.

At the rth stage, cut the u∗∗th cluster. The criterion is

Is X̄ru∗∗

ij∗∗ ≤ cr?, i = 1, ..., nru∗∗ .

If Yes, then the observation i goes into cluster Cr+1
u∗∗ . If No, then it goes into cluster Cr+1

u∗∗+1.

Step 7.

At the (r + 1)th stage, the rest of the clusters, except for Cr+1
u∗∗ and Cr+1

u∗∗+1, inherit from the

clusters at the rth stage, respectively, that is,

Cr+1
1 = Cr

1 , ..., C
r+1
u∗∗−1 = Cr

u∗∗−1, C
r+1
u∗∗+2 = Cr

u∗∗+1, ..., C
r+1
r+1 = Cr

r .

For easier understanding, Step 1 to Step 7 can be summarized as:
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Step 1 Sort interval observations within the cluster according to one variable by increasing

mean values;

Step 2 Separate the cluster into two clusters according to the variable used in Step 1;

Step 3 Try all the variables and all the separations (repeat Step 1 and Step 2) in order to

find a separation causing the maximum decrease of the total within-cluster variation

(see Equation (2.33));

Step 4 Repeat Step 3 for all the clusters in order to find a separation causing the maximum

decrease of the total within-cluster variation (see Equation (2.33));

Step 5 If there exist more than one separation causing the same maximum decrease, choose

the separation causing the maximum Hausdorff distance between two separated inter-

vals;

Step 6 Separate the cluster found in Step 4 and Step 5;

Step 7 Those clusters that are not separated in Step 6 remain the same.

Step 1 to Step 7 can be repeated from r = 1 until as many as necessary, as long as there

is more than one observation in any cluster.

The code in R to implement this algorithm is given in Appendix 4.5.

4.2 Simulation Studies

We consider six Hausdorff distances. We have mentioned that there are Hausdorff distance

(H), Euclidean Hausdorff Distance (EH), Span Normalized Euclidean Hausdorff distance

(SNEH) and Normalized Euclidean Hausdorff distance (NEH). As noted in Step 2 from

Section 4.1, either the normalization factors for normalized distances, |Yj| and Hj from
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Equation (4.3) and Equation (4.4), can be recalculated at each cluster, or they can keep

invariant at each cut. If they rely on the (sub)cluster size (n = (sub)cluster size) and

hence should be recalculated at each step, let us call the two normalized distances Local

Span Normalized Euclidean Hausdorff distance (LSNEH) and Local Normalized Euclidean

Hausdorff distance (LNEH). Otherwise, if they rely on the data set size (n = data set size)

and therefore are invariant from the beginning, let us call them Global Span Normalized

Euclidean Hausdorff distance (GSNEH) and Global Normalized Euclidean Hausdorff distance

(GNEH). Simulation studies to compare these six distances will be performed in this section,

and advantages and disadvantages of each distance will also be discussed.

Case 1: An Intuitive Example

In the first simulation study, we consider a common situation where observations can be easily

separated into their corresponding clusters if interval-valued data are used. The process of

the simulation is as follows:

Simulation Step 1.

First, 1000 random samples are simulated from bivariate normal distributions

N2


 10

15

 ,

 10 0

0 10


 (4.5)

and

N2


 20

15

 ,

 10 0

0 10


 , (4.6)

respectively. Therefore, there are 2000 classical sample points generated in total. Figure 4.1

shows the scatter plot of these points.

Simulation Step 2.
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Figure 4.1: Simulated Data from Equations (4.5) and (4.6)

Now, we need to determine the number of classical points to be aggregated in order to form

an interval. For example, if we decide to use 100 points for one interval, we take the first

100 points out of the 1000 points simulated according to Equation (4.5) in Simulation Step

1, and set the 5th percentile of 100 points as the lower bound of the interval and the 95th

percentile of 100 points as the upper bound of the interval. This aggregates the first 100

points into an interval X(1). The process can be continued until all the classical points have

been aggregated and we therefore have interval-valued observations

{X(1), ...,X(10)} ∼ N2


 10

15

 ,

 10 0

0 10



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and

{X(11), ...,X(20)} ∼ N2


 20

15

 ,

 10 0

0 10


 .

The number of points to be aggregated into an interval determines the number of intervals

inherited from a classical data set. In order to learn the impact of the number of intervals

on clustering results, the same 2000 classical points simulated in Simulation Step 1 are

aggregated to 4, 10, 20, 40 and 100 intervals each time, with 500, 200, 100, 50 and 20 points

to constitute an interval, respectively.

Simulation Step 3.

Then, the hierarchical divisive monothetic clustering method is applied to 4, 10, 20, 40

and 100 interval-valued observations using each of the six different Hausdorff distances and

the clustering stops when the data are divided into two clusters (i.e., at the 2nd stage of

the divisive clustering process) since there are two underlying clusters. Both accuracy and

computing time are reported for each combination (5× 6 = 30 combinations in total).

Definition 4.2.1. For a given data set, the accuracy of the clustering result is the propor-

tion of observations that are correctly allocated to its underlying cluster. It ranges from 0.5

to 1.

Let us consider the example in Simulation Step 2, where {X(1), ...,X(20)} are from two

different distributions and thus should be grouped into two underlying clusters

C1 = {X(1), ...,X(10)} and C2 = {X(11), ...,X(20)}.

Example 4.2.2. Suppose the two clusters from the result are C∗1 = {X(1), ...,X(10)} and

C∗2 = {X(11), ...,X(20)}, then the accuracy is 1.

Example 4.2.3. Suppose the clustering result is C∗1 = {X(1), ...,X(10),X(11), ...,X(15)}

and C∗2 ={X(16), ..., X(20)}. In C∗1 , 66.7% (10
15

= 66.7%) and 33.3% ( 5
15

= 33.3%) of the
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observations are from C1 and C2, respectively. In C∗2 , 100% of the observations are from

C2. Hence, C∗1 ’s underlying cluster is C1 and C∗2 ’s underlying cluster is C2. Accordingly,

{X(11), ...,X(15)} do not belong to C1 and are wrongly grouped. Therefore, the accuracy =

1− 5
20

= 0.75.

Example 4.2.4. Suppose the clustering result is C∗1 = {X(1), ...,X(3),X(11), ...,X(14)} and

C∗2 = {X(4), ...,X(10),X(15), ...,X(20)}. In C∗1 , 42.9% (3
7

= 42.9%) and 57.1% (4
7

= 57.1%)

of the observations are from C1 and C2, respectively. In C∗2 , 7
13

= 53.8% of the observations

are from C1 and 6
13

= 46.2% of the observations are from C2. Hence, C∗1 ’s underlying

cluster is C2 and C∗2 ’s underlying cluster is C1. Accordingly, {X(1), ...,X(3)} do not belong

to C2 and {X(15), ...,X(20)} do not belong to C1, and are wrongly grouped. Therefore, the

accuracy = 1− 9
20

= 0.55.

Example 4.2.5. If the observations are randomly grouped into two clusters, the expected

number of observations within each cluster will be 10 and the expected percentage of observa-

tions from C1 and C2 within each cluster will be 50%. Hence, the accuracy = 10×50%+10×50%
20

=

0.5.

Simulation Step 4.

Finally, Simulation Steps 1 to 3 are repeated 1000 times. The mean and standard deviation

of accuracy and computing time are calculated.

Table 4.1 shows the means and standard deviations of accuracy and computing time

of doing clustering on 4, 10, 20, 40 and 100 intervals by using the six different Hausdorff

distances for 1000 replications. Table 4.2 counts the number of times each variable (either

X1 or X2) is used for cutting among 1000 replications (a cutting variable is the variable

chosen in Step 5 and 6 from Section 4.1).

It can be seen that all the intervals, except for a few under GNEH and LNEH, are

correctly grouped into its underlying clusters by using the different Hausdorff distances. In
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Table 4.1: Mean and Standard Deviation of Accuracy and Computing Time

# of Intervals H EH GSNEH GNEH LSNEH LNEH
Mean (SD) of Accuracy

4 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.976 (0.075) 1.000 (0.000) 0.976 (0.075)
10 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.999 (0.008) 1.000 (0.000) 0.999 (0.008)
20 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.003) 1.000 (0.000) 1.000 (0.003)
40 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.001) 1.000 (0.000) 1.000 (0.001)
100 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

Mean (SD) of Computing Time (s)
4 0.008 (0.009) 0.008 (0.010) 0.009 (0.010) 0.008 (0.010) 0.011 (0.011) 0.010 (0.010)
10 0.011 (0.012) 0.014 (0.009) 0.014 (0.009) 0.014 (0.010) 0.022 (0.010) 0.022 (0.010)
20 0.019 (0.009) 0.029 (0.010) 0.029 (0.010) 0.029 (0.011) 0.060 (0.013) 0.061 (0.013)
40 0.050 (0.011) 0.082 (0.012) 0.086 (0.012) 0.086 (0.013) 0.201 (0.017) 0.200 (0.018)
100 0.290 (0.023) 0.528 (0.031) 0.529 (0.033) 0.529 (0.035) 1.235 (0.068) 1.212 (0.063)

this example, it is obvious that X1 should be the right variable to use for cutting in order

to separate the two clusters. However, by looking at Table 4.2, we can see that when the

number of intervals is small, like 4, GSNEH, GNEH, LSNEH and LNEH will use X2 to do the

cutting occasionally. This is due to the normalization step when calculating these distances.

Notice that in Figure 4.1, the variation along X1 is larger than that along X2. Hence,

the normalization factor |Yj| and Hj introduced in Equation (4.3) and Equation (4.4) are

larger when j = 1, i.e.,

|Y1| > |Y2| and H1 > H2.

For any interval observations X(i1) and X(i2) from the left cluster (the cluster with solid

dots in Figure 4.1) and the right cluster (the cluster with hollow squares in Figure 4.1),

respectively,

d1(X(i1),X(i2)) > d2(X(i1),X(i2))
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Table 4.2: Number of Times Each Variable Is Used For Cutting

# of Intervals Variable H EH GSNEH GNEH LSNEH LNEH
X1 1000 999 995 918 995 918

4
X2 0 1 5 82 5 82
X1 1000 1000 1000 999 1000 999

10
X2 0 0 0 1 0 1
X1 1000 1000 1000 1000 1000 1000

20
X2 0 0 0 0 0 0
X1 1000 1000 1000 1000 1000 1000

40
X2 0 0 0 0 0 0
X1 1000 1000 1000 1000 1000 1000

100
X2 0 0 0 0 0 0

where dj(X(i1),X(i2)) is the Hausdorff distance between X(i1) and X(i2) for variable Xj.

However, it is possible that when |Y1| and H1 become much larger than |Y2| and H2,

d1(X(i1),X(i2))

|Y1|
<
d2(X(i1),X(i2))

|Y2|

and

d1(X(i1),X(i2))

H1

<
d2(X(i1),X(i2))

H2

.

Hence, the Normalized distances between X(i1) and X(i2)

d(X(i1),X(i2)) =

{
2∑
j=1

[
dj(X(i1),X(i2))

|Yj|

]2
}1/2

and

d(X(i1),X(i2)) =

{
2∑
j=1

[
dj(X(i1),X(i2))

Hj

]2
}1/2
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will be dominated by

d2(X(i1),X(i2))

|Y2|
and

d2(X(i1),X(i2))

H2

;

i.e., variable X2 will be used as the cutting variable since the clustering process believes that

the two clusters are more dissimilar to each other along variable X2 while this is not true

according to Figure 4.1. Here, Span Normalized distances perform better than Normalized

distances since H1 is much larger than H2 in this case while |Y1| is just a little larger than

|Y2|.

In Table 4.1, the computing time increases quadratically when the number of intervals

increases. For example, by doing a linear regression of Computing Time on (Number of

Intervals)2, the relationship between computing time and the number of intervals when

using the Hausdorff distance is

Computing Time = 0.0071 + 0.000028× (Number of Intervals)2.

Clustering using the Hausdorff distance is the fastest method, which is not surprising since,

unlike other distances, the Hausdorff distance utilizes only one variable at a time when

calculating distances. The computing times for EH, GSNEH and GNEH distances are longer

and are similar to each other. That is because they utilize all the variables when calculating

distances. The LSNEH and LNEH distances need the most amount of time doing clustering

since they not only utilize all the variables when calculating distances, but also recalculate

distances at each cluster.

Case 2: A Bad Example For Hausdorff Distance

Now, let us consider a situation where the scales of two variables are of different magnitudes.

The steps for this simulation study are the same as those in Section 4.2, except that the first
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Figure 4.2: Simulated Data from Equations (4.7) and (4.8)

1000 classical random samples are simulated from the bivariate normal distribution

N2


 14

15

 ,

 0.1 0

0 30


 (4.7)

and the other 1000 classical random samples are simulated from

N2


 16

15

 ,

 0.1 0

0 0.1


 . (4.8)

See Figure 4.2 for their distributions. Therefore, the corresponding interval valued observa-

tions are

{X(1), ...,X(
k

2
)} ∼ N2


 14

15

 ,

 0.1 0

0 30



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and

{X(
k

2
+ 1), ...,X(k)} ∼ N2


 16

15

 ,

 0.1 0

0 0.1




where k = 4, 10, 20, 40 and 100. Table 4.3 lists the means and standard deviations of accuracy

and computing time of doing clustering on 4, 10, 20, 40 and 100 intervals by using different

distances for 1000 replications. Table 4.4 lists the number of times each variable is used for

splitting.

Table 4.3: Mean and Standard Deviation of Accuracy and Computing Time

# of Intervals H EH GSNEH GNEH LSNEH LNEH
Mean (SD) of Accuracy

4 0.873 (0.125) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
10 0.826 (0.071) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
20 0.795 (0.055) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
40 0.769 (0.042) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
100 0.746 (0.029) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

Mean (SD) of Computing Time (s)
4 0.008 (0.010) 0.009 (0.010) 0.009 (0.010) 0.009 (0.010) 0.010 (0.010) 0.011 (0.010)
10 0.012 (0.010) 0.015 (0.010) 0.015 (0.011) 0.014 (0.010) 0.023 (0.010) 0.024 (0.011)
20 0.021 (0.010) 0.030 (0.011) 0.030 (0.011) 0.031 (0.012) 0.063 (0.013) 0.063 (0.014)
40 0.052 (0.012) 0.086 (0.013) 0.088 (0.013) 0.089 (0.013) 0.207 (0.016) 0.208 (0.017)
100 0.301 (0.018) 0.544 (0.023) 0.547 (0.022) 0.546 (0.023) 1.273 (0.033) 1.267 (0.034)

Table 4.4: Number of Times Each Variable Is Used For Cutting

# of Intervals Variable H EH GSNEH GNEH LSNEH LNEH
X1 0 508 508 508 508 508

4
X2 1000 492 492 492 492 492
X1 0 955 954 954 954 954

10
X2 1000 45 46 46 46 46
X1 0 998 998 998 998 998

20
X2 1000 2 2 2 2 2
X1 0 1000 1000 1000 1000 1000

40
X2 1000 0 0 0 0 0
X1 0 1000 1000 1000 1000 1000

100
X2 1000 0 0 0 0 0
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In this example, except for the Hausdorff distance, all other distances are able to group

interval observations into their underlying clusters perfectly. Since the Hausdorff distance

utilizes just one variable when calculating distances, the calculation of the distance between

two observations can easily be dominated by the variable with larger scale (variable X2 in this

example), and the distance is exaggerated. As a consequence, the within-cluster variation

I(Cr
u) (Equation (2.30)) will be calculated based on X2, and ∆ru and ∆r in Step 3 and Step

4 of Section 4.1 will also be obtained by using X2. Therefore, X2 will always be the variable

to be used for cutting, even if it is not the best choice. This can also be observed in Table 4.4

where X2 is used for splitting 1000 out of 1000 times when the Hausdorff distance is used.

Figure 4.3 is the clustering result of one simulated data set when k = 20 using the

Hausdorff distance. As discussed above, variable X2 is dominating the clustering process all

the time while the data should better be clustered by variable X1. Although observations

{2, 3, 4, 9} are successfully separated from {11, ..., 20} at stage 3, the clustering process should

have stopped at stage 2 instead of turning the result into 3 clusters.

The accuracy of using the Hausdorff distance decreases when the number of intervals

increases. As mentioned in Section 4.2, if more intervals are generated from a classical data

set, that means there are fewer points needed to constitute one interval. Therefore, each

interval contains less information about the underlying cluster to which it belongs; and for

those intervals belonging to the same underlying cluster, their between-interval variations

increase. This will cause the total within-cluster variation (Equation (2.32)) of each underly-

ing cluster to increase. Therefore, it will be harder for the clustering process to discover the

underlying cluster structure since the process is always trying to minimize the total within-

cluster variation to find the best clustering structure. This gives us an idea that sometimes

aggregating a classical data set into too many intervals may not be a good idea. Instead,

aggregating the data set into fewer intervals may give better results.

Statistics of Table 4.3 computing time are similar to those in Table 4.1. Computing time
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Figure 4.3: Clustering Result Using Hausdorff Distance for Simulation Case 2

increases quadratically when the number of intervals increases. The order of time needed

for clustering is {H} < {EH, GSNEH, GNEH} < {LSNEH, LNEH} (”<” represents

”less than”).

Case 3: A Bad Example For Hausdorff/Euclidean Hausdorff Dis-

tance

Although the Euclidean Hausdorff distance performs well in the Case 2 study, it can still meet

with problems when the scale of one variable is extraordinary larger than other variables.

Consider an example where the first 1000 classical random samples are simulated from

N2


 14

15

 ,

 0.1 0

0 30


 (4.9)
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Figure 4.4: Simulated Data from Equations (4.9) and (4.10)

and the second 1000 classical random samples are simulated from

N2


 16

15

 ,

 0.1 0

0 30


 . (4.10)

See Figure 4.4 for their distributions. The interval valued observations aggregated from these

data are

{X(1), ...,X(
k

2
)} ∼ N2


 14

15

 ,

 0.1 0

0 30




and

{X(
k

2
+ 1), ...,X(k)} ∼ N2


 16

15

 ,

 0.1 0

0 30



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where k = 4, 10, 20, 40 and 100. The rest of the simulation process is the same as those in

Section 4.2. Table 4.5 lists the means and standard deviations of accuracy and computing

time of doing clustering on 4, 10, 20, 40 and 100 intervals by using the six different distances

for 1000 replications. Table 4.6 lists the number of times each variable is used for splitting.

Table 4.5: Mean and Standard Deviation of Accuracy and Computing Time

# of Intervals H EH GSNEH GNEH LSNEH LNEH
Mean (SD) of Accuracy

4 1.000 (0.000) 1.000 (0.011) 1.000 (0.000) 0.975 (0.076) 1.000 (0.000) 0.975 (0.076)
10 0.994 (0.051) 0.992 (0.050) 1.000 (0.000) 0.999 (0.009) 1.000 (0.000) 0.999 (0.009)
20 0.925 (0.163) 0.940 (0.141) 1.000 (0.000) 1.000 (0.003) 1.000 (0.000) 1.000 (0.003)
40 0.614 (0.148) 0.650 (0.164) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
100 0.540 (0.028) 0.545 (0.031) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

Mean (SD) of Computing Time (s)
4 0.009 (0.010) 0.009 (0.010) 0.009 (0.011) 0.009 (0.010) 0.011 (0.010) 0.011 (0.010)
10 0.012 (0.010) 0.014 (0.010) 0.014 (0.010) 0.014 (0.010) 0.023 (0.010) 0.023 (0.011)
20 0.020 (0.009) 0.030 (0.011) 0.030 (0.011) 0.030 (0.012) 0.063 (0.013) 0.063 (0.013)
40 0.052 (0.012) 0.087 (0.013) 0.088 (0.013) 0.089 (0.012) 0.207 (0.017) 0.206 (0.018)
100 0.309 (0.022) 0.539 (0.023) 0.547 (0.022) 0.546 (0.024) 1.270 (0.033) 1.278 (0.032)

Table 4.6: Number of Times Each Variable Is Used For Cutting

# of Intervals Variable H EH GSNEH GNEH LSNEH LNEH
X1 1000 993 1000 896 1000 896

4
X2 0 7 0 104 0 104
X1 986 977 1000 997 1000 997

10
X2 14 23 0 3 0 3
X1 821 843 1000 1000 1000 1000

20
X2 179 157 0 0 0 0
X1 118 166 1000 1000 1000 1000

40
X2 882 834 0 0 0 0
X1 0 0 1000 1000 1000 1000

100
X2 1000 1000 0 0 0 0

It can be seen that Hausdorff and Euclidean Hausdorff distances perform worse as the

number of intervals increases, because they tend to use X2 as the splitting variable when

the number of intervals increases; when the number of intervals reaches 100, they use X2 for
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cutting all the time. However, from Figure 4.4, it is obvious that X1 should be chosen as

the cutting variable. Otherwise, the result cannot be right since the two underlying clusters

have the same mean and variance along variable X2.

All other Normalized distances still perform well in this case since the impact of X1’s

large scale is eliminated by doing normalization.

Case 4: A Bad Example For Global (Span) Normalized Euclidean

Hausdorff Distance

In this simulation study, we want to compare the Global Normalization with the Local

Normalization Hausdorff distance. As mentioned before, |Yj| and Hj from Equations (4.3)

and (4.4) can either rely on the the total number of observations in the data set, or they can

rely on the number of observations within the cluster that the clustering process is going

through. Chavent (1998) mentioned the different performances between these two choices by

a real example with classical data. Advantages and disadvantages between the two choices

have not yet been discussed in the literature, and the global normalized distances have not

been applied to symbolic data yet.

The first 1000 classical random samples are simulated from

N2


 2

5

 ,

 1 0

0 1


 , (4.11)

the next 1000 classical random samples are simulated from

N2


 7

5

 ,

 1 0

0 1


 , (4.12)
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Figure 4.5: Simulated Data from Equations (4.11), (4.12) and (4.13)

and the last 1000 classical random samples are simulated from

N2


 50

5

 ,

 1 0

0 1


 . (4.13)

See Figure 4.5 for their distributions. The interval valued observations aggregated from these

data are

{X(1), ...,X(10)} ∼ N2


 2

5

 ,

 1 0

0 1


 ,

{X(11), ...,X(20)} ∼ N2


 7

5

 ,

 1 0

0 1


 ,

and

{X(21), ...,X(30)} ∼ N2


 50

5

 ,

 1 0

0 1




with 100 classical points to construct an interval. It is obvious that the data are overdispersed

along variable X1.

Figure 4.6 is the clustering result of one simulated data set using the six different dis-
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tances. Except for the two Global Normalized distances (Figure 4.6 (C) and (D)), other

distances are able to group the observations successfully into three underlying clusters. All

the distances separate {X(21), ...,X(30)} (hollow round dots on the right in Figure 4.5) from

other observations using X1 as the cutting variable at the 1st stage of the clustering. Since

the data are dispersed along X1, |Y1| and H1 are very large at the 1st stage. At the 2nd stage,

{X(1), ...,X(20)} are supposed to be divided into two groups like {X(1), ...,X(10)} (solid

round dots on the left in Figure 4.5) and {X(11), ...,X(20)} (hollow square dots on the left in

Figure 4.5) along X1. It is obvious that the variation along variable X1 will be much smaller

after removing {X(21), ...,X(30)} (see Figure 4.5). Nevertheless, GSNEH and GNEH dis-

tances will still use the same |Y1| and H1 from the 1st stage to calculate distances when

separating {X(1), ...,X(20)}. As discussed in Section 4.2, the Global Normalized distances

between two observations X(i1) and X(i2) at the 2nd stage are

d(X(i1),X(i2)) =

{
2∑
j=1

[
dj(X(i1),X(i2))

|Yj|

]2
}1/2

and

d(X(i1),X(i2)) =

{
2∑
j=1

[
dj(X(i1),X(i2))

Hj

]2
}1/2

.

However, |Y1| and H1 are too large for the 2nd stage. Therefore, d(X(i1),X(i2)) will be dom-

inated by variable X2 since d1(X(i1),X(i2))
|Y1| and d2(X(i1),X(i2))

H1
are too small due to the large |Y1|

and H1 values. Hence, the clustering process will choose variable X2 for splitting observations

while {X(1), ...,X(20)} are supposed to be divided into two groups along X1.

By contrast, Local Normalized distances adjust the |Y1| and H1 at the 2nd stage according

to which cluster they are in. After separating {X(21), ...,X(30)} from other observations at

stage 1, |Y1| and H1 are much smaller at stage 2 if LSNEH and LNEH distances are used

since the variation of the left two clusters (in Figure 4.5) along X1 is much smaller. Thus,

87



Figure 4.6: Clustering Result of One Data Set from Simulation Case 4
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X2 is not able to dominate the distances and the cutting process and hence X1 is correctly

chosen as the splitting variable.

Case 5: Outliers

In this section, a data set with outliers will be considered. The first 1000 classical random

samples are simulated from

N2


 12

5

 ,

 2 0

0 2


 , (4.14)

the next 1000 classical random samples are simulated from

N2


 18

5

 ,

 2 0

0 2


 , (4.15)

and the last 100 classical random samples are simulated from

N2


 10

30

 ,

 0.1 0

0 0.1


 . (4.16)

The last 100 classical samples are considered outliers here. See Figure 4.7 for their distribu-

tions. The interval valued observations aggregated from these data are

{X(1), ...,X(10)} ∼ N2


 12

5

 ,

 2 0

0 2


 ,

{X(11), ...,X(20)} ∼ N2


 18

5

 ,

 2 0

0 2


 ,

89



Figure 4.7: Simulated Data from Equations (4.14), (4.15) and (4.16)

and

{X(21)} ∼ N2


 10

30

 ,

 0.1 0

0 0.1




with 100 classical points to construct an interval. Observation X(21) is considered an outlier

here.

Figure 4.8 is the clustering result of one simulated data set using the six different dis-

tances. Unlike GSNEH and LSNEH distances (Figure 4.8 (C) and (E)), other distances

separate the outlier at the 1st stage. The GSNEH and LSNEH distances do not exclude the

outlier until the 2nd stage. This is because the variation along variable X2 is cancelled out by

the span normalization factor |Y2| at the 1st stage (recall that |Y2| = maxi(bi2)−mini(ai2))

and hence X1 dominates the clustering process at the 1st stage. This is similar to the

discussion in Section 4.2. This brings up the potential problem that if the clustering is
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Figure 4.8: Clustering Result of One Data Set from Simulation Case 5
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stopped at stage 2, the outlier cannot be separated out and will be grouped with obser-

vations {X(1), ...,X(10)}. Other distances exclude the outlier at the first place, which is

preferable. Therefore, it is always beneficial to continue the clustering process for more

steps even if when the target structure has been achieved so that potential outliers can be

eliminated from the main clusters.

Case 6: A Special Example For Symbolic Data

This simulation study considers a special case when the centers of the underlying clusters

overlaps. The simulation process is the same as in Section 4.2, except that the bivariate

normal distributions to generate random samples are

N2


 15

15

 ,

 1 0

0 1


 (4.17)

and

N2


 15

15

 ,

 5 0

0 30


 . (4.18)

Figure 4.9 is the scatter plot of the simulated data. Table 4.7 shows the means and standard

deviations of accuracy and computing time of doing clustering on 4, 10, 20, 40 and 100

aggregated intervals by using the six different distances on 1000 sets of simulated samples.

Table 4.8 shows the number of times each variable is used as the cutting variable.

All the distances perform similarly to each other. Obviously, it will be very hard for the

divisive monothemic clustering method to do clustering on a data set like this if they are

treated as classical points since the method divides the data into two separate groups at

each step and uses just one variable at each step to do the splitting. The accuracy will most

probably be around 0.5, not to mention the tremendous computing time needed to group
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Figure 4.9: Simulated Data from Equations (4.17) and (4.18)

2000 observations since the method stops at every observation and calculates the distances

and variations at each stop when performing the clustering algorithm. The time increases

quadratically as the number of observations increases. However, by aggregating them into

interval observations, the accuracy can even reach 0.913 when the number of intervals is

4. Still, accuracies decrease as the number of intervals increases, and arrive at 0.7 when

there are 100 intervals. Although a result with an accuracy at 0.7 is not ideal, considering

the improvement of accuracy and computing time compared with the classical data, it is

worthwhile to aggregate classical points into intervals for the clustering analysis.

Notice that in Table 4.8, all distances prefer to use X2 as the splitting variable. This is

reasonable since by looking at Figure 4.9, variable X2 is the direction where the big difference

between the two clusters is located.
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Table 4.7: Mean and Standard Deviation of Accuracy and Computing Time

# of Intervals H EH GSNEH GNEH LSNEH LNEH
Mean (SD) of Accuracy

4 0.861 (0.124) 0.913 (0.119) 0.913 (0.119) 0.913 (0.119) 0.913 (0.119) 0.913 (0.119)
10 0.798 (0.083) 0.822 (0.077) 0.822 (0.077) 0.823 (0.077) 0.822 (0.077) 0.823 (0.077)
20 0.760 (0.062) 0.770 (0.060) 0.772 (0.059) 0.771 (0.059) 0.772 (0.059) 0.771 (0.059)
40 0.727 (0.045) 0.731 (0.044) 0.733 (0.043) 0.732 (0.044) 0.733 (0.043) 0.732 (0.044)
100 0.698 (0.031) 0.699 (0.030) 0.700 (0.030) 0.698 (0.032) 0.700 (0.030) 0.698 (0.032)

Mean (SD) of Computing Time (s)
4 0.009 (0.010) 0.009 (0.010) 0.009 (0.010) 0.010 (0.010) 0.011 (0.010) 0.011 (0.010)
10 0.012 (0.010) 0.014 (0.010) 0.015 (0.010) 0.014 (0.010) 0.023 (0.010) 0.024 (0.011)
20 0.021 (0.011) 0.031 (0.012) 0.032 (0.012) 0.031 (0.011) 0.064 (0.014) 0.064 (0.014)
40 0.052 (0.012) 0.089 (0.013) 0.089 (0.014) 0.091 (0.014) 0.211 (0.020) 0.209 (0.019)
100 0.313 (0.025) 0.546 (0.035) 0.557 (0.034) 0.556 (0.035) 1.295 (0.074) 1.299 (0.073)

Summary

From the simulation studies, we can tell that no particular distance can outperform the other

distances all the time. Each Hausdorff distance has its certain limitations. Their advantages

and disadvantages can be summarized as follows:

• Hausdorff Distance

– Pros: Fastest.

– Cons: Sensitive to variables with large scale. The clustering process can easily

be controlled by the large-scaled variables even if it is the wrong choice.

• Euclidean Hausdorff Distance

– Pros: Fast.

– Cons: Sensitive to variables with large scale. The clustering process can easily

be controlled by the large-scaled variables even if it is the wrong choice.

• Global Span Normalized/Normalized Euclidean Hausdorff Distance
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Table 4.8: Number of Times Each Variable Is Used For Cutting

# of Intervals Variable H EH GSNEH GNEH LSNEH LNEH
X1 0 243 252 264 252 264

4
X2 1000 757 748 736 748 736
X1 0 314 343 360 343 360

10
X2 1000 686 657 640 657 640
X1 0 158 210 246 210 246

20
X2 1000 842 790 754 790 754
X1 0 55 118 177 118 177

40
X2 1000 945 882 823 882 823
X1 0 1 43 123 43 123

100
X2 1000 999 957 877 957 877

– Pros: Fast.

– Cons: Can give the wrong result after the 1st stage, especially when underlying

clusters are dispersed along one variable.

[Overdispersed Variable: When all variables are of the same magnitude, the stan-

dard deviation of the overdispersed variable is much larger (e.g., at least 5 times

larger) than other variables’ standard deviations.]

• Local Span Normalized Euclidean Hausdorff Distance

– Pros: Not sensitive to variables with large scales; robust to large variance (vari-

able with large variance will not be ignored during the clustering process).

– Cons: Slow; variable with outliers may be ignored by the clustering process,

hence not able to identify outliers as early as possible.

• Local Normalized Euclidean Hausdorff Distance

– Pros: Not sensitive to variables with large scales; robust to outliers (variable
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with outliers at along it will not be ignored during the clustering process).

– Cons: Slow; variable with large variance may be ignored by the clustering process.

As a summary, Global Normalized distances are not recommended since they cannot

reveal the real variation within each cluster after the 1st stage. If we are conscious of variables

with significant larger scales, we can start with LSNEH and LNEH distances. Then, if large

variance exists along some variable, the LSNEH distance should be considered. Or, if outliers

are observed along some variable, the LNEH distance should be considered. Otherwise, these

two distances perform similarly. If variables are of the same magnitude, H and EH distances

should be preferred since they are much faster than LSNEH and LNEH distances and do

not have the limitations that LSNEH and LNEH distances have.

4.3 Application

The Hausdorff distance and its related distances will be applied to practical data sets intro-

duced below. Comparisons among the six distances will also be made.

China Temperatures

Table 4.9 shows temperature data from 15 cities of China in 1988. The data set consists of

minimum and maximum temperatures for each month. Here, variables X1 −X12 represent

twelve months, i.e., January - December, and X13 is the elevation. The unit of temperatures

is Celsius degree. Each observation is of equal weight here. These data are extracted from

a larger data set. The full data set contains observations for many more stations, more

variables and more years, which can be found at <http://rda.ucar.edu/datasets/ds578.5/>.
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Each station’s average temperatures of four seasons for 1988 are shown in Table 4.10,

and each station’s temperature variations [max(temperature)−min(temperature)] of four

seasons for 1988 are shown in Table 4.11.

Table 4.10: China Seasonal and Annual Average Temperatures - 1988

Station Winter Spring Summer Autumn Annual
Name Average Average Average Average Average
1. BoKeTu -18.5 0.0 17.1 1.4 0.0
2. Hailaer -23.1 -0.1 19.2 2.0 -0.5
3. LaSa 1.6 9.7 16.6 9.0 9.2
4. KunMing 10.4 17.2 20.6 15.3 15.8
5. TengChong 10.8 16.6 20.2 17.8 16.4
6. WuZhou 13.8 19.8 28.6 22.8 21.2
7. GuangZhou 15.8 21.1 29.0 23.8 22.4
8. NanNing 14.8 21.0 29.1 23.7 22.1
9. ShanTou 15.1 20.0 28.4 23.0 21.6
10. HaiKou 19.8 24.2 29.4 24.6 24.5
11. ZhanJiang 17.9 22.4 29.2 24.4 23.5
12. MuDanJiang -13.2 5.0 21.8 6.3 5.0
13. HaErBin -15.6 4.9 21.8 5.5 4.2
14. QiQiHaEr -15.3 5.1 22.6 5.9 4.6
15. NenJiang -20.7 2.1 20.3 2.7 1.1

Figure 4.10 is the result of clustering the China temperature data of Table 4.9 using

the Hausdorff distance, Euclidean Hausdorff distance, Global and Local Span Normalized

Euclidean Hausdorff distance and Global and Local Normalized Euclidean Hausdorff distance

based on the p = 12 temperature variables.

According to Tables 4.9, 4.10 and 4.11, it is evident that the twelve variables used here

are of the same magnitude. Therefore, based on the conclusion from Section 4.2, all the

distances except for GSNEH and GNEH distances can be used here and they should give

similar results.

From Figure 4.10, it can be seen that the two partitions we obtained by using the Haus-

dorff distance [Figure 4.10 (A)] and the Euclidean Hausdorff distance [Figure 4.10 (B)] are
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Figure 4.10: China Temperature Clustering Results Based on (X1, ..., X12)

99



Table 4.11: China Seasonal and Annual Temperature Variations - 1988

Station Winter Spring Summer Autumn Annual
Name Range Range Range Range Range
1.BoKeTu 10.9 32.8 14.3 30.5 47.6
2.Hailaer 12.4 36.7 12.9 31.4 55.0
3.LaSa 19.6 22.7 15.1 24.8 33.2
4.KunMing 16.6 18.6 8.9 14.3 22.5
5.TengChong 16.6 17.9 6.9 14.1 22.0
6.WuZhou 12.5 19.9 10.9 19.4 25.2
7.GuangZhou 11.3 17.6 8.6 17.2 22.7
8.NanNing 12.1 18.6 8.6 16.7 23.2
9.ShanTou 9.7 15.4 7.7 16.1 22.6
10.HaiKou 6.7 16.3 9.0 12.9 17.7
11.ZhanJiang 7.3 17.3 7.4 15.8 18.6
12.MuDanJiang 11.9 29.2 14.7 30.3 47.6
13.HaErBin 12.7 29.8 12.7 30.4 49.6
14.QiQiHaEr 13.6 30.4 10.7 28.8 50.1
15.NenJiang 15.0 34.0 13.0 33.6 54.6

almost the same, except for station 15 being clustered with station 1 in Figure 4.10 (A) and

with station 2 in Figure 4.10 (B). These clusters are consistent with the annual and seasonal

average temperatures shown in Table 4.10 and the corresponding variations shown in Table

4.11. We observe that stations 6 - 11 are successfully separated from the others since they are

warmer than are the other stations across the year. Stations 10 and 11 are further separated

from stations 6 - 9 because they are the hottest stations across the year and their annual

temperature variations are the smallest. Stations 1, 2 and 15 are grouped together since they

are the coldest stations according to their annual average and their temperature variations

are similar to each other (large). Although the clustering result has 7 clusters with the last

cutting on stations 1, 2 and 15, the clustering could have been stopped at the 5th stage if

the small differences among stations 1, 2 and 15 are not important to researchers. Stations
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12, 13 and 14 are grouped together because they are the second coldest stations on annual

temperature averages and their temperature variations are also similar (large). Stations 4

and 5 are clustered together with moderate temperatures across the year compared to other

stations. Station 3, LaSa, is a special case with temperature being median among stations

during the winter, spring and autumn and the lowest during the summer. Also, its tempera-

ture variation is the largest during the winter and summer while being moderate during the

spring and autumn.

The partitions (Figure 4.10 (C) and (D)) using the Global Span Normalized Euclidean

Hausdorff distance and the Global Normalized Euclidean Hausdorff distance are the same

as using the Euclidean Hausdorff distance (Figure 4.10 (B)) here. By observing Table 4.9,

we can see that the data are not overdispersed along any of the twelve variables. Hence the

GSNEH and GNEH distances give the same result as the EH distance.

The partition [Figure 4.10 (E)] using the Local Span Normalized Euclidean Hausdorff

distance is very similar to Figure 4.10 (A) and Figure 4.10 (B) except for stations 10 and

11 being separated at the 6th stage. Also, the partition [Figure 4.10 (F)] using the Local

Normalized Euclidean Hausdorff distance is very similar to Figure 4.10 (A) and Figure 4.10

(B) except for stations 6 and {7, 8, 9} being separated at the 6th stage. Again, the clustering

could have been stopped before the 6th stage and thus the H, EH, LSNEH and LNEH

distances would give the same clustering structures.

Clustering results of using the six different distances based on all thirteen variables (tem-

peratures and elevation) are shown in Figure 4.11. Now, the variable elevation is also being

considered during clustering.

Let us look at the result from using the Hausdorff distance [Figure 4.11 (A)] first. Com-

paring Figures 4.10 (A) and 4.11 (A), we see that the biggest difference occurs at the 1st

stage. By using thirteen variables [Figure 4.11 (A)], the clustering algorithm separates sta-

tion 3, 4, and 5 from other stations in the first place since they have higher elevations. After
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Figure 4.11: China Temperature Clustering Results Based on (X1, ..., X13)
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the 1st stage, variable elevation is used again for twice in [Figure 4.11 (A)]. Out of the six

times when a variable needs to be chosen as the cutting variable, elevation is chosen for

three times in total. As discussed in Section 4.2, this is due to the larger scale that variable

elevation has compared to other variables. Other than that, most clusters from the cluster-

ing result by using thirteen variables [Figure 4.11 (A)] are the same as the result by using

the twelve temperature variables only [Figure 4.10 (A)], except for station 15. Station 15 is

more similar to stations 12, 13 and 14 if elevation is also considered [Figure 4.11 (A)], while

it is more similar to stations 1 and 2 if elevation is not considered [Figure 4.10 (A)] (stations

1 and 2 do have higher elevation). In Figure 4.11 (A), station 15 is finally separated from

station 12, 13 and 14 due to the lower temperature in winter. If the researcher’s interest

is mainly in the elevation’s impact on the clustering result, the Hausdorff distance can be

considered since elevation is used three out of six times here.

The result from using the Euclidean Hausdorff distance [Figure 4.11 (B)] is the same as

the result in Figure 4.10 (B) by using the twelve temperature variables if the cutting was

stopped at the 5th stage. Since station 15 is very dissimilar to stations 1 and 2 from the

aspect of elevation, it is separated at the last stage [Figure 4.11 (B)], which is reasonable.

The differences between Figure 4.11 (A) and (B) are similar to the differences between Figure

4.10 (A) and Figures 4.11 (A). Figure 4.11 (B) uses a temperature variable for cutting at

the 1st stage while Figure 4.11 (A) uses the elevation for cutting. Station 15 is more similar

to stations 1 and 2 in Figure 4.11 (B) while it is more similar to stations 12, 13 and 14 in

Figure 4.11 (A). Here, by using the Euclidean Hausdorff distance, variable elevation is still

used three out of six times. Since variable elevation has larger variation along it and hence

its scale is also a little larger compared to other variables, both Hausdorff and Euclidean

Hausdorff distances will prefer to use it as the cutting variable (the reason is explained in

Section 4.2). If the researcher’s interest is mainly in the elevation’s impact on the clustering

result, the Euclidean Hausdorff distance can also be considered and it will give an alternative
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result for reference.

The partitions [Figure 4.11 (C) and (D)] using the Global Span Normalized Euclidean

Hausdorff distance and the Global Normalized Euclidean Hausdorff distance are the same as

using the Euclidean Hausdorff distance [Figure 4.11 (B)] if the clustering is stopped at the

5th stage. And they are the same as Figure 4.10 (C) and (D).

The partition (E) in Figure 4.11 is different from Figure 4.11 (B) when the clustering

process goes beyond the 4th stage. In Figure 4.11 (E), stations 6 and 8 are separated from

stations 7, 9, 10 and 11 at the 5th stage because they are a little warmer in winter and their

elevations are higher. Stations 7 and 9 are further separated from stations 10 and 11 since

they are cooler across the year and their elevations are lower. After the 3rd stage in Figure

4.11 (E), the variable elevation is no longer used as the cutting variable. As explained in

Section 4.2, when the Local Normalized distances are used, since the variation along variable

elevation is larger (see Table 4.9), variable elevation can be ignored by the clustering process

when a cutting variable needs to be chosen due to the normalization.

The result of using LNEH distance [Figure 4.11 (F)] is also different from Figure 4.11

(B) when the clustering process goes beyond the 5th stage. Also, Figure 4.11 (F) is similar

to the result of using LSNEH distance [Figure 4.11 (E)], while the only difference occurs at

the 6th stage. The clustering process chooses to separate station 6 from stations 7, 8 and 9

since it is cooler across the year and the elevation is higher. Also, variable elevation is no

longer chosen at the cutting variable after the 3rd stage and the reason is analogous to using

the LSNEH distance.

It is clear that by using the Local Normalized distances, the result can be quite different

from that obtained when using unnormalized distances, especially after several stages of

clustering. Unlike using the Hausdorff distance and the Euclidean Hausdorff distance, results

from using the Local Normalized distances will not be influenced by variable elevation much

and treat each variable equally, whether it is temperature or elevation. Hence, by using the
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LSNEH and LNEH distances, results are given from an aspect that variables are ”equally

weighted”. If the researcher’s interest is not particularly in the variable elevation, the LSNEH

and LNEH distances can be considered.

The Chicken Data

Let us consider the chicken data from Section 3.3 again. The values from the original classical

data set are aggregated into 6 intervals for each diet group. In the original data set, the row

number of each chicken is also provided. For each diet, there are 6 rows with 8 chickens in

each row. Those observations belonging to the same row and diet group are aggregated into

an interval. And the interval’s lower bound is the 5th percentile and upper bound is the 95th

percentile of the values. Table 4.12 is the interval-valued data set extracted from the original

data. Table 4.13 lists the interval means for the chicken data [(interval lower limit + interval

upper limit)/2] and Table 4.14 lists the interval ranges for the chicken data (interval upper

limit - interval lower limit).

Figure 4.12 is the clustering result of using four different Hausdorff distances. As men-

tioned in Section 4.2, since the GSNEH and GNEH distances are not recommended most of

the time, they are no longer used here for the chicken data.

From Table 4.12, observations 1 to 6 eat diet 1, observations 7 to 12 eat diet 2 and

observations 13 to 18 eat diet 3. Potentially, the eighteen observations will be clustered into

three groups with each group representing one diet. From Figure 4.12, it is obvious that

only the LNEH distance is able to allocate the observations to their underlying clusters with

an accuracy = 17/18 = 0.94. All other distances perform poorly in this example. Since X2

and X5 have larger scales compared to other variables, the Hausdorff distances uses X5 for

clustering and the EH and LSNEH distances use X2 and X5 for clustering all the time. As

discussed in Section 4.2, this can be questionable when the clustering process is dominated

by variables with large scales, which is why the standardized distances might be better here.
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Figure 4.12: Clustering Results for Chicken Data
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Table 4.12: Chicken Data

Observation Row Diet X1 X2 X3 X4 X5

1 1 1 [1.22, 1.85] [81.17, 118.69] [51.38, 64.64] [2, 7] [28.57, 100]
2 5 1 [1.16, 1.97] [80.89, 117.87] [50.95, 65.07] [4, 7] [57.14, 100]
3 9 1 [1.16, 1.96] [73.21, 118.03] [49.03, 67.36] [0, 7] [0.00, 100]
4 16 1 [1.24, 1.90] [87.84, 118.66] [52.93, 69.12] [2, 7] [28.57, 100]
5 20 1 [1.18, 2.11] [76.74, 120.19] [48.73, 65.10] [3, 7] [42.86, 100]
6 24 1 [1.20, 2.00] [80.17, 115.00] [51.26, 69.44] [4, 7] [57.14, 100]
7 2 2 [1.16, 1.77] [79.50, 116.87] [50.84, 62.30] [4, 7] [57.14, 100]
8 6 2 [1.23, 1.90] [68.11, 125.64] [50.04, 63.64] [0, 7] [0.00, 100]
9 10 2 [1.14, 1.66] [71.41, 114.99] [48.29, 64.27] [4, 7] [42.86, 100]
10 15 2 [1.16, 1.62] [73.26, 116.91] [48.56, 63.80] [4, 7] [57.14, 100]
11 19 2 [1.17, 1.62] [73.31, 114.83] [48.56, 62.12] [4, 7] [57.14, 100]
12 23 2 [1.22, 1.64] [77.94, 117.57] [52.14, 62.56] [5, 7] [71.43, 100]
13 3 3 [1.04, 1.51] [54.89, 111.39] [48.00, 57.93] [2, 7] [28.57, 100]
14 7 3 [1.08, 1.61] [62.61, 110.97] [45.80, 57.70] [2, 7] [28.57, 100]
15 11 3 [0.97, 1.49] [54.97, 106.36] [47.00, 56.80] [2, 7] [28.57, 100]
16 14 3 [1.04, 1.60] [57.81, 115.11] [46.72, 62.45] [2, 7] [28.57, 100]
17 18 3 [1.12, 1.62] [62.87, 114.31] [45.96, 57.92] [3, 7] [42.86, 100]
18 22 3 [1.10, 1.65] [65.27, 118.89] [47.35, 58.26] [3, 7] [42.86, 100]

The result from using the LNEH distance is consistent with the result from the ANOVA

in Chapter 3. Chickens fed with the same diet are more similar to each other while chickens

fed with different diets are more dissimilar to each other. By observing Table 4.13 and Table

4.14, we know that observations {1, ..., 6, 8} are grouped together since overall they have the

largest layer body weights (X1) , the highest average daily feed intakes (X2) and the largest

egg weights (X3). Meanwhile, they have the biggest variation in layer body weight (X1),

which means their body weights increase most from week 18 to 75; they have lower variations

in average daily feed intake (X2) compared to observations {13,...,18}, which means their

daily feed intakes increase more slowly from week 18 to 76; they have the largest variations

in egg weight (X3), which means their egg weights increase most from week 19 to 76. Except

for observation 8, these may benefit from the diet they take, diet 1. Observation 8 is a special
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Table 4.13: Chicken Data Interval Averages

Observation Row Diet X1 X2 X3 X4 X5

1 1 1 1.53 99.93 58.01 4.50 64.29
2 5 1 1.57 99.38 58.01 5.50 78.57
3 9 1 1.56 95.62 58.19 3.50 50.00
4 16 1 1.57 103.25 61.02 4.50 64.29
5 20 1 1.64 98.47 56.92 5.00 71.43
6 24 1 1.60 97.59 60.35 5.50 78.57
7 2 2 1.47 98.19 56.57 5.50 78.57
8 6 2 1.56 96.88 56.84 3.50 50.00
9 10 2 1.40 93.20 56.28 5.50 71.43
10 15 2 1.39 95.09 56.18 5.50 78.57
11 19 2 1.39 94.07 55.34 5.50 78.57
12 23 2 1.43 97.76 57.35 6.00 85.71
13 3 3 1.28 83.14 52.96 4.50 64.29
14 7 3 1.35 86.79 51.75 4.50 64.29
15 11 3 1.23 80.66 51.90 4.50 64.29
16 14 3 1.32 86.46 54.59 4.50 64.29
17 18 3 1.37 88.59 51.94 5.00 71.43
18 22 3 1.37 92.08 52.81 5.00 71.43

case here since it should not be clustered with {1, ..., 6}, and the producer may want to pay

more attention to this observation for further interests.

Observations {7, 9, ..., 12} are grouped together because they have smaller layer body

weights (X1), lower average daily feed intakes (X2) and smaller egg weights (X3) compared to

observations {1, ..., 6, 8}. And, they have lower variation in layer body weight (X1) compared

to observations {1, ..., 6, 8}, which means their body weights increase less from week 18 to

75; they have lower variations in average daily feed intake (X2) compared to observations

{13,...,18}, which means their daily feed intakes increase more slowly from week 18 to 76;

they have lower variations in egg weight (X3) compared to observations {1, ..., 6, 8}, which

means their egg weights increase more slowly from week 20 to 76. These may be due to the
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Table 4.14: Chicken Data Interval Ranges

Observation Row Diet X1 X2 X3 X4 X5

1 1 1 0.62 37.51 13.26 5.00 71.43
2 5 1 0.80 36.99 14.12 3.00 42.86
3 9 1 0.80 44.81 18.33 7.00 100.00
4 16 1 0.65 30.81 16.18 5.00 71.43
5 20 1 0.94 43.45 16.37 4.00 57.14
6 24 1 0.80 34.83 18.19 3.00 42.86
7 2 2 0.61 37.37 11.46 3.00 42.86
8 6 2 0.67 57.53 13.60 7.00 100.00
9 10 2 0.51 43.57 15.98 3.00 57.14
10 15 2 0.46 43.66 15.24 3.00 42.86
11 19 2 0.46 41.51 13.56 3.00 42.86
12 23 2 0.42 39.63 10.42 2.00 28.57
13 3 3 0.47 56.50 9.93 5.00 71.43
14 7 3 0.54 48.36 11.90 5.00 71.43
15 11 3 0.52 51.39 9.80 5.00 71.43
16 14 3 0.56 57.30 15.73 5.00 71.43
17 18 3 0.49 51.44 11.96 4.00 57.14
18 22 3 0.56 53.61 10.91 4.00 57.14

diet they take, diet 2.

Observations {13, ..., 18} are grouped together because they have the smallest layer body

weights (X1), the lowest average daily feed intakes (X2) and the smallest egg weights (X3).

In addition, they have lower variation in layer body weight (X1) compared to observations

{1, ..., 6, 8}, which means their body weights increase less from week 18 to 75; they have

the largest variations in average daily feed intake (X2), which means their daily feed intakes

increase more than the other diet groups from week 18 to 76; they have the smallest variations

in egg weight (X3), which means their egg weights increase most slowly from week 20 to 76.

These may due to the diet they take, diet 3.

As to egg production (X5), observations with diet 2 ({7, 9, ..., 12}) have the smallest
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variations in egg production while egg production averages of observations {7, 9, ..., 12} are

not smaller than the other two groups. This means the egg production of chickens with diet

2 reaches a higher value quickly at an early stage (week 21 to 31) but increases slowly as

time goes by. This can be checked by taking means of egg productions for each diet at each

week. Table 4.15 shows the averages of egg productions by diet and week.

4.4 Discussion

Notice that when Local Normalized distances are introduced, we only mention that the

normalization factors |Yj| and Hj need to be recalculated according to which cluster they

are in, but do not show how they are recalculated. In this section, let us look at how the

LNEH distance is calculated. The way to deal with the LSNEH distance is the same.

Recall that the normalization factor for LNEH distance in Equation (4.4) is

H2
j =

1

2n2

n∑
i1=1

n∑
i2=1

[dj(X(i1),X(i2))]2, j = 1, ..., p.

Here, n is the size of the cluster which Hj belongs to.

If the clustering process is working on the uth cluster at the rth stage, i.e., Cr
u, and the

size of the cluster is nru. Then,

∆ru
jq , I(Cr

u)− I(Cr+1
u )− I(Cr+1

u+1)

from Step 2 in Section 4.1 will be calculated for all the j = 1, ..., p and q = 1, ..., nru − 1

so that a maximum ∆ru
jq can be found. And the corresponding variable j and cut-point q

will be used for splitting Cr
u into Cr+1

u and Cr+1
u+1. Hence, for each combination of j and q,

there are three within-cluster variations need to be calculated. They are I(Cr
u), I(Cr+1

u ) and

I(Cr+1
u+1). As introduced in Section 2.4, in order to get I(Cr

u), I(Cr+1
u ) and I(Cr+1

u+1), the LNEH
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distances between each pair of observations within the cluster Cr
u, C

r+1
u and Cr+1

u+1 need to be

calculated. Therefore, Hj needs to be determined when calculating LNEH distances between

observations. Here comes the options:

Option 1.

The normalization factor Hj uses nru, the size of the cluster Cr
u, all the time and hence is

invariant in all the three clusters Cr
u, C

r+1
u and Cr+1

u+1.

Option 2.

The normalization factor Hj uses nru, nr+1,u and nr+1,u+1, in the clusters Cr
u, C

r+1
u and Cr+1

u+1,

respectively and hence varies.

To sum up, the question is, when the clustering process is splitting a cluster into two

sub-clusters and the LNEH distance is used, shall we use the same Hj from the parent cluster

(Option 1) for both the parent cluster and the two successive clusters, or shall we use the

three different Hj’s from the parent cluster and the two successive clusters (Option 2) when

calculating distances?

All the results using the LNEH distance in this dissertation have been using Option 1 so

far. However, if Option 2 is selected, the results will be quite different. Let us consider the

China temperature data from Section 4.3 again. Figure 4.13 shows the clustering result of

using the LNEH distance for both twelve and thirteen variables by choosing Option 2.

Results from using the Local Normalized Euclidean Hausdorff distance in Figure 4.13 are

peculiarly unique. At each stage, only one station was picked up and formed a new cluster.

This is due to the invariant total within-cluster variation, which is defined in Equation (2.32).

If observations are evenly weighted, and the Local Normalized Euclidean Hausdorff dis-
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Figure 4.13: China Temperature Clustering Results Using Option 2

tance is used, it can be shown that

I(Cr
u) =


nru

n
p, if nru > 1,

0, if nru = 1,
(4.19)

where I(Cr
u) is defined in Equation (2.31), nru is the number of observations in the uth cluster

at the rth stage, n is the number of all observations and p is the number of variables being

used. (The detailed proof is in Appendix 4.5.)

For example, without loss of generality, let us have a look at the first stage of clustering.

At the first stage, we only have one cluster, C1
1 , with n11 = n > 1 observations. If we divide

it into two clusters, C2
1 and C2

2 , with n21 and n22 observations respectively, by Equations

(2.32) and (4.19), we will have

W (P1) = I(C1
1) =

n11

n
p = p;
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and

W (P2) = I(C2
1) + I(C2

2) =


n21

n
p+ n22

n
p = p, if n21 > 1 and n22 > 1,

0 + n22

n
p = n−1

n
p, if n21 = 1,

n21

n
p+ 0 = n−1

n
p, if n22 = 1.

Therefore,

4 = W (P1)−W (P2) =

 0, if n21 > 1 and n22 > 1,

p
n
, if n21 = 1 or n22 = 1.

It is obvious that that the cut-point, q, will always be q = 1 or q = n−1 so that4 (discussed

in Section 2.4) can be maximized as p/n. In other words, C1
1 will always be divided into

two groups with one of them having just one observation and the other having the rest of

observations, as long as observations are evenly weighted and the LNEH distance is used.

This clustering process cannot reveal the real underlying clusters.

Therefore, Option 2 should be avoided when the LNEH distance is used. This also applies

to the LSNEH distance.

4.5 Appendix

Proof of Equation (4.19)

The proof is based on classical data. The proof for interval data can be achieved analogously.

Suppose we have n classical observations and p variables being used for clustering. Let Xj

denote the jth variable and X(i) denote the ith observation, where j = 1, ..., p and i = 1, ..., n.

The realization of the ith observation with the jth variable is denoted as xij. By Equation
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(2.30), we know

I(Cr
u) =

1

2λ

nru∑
i1=1

nru∑
i2=1

wi1wi2d
2(i1, i2) (4.20)

where nru is the number of observations in the uth cluster from the rth stage, d2(i1, i2) is

a distance or dissimilarity measure between the observations X(i1)ru and X(i2)ru in Cr
u,

i1, i2 = 1, ..., nru, wi is the weight associated with the observation X(i)ru and λ =
∑nru

i=1wi.

If the Local Normalized Euclidean Hausdorff distance is used, then

d2(i1, i2) =

p∑
j=1

[
dj(i1, i2)

Hj

]2

(4.21)

where dj(i1, i2) = |xi1j − xi2j| and Hj is the standard deviation of Xj.

When nru > 1, we substitute Equation (4.21) into Equation (4.20), to obtain

I(Cr
u) =

n

2nru

nru∑
i1=1

nru∑
i2=1

wi1wi2

p∑
j=1

(xi1j − xi2j)2

Hj

=
n

2nru

nru∑
i1=1

nru∑
i2=1

wi1wi2

p∑
j=1

(xi1j − xi2j)2∑nru

i=1
(xij−x̄·j)2

nru

=
n

2

nru∑
i1=1

nru∑
i2=1

wi1wi2

p∑
j=1

(xi1j − xi2j)2∑nru

i=1(xij − x̄·j)2

=
n

2

p∑
j=1

1∑nru

i=1(xij − x̄·j)2

nru∑
i1=1

nru∑
i2=1

wi1wi2(xi1j − x̄·j + x̄·j − xi2j)2

=
n

2

p∑
j=1

1∑nru

i=1(xij − x̄·j)2

nru∑
i1=1

nru∑
i2=1

wi1wi2 [(xi1j − x̄·j)2+

(x̄·j − xi2j)2 + 2(xi1j − x̄·j)(x̄·j − xi2j)].
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Consider the situation where weights are even, i.e., wi1 = wi2 = 1/n. Hence,

I(Cr
u) =

1

2n

p∑
j=1

1∑nru

i=1(xij − x̄·j)2

nru∑
i1=1

nru∑
i2=1

[(xi1j − x̄·j)2 + (x̄·j − xi2j)2+

2(xi1j − x̄·j)(x̄·j − xi2j)]

=
1

2n

p∑
j=1

1∑nru

i=1(xij − x̄·j)2
[nru

nru∑
i1=1

(xi1j − x̄·j)2 + nru

nru∑
i2=1

(xi2j − x̄·j)2 + 0]

=
1

2n

p∑
j=1

2nru
∑nru

i1=1(xi1j − x̄·j)2∑nru

i=1(xij − x̄·j)2

=
nru
n
p.

When nru = 1, it is clear that I(Cr
u) = 0.

�
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Table 4.15: Egg Production Averages by Diet and Week

Week Diet 1 Diet 2 Diet 3
19 1.8 1.2 3.6
20 27.1 25.9 28.6
21 60.1 71.1 65.5
22 83.9 87.8 88.7
23 91.1 93.8 90.2
24 92.6 95.7 92.3
25 97.3 97.0 90.8
26 92.0 96.0 88.1
27 92.0 95.1 87.2
28 89.9 92.7 87.5
29 91.7 94.2 82.1
30 92.3 94.2 81.8
31 95.2 96.4 80.7
32 96.4 93.0 74.1
33 94.0 94.2 74.1
34 94.9 91.8 71.1
35 95.5 89.7 65.8
36 92.0 88.1 69.0
37 93.2 84.2 64.0
38 96.4 91.5 70.8
39 93.8 90.0 69.0
40 93.5 90.0 67.6
41 96.4 90.0 72.9
42 97.0 88.8 72.6
43 94.3 86.9 72.3
44 94.3 88.8 71.1
45 94.6 90.0 69.9
46 94.3 90.6 69.9
47 94.9 88.8 64.9
48 94.6 91.2 68.5
49 94.8 91.8 68.5
50 97.0 88.4 67.0
51 96.0 86.6 62.8
52 94.8 90.0 72.0
53 89.7 88.8 73.5
54 93.6 87.5 64.6
55 96.0 91.6 72.6
56 94.8 87.3 75.9
57 94.5 88.8 80.7
58 92.5 89.4 78.0
59 93.5 93.0 77.4
60 91.5 91.8 77.7
61 95.7 90.7 77.1
62 93.0 88.5 75.3
63 92.9 91.4 80.1
64 88.8 91.9 82.1
65 91.9 88.8 78.6
66 92.9 93.9 76.9
67 91.0 90.0 72.6
68 92.2 90.9 68.1
69 91.6 90.0 69.0
70 90.6 88.4 69.9
71 91.2 89.7 66.6
72 90.9 88.8 69.8
73 90.9 87.8 61.1
74 87.8 90.3 69.7
75 89.8 87.0 67.3
76 88.8 88.5 66.7
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R Code for Divisive Monothetic Clustering Method

HDMCM.Interval <- function(distance=’H’,no.c=4,index,weight,data)

# Hierarchical Divisive Monothetic Clustering Method for Interval-valued Data

# Distance Input: ’H’ (Hausdorff), ’EH’ (Euclidean Hausdorff),

# ’GSNEH’ (Global Span Normalized EH),

# ’GNEH’ (Global Normalized EH),

# ’SNEH’ (Local Span Normalized EH),

# ’NEH’ (Local Normalized EH)

# Number of Clusters Wanted: no.c = integer

# Indices for Observations: index = integer vector

# Weights for Observations: weight = number vector

# Interval-Valued Data: data = data.frame/matrix

{

Hdistance <- function(...) # Calculate Hausdorff distance matrix

# Input should be an interval variable (a,b)

{

var = as.matrix(...)

n = length(var[,1])

d = matrix(0,n,n)

for (i in 1:n)

{

for (j in 1:n)

{

d[i,j] = max(abs(var[i,1]-var[j,1]),

abs(var[i,2]-var[j,2]))

}

}
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return(d)

}

EHdistance <- function(...)

# Calculate Euclidean Hausdorff distance matrix

# Input should be interval data (Can be multiple variables)

{

var = as.matrix(...)

p = length(var[1,])/2

n = length(var[,1])

d = matrix(0,n,n)

for (j in 1:p)

{

dj = matrix(0,n,n)

for (a in 1:n)

{

for (b in 1:n)

{

dj[a,b] = max(abs(var[a,2*j-1]-var[b,2*j-1]),

abs(var[a,2*j]-var[b,2*j]))

}

}

d=d+(dj)^2

}

d=sqrt(d)

return(d)

}
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NEHdistance <- function(...)

# Calculate Normalized Euclidean Hausdorff dist matrix

# Input should be interval data (Can be multiple variables)

{

var = as.matrix(...)

p = length(var[1,])/2

n = length(var[,1])

d = matrix(0,n,n)

for (j in 1:p)

{

dj = matrix(0,n,n)

for (a in 1:n)

{

for (b in 1:n)

{

dj[a,b] = max(abs(var[a,2*j-1]-var[b,2*j-1]),

abs(var[a,2*j]-var[b,2*j]))

}

}

Hj = sqrt((1/2/n/n)*sum(dj*dj))

if (Hj==0)

{

d = d + 0

}

else

{

d=d+(dj/Hj)^2

}
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}

d=sqrt(d)

return(d)

}

SNEHdistance <- function(...)

# Calculate Span Normalized Euclidean Hausdorff dist matrix

{

var = as.matrix(...)

p = length(var[1,])/2

n = length(var[,1])

d = matrix(0,n,n)

for (j in 1:p)

{

dj = matrix(0,n,n)

for (a in 1:n)

{

for (b in 1:n)

{

dj[a,b] = max(abs(var[a,2*j-1]-var[b,2*j-1]),

abs(var[a,2*j]-var[b,2*j]))

}

}

yj = max(var[,2*j]) - min(var[,2*j-1])

if (yj==0)

{

d = d + 0

}
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else

{

d=d+(dj/yj)^2

}

}

d=sqrt(d)

return(d)

}

Distance <- function(which.dist,X,j=0)

# Get the distance matrix of X

# (by variable j if using Hausdorff distance)

{

if (which.dist==’H’)

{dist = as.matrix(Hdistance(X[,c(2*j-1,2*j)]))}

if (which.dist==’EH’)

{dist = as.matrix(EHdistance(X))}

if (which.dist==’NEH’)

{dist = as.matrix(NEHdistance(X))}

if (which.dist==’SNEH’)

{dist = as.matrix(SNEHdistance(X))}

return(dist)

}

P = length(data[1,])/2 # Number of variables

N = length(data[,1]) # Number of observations

D.matrix.array = array(dim=c(N,N,P)) # Distance matrices

# for all observations by variable 1 to variable p
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if (distance %in% c(’H’,’EH’))

{

for (i in 1:P)

{

D.matrix.array[,,i] = Distance(distance,data,j=i)

}

}

if (distance==’GNEH’) # Global Normalized Euclidean Hausdorff Distance

{

for (i in 1:P)

{

D.matrix.array[,,i] = Distance(’NEH’,data)

}

}

if (distance==’GSNEH’)

# Global Normalized Span Normalized Euclidean Hausdorff Distance

{

for (i in 1:P)

{

D.matrix.array[,,i] = Distance(’SNEH’,data)

}

}

WSS <- function (w, D)

# Calculate within cluster variation using distance matrix D

# Input should be weight and distance matrix

{
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D = as.matrix(D)

n = length(D[,1])

W1 = matrix(w, nrow=n, ncol=n, byrow = F) # creat weight matrix

W2 = matrix(w, nrow=n, ncol=n, byrow = T)

lamda = sum(w)

wss = sum(D*D*W1*W2)/2/lamda # within cluster variation

return(wss)

}

Delta1 <- function (I, w, X, j)

# For one cluster, return the maximum Delta_q by variable j,

# cut value and Hausdorff dist between two observations around the cut point

# Input should be index, weight, interval variables

# and which variable to be used

{

X_bar = (X[,2*j-1]+X[,2*j])/2 # Mean of each observation by jth variable

s_X = cbind(I,w,X_bar,rank(X_bar,ties.method=’first’))

# statistics matrix: get rank according to mean

colnames(s_X)[length(s_X[1,])] = "rank"

n = max(s_X[,"rank"]) # Number of observations within the cluster

delta = rep(0,times=n) # Vector containing delta

if (distance %in% c(’H’,’EH’,’GNEH’,’GSNEH’))

# Get within cluster variation before clustering

{

D = as.matrix(D.matrix.array[I,I,j])

# Distance matrix with row and column number in I
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wss = WSS(w,D)

}

if (distance %in% c(’NEH’,’SNEH’))

# Have to recalculate distance matrix each step

{

D = Distance(distance,X)

wss = WSS(w,D)

D = cbind(D,s_X[,c(’I’,’w’,’rank’)])

colnames(D)[1:n] = I

}

for (i in 1:(n-1)) # Get within cluster variation after clastering

{

if (distance %in% c(’H’,’EH’,’GNEH’,’GSNEH’))

{

I1 = s_X[s_X[,"rank"]<=i,’I’]

w1 = s_X[s_X[,"rank"]<=i,’w’]

D1 = as.matrix(D.matrix.array[I1,I1,j])

wss1 = WSS(w1,D1)

I2 = s_X[s_X[,"rank"]>i,’I’]

w2 = s_X[s_X[,"rank"]>i,’w’]

D2 = as.matrix(D.matrix.array[I2,I2,j])

wss2 = WSS(w2,D2)

}

if (distance %in% c(’NEH’,’SNEH’))

{

I1 = s_X[s_X[,"rank"]<=i,’I’]

w1 = s_X[s_X[,"rank"]<=i,’w’]
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D1 = as.matrix(D[D[,’I’] %in% I1,colnames(D) %in% I1])

wss1 = WSS(w1,D1)

I2 = s_X[s_X[,"rank"]>i,’I’]

w2 = s_X[s_X[,"rank"]>i,’w’]

D2 = as.matrix(D[D[,’I’] %in% I2,colnames(D) %in% I2])

wss2 = WSS(w2,D2)

}

delta[i] = wss - wss1 - wss2

}

delta[n] = -Inf

if (sum(delta^2)==0)

# Situation when observations with variable j are the same

{

cut_value = -1/0

m_delta=0

Hdist=0

}

else

{

delta = cbind(seq(1:n),delta)

colnames(delta) = c("rank","delta")

XX = merge(s_X,delta,by="rank") # Matrix containing rank and delta

m_delta = max(XX[,"delta"])

q = XX[XX[,"delta"]==m_delta,"rank"]

# Get the cut point q, according to max delta

if (length(q)>1)

# If more then one cut point, choose the one with surrounded

# observations having largest Hausdorff dist
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{

Hdist=rep(0,times=length(q))

for (k in 1:length(q))

{

Hdist[k]=Hdistance(X[s_X[,"rank"]==q[k]

| s_X[,"rank"]==q[k]+1,(2*j-1):(2*j)])[1,2]

}

q = q[which(Hdist==max(Hdist),arr.ind=T)][1]

}

cut_value = (XX[XX[,"rank"]==q,"X_bar"] + XX[XX[,"rank"]==q+1,"X_bar"])/2

Hdist = Hdistance(X[s_X[,"rank"]==q|s_X[,"rank"]==q+1,(2*j-1):(2*j)])[1,2]

# Hausdiff distance between two observations around cut point

}

return(list(cut_value=cut_value, max_delta=m_delta, Hdist=Hdist))

}

Delta2 <- function(index,w,X)

# For one cluster, return the maximum Delta_q over all

# variables, cut value, variable used to cut and grouping.

# And return Hausforff dist b/w two observations around cut point.

# Input should be indices of observations, weight and

# multiple interval variables

{

p = length(X[1,])/2 # Number of variables

delta = rep(0,times=p) # Contain biggest delta using each variable

c = rep(0,times=p) # Contain cut value using each variable

dist = rep(0,times=p) # Contain distance between two observations around

# cut point using each variable
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for (j in 1:p)

{

delta1 = Delta1(index,w,X,j)

delta[j] = delta1$max_delta

c[j] = delta1$cut_value

dist[j] = delta1$Hdist

}

which.var = which(delta==max(delta),arr.ind=T)

# Decide which variable is with max delta.

# If there exists tie, pick up the one with larger Hausdorff distance

# (as below)

which.var.one = which.var # which.var.one will contain just one variable

max.dist = dist[which.var]

if (length(which.var)>1)

{

temp = cbind(delta,c,dist)

max.dist = max(temp[temp[,"delta"]==max(temp[,"delta"]),"dist"])

# Calculate maximum Hausdorff distance between two points around

# the cut point from those with maximum delta using different

#variables

which.var.one =

which(temp[,"delta"]==max(temp[,"delta"])&temp[,"dist"]==max.dist)[1]

# Decide which variable with maximum delta and maximum distance.

# If tie exists even after these two conditions, pick up the 1st var

}

cut = c[which.var.one] # Decide the cut value

mean.which.var = (X[,(2*which.var.one-1)]+X[,(2*which.var.one)])/2

# Mean of the variable used
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I = cbind(index,mean.which.var)

cluster1 = I[which(mean.which.var<=cut,arr.ind=T),’index’]

# Index of observations distributed to the 1st cluster

cluster2 = I[which(mean.which.var>cut,arr.ind=T),’index’]

# Index of observations distributed to the 2nd cluster

return(list(variable=which.var.one, max.delta=max(delta),

cut.value=cut, max.Hdist=max.dist, cluster1=sort(cluster1),

cluster2=sort(cluster2)))

}

Chavent <- function(r,index,w,X) # Final function.

# Input should be r=number of clusters wanted,

# indices and weights for observations.

{

n = length(X[,1])

cluster = rep(1,times=n) # Cluster index

XX <- cbind(index,w,cluster,X)

for (i in 1:(r-1)) # Do clustering at the ith stage

{

delta = rep(0,times=i) # Contains maxiumum deltas from every cluster

dist = rep(0,times=i)

# Contain distances between two observations around cut point

# from every cluster

for (j in 1:i) # do clustering to all i clusters

{

if (length(XX[XX[,’cluster’]==j,1])==1)

# Clusters with one obs’n in it will have delta=0

{
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delta[j]=0

}

else

{

xx = XX[XX[,’cluster’]==j,]

ind = xx[,’index’]

weight = xx[,’w’]

x = xx[,-(1:3)]

delta2=Delta2(index=ind,w=weight,X=x)

delta[j]=delta2$max.delta

# Get maxiumum delta using different variables of the jth cluster

dist[j]=delta2$max.Hdist

# Get maxiumum Hausdorff dist. b/w two obs’ns around

# the cut point of the jth cluster, using different variables

}

}

which.cluster = which(delta==max(delta),arr.ind=T)

# Decide which cluster with maximum delta.

# If there exists tie, pick up the one with larger Hausforff dist.

which.cluster.one = which.cluster

if (length(which.cluster)>1)

{

temp = cbind(delta,dist)

max.dist = max(temp[temp[,"delta"]==max(temp[,"delta"]),"dist"])

# Maximum distance from those with max delta

which.cluster.one = which(temp[,"delta"]==max(temp[,"delta"])

&temp[,"dist"]==max.dist)[1]

# Which cluster with max delta and maximum distance.
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# If tie exists even after these two conditions, pick up the 1st

# cluster.

}

Xi = XX[XX[,’cluster’]==which.cluster.one,] # data used at ith stage

result = Delta2(index=Xi[,’index’],w=Xi[,’w’],X=Xi[,-(1:3)])

XX[is.element(XX[,’index’], result$cluster2),’cluster’]=i+1

# Divide observations into two clusters

names(i) = ’################ At the ith stage: #################’

names(result) = c(’Variable Used To Cluster’,

’The Maximum Delta’,’Cut Value’,

’Hausdorff Distance Between Two Observations Around The Cut Value’,

’The Smaller Cluster’,’The Larger Cluster’)

print(c(i,result))

}

cluster.result.1 = rbind(XX[,’index’],XX[,’cluster’])

rownames(cluster.result.1)=c(’Index’,’Cluster’)

cluster.result.2 =

rbind(XX[,’index’],XX[,’cluster’])[,sort.list(XX[,’cluster’])]

rownames(cluster.result.2)=c(’Index’,’Cluster’)

list(ClusterResult1=cluster.result.1,ClusterResult2=cluster.result.2,

variable=result[1])

}

Chavent(r=no.c, index=index, w=weight, X=data)

}

R Code for Simulation Studies

Data.Sim <- function(sim.n.cluster, cluster.size, points.in.obs,
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sigma, mean,xlim=c(0,30),ylim=c(0,30),plot="F")

# Function to simulate one interval-valued data set

# Number of Clusters Want to Simulate: sim.n.cluster = integer

# Cluster Size of Each Cluster: cluster.size = integer vector

# (order from big to small numbers)

# Number of Points to Construct An Interval: points.in.obs = integer

# Covariance Matrix: sigma = numeric vector

# Mean vector: mean = numeric vector

# Parameters for Plotting: xlim, ylim = integer vector

# Whether or Not Want the Plotting: plot = "T" or "F"

{

Sigma <- matrix(ncol=2,nrow=2*sim.n.cluster)

Mean <- matrix(ncol=2,nrow=sim.n.cluster)

for (j in 1:sim.n.cluster)

{

Sigma[((j-1)*2+1):((j-1)*2+2),]=matrix(sigma[((j-1)*4+1):((j-1)*4+4)],2,2)

Mean[j,] = mean[((j-1)*2+1):((j-1)*2+2)]

}

data = matrix(nrow=(sum(cluster.size)*points.in.obs),ncol=2)

for (j in 1:sim.n.cluster)

{

data[(sum(cluster.size[0:(j-1)])*points.in.obs+1):

(sum(cluster.size[0:j])*points.in.obs),] =

mvrnorm(n=cluster.size[j]*points.in.obs, mu=Mean[j,],

Sigma=Sigma[((j-1)*2+1):((j-1)*2+2),])

}

if (plot=="T")

{
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plot(data[1:(cluster.size[1]*points.in.obs),],

xlim=xlim,ylim=ylim,pch=20,col=’blue’,

xlab=expression(paste(’X’[’1’])),ylab=expression(paste(’X’[’2’])))

lines(ellipse(Sigma[1:2,],centre=Mean[1,]),lty=1,lwd=2)

points(data[(cluster.size[1]*points.in.obs+1):

(sum(cluster.size[1:2])*points.in.obs),],pch=0,col=’red’)

lines(ellipse(Sigma[3:4,],centre=Mean[2,]),lty=2,lwd=2)

if (sim.n.cluster==3)

{

points(data[(sum(cluster.size[1:2])*points.in.obs+1):

(sum(cluster.size[1:3])*points.in.obs),],pch=1,col=’green’)

lines(ellipse(Sigma[5:6,],centre=Mean[3,]),lty=3,lwd=2)

}

}

int.data = matrix(nrow=sum(cluster.size),ncol=4)

for (i in 1:sum(cluster.size))

{

int.data[i,1] = quantile(data[(points.in.obs*(i-1)+1):

(points.in.obs*i),1],probs=0.05)

int.data[i,2] = quantile(data[(points.in.obs*(i-1)+1):

(points.in.obs*i),1],probs=0.95)

int.data[i,3] = quantile(data[(points.in.obs*(i-1)+1):

(points.in.obs*i),2],probs=0.05)

int.data[i,4] = quantile(data[(points.in.obs*(i-1)+1):

(points.in.obs*i),2],probs=0.95)

}

return(int.data)

}
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Data.Sim.Multiple <- function(sim.n.cluster, cluster.size,

points.in.obs, sigma, mean)

# Function to simulate 5 interval-valued data sets for each replication

# Number of Clusters Want to Simulate: sim.n.cluster = integer

# Cluster Size of Each Cluster: cluster.size = integer matrix

# Number of Points to Construct An Interval: points.in.obs = matrix

# Covariance Matrix: sigma = numeric vector

# Mean vector: mean = numeric vector

# Parameters for Plotting: xlim, ylim = integer vector

# Whether or Not Want the Plotting: plot = "T" or "F"

{

Sigma <- matrix(ncol=2,nrow=2*sim.n.cluster)

Mean <- matrix(ncol=2,nrow=sim.n.cluster)

for (j in 1:sim.n.cluster)

{

Sigma[((j-1)*2+1):((j-1)*2+2),] =

matrix(sigma[((j-1)*4+1):((j-1)*4+4)],2,2)

Mean[j,] = mean[((j-1)*2+1):((j-1)*2+2)]

}

data = matrix(nrow=(sum(cluster.size[1,])*points.in.obs[1]),ncol=2)

for (j in 1:sim.n.cluster)

{

data[(sum(cluster.size[1,0:(j-1)])*points.in.obs[1]+1):

(sum(cluster.size[1,0:j])*points.in.obs[1]),] =

mvrnorm(n=cluster.size[1,j]*points.in.obs[1],

mu=Mean[j,], Sigma=Sigma[((j-1)*2+1):((j-1)*2+2),])
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}

for (i in 1:length(cluster.size[,1])) # Creat matrices for interval data

{

assign(paste("x",i,sep=""),matrix(nrow=sum(cluster.size[i,]), ncol=4))

}

for (i in 1:length(cluster.size[,1]))

{

temp = matrix(nrow=sum(cluster.size[i,]),ncol=4)

for (j in 1:sum(cluster.size[i,]))

{

temp[j,1] = quantile(data[(points.in.obs[i]*(j-1)+1):

(points.in.obs[i]*j),1],probs=0.05)

temp[j,2] = quantile(data[(points.in.obs[i]*(j-1)+1):

(points.in.obs[i]*j),1],probs=0.95)

temp[j,3] = quantile(data[(points.in.obs[i]*(j-1)+1):

(points.in.obs[i]*j),2],probs=0.05)

temp[j,4] = quantile(data[(points.in.obs[i]*(j-1)+1):

(points.in.obs[i]*j),2],probs=0.95)

}

assign(paste("x",i,sep=""), temp)

}

return(list(x1,x2,x3,x4,x5))

}

Accuracy <- function(c.result,cluster.size)

# Function to calculate accuray; currently only works for 2 clusters

{

table1 = table(c.result[2,1:cluster.size[1]])
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table2 = table(c.result[2,(cluster.size[1]+1):sum(cluster.size[1:2])])

table = matrix(data=0,nrow=n.cluster,ncol=n.cluster)

# within each true cluster, how the clustered observations are distributed

rownames(table) = c("Underlying Cluster 1", "Underlying Cluster 2")

colnames(table) = c("# of clusters labeled as 1",

"# of clusters labeled as 2")

table[1,1] = table1["1"]; table[1,2] = table1["2"]

table[2,1] = table2["1"]; table[2,2] = table2["2"]

table[is.na(table)] = 0

percent.table = matrix(nrow=n.cluster,ncol=n.cluster)

for (i in 1:n.cluster)

{

for (j in 1:n.cluster)

{percent.table[i,j] = table[i,j]/sum(table[i,])}

}

index = matrix(nrow=n.cluster,ncol=2)

# find location of number of correctly clustered observations.

# According to which number, 1 or 2, dominates the percentage of that cluster

colnames(index)=c("row","col")

index[1,] = which(percent.table==max(percent.table), arr.ind=TRUE)[1,]

# which location has the biggest percent.

# If tie, use first (since cluster size bigger)

index[2,] = index[1,]+1

index[index[,]>2] = index[index[,]>2]%%2

correct.clustered = table[index[1,1],index[1,2]] +

table[index[2,1],index[2,2]]

acc = correct.clustered/sum(table)

return(acc)
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}

Sim <- function(n.ite, D.v = c(’H’,’EH’,’GSNEH’,’GNEH’,’SNEH’,’NEH’),

cluster.size=rbind(c(10,10),c(20,20),c(50,50),c(100,100)),

points.in.obs=c(1000,500,200,100), accuracy="T",report.var="F")

# Number of itterations wanted: n.ite = ingeter

# Whether or not to report the number of times each variable is used:

# report.var = "T" or "F"

{

if (accuracy=="T")

{

Acc = array(0,dim=c(n.ite,length(D.v),length(cluster.size[,1])))

colnames(Acc) = D.v

}

if (report.var=="T")

{

Var = array(0,dim=c(n.ite,length(D.v),length(cluster.size[,1])))

colnames(Var) = D.v

}

time = array(0,dim=c(n.ite,length(D.v),length(cluster.size[,1])))

colnames(time) = D.v

for (i in 1:n.ite)

{

sink("NUL")

X <- Data.Sim.Multiple(sim.n.cluster, cluster.size, points.in.obs,

sigma, mean)

for (j in 1:length(D.v))

{
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for (k in 1:length(cluster.size[,1]))

{

time[i,j,k] =

system.time(c.result <-

HDMCM.Interval(distance=D.v[j],no.c=n.cluster,

index=seq(1:sum(cluster.size[k,])),

weight=rep(1/sum(cluster.size[k,]),sum(cluster.size[k,])),

data=X[[k]]))[3]

if (accuracy=="T")

{

Acc[i,j,k] <- Accuracy(c.result$ClusterResult1,

cluster.size=cluster.size[k,])

}

if (report.var=="T")

{

variable <- c.result[[3]]

Var[i,j,k] <- as.numeric(variable)

}

}

}

sink()

if (i%%100==0)

{

print(Sys.time())

print(c(’Now at iteration:’,i))

}

}
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if (accuracy=="T")

{

Accuracy.Mean = round(apply(Acc,c(3,2),mean),digits=3)

colnames(Accuracy.Mean) = D.v

rownames(Accuracy.Mean) = rowSums(cluster.size)

Accuracy.SD = round(apply(Acc,c(3,2),sd),digits=4)

colnames(Accuracy.SD) = D.v

rownames(Accuracy.SD) = rowSums(cluster.size)

}

if (report.var=="T")

{

Variable1.Cut = apply(-Var+2,c(3,2),sum)

colnames(Variable1.Cut) = D.v

rownames(Variable1.Cut) = rowSums(cluster.size)

Variable2.Cut = apply(Var-1,c(3,2),sum)

colnames(Variable2.Cut) = D.v

rownames(Variable2.Cut) = rowSums(cluster.size)

}

Time.Mean = round(apply(time,c(3,2),mean),digits=4)

colnames(Time.Mean) = D.v

rownames(Time.Mean) = rowSums(cluster.size)

Time.SD = round(apply(time,c(3,2),sd),digits=5)

colnames(Time.SD) = D.v

rownames(Time.SD) = rowSums(cluster.size)

result = list(Accuracy.Mean=Accuracy.Mean, Accuracy.SD=Accuracy.SD,

Time.Mean=Time.Mean, Time.SD=Time.SD,

Variable1.Cut=Variable1.Cut, Variable2.Cut=Variable2.Cut)

write.table(result, file="SimulationResult.txt",append=TRUE)
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return(result)

}

################# Case 1: An Intuitive Example ####################

sigma = c(10,0,0,10,10,0,0,10)

mean=c(10,15,20,15)

sim.n.cluster=2

n.cluster = 2

cluster.size = c(10,10)

points.in.obs = 50

x = Data.Sim(sim.n.cluster, cluster.size, points.in.obs, sigma, mean, plot=’T’)

Sim(n.ite=1000, D.v = c(’H’,’EH’,’GSNEH’,’GNEH’,’SNEH’,’NEH’),

cluster.size=rbind(c(2,2),c(5,5),c(10,10),c(20,20),c(50,50)),

points.in.obs=c(500,200,100,50,20), accuracy="T",report.var="T")

################# Case2: A bad example for Hausdorff ##################

sigma = c(0.1,0,0,30,0.1,0,0,0.1)

mean=c(14,15,16,15)

sim.n.cluster=2

n.cluster = 3

cluster.size = c(10,10)

points.in.obs = 50

x = Data.Sim(sim.n.cluster, cluster.size, points.in.obs, sigma, mean, plot=’T’)
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Sim(n.ite=1000, D.v = c(’H’,’EH’,’GSNEH’,’GNEH’,’SNEH’,’NEH’),

cluster.size=rbind(c(2,2),c(5,5),c(10,10),c(20,20),c(50,50)),

points.in.obs=c(500,200,100,50,20), accuracy="T",report.var="T")

################# Case3: A bad e.g. for Hausdorff/EH ##################

sigma = c(0.1,0,0,30,0.1,0,0,30)

mean=c(14,15,16,15)

sim.n.cluster=2

n.cluster = 2

cluster.size = rbind(c(10,10))

points.in.obs = c(50)

x = Data.Sim(sim.n.cluster, cluster.size, points.in.obs, sigma, mean, plot=’T’)

Sim(n.ite=1000, D.v = c(’H’,’EH’,’GSNEH’,’GNEH’,’SNEH’,’NEH’),

cluster.size=rbind(c(2,2),c(5,5),c(10,10),c(20,20),c(50,50)),

points.in.obs=c(500,200,100,50,20), accuracy="T",report.var="T")

################# Case4: Dispersion ################

sigma = c(1,0,0,1,1,0,0,1,1,0,0,1)

mean=c(2,5,7,5,50,5)

sim.n.cluster = 3

n.cluster = 3

cluster.size = c(10,10,10)

points.in.obs = 100

140



x = Data.Sim(sim.n.cluster, cluster.size, points.in.obs, sigma, mean,

plot=’T’,xlim=c(0,55),ylim=c(0,10))

HDMCM.Interval(distance=’H’,no.c=n.cluster, index=seq(1:sum(cluster.size)),

weight=rep(1/sum(cluster.size),sum(cluster.size)), data=x)

HDMCM.Interval(distance=’EH’,no.c=n.cluster, index=seq(1:sum(cluster.size)),

weight=rep(1/sum(cluster.size),sum(cluster.size)), data=x)

HDMCM.Interval(distance=’GSNEH’,no.c=n.cluster, index=seq(1:sum(cluster.size)),

weight=rep(1/sum(cluster.size),sum(cluster.size)), data=x)

HDMCM.Interval(distance=’GNEH’,no.c=n.cluster, index=seq(1:sum(cluster.size)),

weight=rep(1/sum(cluster.size),sum(cluster.size)), data=x)

HDMCM.Interval(distance=’SNEH’,no.c=n.cluster, index=seq(1:sum(cluster.size)),

weight=rep(1/sum(cluster.size),sum(cluster.size)), data=x)

HDMCM.Interval(distance=’NEH’,no.c=n.cluster, index=seq(1:sum(cluster.size)),

weight=rep(1/sum(cluster.size),sum(cluster.size)), data=x)

################ Case5: Outlier ###################

sigma = c(2,0,0,2,2,0,0,2,0.1,0,0,0.1)

mean=c(12,5,18,5,10,30)

sim.n.cluster = 3

n.cluster = 3

cluster.size = c(10,10,1)

points.in.obs = 100

x = Data.Sim(sim.n.cluster, cluster.size, points.in.obs, sigma, mean, plot=’T’)
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HDMCM.Interval(distance=’H’,no.c=n.cluster, index=seq(1:sum(cluster.size)),

weight=rep(1/sum(cluster.size),sum(cluster.size)), data=x)

HDMCM.Interval(distance=’EH’,no.c=n.cluster, index=seq(1:sum(cluster.size)),

weight=rep(1/sum(cluster.size),sum(cluster.size)), data=x)

HDMCM.Interval(distance=’GSNEH’,no.c=n.cluster, index=seq(1:sum(cluster.size)),

weight=rep(1/sum(cluster.size),sum(cluster.size)), data=x)

HDMCM.Interval(distance=’GNEH’,no.c=n.cluster, index=seq(1:sum(cluster.size)),

weight=rep(1/sum(cluster.size),sum(cluster.size)), data=x)

HDMCM.Interval(distance=’SNEH’,no.c=n.cluster, index=seq(1:sum(cluster.size)),

weight=rep(1/sum(cluster.size),sum(cluster.size)), data=x)

HDMCM.Interval(distance=’NEH’,no.c=n.cluster, index=seq(1:sum(cluster.size)),

weight=rep(1/sum(cluster.size),sum(cluster.size)), data=x)

################# Case6: One cluster within the other ###############

sigma = c(1,0,0,1,5,0,0,30)

mean=c(15,15,15,15)

sim.n.cluster = 2

n.cluster = 2

cluster.size = c(10,10)

points.in.obs = 50

x = Data.Sim(sim.n.cluster, cluster.size, points.in.obs, sigma, mean, plot=’T’)

Sim(n.ite=1000, D.v = c(’H’,’EH’,’GSNEH’,’GNEH’,’SNEH’,’NEH’),

cluster.size=rbind(c(2,2),c(5,5),c(10,10),c(20,20),c(50,50)),

points.in.obs=c(500,200,100,50,20), accuracy="T",report.var="T")
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Chapter 5

Future Work

In Table 3.3 from Section 3.2, we consider mean square of treatments over mean square of

error (MST/MSE) as a statistic following the F distribution. However, while this result is

intuitively correct, the proof has not been formally shown in this dissertation and remains

as future research by using the definition of εij in Section 3.4. Also, results from Section

3.3 only tell whether the treatments are significant overall. In order to tell what pairs of

treatments are different, other methods, e.g., the method of multiple comparisons, need to

be developed for interval-valued data. Finally, the results from a one-way ANOVA can be

extended to two-way and multi-way ANOVA.

Note that the chicken data used in Section 3.3 can be reorganized as a one-way layout

table with 3 diet groups with repeated measures over 64 weeks. Methods for analyzing data

with repeated measures such as using RM-ANOVA and linear mixed-effects models should

be more appropriate for these data. Methods for analyzing symbolic data with repeated

measures need to be developed in the future.

In this dissertation, we have shown and extended a divisive clustering method for interval

data proposed by Chavent (1998, 2000) and compared six different Hausdorff distances, but

the problem of when to stop the clustering process is still unsolved. Kim (2009, 2011)
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extended the Dunn (1974) index and the Davis and Bouldin (1979) index to histogram data.

The Dunn index and the Davis-Bouldin index can also be extended to interval data. A

pseudo F statistic developed by Calinski and Harabasz (1974) can also be considered to be

extended to interval data to determine the optimal number of clusters.

Notice that the divisive clustering method utilizes one variable each time for separating

the cluster and can continue until there is only one observation in any cluster. Usually, the

variables it uses are a subset of all the variables of the data set. Therefore, the clustering

method can also perform variable selection for interval-valued data. The reliability of the

variables selected by the clustering method remains as future research.

Since interval data are easy to be aggregated from large data sets and the computing time

for analyzing them is fast, it is always beneficial to start with interval data. If satisfactory

results can be achieved by performing analysis on interval data, it may not be necessary to use

more sophisticated symbolic data. However, interval data will often lose some information by

just taking the lower and upper bounds of the data. Currently, we assume that the spread

within each interval follows a uniform distribution. If the data have more complicated

structures and the assumption can not hold, the results of using interval data can be poor.

In these situations, more sophisticated symbolic data should be considered. Aggregating

data into histograms is an example where the uniform assumption is broken. Performing

clustering analysis on histogram data by using Hausdorff distances is for the future work.
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