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ABSTRACT 

 A connectome is a comprehensive map of neural connections in the brain. It plays a 

critical role in implementing brain functions such as memory, decision making, emotion, and 

language, and is believed to correlate with mental disorders such as autism and schizophrenia. To 

study brain connectome, researchers need to investigate from different views such as structural 

connectivity, functional connectivity, molecular regulators, development progress, and plasticity 

property. Since brain connectome is a multi-scale concept and a finest neuron wiring map of the 

human brain is not feasible due to the technique limits, current studies usually focus on single 

view in a specific resolution scale using certain imaging modalities and animal models. Despite 

many novel findings achieved in these studies, a comprehensive map of brain network is still 

missing. To achieve such map, in my study, I propose to jointly analysis brain in different scales 

and fuse brain connectome derived from different image modalities, different animal models, and 

different resolution scales. In micro-scale, I developed a set of software to automatically 

reconstruct neuron morphologies. In meso-scale, I computed whole brain connectome derived 

from neuron tracing experiments and employed it to evaluate the result of diffusion tensor image 

which is in macro-scale. And in macro-scale, I developed a set of brain landmarks to study 

group-wise inter-regional connectivity. Then I jointly analyzed brain wiring pattern and folding 



pattern across primate species and adopted machine learning algorithms to fuse brain functional 

connectome and structural connectome. Those studies involve different imaging modalities such 

as confocal microscopy imaging, neuron tracers, and structural/functional/diffusion magnetic 

resonance imaging. A wide range of study subjects has also been included to enable analysis in 

different resolution scales. In these studies, I have identified interesting brain connectome 

patterns that preserved or altered across species, modalities, populations, and between healthy 

and diseased human brains. Moreover, the newly developed computational frameworks will be 

further applied in other studies and shed light on the understanding of brain architectures and 

development mechanisms. 
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CHAPTER 1 

INTRODUCTION 

“I am my connectome.” - Sebastian Seung, in 2010 Ted Conference speech. 

A connectome is a comprehensive map of neural connections in the brain (Sporns et al. 

2005). It is believed that the wiring circuitry made up of billions of neurons defines the 

infrastructure for the mind and brain functions such as emotion, decision, creativity, and 

memory. To fully understand brain functions and architectures, a comprehensive investigation of 

connectome is of essential importance. The term “connectome” is inspired by the term “genome” 

(Lichtman and Sanes 2008; DeFelipe 2010) which aims for a comprehensive map of gene 

sequence, and when defining the value and the aims for brain connectome projects, the success 

experiences of human genome projects are usually borrowed and compared (Lichtman and Sanes 

2008; Van Essen et al. 2012; Assaf et al. 2013; Jiang 2013). However, considering the 

differences between genome and connectome, such comparison may not be applicable. The gene 

sequence is more static – it is heritable, consistent within species, comparable between species, 

and stable within the life span of an individual subject. While elasticity is one of the key feature 

of neuron wiring – the environment, experience, and injury will alternate brain network. In 

addition, it is not clear to which degree connectome can heritate (even cortical shape may vary 

between siblings, not to mention neuron connections) and thus comparing and correlating 

connectome between individuals is challenging. As a result, 10 years after defining the term 

“connectome”, there are still debates on the goal of connectome studies. Considering the cost of 

establishing comprehensive wiring diagram in large animal’s brain (which is technically 
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implacable up to date), whether establishing such a map is necessary and whether a coarser map 

is sufficient to investigate brain functions are still open questions for the whole field. 

In my opinion, instead of reconstructing a comprehensive map of neuron wiring diagram 

in the brain, it is more reasonable to define and study connectome in a hierarchical manner – 

multi-scale brain connectome. Similar concepts have also been suggested to define and analysis 

connectome in different scales in previous literature (Kötter 2007; Sporns 2011; Jiang 2013; 

Petersen and Sporns 2015) and different levels of the scale corresponding to levels of spatial 

resolution in brain imaging. Specifically, these scales are usually categorized as micro-scale, 

meso-scale and macro-scale. Different scales usually correspond to different imaging techniques 

and infer different aspects of connectome. In this thesis, according to the imaging resolution and 

objects, I further separate the definition of multi-scale brain connectome into five scales: 

molecular scale, cellular scale, circuitry scale, systems scale, and populations scale (Figure 1. 1). 

And this thesis is organized by the scales of each study such that I will introduce my studies of 

brain connectome from micro-scale to macro-scale (Figure 1. 1). 

 

Figure 1. 1. Illustration of the multi-scale concept of brain connectome analysis and the corresponding 

organization of the whole thesis. 
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It should be mentioned that though the major focus of this study is brain connectome, the 

major contribution and novelty of my studies are in the computational scales. Notably, 

neuroscience is an interdisciplinary area. To study brain connectome demands integration of 

domain knowledge from different areas and thus requires the collaboration of experts with a 

different specialty. For instance, neuroscientists conduct experiments to classify neuron types 

and correlate different types of neurons with different brain functions. Biologists use genetic 

tools to develop animal models of different neuron developmental disorders. Engineers design 

cutting-edge equipment to capture high resolution images of neuron or brain with solid quality. 

Chemists find and synthesize ideal substance such as fluorescent protein to label neurons of 

interest for visual inspections. Psychologists design questionnaire tests to quantitatively examine 

the behavior of normal and abnormal subjects. Physicists and mathematicians define 

mathematical models to simulate the activity of single neuron as well as brain functional 

networks. 

Computer scientists also play a critical role in the field of neuroscience. Today, for most 

research fields and commercial applications, data collection, processing, analysis and 

visualization using computers are inevitable. As for neuroscience, following the advances in 

imaging techniques, the computer infrastructure is first needed to store and share the 

exponentially growing amount of digital images. Then image pre-processing such as noise 

reduction, artifact removal, foreground/background segmentation, image alignment and 

registration are usually conducted automatically using image processing toolboxes. Following 

that, further analysis is conducted for different purposes. For instance, some researchers are 

designing different metric to quantify brain development and degeneration process and are 

searching for brain regions and biomarkers related to mental disorders. Some researchers are 
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developing advanced algorithms to automatically and accurately reconstruction neuron 

morphologies. For more examples, Table 1. 1 lists a set of state-of-art computational tools for 

brain connectome analysis. 

Table 1. 1. List of state-of-art software widely used for studying brain connectome. 

Software Scale Command Modality Vis Computation 

Vaa3D (Peng, Ruan, 

Long, et al. 2010; Peng 

et al. 2014) 

micro Yes 
volumetric image, 

mesh surface, lines 

2D 

3D 

3D+ 

image processing, 

neuron reconstruction 

Paraview (Henderson 

2007) 
- 

Python 

Shell 

volumetric image, 

mesh surface, lines, 

points 

2D 

3D 

3D+ 

simple 3D object 

analysis 

ImageJ/FIJI micro Yes 
Volumetric image, 

EM slices 

2D 

3D 

image processing, 

neuron reconstruction 

FSL (Jenkinson et al. 

2012) 
macro Yes MRI, fMRI, DTI 2D 

MRI/fMRI/DTI image 

processing and analysis 

MedInria (Toussaint et 

al. 2007) 
macro No MRI, DTI 

2D 

3D 

4D 

Registration, DTI 

tractography 

TrackVis (Wedeen et al. 

2008) 
macro Yes DTI 3D DTI tractography 

 

As for multi-scale brain connectome study, there are 3 major computational problems 

need to be solved. (1) Reconstruct brain/neuron network. (2) Visualize network. (3) Analysis and 

fuse networks from different image modalities and resolution scales. In the rest of this chapter, I 

will discuss these 3 major problems in detail and survey current solutions and the associated 

state-of-art computational tools. 

BRAIN CONNECTOME COMPUTATION 

For most brain network studies, the raw data did not give a direct measurement of brain 

connectivity. Further computation is needed to quantify brain networks. For instance, 

segmentation and labeling are required to reconstruct neurons and identify inter-neuron 

connections in electron microscopy images. Tractography is needed to reconstruct axonal fiber 
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bundles in diffusion tensor imaging data. For brain functional data, signal processing is needed to 

correlate signal with events or between regions. Table 1. 2 listed the majority of image 

modalities, the major computation steps required to analysis brain network, and the 

computational tools that are readily available to process the raw data. 

Table 1. 2. List of imaging modalities used for studying brain networks 

Modality Scale Key Computation Step Representative tools 

Confocal Microscopy micro 
Stitch image tiles, neuron 

reconstruction 
Vaa3D, Neurolucida 

Electron Microscopy micro 
Stitch and align slices, 

segmentation, neuron labeling 
TrakEM2, CATMAID 

Calcium Imaging 

(Microscopy) 
micro 

Segmentation, signal 

extraction, signal processing 
FluoroSNNAP, OpenFluo 

Neuron Tracer meso 
Slice alignment, connectivity 

calculation 
N/A 

Diffusion Tensor Imaging macro 
Registration, tractography, 

connectivity calculation 

DTI Studio, MedInria, 

TrackVis, mritrix, FSL 

Functional Magnetic 

Resonance Imaging 
macro 

Registration, signal 

processing, activation 

detection 

FSL, SPM, HELPNI 

Electroencephalography (EEG) macro Signal processing R/Python/Matlab libraries 

 

Despite the great success of the existing tools in inferring brain network information, 

there are still limitations that can be further improved. First, some tools still require human 

intervention and label works (e.g. CATMAID is designed for fast manual annotation). Second, 

some tools still require further computation for a final quantification (e.g. most tractography 

software requires further computation with in-house tools to quantify brain structural network). 

Third, the reliability of some results is largely unknown (e.g. DTI tractography) and some 

findings are criticized by the poor reproducibility. How to design efficient algorithms or take the 

advantage of the state-of-art machine learning algorithms to automate these process and increase 

the accuracy and throughput is still an open question that the whole field of medical image 

analysis is working on. 
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BRAIN CONNECTOME VISUALIZATION 

Seeing is believing. Visual inspection is always necessary to make sure the results are 

correct and reasonable. For instance, it is always a good habit to visually inspect the input data 

and make sure the data are loaded correctly by the program. Also, it is desired to save and 

visualize the temporary results calculated by each step to make sure there is no bug in the 

program and the parameters selected are reasonable. Moreover, when the final results are 

surprisingly good (e.g. p-value << 0.01, accuracy > 99%), it is always a good practice to 

visualize the connections/features in brain and check if such result is reasonable before making 

the conclusion and reporting the result. 

In addition, a good visualization will lead to a better interpretation of the result and even 

novel findings. So far, the representations of brain connectome can be classified into 2 major 

types. (1) Graph representation defines the regions of interests or neurons as nodes and the 

structural connectivity or functional interaction between them as edges. (2) Spatial map 

representation is usually applied in studying brain functional networks and defines a brain area 

with strong concurrent signals as a network.  

For graph representation, it can be visualized by adjacency matrix (Figure 1. 2 (a)) or an 

edge-node visualization (Figure 1. 2 (b)-(c)). The adjacency matrix offers a complete view of the 

graph with each row/column corresponding to a node and the intensity of each matrix entry 

representing the edge between the corresponding nodes. The columns/rows can be rearranged by 

anatomical/functional roles for a better biological interpretation. Such matrix can be easily 

generated using matlab or other program libraries. However, it is relatively difficult to examine 

and explain when there are hundreds of nodes in the graph. For edge-node visualization, nodes 

can be arranged by circle layout (Krzywinski et al. 2009) (Figure 1. 2 (b)), cluster layout, or 
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brain layout (Figure 1. 2 (c)). And the edges can be visualized by a straight or curved line 

with/without arrows to represent directional/none-directional connections. The size/thickness and 

the color of nodes and edges can be adjusted to reflect different parameters. The circle layout can 

be generated using software circus (http://circos.ca/), the cluster layout can be generated using 

software gephi (https://gephi.org), and the brain layout can be generated using software paraview 

(http://www.paraview.org). However, though all these software are well designed and can be 

used interactively, the researchers need to first convert their findings to the correct formats 

before they can get the desired visualization and a certain level of programming skills are 

required to master these tools. Nevertheless, edge-node visualization will be less informative 

when the connection is relatively dense. 

 

Figure 1. 2. Examples of two types of brain network visualization. (a)-(c) Examples of visualizing graph 

representations. (d)-(f) Examples of visualizing a spatial map of functional brain networks. 

http://circos.ca/
https://gephi.org/
http://www.paraview.org/
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A spatial map representation can either be in 3D (e.g. fMRI data) or in 2D space (e.g. 

EEG data). It is relatively intuitive to visualize 2D images on a monitor. As for 3D spatial map, 

one simple option is to show by slices (Figure 1. 2 (d)). However, slice view may overlook 3D 

pattern of the network. Alternatively, we can render spatial map volumes in 3D space based on 

maximum projection (Figure 1. 2 (e)) or surface representation. Also, the 3D volume can be 

projected onto smoothed cortical surface (Figure 1. 2 (f)) such that both the spatial pattern and 

the anatomical pattern can be visualized. Software FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) 

features a slice visualization of brain functional network. Software Vaa3D (http://vaa3d.org) and 

Paraview (http://www.paraview.org) can jointly visualize 3D volumes and Surfaces. 

MULTI-MODALITY, MULTI-SCALE DATA FUSION 

Features from different imaging modalities offer complementary views. Multimodal 

fusion provides a more comprehensive description of altered brain patterns and connectivity than 

a single modality (Arbabshirani et al. 2016). In addition, the combination of function and 

structure may provide more informative insights into both altered brain patterns and connectivity 

in brain disorders (Arbabshirani et al. 2016). The goal of mapping multi-view information can be 

explained in two-folds: (1) more accurate diagnose than single modality; (2) more insights to the 

cause of diseases for a better treatment (e.g. functional and structural causes of brain disease and 

their inner correlations). As recently reviewed by Arbabshirani et al. (Arbabshirani et al. 2016), it 

is surprising that among recent studies on brain disease diagnose, there are more multi-modality 

studies than single modality studies.  

Feature Selection 

One intuitive way of data fusion is to equally treat features from different views and use 

feature selection method to select the features that are informative for classification and 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://vaa3d.org/
http://www.paraview.org/
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diagnosis. When selecting features for prediction, the major criteria is that the selected features 

need to fit the label to predict. To measure the fitness, measurement such as correlation 

coefficient, mutual information (Ding and Peng 2005; Peng et al. 2005), or graph matching (Liu 

et al. 2013) are mostly used. In addition to data fitting criteria, other constraints will be added to 

further optimize the selection: (1) feature sparseness is widely applied to allow the most 

important features “pop-up” and lead to a better interpretation of the result (Lv, Jiang, Li, Zhu, 

Chen, et al. 2015), (2) information independence is usually enforced to eliminate redundant 

features (Peng et al. 2005). 

Nevertheless, since each modality carries different information, specific feature selection 

scheme can be designed considering the inner correlation between and within modalities. For 

instance, in Sparse Multimodal Learning (SMML) method proposed by Wang et al. (Wang et al. 

2013; Zhang, Huang, et al. 2014), in addition to loss function which tries to fit data, two extra 

cost functions are defined to add sparse constraint between modalities and sparse constraint 

between features (high weight to features contribute to more labels):  

min
𝑾

∑ 𝑓𝑖(𝒘𝒊 , 𝑏𝑖) + 2𝛾1‖𝑾‖𝐺1
+ 2𝛾2‖𝑾‖2,1

𝑐

𝑖=1

 (1.1) 

where W indicates the weights of all features from all modalities in classifying c classes. The 

first part of the equation is the loss function. The second part captures the global relationships 

between modalities such that low (zero) weight will be assigned to modalities with little 

contribution to a certain label. The last part imposed sparsity to feature selection such that the 

weights of most features are close to zeroes and only the features important to classification tasks 

have large weights. 

Another trend in applying multimodal data for classification is to use the information 

from other modalities to guide a better selection of features in a single modality. That is, in 
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feature selection phase, multiple modality data will be used, and in training and testing phase, 

only a single modality will be used. Such technique will be helpful when some modalities are 

absent in the testing data or when some modalities are more expensive to acquire than other 

ones. For instance, it is more time consuming to acquire functional MRI and diffusion MRI 

image than structural MRI image. And in some clinical cases, only structural MRI image will be 

available. On the other hand, spatial and anatomical information will be preserved across these 

modalities. Thus, based on such correspondence, if the features of one ROI derived from 

different modalities are shown to be a good fit of predefined labels, then more weight should be 

given to the corresponding features from structural MRI image, based on which classifier will be 

trained and tested. Then for the individual subject, only structural MRI image is needed for 

prediction and diagnose. 

Feature Fusion 

Another approach is to fuse the features before further analysis. For instance, to perform 

image segmentation / graph clustering based on features from different views, we can first 

compute similarity matrix based on each view and then fuse these similarity matrices together for 

final clustering. To fuse, the most intuitive approach is to average the similarities between 

modalities. Also, given that similarity value distributes between 1 and 0, we can also multiply the 

values, use maximum similarity value, or use minimum similarity value across modalities as 

final fused similarity value for different purposes. 

However, since the features from different views may have different scales and the 

similarity matrix may have different distributions, such intuitive and empirical approach will not 

be applicable in those scenarios. In my previous work (Chen, Li, Zhu, Jiang, et al. 2013), I 
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proposed to fuse brain structural and functional connectivity in the Eigenspace across modalities 

and individuals to cluster group-wise and modality-wise consistent brain networks: 

𝑝𝑟𝑜𝑗(𝑊𝑖 ,𝑈𝑗 ) = (𝑈𝑗 𝑈𝑗
𝑇𝑊𝑖 + (𝑈𝑗 𝑈𝑗

𝑇𝑊𝑖)
𝑇
)/2 (1.2) 

where Wi is the connectivity matrix of view i and Uj is the top k eigenvectors of connectivity 

matrix from view j. 

This approach is ideal for identifying common clusters since it will smooth the 

connectivity of view i within the clusters of view j and weaken and erase the connectivity 

between the clusters of view j. In this way, the common clusters can be obtained for further 

analysis. For instance, to study brain network alternations in the diseased brain, such method can 

be applied to identify common brain networks across individuals based on which within or 

between network changes can be studied (Chen, Iraji, et al. 2015). Or it can be used on different 

populations to identify population-specific brain sub-networks. However, such fusion approach 

is only proposed for group-wise analysis and may not be applicable for individual predictions. 

Multiple Kernel Learning  

Instead of selecting or fusing features which will be used for training classifiers, another 

set of approaches is to train the classification kernel for each modality and then select or fuse 

these kernels, namely multiple kernel learning (MKL) (Gönen and Alpaydın 2011). For instance, 

give a set of data X with labels Y, n additive kernels K can be trained and linearly combined into 

a new kernel: 

𝐾 ′ = ∑𝛽𝑖𝐾𝑖

𝑛

𝑖=1

 (1.3) 

In the fruitful review paper composed by Gonen and Alpaydın (Gönen and Alpaydın 

2011), 6 dimensions of MKL methods have been proposed including: (1) the learning method, 

(2) the functional form, (3) the target function, (4) the training method, (5) the base learner, and 
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(6) the computational complexity. For each dimension, multiple options have been proposed in 

the previous literature. And based on different combinations of options, different methods can be 

designed to solve the classification problem. It has been shown that using multiple kernels 

outperforms using a single one. However, trained linear combination is not always better than an 

untrained, unweighted combination and nonlinear or data-dependent combination seem more 

promising. 

One example of using MKL in disease prediction is the work by Zhang et al. (Zhang et 

al. 2011). In this paper, the authors proposed a kernel combination method to combine three 

modalities of biomarkers (MRI, FDG-PET, and CSF) to discriminate between AD (or MCI) and 

healthy controls. In this framework, a linear combination of SVM kernels is proposed with a 

single and separate step in searching optimal weights for kernels. The results showed higher 

accuracy when including multiple modalities than a single modality. 

Multimodal Deep Learning 

Deep learning algorithms are shown to be efficient for unsupervised or semi-supervised 

feature learning and hierarchical feature extraction. The methods are inspired by advances in 

neuroscience such that multiple hidden layers are placed between the input layer and output 

layer. The connection parameters between layers will be trained for feature representation. Deep 

learning has shown to be successful in producing state-of-the-art results on various tasks in 

different fields such as computer vision, automatic speech recognition, natural language 

processing, audio recognition and bioinformatics. The method is initially proposed for single 

modality while it can be extended for multimodal representation (Ngiam et al. 2011; Srivastava 

and Salakhutdinov 2012; Wu et al. 2013; Sohn et al. 2014). 
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One identical architecture of deep learning algorithm is its layered structure. The 

combination of different modalities can be conducted in either shadow layer (input layer) or deep 

layer (hidden layer). In (Ngiam et al. 2011; Srivastava and Salakhutdinov 2012), the authors 

proposed to use deep Boltzmann machine to fuse features from different views. Specifically, a 

deep hidden layer is proposed to connect the hidden layers learnt from different modalities. This 

approach can (1) fuse features from different modalities into a joint representation (hidden layer 

features) for classification, and (2) reconstruct features of a missing modality from other 

modalities. In a study by Suk, Lee, and Shen (Suk et al. 2014), a similar framework has been 

applied and was shown to be effective in fusing features from MRI and PET image to predict 

Alzheimer’s disease patients. Multimodal learning approach can also be employed in other deep 

learning architectures. For instance, convolutional neural network (CNN) (Ma et al. 2015) has 

been successfully adjusted for multimodal learning in recent works by Ma and his colleagues. 

Mao et al. have deployed a deep layer in recurrent neural network to include image features 

trained based on CNN to perform text prediction (Mao et al. 2014). Deep learning is a fast-

growing field, and new architectures, variants, or algorithms appear every few weeks. Apply 

deep learning technique in treating multimodal data is a brand new field with many potentials. I 

believe it will advance current solutions of aligning multi-view features and distinguishing group 

difference. 
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CHAPTER 2 

SMART TRACING: SELF-LEAENING BASED NEURON RECONSTRUCTION 1  

                                                 
1 Hanbo Chen, Hang Xiao, Tianming Liu, Hanchuan Peng. 2015, SmartTracing: self-learning-based Neuron 
reconstruction. Brain Informatics. 2:135–144. 
Reprinted here with permission of the publisher. 
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ABSTRACT 

In this chapter, we propose SmartTracing, an automatic tracing framework that does not 

require substantial human intervention. There are two major novelties in SmartTracing. First, 

given an input image, SmartTracing invokes a user-provided existing neuron tracing method to 

produce an initial neuron reconstruction, from which the likelihood of every neuron 

reconstruction unit is estimated. This likelihood serves as a confidence score to identify reliable 

regions in a neuron reconstruction. With this score, SmartTracing automatically identifies 

reliable portions of a neuron reconstruction generated by some existing neuron-tracing 

algorithms, without human intervention. These reliable regions are used as training exemplars. 

Second, from the training exemplars the most characteristic wavelet features are automatically 

selected and used in a machine-learning framework to predict all image areas that most probably 

contain neuron signal. Since the training samples and their most characterizing features are 

selected from each individual image, the whole process is automatically adaptive to different 

images. Notably, SmartTracing can improve the performance of an existing automatic tracing 

method. In our experiment, with SmartTracing we have successfully reconstructed complete 

neuron morphology of 120 Drosophila neurons. In the future, it may lead to more advanced 

tracing algorithms and increase the throughput of neuron morphology related studies. 

INTRODUCTION 

The manual reconstruction of a neuron’s morphology has been in practice for one century 

now since the time of Ramón y Cajal. Today, the technique has evolved such that researchers can 

quantitatively trace neuron morphologies in 3D with the help of computers. As a quantitative 

description of neuron morphology, the digital representation has been widely applied in the tasks 

of modern neuroscience studies (Meijering 2010; Donohue and Ascoli 2011; Parekh and Ascoli 
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2013) such as characterizing and classifying neuron phenotype, or modeling and simulating 

electrophysiology behavior of neurons. However, many popular neuron reconstruction tools such 

as Neurolucida (http://www.mbfbioscience.com/neurolucida) still relies on manual tracing to 

reconstruct neuron morphology, which limits the throughput of analyzing neuron morphology. 

In the past decade, many efforts have been given to eliminate such a bottleneck by 

developing automatic or semi-automatic neuron reconstruction algorithms (Meijering 2010; 

Donohue and Ascoli 2011). In these algorithms, different strategies and models were applied, 

such as pruning  of over-complete neuron-trees (Peng et al. 2011; Xiao and Peng 2013), shortest 

path graph (Lee et al. 2012), distance transforms (Yang et al. 2013), snake curve (Wang et al. 

2011) and deformable curve (Peng, Ruan, Atasoy, et al. 2010). However, the completeness and 

the attribute of resulted neuron morphology vary tremendously between different algorithms. 

Recently, to quantitatively access such variability between algorithms and advance the state-of-

art of automatic neuron reconstruction method, a project named BigNeuron (Peng, Hawrylycz, et 

al. 2015; Peng, Meijering, et al. 2015) has been launched to bench-test existing algorithms on big 

dataset. One reason causing such variability is that image quality and attributes vary between 

different data sets – partially due to the differences in imaging modality, imaging parameter, 

animal model, neuron type, tissue processing protocol, and the proficiency of microscopic 

operator. And some of the algorithms were developed based on specific data or were developed 

to solve specific problems in the data which may not be applicable for other types of data. 

Another reason is that most of the tracing algorithms required user input of parameters. As a 

consequence, the optimal parameters vary between images and thus requires manual tune by the 

user with sufficient knowledge to the algorithm. 

http://www.mbfbioscience.com/neurolucida
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It should be noted that most of the current automatic neuron reconstruction algorithms are 

not “smart” enough. Indeed many times they require human intervention to obtain a reasonable 

result. To conquer this limitation, one can adapt learning based methods so the algorithm can be 

trained for different data. In (Gala et al. 2014), the authors proposed a machine learning approach 

to estimate the optimal solution of linking neuron fragments. However, the fragments to link 

were still generated by model-driven approaches and it requires manual work in generating 

training samples.  

 

Figure 2. 1. Overview of SmartTracing method and the result for a single image. In each subfigure, the 

global 3D view of images and the overlapped reconstructions are shown on the left. The zoomed in 3D 

view ((a)-(c) and (f)) or slice view ((d)-(e)) are shown on the right. The locations of the zoomed in view 

are highlighted in (a). 
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In this chapter, based on machine learning algorithms, we proposed SmartTracing, an 

automatic tracing framework that does not require human intervention. The procedure of the 

SmartTracing algorithm was outlined in Figure 2. 1. First, the initial reconstruction was obtained 

based on existing automatic tracing algorithms (Figure 2. 1(b)). Second, a confidence metric 

proposed in this chapter was computed for each reconstruction segment to identify reliable 

tracing (Figure 2. 1(c)). Third, a training sample (Figure 2. 1(d)) and the most characteristic 

features were obtained. Fourth, a classifier was then trained and the foreground containing 

neuron morphology was predicted (Figure 2. 1(e)). Finally, after adjusting the image based on 

prediction result, the final reconstruction was traced (Figure 2. 1(f)). 

This chapter is organized as follows. we first discuss the key steps of SmartTracing. Then 

we describe the implementation and the availability of the algorithm. Finally, we present 

experimental results on real neuron image data, followed by some brief discussion of the pros 

and cons and the future extension of SmartTracing. 

 

METHOD 

Confidence score of reconstruction 

In SmartTracing, we first identify the reliable neuron reconstructions as training 

exemplars. A neuron reconstruction can be decomposed into multiple segments by breaking the 

reconstruction at the branch point. Whether or not a segment is trustworthy can be tested by 

checking if there is an alternative path connecting the two ends of the segment compared to this 

segment. Our premise is that a segment with no better alternative pathway (e.g. Figure 2. 2(c)) is 

more reliable in comparison with a segment with alternative pathway (e.g. Figure 2. 2(d)). 

Specifically, for a segment 𝐿𝑖𝑗 between points i and j, the image intensity alone 𝐿𝑖𝑗 will be 
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masked to 0 first. Then, the shortest path 𝐿𝑖𝑗
∗ weighted by intensity between points i and j will be 

identified. In the original image, the average intensity alone 𝐿𝑖𝑗 and 𝐿𝑖𝑗
∗ will be measured: 

 𝐼𝑖𝑗̅ =
∫ 𝐼(𝑥)𝑑𝑥𝐿𝑖𝑗

‖𝐿𝑖𝑗‖
 (2.1) 

where 𝐼(𝑥) is the intensity of x, and ‖𝐿𝑖𝑗‖ is the length of 𝐿𝑖𝑗. 

 

Figure 2. 2. Illustration of an alternative path. For each segment in the reconstructions, after masking the 

image alone the segment, the alternative path will be searched by fast marching from one end to the other 

end of the segment based on intensity. 

 

Then the confidence metric can be obtained by dividing 𝐼𝑖𝑗̅
∗
 with 𝐼𝑖𝑗̅: 

 𝐶𝑖𝑗 = 𝐼𝑖𝑗̅
∗
/𝐼𝑖𝑗̅ (2.2) 

Our method is that if an alternative path exists, 𝐼𝑖𝑗̅
∗
 will be closer or even larger to 𝐼𝑖𝑗̅ and 

𝐶𝑖𝑗 will be close to 1. Otherwise, 𝐿𝑖𝑗
∗ will be a relatively straight line passing through 

background with low intensity connecting i and j, and thus 𝐶𝑖𝑗 ≪ 1. This measurement is based 
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on the assumption that background intensity is lower than foreground intensity. When the 

background intensity is greater than foreground (e.g. for brightfield images), we can simply 

invert 𝐶𝑖𝑗 in Eq. (2.2). 

Obtain training exemplars 

Based on the confidence score obtained, the original image can be classified into 4 

groups of regions – foreground samples (labeled neurons), background samples (none-neuron 

area), uncertain regions, and the irrelevant area (Figure 2. 1(d)). Foreground samples are defined 

as the skeleton regions of confident reconstruction segments. Background samples are defined as 

the non-skeleton regions surrounding the confident reconstruction segments. The intermediate 

zones between these two regions are taken as uncertain regions. And the zones surrounding less 

confident reconstructions are taken as uncertain regions as well. These 3 types of regions 

compose 3 layers surrounding the confident reconstructions - core layer: foreground samples; 

middle layer: uncertain regions; outer layer: background samples. 

Extract features for classification 

Image intensity based features are extracted by adopting the method proposed in (Zhou 

and Peng 2007). The whole procedure is outlined in Figure 2. 3. For each sample voxel, features 

are extracted in a 3D cube surrounding this voxel (Figure 2. 3 (a)). Multi-resolution wavelet 

representation (MWR) is applied to project the sub-volume of the local 3D cube into a feature 

space (Figure 2. 3(b)-(c)). Then, a subset of features is selected based on the minimal-

redundancy-maximal-relevance (mRMR) method (Peng et al. 2005) for classification (Figure 2. 

3(d)). 
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Figure 2. 3. Illustration of feature selection procedure. (a) Extract sub-volume in 3D cube surrounding the 

sample voxel. (b) Wavelet decomposition for volume data. (c) Multi-resolution wavelet representation. 

(d) Select a characterizing subset of features based on mRMR for classification. 

 

MWR codes the information in both frequency domain and spatial domain. It is effective 

for identifying local and multi-scale features from signals or images and has been widely used in 

pattern recognition tasks. The MWR framework was firstly introduced on 1-dimensional (1D) 

signals and then extended to 2-dimensional (2D) images by Mallat (Mallat 1989). In brief, a pair 

of functions was defined to conduct wavelet transform – the mother wavelet ψ(x) representing 

the detail and high-frequency parts of a signal, and the scaling function φ(x) representing the 

smooth and low-frequency parts of the signal. To decompose a signal into multiple resolutions, 

the calculation is performed iteratively on the smoothed signal calculated based on φ(x). In 

practice, for discrete signal, instead of calculating wavelet ψ(x) and scaling function φ(x), a high 

pass filter H and a low pass filter L will be applied to calculate MWR. Mallat has shown that, 

MWR can be extended from 1D signal to 2D image by convolving the image with the filters in 

one dimension first and then convolving the output image with the filters in the other dimension 

(Mallat 1989). Such operation can be further extended to 3D volume (Muraki 1993). As 
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illustrated in Figure 2. 3(b), in one level of decomposition, 8 groups of wavelet coefficients are 

obtained by convolving volume with different permutations of two filters in three directions 

successively. The smoothed volume LLL is further decomposed in the next level to achieve 

multiresolution representations. 

After MWR decomposition, the dimension of feature space is relatively high – the 

number of features {𝑓𝑖} equals to the number of voxels in the sub-volume (Figure 2. 3(c)). Since 

some of these features may carry redundant information or none-discriminative information, 

using the full set of MWR coefficients directly may lead to inaccurate result. To better 

discriminate patterns and improve the robustness and accuracy of training framework, we select 

the most characterizing subset of features 𝑆. We consider the mRMR feature selection method to 

solve the problem. The algorithm has been widely applied in selecting features in high 

dimensional data such as microarray gene expression data to solve classification problems (Ding 

and Peng 2005). In the algorithm, the statistical dependency between the exemplar type and the 

joint distribution of the selected features will be maximized. To meet this criterion, mRMR 

method search for the features that are mutually far away from each other (minimum 

redundancy) but also individually most similar to the distribution of sampler types (maximum 

relevance). In practice, these two conditions were optimized simultaneously:  

 max
𝑆∈𝑊

{
1

|𝑆|
∑ 𝐼(𝑐, 𝑓𝑖)𝑖∈𝑆 −

1

|𝑆|2
∑ 𝐼(𝑓𝑖 ,𝑓𝑗)𝑖,𝑗∈𝑆 } (2.3) 

where 𝑊 denotes the full set of MWR coefficients, 𝑐 denotes the vector of sampler type, |𝑆| is 

the number of features, and 𝐼(𝑥, 𝑦) is the mutual information between 𝑥 and 𝑦. The first term in 

the equation is the maximum relevance condition and the second term is the minimum 

redundancy condition. It has been shown in (Peng et al. 2005), the solution can be computed 

efficiently in 𝑂(|𝑆| ∗ |𝑊|). 
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Training classifier and tracing neuron reconstruction 

Based on the extracted features of training samples, supervised training can be performed 

to train a classifier for foreground/background predictions. In our proposed framework, we use 

Support Vector Machine (SVM) implemented in LIBSVM toolkit  (Chang and Lin 2011). The 

default parameter setting of LIBSVM is used. A subset of foreground and background training 

samples are randomly chosen from the pool to make sure the numbers of training samples from 

each class are the same. 

With the trained classifier, we then examine the voxels in the image and label them as 

foreground or background (Figure 2. 1(e)). Since in neuron tracing problem, foreground signals 

are often sparse and relatively continuous in the image, we use a fast marching algorithm to 

search for the foreground signals. Initially, the voxels of foreground samples are pre-labeled as 

foreground and the rest voxels are marked “unknown”. The algorithm would then march from 

foreground voxels to their adjacent unknown voxels. For each of such “unknown” voxels, its 

feature will be extracted and it will be classified as foreground or background based on the 

classifier trained. If the voxel is classified as foreground, it will be taken as a new starting point 

for the next round of marching. The marching will stop until no more foreground voxel can be 

reached and all of the unknown voxels left will be labeled as background. 

Based on the labeled image, the original image is adjusted to obtain the final tracing 

result. The intensity of background voxels is set to 0. For foreground voxel, if its intensity is 

lower than the threshold set for tracing algorithm, the intensity of the voxel will be set as the 

threshold value. Otherwise, its intensity will be kept unchanged. Then the tracing algorithm will 

be re-run on the adjusted image to trace the final corrected neuron reconstruction. 
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IMPLEMENTATION 

Intuitively, the proposed sampling, training, and prediction framework can be applied on 

any existing neuron tracing algorithms to test and improve its performance. In our 

implementation, we used the APP2 tracing algorithm (Xiao and Peng 2013) to generate the 

initial tracing from the original image as well as the final tracing from the image after prediction. 

To our best knowledge, APP2 tracing algorithm is the fastest tracing algorithm among existing 

methods and is reliable in generating tree shape morphology for neuron reconstructions, which 

makes it an ideal algorithm to implement proposed framework. On the other hand, the APP2 

algorithm has its own limitations. It will stop tracing when there is a gap between signals such as 

the ones highlighted by arrows in Figure 2. 1(b). Also, like many other tracing algorithms, it 

needs to fine tune the background threshold and other parameters to avoid over-tracing. Thus, 

our proposed framework can further improve the performance of APP2. 

We implemented the SmartTracing algorithm as a plugin of Vaa3D (Peng, Ruan, Long, et 

al. 2010; Peng et al. 2014) which is the common platform to implement algorithms for the 

BigNeuron project (bigneuron.org) bench-testing. Since the APP2 algorithm has already been 

implemented in Vaa3D, the algorithm was directly invoked via the Vaa3D plugin interface. The 

default parameters of APP2 were taken to generate initial neuron reconstruction. To generate the 

final reconstruction, the background threshold was set to 1 since the intensity of all the 

background voxels were set to 0 as introduced in the previous section. The neighborhood 3D 

window size was 16×16×16 voxels. The cube of each such 3D small window was decomposed 

into 3 levels MWR. The mRMR feature selection was implemented based on the code 

downloaded from http://penglab.janelia.org/proj/mRMR/ and the top 20 characteristic features 

http://penglab.janelia.org/proj/mRMR/


 

25 

were selected. Classifier training and prediction were implemented based on the code 

downloaded from LIBSVM toolkit (http://www.csie.ntu.edu.tw/~cjlin/libsvm/). 

EXPERIMENTAL RESULTS 

The whole framework was tested on 120 confocal images of single neurons in the 

Drosophila brain downloaded from the flycircuit.tw database. The dimension of each image is 

1024*1024*120 voxels. For some of the images, APP2 works reasonably well in reconstructing 

neuron morphologies. However, due to the loss of signals during the image preprocessing, there 

could be gap between neuron segments which resulted in incomplete reconstructions by APP2. 

10 examples of incomplete reconstructions were shown and highlighted by arrows in Figure 2. 4. 

Those gaps were classified as foreground with proposed SmartTracing framework and filled for 

complete tracing (red skeletons in Figure 2. 4). The quantitative measurements of the 

morphology and the computational running time (using single CPU) of these 10 examples were 

listed in Table 2. 1. 

For the 120 confocal images tested, the proposed SmartTracing algorithm successfully 

improved the overall completeness of reconstructions. In comparison with initial reconstructions, 

the total length, bifurcation number, branch number, and tip number all increased after the 

optimization of SmartTracing (Figure 2. 5). Among those, the completeness of 30 

reconstructions were significantly improved (the total length of final reconstruction is 1.2 times 

larger than initial reconstruction). By visual inspection, the SmartTracing algorithm only failed 

to trace the complete neuron morphology on 1 image out of the 120 images. In this failure case, 

there is a gap that is too big to be filled (Figure 2. 6(b)). 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Figure 2. 4. Visualization of reconstructed neuron morphology of 10 selected examples. In each sub-

figure, initial reconstruction generated by APP2 (colored skeletons) was overlapped on the original image 

(grey skeletons). The corresponding final reconstruction obtained by SmartTracing was shown in red 

skeletons on the right. The initial reconstructions were color coded by confidence scores (blue: more 

confident, red: less confident). The incomplete part of the reconstruction and the gap that caused the 

problem were highlighted by black arrows. The detailed measurements of these reconstructions were 

listed in Table 2. 1. 
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Table 2. 1. The running time of each procedure and the quantitative neuron morphology measurement of 

10 selected example datasets. Visualization of the morphology of reconstructions and the original image 

of these examples were shown in Figure 2. 4. 

Tin: generate initial reconstruction by APP2; Ts: compute confidence score; Tm: mRMR feature 

selection; Tt: SVM classifier training; Tp: searching foreground; Tst: generate final 

reconstruction; Rin: initial reconstruction; Rst: final reconstruction; Length unit: voxel. 

 

ID 

Running time (seconds) Length Bifurcation Branch Tip 

Tin Ts Tm Tt Tp Tst Rin Rst Rin Rst Rin Rst Rin Rst 

1 10.4 254 0.19 12.7 110 12.7 3027 4686 69 74 141 153 72 79 

2 10.6 456 0.22 17.9 185 15.1 4469 7557 112 180 228 367 116 187 

3 11.1 474 0.23 12.1 89 14.6 4611 6163 145 159 293 325 149 167 

4 9.2 310 0.17 7.4 58 15.9 483 5823 5 117 11 240 7 124 

5 10.9 310 0.19 8.5 119 16.7 3992 5635 84 92 175 188 91 96 

6 9.2 29 0.17 7.5 133 22.2 176 8298 4 174 9 359 6 186 

7 9.3 249 0.16 7.9 120 19.2 4408 7016 74 98 151 198 77 101 

8 9.3 61 0.17 11.6 69 9.9 545 1174 7 8 14 16 8 9 

9 10.1 307 0.17 9.2 53 13.4 3021 4024 75 93 155 190 81 98 

10 9.0 37 0.16 7.3 78 15.3 125 3494 2 76 5 159 3 83 
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Figure 2. 5. Box plots of neuron morphology measurements of the 120 neuron reconstructions obtained. 

 

Figure 2. 6. Examples of performing SmartTracing iteratively. Reconstruction shown in red tube is 

overlapped on the original image shown in gray. (a) Reconstruction of the first and second round 

SmartTracing of case #7 shown in Figure 2. 4. (b) Reconstruction of the case that failed in the first round 

of SmartTracing but succeeds after two rounds shown in different angles. The gap that caused the failure 

in the first round is highlighted by arrows. 
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Notably, SmartTracing is able to run iteratively. The reconstruction generated from the 

previous round is used as the initial reconstruction for the next round. However, for the 

reconstruction that is relatively complete, further iteration will not change the result significantly 

(Figure 2. 6(a)) and is time-consuming. On the other hand, for the incorrect reconstruction, better 

training samples could be obtained based on the reconstruction from the previous iteration which 

may successively remedy the reconstruction. Thus we tried performing SmartTracing iteratively 

on the previously failed case. Intriguingly, it only took two rounds of SmartTracing to 

successfully filled the gap and obtain complete reconstruction (Figure 2. 6(b)). This is mainly 

because with the result from the first round, more training samples from the gap area were 

obtained to train the classifier so the gap can be filled in the second round. 

 

 

Figure 2. 7. Comparisons of the reconstructions generated by 3 different tracing algorithms using 3 testing 

images. Image ID is the same as Table 2. 1. The original images were shown in the top row followed by 

the reconstructions generated by MOST (red), Snake (blue), and SmartTracing (green). 
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We then compared the result generated by SmartTracing with other methods (Figure 2. 

7). Specifically, the results generated by Micro-Optical Sectioning Tomography (MOST) ray-

shooting tracing (Wu et al. 2014) and open-curve snake (Snake) tracing (Narayanaswamy et al. 

2011; Wang et al. 2011) were compared. By visual inspection, the results generated by our 

proposed SmartTracing were more complete, more topologically correct, and better at reflecting 

the morphology of the neurons in original images than other tracing methods. 

DISCUSSION 

In our experiments, the proposed SmartTracing method improved the APP2 tracing and 

successfully reconstructed 120 Drosophila neurons from confocal images. In addition to filling 

the gaps between neuron segments, SmartTracing can also reduce over-traces due to image 

noise, inhomogeneous distribution of image intensity, and inappropriate tracing parameters. 

Essentially, SmartTracing is an adaptive and self-training image preprocessing procedure that 

segments the image into the foreground area containing neuron signals and the background 

voxels. The major novelty of SmartTracing lies in two aspects.  

First, we proposed a likelihood measurement that serves as a confidence score to identify 

reliable regions in a neuron reconstruction. With this score, reliable portions of a neuron 

reconstruction generated by some existing neuron-tracing algorithms are identified, without 

human intervention, as training exemplars for learning based tracing method. On the other hand, 

the human proofreader can also benefit from the metric. By ranking the reconstructions by the 

confidence score, the human annotators are able to prioritize on the less reliable reconstructions, 

which increase the overall accuracy and saves time. 

Second, from the training exemplars, the most characteristic wavelet features are 

automatically selected and used in a machine-learning framework to predict all image areas that 



 

31 

most probably contain neuron signal. Since the training samples and their most characterizing 

features are selected from each individual image, the whole process is automatically adaptive to 

different images and does not require prior knowledge of the object to identify. Potentially, the 

proposed machine learning and prediction framework can be extended to other image 

segmentation tasks and 3D object recognition systems such as neuron spine detection, cell 

segmentation, etc. 

SmartTracing is applicable to most of the existing tracing algorithms. However, the 

performance and the outcome of SmartTracing are largely relied on the tracing algorithm 

applied. For instance, the cause of the only failed case among 120 tested images is that APP2 did 

not generate sufficient initial reconstruction due to the gap which results in a lack of training 

exemplars. One solution to this limitation is to run SmartTracing iteratively so better training 

samples can be acquired from the previous iteration. Also, we can take the merit of different 

tracing algorithms and use different algorithms in different steps to further improve the 

performance of the framework – e.g. use MOST algorithm to generate initial tracing for scoring 

and thus training since it is not sensitive to gaps and can capture more signals; then use APP2 to 

generate final tracing since it is robust, efficient, and optimal to generate tree shape topology of 

neurons. 

Another limitation of SmartTracing is the relatively high computational complexity. At 

present, the top two time consuming procedures are the computation of confidence metric, which 

is proportional to the initial neuron reconstruction complexity, and the predictions of foreground 

voxels, which is proportional to the size of the neuron. The previously reported computation time 

is calculated based on a single CPU. With parallel computation framework, both steps can be 

speed up. 
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In recent years, a growing number of model-driven approaches have been proposed for 

automatic neuron reconstructions. To our best knowledge, SmartTracing is one of the earliest 

machine learning based methods for automatic neuron reconstruction. Different from the 

traditional learning based method, SmartTracing does not require the human input of training 

exemplars and can self-adapt to different types of neuroimage data. Additionally, the method can 

be applied to improve the performance of other existing tracing methods. As part of future work, 

the performance of SmartTracing will be further examined and improved by BigNeuron project. 

In the near future, we hope SmartTracing can significantly facilitate manual tracing and 

contribute to the neuron morphology reconstructions in large.  
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CHAPTER 3 

NEURON STITCHER: FAST ASSEMBLING OF NEURON FRAGMENTS IN SERIAL 3D 

SECTIONS 2 

  

                                                 
2 Hanbo Chen, Daniel M. Iascone, Nuno Macarico da Costa, Ed S. Lein, Tianming Liu, Hanchuan Peng. 2016. 
NeuronStitcher: Fast Assembling of Neuron Fragments in Serial 3D Sections. In submission 
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ABSTRACT 

Reconstructing neurons from 3D image-stacks of serial sections of thick brain tissue is a 

time-consuming step in high-throughput brain mapping projects. We developed NeuronStitcher, 

a software suite for stitching non-overlapping neuron fragments reconstructed in serial 3D image 

sections. This tool features an efficient automatic matching algorithm, severed neurite filters, and 

a user-friendly interface for result-proofreading. Intensive evaluations have quantitatively and 

qualitatively shown that NeuronStitcher is accurate, efficient, and robust toolkit for stitching 

fragments of neurons over multiple tissue sections. Here we use this tool to reconstruct large and 

complex human and mouse neurons. 

INTRODUCTION 

Digital reconstruction of neurons from very large three-dimensional (3D) brain images is 

crucial for modern neuroscience (Meijering 2010; Helmstaedter and Mitra 2012; Parekh and 

Ascoli 2013). Despite recent advances in neuron labeling, brain clearing, and high-resolution 3D 

tissue-imaging (Hama et al. 2011; Chung et al. 2013) to study mammalian brains, many 

neuroscientists still rely on physical sectioning of brains followed by imaging with confocal or 

two-photon microscopy. The resulting image data over many serial sections are then stacked and 

aligned individually to generate a complete image volume, from which neurons are reconstructed 

and quantified. Dendrites and axons that cross an imaged volume and were severed at the section 

boundaries then need to be stitched. This is a crucial step and a bottleneck for the proper 

reconstruction of the topology of the dendritic and axonal trees, which is particularly difficult 

given the density of local axonal arborization. It is extremely labor-intensive to stitch neuron 

segments manually over multiple sections (Oberlaender et al. 2007; Luzzati et al. 2011). 
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Automated methods can therefore provide a significant increase in the throughput of neuron 

reconstruction. 

However, this is a non-trivial task for automatic algorithms as there could be missing 

tissue as well as distortions during sectioning, making stitching of neuronal segments across 

multiple sections much more challenging than stitching overlapping tiles within single sections 

(Preibisch et al. 2009; Bria and Iannello 2012). Moreover, unlike stitching serial 2D images from 

serial electron microscopy (EM)  (Helmstaedter et al. 2011; Cardona et al. 2012), neurons imaged 

with confocal and two-photon microscopes are often sparsely distributed throughout the 3D 

image stacks, making it difficult to use other stitching tools such as TrakEM2 (Helmstaedter et 

al. 2011). 

To address these challenges, we developed NeuronStitcher, a software package that 

automatically assembles complicated neuron fragments reconstructed from adjacent serial 

sections in real time. The merits of computing based on the neuron reconstruction rather than the 

raw image are in three-fold. (1) It requires less memory. Neuron reconstruction that is composed 

of sparsely connected vertices (tree graphs) is much smaller than raw images. (2) It is fast to 

compute. Intuitively, sections can be matched based on severed neurites. Severed neurites can be 

identified by searching for terminal vertices in reconstruction. (3) It is flexible and adaptable to 

different studies. Instead of working directly with images that are known to vary enormously due 

to different modalities or neuron labelling techniques, our stitching algorithm deals with the 

extracted reconstructions, which could be produced using different neuron reconstruction 

methods. In this way our method is more generalizable than image stitching methods.  

In comparison with previous work (Hogrebe et al. 2011; Luzzati et al. 2011; Dercksen et al. 

2014; Weber et al. 2014), NeuronStitcher used similar methods such as a triangle match 
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algorithm to match severed neurites on the sectioning plane based on their relative location and 

orientation. However, NeuronStitcher has four advantages over other methods. (1) 

NeuronStitcher includes a filter to eliminate noise resulting from terminal branches based on 

three criteria when selecting severed neurite candidates. Notably, the accuracy of reconstruction 

matching largely relies on the identification of severed neurites. Filtering noisy objects before 

analysis improves the matching accuracy and computational speed. (2) The performance of 

NeuronStitcher has been intensively and quantitatively evaluated with different types of data. In 

most previous works, the performance of automatic matching algorithm is usually evaluated by a 

few simple cases without quantification. In this chapter, our proposed algorithm has been 

quantitatively evaluated by more complicated cases. (3) Our method has an interactive interface 

which does not only allow visual evaluation of stitching results and live adjustments of matching 

parameters, but also enable manual correction of matching results. (4) Our method is readily 

available to other researchers. The software was implemented in C/C++ as a plugin of Vaa3D 

(Peng, Ruan, Long, et al. 2010; Peng et al. 2014), which is a publicly available open source 

platform with user-friendly interface for 3D+ image analysis and visualization 

(http://www.vaa3d.org). 

MATCH, ALIGN, AND STITCH RECONSTRUCTION 

The goal of NeuronStitcher is to first align and connect neuron fragments across sections 

and then infer a complete neuron reconstruction. In practice, the order of sections is usually 

known. The sections can be matched and aligned by shifting and rotating reconstructions in 

parallel to the sectioning plane. For a set of input neuron fragments, the task can be defined by 

three major steps: (1) identify severed neurites candidates which will be matched and connected 

later on; (2) match severed neurites and align reconstructions from different sections; (3) connect 

http://www.vaa3d.org/
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matched neurites. The whole pipeline is outlined in blue in Figure 3. 1. Each step is elaborated in 

this section. 

 

Figure 3. 1. Software architecture of NeuronStitcher. The software takes a set of neuron-reconstruction 

fragments as input and outputs the stitched neuron reconstruction. It includes an automatic module to 

match, align, and stitch neuron reconstructions, as well as two interactive operation modules which allow 

users to visually inspect and manually correct results. The computational pipeline of automatically 

stitching module is outlined in blue. 

Neuron Reconstruction 

Neuron reconstruction typically encodes the morphology of the neuron using a tree 

structure. Usually, connected vertices are taken as basic units in a reconstruction file. For each 

vertex, its coordinate, parent vertex, and radius are recorded. In previous studies, many automatic 

and semiautomatic tools have been proposed to reconstruct neuron morphology from microscopy 

images. One may refer to the review paper by Duncan and Ascoli (Donohue and Ascoli 2011) 

for a survey of neuron reconstruction methods. In this chapter, the initial reconstructions are 

obtained based on the built-in tools of publicly available Vaa3D software (Peng, Ruan, Long, et 

al. 2010; Peng et al. 2014). Nevertheless, our NeuronStitcher tool is generally applicable to 

neuron reconstructions produced by other tools. 
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Notably, since the image-resolution in the depth direction (z-axis) is usually lower than those of 

plane directions (x-axis and y-axis), we rescale the reconstructed neurite-fragments to isotropic 

“resolution” before analysis. 

Identify Border Tips 

We defined the severed neurites at the section plane as border tips. Intuitively, the 

terminal branches identified near the section plane can be taken as border tips. However, there 

are also other sources of terminal branches near the section plane and some of them can be 

excluded by a simple method to increase accuracy and efficiency of the matching algorithm. 

Based on our observation, 3 types of tips that should be excluded were identified (Figure 3. 2) – 

(1) reconstruction gaps, (2) spine, and (3) fragments of background noise. We explained those 

tips with details and introduced our strategy to automatically exclude them below. This border 

tips searching framework was embedded in the automatic matching and alignment module. 

 

Figure 3. 2. Examples of 3 types of tips that should not be considered as border tips. (a) Gap in the 

reconstruction, highlighted by the blue arrow. (b) Spine tips, highlighted by green arrows. (c) Fragments 

of background noise, highlighted by purple arrows. 
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Reconstruction gaps 

Some reconstruction algorithms generate a gap between segments as shown in (Figure 3. 

2(a)). Usually, the gap can be erased and the segments are connected after post-processing to 

build complete neuron tree structure. However, if the gap was close to the section plane, the 

introduced neurite tips can be identified as border tips and be taken as candidates to be matched 

and connected with the border tips from adjacent sections. 

The tips introduced by reconstruction gaps are usually generated in pairs, where they are 

close but not connected to each other. Thus, to filter them, a gap size threshold is defined such 

that, if a set of border tips are 1) close to each other (distance < gap threshold), and 2) not 

connected (no path exists between them) in current reconstruction, they will be identified as a 

reconstruction gap and excluded from further analysis. 

Spine tips 

Some of the neuron reconstruction algorithms also trace spine structures during 

reconstruction (Figure 3. 2(b)). If we take the spine structures close to section plane as border 

tips, they will result in a lot of noise. We therefore need an efficient solution to eliminate the tips 

from spine structures and find the tips of the severed neurites for matching. To better explain our 

solution, some terminology is defined below. 

Spine tip: Tip on reconstructed spine structure (blue dots in Figure 3. 2(b)). 

Tip segment: The section of the reconstruction from the tip to its nearest fork (orange lines in 

Figure 3. 2(b)). 

Tip segment turning angle: The angle between a tip segment and its parent segment (θ in Figure 

3. 2 (b)). 
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Neurite tip: The tips of the neurite that could be taken as border tips for matching (purple dots in 

Figure 3. 2 (b)). 

Reconstructed spines are a relatively thin, short segments that are perpendicular to 

neurites. A tip is defined as a spine tip if it meets three criteria: (1) tip segment is short, (2) 

turning angle is relatively large, and (3) radius is small. For each tip point, its identity as a 

neurite tip or spine tip is determined based on a decision tree shown in Figure 3. 3. In addition to 

the remaining neurite tips, the tips that are newly generated by removing the spine segment are 

defined as neurite tips (purple dots in Figure 3. 2 (b)).  

 

Figure 3. 3. Decision tree to determine whether a tip is spine tip or neurite tip. 

Fragments of background noise 

Some reconstruction algorithms do not eliminate background noise and thus generate 

small noise fragments (highlighted by arrows in Figure 3. 2 (c)). Intuitively, such fragments can 

be eliminated by looking at the size of each reconstruction fragment and ignoring the tips of 

small fragments that should not be considered to be border tips. 
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Nevertheless, because reconstruction quality and character vary between datasets, image 

modality, and reconstruction method, it is hard to guarantee that all the border tips that are 

automatically identified are true border tips. Further, the algorithm can result in a false positive 

connection when falsely detected border tip gets matched. With this in mind, we included an 

interactive border tips searching module to take advantage of user knowledge in the 

identification of border tips. In this module, the automatically identified border tips are shown 

together with the raw image and reconstructions. The user can then visually screen through the 

results and accept, reject, or manually add border tips. 

Match Border Tips and Estimate Alignment 

It is intuitive to match adjacent sections by matching border tips such that a correct match 

will allow most severed neurites to be reasonably connected. To achieve this, two factors can be 

taken into consideration: 1) Geodesic location of border tips – the neighborhood relation of the 

paired border tips should match, and 2) The orientation of the branch connected to border tips – 

two branches should not be connected when there is a sharp angle between them. In the study of 

computer vision, affine-invariant features based on triangle shapes have been widely applied to 

match objects in images and graphs (Shen et al. 1999; Duchenne et al. 2011). Because our 

matching object requires rotation and shifting to be matched and the orientation of the branch 

connected to border tips changes during rotation, we adopted ideas from previous work and 

proposed a set of rotation invariant features to describe neighborhood and branch orientation 

based on triangles. Based on a matched triangle, the matching probability between border tips is 

then defined. By taking matched border tip pairs with the highest probability as an initial match, 

alignment and matching can be estimated and refined iteratively for an optimal alignment. In this 

section, we will introduce our algorithm to solve the match and alignment problem in two 
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adjacent sections. A and B represent the set of border tips between these two sections 

accordingly. Without loss of generality, we assume that A will be fixed and B will be moved and 

aligned to A. 

Triangle Match 

For any combination of 3 border tips, a triangle can be constructed (for illustration and 

symbols notation, see Figure 3. 4). For each triangle, its edges and vertices are sorted by the 

length of edges such that ‖𝑒1,2‖ ≤ ‖𝑒2,3‖ ≤ ‖𝑒1,3‖ where e is the edge of the triangle. The sorted 

length of its edges is then applied to describe the geodesic shape of a triangle: D=(d1,2, d2,3, d1,3), 

di,j=║ei,j║. To quantify the orientation of branches, a local coordinate system is defined for each 

vertex such that the axis from triangle center to the vertex is the x-axis and the norm direction of 

the triangle plane is the z-axis (Figure 3. 4). The orientation vector of the branch connected to the 

border tip is then transformed into this local coordinate system. Two triangles ΔI, ΔJ and the 

corresponding vertices could be matched when the L1 distance between their geodesic shape 

vector D and the angle between branch orientation vectors of corresponding vertices are smaller 

than threshold defined: 

∆𝐼≅ ∆𝐽 , 𝑣𝐼1 = 𝑣𝐽1, 𝑣𝐼2 = 𝑣𝐽2, 𝑣𝐼3 = 𝑣𝐽3 (3.1) 

if and only if: 

|𝐷𝐼 − 𝐷𝐽| < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (3.2) 

𝑎𝑛𝑔𝑙𝑒(𝑇𝐼𝑘⃗⃗ ⃗⃗  ⃗, 𝑇𝐽𝑘⃗⃗ ⃗⃗  ⃗) < 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑢𝑙𝑑(𝑘 = 1,2,3) (3.3) 

Notably, since the angle is defined in the local coordinate of each vertex, these proposed 

features are rotation invariant. Thus, triangles can be matched directly based on these features 

without alignment. 
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Figure 3. 4. Illustration of the rotation invariant features of the triangle to match. 

Border Tips Matching Probability 

Based on the triangle matching previously proposed, a global search can be performed to 

pair-wisely match all triangles formed by border tips. Then, for each pair of border tips (𝑣𝑎 , 𝑣𝑏), 

the number of times they get matched is accumulated and their matching probability is defined 

as: 

𝑃𝑎,𝑏 = 2𝑁𝑎,𝑏 (∑ 𝑁𝑘,𝑏

𝑘∈𝐴

+ ∑ 𝑁𝑎,𝑘

𝑘∈𝐵

)⁄  (3.4) 

For each pair of matched triangles (∆𝑎 , ∆𝑏), 𝑎 ⊂ 𝐴, 𝑏 ⊂ 𝐵, the matching likelihood 

between them is computed by summing the matching probability between corresponding 

vertices. The pair of matched triangles with the highest matching likelihood can be taken as the 

initial match to estimate alignment. 

However, the number of triangles grows cubically with the number of border tips. If the 

number of border tips identified on the section plane of two adjacent sections is |A| and |B|, the 

computational complexity for matching is O(|A|3×|B|3). This can be extremely time consuming 

when A and B are large. To increase computational efficiency, we found that it is unnecessary to 

compare all triangles. Specifically, for the purpose of matching corresponding vertices, the 
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matching based on the triangles with anisotropic shape was more reliable than equilateral 

triangles. Moreover, large triangles offer more global view than small triangles. Based on these 

observations, we propose a triangle priority score in which only the top triangles with the highest 

scores are applied to estimating border tips matching probability. Given a triangle with geodesic 

shape feature: D=(d1,2, d2,3, d1,3), its priority score is simply defined as the difference between the 

lengths of its longest edge and the shortest edge: 

𝑆𝑐𝑜𝑟𝑒 = 𝑑1,3 − 𝑑1,2 (3.5) 

We show in the result section that only matching a few hundred triangles with the highest 

scores is sufficient to infer accurate results while the computational time required is reduced 

from minutes to seconds. 

Estimate Alignment 

Because adjacent sections are usually imaged separately from mounted sections, each 

section can be aligned by shifting it in all three directions and rotating it in parallel to the section 

plane (4 degrees of freedom (4DOF). While there could be other types of movement and 

distortions between sections, our results on existing data suggested that the 4DOF alignment is 

sufficiently accurate to generate reasonable results. Such alignment can be easily estimated based 

on the matched border tips between sections in the following two steps. 1st) Shifting movement 

will be estimated such that the center of matched border tips will be the same. 2nd) Rotation 

around the center will be estimated to minimize the distance between matched border tips. 

The pair of matched triangles with the highest matching likelihood is taken as the initial 

match. After transformation, the border tips that are close to each other and have similar branch 

directions are matched. Based on updated matching border tips, a new transformation can be 

estimated, and this match-transform procedure is iteratively performed until no more border tips 
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can be matched. Notably, selecting the correct pair of matched triangles to start is critical to 

acquire the correct matching and alignment. To make the framework robust, different initial 

combinations are examined and the alignment that has the most matching border tips is taken as 

the final result. 

Stitch Border Tips 

After affine transformation, the matched border tips are connected to construct a complete 

neuron. Because slicing causes distortion which leads to systematic errors in imaging and 

reconstruction procedures, a gap between matching border tips after transformation might be 

created that results in sharp angles between connections. To reduce the presence of these angles, 

we propose a stitching framework to adaptively adjust border tip segments to smooth out the gap 

when separated neurites are connected. The border tip segments are defined as the segment from 

border tips to the nearest branch point (shortest path from purple dot to orange dot in Figure 3. 

5(b)). Denote 𝒂1 as the ith point on the tip segment of a border tip of section A (i=1…N), 𝒂1 is 

the border tip, and  𝒂𝑁 is the branch point. To stitch border tips 𝒂1 and 𝒃1, the shifting vector of 

𝒂𝑖  denoted by 𝒗𝒂𝑖  is calculated as following: 

𝑽𝒂 =
𝑁𝐴(𝒂1 − 𝒃1)

𝑁𝐴 + 𝑁𝐵
 (3.6) 

𝒗𝒂𝑖 =
(𝑁𝐴 − 𝑖)

𝑁𝐴
𝑽𝒂 (3.7) 

The shifting vector of 𝑏𝑖 is calculated in a similar way. As illustrated in Figure 3. 5, the matched 

border tips are moved to a new location where they are relatively close to each other while the 

successive points are moved by distances reduced successively until the branch point is reached. 

The distance to move is scaled based on the size of the tip segment such that more shifting is 

taken for larger segment. Notably, if there is a spine tip segment connected to a border tip 



 

46 

segment to stitch, the spine tip segment is moved by the shifting vector of its root (green dots in 

Figure 3. 5). 

 

Figure 3. 5. Illustration of adjusting branches to stitch matched border tips. 

INTERACTIVE USER INTERFACE 

Neuron reconstruction quality will affect the performance of NeuronStitcher and the 

parameter selection may vary between different data. To broaden the utility of NeuronStitcher to 

work with a variety of different data acquisition processes, we designed an interactive interface 

to (1) allow visual evaluation of stitching results and live adjustments of matching parameters; 

and (2) enable manual correction of incorrect matching results. The software was implemented in 

C/C++ as a plugin of Vaa3D (Peng, Ruan, Long, et al. 2010; Peng et al. 2014), which is a 

publicly available open source platform with a user-friendly interface for 3D+ image analysis 

and visualization (http://www.vaa3d.org). In the following sections, we will introduce how to use 

the tool based on 5 scenarios. Each operation is indexed by the scenario’s ID and the step 

number such that A-2 means step 2 of scenario A. 

Stitch Reconstructions 

In this section, we show the interactive user interface of NeuronStitcher and illustrate 

how to use NeuronStitcher to stitch adjacent sections. This section covers stitching neuron traces 

in three steps: A. Automatically match and align reconstructions, B. Visually check and stitch 

http://www.vaa3d.org/
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matched reconstructions, and C. Manually correct matching result. We then use the protocol to 

stitch adjacent sections. 

A. Automatically match and align reconstructions (Figure 3. 6) 

 

Figure 3. 6. Illustration of automatically matched and aligned reconstructions. 
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A-1: Load the reconstructions to be stitched in the same 3D view in Vaa3D. Make sure the 

section on the bottom was loaded first. Then launch the NeuronStitcher: Plug-in->neuron_stitch-

>live_stitch_neuron_SWC 

A-2: Adjust the parameters in the pop-up window accordingly. 

A-3: Click “Match” button. Then the program will search for border tips, align reconstructions, 

and match border tips automatically. 

A-4: Check the alignment and matching result. The border tips identified will be shown in 

bubbles. Matched border tips will be in green/red colors while unmatched ones will be in dark 

green/magenta color. If the results are not good, adjust the parameters and repeat A-2 and A-3. 

B. Visually check and stitch matched reconstructions (Figure 3. 7) 

 

Figure 3. 7. Illustration of visual check and stitch matched reconstructions. 

B-1: A zoom in window that focuses on the pair of matched border tips selected will pop up by 

default. Clicking the “Bottom Section” or “Top Section” buttons loads the raw images of each 

neuron fragment for joint display in the zoom in window (volumes are aligned into the same 
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space and colored in red/green for the bottom/top section accordingly). Change “window 

margin” to adjust the size of zoom in view window. The zoom in window updates after clicking 

“Launch Local View” button or after changing the selected matched border tips (when “Auto 

Launch Local View” is checked). 

B-2: Visually check the pair of matched border tips selected. The selected border tips are shown 

in yellow color and the branch connected to it is highlighted in azure/magenta colors 

accordingly. 

B-3: Click the “Stitch” button if the match is reasonable, the “Skip” button if not sure, or follow 

the steps in C-4 to reject and break the match if it is a mismatch. After stitching, the program 

jumps to the next pair of matched border tips automatically. 

C. Manually correct matching result (Figure 3. 8) 

C-1: Identify the pair of border tips that needs to be corrected. If there are no border tips 

identified on the neurite you would like to stitch, right click on the neurite and select “create 

marker from the nearest neuron node” to define one. 

C-2: Click the “Manually Add” button. Then a “Match Markers” dialog will pop up. On the left 

of the pop-up dialog is a list of matched pairs of border tips. 

C-3: To manually match two border tips, first select the ID of the border tips we are going to 

match. Then click “Match this pair of neurons” button and the matched pair will then be added to 

the list on the left. 

C-4: To manually break a matched pair, first select the pair from the list on left. Then click “Free 

selected matching pair” button. The pair will then be removed from the list and the markers will 

be added to “Available Markers”. 
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C-5: Click the “Done” button after the finish. The list of matched border tips will then be 

updated. 

 

Figure 3. 8. Illustration of manually corrected matching result. 

Select Border Tips 

D. Select border tips (Figure 3. 9) 

D-1: Load the image of the neuron tissue section to search for border tips. (Note: Loading 3D 

image is only for the purpose of visual inspection.) 

D-2: Launch 3D view of the image by pressing ctrl+v. Load the corresponding reconstruction of 

neuron fragments in this section by dragging the SWC file into the 3D view. 

D-3: Launch the border tips searching tool: Plug-in->neuron_stitch-

>find_border_tips_SWC_image 

D-4: Adjust related parameters and then click the “Search” button to automatically search for 

border tips. User can also manually define border tips by following D-6. 
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D-5: The automatically found border tips will be shown as bubbles (called Markers in Vaa3D). 

Visually inspect the border tips identified one by one by following the instructions in E. Accept 

or reject the border tips accordingly. The program will automatically jump to the next border tip 

after acceptance or rejection. 

D-6: To add a border tip, right click on the corresponding location in 3D View and define a 

marker there. Then click the “Update” button in the dialog of the tool. 

D-7: Click the “Save” button to save all the results. The accepted border tips will be saved in a 

single file for future usage. 

E. Visually inspect border tips (Figure 3. 9) 

Border tips will be shown as bubbles (called markers in Vaa3D). In 3D view, blue bubbles are 

the uncertain border tips that have not been inspected yet, green bubbles are the correct border 

tips that have been accepted, red bubbles are the wrong border tips that have been rejected, and 

the magenta bubble is the border tip under inspection (Figure 3. 9). 

E-1: Global 3D view. In this view, users can inspect the global location and spatial distribution 

of border tips. Missing border tips can also be added here (D-6). 

E-2: Local 3D view. In this view, users can inspect the detailed characters of the selected border 

tip in a zoom in view with the focus on the border tip. Only a local window of the 3D image will 

be shown in this view to allow high-resolution visualization. The size of the window is 

controlled by the “View Size” parameter in the tool dialog.  

E-3: Slice view. The program will automatically focus on the selected border tip in this view. 

The neighbors of the border tip will be highlighted by dashed line squares. In this view, users can 

inspect the border tip through image slices. 
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Figure 3. 9. Illustration of visual inspection and semi-automatic selection of border tips. 

RESULTS 

To comprehensively evaluate the performance of NeuronStitcher, we performed tests on 

three types of data – 1) ground-truth data, 2) real data, and 3) simulated data. The results of each 

fold are shown in following sections accordingly. 
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Validation on Ground Truth Data 

We evaluated the accuracy of NeuronStitcher using carefully generated “ground truth” 

reconstructions from a piece of mouse brain tissue containing a labeled pyramidal neuron within 

the hippocampal CA1 region. This sample was first imaged and the neuron was thereafter semi-

automatically reconstructed in 3D by Vaa3D and manually corrected by an expert as the ground 

truth reconstruction (Figure 3. 10(a), x, y, z dimensions were 602 μm, 271 μm, 274 μm, 

respectively). Then, we evenly sliced this sample into 3 serial sections in z direction, each of 

which was imaged. The reconstructions of neuron fragments from all such individual sections 

were generated by an expert with a similar approach and then stitched together using 

NeuronStitcher (Figure 3. 10(b-c)). 

Using the automatic matching module, 6 pairs of matched border tips were identified 

between section #1 and #2 (Figure 3. 10(d)) and 2 pairs of matched border tips were identified 

between section #2 and #3 (Figure 3. 10(e)). A careful comparison of the ground truth 

reconstruction to the stitched reconstruction showed that 98% bifurcations of the 3D 

reconstructed, tree-like neuron morphology in the ground truth had their correspondence in the 

stitched reconstruction, and the minor amount (2%) of missing correspondence occurred at the 

section interfaces and was due to the sectioning process. Notably, the thinner 200 µm tissue 

sections reduced the signal loss resulting from light scattering from imaging through deep 

tissues. As a result, some deep neurites missing from the original reconstruction were captured 

after reimaging the 200 µm tissue sections (highlighted by yellow circles in Figure 3. 10(f)). 
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Figure 3. 10. Visual comparison between the reconstruction from the tissue before sectioning and the 

stitched reconstruction from sectioned tissues. (a) Maximum projection of 3D image acquired from 

complete tissue (left) and the corresponding reconstruction (right). The image has been rotated for better 

comparison with the stitching result. (b) Automatically aligned and stitched reconstructions from 3 

successive sectioned tissues (right). The images of tissue sections were also aligned based on the stitching 

result and the section boundaries are highlighted by colored boxes accordingly (left). (c) Stitched 

reconstructions color-coded by sections (yellow: #1, blue: #2, green: #3) from different view angles. (d)-

(f) Zoomed in view of regions shown in (a)-(c). The ground truth reconstruction is shown on the top/left 

of each subfigure. The stitched reconstruction is shown on the bottom/right of each subfigure. The 

matched and stitched border tips and their corresponding locations on original reconstruction are 

highlighted by yellow arrows. 

Large Scale Neuron Image in Mammalian Brain 

We used three sets of large-scale microscopy images obtained from mouse or human brains and 

their corresponding neuron reconstructions to test the performance of our neuron stitching 

framework (Table 3. 1). Dataset 1 was obtained from mouse brain V1 area and contains 11 

adjacent sections in which the neurites of two neurons were densely twisted (Figure 3. 11). 

Dataset 2 contains a single mouse V1 neuron imaged in 4 adjacent sections. The reconstructions 
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in dataset 2 were automatically performed using the all-path-pruning 2 (APP2) algorithm (Xiao 

and Peng 2013) and spine segments were also reconstructed (Figure 3. 12). Dataset 3 contains 2 

neurons from a human brain tissue imaged by bright field microscopy. 

 

Table 3. 1. Information of data applied for stitching test cases. 

ID Species 
Data 

Description 

Imaging 

Method 

# of 

Sections 

x,y,z 

Resolution  

(μm) 

Reconstruction Process 

1 Mouse 
Two adjacent 

neurons in V1. 
Confocal 11 0.14,0.14,0.28 

Neuron Crawler(Zhou et al. 

2015), APP2(Xiao and Peng 

2013), Manual Correction 

2 Mouse 

Single neuron 

in V1, border 

of layer 3 and 

4. 

Confocal 4 0.14,0.14,0.28 

Neuron Crawler(Zhou et al. 

2015), APP2(Xiao and Peng 

2013) 

3 Human 
Two biocytin 

filled neurons. 

Bright 

field 
4 0.11,0.11,0.28 

Adaptive Enhancement(Zhou 

et al. 2014), Neuron 

Crawler(Zhou et al. 2015), 

APP2(Xiao and Peng 2013) 

 

We stitched each pair of adjacent sections using NeuronStitcher. After loading the 

reconstruction, we performed automatic matching and alignment. Based on visual inspections, 

we adjusted the parameters to obtain satisfactory matching results. In total, 16 pairs of sections 

were stitched. 411 pairs of border tips were automatically matched. After automatic matching, an 

expert manually corrected the errors by using our interactive proof-reading module when 

necessary. Among automatically matched border tips, 356 (86.6%) were accepted by the expert; 

and other 59 pairs of border tips were manually matched (Table 3. 2). NeuronStitcher typically 

finished the computation within seconds and the memory required for computation is less than 

100Mb. The time to visually check and adjust the results depended on the complexity of the 

reconstruction. For the datasets here, the average time for stitching (including both automated 

computation and manual fine-tuning of the result) an adjacent pair of serial sections was 13’08” 
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(median: 9’41”, minimum: 0’13”, and maximum: 36’31”) (Table 3. 2). The final results are 

visualized with each section in different colors in Figure 3. 11-13. 

 

Table 3. 2. Stitching results between sections based on the live stitching module: labor time is the time 

that experts took to adjust parameters, visually check matching and alignment results, and manually adjust 

matching results. 

Dat

a ID 

Section ID Border Tips 

Identified 

Automatic 

Matched 

Pairs 

Labor Time Accepted 

Pairs 

Rejected 

Pairs 

Manually 

Matched 

Pairs A B A B 

1 1 2 3 3 3 0'13" 3 0 0 

1 2 3 14 15 11 2'20" 8 3 1 

1 3 4 33 55 26 7' 23 3 5 

1 4 5 81 47 41 31'50" 36 5 5 

1 5 6 75 71 53 31'23" 45 8 6 

1 6 7 72 71 43 22'47" 33 10 9 

1 7 8 64 95 45 36'31" 36 9 5 

1 8 9 39 34 27 14'47" 22 5 11 

1 9 10 25 33 23 6'03" 20 3 4 

1 10 11 23 23 19 3'09" 19 0 1 

2 1 2 10 29 8 4'00" 6 2 2 

2 2 3 45 85 22 11'45" 20 2 4 

2 3 4 59 82 21 14'07 19 2 1 

3 1 2 17 43 13 4'00" 11 2 2 

3 2 3 44 69 23 7'36" 22 1 2 

3 3 4 85 60 33 12'44" 33 0 1 
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Figure 3. 11. Visualization of stitching results of dataset 1 from different views: reconstructions are 

displayed in skeleton; segments are color-coded for each section. 
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Figure 3. 12. Visualization of stitching results of dataset 2 from different views: reconstructions are 

displayed in skeleton; segments are color-coded for each section. 
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Figure 3. 13. Visualization of stitching results of dataset 3 from different views: reconstructions are 

displayed in skeleton; segments are color-coded for each section. 

Simulated Testing Data 

We also considered an alternative way to produce “ground truth” to evaluate the accuracy of 

NeuronStitcher. We chose 4 densely arborized reconstructions from the mouse visual cortex 

(dataset 1 previously used) and digitally “sectioned” each of them into two halves by deleting the 

vertices and the edges severed by the gap (black vertices and edges in Figure 3. 15) to generate 

the simulated data. Several different gap configurations (1, 2, 4, and 8 μm) were used to simulate 

the different levels of tissue loss during sectioning and one-half was randomly rotated and shifted 

in parallel to the sectioning plane to make those sections dis-aligned. An example of simulated 

data is shown in Figure 3. 14(b). 
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Figure 3. 14. Performance of automatic matching module on simulated data. (a) Quantitative assessment 

of performance with different parameter configurations. In each subfigure, the x-axis is the selected 

parameter and the y-axis is the performance measurement. Parameters are listed on the top of each 

column and the name of measurement is listed on the left of each row. The default values for the 

parameters are: maximum triangle number: 6400, distance to match tips: 14μm (100 voxels), angle to 

match tips: 70°, length difference to match triangles: 14μm (100 voxels). (b)-(e) An example of simulated 

data (b), truth data (c), and matching and alignment result (d)-(e). In (e), green arrows highlighted 

correctly matched border tips, magenta arrows highlighted the miss-matched border tips (false negative), 

purple arrows highlighted the matching of none-border tips (false positive), and red arrows highlighted 

falsely matched border tips. 
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Figure 3. 15. Illustration of the generation of simulated data from experimental data. (a) Reconstruction of 

experimental data. (b) Simulated data with gap size 0. (c) Simulated data with gap size 8 μm. In (b) and 

(c), black lines are the removed components after separation. Red and blue lines are the sections after 

separation.  

Then, we applied NeuronStitcher to the simulated data to automatically stitch the 

simulated datasets back together based on different parameter configurations. An example of 

automatic matching of simulated data is shown in Figure 3. 14(b-e). As shown in Figure 3. 14(d), 

even when a considerable amount of tissue is lost (black curves in Figure 3. 14(c)), the 

automatically estimated alignment is relatively close to the ground truth and most of the severed 

neurites were correctly matched. However, falsely matched border tips can still be observed. As 

highlighted by red and purple errors in Figure 3. 14 (e), some branches are falsely connected 

when the neurites are densely distributed in a small area. And some connections are missed when 

a long branch in parallel to the sectioning plane is severed (magenta errors in Figure 3. 14 (e)). 

To quantify the performance of proposed matching algorithm, we compared the result to the 

ground truth in the following two aspects:  

1) Spatial similarity: 

Because the topology structure of section B remains the same when moving it in the 3D 

space, we measured the average distance between corresponding vertices before moving (ground 

truth) and after alignment (results by proposed algorithm). When the distance was relatively 

small, the proposed algorithm estimated the correct alignment. 

2) Topology correctness:  
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The proposed algorithm matched tips between section A and section B. After matching, 

we expected the vertices that were separated after separation (ground truth) to be reconnected 

(matched) and the vertices that were not connected at the beginning to remain disconnected. 

Thus, based on ground truth, precision and sensitivity defined below were measured:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
‖𝑀𝑎𝑡𝑐ℎ∗ ∩ 𝑀𝑎𝑡𝑐ℎ𝑡𝑟𝑢𝑡ℎ‖

‖𝑀𝑎𝑡𝑐ℎ∗‖
 (3.8) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
‖𝑀𝑎𝑡𝑐ℎ∗ ∩ 𝑀𝑎𝑡𝑐ℎ𝑡𝑟𝑢𝑡ℎ‖

‖𝑀𝑎𝑡𝑐ℎ𝑡𝑟𝑢𝑡ℎ‖
 (3.9) 

 

where Match* is the set of matched pairs of border tips obtained by the proposed algorithm and 

Matchtruth is the set of pairs of vertices separated during separation. If a branch (fork vertices) 

was removed during separation that resulted in 3 or more vertices separated at a time, matching 

any pair of these vertices was counted as a successful match. 

For different gaps, by using the default parameter configuration, the average precision in 

matching border tips gradually changed from 90% to 75% while the average sensitivity was 

between 93% and 62%- indicating the alignment result was accurate enough to recapitulate the 

original reconstruction. We then adjusted 4 critical parameters to examine the robustness of the 

proposed method. These 4 parameters and their default values were: maximum triangle number: 

6400, distance to match tips: 14μm (100 voxels), angle to match tips: 70°, length difference to 

match triangles: 14μm (100 voxels). During each test, only 1 parameter was adjusted while the 

other 3 were fixed to the default values. As shown in Figure 3. 14(a), the parameter used for 

triangle matching did not significantly affect the final matching result. Notably, by only taking 

the first 100 triangles, the obtained results were similar to the results of using all triangles while 

the computational time was reduced from 20 seconds to less than 1 second. On the other hand, 
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the selection of border tips matching criteria (distance and angle) are crucial for an accurate 

result. Intuitively, if either the distance or angle criterion is too restrictive, a lot of severed 

neurites will be missed for matching. Conversely, with looser criteria, more false connections 

will be generated. Thus, users may need to pay close attention to these two parameters and select 

the optimal one for their dataset to achieve a balance between the false positive and false 

negative rates. 

CONCLUSION 

We present a novel neuron reconstruction stitching framework that features an efficient 

automatic matching and alignment algorithm, severed neurite filters, and a user-friendly interface 

for result proofreading and manual adjustment. With these tools, physically sectioned neuron 

reconstruction fragments can be matched, aligned, and stitched by the severed neurites on the 

sectioning plane to infer complete neuron morphology in a large-scale. In comparison with 

previous methods, NeuronStitcher has been comprehensively evaluated by both simulated data 

and complex mouse and human neurons. NeuronStitcher is accurate, robust, efficient, easy to 

use, and publicly available. 
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CHAPTER 4 

OPTIMIZATION OF LARGE-SCALE MOUSE BRAIN CONNECTOME VIA JOINT 

EVALUATION OF DTI AND NEURON TRACING DATA 3 

  

                                                 
3 Hanbo Chen, Tao Liu, Yu Zhao, Tuo Zhang, Yujie Li, Meng Li, Hongmiao Zhang, Hui Kuang, Lei Guo, Joe Z. 
Tsien, Tianming Liu. 2015. NeuroImage, 115:202-213.  
Reprinted here with permission of the publisher. 
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ABSTRACT 

Tractography based on Diffusion tensor imaging (DTI) data has been used as a tool by a 

large number of recent studies to investigate structural connectome. Despite its great success in 

offering unique 3D neuroanatomy information, DTI is an indirect observation with limited 

resolution and accuracy and its reliability is still unclear. Thus, it is essential to answer this 

fundamental question: how reliable is DTI tractography in constructing large-scale connectome? 

To answer this question, we employed neuron tracing data of 1772 experiments in the mouse 

brain released by the Allen Mouse Brain Connectivity Atlas (AMCA) as the ground-truth to 

assess the performance of DTI tractography in inferring white matter fiber pathways and inter-

regional connections. For the first time in the neuroimaging field, the performance of whole 

brain DTI tractography in constructing large-scale connectome has been evaluated by 

comparison with tracing data. Our results suggested that only with the optimized tractography 

parameters and the appropriate scale of brain parcellation scheme, DTI can produce relatively 

reliable fiber pathways and large-scale connectome. Meanwhile, a considerable amount of errors 

were also identified in optimized DTI tractography results, which we believe could be potentially 

alleviated by effort in developing better DTI tractography approaches. In this scenario, our 

framework could serve as a reliable and quantitative test bed to identify errors in tractography 

results which will facilitate the development of such novel  tractography algorithms and the 

selection of optimal parameters. 

INTRODUCTION 

Mapping brain activity patterns and deciphering neural codes are the fundamental goals 

of the BRAIN project (http://www.nih.gov/science/brain/) (Tsien et al. 2013; NIH 2014). The 

achievement of the goal requires a comprehensive view of the structural connectivity patterns 

http://www.nih.gov/science/brain/


 

66 

from which neural activity patterns are generated. Since the early development of diffusion 

tensor imaging (DTI) (Basser et al. 1994) and tractography algorithms (Mori et al. 1999) in the 

1990s, the technique has been widely applied to investigate white matter pathways of 

mammalian brains. As a magnetic resonance imaging (MRI) technique, DTI is able to infer 

axonal fiber orientations of living brains in 3D space by measuring restricted water diffusion in 

tissue. Based on the DTI tractography, many macro-scale fiber pathways of mammalian brains 

such as human (Assaf and Pasternak 2008; Mori et al. 2008; Bassett and Bullmore 2009), 

macaque (Rilling et al. 2008; Chen, Zhang, Guo, et al. 2013; Li, Hu, et al. 2013), or mouse 

(Zhang et al. 2002; Moldrich et al. 2010; Calamante et al. 2012) were reconstructed and 

analyzed. Later, it has been pointed out that in order to fully understand how the brain works, a 

comprehensive map of brain inter-regional wiring diagram on a large scale, namely connectome, 

is required (Sporns et al. 2005; Bullmore and Sporns 2009; Van Essen 2013). Moreover, several 

more advanced diffusion MRI approaches such as high angular resolution diffusion imaging 

(HARDI) (Tuch et al. 2002) or diffusion spectrum imaging (DSI) (Wedeen et al. 2005) were 

developed to overcome the limitation of DTI in reconstructing crossing fibers. As the only 

feasible neuroimaging approach to investigate structural connectome in living brain, DTI 

tractography as well as its advanced form has been used as a presumably reliable tool by a large 

number of large-scale studies. For example, the Human Connectome Project (Van Essen et al. 

2012; Sotiropoulos et al. 2013) (http://www.humanconnectome.org/) is acquiring HARDI data of 

1200 healthy subjects to build a connection map of brain; the CONNECT project (Assaf et al. 

2013) has been developing tools to analyze the brain’s macro- and micro- structure tissues and 

connectivities by combining tractography and micro-structural measurement in diffusion MRI 

data; the Brainnetome Project (Jiang 2013, 2014) (http://www.brainnetome.org) is comparing 

http://www.humanconnectome.org/
http://www.brainnetome.org/
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DTI data of thousands of patients and the healthy controls to explore the brain’s network-based 

biomarkers for brain diseases such as schizophrenia and Alzheimer's disease; the Brain Decoding 

Project (http://braindecodingproject.org/) is analyzing mouse brain data on different scales with 

different imaging modalities including DTI to unveil the myth  of memory. 

In spite of the growing exciting findings brought by DTI, the reliability of DTI-based 

tractography is still in question. DTI showed a variety of limitations, especially when it is 

applied to infer inter-regional connections. In the review article by Jbabdi and Johansen-Berg, 

DTI tractography is regarded as an “indirect, inaccurate, and difficult to quantify” observation 

approach (Jbabdi and Johansen-Berg 2011). Different from the traditional histology approach 

which directly observes neurons and axons under a microscope, DTI infers microanatomy 

indirectly from properties of restricted water diffusion in tissue, resulting in the loss of 

information on the microscale structures. For example, as reviewed in (Jbabdi and Johansen-

Berg 2011), it is difficult to determine where a fiber tract should start or terminate. Long 

association tracts constructed by DTI tractography could be a long direct connection between 

remote cortical regions, or, alternatively, a succession of short fibers. Moreover, DTI 

tractography is unable to identify the polarity of a given connection. An afferent axon cannot be 

distinguished from an efferent axon based on their water diffusion pattern. Though one could 

argue that the detailed information like synapse structure or polarity is not necessary for analysis 

on a macro-scale. The accuracy of the approach is still questionable for such kind of analysis due 

to the empirical models and parameters applied to axonal fiber tractography. The classic DTI 

tractography methodology assumes that axonal fiber bundles move in parallel in a single voxel 

and thus models each voxel with single diffusion model. However, the assumptions can only be 

met if the resolution is high enough to monitor a single bundle of axons. In reality, a voxel 

http://braindecodingproject.org/
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typically contains tens of thousands axons from different bundles. In addition to traveling in 

parallel, they could meet, merge, twist, bend, cross, etc. Therefore, a voxel cannot be modeled by 

a single diffusion model. Notably, some of the axon interactions such as crossing or diverging 

have been modeled by advanced tractography methods (Hess et al. 2006; Wedeen et al. 2008; 

Zhang, Schneider, et al. 2012). But due to a lack of the ground truth or alternative validation 

methods, the accuracy of the models remains untested, and the models and parameters applied by 

those approaches are highly empirical. Further, even with the most accurate model and optimal 

parameters have been applied, findings are still quite sensitive to the selection of brain 

parcellation scheme (Zalesky et al. 2010; Meskaldji et al. 2013). Given the limited resolution of 

DTI data, it is not clear on which scale (volume size of regions of interest) tractography gives the 

best performance. With all these limitations raised above and a large number of ongoing brain 

connectome-related studies based on DTI tractography, we believe that it is essential to re-

examine the basic question: How reliable is large-scale connectome constructed by DTI? 

So far, an ideal approach to validate DTI tractography is neuron tracing study. The merit of this 

approach is that it allows accurate observations of inter-regional connections and white matter 

fiber pathways in the brain of the sacrificed animal. Different from the dye applied in traditional 

histology study that targets on specific tissue/molecule, neuron tracers diffuse along axons and 

proliferate between neurons via synapses. Thus with the carried florescent protein, it could label 

the afferent/efferent projections to/from the injection site. In a group of recent works, 

comparisons between neuron tracing result and diffusion tractography result were compared in 

macaque brain (Dauguet et al. 2007; Jbabdi et al. 2013; Thomas et al. 2014), squirrel monkey 

brain (Gao et al. 2013), porcine brain (Dyrby et al. 2007), and human brain (Seehaus et al. 2013). 

These studies offered a new insight into approaches to validating DTI tractography on global 
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scales. However, due to the high cost and the large number of the neuron tracing experiments 

that are required to cover the whole brain, limited injections were performed in these studies and 

only connections between a few brain regions were analyzed. Until now, few works have been 

done to validate DTI tractography’s performance in constructing large-scale connectome based 

on neuron tracing data. 

Despite taking neuron tracing result as truth, other data were also applied to validate DTI 

tractography, but with limitations. Some recent studies validated the performance of DTI by 

comparing DTI findings with the stained histology data serving as the truth (Leergaard et al. 

2010; Hansen et al. 2011; Choe et al. 2012). The difficulty with the histology approach is to 

construct a full 3D morphology of fiber pathways based on the many 2D image slices. Thus, only 

local white matter properties such as fractional anisotropic (FA) or diffusion orientation were 

examined in these studies. Meanwhile, DTI tractography’s performance in identifying global 

connections was rarely examined in these studies. Instead of using real data, another approach is 

to use a phantom model that allows researchers to quantitatively examine and compare 

tractography algorithms’ performances in constructing fiber pathways (Fillard et al. 2011; Côté 

et al. 2013). Notably, due to the absence of real data in such approach, possible problems in real 

scenarios might be overlooked. Moreover, none of these two types of data are proper to validate 

DTI tractography on constructing large-scale connectome. 

In response, this chapter aims to fill in this knowledge gap via the recently released Allen 

Mouse Brain Connectivity Atlas (AMCA, http://connectivity.brain-map.org/). This dataset 

provides a map of neural connections in the mouse brain obtained by tracing axonal projections 

from defined regions via enhanced green fluorescent protein (EGFP)-expressing adeno-

associated viral vectors and then by imaging the EGFP-labeled axons throughout the mouse 

http://connectivity.brain-map.org/
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brain via high-throughput serial two-photon tomography (STPT). By March 2014, the data of 

1772 tracing experiments across the whole mouse brain has been released, covering nearly all 

brain anatomical regions and axonal pathways. Such dataset enables accurate observations of 

large-scale connectome of the mouse brain in meso-scale (Oh et al. 2014). Moreover, after each 

tracing experiment, the imaged histology slices were preprocessed and assembled into a 3D 

image stack, a data type similar to DTI data, making the quantitative comparisons possible 

between these two types of data. Therefore, with the connectome constructed based on the 

AMCA as the benchmark, for the first time, we are able to validate DTI’s performance in 

inferring axonal wiring diagram and large-scale structural connectome. 

MATERIALS AND METHODS 

Acquiring and Constructing Large-Scale Connectome 

Reference atlas and parcellation schemes 

To construct large-scale connectome, we toke anatomical brain regions across the whole 

brain as regions of interest (ROIs) and measured inter-regional structural connections between 

them. The annotation of mouse brain’s anatomical structure was downloaded from Allen Mouse 

Brain Atlas (AMRA)  (http://mouse.brain-map.org/static/atlas). These brain regions were 

manually annotated following the hierarchal structures in the 3-D reference atlas of AMRA, 

allowing brain parcellation scheme on different scales. On the finest scale, 300 regions were 

selected to parcellate the whole mouse brain. They were then combined to obtain 96 regions and 

69 regions parcellation scheme. Notably, all the annotated regions were bi-partitioned by the 

left/right hemispheres. To enable comparisons, data obtained from different modalities were 

aligned to the space of AMRA before analysis. 
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Neuron tracing data and meso-scale connectome 

Meso-scale connectomes were constructed based on the neuron tracing experiments. 

Neuron tracing data were downloaded from publicly available AMCA (Logothetis 2008) 

(http://connectivity.brain-map.org/). Images obtained from 1772 neuron tracing experiments 

covering the whole mouse brain were applied in this study. The experiments and preprocessing 

were carried out by Allen Institute for Brain Sciences (Oh et al. 2014). In each experiment, 

rAAV tracer was injected into target anatomical region of a mouse brain to label the projection 

from this region to the whole brain. For the purpose of efficiency, all the injection sites were 

located in the right hemisphere of mouse brain. After fixation and dissection, the mouse brain 

was then sliced (100 μm in thickness) and imaged (resolution 0.35 µm/pixel) with STPT (Ragan 

et al. 2012). Then the images were processed with injection volume manually annotated by 

experts and the traced neuronal projections segmented based on an algorithm. A 3-D image stack 

was then obtained and registered to the 3-D reference atlas space. The size of labeled volume and 

the injection volume in each annotation regions were then computed. To construct meso-scale 

connectome, we downloaded the table of labeled volume size and injection volume size from 

AMCA. Since the injection size in AMCA experiments is relatively large, it may label the 

projection from multiple anatomical regions simultaneously which will cause ambiguity in 

counting the projection from specific regions. Thus, a regression approach was applied to obtain 

pair-wise connection strength between annotated regions (Oh et al. 2014). Specifically, taken 

each experiment result as an observation, the correlation coefficient and the corresponding p-

value between the injection volume size of anatomical region i and the labeled volume size of 

anatomical regions j was calculated to measure the connection strength from region i to region j. 

http://connectivity.brain-map.org/
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When p-value is smaller than 0.05, then we assume that there is an axonal projection from region 

i to region j. 

DTI data and macro-scale connectome 

Macro-scale connectomes were constructed based on DTI data. Specifically, a high-

resolution DTI data of an adult mouse brain was downloaded from the publicly available Mouse 

BIRN Data Repository and applied in this study. The specimen was fixed using 4% 

paraformaldehyde in phosphate-buffered saline (PBS) for over one month and was placed in PBS 

for 24 hours before imaging. During imaging, the specimen was placed in MR-compatible tubes 

filled with fombin (Fomblin Profludropolyether, Ausimont, Thorofare, New Jersey, USA) to 

prevent dehydration. Imaging was acquired in a Bruker Biospin 500MHz (11.7 Tesla) 

spectrometer with following parameters: matrix size = 420 x 210 x 230; pixel resolution = 

0.0625 mm isotropic; 14 diffusion-weighted images were acquired by 3D fast spin echo imaging 

sequence and four signal averages were used; TR = 0.9s; TE = 35 ms, echo train length = 4 

(Zhang et al. 2002). The preprocessing of data includes diffusion tensor estimation, fractional 

anisotropic (FA) estimation, and manually skull removal (Jiang et al. 2006). DTI data was 

aligned to the 3-D reference atlas in AMRA. Since the reference atlas is based on stitched 

sections of Nissl stain, its contrast is very different from FA image and non-diffusion (B0) image 

of DTI data (which are widely applied for the registration of DTI data) and there is zig-zag effect 

across sections, linear alignment based on FSL FLIRT (Jenkinson and Smith 2001) was applied 

and it works reasonably well in establishing correspondence between these two modalities. To 

further evaluate the performance of alignment, we quantitatively measured the overlap between 

manually annotated fiber tracts in AMRA and the fiber tracts in aligned DTI data detected based 

on FA value (FA>0.3). For all the annotated fiber tracts, 52.4% volume overlaps with DTI data 
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and for forebrain bundle system, 66.8% volume overlaps with DTI data. Streamline fiber 

tractography was performed via DTI Studio using the streamline model (Jiang et al. 2006). The 

connection strength between two anatomical regions is defined by the number of fibers passing 

through both regions. 

Connectome Oriented Optimization of DTI Tractography Parameters and Parcellation 

Scheme Scales 

In DTI tractography, the results largely depend on the selection of parameters and 

tractography algorithms (Dauguet et al. 2007; Moldrich et al. 2010; Jbabdi and Johansen-Berg 

2011). Most of the previous studies selected their parameters empirically. The performance of 

the algorithm based on the selected parameters will thus be limited to one’s knowledge and 

experience. Here, we propose an optimization scheme with a global view to obtain the optimal 

parameters for DTI tractography based on its accuracy in constructing large-scale connectome. 

For the DtiStudio (Jiang et al. 2006) on which we applied to perform tractography (and also for 

most state-of-art diffusion tensor tractography tools), the fiber tracking result is regulated by the 

FA threshold and angular threshold. 1) FA threshold: when the FA value of a voxel is larger than 

the threshold, the voxel will be taken as a seed point to initiate fiber tracks; and when the FA 

value is lower than the threshold, fiber tracks will terminate. 2) Angular threshold: when fiber 

tract bends in an angle larger than the threshold, tracking will terminate. We chose the minimum 

FA value to start/end fiber tracking from {0.1, 0.2, 0.3}; and the maximum angular value to 

terminate fiber tracking from {40°, 50°, 60°, 70°, 80°}. Moreover, the impact of the selection of 

parcellation scheme on constructing connectome based on DTI data was also analyzed based on 

the hierarchical parcellation scheme of AMRA. Specifically, connectivity strength matrices were 

constructed with each entry filled by the number of fiber streamlines connecting two brain 
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anatomical regions. By taking the whole brain connectome constructed based on neuron tracing 

data as the truth and changing the threshold of fiber streamline number to form connectivity, the 

rate of true positive (sensitivity) and false positive (1 - specificity) connections identified based 

on DTI tractography can be calculated. The well-established receiver operating characteristic 

(ROC) curve is then plotted for each connectivity strength matrix and the area under the curve 

(AUC) is computed to quantitatively measure the performance. Those parameters resulted in 

highest AUC will be viewed as the optimal ones. When selecting the fiber number threshold to 

binarize DTI based brain connectome, equal weights were assigned to the cost of false 

connections and missing connections (isocost lines are at 45°). 

 

Figure 4. 1. Two examples of a joint 3D view of neuron tracers and the corresponding DTI derived axonal 

fibers (with Hausdorff distance smaller than 0.5 mm) from different views. For each sub-figure, 3D 

rendering of tracer density is shown on the left and the corresponding DTI fiber tracks are shown on the 

right together with injection sites highlighted by white arrows. A transparent reconstructed cortical 
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surface is also shown in each figure. (a) Injection site locates at CA3. (b) Injection site locates at the 

somatosensory area. 

Validation of DTI Tractography based on Neuron Tracing Data 

Validation of DTI tractography has been performed in two aspects. First, 3D morphology 

of fiber streamlines was compared with neuron trace track-wisely. Second, by taking neuron 

tracing experiments based connectome as truth, false connections in DTI derived large-scale 

connectome will be identified and analyzed across the whole brain. 

In the AMCA, the images of histology slices were aligned into a 3D stack, which can be 

morphologically compared with fiber streamlines reconstructed on DTI tractography (Figure 4. 

1). To quantitatively compare DTI-derived fiber tracts and neuron traces, we adopted the 

Hausdorff distance (Huttenlocher et al. 1993) to measure the distance or discrepancy between 

streamlines of DTI-derived fibers and the neuron trace in the AMRA space. Given a streamline F 

represented by a set of connected vertices (equation (2)) and a trace T represented by a set of 

voxels (equation (3)), for each voxel in T, its shortest distance to F are calculated, denoted as 

distance D; and the Hausdorff distance is defined as the largest of D (equation (1)): 

 })}),|min({|max({),( TVFPPVDDTFHausdorff ikkii   (4.1) 

 },|),{( 3 KkPKPF k


  (4.2) 

 },|),{( 3 IiVIVT i   (4.3) 

where F is a set of 3D points P arranged in orders defined by K


, and T is a set of tracer labeled 

voxels V indexed by I. 

Relatively small Hausdorff distance between a pair of DTI derived fiber streamline and 

neuron trace indicates a close correlation between them. When the Hausdorff distance of a fiber 

streamline to a neuron trace is small, it can be concluded that the streamline successfully 

captures the white matter pathway detected by the neuron tracing experiment. On the other hand, 

with the large number of neuron tracing experiments in the AMCA covering the whole brain, we 
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premised that the majority of white matter pathways are captured by these experiments. Thus, if 

a DTI derived fiber streamline is detected to have a relatively large distance to all the neuron 

tracers, this fiber streamline is possible to be a false tracking. Based on this assumption, the 

smallest Hausdorff distance (SHD) of each fiber streamline to all the neuron tracing experiments 

is selected as the best quantifiable value to measure the reliability of DTI tractography. SHDs of 

all the DTI derived fiber streamlines were computed for quantitative analysis. Notably, as the 

injection sites only locate on the right hemisphere in the AMCA, the ipsilateral pathways on the 

left hemisphere were not labeled in these experiments. Thus only those DTI derived axonal 

fibers that project within/to/from right hemisphere were applied for analysis.  

RESULTS 

Optimal parcellation scheme and parameters to construct DTI based connectome 

ROC curves on different scales with different parameters were shown in Figure 4. 2 and 

Figure 4. 3 for ipsilateral connection (right hemisphere) and contralateral connection 

accordingly, and the corresponding AUCs were listed in Table 4. 1. It can be seen that the FA 

threshold has more impact on reconstructed connectome than the angular threshold. As shown in 

Table 4. 1, AUCs were relatively higher with small FA threshold (0.1) and large angular 

threshold (50°-80°). Intuitively, smaller FA threshold and larger angular threshold will result in 

more fibers and increase the chance to establish connections, as highlighted by green arrows in 

figures, which results in higher AUCs. However, this may also increase the risk of false positive 

connections at the same time. On the other hand, an increasing amount of connections were 

missed by DTI tractography when more restrict tractography thresholds were selected, which 

results in horizontal lines in Figure 4. 2 and Figure 4. 3. Nevertheless, by looking at the overall 

trend of ROI curves, a clear tradeoff between sensitivity (true positive rate) and specificity (1 – 
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false positive rate) can be observed when tuning the threshold of fiber numbers and tractography 

parameters which agree with the findings in (Thomas et al. 2014). If we only focus locally on 

ROC curves as highlighted by the red arrows in the figures, we can see that smaller FA threshold 

(0.1) and angular threshold (40°) gives the best performance – to construct the largest number of 

correct connections with the fewest wrong connections. Thus, we took this parameter as the 

optimal one. In Figure 4. 4, we compared the obtained brain connectome based on optimal DTI 

tractography parameters with those none-optimized ones. Specifically, we extracted and 

highlighted those corrected connections after optimization in Figure 4. 4(d)-(f). It can be seen 

that a significant amount of connections have been corrected after optimization and suggests that 

applying optimal DTI tractography parameters is critical in generating accurate result when 

analyzing brain connectome. The fiber tracts and the corresponding connectome applied for 

comparison between DTI tractography and neuron tracing in the next sessions were obtained 

based on this optimal set of parameters.  

Meanwhile, it is obvious that DTI performs much better in constructing connectome with 

coarser anatomical parcellation scheme in comparison with the finest anatomical parcellation 

scheme. As shown in Table 4. 1 and highlighted by the dark red and pink arrows in Figure 4. 

2(d) and Figure 4. 3(d), parceling the mouse brain into 69 regions or 96 regions is more favored 

over 300 regions to construct brain connectome. Intuitively, for smaller brain region, less DTI-

tracked fibers will go through it. With larger brain regions, connections could be more easily 

captured. However, with more fibers going through a region, the chance to generate wrong 

connections is also increased at the same time. Thus though DTI performs equally well for 96 

regions and 69 regions when larger fiber number threshold was selected as highlighted by the 

dark/light red arrows in Figure 4. 2(d) and Figure 4. 3(d), the best performance was obtained 
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with 96 regions when smaller fiber number threshold was chosen and denser connections were 

obtained as highlighted by magenta arrows in both figures. This agrees with the observation 

based on AUCs in Table 4. 1 that the connectome generated based on middle scale parcellation 

scheme with 96 regions has the highest AUCs. 

Table 4. 1. AUCs of DTI constructed connectome matrix 

 Ipsilateral connection Contralateral connection 

Regions 
angular 

FA 
40 50 60 70 80 40 50 60 70 80 

300 

0.1 53% 60% 63% 65% 66% 42% 52% 57% 60% 61% 

0.2 41% 45% 48% 50% 52% 26% 32% 36% 39% 42% 

0.3 22% 23% 24% 24% 24% 9% 11% 11% 12% 13% 

96 

0.1 67% 71% 72% 72% 71% 62% 67% 68% 68% 68% 

0.2 61% 64% 65% 67% 67% 53% 58% 61% 63% 64% 

0.3 46% 47% 48% 48% 49% 30% 32% 33% 35% 36% 

69 

0.1 68% 70% 69% 70% 69% 64% 65% 66% 65% 64% 

0.2 62% 63% 64% 64% 65% 56% 59% 61% 62% 63% 

0.3 47% 48% 48% 49% 49% 36% 38% 39% 41% 42% 
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Figure 4. 2. ROC curve for DTI derived ipsilateral connectome on the right hemisphere with different 

parameters using different percolation schemes by taking tracing experiments based connectivity as truth. 

The fiber tracking termination angle varies from 40 degrees to 80 degrees. The FA threshold for fiber 

tracking to start and stop varies from 0.1 to 0.3. For each combination of tractography parameters, a ROC 

curve is generated with the threshold of fiber number to establish connectivity changes along the curve. 

Color legend is shown on the right bottom of each sub-figure. (a),(b),(c): the brain is parcellated into 300, 

96, and 69 regions accordingly. (d) When the FA threshold is 0.1, comparisons across different 

parcellation scales are shown. 
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Figure 4. 3. ROC curve for DTI derived contralateral connectome with different parameters using 

different percolation schemes by taking tracing experiments based connectivity as truth. The fiber 

tracking termination angle varies from 40 degrees to 80 degrees. The FA threshold for fiber tracking to 

start and stop varies from 0.1 to 0.3. For each combination of tractography parameters, a ROC curve is 

generated with the threshold of fiber number to establish connectivity changes along the curve. Color 

legend is shown on the right bottom of each sub-figure. (a),(b),(c): the brain is parcellated into 300, 96, 

and 69 regions accordingly. (d) When the FA threshold is 0.1, comparisons across different parcellation 

scales are shown. 
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Figure 4. 4. Examples of improvements of DTI derived connectome after parameter optimization. The 

whole brain is annotated by 96 regions with the center of each one represented by a white sphere. (a)-(c): 

Visualization of ipsilateral connectome derived from DTI tractography when different parameters were 

selected. Result based on optimal parameters is shown in (b). In (a), the threshold of fiber number to 

establish a connection is not optimized and set to 1. In (c), the parameters for fiber tracking are not 

optimized. (d) Visualization of eliminated false positive connections from the result shown in (a) after 

optimizing fiber threshold. (e) Visualization of improvements from the result shown in (c) after 

optimizing tracking parameters. 

 

In previous analysis, we did not specify the streamline length threshold. To further 

investigate the impact of streamline lengths on constructing accurate brain connectome, we 

separated fiber streamlines into 3 groups by their length (0-5mm, 5-10mm, longer than 10mm) 

and construct whole brain connectome based on different groups using similar approaches as 

previously. Then by taking tracing data derived connectivity as the truth, their reliability in 

constructing whole brain connectome was analyzed (Table 4. 2). Interestingly, similar to the 

findings in (Thomas et al. 2014), a different group of fibers has a different preference in higher 

specificity or higher sensitivity. Short streamlines have higher specificity while long streamlines 

have higher sensitivity (especially for contralateral connections). Another interesting finding is 
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that higher accuracy and precision were obtained with shorter fiber streamlines. Though long 

distance connection will be missing (false negative) when only considering short fiber 

streamlines, it will also reduce the number of false positive and increase the number of true 

negative at the same time. Since in our experiment, long distance connections reconstructed 

based on neuron tracer are relatively sparse, which means the chance to generate false positive 

long distance connection is relatively high, high accuracy and precision were obtained when 

excluding long fiber streamlines in the analysis. However, the overall connections identified 

were reduced by only consider part of the fiber streamlines (reduced AUCs). Thus in the 

successive analysis, the fiber streamlines were not filtered by length. 

Table 4. 2. Analysis of DTI constructed connectome based on different length of streamlines. 

Streamline Length 0-5 mm 5-10 mm > 10 mm All 

Parcellation Scheme 301 96 69 301 96 69 301 96 69 301 96 69 

Ipsilateral 

Connection 

Accuracy 81% 72% 70% 74% 62% 57% 71% 56% 49% 72% 73% 72% 

Precision 46% 39% 46% 35% 31% 35% 30% 28% 31% 33% 39% 47% 

Sensitivity 42% 64% 66% 52% 74% 76% 50% 74% 78% 54% 57% 58% 

Specificity 89% 74% 72% 79% 59% 50% 75% 52% 38% 76% 77% 77% 

AUC 40% 59% 61% 48% 64% 65% 45% 61% 62% 53% 67% 68% 

Contralateral 

Connection 

Accuracy 85% 83% 80% 81% 72% 69% 72% 57% 49% 72% 67% 64% 

Precision 53% 34% 41% 37% 25% 29% 24% 20% 22% 26% 23% 27% 

Sensitivity 20% 31% 29% 35% 53% 52% 38% 72% 78% 47% 60% 65% 

Specificity 97% 91% 91% 89% 75% 72% 79% 54% 43% 76% 69% 63% 

AUC 19% 30% 29% 34% 49% 48% 34% 59% 61% 42% 62% 64% 

 

Tract-wise comparison 

To evaluate the description power of Hausdorff distance and examine the performance of 

DTI tractography, we extracted DTI derived fiber streamlines with Hausdorff distances smaller 

than 0.5 mm to certain neuronal projection tracing for visual analysis (two examples showed in 

Figure 4. 1). By visual check, we found that the identified corresponding DTI derived 

streamlines are close to the neuron tracing result which suggests that Hausdorff distance is 
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powerful in measuring the similarity between these two sets of data. On the other side, it can be 

seen that DTI tractography performs reasonably well in identifying major axonal projection 

pathways such as the contralateral connections of hippocampus including fornix system (Figure 

4. 1(a), the yellow arrows) and the projection pathways from somatosensory area (Figure 4. 1(b)) 

including corpus callosum (the azure arrows) and corticospinal tract (the red arrows). 

Intriguingly, in addition to the major white matter pathways, our observation suggested that DTI 

tractography is also able to infer detailed axonal connections such as the projection from the 

somatosensory area to the motor area through layer 6 detected by neuron tracer as highlighted by 

the magenta arrows shown in Figure 4. 1(b). 

Our experiments showed that the correspondence can be precisely established between brain 

pathways identified by neuron tracing experiments and the DTI derived fiber streamlines in the 

case of small Hausdorff distances (smaller than 0.5mm) and when the Hausdorff distance is 

larger than 1mm, the correspondence between tracer labeled projections and fiber streamlines is 

not reliable (Figure 4. 5(e)). By taking SHDs of DTI derived fiber streamlines to tracing 

experiments as a measurement, the reliability of DTI tractography was examined quantitatively. 

Our result suggests that most of the DTI derived fibers have relatively small SHDs (Figure 4. 

5(a)). 92.9% fibers have SHDs smaller than 0.5 mm and only 0.48% fibers have SHDs larger 

than 1 mm (Figure 4. 5(d)). This result suggests that DTI is in general reliable (>90% accuracy) 

in identifying meaningful axonal fibers. It is also worthwhile to examining further the remaining 

7.1% of fibers with SHD larger than 1mm as where the causes of false tracking fibers embedded. 

By our observation, most of these possible false tracking fibers were relatively long and were 

likely to be caused by the false merging/linking to different pathways (type I error) (Figure 4. 

5(b)). To better demonstrate it, we manually extracted those possible false tracking fibers 
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projected from/to the left main olfactory bulb (MOB) and visualized them with white curves in 

Figure 4. 5(c) . It can be seen that most of these fiber streamlines form contralateral projections 

from/to left MOB. Previous neuron tracing study has pointed that the only efferent projection of 

MOB to the contralateral half of the brain was to the anterior olfactory nucleus (Shipley and 

Adamek 1984), suggesting that those extracted DTI fiber streamlines with large SHDs are likely 

to be false tracking result – when the projection between MOB and hippocampal formation 

reconstructed, the algorithm mistakenly linked the streamline to the corpus callosum tracts and 

fornix system tracts, as highlighted by the dashed curves and red crosses in Figure 4. 5(c). 

In addition to the above mentioned false connections (type I error), we also noticed false 

breaks (type II error) that cannot be detected by SHD in our analysis. For instance, in Figure 4. 

1(b), though the corticalspinal tract has been successfully reconstructed by DTI tractography, if 

we manually highlight those corticalspinal tracts (Figure 4. 6(a)), a clear gap was observed 

between the tract and the isocortex. As a result, the connection between somatosensory area and 

the spinal regions identified by neuron tracers were not identified by DTI tractography. Another 

example is the efferent projection from the nucleus of reunions (RE) to hippocampal formations 

such as the entorhinal area (ENT) or CA1 (Herkenham 1978) identified by neuron tracers 

(highlighted by magenta curves in Figure 4. 6(c)). Even though, the pathway has been partially 

identified by DTI derived axonal fibers, as highlighted by different colors in Figure 4. 6(b), the 

pathway is composed of disjoint segments of DTI derived fibers. Thus no direct connection 

between RE and hippocampal formations can be identified by DTI tractography. Nevertheless, 

such type II error will be ignored by morphology descriptor such as SHDs proposed and can only 

be detected by analyzing regional connections. Facing such problem, in the next session, whole 
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brain connectome in large scale will be compared between two sets of data to count both types of 

error globally and guide the selection of optimal parameters.  

 

 

 

 

Figure 4. 5. (a) Visualization of fibers projected to/from the right hemisphere. Each fiber is color-coded 

by its SHD to all the neuron tracer volumes (color bar on the top left). Fibers were set transparent for 

better visualization. (b) Visualization of all the fibers with SHD larger than 1mm. Fibers are color coded 

by local orientations. (c) Manually selected fibers that have SHD larger than 1mm from the left main 

olfactory bulb (MOB) as highlighted by the red circle. (d) Histogram of SHD for all fibers projected 

to/from the right hemisphere. (e) Visualization of fibers with certain Hausdorff distance to the neuron 

trace shown on the left. 
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Figure 4. 6. 3D visualizations of the neuron tracing volume (left) and the corresponding fiber tracks (right) 

with type II error. (a) For the study shown in Figure 4. 1(b), cortical-spinal projections were manually 

selected and highlighted by the white curves. A gap can be clearly observed between fiber streamlines 

and the cortex as highlighted by the white arrow. (b)-(c) A neuron tracing study with injection site locates 

in the nucleus of reunions (RE). As highlighted by the magenta dash curve, the connection follows the 

cingulum and is projected to the entorhinal area and CA1. Though the corresponding DTI streamlines 

were identified successfully, it is broken down into 3 segments as represented by the azure, green, and 

yellow curves shown in (b). 

Connectome-wise comparison 

We then compared the obtained connectomes on different scales based on neuron tracing 

and DTI data. We jointly visualized the binarized connectome matrices obtained based on DTI 

and neuron tracing in different annotation scales for ipsilateral connection (Figure 4. 7) and 

contralateral connection (Figure 4. 8). Intriguing, by visual check, we can see that DTI performs 

better in constructing ipsilateral connection than contralateral connection. A similar observation 

can also be obtained by comparing ROC curves in Figure 4. 2 and Figure 4. 3 and the AUCs in 

Table 4. 1. It is also evident that a considerable amount of errors have been generated by DTI. 

Though DTI performs reasonably well when constructing connectome based on optimal 
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parameters, we could still see a considerable amount of disagreement between DTI derived 

connectome and neuron tracing derived connectome. For further analysis, we then clustered 

regions by their anatomical locations and computed the accuracy of DTI in constructing inner 

cluster connections and intra cluster connections. The result is shown in Table 4. 3. The overall 

performance of DTI is relatively good across the whole brain. However, as highlighted by the 

red boxes, DTI displayed poor performance in constructing connections for stratium (STR) and 

cerebellum (CB). For STR, this is partially because it is surrounded by white matter fiber 

pathways and penetrated by axonal fiber bundles which are more easily identified by DTI as 

connected via axonal fibers. Thus more connections than expected were identified in this region 

that resulted in overwhelmed false positive connections. However, as for cerebellum, it is 

partially because only a few neuron tracing experiments (40) has been taken in current released 

of AMCA and relatively small dose neuron tracer was injected for some of them. As a result, 

fewer connections than reality were identified for brain regions in the cerebellum and current 

incomplete data cannot tell us much about DTI’s performance in the cerebellum. On the other 

side, as highlighted by the green box, DTI performed relatively well in identifying ipsilateral 

connections for the retrohippocampal region (RHP), while performed relatively poor for 

contralateral connections. This is partially because RHP locates at the lateral part of the brain and 

long distance connections are required to form contralateral connections which DTI tractography 

failed to construct. On the contrary, for regions locate at the hindbrain that is close to brain 

midline (e.g. pons (P), medulla (MY)), DTI performs equally well to construct both ipsilateral 

and contralateral connections in coarser scale. 
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Figure 4. 7. Comparison of mouse brain ipsilateral connectome derived from neuron tracer or DTI using 

different parcellation schemes. For neuron tracer, when the p-value of the correlation coefficient between 

an injection site and a projection site is larger than 0.05, the projection will be identified as from the 

injection site to the projection site. For DTI, when the number of fibers connected between two regions is 

larger than the threshold, these two regions were identified as being connected. The optimal threshold is 

selected based on the ROC curve accordingly. DTI tractography was performed based on the following 

parameters: FA threshold: 0.1, angular threshold 40. (a) 300 regions. (b) 96 regions. (c) 69 regions. The 

red color represents common connections detected by both approaches. The violet color represents 

connections detected by neuron tracer only. The azure color represents connections detected by DTI only. 

 

Figure 4. 8. Comparison of mouse brain contralateral connectome derived from neuron tracer or DTI 

using different parcellation schemes. For neuron tracer, when the p-value of the correlation coefficient 

between an injection site and a projection site is larger than 0.05, the projection will be identified as from 

the injection site to the projection site. For DTI, when the number of fibers connected between two 

regions is larger than the threshold, these two regions were identified as connected. The optimal threshold 
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is selected based on the ROC curve accordingly. DTI tractography was performed based on the following 

parameters: FA threshold: 0.1, angular threshold 40. (a) 300 regions. (b) 96 regions. (c) 69 regions. The 

red color represents common connections detected by both approaches. The violet color represents 

connections detected by neuron tracer only. The azure color represents connections detected by DTI only. 

Table 4. 3. Accuracy of DTI constructed connectome for inner and inter regional connections. 

Ipsilateral connection Contralateral connection 

  
 

300 regions 96 regions 69 regions 
 

300 regions 96 regions 69 regions 

  

 
inner inter inner inter inner inter 

 
inner inter inner inter inner inter 

 

color 

bar 

iso 58% 78% 53% 72% 58% 74% iso 55% 78% 50% 69% 52% 65% 

 
100% 

OLF 70% 77% 67% 79% 58% 75% OLF 69% 77% 77% 74% 77% 68% 

 
90% 

HIP 83% 62% 67% 61% 75% 66% HIP 77% 66% 75% 55% 75% 52% 

 
80% 

RHP 88% 63% 100% 68% 100% 71% RHP 69% 68% 48% 68% 48% 66% 

 
70% 

CTXsp 89% 74% 67% 73% 60% 71% CTXsp 68% 75% 67% 71% 67% 66% 

 
60% 

STR 37% 59% 17% 59% 17% 60% STR 28% 59% 6% 47% 6% 39% 

 
50% 

PAL 67% 59% 75% 64% 92% 66% PAL 51% 58% 38% 55% 38% 53% 

 
40% 

TH 46% 68% 65% 72% 100% 59% TH 35% 69% 42% 69% 100% 54% 

 
30% 

HY 61% 77% 60% 79% 60% 83% HY 55% 77% 64% 68% 64% 67% 

 
20% 

MB 69% 67% 83% 64% 83% 69% MB 68% 66% 89% 46% 89% 54% 

 
10% 

P 65% 73% 100% 77% 100% 87% P 55% 75% 100% 62% 100% 72% 

 
0% 

MY 61% 88% 100% 88% 67% 92% MY 50% 86% 100% 83% 100% 89% 

  
CB 37% 80% 61% 94% 67% 89% CB 20% 81% 31% 90% 33% 82% 

   

DISCUSSION 

 By taking neuron tracing data in mouse brain in the AMCA as a validation tool, we have 

investigated the performance of the whole brain DTI tractography and the corresponding large-

scale connectome. A novel framework was presented for quantitative comparison between DTI 

data and tracing data. With quantitative measurement, we showed that over ninety percent DTI 

derived axonal fibers could identify corresponding fiber pathways, which suggested that DTI is a 

reliable tool in studying major brain pathways.  Yet we have revealed that the optimal parameters 

and the right scale of parcellation scheme are critical in constructing a reliable large-scale brain 

connectome. In comparison with angular threshold, FA threshold was shown having more impact 
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on DTI tractography result. In our case, small FA threshold (0.1) generated the best result which 

agrees with the other’s work (Dauguet et al. 2007). Our results also suggested that to construct 

large-scale connectome, right parcellation scheme is very important and the size of analyzed 

brain regions should neither be too small nor too big. For our data, annotating mouse brain with 

96 regions is the best in comparison with finer and coarser parcellation schemes. With the 

optimal parameters, the overall performance of DTI tractography is reasonably good in 

constructing large-scale connectome. 

 Overall, DTI can be a substantially more reliable tool to investigate brain connectome on 

the conditions that optimal parameters and the appropriate parcellation scheme were carefully 

selected. Nevertheless, our framework still detected type I and type II errors with DTI 

tractography. This agrees with the findings in macaque brain in (Thomas et al. 2014). Not 

surprisingly, a considerable amount of disagreement between DTI constructed connectome and 

neuron tracing constructed connectome – especially in the contralateral connections and the 

connections of striatum and cerebellum – were noted. Though some type I errors can be 

accounted by the incompleteness of the neuron tracing data set such as those in the cerebellum, 

most of them might result from the inaccuracy of DTI tractography. These errors could be 

potentially caused by the complex wiring pattern in the brain (Jbabdi and Johansen-Berg 2011) 

that cannot be modeled by the classic diffusion tensor model applied in this work. Notably, more 

comprehensive multi-orientation models such as Q-ball (Tuch 2004; Hess et al. 2006), DSI 

tractography (Wedeen et al. 2005, 2008), or susceptibility tensor imaging (STI) (Liu et al. 2012) 

could be used to reduce the possibility of such breaking or missing fibers by considering fiber 

bundle cross in the model. On the other hand, instead of the limited accuracy of DTI 

tractography, some errors could also be caused by the registration error. Since it is quite 
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challenging to register images from different modalities and there is zig-zag effect in stitched 

sections of AMRA, current study applied linear registration and images were not perfectly 

aligned before analysis. Thus, with specially designed registration algorithm dedicated to this 

problem and the better quality data, it would be interesting to benchmark and compare the 

advanced tracing models on their performance in constructing fiber pathways (Fillard et al. 2011) 

and whole brain connectome and to investigate the effect of individual variability and acquisition 

variability on tractography results.  

 Notably, the evaluation of DTI tractography obtained based on the proposed framework 

may not be readily applicable to human brains at the current stage. Given the significant 

differences between the nature of human brain and mouse brain such as size and anatomical 

structures, it is still an open question on how to link the findings in the brain of these two species. 

From DTI data acquisition perspective, the image resolution is also very different (e.g. mouse: 

50-100 micron resolution (Zhang et al. 2002; Calamante et al. 2012), human: 1-3 mm resolution 

(Hansen et al. 2011; Sotiropoulos et al. 2013)), thus the microstructures inferred by tractography 

in mouse and human brains have a magnitude difference (Mori and Zhang 2006; Xu et al. 2008). 

Also, the DTI data in mouse brains is post-mortem which allows long scanning time for more 

details and low SNR, but it will influence water molecule diffusion properties in comparison 

with live brain applied in the human study at the same time. However, the principles and 

methods of dMRI and the tractography approaches are virtually the same in all animal models. 

The findings in this chapter largely agree with the recent findings in macaque brain which is 

more comparable to human brain that dMRI tractography has limited accuracy in inferring brain 

structural connections and there is a tradeoff between sensitivity and specificity (Thomas et al. 

2014). It is noteworthy to mention that the study in macaque brain was limited to only two tracer 



 

92 

injections. By comparison, our proposed framework and the corresponding findings are based on 

the AMCA dataset which includes 1772 tracer injections that cover the whole brain. Our 

proposed framework can be applied as a reliable test bed for dMRI tractography, and should be 

generally applicable to the assessments of the performance of advanced dMRI approaches, 

guiding a better design of tractography algorithms, and the optimization of parameters and 

parcellation schemes. On a higher level, as mammal animals, the mouse brain still shares  a 

certain level of common anatomy and function mechanisms as the human brain (Song et al. 

2014) which is an importance source of knowledge in understanding brain mechanisms. And to 

fully understand brain mechanisms, it is more desired to validate findings in different scales, 

different modalities, and different animal models including mouse (e.g. Jbabdi et al., 2013; Jiang, 

2013; Rilling et al., 2008; Zhang et al., 2013).  

 Most importantly, based on our findings, we would like to draw attention to those studies 

that rely solely on DTI tractography to study brain connections: DTI can be a substantially more 

reliable and useful tool with optimized tractography parameters and brain parcellation schemes. 

If these conditions are not met and the performance is not tested, DTI-generated connection 

maps may contain numbers of the potential errors which can lead to erroneous conclusions.  
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CHAPTER 5 

COEVOLUTION OF GYRAL FOLDING AND STRUCTURAL CONNECTION PATTERNS 

IN PRIMATE BRAINS 4 
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ABSTRACT 

Both cortical folding and structural connection patterns are more elaborated during the 

evolution of primate neocortex. For instance, the cortical gyral shapes and structural connection 

patterns in human are more complex and variable than those in chimpanzee and macaque. 

However, the intrinsic relationship between gyral folding and structural connection and their 

coevolution patterns across primates remain unclear. Here, our qualitative and quantitative 

analyses of in-vivo diffusion tensor imaging (DTI) and structural magnetic resonance imaging 

(MRI) data consistently demonstrate that structural fiber connection pattern closely follows gyral 

folding pattern in the tangent direction to the cortical sphere, and this close relationship is well-

preserved in the neocortices of macaque, chimpanzee, and human brains, despite the 

progressively increasing complexity and variability of cortical folding and structural connection 

patterns. The findings suggest a hypothesis that common axonal fiber pushing mechanism 

sculpts the curved patterns of gyri in tangent direction during primate brain evolution. Our 

DTI/MRI data analysis provides novel insights into the structural architectures of primate brains, 

a new viewpoint of the relationship between cortical morphology and connection, and a basis for 

future elucidation of the functional implications of coevolution of cortical folding and structural 

connection patterns. 

INTRODUCTION 

Brain evolution has been an intriguing research topic for centuries (Zilles et al. 1988; 

Deacon 1990; Schoenemann 2006; Rakic 2009; Rogers et al. 2010). Over the past decades, there 

has been increasing interests in applying non-invasive neuroimaging methods (Rilling and Insel 

1999; Rilling and Seligman 2002; Woods et al. 2011) to study brain evolution because 3D 

morphological and anatomical attributes of mammalian brains can be effectively visualized and 
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measured. In particular, advanced neuroimaging techniques such as diffusion tensor imaging 

(DTI) (Mori and Zhang 2006) and functional magnetic resonance imaging (fMRI) (Friston 2009) 

have been recently used to study the connection and function of the primate brains. For instance, 

a recent comparative DTI study (Rilling et al. 2008) reported a prominent temporal lobe 

projection of the human arcuate fasciculus whose counterpart is significantly smaller or absent in 

nonhuman primates (Rilling et al. 2008). This work suggests that DTI is a powerful approach in 

revealing interesting structural connectivity patterns of brain evolution, and that DTI-derived 

fiber bundles can be potentially linked to brain function (Rilling et al. 2008). In another recent 

study (Vincent et al. 2007), fMRI was employed to examine the intrinsic functional architecture 

in anaesthetized macaque brains and resting state human brains. It was found that four functional 

networks including the oculomotor, somatomotor, visual, and default mode systems are well 

preserved across macaque and human brains (Vincent et al. 2007). These studies suggest that 

neuroimaging such as DTI and fMRI is a powerful approach to studying brain evolution. 

 In general, during the evolution of the neocortex of primate brains, the variability and 

complexity of gyral shape patterns are gradually pronounced, as illustrated in Figure 5. 1(a). 

Meanwhile, the axonal fiber connection patterns are much more elaborated during the evolution 

of primate cortex (Rilling et al. 2008; Krubitzer 2009). As an example, Figure 5. 1(b) illustrates 

the DTI-derived fibers emanating from the postcentral gyrus (Figure 5. 1(a)) in three primate 

brains. It is evident that there are much more DTI-derived axonal fibers connecting to the frontal 

and occipital lobes in the human brain than those in the macaque and chimpanzee brains. Based 

on the patterns in Figure 5. 1 and existing neuroscience knowledge of the relationship between 

corticogenesis and axonal wiring (Rakic 1988; Welker 1990; Van Essen 1997; Sur and 

Rubenstein 2005; Rash and Grove 2006; Nie et al., 2011), we hypothesize that gyral folding and 
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structural fiber connection patterns co-evolve in primate brains; and test this hypothesis via 

quantitative modeling and analysis of cortical surfaces reconstructed from MRI data and axonal 

fibers reconstructed from DTI data. Specifically, we developed novel computational methods to 

quantitatively measure the complexities of cortical gyral shape and fiber connection patterns, and 

performed statistical correlation analyses for three primates. Our results derived from 

quantitative modeling clearly showed the increasing complexities of gyral folding and fiber 

connection patterns in all of the three primates of macaque, chimpanzee, and human. In 

particular, the outcome of our analysis showed a well-preserved strong, positive correlation 

between the complexities of gyral folding and fiber connection patterns across the three primates, 

suggesting the coevolution of gyral folding and structural connection patterns in primates.  

 

Figure 5. 1. (a): Rendering of the cerebral cortices reconstructed from MRI data of macaque, chimpanzee, 

and human brains respectively. The post-central gyrus is labeled in red to highlight the different levels of 

complexities and variabilities of gyral folding in three primate brains. (b): Joint visualization of post-

central gyral shapes and the emanating DTI-derived fibers in three primate brains. The fibers connecting 

to the frontal lobes are colored in purple, those fibers connecting to the occipital lobes are represented in 

blue, those fibers connecting the other hemisphere are colored in yellow, and those fibers connecting to 

the subcortical regions are colored in green. 
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We further explored the possible underlying mechanism that can explain the clear 

coevolution of gyral folding and structural connections patterns across the three primate 

neocortices. Our previous studies already demonstrated that significantly denser DTI-derived 

axonal fibers are connected to the gyral regions than sulcal regions (Nie et al. 2012), as shown in 

Figure 5. 2(a). Our extensive quantitative DTI data analyses in human, chimpanzee and macaque 

brains replicated this observation (Nie et al. 2012) and based on this observation, we 

hypothesized that axonal fiber pushing (blue arrows in Figure 5. 2(a)) is a mechanism that 

induces or regulates the radial formation of gyral regions (dashed yellow curve in Figure 5. 2(a)) 

in the cerebral cortex (Nie et al. 2012). This hypothesis is specifically supported by the 

biomechanical experiment in the fruit fly and the cortex growth simulation experiment in (Nie et 

al. 2012). In this chapter, we report another interesting finding: the gyral folds in the tangent 

direction of cortical sphere (dashed green curve in Figure 5. 2(b)) are connected by dense axonal 

fibers that orient perpendicularly to the gyral crest curves, as demonstrated in Figure 5. 2(b) (red 

arrows). We replicated this close relationship between tangent gyral folds and axonal fiber 

orientation directions by extensive qualitative and quantitative analyses in all of the three primate 

brains in this chapter. Thus, we are inspired to extend the hypothesis in (Nie et al. 2012) to that 

axonal fiber pushing can also be a mechanism that induces or regulates the curved folding 

patterns in the tangent direction along gyral crest line, as illustrated in Figure 5. 2(b). Our results 

show that this hypothesis is supported by a series of experiments in the three primates based on 

DTI/MRI data. Therefore, the work reported in this chapter, together with our previous studies in 

(Nie et al. 2012), suggest a novel axonal fiber pushing mechanism of cortical gyral folding. This 

hypothesis can well explain not only the folding patterns of gyri along the radial direction 

(dashed yellow curve in Figure 5. 2(a)) (Nie et al. 2012) of the roughly spherically-shaped cortex 
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(e.g., Figure 5. 2(a)), but also the tangent folding of gyral crests on the cortical surface (e.g., 

Figure 5. 2(b)).          

 

Figure 5. 2. (a): Demonstration that the end points of dominant percentages of DTI-derived fibers 

concentrate on gyral regions (Nie et al. 2012), instead of sulcal regions, suggesting a pushing mechanism 

of the formation of convex gyri (Nie et al. 2012). (b): Demonstration that the tangent cortical gyral folds 

(dashed green curve) are connected by dense fibers that orient perpendicularly to the gyral crest curves 

from concave side, as highlighted by the red arrows on the right. (c)-(h): Demonstration that the end 

points of DTI-derived axonal fibers closely follow the gyral folding pattern. (c). Cortical surface 

reconstructed from T1-weighted MRI data. (d). Projection of WM fibers to the cortex. It is the overlay of 

(c) and (e). (e). Rendering of WM fibers. Yellow dots represent fiber ends. Blue color represents fibers. 

(f)-(h): Zoomed views of the circled regions in (c)-(e).   
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The major contributions of this work are in the following two aspects. First, we 

developed, evaluated and applied a novel pipeline of computational approaches to quantify 

cortical gyral folding patterns and fiber orientation patterns in order to enable and facilitate the 

joint analysis of their co-evolution patterns. As a result, the correlation between fiber orientation 

patterns and tangent gyral folding patterns can be quantitatively accessed via a joint 

representation framework. These novel approaches have been shown to be effective in describing 

the three types of primate brains, and have revealed a well-preserved strong, positive correlation 

between the complexities of gyral folding and fiber connection patterns across three primates. 

Second, we revealed a novel finding that tangent gyral folds are connected by dense DTI-derived 

fibers orienting perpendicularly to the gyral crest curves, and replicated and confirmed across the 

three species of human, chimpanzee, and macaque we studied. This interesting finding provides 

novel insights into the underlying mechanism of co-evolution patterns of gyral folding and fiber 

connection in primate brains: a common axonal fiber pushing mechanism that sculpts the tangent 

folding patterns of cortical gyri during primate brain evolution.      

 

MATERIALS AND METHODS 

Data acquisition and preprocessing 

Human brain imaging: Nineteen healthy volunteers were scanned in a GE 3T Signa 

MRI system (GE Healthcare, Milwaukee, WI) using an 8-channel head coil at the Bioimaging 

Research Center (BIRC) of The University of Georgia (UGA) under IRB approval. DTI data was 

acquired using the spatial resolution 2×2×2 mm3, matrix size=128×128, 60 slices, TR=15.5s, 

TE=min-full, b-value=1000 with 30 DWI gradient directions and 3 B0 volumes acquired. All 

slices were aligned to the AC-PC line. T1-weighted MRI images were acquired using a fast 
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spoiled gradient recalled echo (FSPGR) protocol; TE=min full, TR=7.5 ms, flip angle=20°, 154 

axial slices, slice thickness=1.2 mm, and FOV=256 ×256 mm. For the anatomic data, pre-

processing included brain skull removal, gray matter (GM) and white matter (WM) tissue 

segmentations (Liu et al. 2007). Then the GM/WM cortical surfaces were generated (Liu et al. 

2008). For the DTI data, pre-processing included brain skull removal, motion correction, and 

eddy current correction. Fiber tracts were generated based on the DTI data using MedINRIA 

(Toussaint et al. 2007) . 

Chimpanzees brain imaging: All chimpanzees were members of a colony in the Yerkes 

National Primate Research Center (YNPRC) at Emory University in Atlanta, Georgia. All 

imaging studies were conducted under IACUC approval of Emory University. MRI and DTI 

scans were obtained from adult female chimpanzees. Twenty-four cases of MRI/DTI scans were 

used for this study. Prior to MRI/DTI scanning, the chimpanzee subjects were immobilized with 

ketamine injections (2−6 mg/kg, i.m.) and were subsequently anesthetized with an intravenous 

propofol drip (10 mg/kg/hr) following standard veterinary procedures used at YNPRC. The 

subjects remained sedated for the duration of the scans as well as the time needed for 

transportation between their home cage and the scanner location. After completing the MRI/DTI 

scans, the chimpanzees were temporarily housed in a single cage for 6 to 12 hours to allow the 

effects of anesthesia to wear off before being returned to their home cage and cage mates. The 

veterinary staff and research staff assessed the general well-being (i.e., activity, food intake) of 

the chimpanzees twice daily after the scan for possible distress associated with aesthetic 

accesses. 

Both anatomical MRI and DTI scans were acquired on a Siemens 3T Trio scanner 

(Siemens Medical System, Malvern, PA) with a standard birdcage coil. Foam cushions and 
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elastic straps were used to minimize head motion. Diffusion tensor imaging data were collected 

with two different imaging protocols: multi-shot double spin-echo echo planar imaging (MS-

EPI) sequence and single-shot double spin-echo EPI (SS-EPI) sequence. For MS-EPI, a dual 

spin-echo technique combined with bipolar gradients was used to minimize eddy-current effects.  

The parameters used for diffusion data acquisition were as follows: diffusion-weighting 

gradients applied in 60 directions with a b value of 1000 sec/mm2; repetition time/echo time of 

5740/91 msec, field of view of 230×230 mm2, matrix size of 128×128, resolution of 1.8×1.8×1.8 

mm2, 41 slices with no gap, covering the whole brain. For each diffusion direction, two 

diffusion-weighted images were acquired, each with one of the possible left-right phase-

encoding directions and two averages, allowing for correction of susceptibility related distortion 

using an algorithm described in the literature (Andersson et al. 2003). For each average of 

diffusion-weighted images, six images without diffusion weighting (b=0 sec/mm2) were also 

acquired with matching imaging parameters. The total MRI/DTI scan time was approximately 50 

minutes. For SS-EPI, an SS-EPI sequence with reduced FOV in the phase-encoding direction 

and partial Fourier imaging technique were used to scan the chimpanzees. The parameters used 

for diffusion data acquisition were as follows: diffusion-weighting gradients applied in 60 

directions with a b value of 1000 sec/mm2; repetition time/echo time of 5900/84 msec, field of 

view of 129×230 mm2, matrix size of 72×128, resolution of 1.8×1.8×1.8 mm3, 41 slices with no 

gap, covering the whole brain. For each average of diffusion-weighted images, one image 

without diffusion weighting (b=0 sec/mm2) were also acquired with matching imaging 

parameters. The total MRI/DTI scan time was 53.4 minutes. High-resolution T1-weighted MRI 

images were acquired with a 3D magnetization-prepared rapid gradient-echo (MPRAGE) 

sequence for all participants. For subjects scanned using MS-EPI sequence, the scan protocol, 
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optimized at 3T, used a repetition time/inversion time/echo time of 2400/1100/4.13 msec, a flip 

angle of 8°, a volume of view of 256×256×154 mm3, a matrix of 256×256×192, and resolution 

of 1.0×1.0×0.8 mm3, with 2 averages. Total T1 scan time was approximately 20 minutes. For 

subjects scanned using SS-EPI, the scan protocol is similar despite that the resolution is 

0.8×0.8×0.8 mm3 isotropic and volume of view is 154×154×154 mm3. Pre-processing steps were 

similar to those used in the processing of human MRI/DTI data.  

Macaques brain imaging: All macaques were members of a colony at YNPRC. All MRI 

and DTI scans were conducted under IACUC approval of Emory University. MRI/DTI data from 

8 subjects were used for this study. Prior to scanning, the subjects were immobilized with 

ketamine injections (2−6 mg/kg, i.m.) and were subsequently anesthetized with an intravenous 

propofol drip (10 mg/kg/hr) following standard veterinary procedures used at YNPRC. The 

macaques remained sedated for the duration of the scans as well as the time needed for 

transportation between their home cage and the scanner location. After completing the MRI scan, 

the macaques were temporarily housed in a single cage for 6 to 12 hours to allow the effects of 

anesthesia to wear off before being returned to their home cage and cage mates. The veterinary 

staff and research staff observed the general well-being (i.e., activity, food intake) of the 

macaques twice daily after the scan for possible distress associated with anaesthetic accesses. 

Both anatomical MRI and diffusion tensor imaging were performed on a Siemens 3T 

Trio scanner (Siemens Medical System, Malvern, PA) with a standard knee coil. Foam cushions 

and elastic straps were used to minimize head motion. A specially designed holding device was 

used to stabilize macaque’s head during scanning, with two plastic screws anchoring in the 

macaque’s ear canals tightly.  High-resolution T1-weighted MRI images were acquired with a 

3D magnetization-prepared rapid gradient-echo (MPRAGE) sequence for all participants. The 
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scan protocol used a repetition time/inversion time/echo time of 2500/950/3.49 msec, a flip angle 

of 8°, a volume of view of 128×128×96 mm3, a matrix of 256×256×192, and resolution of 

0.5×0.5×0.5 mm3, with 3 averages. Total T1 scan time was approximately 33 minutes.  Diffusion 

MRI data were collected with a diffusion-weighted, multi-shot (three segments), spin-echo echo 

planar imaging (EPI) sequence. A dual spin-echo technique combined with bipolar gradients was 

used to minimize eddy-current effects. The parameters used for diffusion data acquisition were 

as follows: diffusion-weighting gradients applied in 60 directions with a b value of 1000 

sec/mm2; repetition time/echo time of 6970/104 msec, field of view of 141×141 mm2, matrix size 

of 128×128, resolution of 1.1×1.1×1.1 mm3, 41 slices with no gap, covering the whole brain. 

Similar to that for the chimpanzees, diffusion-weighted images were acquired with phase-

encoding directions of opposite polarity (left – right), each with 4 averages, to correct for 

susceptibility induced distortion. For each average of diffusion-weighted images, five images 

without diffusion weighting (b=0 sec/mm2) were also acquired with matching imaging 

parameters. The total MRI and DTI scan time was approximately 90 minutes. Pre-processing 

steps were similar to those used in the processing of human data.  

2.2. Joint representation of gyral shape and structural fiber connection 

Since the major objective of this work is to assess the coevolution of gyral folding and 

structural fiber connection patterns, we employed a joint representation of gyral shape and 

structural fiber connection in this work. Specifically, our extensive recent studies (Li et al. 2010; 

Nie et al. 2012) have shown that DTI-derived white matter fiber end points closely follow the 

gyral folding patterns, as highlighted by the orange arrows in Figure 5. 2(f)-(h). This observation 

has been replicated in all of the DTI datasets of human, chimpanzee and macaque brains we 

analyzed, indicating that gyral shape pattern and structural connection pattern have 
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complementary information that can facilitate quantitative analysis of their coevolution brain 

patterns across primate species. Therefore, we performed whole-brain fiber tracking (via 

MEDINRIA, http://www-sop.inria.fr/asclepios/software/MedINRIA/) and aligned cortical 

surfaces reconstructed from T1-weighted MRI image to DTI space with linear transform matrix 

obtained from the volumetric registration (via FSL FLIRT). After linear alignment, the 

misalignment between anatomical space and DTI space caused by distortion is relatively small. 

Specifically, the average surface distances caused by the misalignment are 2.21 mm for human, 

1.76 mm for chimpanzee, and 1.35 mm for macaque, respectively. Then, we performed 

segmentation of four major gyri, including precentral gyrus, postcentral gyrus, superior temporal 

gyrus and superior frontal gyrus in each hemisphere, from the above reconstructed cortical 

surfaces based on expert’s interactive labeling. The open-source software Paraview 

(http://www.paraview.org/) was used for this interactive gyrus segmentation. After each gyrus is 

segmented from the cortical surface in the DTI image space, the emanating fibers were extracted 

from the results of whole-brain streamline tractography via a similar method detailed elsewhere 

(Zhu et al. 2012). As a result, each gyral shape and its structural fiber connections are co-

localized and jointly represented on the same gyrus in the DTI space. It should be noted that the 

joint representation of gyral folding and structural connection patterns treats the brain as a whole 

via applying in vivo MRI and DTI to study the brain’s gray matter (GM) and white matter (WM) 

architecture. By exploring the complementary information provided by gyral folding and 

connectivity patterns, this joint representation methodology offers advantages over other 

approaches that treat gray and white matter separately (Li et al. 2010; Nie et al. 2012), and could 

provide important insights into the regularity and variability of the brain structure.    
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Quantification of fiber orientation patterns  

To quantitatively measure the relationship between fiber orientation patterns and gyral 

folding patterns based on the above joint representation, a coordinate system needs to be set up. 

However, a gyrus’ orientation can vary in different ways; for example, the precentral gyrus and 

postcentral gyrus roughly follow a superior-inferior orientation, while the superior temporal 

gyrus and superior frontal gyrus have a rough anterior-posterior orientation. This makes it very 

difficult to set up a global coordinate system along the tangent direction for each gyrus. Instead, 

we defined a 3-dimensional local Cartesian coordinate system for each gyrus, as shown in Figs. 

3a-3d. In each local coordinate system, the average normal direction of vertices on the gyral crest 

curves, which was obtained by thresholding principal curvatures on the cortical surface, is 

treated as the Z axis (Figure 5. 3(b)). Let p, q denote two points manually selected at each end of 

a gyrus, Y axis is defined by pqZY 


  and X axis is obtained by the right-hand rule (Figure 5. 

3(d)). By default，the Y axis is identified as the tangent direction of a gyrus in this chapter. 

After the local coordinate system has been constructed, we projected the DTI-derived 

fibers that intersect with the gyrus to the Y-Z plane. The fiber orientation pattern is defined by 

the angle between Z axis and the fiber’s main direction vector on the end that intersects with the 

gyrus, as denoted by θ in Figure 5. 3(e). As shown in Figure 5. 3(e), if the projection of the main 

direction vector on Y axis is positive, θ is positive. Otherwise, it is negative. It should be noted 

that this chapter mainly focuses on the correlation between fiber orientation and gyral folding in 

the tangent direction, that is, along with the Y axis. Although we may lose certain fiber 

orientation information in other directions by projecting 3D fibers to the 2D Y-Z plan, this 

approach enables us to jointly examine the correlation between fiber orientation pattern and gyral 

folding pattern in the same local coordinate system. 
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Figure 5. 3. Illustration of quantification of fiber orientation patterns and gyral folding patterns in local 

coordinate systems constructed on the gyral crest. (a)-(d): Definition of gyral local coordinate systems. (a) 

Principal curvature of the surface. (b) Gyral normal vectors. (c) Manually selecting two points from both 

ends of a gyrus. (d) Gyral local coordinate system. (e)-(i): Illustration of fiber orientation patterns. (e) 

Definition of fiber orientation patterns in the local coordinate systems. (f) Examples of orientation 

patterns of fibers. (g) Examples of mapping fiber orientation pattern onto the gyrus. (h) Illustration of 

endpoint pair selection on each gyrus. Black arrows indicate the X direction of each local coordinate 
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system. The red point is the start point, and the blue point is the end point. (i) Fiber orientation patterns 

for the same subject with different endpoint pairs. The red point is the start point, and the blue point is the 

end point. Fiber orientation pattern has been mapped to the gyrus. (j)-(o): Illustration of the methods for 

quantification of gyral folding patterns. (j) A precentral gyrus color-coded by maximum principal 

curvature. The color bar is on the left. (k) The gyral crest curve (black line) extracted and overlaid on the 

gyrus. (l) The gyral crest curve projected to the local coordinate system’s X-Y plan. (m) The shape 

pattern of the crest curve. (n) Illustration of computing plane curve shape pattern. (o) Folding pattern 

descriptor on simulated curve: 𝑆𝑖𝑛(𝑥) ∗ (𝑥 + 100)/(2𝜋), 0 < 𝑥 < 7. 

 

To facilitate quantitative measurements of the correlation between the fiber orientation 

pattern and the gyral folding pattern, we mapped the fiber orientation pattern (an example shown 

in Figure 5. 3(f)) to the gyrus that it intersects with, as shown in Figure 5. 3(g). Subsequently, the 

fiber orientation pattern is color-coded on the gyral crest for both visualization and 

quantification. It should be noted that the selection of gyral end points p and q may influence the 

direction of X and Y axis, and thus the fiber orientation patterns may vary slightly due to this 

influence. However, our extensive experience with this approach showed that this type of 

influence on our final analysis result is relatively small. For instance, Figure 5. 3(i) illustrates one 

example of how different selections of endpoints for the local coordinate system construction 

influence the computed fiber orientation patterns. It is evident that the fiber orientation maps in 

both cases are similar. But if we revert (p, q) as shown in Figure 5. 3(i), the fiber orientation 

pattern is flipped due to the flipping of X and Y axis. Thus, in order to unify the fiber orientation 

pattern and make the result reliable, we selected the (p, q) pair on two ends of a gyral ridge in all 

primate brains by following a superior-posterior to inferior-anterior rule as shown in Figure 5. 

3(h). 
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Quantification of gyral folding patterns 

The gyral folding pattern is quantified by the shape of its crest curve on the gyral ridge. 

We used the fast marching method in (Li et al. 2009) to find the shortest geometric path 𝑳 

weighted by 𝒘(𝒍) which is inversely proportional to maximum principal curvature of surface 

between two manually selected gyral end points  p, q on the surface (Figure 5. 3(j)-(k)) as 

follows. 

𝑳 = {⋃ 𝒍𝒊
𝒊

|𝐦𝐢𝐧 (∮ 𝒘(𝒍)𝒅𝒍
𝒑

𝒒
)} (5.1) 

where 𝑙𝑖  is a section of line on the surface of gyrus such that 𝑙𝑖  and 𝑙𝑖−1 are connected to each 

other. Denoting  𝑳′ as the projection of 𝑳 on the X-Y plan of the gyral local coordinate system 

defined previously, the shape pattern of each vertex on curve 𝑳 is defined by the average 

determinant of the orientation matrix in each vertex’s neighborhood on 𝑳′ (Figure 5. 3(n)): 

𝒔𝒊 =
∑ 𝐝𝐞𝐭 (𝑶(𝒊, 𝒋, 𝑳′))𝒋=𝟏

𝒏

𝒏
 (5.2) 

where n is the size of neighborhood, det() is the determinant function, and  𝑂(𝑖, 𝑗, 𝑳′) is the 

orientation matrix of vertex 𝒗′𝒊 of 𝑳′. Denote (𝒙′
𝒊, 𝒚

′
𝒊) as the coordinate of vertex 𝒗′𝒊: 

𝑶(𝒊, 𝒋, 𝑳′) = |

𝟏 𝒙′𝒊−𝒋 𝒚′𝒊−𝒋

𝟏 𝒙′𝒊 𝒚′𝒊
𝟏 𝒙′𝒊+𝒋 𝒚′𝒊+𝒋

| (5.3) 

As examples, in Figure 5. 3(o), we showed the folding pattern values of a simulated curve 

of sine functions with linearly increasing amplitudes. We chose the average determinant of the 

orientation matrix as the folding pattern descriptor of a gyrus for the following reasons. First, it 

includes the orientation information of a gyral crest curve, e.g., negative values for clockwise or 

positive values otherwise, as illustrated by the blue arrows in Figure 5. 3(o). Second, it includes 

local curvature information. The larger its absolute value is, the larger the curvature of the curve 
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is. In other words, the higher the average absolute value of this descriptor is, the more curved the 

gyral folding pattern will be. Third, it is robust to noise. As we are considering a local 

neighborhood when computing this value, it is less influenced by local noises. With these 

properties, we use the determinant of the orientation matrix on the gyral crest curve as a cortical 

folding pattern descriptor, and compare its value with the fiber orientation patterns defined in 

Figure 5. 3(e)  

The correlation between fiber orientation patterns and gyral folding patterns 

To measure the correlation between fiber orientation patterns and gyral folding patterns, 

we used the gyral crest curve as a common reference along which we obtained the fiber 

orientation patterns and computed its Pearson correlation with the gyral folding patterns along 

the same gyral crest curve. The computational pipeline is illustrated in Figure 5. 4(a)-(d). Before 

comparison, the patterns in two ends of a gyrus were discarded since the defined folding pattern 

cannot be reliably computed at the end of a curve. 

It should be noted that as the defined local coordinate system is relatively constant for 

each gyrus, for certain gyri (e.g., the superior temporal gyrus in this chapter), the normal 

directions on their top ridges may rotate from one end to the other. This could result in a global 

increasing or decreasing of fiber orientation patterns as shown in Figure 5. 4(e)-(f), which may 

cause inaccuracy when comparing them with the defined gyral folding patterns. As our gyral 

folding pattern descriptor only contains local shape information, the global trend of fiber 

orientation pattern has to be removed before computing their correlations with the gyral folding 

pattern. Our previous studies demonstrated that this type of trend can be effectively removed by 

a linear regression model as shown in Figure 5. 4(g)-(h). It is evident that after this de-trending, 

the fiber orientation pattern and folding pattern are closely correlated along the gyrus, as 
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highlighted by the purple arrows in Figure 5. 4(h)-(i). In this chapter, our experiments showed 

that only the superior temporal gyrus needs this de-trending preprocessing.    

 

Figure 5. 4. Illustration of our methods for the quantification of correlation between fiber orientation 

patterns and gyral folding patterns. (a) Gyral folding pattern. (b) Fiber orientation pattern. (c) Gyral 

folding pattern function curve. (d) Fiber orientation pattern function curve. (e)-(f): An example of the 

global fiber orientation trend. (g) The fiber orientation patterns after de-trending. (h) De-trending fiber 

orientation patterns via linear model; blue line: original fiber orientation pattern; blue dash line: the linear 

model of the original fiber orientation pattern; red line: fiber orientation pattern after de-trending. The 

gyrus is the same as in (e-g) (i) Folding pattern description of the same gyrus in (h). 
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RESULTS 

Based on the neuroimaging datasets and computational approaches described in the 

previous section, we investigated the coevolution of gyral folding and structural fiber connection 

patterns in the three primate species in three manners, allowing us to visually and quantitatively 

assess the relationships between gyral folding in the tangent directions and fiber orientations 

patterns.  The specifics of these investigations and the results are described below. 

Coevolution of cortical folding and structural fiber connection patterns 

We compared the complexities of shape patterns of the precentral and postcentral gyri 

and their fiber connection patterns in three primate species. The average folding pattern 

description of the gyral crest defined in Eq. (5.3) was used as the gyral shape complexity. The 

fiber connection pattern complexity was quantified by the diversity of fiber end point 

destinations, that is, the ratio of end points of fiber connections to the frontal lobe and occipital 

lobe (purple and blue fiber bundles in Figure 5. 1(b)) out of the total number of fiber 

connections. Our rationale is that the precentral and postcentral gyri in the macaque brains have 

much fewer fiber connections to the frontal and occipital lobes, while the precentral and 

postcentral gyri in chimpanzee and human brains have more and more elaborated fiber 

connections to the frontal and occipital lobes (Figure 5. 1(b)). Therefore, we postulated that the 

percentage of fibers connecting the primary motor and sensory areas to the frontal lobe and 

occipital lobes is a good indicator of structural connectivity complexity for these areas and 

plotted the complexities of both gyral folding patterns and fiber connection patterns in a 2D 

diagram for each of the four gyri on both hemispheres in Figure 5. 1.  For instance, Figure 5. 5(a) 

shows the complexities of the left precentral gyrus folding patterns (vertical axis) and fiber 

connection patterns (horizontal axis) for macaque (triangles), chimpanzee (rectangles) and 
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human (diamonds) brains. It is evident that there is an approximately linear increasing trend for 

both complexities of gyral folding patterns and fiber connection patterns, likely reflecting the 

coevolution of cortical gyral shape and fiber connection patterns. In Figure 5. 5(a), the trend is 

regressed by a black line. This linear trend can also be observed in the right precentral gyri in 

Figure 5. 5(b) and in the postcentral gyri on both hemispheres, as shown in Figure 5. 5(c)-(d).    

 

Figure 5. 5. Coevolution of gyral folding and structural connection patterns in four gyri. (a) Left pre-

central gyri; (b) Right pre-central gyri; (c) Left post-central gyri; (d) Right post-central gyri. In each sub-

figure, the vertical axis represents the fiber connection complexity, and the horizontal axis represents 

gyral folding pattern complexity. 

 

Based on the results shown in Figure 5. 5, we conjecture that the gyral folding pattern 

complexity coevolutes with fiber connection pattern complexity in a close, positive relationship, 
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suggesting a deep-rooted evolutionarily-preserved mechanism underlying the structural fiber 

connection pattern and cortical gyral folding pattern. In further analysis described in the next two 

subsections, we further investigated the possible underlying mechanisms that underlie the clear 

coevolution of cortical folding and structural connections patterns across the three primate 

neocortices, and tested the hypothesis that the gyral folding pattern is induced or regulated by the 

axonal fiber pushing.  

Visual examination of the relationships between gyral folding and fiber orientations 

patterns  

We examined the relationship between gyral folding and fiber orientation patterns both 

qualitatively and quantitatively. First, we visually assessed the fiber orientation pattern and gyral 

shape pattern for four segmented gyri in the right hemisphere in Figure 5. 6. Specifically, Figure 

5. 6(a)-(d) illustrate the precentral gyrus, postcentral gyrus, superior frontal gyrus, and superior 

temporal gyrus, respectively. For each sub-figure, the first column demonstrates the joint 

visualization of gyral shape and the emanating DTI-derived fibers, the second column shows the 

color-coded fiber orientation in the local coordinate system, and the last column illustrates the 

color-coded gyral shape patterns quantified by the descriptor. Each row shows the result for one 

example of macaque, chimpanzee, and human brains, respectively. By visual examination of 

these four gyri, it is clear that there is a close relationship between the fiber orientation and 

cortical folding along the gyral crest curve. For instance, in Figure 5. 6(a), the blue arrows 

highlight negative fiber orientations in the second column, which co-localize well with the 

negative folding patterns in gyral shapes, as highlighted by the blue arrows in the third column as 

well. Meanwhile, the positive fiber orientations highlighted by the oranges arrows in the second 

column also co-localize well with the positive folding patterns in the third column, which are 



 

114 

pointed to by the orange arrows. For comparison, the corresponding blue and orange arrows are 

also provided in the first column of joint visualizations in Figure 5. 6. These similar positive 

correlations between fiber orientation patterns and gyral folding patterns have been replicated in 

other gyri, as shown in Figure 5. 6(b)-(d). Our extensive observations in all of the three primate 

cases we studied overwhelmingly demonstrate that there is an evolutionarily-preserved positive 

correlation between the cortical folding and fiber connection orientation patterns, which support 

the concept of co-evolution of cortical folding and fiber connection patterns. 

Similarly, Figure 5. 7 shows the visualization of fiber connection orientation and cortical 

gyral folding patterns for four gyri in the left hemisphere. Again, the positive correlation between 

fiber orientation and gyral folding patterns is evident, as highlighted by the blue and oranges 

arrows in Figure 5. 7(a)-(d). By joint visualizations shown in Figure 5. 6 and Figure 5. 7, it is 

clear that for all eight gyri on both hemispheres of three primates, we observed that there exists a 

positive relationship between fiber orientations and gyral folding patterns. Therefore, we 

conjecture that the axonal fiber pushing forces induce or regulate the tangent folding patterns of 

gyral crest curves, as illustrated in Figure 5. 2(b). This conjecture can not only explain the close 

positive relationships between fiber orientations and folding patterns as shown in Figure 5. 6 and 

Figure 5. 7, but also well interpret the increasing complexities of cortical gyral folding patterns 

across primates. For instance, the precentral gyrus in Figure 5. 6(a) exhibits increasing 

complexity of shapes across primates, e.g., three clear positive folds and three clear negative 

folds in human, one clear negative fold and two positive folds in chimpanzee, and no clear folds 

in the macaque. These increasing complexities of cortical gyral folding are exactly mirrored by 

the increasing complexities of fiber connection patterns, e.g., the denser and complex fiber 

connections in human and much simpler and sparser fiber connections in chimpanzee and 
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macaque, as shown in the first column in Figure 5. 6(a). From a biomechanical perspective, it is 

reasonable to hypothesize that the increasingly complex fibers “push” the gyri into increasingly 

complex shape patterns, such as more and more positive and negative folds during the evolution 

of primate brains.  

Similar, axonal fiber pushing of tangent gyral folding can well explain other gyri on both 

hemispheres of three primates, as shown in Figure 5. 6 and Figure 5. 7, e.g., the post-central 

gyrus in Figure 5. 6(b) and the precentral gyrus on the left hemisphere in Figure 5. 7(a). It should 

be noted that although the gyral folding patterns and fiber orientation patterns are increasingly 

complex across the species, the same observation that fiber orientations are positively correlated 

with tangent gyral folding patterns is well preserved across three primates suggests that axonal 

fiber pushing might be an evolutionarily preserved mechanism of brain architecture formation 

and organization. In addition, our approaches have been tested on the same group of chimpanzee 

subjects scanned with both scan sequence. The results are similar in different scans, thus 

confirming that our approaches are not sensitive to scan parameters. Finally, the influence of DTI 

parameters is tested by using different diffusion-weighting gradient directions for tractography 

for the same subject. Specifically, for the DTI data with 60 directions scanned, we separated the 

image into two groups by the order of direction. One group contains 30 directions with the odd 

index from the original file, while the other group contains the rest of 30 directions. The results 

are very similar in different groups, thus further confirming that our approaches are not sensitive 

to scan protocols and parameters. 
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Figure 5. 6. Joint representation of fiber orientation patterns and gyral shape patterns on the right 

hemisphere. The color bar is on the left bottom and the range varies between subjects for better 

visualization. (a) Precentral gyrus. (b) Postcentral gyrus. (c) Superior frontal gyrus. (d) Superior temporal 

gyrus. 
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Figure 5. 7. Joint representation of fiber orientation patterns and gyral shape patterns on the left 

hemisphere. The color bar is on the left bottom and the range varies between subjects for better 

visualization. (a) Precentral gyrus. (b) Postcentral gyrus. (c) Superior frontal gyrus. (d) Superior temporal 

gyrus. 
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Quantification of the relationships between gyral folding and fiber orientations patterns  

In addition to the visual examinations aided by Figure 5. 6 and Figure 5. 7, we performed 

quantitative measurements of the correlation between gyral folding and fiber connection patterns. 

Specifically, Pearson correlations between the gyral folding patterns and the fiber orientation 

patterns were measured, and the results are shown in Figure 5. 8. Figure 5. 8(a)-(d) present the 

results for the right precentral gyrus, the right postcentral gyrus, the left precentral gyrus, and the 

left postcentral gyrus, respectively. For each sub-figure, the results for chimpanzee and human 

brains were provided in the first and second rows, respectively. The average correlations for the 

right precentral gyrus, the right postcentral gyrus, the left precentral gyrus, and the left 

postcentral gyrus in chimpanzee brains are 0.69, 0.68, 0.75, and 0.73, respectively. The average 

correlations for the right precentral gyrus, the right postcentral gyrus, the left precentral gyrus, 

and the left postcentral gyrus in human brains are 0.72, 0.66, 0.69, and 0.64, respectively. 

Statistical measurements of mean values and standard deviations are displayed on the top of each 

set of results in Figure 5. 8. In total, the average Pearson correlation for four gyri is 0.67 for 19 

human brains we tested, and 0.71 for 24 chimpanzee brains. These relatively high positive 

correlations between gyral folding patterns and fiber orientation patterns in both chimpanzee and 

human brains further suggest that axonal fiber pushing might be an evolutionarily-preserved 

mechanism of brain architecture formation and organization.  

 It should be noted that due to the relatively straight shapes of gyri in macaques, e.g., as 

shown in the third columns in Figure 5. 6 and Figure 5. 7, their gyral folding patterns 

quantifications are more prone to noises and not reliable. Hence, we did not include Pearson 

correlations of macaques’ gyral folding and fiber orientation patterns in our result reports. The 

positive relationship between gyral folding patterns and fiber orientation patterns in macaque 
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brains can still be clearly appreciated in the first rows of the sub-figures of Figure 5. 6 and Figure 

5. 7, although the closeness of this positive relationship is less pronounced than those in the 

chimpanzee and human brains.  

 

Figure 5. 8. Pearson correlations between fiber orientation patterns and gyral shape patterns of the 

precentral gyri and postcentral gyri on both hemispheres of 24 chimpanzee and 19 human brains 

separately. In each sub-figure, the result of chimpanzee is displayed on the top panel, while the human’s 

is on the bottom panel. The mean value and stander deviation are displayed on the top of each panel. The 

horizontal axis represents the index of primate subject and the vertical axis stands for the Pearson 

correlation. (a) Right precentral gyrus. (b) Right postcentral gyrus. (c) Left precentral gyrus. (d) Left 

postcentral gyrus. 

 



 

120 

DISCUSSION AND CONCLUSION 

In this work, we developed, evaluated and applied a novel computational pipeline of 

algorithms for quantifications of tangent gyral folding patterns and fiber orientation patterns 

based on a joint representation approach. These quantifications are then mapped onto the same 

gyral crest curves to enable and facilitate the quantitative measurements of correlations between 

fiber orientation patterns and tangent gyral folding patterns. Application of these approaches to 

experimental data obtained from human, chimpanzee and macaque subjects revealed a well -

preserved strong, positive correlation of the complexities of tangent gyral folding and fiber 

connection patterns across three the primate species. Our qualitative and quantitative analyses 

also found that tangent gyral fold shapes are connected by dense DTI-derived fibers orienting 

perpendicularly to the gyral crests curves, which has been replicated and confirmed in four major 

gyri on both hemispheres across the three species. Both of these findings motivated us to 

hypothesize an underlying mechanism of axonal fiber pushing that drives the co-evolution 

patterns of gyral folding and fiber connection in primate brains and sculpts the tangent folding 

patterns of cortical gyri during primate brain evolution. This axonal fiber pushing conjecture well 

explains not only the folding patterns of gyri along the radial direction of the spherically-shaped 

cortex, but also the folding of gyral crest along the tangent direction on the cortical surface.  

Nevertheless, it should be pointed out that our current study only examined the 

association between axonal orientation patterns and gyral folding patterns, and the potential 

causal relationship has not be investigated yet. Future studies of the potential causal relationships 

entail a combination of different experimental and computational approaches. We conjecture that 

at least the following two lines of research efforts are worth pursuit in the future. First, DTI and 

MRI datasets of human genetic disorders with abnormal axonal wiring patterns can be analyzed 
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and modeled to examine whether or not disrupted axonal connections would be associated with 

abnormal cortical folding patterns. If it turns out that abnormal axonal wiring caused disrupted 

cortical folding pattern, it can be considered as a supporting evidence of the causal relationship. 

For example, the agenesis of the corpus callosum (AgCC) (Tyszka et al. 2011) is a congenital 

disorder in which corpus callosum is absent. Then, we can compare the differences between the 

cortical folding pattern of AgCC patients and those of normal controls to see whether or not 

abnormal axonal wiring would result in disrupted gyral folding pattern. Second, biomechanical 

experiments and simulations can be performed to further elucidate the possible pushing forces 

within the wiring axons and their mechanical effects on the growing cortical layers. For instance, 

by using the atomic force microscopy (AFM) tip as a scalpel to cut axons in cultured neurons, we 

can release the stress and thus will be able to directly discern between positive and negative 

tension by observing the relaxation of the axon. The experimental settings could be similar to 

those in (Xiong et al. 2009). In addition, extensive mechanical modeling and simulations can be 

performed in the future to further gain mechanical evidences and feasibility of the axonal 

pushing mechanism of cortical folding.         

To date, our axonal fiber pushing theory of cortical folding has been based on the 

qualitative and quantitative analyses of in-vivo DTI datasets of macaque, chimpanzee, and 

human brains. In the future, our hypothesis can be further tested using independent micro-scale 

microscopic bioimaging studies. For instance, the axonal fiber wiring patterns in gyral and sulcal 

regions could be verified by microscopic histology studies using animal models in the future, 

which can provide independent and reliable confirmation of our macro-scale neuroimaging 

studies. It can even be considered to apply the similar electron microscopy (EM) techniques in 

(Bock et al. 2011) to examine the axonal wiring patterns at the single axon resolution, and test if 
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the axonal terminations are concentrated on cortical gyri. In addition, time-lapsed confocal 

microscopic imaging studies could be performed on fast-growing animal models or cultured 

neurons to probe whether or not there are real axonal pushing forces induced by the wiring 

axonal cones.  

As for data analysis, in the present, we only analyzed four major gyri including the 

precentral gyrus, postcentral gyrus, superior frontal gyrus, and superior temporal gyrus on both 

hemispheres to demonstrate the major findings and hypotheses in this chapter. In the future, 

other major gyri such as middle temporal gyrus, middle frontal gyrus and cingulate gyrus will be 

investigated for additional confirmation of our findings and theory. Also, other cortical surface 

shape descriptors and fiber bundle pattern descriptors can be incorporated to measure the 

complexities of cortical folding and fiber connection patterns. For instance, the curvedness of the 

gyral crest curve can be quantitatively modeled by a combination of accumulative integral of 

angles of tangents, bend, centroids ratio, curve bend angle, and concave/convex via the methods 

in (Hu et al. 2010). Meanwhile, the fiber connection pattern can be quantitatively described by 

the novel trace-map models (Zhu et al. 2011, 2012). Once both gyral folding patterns and fiber 

connection patterns are quantitatively modeled, computational simulation models (Nie et al. 

2012) based on these quantitative measurements can be adopted to verify the axonal pushing 

mechanism of cortical folding. 

To summarize, our DTI and MRI studies have revealed a positive correlation between 

axonal fiber orientation and tangent gyral folding pattern across three primate species (macaque, 

chimpanzee, and human), which suggests a hypothesis of axon fiber pushing mechanism of 

cortical folding. To further test this hypothesis, many future studies should be performed to 

replicate the existing findings in other primate species via different imaging modalities, to 
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reproduce the existing findings in multiple scales, to and investigate the causal relationships 

between axonal pushing and cortical folding. Once these biological and biomechanical supports 

are obtained, we can then possibly establish the axonal pushing mechanism as an underlying 

theory in the future to uniformly explain the co-evolution of gyral folding and axonal fiber 

connection patterns across primate or mammalian brains. Finally, the potential interactions 

between the proposed axonal pushing mechanism and other cortical folding mechanisms such as 

the brain skull constraint (Nie et al. 2012) and behaviors of neurons (Rakic 1988, 2009) and glial 

cells (Hevner and Haydar 2012), should be studied in the future.        
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CHAPTER 6 

IDENTIFYING GROUP-WISE CONSISTENT WHITE MATTER LANDMARKS VIA NOVEL 

FIBER SHAPE DESCRIPTOR 5

                                                 
5 Hanbo Chen, Tuo Zhang, Tianming Liu. 2013. Identifying Group-wise Consistent White Matter Landmarks via 

Novel Fiber Shape Descriptor. International Conference on Medical Image Computing and Computer Assisted 
Intervention, Lecture Notes in Computer Science, 8149:66-73  
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ABSTRACT 

Identification of common and corresponding white matter (WM) regions of interest (ROI) 

across human brains has attracted growing interest because it not only facilitates comparison 

among individuals and populations, but also enables the assessment of structural/functional 

connectivity in populations. However, due to the complexity and variability of the WM structure 

and a lack of effective white matter streamline descriptors, establishing accurate correspondences 

of WM ROIs across individuals and populations has been a challenging open problem. In this 

chapter, a novel fiber shape descriptor which can facilitate quantitative measurement of fiber 

bundle profile including connection complexity and similarity has been proposed. A novel 

framework was then developed using the descriptor to identify group-wise consistent connection 

hubs in WM regions as landmarks. 12 group-wise consistent WM landmarks have been 

identified in our experiment. These WM landmarks are found highly reproducible across 

individuals and accurately predictable on new individual subjects by our fiber shape descriptor. 

Therefore, these landmarks, as well as proposed fiber shape descriptor has shown great potential 

to human brain mapping. 

INTRODUCTION 

Identification of common and corresponding white matter (WM) regions of interest 

(ROIs) across human brains has attracted growing interest not only in that it facilitates 

comparison among individuals and populations, but also because it makes it possible to assess 

structural/functional connectivity in populations (Derrfuss and Mar 2009). One mainstream of 

previous methods developed in the field so far largely relies on building white matter atlases via 

registration methods (Mori et al. 2008; Yap et al. 2009) to establish correspondence across 

subjects. Alternatively, voxel based or fiber tract based features have been newly applied to 
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identify WM ROIs. For instance,  in (Bloy et al. 2011), FOD (fiber orientation distribution) has 

been applied to identify pathologies. In (O’Donnell et al. 2009), group-wise shape analysis based 

on fiber tracts has been performed to study WM. In (Zhu et al. 2011), an effective fiber bundle 

shape descriptor called trace-map has been developed. Base on the trace-map feature (Zhu et al. 

2011), a map of discrete cortical landmarks named DICCCOL (Zhu, Li, Guo, et al. 2013) that 

possess group-wise consistent white matter fiber connection patterns across individuals has been 

identified. 

However, identifying reliable WM landmarks is still a challenging open problem due to 

the complexity and variability of the brain structure and a lack of effective white matter 

streamline descriptors (Derrfuss and Mar 2009). For instance, the accuracy and reliability of 

registration based method are limited due to the substantial variability in brain anatomy and 

structure between individuals. As for most voxel based methods, they are based on local 

information and have difficulty in establishing between-subject correspondences. In (Zhu, Li, 

Guo, et al. 2013), the authors successfully solved the above mentioned issues by introducing an 

effective fiber bundle shape descriptor of trace map (Zhu et al. 2011). However, since those 

identified DICCCOL landmarks locate on the cortical surface, the remarkable cortical folding 

pattern variation may be a major barrier to further improvement. 

Motivated by the achievements and the challenges in (Zhu et al. 2011), we developed a 

novel shape descriptor to characterize the connection patterns of a fiber bundle. Instead of 

focusing on the shape of streamline fibers as in (Zhu et al. 2011), our descriptor centers on the 

global connection pattern of fibers. In particular, our proposed descriptor is based on probability 

density which enables the measurement of directional statistic features. Based on this descriptor, 

an effective searching/optimization framework is designed to identify WM landmarks that: 1) are 
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highly connected hubs in the brain; 2) are reproducible across individuals. The reason we aim to 

identify hubs as landmarks lies in that the human brain networks have been shown to be a small-

world network (Bullmore and Sporns 2009). In such network, hubs are more robust, consistent, 

and could be used to identify sub-nodes. Thus, by identifying hubs in WM, those landmarks can 

be potentially used as initial points to establish correspondences across individuals, which will 

bring great potential to the study of human brain mapping, such as WM landmark-guided image 

registration. In comparison to existing model-driven WM landmark identification methods (Mori 

et al. 2008; Yap et al. 2009), the major novelty of our work is that it is data-driven and thus can 

better handle the complexity and variability of the WM architecture.  

METHODS 

In this chapter, brain ROI is defined as a sphere in the space. To identify WM landmarks 

with abovementioned properties from ROIs, first, we borrowed the idea from (Zhu et al. 2011) 

and defined a novel spherical probabilistic distribution based connection map feature vector to 

describe the fiber profile (Figure 6. 1(b)). Then, the connection pattern complexities of ROIs are 

measured to identify WM landmarks (Figure 6. 1(c-d)). Finally, the locations of landmarks are 

iteratively optimized in each subject’s own space to increase group-wise consistency of these 

landmarks’ connection profiles (Figure 6. 1(e)). The computational pipeline of the proposed 

framework is summarized in Figure 6. 1. 

 

Figure 6. 1. Illustration of the computational pipeline, consisting of 5 steps. 



 

128 

ROI Connection Map 

First, definitions of several key concepts and terms are given.  

ROI fiber bundle: An ROI is defined as a sphere with a predefined radius (5mm in this chapter). 

The fiber streamlines passing through this sphere is viewed as the fiber bundle of the 

corresponding ROI. 

Fiber principal orientation: For each fiber, its principal orientation is described by a norm vector 

v which is the first principal component of the points X along the fiber such that: 
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where x is the center of the points in X. 

Fiber connection profile: For a bundle of fibers, by projecting the principal orientation v of each 

fiber to a unit sphere, the connection profile of this fiber bundle can be represented and 

interpreted by the points distributed on the sphere. As illustrated in Figure 6.2(a-b), the complex 

fiber bundle connection pattern is mapped to the surface of a sphere without the loss of global 

information and could be further reduced in dimension via directional statistics method. Notably, 

as the fiber is non-directional connection, both its principal direction v and the opposite direction 

–v will be projected onto the sphere. 

Connection map: The probability density of orientation vector on the sphere is applied to 

describe the connection map of fiber bundles. Specifically, the sphere is subdivided into 48 equal 

sized pixels as defined in the HEALPix (Gorski et al. 2005). The number of points within each 

pixel out of the total number of points is calculated as the probability density. In this way, the 

fiber connection profile is represented by a connection map with a vector of 48 numbers such 

that: 
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where Rk is the area covered by pixel k, and ||V|| is the number of points on the unit sphere. The 

advantage of this representation is the capability of representing complex fiber bundle 

connection pattern with a simple one dimensional feature vector without the loss of major 

information. As shown in Figure 6.2, the connection maps are similar for the fiber bundles 

sharing similar shapes. For the bundles with different shapes, the connection maps would be 

distinct. Notably, this representation may have difficulty in distinguishing the fiber bundles with 

similar shapes but connecting in the opposite direction, or the fiber bundles with similar 

orientations but different lengths (e.g. the anterior thalamic projection V.S. the inferior frontal-

occipital and uncinate fasciculus). These issues could potentially be solved by defining fiber 

connection direction and introducing multiple spherical shells for fiber bundles with different 

lengths. 

Connection entropy: As the HEALPix pixels (Gorski et al. 2005) are the squares evenly 

distributed on the sphere with equal size, the entropy of orientation vectors V distributed on the 

sphere could be directly obtained from P(V): 

 



481

48 )(log)()(
i

ii VPVPVH   (6.4) 

Connection similarity: The similarity between two connection maps is measured by cosine 

similarity: 
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Both connection entropy and similarity are values between 0 and 1. As shown in Figure 6.2, 

higher connection entropy indicates higher connection pattern complexity, and higher similarity 

value indicates higher similarity between fiber bundles.  
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Figure 6.2. Illustration of ROI connection profile. (a), (d), (f): DTI-derived fibers connected to an ROI. 

The ROI is defined by a sphere in space (white bubble). (b) Illustration of projecting fibers’ orientations 

to a sphere to obtain connection profile. The white dots are the projection points of fibers. The red and 

blue lines indicate the main orientation of the corresponding fibers and their projections on the unit 

sphere. (c), (e), (g): The probabilistic distributions of connection profiles of the fiber bundles shown on 

their left. The center of each sampling pixel is shown and color-coded by the probability density. 

Corresponding connection map feature vector is shown at the bottom by the histogram. 

Identify, Optimize and Predict WM Landmarks 

To identify the group-wise consistent WM landmarks that play the hub roles, we need to find the 

ROIs that maximize the connection entropy (meaning more diverse connections) and cross-

subject connection similarity (meaning group-wise consistency) at the same time. The 

optimization is thus designed to maximize the energy function (equivalent to minimizing the 

distance function) described below:  
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where X is the set of a landmark in all subjects. Eint(xi) is the internal energy function of 

connection entropy. Eext(xi) is the external energy function of connection similarity. λ is the 

tradeoff (empirically set to 1 in this chapter). )( j

ixF is the fiber bundle passing through the 

landmark xi of subject j. 

Algorithm 6.1 

Input: Initial Landmarks X, Streamline Fibers F 

1 

2 

3 

4 

5 

6 

7 

For landmark i 

For subject j 

        For k=1…N 

            Generate random vector vrandom 

            If E(xij+vrandom)>E(xij) 

                xij=xij+vrandom 

    Re-do step 2 to 6 if location of xi changed 

 

The landmark searching framework follows the pipeline shown in Figure 6. 1. First, the 

subjects are initially aligned to the same space by linear registration (FSL FLIRT (Jenkinson et 

al. 2012)). Then, taking each voxel in the space as the center of an ROI, the connection map 

entropy of fiber bundles passing through each ROI is computed for each subject. By averaging 

these connection entropy images, a group-wise connection entropy map is obtained (Figure 

6.3(a)). Distinguishable regions with high average connection entropy values in this map are 

visually identified as the initial landmarks. Due to the individual variability and misalignment, 

the fiber profiles of these initial landmarks could be different. To solve this problem, the 

landmarks’ locations are optimized iteratively with random walks in each subject to maximize 

the energy function in Eq. (6.6) as described in Algorithm 6.1. After optimization, the converged 

landmarks are then used as templates for the prediction on new individual brains. The prediction 
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process used a similar framework as an optimization. First, the brain of a new subject with DTI 

data is registered to the template space. Then, the space around the initial location of each 

landmark is searched for the point that maximizes external energy ),( *

templateext XxE  defined in 

Eq. (6.8) to guarantee the similarity with the template.  

EXPERIMENT RESULTS 

Two sets of data are applied. One is acquired from 18 healthy young adults who are equally 

distributed as training subjects and prediction testing subjects. The parameters are: matrix size 

128×128, 60 slices, image resolution 2×2×2mm3 isotropic, TR=15s, ASSET=2, 3 B0 images, 30 

optimized gradient directions, b-value=1000. Another dataset publicly released by Human 

Connectome Project (HCP)(Van Essen et al. 2012) contains DTI data of 64 healthy subjects. 

This dataset is applied to test the prediction of trained landmarks. The DTI data preprocessing 

was performed via FSL (Jenkinson et al. 2012) which includes eddy current correction, skull 

removal, computing FA image, tissue segmentation, and linear registration. Fiber tracking was 

performed via MedINRIA (Toussaint et al. 2007) using streamline model and then registered to 

the same space. 

After preprocessing, entropy map is computed for randomly picked subjects with 

different subject numbers (6/8/9/10/12/14). The result is similar and consistent between different 

groups with different sizes Figure 6.3(a,c). Thus we randomly picked 9 subjects for training. 

Finally, 12 landmarks with high connection entropy were visually identified and then 

automatically optimized as shown in Figure 6.3(a-b). Taking the training subjects as the 

template, these 12 landmarks are predicted on other 9 subjects as well as 64 subjects from HCP 

data for validation. The average internal energies and external energies are shown in Figure 6.4. 

For training data, both internal and external energies are relatively high, which indicates that 
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these landmarks are consistent connection hubs in brain WM. For prediction data, compared with 

initial landmarks (obtained via linear registration), the energies of finally optimized landmarks 

are much higher, which suggests that these landmarks are very reproducible in new subjects and 

could be predicted with our proposed framework.  

 

Figure 6.3. Visualization of average entropy map and the location of 12 landmarks. The location of each 

landmark is indicated by colored ring/bubble. The location of each axial plan is illustrated by the dash line 

in the sagittal view on the right. (a) Average entropy map of 9 randomly picked subjects. (b) Slices of 

RGB color-coded principal diffusion tensor direction of template subject volume with the corresponding 

view to (a). (c) Average entropy map of randomly picked subjects with different numbers (6/8/10/12/14). 

The view is the same as (a). 
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Figure 6.4. Average internal and external energy of each landmark in a different dataset. 

 

To further examine the anatomical meaning of these landmarks, we randomly picked one 

training subject and one prediction subject to visualize major pathways passing these landmarks 

(Figure 6.5). By observation, all these landmarks locate at the intersection point or the 

connection concentration regions of major fiber pathways. For instance, landmark 3 and 4 are 

close to the thalamus of each brain spheres, and the fiber tracts such as thalamic radiations, 

corticopontine tract and corticalspinal tract concentrate around this region. For landmark 5 and 6, 

the fiber pathways from different lobes intersect at this region, e.g. corpus callosum, posterior 

thalamic radiation, superior longitudinal fasciculus, and superior longitudinal fasciculus, and 

stria terminalis/fornix. The pathways that go through these landmarks will be further examined in 

our future work. 
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Figure 6.5. Visualization of the fiber bundle of 12 landmarks of (a) a training subject and (b) a testing 

subject. The landmarks are represented by white bubbles in each sub-figure. The IDs of the landmarks are 

listed in the right-bottom corner. 

CONCLUSION AND DISCUSSION 

A novel fiber shape descriptor has been proposed to characterize the connection patterns 

of a fiber bundle. The advantage of this descriptor lies in that: (1) it is based on orientation 

probability density distribution, thus enabling direct calculation of directional statistic features 

such as similarity or entropy; (2) it can be efficiently calculated with a decision tree which makes 

it fast to compute. Our validation experiment suggests that this descriptor can quantitatively 

measure the similarity and connection complexity of fiber bundles with high accuracy. Based on 

proposed descriptor, a novel computational framework has been developed to identify and 

predict landmarks that are group-wise consistent connection hubs in WM region. Finally, 12 

landmarks with dense connection and high reproducibility across individuals are identified and 

validated. The major novelty and contribution of WM landmark discovery framework lie in its 

data-driven nature that can better handle the complexity and variability of the WM structures, in 

comparison to existing model-driven methods. 

In the future, these WM landmarks will be used as initial points to establish cross-

individual correspondences for brain image registration. Also, a hierarchical brain connection 

map will be built based on these WM landmarks to facilitate brain structural/functional 

connection studies in population. For instance, with each individual, we will first recognize their 
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WM landmarks and then the consistent cortical regions that are connected to these landmarks. 

Afterward, the sub-connected regions between these consistent cortical regions could be 

recognized iteratively to populate the landmarks on the cortical brain with consistent 

connectomes. Finally, it is noted that future applications of the proposed fiber shape descriptor 

are not limited to the framework introduced. It has broader potential to be applied in fiber shape 

related clustering problems such as connection based cortical segmentation optimization 

(Clarkson et al. 2010) or diffusion tensor image based functional ROIs prediction (Zhang, Guo, 

et al. 2012).  
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ABSTRACT 

Quantitative modeling and analysis of structural and functional brain networks based on 

diffusion tensor imaging (DTI) and functional MRI (fMRI) data have received extensive interest 

recently. However, the regularity of these structural and functional brain networks across 

multiple neuroimaging modalities and also across different individuals is largely unknown. This 

chapter presents a novel approach to inferring group-wise consistent brain sub-networks from 

multimodal DTI/resting-state fMRI datasets via multi-view spectral clustering of cortical 

networks, which were constructed upon our recently developed and validated large-scale cortical 

landmarks - DICCCOL (Dense Individualized and Common Connectivity-based Cortical 

Landmarks). We applied the algorithms on DTI data of 100 healthy young females and 50 

healthy young males, obtained consistent multimodal brain networks within and across multiple 

groups, and further examined the functional roles of these networks. Our experimental results 

demonstrated that the derived brain networks have substantially improved inter-modality and 

inter-subject consistency. 

INTRODUCTION 

Studying structural/functional brain networks via diffusion tensor imaging 

(DTI)/functional magnetic resonance imaging (fMRI) has attracted increasing interest recently 

due to their potential in elucidating fundamental architectures and principles of the brain (Bassett 

and Bullmore 2009; Bullmore and Sporns 2009). Taking brain regions as nodes and the 

structural connections or functional correlations between these regions as edges, the brain can be 

viewed as a graph, and thus can be analyzed using graph theory principles in computer science 

(Watts and Strogatz 1998). For instance, a variety of recent analysis on brain networks via 

graphical approaches have shown that both functional and structural networks of human brain 
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share multiple properties with common complex networks (e.g., social network), including 

small-worldness, scale free (a few highly-connected hubs) and modularity (Sporns and Zwi 

2004; Salvador et al. 2005; Achard et al. 2006; He et al. 2007; Iturria-Medina et al. 2007, 2008; 

Hagmann et al. 2008; Bullmore and Sporns 2009). Furthermore, it is reported that the structural 

network modularity plays a key role in generating persistent and dynamic functional patterns 

(Kaiser et al. 2007) and also determining the hierarchical functional architectures (Zhou et al. 

2006; Müller-Linow et al. 2008). Thus, constructing brain networks that are structurally and 

functionally meaningful and consistent is crucial to  unveiling the brains’ fundamental principles 

(Supekar et al. 2009; Zhang, Guo, et al. 2012). 

Among tremendous efforts in the exploration of brain networks, many of them adopt the 

single MRI imaging technique, although their approaches may be different. For instance, some 

studies used information from MRI to obtain brain modules. In (Chen et al. 2008), six structural 

modules in the brain that have the firm correspondences with brain functional regions were 

revealed by comparing brain cortical thickness measured by MRI. In addition, more studies used 

the advanced diffusion imaging technique such as diffusion tensor imaging (DTI) and diffusion 

spectrum imaging (DSI) to construct brain structural networks and obtain corresponding 

structural clusters. In (Hagmann et al. 2008), an analysis of large-scale brain structural networks 

constructed by DSI reveals a structural core in the posterior medial and parietal cerebral cortex, 

together with several modules. On the other hand, thanks to the powerful technique of fMRI, in 

vivo analysis of human brain functional network becomes possible. For instance, in (Greicius et 

al. 2003), the resting state module of the human brain has been analyzed by comparing  fMRI 

BOLD signals under task with  the ones in resting state (R-fMRI).  
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Essentially, these studies might be substantially improved by integrating multimodal 

information (Bassett and Bullmore 2009). It has been shown that anatomical structural network 

connections play a key role in determining and maintaining functional patterns (Bullmore and 

Sporns 2009). In general, better quantitative characterization of the relationship between 

multimodal brain networks and its consistency across individuals could significantly advance our 

understanding of the human brain architectures. However, this important issue has been rarely 

investigated due to the following challenges. First, the variability across individuals makes it 

difficult to define reliable regions of interest (ROIs) that has group-wise consistency. In general, 

most brain parcellation approaches have difficulty in establishing across-subjects 

correspondences. This problem has been overcome by warping brains into an atlas space via 

image registration algorithms and further use the manually-segmented regions in the atlas as 

ROIs despite its limitations in accuracy and robustness (Hellier et al. 2003). Another set of 

methods from the functional perspective is using task-based fMRI to detect functionally-

corresponding ROIs (Greicius et al. 2003). Nevertheless, the cost and time in fMRI data 

acquisition is the major restriction in obtaining data for large-scale networks and for large 

populations. Thus, it is very challenging to acquire large-scale group-wise consistent ROIs upon 

which to construct brain networks. Second, it is also very challenging to achieve the consistency 

between structural and functional brain networks that are derived from the different imaging 

modality, i.e., DTI and R-fMRI, respectively. As shown in Figure 7. 1, and also as reported by 

Honey et al.(Honey et al. 2009), there is significant variability between functional and structural 

networks which makes it difficult to define and detect common networks between modalities. 
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Figure 7. 1. An example of the constructed structural (a) and functional (b) brain networks. Both networks 

were composed of the same set of 358 DICCCOL ROIs as nodes. Each sub-figure shows a joint view of 

ROIs (orange dots) and their connections (blue lines), along with the corresponding connectivity matrix 

on the right. 

 

 

Figure 7. 2. Illustration of the computational pipeline of the proposed method. 

 

In response to the abovementioned challenges, this chapter presents a novel approach to 

infer group-wise consistent brain networks from multimodal DTI/R-fMRI datasets via multi-

view spectral clustering of large-scale cortical landmarks and their connectivity graphs. 

Specifically, we defined network nodes by our recently developed and validated brain 

landmarks, namely DICCCOL (Dense Individualized and Common Connectivity-based Cortical 

Landmarks) (Zhu, Li, Guo, et al. 2013). As shown in Figure 7. 1, the DICCCOL system at the 
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current stage is composed of 358 cortical landmarks, each of which was optimized to possess 

consistent group-wise DTI-derived fiber connection patterns across populations (Zhu et al. 2012; 

Zhu, Li, Guo, et al. 2013). The neuroscience basis is that each cortical region’s cyto-

architectonic area has a unique set of extrinsic inputs/outputs (called the “connectional 

fingerprint” (Passingham et al. 2002)), which generally predicts the function that each cortical 

area could possibly possess. According to our extensive structural and functional validations 

(Zhu, Li, Guo, et al. 2013), these landmarks possess structural and functional consistency and 

preserve correspondences across individuals. Based on these landmarks, we constructed both 

structural and functional brain networks using multimodal DTI/R-fMRI data for 150 healthy 

young adult brains (aged 17-28 years old, with 100 females and 50 males) (Yan et al. 2011). We 

equally separated these subjects into three groups (2 groups of females and 1 group of male) for 

the purpose of comparison and reproducibility examination. Then, we developed and applied an 

effective multi-view spectral clustering algorithm to derive the consistent multimodal brain 

networks. Specifically, we considered each structural or functional network in a subject as a 

separate view of the studied large-scale network, and then modeled the clustering of group-wise 

consistent multimodal brain sub-networks in an unified multi-view clustering framework, by 

which the substantial variability of large-scale brain networks across modalities (DTI and R-

fMRI) and different individuals (50 subjects in each training group) can be modeled and handled 

by the powerful multi-view spectral clustering method. The prominent advantage of multi-view 

spectral clustering methodology is that it can effectively deal with heterogeneous features by 

maximizing the mutual agreement across multimodal clusters in different views (Kumar and III 

2011). This is actually the major methodological novelty and contribution of this chapter.  
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METHOD 

In this section, we will introduce our computational pipeline of the proposed algorithm, 

which is summarized in Figure 7. 2. First, after obtaining 358 whole-cortex dense landmarks 

based on our recently developed DICCCOL (Zhu, Li, Guo, et al. 2013), we constructed the 

functional connections and structural connections between these DICCCOL landmarks with the 

R-fMRI and the DTI. Based on this, we trained each pair of connectivity matrices, subject by 

subject, to obtain the common connections across modalities while retaining individual 

information of each subject, and then trained and combined these pair-wise common matrices 

group-wisely. The respective co-training algorithms will be introduced. In the end, the final 

group-wise multi-modality common connectomes are obtained using spectral clustering. 

Multimodal Brain Network Construction 

In response to the first challenge, i.e., to acquire large-scale group-wise consistent ROIs 

upon which to construct brain networks, we recently developed and validated 358 cortical 

landmarks that have intrinsically-established structural and functional correspondences in 

different brains (Zhu, Li, Guo, et al. 2013), which provides the natural and ideal nodes for brain 

network construction. Based on these 358 cortical landmarks/ROIs (Figure 7. 1), we constructed 

both structural (Figure 7. 1(a)) and functional (Figure 7. 1(b)) networks for 150 healthy brains 

with multimodal DTI/R-fMRI data. Specifically, to construct structural connection matrix, the 

connection strength between each pair of ROIs is defined as the average FA (fractional 

anisotropy) value along the fiber bundle connecting these two ROIs. If there is no connecting 

fiber bundle between two ROIs, the connection strength is set to 0. As for the connectivity matrix 

of functional networks, they are constructed based on R-fMRI data as follows. First, we 

performed brain tissue segmentation directly on DTI data (Liu et al. 2007), and used the gray 
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matter segmentation map as a constraint for R-fMRI BOLD signal extraction. A principal 

component analysis was then conducted for the R-fMRI time series of all gray matter voxels 

within an ROI, and the first principal component was adopted as its representative R-fMRI 

BOLD signal. Finally, the functional connection strength between ROIs is defined as the Pearson 

correlation of their R-fMRI BOLD signals. An example of the constructed structural and 

functional networks is shown in Figure 7. 1. 

Spectral Clustering 

Taking a graph ),( EVG   with nV 
 
nodes, the objective of clustering problem is to find 

cluster indicator matrix knC   such that for the ith column of C, 1ijc  iff. the jth node belongs 

to the ith cluster. Otherwise, 0ijc . The spectral clustering algorithm solves this problem by 

solving the following equation (Shi and Malik 2000):  

DyyWD  )(  (7.1) 

where nnW   is the affinity/similarity matrix of G, which is a semi-positive definite matrix. D 

is a diagonal matrix with the degree  


n

j iji wd
1  

for the corresponding vertex iv  on its 

diagonal. Meanwhile, Eq. (7.1) can be formulated as eigen problem of Laplacian matrix 

WDIL 1  (Luxburg 2007). When the eigenvalue of L equals to 0, the corresponding 

eigenvector y is the cluster indicator vector c of the graph. For the non-zero eigenvalue of L, the 

first k eigenvectors of L, corresponding to the k smallest eigenvalues, is the approximation of C 

that partitions the graph into k components. The objective of this solution is to partition the graph 

by the normalized cut (Ncut) (Luxburg 2007), which is defined as: 

),(

),(

),(
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),(

VBassoc

BAcut

VAassoc

BAcut
BANcut   (7.2) 
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where VBA  , and BA .  


BvAu uvwBAcut
,

),(
 
is the sum of edges connecting 

partitions A and B, which is called cut in graph theory.  


Ai idVAassoc ),(
 
is the total 

connections from nodes in A, and ),( VBassoc  is defined in a similar way. By minimizing Ncut 

value, one tends to obtain a balanced partition with relatively low cut. 

In practice, the second eigenvector of graph Laplacian is often used to bi-partition the 

graph. As shown in Figure 7. 3, we can partition the nodes by their signs in the second 

eigenvector – that is, assigning the nodes with the positive value in the eigenvector to one cluster 

and the rest to the other. However, to achieve a more meaningful result, k-means algorithm is 

applied to bi-partition the graph based on the second eigenvector. Then, the sub-graph can be 

further partitioned by recalculating the eigenvector of the graph Laplacian of sub-graph if 

necessary. By doing so recursively, the graph will be partitioned into multiple clusters. 

Specifically, we applied Ncut as determinant condition for bi-partitioning. We will stop bi-

partitioning sub-graph if Ncut value is larger than the pre-set threshold. Thus, the number of 

clusters will be determined by the threshold we set. The outline of this partition algorithm is 

listed below, by following (Shi and Malik 2000). 

Algorithm 7.1. Spectral Clustering 

Input: Connectivity matrix W  with size nn , and the threshold T of Ncut for partitioning. 
Output: Clusters of nodes.  

1. Compute the normalized Laplacian L of W. 

2. Solve eigenvectors of L  with the smallest eigenvalues. 

3. Use the eigenvector with the second smallest eigenvalue to bi-partition the graph, and then 

compute the corresponding Ncut value. 

4. If Ncut < T, bi-partition the graph, and repeat the algorithm on two bi-partitioned sub-

graphs. 

5. Else             Return without bi-partitioning the graph. 
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Figure 7. 3. Illustration of spectral clustering. (a) The original graph and the corresponding affinity 

matrix. (b) The clustered graph and the corresponding affinity matrix re-arranged by clusters. (c) The 

second eigenvector of the graph after sorting. 

Co-Training Approach Based on Spectral Clustering 

In our research problem, we have both structural connectivity and functional connectivity 

for large-scale brain network clustering. To find common brain sub-networks across different 

modalities, an intuitive way is to assign a weight to each view or modality and then combine 

them together. However, it is difficult to define optimal weights, especially when there exists 

significant variability across modalities – the common connection obtained may be biased when 

the connection is strong in one modality but absent in the other modality. Thus, how to fuse these 

multimodal networks to achieve the relatively consistent sub-networks becomes an important 

issue. Recently, a clustering methodology called multi-view clustering has been developed to 

solve this type of problem (Cai et al. 2011; Kumar and III 2011). In this chapter, we designed a 

co-training approach based on spectral clustering to maximize, first, the agreement between the 

structural network and functional network, and then the agreement between subjects, to find the 

group-wise consistent multimodal connectomes of the human brain. 

As shown in the previous section, when the eigenvalue is 0, the corresponding 

eigenvector of normalized Laplacian of a graph is the cluster indicator vector. For a fully-
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connected graph, spectral clustering solved a relaxed solution of min cut problem. That is, the 

top eigenvectors carry the most discriminative information for graph clustering. In (Kumar and 

III 2011), the authors have shown that, by projecting the affinity matrix to the eigenspace of the 

first k eigenvectors corresponding to the k smallest eigenvalues, the inter-cluster details will be 

discarded and only the essential information required for clustering retains. Thus, we can achieve 

the agreement between two views by projecting the affinity matrix of one view to the eigenspace 

of the other view. As the eigenvectors are orthogonal, the affinity matrix in eigenspace can be 

easily projected back by multiplying the transpose of eigenvectors matrix. It should be 

mentioned that the post-projected affinity matrix obtained in this way is not symmetric. To make 

it symmetric, we added the post-projected affinity matrix with its transpose and then divide it by 

2. The whole projection process can be summarized as follows: 

2/))((),( TTT WUUWUUUWproj   (7.3) 

where knU   is the first k eigenvectors corresponding to the top k smallest eigenvalues of 

graph Laplacian of affinity matrix.  

To further illustrate how this approach works, we assume that there exist two 

discriminate clusters A and B in a graph G, and also that the affinity matrix of G has been 

rearranged by clusters as follows: 





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
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T
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W  (7.4) 

where 
AA

AW


  are the edges between nodes in cluster A, with BW  defined similarly. 

BA

ABW


  are the edges between clusters A and B. Then the corresponding cluster indicator 

matrix C is: 
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where
A

AI 1 ,
B

BI 1 . As AW  and BW  are the symmetric matrices, let’s define 
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(7.6) 

We can see that the element ijw of 
*

AW  is the average degree of entry i and entry j of sub-

matrix AW , which are similarly done for 
*

BW  and 
*

ABW . This indicates that the projection process 

tends to fuse and smooth the inter-cluster connections or intra-cluster connections independently. 

As we know, the intra-cluster connections tend to be high and inter-cluster connections are 

relatively low. By smoothing inter/intra-cluster connections separately, we can expect the 

increase in intra-cluster connection strength and vice versa. However, in practice, the 

eigenvectors obtained are approximations of cluster indicators, and the clusters are indicated by 

their signs approximately as shown in Figure 7. 3. Then, for the above affinity matrix W, the 

corresponding second eigenvector should be: 











N

P
U  (7.7) 

where 
A

P   is a vector containing the positive real numbers and 
B

N  is a vector 

containing the negative real numbers. Then we will have: 
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(7.8) 

In the above equation, *

AW  can be separated into two parts. The first part 

2/)( TT

AA

T PPWWPP   is the fuse of connections within cluster A, and the second part 

2/)( T

BA

T

AB

T NPWWPN   is the fuse of connections between clusters A and B. It should be noted 

that the first part is all positive and the second part is all negative, which means 
*

AW  is the sum of 

intra-cluster connections of cluster A minus the inter-cluster connections between A and B. 

Similarly, 
*

BW  is the sum of connections in B minus the inter-cluster connections. And 
*

ABW  is the 

sum of inter-cluster connections minus the intra-cluster connections. As we know, AW  and BW  

are the matrices that are relatively dense with large values, and ABW is sparser with low values. 

Thus, we can expect high positive values evenly distributed in 
*

AW  and 
*

BW , while low or even 

negative values in 
*

ABW . Since the negative values in 
*W are caused by strong inter-cluster 

connections which are the disagreed part between the matrices and are in conflict with the 

definition of the affinity matrix, we set all negative values in 
*W to 0 after projection. 
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Algorithm 7.2 

Input: Connectivity matrices of two views 0

2

0

1 ,WW , and the number of eigenvectors to consider 

k. 

Output: Co-trained connectivity matrices 
*

2

*

1 ,WW . 

Compute the initial normalized Laplacian
0

2

0

1 , LL of each connectivity matrix, and the first k 

eigenvectors 0

2

0

1 ,UU  with the k smallest eigenvalues of
0

2

0

1 , LL . 

for i = 1 to iter 
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 iii UWprojW  

   Compute Laplacian and the corresponding first k eigenvectors 
ii UU 21 ,  of ii WW 21 , . 

   If converge, return
ii WWWW 2

*

21

*

1 ,  . 

 

Let   kn

kuuuU  21  be the combination of the first k eigenvectors, and then 

we will have: 


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
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i

iuWprojUWproj
1

),(),(  (7.9) 

Thus, by projecting the graph affinity matrix to the eigenspace of top eigenvectors of 

corresponding graph Laplacian matrix, we can smooth and thus increase the intra-cluster 

connections and also decrease or remove inter-cluster connections. Let 



k

i

T

iiuuM
1

be the 

projecting matrix. For pair-wise co-training of functional and structural connectivity matrices, 

we can project functional matrix to the spectral eigenspace of structural matrix and vice verse at 

the same time by using above steps iteratively. While for group-wise co-training process, we can 

project the matrices of one subject to the spectral eigenspace of the rest subjects. The group-wise 

co-training step for p subjects with single view for each subject is defined as follows: 

2/)))(()((),(
,1,1

T
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ijj
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where 
iW  is the affinity matrix of subject i; 

jU is the spectral eigenvector matrix of subject j; 

T

jjj UUM   is the corresponding projecting matrix of subject j. When we have both structural 

matrix and functional matrix for each subject, jM is re-defined as T

FjFj

T

SjSj UUUU  , where SjU is 

the eigenvector matrix of structural matrix spectrum, and FjU  is the eigenvector matrix of 

functional matrix spectrum. 
iW  is then either the functional matrix or structural matrix. The 

detailed algorithm for pair-wise co-training is as Algorithm 7.2. 

As shown previously, during the projection process, the within-cluster connection will be 

smoothed (increasing the positive agreement between matrices) and the disagreed connections 

will be broken (increasing the negative agreement between matrices). As a result, only the agreed 

connections will be retained during the iterative projection. As the algorithm will converge when 

no more agreement could be further achieved, the convergence could be assessed by the 

measurement of similarity between matrices. Particularly, we applied different measurements for 

different scenarios and will discuss this important issue in details in the next section. 

The algorithm for the group-wise co-training algorithm is similar to the above by 

replacing the pair-wise projection function ()proj  to the group-wise projection function ()gproj  

in Eq. (7.10). After co-training, the trained matrices are similar as shown in the result section. 

The final fused connection matrix can be obtained by calculating the average normalized matrix 

between different subjects and views. Base on fused connection matrix, the final multi -modal 

connectomes of the human brain will be obtained directly by applying spectral clustering 

algorithm introduced previously. 
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EXPERIMENT MATERIAL AND PARAMETER SELECTION 

Experiment Materials 

 Our experiment was performed on 150 healthy adults (100 females and 50 males) from 

the publicly released dataset by the Beijing Normal University, China (Yan et al. 2011). Both 

DTI and R-fMRI were acquired for each subject. The parameters are as follows. R-fMRI: 33 

axial slices, thickness/gap = 3/0.6mm, in-plane resolution = 64×64, TR = 2000ms, TE = 30ms, 

flip angle = 90º, FOV = 200×200mm. DTI: single-shot Echo-Planer Imaging-based sequence, 49 

axial slices, 2.5mm slice thickness, TR = 7200ms, TE = 104ms, 64 diffusion directions, b-value 

= 1000s/mm2, matrix = 128×128, FOV = 230×230mm2. Preprocessing steps include tissue 

segmentation, surface reconstruction, and fiber tracking, which are similar to the methods in 

(Zhu, Li, Guo, et al. 2013). Then a set of large-scale, group-wise consistent ROIs were obtained 

for each subject using the method in (Zhu, Li, Guo, et al. 2013). The structural and functional 

connectome matrices were then computed using the method described previously. Examples of 

ROIs and connectivity matrices are shown in Figure 7. 1. To test the reproducibility of our 

proposed method, we randomly separated the female subjects into two training groups: female 

group 1 and female group 2. 
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Figure 7. 4. Illustration of parameter selection for pair-wise training. (a)-(c) Original structural and 

functional connections and the co-trained connections in the 3rd and 18th iteration when the top 25 

eigenvectors are considered. In each subfigure, the left figure is structural matrix; the middle figure is 

functional matrix; the right figure is functional connection vs. structural connection with each dot 

representing an edge. (d) Changes of PCC during co-training iteration with different numbers of 

eigenvectors considered. (e) Changes of NMI during co-training iteration with different numbers of 

eigenvectors considered. 

 

Parameter Selection 

Normalized mutual information (NMI) (Witten and Frank 2005) and Pearson correlation 

coefficient (PCC) are applied as measurements to assess the level of agreement between two 

affinity matrices. NMI between two affinity matrices A  and B  is defined as follows: 
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The values of NMI and PCC are both between 0 and 1. The higher the value is, the more 

the two matrices agree with each other (Witten and Frank 2005). 

Number of eigenvectors  

During the co-training process introduced in the previous section, the affinity matrix will 

be projected to the first k eigenvectors of the graph Laplacian. In the ideal case, k should be set 

equal to or larger than the true cluster number. However, due to the lack of prior knowledge, we 

tested the result with different k values on the pair-wise training of single subject networks. As 

shown in Figure 7. 4(d)-(e), by using small k value, more information will be removed and thus 

the agreement between two views will be higher. However, small k value will cause the loss of 

useful information and results in over-training. Also, small k value may cause oscillation during 

training process which is vulnerable. On the other hand, large k value will keep too much 

information including the uncommon information between views that we want to remove and 

thus may cause under-training. Considering that the number of nodes in our network is 358, we 

set k to 25 empirically. By using this k value, we can ensure the useful information retained, and 

also the accuracy and smoothness during the training process. 

Convergence criterion 

During the training process, our goal is to maximize the agreement between different 

views. In Figure 7. 4(e), we can see that the NMI between two networks is increasing during the 

training process. In general, PCC between two networks increases in the first several iterations 

rapidly and then decreases slowly. This is mainly because there is a certain amount of 

disagreement between two networks. Though the intra-cluster connections will be smoothed to 
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increase the agreement between two matrices, some connections may still be relatively weak 

compared with other connections as highlighted by green arrows in Figure 7. 4(b)-(c). Also, as 

highlighted by the blue arrows in Figure 7. 4(c), we can see that, after training, certain sets of 

edges are highly correlated, but there may exist multiple correlation models between two views 

and thus the overall correlation is low. This indicates that, compared with PCC, NMI is a better 

measurement as the criterion of co-training convergence. However, the pair-wise trained result 

will be used for successive group-wise training. If the training process iterates for too many 

times, the group-wise information will also be smoothed out at the same time, although we 

maximize the agreement between two matrices of each subject. Thus, we use PCC value as a 

convergence criterion for pair-wise training (Figure 7. 2(b)). The mean NMI between each pair 

of subjects of each view is used as a convergence criterion of group-wise training (Figure 7. 2(c)). 

As shown in Figure 7. 5, it takes about 30 iterations for the group-wise co-training algorithm to 

converge. For pair-wise training, it takes either 3 or 4 iterations to converge. 

 

Figure 7. 5. Changes of average NMI in each iteration of group-wise co-training process for each training 

group. 
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RESULTS 

Clustered Multi-modal Networks 

We obtained 8 multi-modal clusters upon 358 DICCCOL landmarks using the proposed 

methods and the parameters described above. The clustering results are similar when set the 

threshold of Ncut in spectral clustering algorithm from 0.2 to 0.9, thus we set it 0.5 specifically. 

We randomly picked 4 subjects in female group 1 and visualized their affinity matrices before 

and after training in Figure 7. 6, where the matrices are all rearranged by clusters. Each cluster is 

highlighted by a green box. As the connection strength of edges in the certain cluster may be 

relatively higher which makes it difficult to visualize other clusters (Figure 7. 4 (d)-(e)), the 

connection strength of co-trained matrices are adaptively normalized for the purpose of 

visualization in the following way. First, each row of the matrix is scaled independently such that 

the largest element in each row is 1 (i.e., by normalizing the largest connection to each node). 

Then, add the row-normalized matrix to its transpose to obtain the adjusted matrix (symmetrizing 

matrix). By observation, we can see that the connection matrices vary substantially between 

subjects and modalities before optimizations (the second row of each panel). After pair-wise co-

training, the structural connection matrix and functional connection matrix of each subject are 

more similar to each other, but there still exists disagreement. However, after group-wise 

training, the matrices are similar across subjects and modalities. A clear boundary of eight 

clusters can be observed (at the third row of each panel). To validate the performance of the 

proposed algorithm in identifying common clusters, the strengths of the original 

structural/functional connections within each cluster are measured as shown in Table 7. 1. 

Obviously, both of the average structural connection and the average functional connection 

within each cluster are substantially higher than the average connection strength of the whole 
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brain network. A similar observation can also be observed in the first rows of the matrices in 

Figure 7. 6 that the clusters inferred by the proposed algorithm have relatively stronger within-

cluster connections than the whole network for both connection matrices. 

 

 

Figure 7. 6. Visualization of original and trained connection matrices of 4 randomly selected subjects 

from the first female group. The matrices are re-arranged by group-wise consistent clusters. Each cluster 

is highlighted by a green box. The matrices are adaptively normalized node by node to give better 

visualization. 

 

Table 7. 1. Average connection strengths. 

 
Whole 

Brain 

Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Cluster 

5 

Cluster 

6 

Cluster 

7 

Cluster 

8 

Structure 0.037 0.118 0.104 0.098 0.062 0.070 0.090 0.092 0.193 

Function 0.249 0.284 0.353 0.264 0.348 0.301 0.263 0.334 0.329 
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Figure 7. 7. Visualization of group-wise multimodal brain networks computed based on the female 

training group 1. The color-coding of sub-networks is provided in the right side of subfigure (d). (a)-(c) 

Visualization of multi-modal sub-networks on template cerebral cortex. The visualization was generated 

by ParaView (Henderson 2007). (d) Visualization of average structural connections between ROIs. Only 

the top 9.17% connections (the average connection density of 150 structural matrices applied) are 

retained. ROIs are rearranged and color-coded by sub-networks and listed around the circle. Between sub-

networks connections are represented by gray lines and within sub-network connections are represented 

by corresponding color lines. The visualization was generated using the Circos toolkit (Krzywinski et al. 

2009). It should be noted that the short distances of the re-arranged connections in this sub-figure do not 

necessarily mean that their actual structural connections have short distances, as shown in (a). 

 

We visualized the 8 clusters trained from the female group 1 on the cerebral cortex 

surface in Figure 7. 7(a)-(c). By observation, most of the clusters are composed by ROIs that are 

geometrically close to each other or structurally/functionally connected.  It is interesting that the 

parcellation of the cortical landmarks in Figure 7. 7(a)-(c) largely coincides with the recently 

published clusters obtained via genetic similarity by Chen et al. (Chen, Gutierrez, et al. 2012) 

and is consistent with current neuroscience knowledge. For instance, the major part of cluster 1 

includes the visual cortex (Salvador et al. 2005; Damoiseaux et al. 2006; De Luca et al. 2006; 

Sorg et al. 2007; van den Heuvel et al. 2008). The major part of cluster 4 includes the sensory-
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motor systems including pre- and post-central gyrus (BAs 1/2/3/4), and the Supplementary 

Motor Area (SMA) (BA 6) (Salvador et al. 2005; Damoiseaux et al. 2006; De Luca et al. 2006; 

van den Heuvel et al. 2008). Cluster 8 includes the prefrontal cortex (BA 11) and dorsal anterior 

cingulate (BA 32) (Damoiseaux et al. 2006). Figure 7. 7(d) shows the average structural 

connections between clusters. More intra-cluster connections than inter-cluster connections can 

be observed. We can also observe connection hubs within each cluster such as DICCCOL #104, 

#170, #185, #200 in cluster 4 as highlighted by black arrow. For details of the location of these 

DICCCOL ROIs on the cerebral cortex, please refer to the website (http://dicccol.cs.uga.edu). 

Reproducibility and Between-Gender Similarity  

The female training group 2 also generated 8 clusters. The visualization of these 8 

clusters on the template cortex surface is shown in Figure 7. 8(a). The IDs of clusters are 

calibrated according to their overlap degree with the clusters of female group 1. The nodes with 

consistent cluster labels between two female training groups are shown in Figure 7. 8(b). By 

observation, we can clearly see that these eight clusters are similar to those obtained from female 

group 1. Besides, we further computed the Rand Index (RI) (Rand 1971) and NMI (Witten and 

Frank 2005) between clustering results of these two sets of subjects. Both RI and NMI range 

between 0 and 1. The higher value indicates higher similarity between clustering results. As 

shown in Table 7. 2, the RI value between these two results is 0.93 and the NMI value is 0.72. 

These relatively high RI and NMI values suggest that the proposed method is stable and robust, 

and the results are highly reproducible across different training groups. 

The training results on male groups also gave eight similar clusters. As shown in Figure 

7. 9, it is evident that the male’s multi-modal clusters are similar to those of females. The RI and 

NMI values between the clustering results of male and female groups are also high (Table 7. 2). 
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There are 298 nodes that are consistent in cluster labels between two female training groups and 

282 consistent nodes across all three training groups. As previous neuroscience studies suggested 

that there is a certain degree of difference in brain function and structure between genders (Cahill 

2006), it is intriguing that no significant difference can be observed between the obtained 

network clusters of male and female. Our interpretation is that the DICCCOLs we applied as 

ROIs do not carry much gender-specific information (Zhu, Li, Guo, et al. 2013). To further 

quantitatively show this point, we measured the NMI between the original connection matrices 

and no significant differences between genders can be observed. As for the network 

disagreement between females and males, it is still not clear whether they are caused by sexual 

difference, or by the variability in the data acquisition, preprocessing and analysis. However, as 

shown in Figure 7. 8(b) and Figure 7. 9(b), the most inconsistent nodes locate on the boundary 

region between clusters. It is more likely that the variability between cluster results is caused by 

the individual variability. This observation, together with previous results, suggests that the 

proposed multi-view spectral clustering algorithm is robust and powerful in identifying group-

wise consistent clusters. 

 

Table 7. 2. RI and NMI Between Joint Clustering Results 

Index Type RI NMI 

Female 1 VS. Female 2 0.93 0.72 

Female 1 VS. Male 0.94 0.77 

Female 2 VS. Male 0.93 0.74 
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Figure 7. 8. Visualization of group-wise multimodal brain networks computed based on female training 

group 2. The visualization is performed on the template brain with Paraview (Henderson 2007). 

Corresponding sub-networks are color-coded by the same color. (a) Networks of female training group 2. 

(b) Nodes with consistent clusters between two female training groups. Inconsistent nodes are color-

coded by gray. 

 

 

Figure 7. 9. Visualization of group-wise multimodal brain networks computed based on male training 

group. The visualization is performed on the template brain with ParaView (Henderson 2007). 

Corresponding sub-networks are color-coded by the same color. (a) Networks of male training group. (b) 

Nodes with consistent clusters across three training groups. Inconsistent nodes are color-coded by gray. 
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Figure 7. 10. Visualization of clusters on matrices obtained by different approaches from female group 1. 

Matrices including adaptively normalized fused matrix (top row), average structure matrix (middle row), 

and average functional matrix (bottom row) are visualized and rearranged by corresponding clusters. Each 

cluster is highlighted by a green box. In each sub-figure, the IDs of the clusters from top-left to bottom-

right are from 1 to n successively. (a) Fused matrix using the proposed group-wise multi-view co-training 

approach using multi-modality matrices. (b) Group-wise co-trained matrix fused by the proposed method 

with structure connection matrices only. (c) Group-wise co-trained matrix fused by the proposed method 

with functional connection matrices only. (d) Average matrix of both connection matrices of all the 

subjects in the training group. 

 

Comparisons between Approaches 

For the purpose of comparison, sub-networks obtained by different approaches are 

computed. We computed the group-wise sub-networks based only on structural information or 
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only on functional information. The group-wise consistent connection matrix for each modality 

is obtained respectively using the proposed multi-view spectral co-training approach. The 

parameters are selected in a way similar to those described previously. As there is only one 

connection matrix considered for each subject, group-wise co-training is performed directly on 

the original matrices without pare-wise co-training. On average, it took 42 iterations for 

structural matrices to converge and 36 iterations for functional matrices to converge. The 

threshold of Ncut in the spectral clustering is set to 0.5. Also, an average matrix of both 

modalities’ connection matrices of the training group is obtained for comparison. Based on the 

average matrix, the cluster is obtained by the spectral clustering method. As the matrix is more 

densely connected compared with the final fuse matrices obtained by proposed approach, the 

threshold of Ncut is set to 0.9 here. In this section, our analysis will mainly focus on the results 

of female group 1.  

In total, 14 structural clusters and 11 functional clusters were obtained. These clusters can 

be visually observed with clear boundaries in Figure 7. 10(b)-(c). The visualization of clusters on 

the template cortex is shown in Figure 7. 11. Interestingly, functional regions are symmetric in 

certain degree between the left and right spheres. Another intriguing observation is that, though 

structure connection matrix generated more clusters, these clusters are highly reproducible across 

three training groups we have. As shown in Table 7. 3, the average RI value is 0.97 and average 

NMI value is 0.83, which are relatively high.  

It is evident that the derived brain sub-networks via the multi-view spectral clustering 

method have substantially improved inter-modality consistency in comparison with the 

clustering results by any single modality. As shown in Figure 7. 10, the clusters based only on 

structural connection matrices failed to give functional meaningful clusters. On the other side, 
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functional clusters also failed to generate significant structural clusters. During the multi-modal 

co-training process, these single modality clusters are split and then recombined considering the 

mutual clusters between modalities. Thus, as shown in Figure 7. 10(a), the multi-modal clusters 

carry dense intra-cluster connections for both structural and functional connections. 

 

Figure 7. 11. Visualization of group-wise structural/functional brain networks computed based on female 

group 1. The visualization is performed on the template brain with ParaView (Henderson 2007). (a) 

Structural networks. (b) Functional networks. 

 

However, as shown in Figure 7. 10(d), the average matrix failed to offer meaningful 

information for clusters, which might be caused by the following reasons. 1) The variability 

across individual connection matrices might be relatively high. Thus, by averaging individual 

matrices, useful information might be smoothed out. 2) The structural connection matrix is too 

sparse compared with functional connection matrix. Thus, the structural information may be 
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overwhelmed by functional information. 3) The disagreement between two modalities is 

relatively high. For the edges between certain nodes, only the connection in one modality is 

strong. But the connection strength of these edges will still remain strong if taking the average 

value as the common connection strength. 

 

Table 7. 3. RI and NMI Between Separate Clustering Results 

 Structure Function 

Index Type RI NMI RI NMI 

Female 1 VS. Female 2 0.97 0.84 0.93 0.73 

Female 1 VS. Male 0.97 0.83 0.92 0.69 

Female 2 VS. Male 0.96 0.82 0.92 0.70 

 

DISCUSSION AND CONCLUSION 

We inferred eight group-wise consistent multi-modal brain sub-networks via a novel 

multi-view spectral clustering approach based on our recently developed cortical landmark 

system - DICCCOL. The DICCCOL system is composed of 358 cortical landmarks, which are 

optimized and predicted via brain white matter connection patterns such that they possess 

correspondence between individuals. Structural/functional networks are composed of 

connections between these landmarks derived from DTI/R-fMRI data. Then a co-training 

framework based on the novel multi-view spectral clustering algorithm is applied to obtain the 

group-wise consistent and cross-modality common brain network clusters. The advantage of 

multi-view spectral clustering methodology is that it can effectively deal with heterogeneous 



 

166 

features by maximizing the mutual agreement across clusters in different views (Kumar and III 

2011). 

Our experiment results have shown that the algorithm converges well on the data used. 

Eight multi-modal brain sub-networks that are reproducible across different training groups have 

been identified. They are also shared by both males and females. Compared with clusters derived 

from the structural connection or functional connection only, the sub-networks obtained by our 

proposed method have improved inter-modality consistency significantly. 

To conclude, the major technical contribution of this work is the proposed novel 

clustering framework for multi-view brain networks. Based on this framework, eight sub-

networks are derived from the DICCCOL system via connection matrices based on DTI/R-fMRI 

data. Our experimental results suggest that the derived sub-networks are functionally/structurally 

meaningful. Also, we demonstrated the possible usage of DICCCOL system in studying brain 

networks patterns. Further and intensive studies based on the DICCCOL system and those eight 

inferred multi-modal sub-networks can potentially help elucidate brain functions and 

dysfunctions in the future. 
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CHAPTER 8 

LONGITUDINAL ANALYSIS OF BRAIN RECOVERY AFTER MILD TRAUMATIC 

BRAIN INJURY BASED ON GROUPWISE CONSISTENT BRAIN NETWORK CLUSTERS7 

  

                                                 
7 Hanbo Chen, Armin Iraji, Xi Jiang, Jinglei Lv, Zhifeng Kou, Tianming Liu. 2015. Longitudinal Analysis of Brain 
Recovery After Mild Traumatic Brain Injury Based on Groupwise Consistent Brain Network Clusters. International 

Conference on Medical Image Computing and Computer Assisted Intervention, Lecture Notes in Computer Science , 
9350:194-201. 
Reprinted here with permission of the publisher. 
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ABSTRACT 

Traumatic brain injury (TBI) affects over 1.5 million Americans each year, and more than 

75% of TBI cases are classified as mild (mTBI). Several functional network alternations have 

been reported after mTBI; however, the network alterations on a large scale, particularly on 

connectome scale, are still unknown. To analyze brain network, in a previous work, 358 

landmarks named dense individualized common connectivity based cortical landmarks 

(DICCCOL) were identified on the cortical surface. These landmarks preserve structural 

connection consistency and maintain functional correspondence across subjects. Hence 

DICCCOLs have been shown powerful in identifying connectivity signatures in affected brains. 

However, on such fine scales, the longitudinal changes in brain network of mTBI patients were 

complicated by the noise embedded in the systems as well as the normal variability of 

individuals at different times. Faced with such problems, we proposed a novel framework to 

analyze longitudinal changes from the perspective of network clusters. Specifically, the 

multiview spectral clustering algorithm was applied to cluster brain networks based on 

DICCCOLs. And both structural and functional networks were analyzed. Our results showed that 

significant longitudinal changes were identified from mTBI patients that can be related to the 

neurocognitive recovery and the brain’s effort to compensate the effect of the injury. 

INTRODUCTION 

Mild traumatic brain injury (mTBI) accounts for over one million emergency visits each 

year in the United States (McCrea et al. 2009). Most mTBI patients have normal findings in 

clinical neuroimaging. Advanced magnetic resonance imaging (MRI) has detected 

microstructural damage in major white matter tracts by diffusion tensor imaging (DTI), and 

functional network alternations by functional MRI (fMRI) (Eierud et al. 2014; Iraji et al. 2015). 
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However, the field is still short of investigations on the overall extent of structural and functional 

network disruptions after mTBI and its recovery process. Moreover, there is a lack of 

investigation in the alteration of connectivity on large-scale brain networks after mTBI and their 

recovery process. We hypothesize that mTBI results in network connectivity changes, and brain 

structural and functional recovery occurs over time. 

In a literature work, Zhu et al. identified 358 landmarks on the cortical surface that 

preserve structural connection consistency across subjects named dense individualized common 

connectivity-based cortical landmarks (DICCCOL). The previous studies have shown that 

DICCCOLs are highly reproducible across individuals (Chen, Li, Zhu, Jiang, et al. 2013; Zhu, 

Li, Guo, et al. 2013) and they also preserves structural and functional correspondence across 

individuals (Yixuan et al. 2012). Moreover, in recent studies, Zhu et al. have shown that, by 

taking these DICCCOLs as network nodes, the connections between them could be taken as 

connectome signatures of mental diseases such as mild cognitive impairment (Zhu, Li, Terry, et 

al. 2013) or prenatal cocaine exposure (Li, Zhu, et al. 2013). With DICCCOL framework, the 

brain network alternations after injury and its recovery process of mTBI patients could be 

analyzed. 

Intuitively, the changes in network connections during brain recovery can be derived by 

comparing the MRI scans of healthy subjects and the mTBI patients using t-test. Yet a 

considerable amount of changes in brain network connections were also seen in the two scans of 

the same group of healthy control (HC) subjects (E.g. the functional connection changes shown 

in Figure 8. 1). This result suggested that pairwise network connections comparison is sensitive 

to individual variability as well as system noise on a fine scale and thus cannot serve our 

purpose. 
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Figure 8. 1. Significantly different (P<0.05) pairwise functional connections among DICCCOLs between 

two scans of each population identified by different types of t-test. 

 

Faced with such problem, we addressed the issue from the level of connectivity changes of 

brain network clusters. Whole brain networks were clustered into group-wisely common sub-

networks based on the multiview spectral clustering algorithm. Each network cluster is a subset 

of nodes that are more densely connected within the cluster than between clusters. By comparing 

the connection changes within and between the clusters, the noises due to individual variability 

were greatly diminished and we have observed a consistent pattern of disruption in structural and 

functional networks after mTBI. Interestingly, over time the decrease in structural connectivity is 

accompanied by the increase in functional connectivity. This finding is in agreement with the 

temporally evolving and deteriorating nature of brain injury. On the other hand, the increase in 

functional connectivity suggested that brain is highly plastic as it tries to recruit more regions 

and remodel the functional connectivity to compensate the alteration in structural connectivity. 
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Together, these results may shed light on the network alteration mechanism of brain recovery 

and plasticity. 

DATA ACQUISITION 

This study was approved by the local Human Investigation Committee. Written informed 

consent was obtained from each subject before enrollment. In this study, the DTI and rsfMRI 

data were acquired from 24 healthy subjects twice in two independent scans and from 16 mTBI 

patients at both acute and subacute stages after injure. In acute stage, patients were scanned 

82.64/17 (average/median) hours after injury. For subacute stage, patients returned 4-6 weeks 

after injury to take the second scan. 

Data were collected on a 3-Tesla Siemens Verio scanner with a 32-channel radiofrequency 

head-only coil. Diffusion imaging was acquired using a gradient echo EPI sequence in 30 

diffusion gradients directions with the following parameters: b = 1000, TR = 13300 ms, TE = 

124 ms, slice thickness = 2 mm, pixel resolution =1.333 x 1.333 mm, matrix size = 192 x 192, 

flip angle = 90°, and number of averages (NEX) =2. Resting state functional imaging was 

performed by a gradient echo EPI sequence with the following imaging parameters: TR/TE = 

2000/30 ms, slice thickness = 3.5 mm, slice gap = 0.595 mm, pixel spacing size = 3.125 x 3.125 

mm, matrix size = 64 x 64, flip angle = 90°, 240 volumes for whole-brain coverage, NEX = 1. 

During resting state scans, subjects were instructed to keep their eyes closed. 

METHOD 

Each DICCCOL node is a region of interest (ROI) (Zhu, Li, Guo, et al. 2013). The 

connectivity between DICCCOLs was obtained based on DTI/rsfMRI data to construct 

structural/functional networks. The group-wise common clusters were calculated based on multi-

view spectral clustering algorithm (Chen, Li, Zhu, Jiang, et al. 2013) for structural or functional 
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networks separately by taking the brain network of each subject as a ‘view’. Based on those 

clusters, we further analyzed the connection changes of mTBI patients over the recovery period. 

Preprocessing 

Preprocessing of DTI data was performed using FSL toolbox (Jenkinson et al. 2012) 

which includes eddy current correction, skull and background removal, fractional anisotropic 

(FA) estimation. The white matter (WM)/grey matter (GM) was segmented based on FA image 

and WM surface was then reconstructed (Liu et al. 2007, 2008). DTI tractography was 

performed based on MedINRIA (Toussaint et al. 2007) to reconstruct fiber streamlines. For 

rsfMRI data, the first 5 volumes were removed before preprocessing. Then, brain extraction, 

motion correction, slice-time correction, spatially smoothing (FWHM=5mm), temporal 

prewhitening, grand mean removal, and temporally high-pass filter were applied on rsfMRI data 

accordingly in FSL (Jenkinson et al. 2012). 

Predict DICCCOLs and Construct Brain Networks 

DICCCOLs were predicted based on the DTI derived fiber streamlines and the 

reconstructed cortical surface by using the tool downloaded from http://dicccol.cs.uga.edu/. In 

brief, DICCCOL is composed by 358 cortical landmarks obtained based on group-wise training 

process described in (Zhu, Li, Guo, et al. 2013). These landmarks were defined as a patch on 

cortical surface and the DTI derived fiber connection profile of each patch is consistent across 

individuals. To predict DICCCOLs on a new subject, the subject’s brain will be aligned to the 

template space. Then for each ROI, the closest point to the template center will be identified on 

the subject’s reconstructed cortical surface as an initial location. By searching around the 

neighborhood of this initial location, the patch with similar structural connection profile to the 

template will be identified as the location of this ROI on the new subject. 

http://dicccol.cs.uga.edu/
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Based on obtained 358 ROIs, brain networks were reconstructed by similar approaches in 

(Chen, Li, Zhu, Jiang, et al. 2013; Zhu, Li, Terry, et al. 2013). The average fractional anisotropy 

(FA) value along the fiber streamlines connecting each pair of DICCCOLs was taken as the 

structural connection strength. And if there is no fiber streamline connecting two DICCCOLs, 

the connection strength between them will be set 0. The functional connection strength between 

each pair of DICCCOLs was defined by the Pearson correlation between preprocessed rsfMRI 

signals derived from GM area of DICCCOLs. The obtained structural and functional connection 

matrices were represented by symmetric affinity matrices. 

Multi-view Spectral Clustering 

To analyze brain network alternations of mTBI patients as well as the network 

longitudinal changes during recovery, common network clusters were needed for comparison 

between different populations and different stages. Thus, we applied multi-view spectral 

clustering which has been shown to be reliable in obtaining group-wisely consistent brain 

network clusters (Chen, Li, Zhu, Jiang, et al. 2013). Specifically, the brain network of each 

subject was taken as a view. Its affinity matrix W will be projected to the eigenspace of the graph 

Laplacian of other views and then projected back such that: 

 2/))((),( TTT WUUWUUUWproj   (8.1) 

where 
knU  is the first k eigenvectors corresponding to the top k smallest eigenvalues of 

graph Laplacian of other affinity matrices and n = 358. The idea is similar to principal 

component analysis. Since the space represented by the top eigenvectors of graph Laplacian of 

affinity matrices can be viewed as the principal direction of corresponding graphs in which the 

graph expands most, by projecting other graphs to this space, the common part (the connections 

within clusters) will be retained and the disagreed part (the connections between clusters) will be 
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eliminated. Then by doing so iteratively, the networks will converge to common connections and 

the common clusters across individuals will be retained. For the detailed mathematical 

derivation, algorithm description, and experimental validations, one can refer to (Chen, Li, Zhu, 

Jiang, et al. 2013).  

RESULTS 

By performing multi-view spectral clustering on all the 80 affinity matrices derived from 

the data obtained from the two scans of 24 healthy controls and 16 mTBI patients, the clustering 

algorithm has converged to 13 common structural network clusters and 8 common functional 

network clusters (Figure 8. 2). The network clusters largely agree with the ones obtained from 

young healthy subjects in previous works (Chen, Li, Zhu, Jiang, et al. 2013). The average within 

and between clusters connectivity are shown in Figure 8. 3(a) for structural networks and Figure 

8. 3(c) for functional networks, respectively. It is obvious that within cluster connections is 

stronger than between cluster connections. 

 

Figure 8. 2. Visualization of brain network clusters. Each DICCCOL is represented by a bubble color-

coded by clusters (color legend on right). (a) 13 group-wise consistent structural network clusters. (b) 8 

group-wise consistent functional network clusters. 
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For structural connections, the connectivity pattern is relatively similar between patient 

and control populations. Comparing the differences between the two scans of the same group 

(Figure 8. 3(b)), the brain network of normal controls is relatively consistent between two scans 

while those of mTBI patients from the acute stage to the subacute stage presented significant 

changes in brain networks. However, it is intriguing that the majority of the changes are the 

decreased connection strength during recovery such as those highlighted by green and red arrows 

in Figure 8. 3(b). Another intriguing observation is that, some of these changes were not detected 

by paired-sample t-test (as highlighted by red arrows in Figure 8. 3(b)). Meanwhile, with paired-

sample t-test, the connections that do not change significantly could be selected (magenta arrows 

in Figure 8. 3(b)). This is partially because though the strength of the connection is extremely 

small, the t-test will still pick up the connections when there is a relative significant difference 

between groups (E.g. average connection is 0.01 for one set of data and 0.005 for another set). 

However, we are not interested in such connection in our analysis. And we would like to call 

attention on the usage of t-test in such applications. 

A similar observation has also been obtained in functional connection between clusters. 

The network connection between and within clusters remained similar between two scans of 

healthy subjects while significant changes in cluster connections were observed between two 

stages of mTBI patients Figure 8. 3(d)). 

In our analysis, we noticed that the connection within and between structural cluster 5 

and cluster 12 both decreased in subacute stage. By comparing the structural network of mTBI 

patients and healthy controls, the connections related to these two clusters is also weaker than 

normal controls for patients (Figure 8. 4). These two clusters locate at the occipital lobe and 

temporal lobe of right hemisphere Figure 8. 5(a). Since the major fiber pathway in this area is 
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inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF), it may suggest longitudinal 

degradation of these tracts over time. Interestingly, the functional connection between cluster 2 

(temporal lobe, Figure 8. 5(b)) and other clusters increased significantly during brain recovery, 

which is consistent with the observation based on structural networks. 

 

Figure 8. 3. Average (a) structural connection density or (c) functional connection strength within and 

between clusters for each group of scans. Comparison between two scans for each population for (b) 

structural or (d) functional connection were shown on the bottom accordingly. In the matrix shown in (b) 

and (d), top right part is the absolute difference between the average connection densities of two 

scans/stages; and bottom left part is the significantly changed connections (P<0.05) tested by paired-

sample t-test. 
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Figure 8. 4. Comparison of average structural connection densities between healthy controls and mTBI 

patients. In each subfigure, top right part of the matrix is the difference (control minus patient) and 

bottom left part is the significant different connections tested by two-sample t-test with 1000 

permutations. 

 

Figure 8. 5. (a) Visualization of structural network cluster 5 (red) and 12 (blue). (b) Visualization of 

functional network cluster 2 (red). Each cluster is highlighted by arrows of different colors. 

DISCUSSION AND CONCLUSION 

Mounting evidence in histopathology demonstrates that TBI has a progressive nature. 

After initial traumatic insult, the axons will undergo a temporal progression of degradation to 

final disruption. Recent evidence demonstrates that a prior history of brain injury, even a 
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concussion, will make the patient more vulnerable to poor outcome after the second insult. Our 

structural network finding also demonstrates the progressive degradation nature in large-scale 

networks in mTBI. Furthermore, despite brain concussion, most mTBI patients enjoy a full 

recovery within several months from a neurocognitive assessment perspective. This leads to the 

hypothesis that brain is highly plastic. Our data further support this hypothesis. In spite of 

structurally reduced connectivity in the temporal white matter, this area tends to increase 

functional connectivity with other regions of the brain to compensate. Putting together, our work 

represents the first finding on the progressive pathology of brain injury and functional 

compensation after mTBI from a large scale network perspective. Particularly the identification 

of brain networks undergoing structural degradation and functional plasticity would help 

clinicians to make proper neurorehabilitation plan to proactively treat the patient for a speedy 

recovery. 
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CHAPTER 9 

DISCUSSION AND CONCLUSION 

 This thesis systematically introduced my Ph.D. studies on brain connectome in different 

scales ranging from micro-scale to macro-scale. A wide range of topics has been covered 

including different imaging modalities, different resolution scales, different species and objects, 

and different analysis methods. Figure 9. 1 shows a summary of these topics involved. Such 

variability is due to the interdisciplinary nature of brain connectome study and is also the major 

challenging of brain connectome studies and also requires researchers equipping a 

comprehensive background of neuroscience. 

 

Figure 9. 1. Summary and overall vision of my research topics on brain connectome. 



 

180 

In this chapter, I will summarize my contributions in computational scale and research 

philosophies as a computer scientist. The major contributions of my Ph.D studies includes high-

throughput computing tools for neuroimage analysis, automatic neuron reconstruction software 

(chapter 2, 3), computational analysis frameworks for across scales (chapter 4), across species 

(chapter 5), and group-wise (chapter 6) comparison of neuron wiring, multi-modalities learning 

algorithms for brain network fusion (chapter 7, 8), and the corresponding novel neurology 

findings. They can be further summarized into three major topics as shown in Figure 9. 1: (1) 

high throughput computing, (2) multi-modality analytics, and (3) population analytics. 

HIGH-THROUGHPUT COMPUTING 

Thanks to the development of bio-imaging techniques, acquiring a large population of 

neuroimaging data in good quality are more feasible than ever. And thanks to the trend of open 

source in neuroscience field, more and more neuroimaging data are now shared online or 

between labs. Data availability is no longer the major reason that slows the findings in the 

neuroscience field. Instead, the lack of efficient computational pipelines is becoming the 

bottleneck. Despite the previously mentioned approaches from the perspective of analytical 

strategy, the throughput of the computational tool is also very important. To increase the 

throughput, two features are very important for tool design: 1) ‘smart’; 2) high-performance 

computing. 

Smart Softwares 

Today, Google cars can already handle complicated road conditions and drive 

automatically on the road without human intervention. However, in most biology labs, scientists 

still have to repeat their experiments again and again to acquire data. As a computer scientist, I 

would like to build smarter tools to free those great minds from labor works so they can focus on 
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more intelligent activities. For instance, I developed NeuronStitcher which is the first tool that 

allows neuroscientists to automaticaly/semi-automaticaly stitch neuron fragments from sliced 

brain tissues (Chapter 3). Due to the limited imaging depth of microscopic, to study complete 

neuron morphology, researchers need to 1) physically section brains, 2) image such sections 

under the microscope, and 3) stack and align image sections one by one to generate a very big 

image volume. Before NeuronStitcher, step 3 can only be manually accomplished for confocal 

microscopic sections. Yet an accurate alignment is extremely difficult. The tool provided an 

efficient solution to this problem and has been integrated in the IVSCC pipeline of Allen 

Institute for Brain Science. In another work, I developed one of the first fully automatic software 

based on machine learning algorithms to reconstruct a 3D digital representation of neuron 

morphology (Chen, Xiao, et al. 2015) (Chapter 2). SmartTracing is a very powerful tool in that it 

is self-adaptive and does not need human intervention such as parameter tuning to generate 

results. 

High-performance computing 

Advanced computing framework such as network clusters, computer clouds, or graphic 

processing unit (GPU) is usually needed to speed up computations for big data. In my recent 

work in collaboration with Yu Zhao, we successfully reduced the running time of pairwise 

comparison between 35600 3-dimensional images of brain functional networks from 1280 hours 

to 3 days (Zhao et al. 2016). Our computational framework was implemented on Apache Spark, 

which provides a fast and general engine for big data processing. To our best knowledge, this is 

one of the earliest works in applying SPARK scalable computing framework in processing fMRI 

images. In the future, we will complete this high-performance fMRI analysis framework and 

release it to the field. 
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MULTI-MODALITIES, ACROSS SPECIES ANALYTICS 

Cross validate findings between different resolution scales  

Advanced neuroimaging techniques allow researchers to investigate brain on different 

scales which offer complementary pictures of the brain. Coarse scale images enable a global and 

population-wise view of the brain, while finer scale images carry more details and can be used to 

validate findings on coarser scales. For instance, diffusion imaging and tractography have been 

widely used to investigate structural connectome on macro-scale. Despite its capability in none-

invasively capturing whole-brain structural networks, the technique has been questioned for its 

limitations and biases for a long time. By comparing whole brain connectome derived from DTI 

tractography with the connectome derived from meso-scale neuron tracing study released by 

Allen Mouse Connectivity Atlas, my recent study has showed that a limited agreement between 

two scales can be achieved with gains in reliability and sensitivity that depend on the selection of 

optimal tractography parameters and parcellation schemes (Chen, Liu, et al. 2015) (Chapter 4). 

In the future, this framework can be applied in designing better DTI acquisition parameters and 

tractography models.  

Link findings across species 

The rationale for studying and comparing neuroimaging data across species are mainly 

two-fold: 1) the differences across species allow us to investigate how the brain evolves and how 

human-specific brain functions emerge; 2) the common brain mechanisms and anatomical 

regions across species allow us to investigate human brain based on animal models. In my 

previous studies in collaboration with Dr. Tuo Zhang, by analyzing MRI and DTI data across 

macaque, chimpanzee, and human brain, we found that the complexity of wiring patterns and 

folding patterns jointly evolves across species (Chen, Zhang, Guo, et al. 2013; Zhang, Chen, et 
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al. 2014) (Chapter 5). Further investigations showed that fiber orientation coincides with the 

bending direction of the gyral crest. This observation is consistent across the brains of three 

species we analyzed and support the theory that the wiring progress may regulate cortical 

convolution during brain development. In another study in collaboration with Xiao Li, we 

analyzed the gyral folding patterns across these three species (Li et al. n.d.) and quantified both 

preserved and evolved patterns. In the future, this comparison can be extended to more animal 

models such as mouse and rat brain. And we should also include more imaging modalities into 

analysis such as functional data or molecular data. 

Compare functional and structural connectome  

If we view the brain as a computer, then the structural (anatomical) connectome is the 

hardware of brain and the functional connectome is the software in the brain. Most of the 

previous studies on mental disorders largely rely on a single imaging modality and thus only 

focused on one aspect of the brain. However, a comprehensive understanding of brain requires 

viewing brain from both aspects. Based on the group-wise analysis approaches (Zhu, Li, Guo, et 

al. 2013), I found that structural connectivity is more consistent across individuals in comparison 

with the functional connectivity (Chen, Li, Zhu, Jiang, et al. 2013). This finding is expected 

given that the functional connectivity may dynamically alter between different brain states. By 

fusing the connectome across individuals, we can reproducibly identify brain network clusters 

for both functional and structural connectivity among different groups of subjects. This 

framework offered new insight on the joint analysis of brain connectome and has been 

successfully applied to mTBI studies (Chen, Iraji, et al. 2015). In the future, the method will be 

extended to the analysis of different brain disorders as well as joint analyses across multiple 

brain diseases. 
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GROUP-WISE ANALYTICS 

Defining reliable, reproducible and accurate brain regions of interest (ROIs) is the first 

and fundamentally important step in performing group-wise analysis of brain connectome. 

Traditional approaches rely on registering individual brains to a common template brain with 

atlas derived from domain knowledge (E.g. Brodmann area) to define common ROIs. However, 

automatic registration algorithm has limited accuracy in mapping ROIs due to the variability 

across individuals. Although more precise ROIs can be obtained by manual annotation of 

experts, it is not applicable to large populations. Moreover, finer parcellation of ROIs beyond 

current domain knowledge is required for accurate mapping of functional ROIs (E.g. pre-central 

gyrus should be further parcellated into different functional regions).  

Facing this challenge, my colleagues and I have made great progress on defining brain 

ROIs (Liu 2011) in the past 6 years. Together with my colleague Dr. Dajiang Zhu and Dr. 

Kaiming Li, we reproducibly and accurately identified and predicted brain ROIs with consistent 

structural connectivity across individuals (Chen, Zhang, and Liu 2013; Zhu, Li, Guo, et al. 

2013). Specifically, we defined a set of accurate and efficient descriptors for brain connectivity 

profiling. Then based on a data-driven exhaustive search, regions with common connectivity 

profiles were identified. For instance, in my works, 12 consistent white matter hubs were 

reproducibly identified (Chen, Zhang, and Liu 2013) (Chapter 6) and pre-central/post-central 

gyri were consistently parcellated into multiple sections (Chen, Cai, et al. 2012). I also included 

different metrics to further refine ROIs including functional connectivity profile (Chen, Li, Zhu, 

and Liu 2013), inter-regional connectivity profile (Chen et al. 2014), and global distance 

constraint (Yuan et al. 2015). These ROI systems will serve as a GPS map of brains. In the 
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future, the similar approach can be extended to identify ROIs that are not only consistent across 

individuals but also consistent across species. 

According to the ‘fingerprint’ concept suggested by Passingham that each brain’s 

cytoarchitectonic area has a unique set of extrinsic inputs and outputs that largely determines the 

functions that each brain area performs, those ROIs with consistent structural connectivity are 

ideal for both functional and structural connectome studies. With the identified ROIs as 

foundations, I studied the regularity and variability of both functional and structural connectome 

across populations in both healthy brains and diseased brains. Specifically, I adopted a novel 

algorithm called multi-view spectral clustering to fuse functional connectome and structural 

connectome across individuals to identify common brain network modules (Chen, Li, Zhu, Jiang, 

et al. 2013) (Chapter 7). Based on this framework, I performed longitudinal and group-wise 

analysis on mild traumatic brain injury subjects and found that after brain injury decreased inter -

regional structural connectivity will be complemented by increased functional connectivity 

(Chen, Iraji, et al. 2015; Iraji et al. 2016) (Chapter 8). In the future, the method can be widely 

applied to larger database analysis which includes many more subjects of variety brain diseases 

across different imaging sites for a deep understanding of abnormal connectome in mental 

disorders. 

Besides model driven approaches, machine learning algorithms are also powerful tools in 

identifying brain regions of interest (Lv, Jiang, Li, Zhu, Chen, et al. 2015; Lv, Jiang, Li, Zhu, 

Zhang, et al. 2015). Specifically, in collaboration with Yu Zhao, we have developed a large-scale 

computing framework to study functional network alternations in Autism patient brains (Zhao et 

al. 2016). By applying sparse representations and dictionary learning on resting-state fMRI 

images, the brain was decomposed into hundreds of functional networks. After pair-wisely 
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comparing decomposed networks across 178 subjects, we identified 144 group-wisely common 

functional networks. Further analysis of these networks showed abnormality in both inner-

network connectivity and inter-network interactions. Traditional fMRI analysis only focused on a 

few brain networks such as default mode networks. The novel techniques proposed in this work 

may revolute future fMRI studies on brain functional connectome such that a more 

comprehensive understanding of brain functional networks than before is possible. In another 

work with Yujie Li, we found that machine learning approach can also identify ROIs from gene 

expression data. By applying the data-driven sparse coding framework on genome-wide in situ 

hybridization image data set released by Allen Mouse Brain Atlas, we identified transcriptome 

organization of mouse brain that displayed robust regional specific molecular signatures and 

corresponded to canonical neuroanatomical subdivisions consisting of discrete neuronal 

subtypes. In the future, similar methods can be applied on different imaging modalities. 

Moreover, it is also important to correlate those ROIs obtained from different imaging 

modalities. Traditionally, brain ROIs are defined and predicted based on a single image modality 

(e.g. manually annotated on averaged MRI templates). My colleagues have shown that by using 

structural connectivity consistency as constraint, we can more accurately identify brain ROIs 

computed from task fMRI data. My work further showed that by including the predictability of 

functional connectivity from structural connectivity into object function, the brain ROIs initially 

obtained based on structural information can be optimized to preserve better anatomical 

consistency across individuals (Chen, Li, Zhu, and Liu 2013). In the future, it is necessary and 

much more meaningful to define and optimize brain ROIs by including joint information from 

multiple modalities such as functional connectivity (fMRI), structural connectivity (DTI), 

anatomical information (MRI, Nissle stain), and gene expression data.   
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