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Abstract 

      Distance correlation is a new measure of relationships between random variables 

introduced by Szekely et al (2007). Distance correlation is determined by the distances 

over all pairs of points while Pearson correlation is determined by the distance between 

each point and mean. Therefore, distance correlation has properties of a true dependence 

measure. In this thesis, we build 6 best models for 6 types of crop (barley, canola, flax, 

oats, pea and spring wheat) in Regina, Saskatchewan by using distance correlation. 

Despite the complexity of other factors, we show how temperature and precipitation 

affect crop yield in the Canadian growing season from April to September. Equipped 

with this information, we are able to estimate the future viability as well as the supply of 

crops in Canada in response to climate change. 
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CHAPTER 1 

INTRODUCTION 

          In the chapter 2, we introduce the definition of distance correlation as well as some 

properties of it. Then we examine distance correlation R and Pearson correlation r for both linear 

and nonlinear relationships by simulating data. In nonlinear cases, we investigate six patterns 

(wave, circle, quadratic, diamond, X-shape and cluster) and compare several statistics such as 

Pearson correlation r and distance correlation R , Pearson covariance cov and distance covariance 

covd , p -value for both Pearson correlation test (
0 : 0;H   : 0aH   )and distance correlation 

test ( 0 ,: ;X Y X YH f f f ,:a X Y X YH f f f ). 

          In the chapter 3, we perform exploratory data analysis. The crop yield dataset includes 

yield information on 15 food crops observed in different regions within the provinces of Alberta, 

Saskatchewan and Manitoba, accounting for 84% of the total crop land in Canada. In this thesis, 

we investigate 6 different types of crops (barley, canola, flax, oats, peas and spring wheat) in 

Regina of Saskatchewan. The climate variables were recorded daily and include maximum 

temperature, minimum temperature, mean temperature, rainfall, snowfall and total precipitation 

(in which snowfall is converted to a rain equivalent). The daily climate record in Regina spans 

over 100 years, which is from 1891 to 2008. The growing and harvest season in Canada is from 

April to September while the fallow is from October to March of the next year. Despite the 
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complexity of other factors, we show that how temperature and precipitation affect crop yield in 

growing season from April to September. 

          In chapter 4, we use both distance correlation and Pearson correlation to help us select 

significant variables. We analyze 6 different crops which are barley, canola, flax, pea, oats and 

spring wheat. For each crop, we start with two full models. The first full model (Full 1) includes 

significant variables only. The second full model (Full 2) includes not only significant variables 

but also their corresponding interaction terms. Further, we also consider cumulative precipitation 

in February and March (fallow months) and include this term in both Full 1 and Full 2. Then we 

perform backward selection, forward selection, stepwise selection from null, and stepwise 

selection from full on both of them. We take consideration of various factors such as RMSE, 

RSS, AIC, BIC, R square, number of parameters and so on and select the best model from each 

starting model. Then we compare the two best models to get the final best model for each crop. 

Our cutoff line for p -value is 0.1which is α level. 

          In chapter 5, we make a conclusion and summarize all the best models. 

          In the last chapter, we give the further directions that how to make our models more 

accurate.
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CHAPTER 2 

DISTANCE CORRELATION 

2.1     INTRODUCTION 

          Distance correlation is a new concept which was first introduced by Szekely, Rizzo and 

Bakirov (2007). It is a new measurement of relationships between random vectors. Distance 

correlation is determined by the distances over all pairs of points while Pearson correlation is 

determined by the distances between each point and mean. Therefore, distance correlation has 

properties of a true dependence measure, analogous to Pearson correlation r . For all 

distributions with finite first moments, distance correlation ( , )R X Y  is defined for X andY

in arbitrary dimensions. Distance correlation R satisfies 0 1R  , and we have 0R  if and 

only if X and Y  are independent while 1R  if and only if X and Y are perfectly dependent. 

However, since distance correlation R is non-negative number, we are unable to tell whether two 

vectors are positively or negatively correlated to each other. Distance correlation can only tell us 

how strongly two vectors are correlated to each other. 
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2.2   DEFINITION   

2.2.1    Distance dependence statistics 

        For an observed random sample ( , ) {( , ) : 1,..., }k kX Y X Y k n  from the joint distribution of 

random vectors X in pR  and Y in qR , define 
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where , 1,..., .k l n  

2.2.2    Distance covariance 

        The empirical distance covariance ( , )nV X Y is the nonnegative number defined by 
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2.2.3    Distance correlation 

        The empirical distance correlation ( , )nR X Y is the square root of 

𝑅𝑛
2(𝑋, 𝑌) = {

𝑉𝑛
2(𝑋, 𝑌)

√𝑉𝑛
2(𝑋)𝑉𝑛

2(𝑌)
, 𝑉𝑛

2(𝑋)𝑉𝑛
2(𝑌) > 0.

0, 𝑉𝑛
2(𝑋)𝑉𝑛

2(𝑌) = 0.

  We may find 
nR is easy to compute and it is a good empirical measure of dependence. It is 

defined by the distances over all pairs of points instead of the distances between points and mean. 

         Note that the statistic ( ) 0nV X  if and only if every sample observation is identical. Indeed, 

if ( ) 0nV X  , then 0klA  for , 1,..., .k l n Thus 0 kk k kA a a a        implies that 

/ 2k ka a a    , and 0 kl kl k l kl k l p
A a a a a a X X          , so we have

1 nX X   . 

2.3   SIMULATION AND COMPARISON  

        Pearson Correlation r , unfortunately, is not a useful measure of dependency in general. A 

lack of Pearson correlation or even 0r  does not mean there is no relationship between two 

variables. Pearson correlation r works well as a measure of linear dependency but not for 

nonlinear relationships. Distance correlation R , as we mentioned above, is computed by the 

distances over all pairs of points instead of the distances between points and the mean. Therefore, 

distance correlation has properties of a true dependence measure for both linear and nonlinear 

relationships. 

        In this section, we examine distance correlation R and Pearson correlation r for both linear 

and nonlinear relationships by simulating data. In nonlinear cases, we investigate six patterns 
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(wave, circle, quadratic, diamond, X-shape and cluster) and compare several statistics such as 

Pearson correlation r and distance correlation R , Pearson covariance cov and distance covariance 

covd , p -value for both Pearson correlation test (
0 : 0;H   : 0aH   )and distance correlation 

test ( 0 ,: ;X Y X YH f f f ,:a X Y X YH f f f ). 

2.3.1    Linear relationship 

         We propose the following simple linear model: 

y x    

where x is sampled from uniform distribution with minimum = -1 and maximum = 1. The 

error term is from a normal distribution with mean = 0 and standard deviation = 0.2. 

          We use R to randomly sample 200 times and calculate Pearson correlation, distance 

correlation, Pearson covariance, distance covariance, p -value of Pearson correlation test and p -

value of distance correlation, respectively. Then, we repeat this procedure for 100 times and we 

calculate the mean, standard deviation and quantiles for each statistic. Figure 2.3.1 is a sample 

scatter plot with best fitting line. 

Figure 2.3.1 Simple Linear Simulation 



7 
 

Below is table 2.3.1 which is the summary of statistics. 

Table 2.3.1 Summary of Statistics for linear relationships 

  Mean Standard Dev. Quant. at 2.5% Quant. at 97.5% 

Correlation Pearson 0.9442 0.0071 0.9294 0.9579 

Distance 0.9387 0.0088 0.9206 0.9555 

Covariance Pearson 0.3302 0.0223 0.2878 0.3764 

Distance 0.3968 0.0206 0.3584 0.4382 

p -value Pearson <0.0001 <0.0001 <0.0001 <0.0001 

Distance <0.0001 <0.0001 <0.0001 <0.0001 

 

          In contrast, both Pearson correlation and distance correlation detect the true dependence 

between simulated data x and y very well. The mean of Pearson correlation and the mean of 

distance correlation are close to each other and both of them are greater than 0.9 which indicate 

that x and y are strongly correlated. Mean p -values for both Pearson correlation test and distance 

correlation test are extremely close to 0. In this case, we have sufficient evidence to reject the 

null hypothesis (
0 :H x and y are uncorrelated.) and conclude that x and y are related to each other   

( :aH x and y are correlated.). Therefore, if two vectors are linearly related, we may make a 

similar conclusion from either Pearson correlation or distance correlation. 

 

2.3.2    Wave Shape 

          We propose the following nonlinear model: 

1
2sin( )

2
y x    
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where x is sampled from uniform distribution with minimum = - π and maximum = 7π.The error 

term is sampled from a normal distribution with mean = 0 and standard deviation = 1 (more 

noise). 

          We sample and compute statistics as before. Figure 2.3.2 is a sample scatter plot with best 

fitting line.  

 

 

 

 

 

 

 

 

Figure 2.3.2 Wave Shape Simulation 

Below is table 2.3.2 which is the summary of statistics. 

Table 2.3.2 Summary of Statistics for Wave relationships 

  Mean( =0) Standard Dev. Quant. at 2.5% Quant. at 97.5% 

Correlation Pearson -0.0036(0.007) 0.0668 -0.1319 0.1295 

Distance 0.2309(0.270) 0.0153 0.2095 0.2632 

Covariance Pearson -0.0419 0.8412 -1.6882 1.6268 

Distance 0.5758 0.0435 0.5066 0.6660 

p -value Pearson 0.5113 0.2667 0.0499 0.9179 

Distance 0.0073 0.0037 0.0050 0.0150 
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          Pearson correlation r is extremely close to 0 which tells us that there is no significant 

relationship between x and y . In contrast, distance correlation R does tell us that x and y might be 

related to each other although distance correlation R is not big. Further, the mean p -value for the 

Pearson correlation test is 0.5113. We have insufficient evidence to reject the null hypothesis 

(
0 :H x and y are uncorrelated.). In contrast, the mean p -value for the distance correlation test is 

0.0073. At α level 0.1, we have sufficient evidence to reject the null hypothesis (
0 :H x and y are 

independent.). We have totally different conclusions when x and y are wave (nonlinear) 

correlated. Therefore, we conclude that distance correlation R outperforms Pearson correlation r

at least if two vectors are nonlinearly correlated. Distance correlation may be able to detect the 

true nonlinearly dependence between x and y . 

 

2.3.3    Circle Shape 

          We propose the following nonlinear model: 

2 2 1x y   

where 
1cosx    and 

2siny    , θ is sampled from uniform distribution with minimum = 0 

and maximum = 2π. The random error terms 
1  and 

2 are sampled from normal distribution 

with mean = 0 and standard deviation = 0.1 (less noise). 

          We sample and compute the same statistics as before. Figure 2.3.3 is a sample scatter plot 

with best fitting line. 
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Figure 2.3.3 Circle Shape Simulation 

Below is table 2.3.3 which is the summary of statistics. 

Table 2.3.3 Summary of Statistics for Circle relationships 

  Mean( =0) Standard Dev. Quant. at 2.5% Quant. at 97.5% 

Correlation Pearson -0.0019(0.000) 0.0544 -0.0919 0.0929 

Distance 0.2016(0.218) 0.0149 0.1751 0.2298 

Covariance Pearson -0.0010 0.0277 -0.0468 0.0472 

Distance 0.1110 0.0079 0.0970 0.1263 

p -value Pearson 0.5319 0.2193 0.1506 0.9499 

Distance 0.0135 0.0073 0.0050 0.0300 

 

          Pearson correlation r is close to 0 which tells us that x and y are uncorrelated to each other. 

In contrast, distance correlation R tells us that x and y might be related to each other since 

distance correlation R is equal to 0.2016. Further, the mean p -value for the Pearson correlation 

test is 0.5319 giving insufficient evidence to reject the null hypothesis and we conclude that
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x and y are uncorrelated. In contrast, the mean p -value for distance correlation test is 0.0135. At 

α level 0.1, we have sufficient evidence to reject the null hypothesis and we conclude that x and

y are correlated to each other. Again, we make different conclusions when x and y are circle 

(nonlinearly) dependent.  

 

2.3.4    Peak Shape 

          We propose the following nonlinear model: 

21 ( 100)
exp

2 8

x
y 

  
  

 
 

where x is sampled from uniform distribution with minimum = 80 and maximum = 120. The 

random error term is sampled from normal distribution with mean = 0 and standard deviation = 

0.02 (less noise). 

          We randomly sample and compute the same statistics as before. Figure 2.3.4 is a sample 

scatter plot with best fitting line. 
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Below is table 2.3.4 which is the summary of statistics. 

Table 2.3.4 Summary of Statistics for Peak relationships 

  Mean( =0) Standard Dev. Quant. at 2.5% Quant. at 97.5% 

Correlation Pearson -0.0029(0.003) 0.0360 -0.0626 0.0760 

Distance 0.3575(0.365) 0.0217 0.3144 0.3976 

Covariance Pearson -0.0047 0.0559 -0.1013 0.1098 

Distance 0.2950 0.0338 0.2356 0.3603 

p -value Pearson 0.6980 0.2027 0.2814 0.9826 

Distance 0.0050 <0.0001 0.0050 0.0050 

 

          Pearson correlation r tells us that x and y are uncorrelated to each other. In contrast, 

distance correlation R tells us that x and y might be related to each other since the mean distance 

correlation R is equal to 0.3575. Further, the mean p -value for the Pearson correlation test is 

0.6980. We have insufficient evidence to reject null hypothesis and we conclude that x and y are 

uncorrelated. In contrast, the mean p -value for the distance correlation test is 0.0050. At α level 

0.1, we have sufficient evidence to reject the null hypothesis and we conclude that x and y are 

correlated to each other. We make different conclusions when x and y are quadratic (nonlinearly) 

correlated. 

 

2.3.5    Diamond Shape 

          We propose the following nonlinear model: 

1

2
2,

3
y x      

2

2
2,

3
y x      

3

2
2,

3
y x       

4

2
2.

3
y x  
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          We simulate and study the data points in the area whose boundaries are the above four 

lines, where ‘x’ is sampled from uniform distribution with minimum = -3 and maximum = 3. The 

error term is sampled from normal distribution with mean = 0 and standard deviation = 0.05 

(less noise). We randomly sample around 500 times to fill in the shape and calculate the same 

statistics as before. Figure 2.3.5 is a sample scatter plot with best fitting line. 

 

 

 

 

 

 

 

 

Figure 2.3.5 Diamond Shape Simulation 

Below is table 2.3.5 which is the summary of statistics. 

Table 2.3.5 Summary of Statistics for Diamond relationships 

  Mean( =0) Standard Dev. Quant. at 2.5% Quant. at 97.5% 

Correlation Pearson -0.0005(0.002) 0.0362 -0.0566 0.0774 

Distance 0.2092(0.211) 0.0130 0.1850 0.2308 

Covariance Pearson -0.0007 0.0416 -0.0662 0.0880 

Distance 0.1491 0.0109 0.1298 0.1685 

p -value Pearson 0.6366 0.2294 0.1878 0.9776 

Distance 0.0054 0.0015 0.0050 0.0100 
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          Pearson correlation r tells us that x and y are uncorrelated to each other. In contrast, the 

distance correlation R tells us that x and y might be related to each other since the mean distance 

correlation R is equal to 0.2092. Further, the mean p -value for Pearson correlation test is 0.6366. 

We have insufficient evidence to reject null hypothesis and we conclude that x and y are 

independent. In contrast, the mean p -value for distance correlation test is 0.0054. At α level 0.1, 

we have sufficient evidence to reject the null hypothesis and we conclude that x and y are related 

to each other. We make different conclusions when x and y are diamond (nonlinearly) correlated. 

2.3.6    X Shape 

          We propose the following nonlinear model: 

21
( 0.08)
4

y x      

where x is sampled from uniform distribution with minimum = -2 and maximum = 2. The error 

term is sampled from normal distribution with mean = 0 and standard deviation = 0.1. 

           We randomly sample around 500 times and calculate the same statistics as before. Figure 

2.3.6 is a sample scatter plot with best fitting line. 
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Below is table 2.3.6 which is the summary of statistics. 

Table 2.3.6 Summary of Statistics for X-shape relationships 

  Mean( =0) Standard Dev. Quant. at 2.5% Quant. at 97.5% 

Correlation Pearson -0.0041(-0.001) 0.0692 -0.1356 0.1252 

Distance 0.2775(0.294) 0.0139 0.2560 0.3091 

Covariance Pearson -0.0025 0.0414 -0.0793 0.0678 

Distance 0.1486 0.0068 0.1379 0.1616 

p -value Pearson 0.4104 0.3298 0.0058 0.9691 

Distance 0.0050 <0.0001 0.0050 0.0050 

 

          Pearson correlation r tells us that x and y are uncorrelated to each other. In contrast, the 

distance correlation R tells us that x  and y might be related to each other since distance 

correlation R is equal to 0.2775. Further, the mean p -value for Pearson correlation test is 04104. 

We have insufficient evidence to reject null hypothesis and we conclude that x and y are 

independent. In contrast, the mean p -value for distance correlation test is 0.0050. At α level 0.1, 

we have sufficient evidence to reject the null hypothesis and we conclude that x and y are related 

to each other. We make different conclusions when x and y are X shape (nonlinearly) correlated. 

 

2.3.7    Cluster Shape 

          We propose the following nonlinear model: 

2 2

1 1( 2) ( 2) 1,y x     
2 2

2 2( 2) ( 2) 1,y x     
2 2

3 3( 2) ( 2) 1,y x     
2 2

4 4( 2) ( 2) 1.y x     
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          We simulate and study the data points inside the four circles. ‘ x ’ is sampled from two 

uniform distribution with minimum = -3 and maximum = -1, minimum = 1 and maximum = 3 

respectively. The error term  is sampled from normal distribution with mean = 0 and standard 

deviation = 0.02 (less noise). 

           We randomly sample 1000 times to fill in the shape and calculate the same statistics as 

before. Figure 2.3.7 is a sample scatter plot with best fitting line. 

 

 

 

 

 

 

 

    Figure 2.3.7 Cluster Shape Simulation 

Below is table 2.3.7 which is the summary of statistics. 

Table 2.3.7 Summary of Statistics for cluster relationships 

  Mean Standard Dev. Quant. at 2.5% Quant. at 97.5% 

Correlation Pearson 0.0018 0.0093 -0.0142 0.0218 

Distance 0.0283 0.0044 0.0208 0.0399 

Covariance Pearson 0.0080 0.0402 -0.0617 0.0955 

Distance 0.0496 0.0078 0.0366 0.0702 

p -value Pearson 0.8100 0.1279 0.4919 0.9884 

Distance 0.7699 0.1608 0.3548 0.9926 
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          In contrast, both Pearson correlation and distance correlation make the same conclusion on 

the dependence between cluster shape simulated data x and y . The mean of Pearson correlation 

and the mean of distance correlation are close to 0 and both of them are smaller than 0.05 which 

indicate that x and y are uncorrelated to each other. Further, mean p -values for both Pearson 

correlation test and distance correlation test are very large. In this case, we have insufficient 

evidence to reject the null hypothesis and conclude that x and y are independent to each other.  

 

2.4   CONCLUSION  

          If two vectors are linearly correlated or independent, we may make similar conclusion 

from either Pearson correlation test or distance correlation test. If two vectors are nonlinearly 

correlated to each other, distance correlation outperforms Pearson correlation and distance 

correlation could help us to detect the true relationship. Distance correlation has properties of a 

true dependence measure. However, distance correlation can only tell us how strongly two 

vectors are correlated to each other while Pearson correlation could tell us whether two vectors 

are positively or negatively linearly related. Therefore, in this thesis, we use both distance 

correlation and Pearson correlation to help us select significant variables as well as full models 

and do the analysis (model selection).  
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CHAPTER 3 

EXPLORATORY DATA ANALYSIS 

 

3.1     INTRODUCTION 

          Canadian crop yield threatened by climate change (especially temperature and 

precipitation change) is one of the most important challenges in global food security. It is quite 

necessary to understand how climate change impacts Canadian crop yield in order to guarantee 

sufficient food supply for the continuous increasing demand while sustaining the already stressed 

environment. In this thesis, we are going to associate crop yield with key climate factors in the 

last 20 to 30 years for Canadian Pairie cropping systems, in order to identify if and how climate 

change (especially temperature and precipitation change) is impacting crop yield. Equipped with 

this information, we are able to estimate the future viability of food crops in Canada. Also, we 

could deal with our daily consuming better and do our best to prevent food shortage in the future.  

          The most complete data addressing the relationship between crop yield and climate on 

record has been collected by Dr. Rosalind Bueckert of the Department of Plant Sciences, The 

University of Saskatchewan. The crop yield dataset includes yield information on 15 food crops 

observed in different regions within the provinces of Alberta, Saskatchewan and Manitoba, 

accounting for 84% of the total crop land in Canada. In this thesis, we investigate 6 different 

types of crops (barley, canola, flax, oats, peas and spring wheat) in Regina of Saskatchewan. 

Different crop yield records span over different years which are between 20 and 30 years. These 
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yields were recorded in the unit of bushel/acre. Also, the density of seeds planted is assumed to 

be constant over each year. 

          The climate variables were recorded daily and include maximum temperature, minimum 

temperature, mean temperature, rainfall, snowfall and total precipitation (in which snowfall is 

converted to a rain equivalent). The daily climate record in Regina spans over 100 years, which 

is from 1891 to 2008. We made two important modifications in the climate data of Regina. First, 

we create a new variable named difference temperature which is defined by the difference 

between maximum temperature and minimum temperature. Second, we collapse the daily data 

into monthly data by computing the mean in each month for each variable. For example, for 

minimum temperature in January 1891, we add the 31 values (31 days) up and calculate the 

mean minimum temperature. This mean minimum temperature is one data point of monthly data 

which is for January in 1891.  

          The growing and harvest season in Canada is from April to September while the fallow is 

from October to March of the next year. Despite the complexity of other factors, we show that 

how temperature and precipitation affect crop yield in growing season from April to September. 

We assume that minimum temperature and maximum temperature are linearly independent 

variables, so that difference temperature and mean temperature are linearly independent as well. 

The variables such as minimum temperature and difference temperature are not linearly 

independent. We cannot include two dependent variables into one model. Otherwise, the least 

square estimates will not be unique. Therefore, we could only include either minimum and 

maximum temperature or difference and mean temperature in our full model. Here, we choose 

difference temperature and mean temperature as well as precipitation. 
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3.2     BARLEY 

          The yield data for barley is from 1976 to 2006 with no missing data. We investigate the 

individual dependency of yield data and difference temperature monthly data, mean temperature 

monthly data and precipitation monthly data during the growing season. The relationships are 

plotted as below.  

 

 

 

 

 

 

   Figure 3.2.1 Distance Correlation for Barley         Figure 3.2.2 Pearson Correlation for Barley 

          Based on Figure 3.2.1, we find that diffT in July, meanT in July and ppt in May have the 

relatively biggest distance correlation R . This indicates that they may significantly affect barley 

yield. In Figure 3.2.2, we find Pearson correlation r for diffT in July and meanT in July are 

negative while r is positive for ppt in May. This indicates that barley yield is negatively 

correlated to diffT and meanT in July and positively correlated to ppt in May. We may observe 

these relationships from the scatter plots with best fitting line shown as below. 
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Figure 3.2.3 Barley yield vs diffT in July            Figure 3.2.4 Barley yield vs meanT in July            

 

 

 

 

 

 

 

Figure 3.2.5 Barley yield vs ppt in May
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          Further, we calculate both distance correlation R and Pearson correlation r for all three 

variables in different months. We perform both distance correlation test and Pearson correlation 

test and obtain p -values for all of them. These statistics are presented in Table 3.2.1. 

Table 3.2.1 Summary of Statistics for Barley Yield 

 Barley Yield 

Distance Cor. ( p -value) Pearson Cor. ( p -value) 

 

 

Difference 

Temperature 

(diffT) 

April             0.2302 (0.8950) -0.0345 (0.8537) 

May             0.3139 (0.3500) -0.1951 (0.2929) 

June             0.3806 (0.0750) -0.3333 (0.0669) 

July           0.5107 (0.0150) -0.4925 (0.0049) 

August 0.2412 (0.8200) 0.1482 (0.4264) 

September 0.3120 (0.3100) 0.1582 (0.3953) 

 

 

Mean 

Temperature 

(meanT) 

April 0.2856 (0.5050) -0.1009 (0.5893) 

May 0.2809 (0.5300) -0.2019 (0.2760) 

June 0.3084 (0.3800) -0.2856 (0.1192) 

July 0.7370 (0.0050) -0.7060 (9.124e-6) 

August 0.4047 (0.0650) -0.3585 (0.0477) 

September 0.3174 (0.2800) 0.1741 (0.3489) 

 

 

Precipitation 

(ppt) 

April 0.2540 (0.6300) 0.0727 (0.6974) 

May 0.3582 (0.1150) 0.3461 (0.0565) 

June 0.2742 (0.4900) -0.0035 (0.9850) 

July 0.2450 (0.8100) 0.1442 (0.4389) 

August 0.2527 (0.6850) -0.1340 (0.4723) 

September 0.2318 (0.7900) -0.1281 (0.4921) 
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          Based on the numerical results in the above table, both distance correlation R and Pearson 

correlation r of diffT in July, meanT in July and ppt in May are the biggest values relatively. This 

result is consistent with our observations from distance correlation and Pearson correlation 

scatter plots. By checking p -values in both Pearson correlation test and Distance correlation test, 

we find diffT in June and July, meanT in July and August and ppt in May are significant at α 

level 0.1. This implies that barley yield is significantly impacted by these factors and all of them 

should be included into our full model. 

 

3.3     CANOLA 

          The yield data for canola is from 1980 to 2006 with no missing data. We investigate the 

individual dependency of yield data the same as barley. The relationships are plotted as below. 

 

 

 

 

 

 

Figure 3.3.1 Distance Correlation for Canola       Figure 3.3.2 Pearson Correlation for Canola
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          Based on Figure 3.3.1, we find that diffT in July, meanT in July and ppt in May have the 

biggest distance correlation R relatively. This indicates that climate in these months may 

significantly affect canola yield. In Figure 3.3.2, we find Pearson correlation r for diffT in July 

and meanT in July are negative while Pearson correlation r is positive for ppt in May. This 

indicates that canola yield is negatively correlated to diffT and meanT in July and positively 

correlated to ppt in May. We may also observe these relationships from the scatter plots with 

best fitting line shown as below. 

 

 

 

 

 

 

Figure 3.3.3 Canola Yield vs diffT in July             Figure 3.3.4 Canola Yield vs meanT in July 

 

 

 

 

 

 

 

 

                                     Figure 3.3.5 Canola Yield vs ppt in May



25 
 

           Further, we calculate both distance correlation R and Pearson correlation r for all three 

variables in different months. We perform both distance correlation test and Pearson correlation 

test and obtain p -values for all of them. These statistics are presented in Table 3.3.1. 

   Table 3.3.1 Summary of Statistics for Canola Yield 

 Canola Yield 

Distance Cor. ( p -value) Pearson Cor. ( p -value) 

 

 

Difference 

Temperature 

(diffT) 

April 0.3019 (0.5650) -0.0028 (0.9890) 

May 0.4021 (0.1550) -0.2899 (0.1424) 

June 0.4588 (0.0550) -0.4592 (0.0160) 

July 0.5833 (0.0050) -0.4974 (0.0083) 

August 0.2865 (0.6200) 0.1740 (0.3853) 

September 0.2883 (0.6750) 0.0972 (0.6300) 

 

 

Mean 

Temperature 

(meanT) 

April 0.2702 (0.7800) -0.0066 (0.9739) 

May 0.3440 (0.3450) -0.2969 (0.1326) 

June 0.3818 (0.2350) -0.3199 (0.1038) 

July 0.5874 (0.0100) -0.6253 (0.0005) 

August 0.3271 (0.3350) -0.2923 (0.1389) 

September 0.3238 (0.4050) 0.0078 (0.9692) 

 

 

Precipitation 

(ppt) 

April 0.2923 (0.6250) 0.2667 (0.1788) 

May 0.4182 (0.1100) 0.3150 (0.1095) 

June 0.3496 (0.2400) 0.1975 (0.3234) 

July 0.3009 (0.5750) 0.0310 (0.8782) 

August 0.3054 (0.4450) -0.2005 (0.3160) 

September 0.2281 (0.9300) -0.0695 (0.7305) 
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          Based on the numerical results in the above table, both distance correlation R and Pearson 

correlation r of diffT in July, meanT in July and ppt in May are the biggest values relatively. This 

result is consistent with our observations from distance correlation and Pearson correlation 

scatter plots. By checking p -values in both Pearson correlation test and Distance correlation test, 

we find diffT in June and July, meanT in July are significant at α level 0.1. The p -value of 

Pearson correlation test for meanT in June is equal to 0.1038 and the p -value of Pearson 

correlation test for ppt in May is 0.1095. Although the two p -values are slightly bigger than 0.1, 

we still consider the two factors as significant factors. Therefore, canola yield is significantly 

impacted by these 5 factors and all of them should be included into our full model. 

 

3.4     FLAX 

          The yield data for flax is from 1976 to 2006 with no missing data. We investigate the 

individual dependency of yield data the same as barley. The relationships are plotted as below. 

 

 

 

 

 

 

Figure 3.4.1 Distance Correlation for Flax              Figure 3.4.2 Pearson Correlation for Flax



27 
 

          Based on Figure 3.4.1, we find that diffT in July, meanT in July and ppt in June have the 

biggest distance correlation R  relatively. This indicates that climate in these months may 

significantly affect flax yield. In Figure 3.4.2, we find Pearson correlation r for diffT in July and 

meanT in July are negative while Pearson correlation r is positive for ppt in June. This indicates 

that flax yield is negatively correlated to diffT and meanT in July and positively correlated to ppt 

in June. We may observe these relationships from the scatter plots with best fitting line shown as 

below. 

 

 

 

 

 

 

  Figure 3.4.3 Flax Yield vs diffT in July              Figure 3.4.4 Flax Yield vs meanT in July 

 

 

 

 

 

 

 

 

                                     Figure 3.4.5 Flax Yield vs ppt in June
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           Further, we calculate both distance correlation R and Pearson correlation r for all three 

variables in different months. We perform both distance correlation test and Pearson correlation 

test and obtain p -values for all of them. These statistics are presented in table 3.4.1. 

   Table 3.4.1 Summary of Statistics for Flax Yield 

 Flax Yield 

Distance Cor. ( p -value) Pearson Cor. ( p -value) 

 

 

Difference 

Temperature 

(diffT) 

April 0.3753 (0.1450) -0.2755 (0.1335) 

May 0.4587 (0.0350) -0.3601 (0.0466) 

June 0.4510 (0.0400) -0.4405 (0.0131) 

July 0.5124 (0.0250) -0.5150 (0.0030) 

August 0.3139 (0.3200) 0.1758 (0.3443) 

September 0.2895 (0.5950) 0.0874 (0.6401) 

 

 

Mean 

Temperature 

(meanT) 

April 0.2911 (0.4800) -0.1059 (0.5706) 

May 0.3047 (0.3900) -0.1105 (0.5542) 

June 0.3574 (0.2200) -0.0087 (0.9630) 

July 0.5344 (0.0150) -0.4578 (0.0096) 

August 0.2599 (0.7500) 0.0417 (0.8238) 

September 0.3322 (0.2850) 0.1630 (0.3809) 

 

 

Precipitation 

(ppt) 

April 0.2982 (0.4550) 0.2686 (0.1440) 

May 0.2500 (0.8200) 0.1096 (0.5571) 

June 0.3954 (0.0650) 0.4048 (0.0239) 

July 0.3602 (0.1750) 0.2912 (0.1119) 

August 0.3091 (0.2950) -0.0866 (0.6432) 

September 0.1889 (0.9950) 0.0003 (0.9989) 
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          Based on the numerical results in the above table, both distance correlation R  and Pearson 

correlation r of diffT in July, meanT in July and ppt in June are the biggest values relatively. This 

result is consistent with our observations from distance correlation and Pearson correlation 

scatter plots. By checking p -values in both Pearson correlation test and Distance correlation test, 

we find diffT in May, June and July, meanT in July and ppt in June are significant at α level 0.1. 

This implies that flax yield is significantly impacted by these 5 factors and all of them should be 

included into our full model. 

 

3.5     OATS 

          The yield data for oats is from 1976 to 2006 with no missing data. We investigate the 

individual dependency of yield data the same as barley. The relationships are plotted as below. 

 

 

 

 

 

 

Figure 3.5.1 Distance Correlation for Oats          Figure 3.5.2 Pearson Correlation for Oats
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          Based on Figure 3.5.1, we find that diffT in July, meanT in July and ppt in June have the 

biggest distance correlation R relatively. This indicates that climate in these months may 

significantly affect oats yield. In Figure 3.5.2, we have the same conclusion as distance 

correlation R except Pearson correlation r of ppt in May which is bigger than r of ppt in June. The 

Pearson correlation r for diffT in July and meanT in July are negative while Pearson correlation r 

is positive for ppt in both May and June. This indicates that oats yield is negatively correlated to 

diffT and meanT in July and positively correlated to ppt in May and June. We may observe these 

relationships from the scatter plots with best fitting line shown as below. 
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           Further, we calculate both distance correlation R and Pearson correlation r for all three 

variables in different months. We perform both distance correlation test and Pearson correlation 

test and obtain p -values for all of them. These statistics are presented in Table 3.5.1. 

   Table 3.5.1 Summary of Statistics for Oats Yield 

 Oats Yield 

Distance Cor. ( p -value) Pearson Cor. ( p -value) 

 

 

Difference 

Temperature 

(diffT) 

April 0.2538 (0.8800) -0.0503 (0.7882) 

May 0.2892 (0.5950) -0.2009 (0.2785) 

June 0.4832 (0.0300) -0.4879 (0.0054) 

July 0.5935 (0.0050) -0.5743 (0.0007) 

August 0.2615 (0.6300) 0.1713 (0.3569) 

September 0.3131 (0.4200) 0.1012 (0.5855) 

 

 

Mean 

Temperature 

(meanT) 

April 0.2905 (0.5600) -0.1030 (0.5815) 

May 0.2869 (0.5550) -0.2215 (0.2310) 

June 0.3080 (0.6100) -0.2408 (0.1919) 

July 0.6415 (0.0050) -0.5814 (0.0006) 

August 0.3794 (0.1100) -0.2796 (0.1277) 

September 0.3325 (0.2250) 0.1630 (0.3810) 

 

 

Precipitation 

(ppt) 

April 0.2662 (0.7150) 0.0545 (0.7711) 

May 0.3387 (0.2300) 0.3454 (0.0570) 

June 0.3581 (0.1700) 0.2206 (0.2330) 

July 0.3312 (0.2850) 0.1775 (0.3395) 

August 0.2549 (0.7250) -0.0951 (0.6107) 

September 0.2035 (0.9650) -0.0236 (0.8996) 
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          Based on the numerical results in the above table, both distance correlation R and Pearson 

correlation r of diffT and meanT in July are the biggest values relatively. However, distance 

correlation R tells ppt in June is the biggest while Pearson correlation r indicates ppt in May is the 

biggest. This result is consistent with our observations from distance correlation and Pearson 

correlation scatter plots. By checking p -values in both Pearson correlation test and Distance 

correlation test, we find diffT in June and July, meanT in July and ppt in May are significant at α 

level 0.1. We don’t think ppt in June is significant because p -value of neither distance 

correlation test nor Pearson Correlation test is smaller than 0.1. Therefore, oats yield is 

significantly affected by 4 factors except ppt in June and all of 4 factors should be included into 

our full model. 

 

3.6     PEA 

          The yield data for pea is from 1987 to 2006 with no missing data. We investigate the 

individual dependency of yield data the same as barley. The relationships are plotted as below. 

 

 

 

 

 

 Figure 3.6.1 Distance Correlation for Pea           Figure 3.6.2 Pearson Correlation for Pea
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          Based on Figure 3.6.1, we find that diffT in June and ppt in May have the biggest distance 

correlation R relatively while meanT in May and June have almost the same biggest value R . 

This indicates that climate in these months may significantly affect pea yield. In Figure 3.6.2, we 

find Pearson correlation r for ppt in April, May and June are almost the same and positive. 

Pearson correlation r for diffT in June and meanT in May and June are negative. These imply 

how pea yield is associated with climate in these months. We could observe these relationships 

from the scatter plots with best fitting line shown as below. 
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           Further, we calculate both distance correlation R and Pearson correlation r for all three 

variables in different months. We perform both distance correlation test and Pearson correlation 

test and obtain p -values for all of them. These statistics are presented in Table 3.6.1. 

          Based on the numerical results in the above table, we find that diffT in June, meanT in 

May and June and ppt in May have the relatively biggest distance correlation R . If we check 

their Pearson correlation r , we could make a similar conclusion. The only difference is that 

Pearson correlation r also suggests r of ppt in April and June is almost the same as ppt in May. 

Further, by checking p -values in both Pearson correlation test and Distance correlation test, we 

find diffT in June, meanT in May and June and ppt in April, May and June are significant at α 

level 0.1. This implies that pea yield is significantly impacted by these 6 factors and all of them 

should be included into our full model. 
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Table 3.6.1 Summary of Statistics for Pea Yield 

 Pea Yield 

Distance Cor. ( p -value) Pearson Cor. ( p -value) 

 

 

Difference 

Temperature 

(diffT) 

April 0.4769 (0.1200) -0.2565 (0.2750) 

May 0.4927 (0.1200) -0.3486 (0.1320) 

June 0.7140 (0.0050) -0.6613 (0.0015) 

July 0.3827 (0.4000) -0.2857 (0.2221) 

August 0.2995 (0.7900) 0.0489 (0.8377) 

September 0.2938 (0.9400) -0.0158 (0.9473) 

 

 

Mean 

Temperature 

(meanT) 

April 0.4296 (0.2100) -0.0871 (0.7150) 

May 0.6381 (0.0250) -0.6238 (0.0033) 

June 0.6494 (0.0150) -0.7063 (0.0005) 

July 0.4362 (0.2150) -0.3379 (0.1451) 

August 0.2872 (0.9300) 0.0125 (0.9584) 

September 0.2963 (0.8650) -0.1244 (0.6013) 

 

 

Precipitation 

(ppt) 

April 0.4677 (0.0900) 0.3734 (0.1048) 

May 0.5586 (0.0250) 0.3666 (0.1118) 

June 0.4706 (0.1100) 0.3903 (0.0889) 

July 0.2991 (0.8850) -0.1415 (0.5517) 

August 0.3146 (0.8150) -0.0731 (0.7595) 

September 0.3164 (0.8000) 0.0628 (0.7525) 
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2.7     SPRING WHEAT 

          The yield data for spring wheat is from 1976 to 2006 with no missing data. We investigate 

the individual dependency of yield data the same as barley. The relationships are plotted as 

below. 

 

 

 

 

 

 

Figure 3.7.1 Distance Correlation for SWheat        Figure 3.7.2 Pearson Correlation for SWheat 

 

          Based on Figure 3.7.1, we find that diffT in July, meanT in July and ppt in May have the 

biggest distance correlation R relatively. This indicates that climate in these months may 

significantly affect spring wheat yield. In Figure 3.7.2, we find Pearson correlation r for diffT in 

July and meanT in July are negative while Pearson correlation r is positive for ppt in May. This 

indicates that spring wheat yield is negatively correlated to diffT and meanT in July and 

positively correlated to ppt in May. We may observe these relationships from the scatter plots 

with best fitting line shown as below. 
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Figure 3.7.3 SWheat Yield vs diffT in July          Figure 3.7.4 SWheat Yield vs meanT in July 

 

 

 

 

 

 

 

 

 

                                     Figure 3.7.5 SWheat Yield vs ppt in May 

          Further, we calculate both distance correlation R and Pearson correlation r for all three 

variables in different months. We perform both distance correlation test and Pearson correlation 

test and obtain p -values for all of them. These statistics are presented in Table 3.7.1. 

          Based on the numerical results in the above table, both distance correlation R and Pearson 

correlation r of diffT in July, meanT in July and ppt in May are the biggest values relatively. 
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This result is consistent with our observations from distance correlation and Pearson correlation 

scatter plots. By checking p -values in both Pearson correlation test and distance correlation test, 

we find diffT in June and July, meanT in June and July and ppt in May are significant at α level 

0.1. This implies that spring wheat yield is significantly impacted by these 5 factors and all of 

them should be included into our full model.    

Table 3.7.1 Summary of Statistics for Spring Wheat Yield 

 Spring Wheat Yield 

Distance Cor. ( p -value) Pearson Cor. ( p -value) 

 

 

Difference 

Temperature 

(diffT) 

April 0.2885 (0.6300) -0.0894 (0.6324) 

May 0.3509 (0.2950) -0.2873 (0.1170) 

June 0.4284 (0.0650) -0.3751 (0.0376) 

July 0.5609 (0.0050) -0.4950 (0.0046) 

August 0.3228 (0.3400) 0.2252 (0.2233) 

September 0.2651 (0.8400) -0.0079 (0.9662) 

 

 

Mean 

Temperature 

(meanT) 

April 0.2400 (0.9250) -0.0145 (0.9385) 

May 0.3003 (0.4900) -0.1528 (0.4120) 

June 0.4187 (0.1000) -0.2816 (0.1249) 

July 0.6095 (0.0050) -0.5299 (0.0022) 

August 0.3096 (0.3950) -0.1871 (0.3134) 

September 0.2418 (0.8550) 0.0219 (0.9071) 

 

 

Precipitation 

(ppt) 

April 0.2629 (0.7100) 0.2629 (0.3392) 

May 0.4273 (0.0400) 0.4153 (0.0202) 

June 0.3340 (0.2750) 0.1071 (0.5663) 

July 0.3383 (0.3000) 0.1328 (0.4762) 

August 0.3543 (0.2450) -0.2345 (0.2042) 

September 0.2493 (0.8050) 0.0319 (0.8647) 
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CHAPTER 4 

ANALYSIS AND DISCUSSION 

 

4.1     INTRODUCTION 

          In this chapter, we use both distance correlation and Pearson correlation to help us select 

significant variables. We analyze 6 different crops which are barley, canola, flax, pea, oats and 

spring wheat. For each crop, we start with two full models. The first full model (Full 1) includes 

significant variables only. The second full model (Full 2) includes not only significant variables 

but also their corresponding interaction terms. Based on Effect Heredity Principle, if both main 

effects are not significant, their interaction should not be significant, so we will not consider 

interaction terms if both main effects are not significant. Here, we take barley as an example for 

Full 2. We include ppt in May as a significant variable, we also include its corresponding 

interaction terms i.e. ppt in May*diffT in May and ppt in May*meanT in May. Since we 

introduce two new variables diffT in May and meanT in May in the interaction terms, we have to 

include diffT in May and meanT in May in our full 2 as well, analogous to other significant 

variables. Further, we also consider cumulative precipitation in February and March (fallow 

months) and include this term in both Full 1 and Full 2.  

          Once the two full models are determined, we perform backward selection, forward 

selection, stepwise selection from null, and stepwise selection from full on both of them. We take 

consideration of various factors such as RMSE, RSS, AIC, BIC, R square, number of parameters 

and so on and select the best model from each starting model. Then we compare the two best 



40 
 

models to get the final best model for each crop. Further, we use several statistical methods to 

check the goodness of fit of our best model (Q-Q plot, residual plots etc). Finally, we have 6 best 

models for 6 different crops and we will interpret them in details as well. Our cutoff line for p -

value is 0.1which is α level. 

 

4.2     BARLEY 

          From Table 3.2.1, we find that p -values of either distance correlation test or Pearson 

correlation test for difference temperature in June and July, mean temperature in July and August 

and precipitation in May are smaller than 0.1. This indicates that all these five variables diffT in 

June, diffT in July, meanT in July, meanT in August and ppt in May are significant variables. 

Based on the definition for Full 1, we include these significant variables as well as the 

cumulative precipitation in February and March. The Full 1 is 

𝑦𝑖𝑒𝑙𝑑 = 𝛽0̂ + 𝛽1̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑛 + 𝛽2̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑙 + 𝛽3̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑙 

+𝛽4̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐴𝑢𝑔 + 𝛽5̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 + 𝛽6̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐹𝑒𝑏 𝑎𝑛𝑑 𝑀𝑎𝑟 

where ‘yield’ is barley yield. 

          Also, based on the definition for full model 2 in the introduction, we include significant 

variables and interaction terms as well as the cumulative precipitation in February and March. 

The Full 2 is 
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𝑦𝑖𝑒𝑙𝑑 = 𝛽0̂ + 𝛽1̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝑀𝑎𝑦 + 𝛽2̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑛 + 𝛽3̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑙 

+𝛽4̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝑀𝑎𝑦 + 𝛽5̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑙 + 𝛽6̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐴𝑢𝑔 + 𝛽7̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 

+𝛽8̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑛 + 𝛽9̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑙 + 𝛽10̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐴𝑢𝑔 + 𝛽11̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐹𝑒𝑏 𝑎𝑛𝑑 𝑀𝑎𝑟 

+𝛽12̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝑀𝑎𝑦 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 + 𝛽13̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑛 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑛 

+𝛽14̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑙 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑙𝑦 + 𝛽15̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝑀𝑎𝑦 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 

+𝛽16̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑙 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑙 + 𝛽17̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐴𝑢𝑔 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐴𝑢𝑔 

For Full 1, we use backward selection method first, which returns  

𝑦𝑖𝑒𝑙𝑑 = 127.557 − 4.510 ∗ meanT in July + 1.899 ∗ ppt in May          (4.2.1) 

Then, we use forward selection, stepwise selection starts from full and stepwise selection starts 

from null. All the 4 methods return us the same best model for Full 1. Table 4.2.1 is the 

summary of this model (Parm #: Number of parameters; df: Degree freedom; RMSE: Root of 

mean square error; R-Sq: R Squared). 

Table 4.2.1 Summary of Model Selection of Full 1 for Barley 

Model Parm # df RMSE RSS AIC BIC R-Sq 

(4.2.1) 3 28 5.935 986.36 113.26 117.56 0.5406 
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For Full 2, we use backward selection method first. This returns us the following model. 

𝑦𝑖𝑒𝑙𝑑 = 164.1966 + 5.3544 ∗ ppt in Feb and Mar − 2.278 ∗ diffT in Jul 

−10.3178 ∗ diffT in Jun + 3.3696 ∗ diffT in May − 0.6491 ∗ meanT in Jul 

−5.0044 ∗ ppt in Aug + 12.0089 ∗ ppt in Jul − 47.5186 ∗ ppt in Jun 

+24.0436 ∗ ppt in May + 2.7318 ∗ diffT in Jul ∗ ppt in Jul 

+3.8819 ∗ diffT in June ∗ ppt in Jun − 2.4860 ∗ meanT in Jul ∗ ppt in Jul 

−1.4537 ∗ diffT in May ∗ ppt in May                               (4.2.2) 

which is the same model we get using stepwise selection starting from the full model. 

Then, we use forward selection method. This returns us the following model. 

  𝑦𝑖𝑒𝑙𝑑 = 149.9258 − 4.928 ∗ meanT in Jul − 5.9741 ∗ ppt in May 

                  −2.3793 ∗ meanT in May  − 2.0979 ∗ ppt in Aug + 1.0559 ∗ diffT in May 

+0.7099 ∗ ppt in May ∗ meanT in May                              (4.2.3) 

which is the same model we get using stepwise selection starting from the null model. 

          We have two options from Full 2 and we need to determine which one is better. Table 

4.2.2 is the summary of these 2 models. 

Table 4.2.2 Summary of model selection of full 2 for barley 

Model Parm # df RMSE RSS AIC BIC R-Sq 

(4.2.2) 14 17 5.247 468.00 112.15 132.23 0.7820 

(4.2.3) 7 24 5.369 691.89 110.27 120.31 0.6778 
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          By comparing model (4.2.2) and model (4.2.3), we find model (4.2.3) has smaller AIC and 

BIC. Further, RMSE for the two models are close to each other and the number of parameters for 

model (4.2.3) is less than that of model (4.2.2). All the information tends to tell us that model 

(4.2.3) is better than model (4.2.2). To be prudent, we perform the F-test of reduction to check 

whether model (4.2.2) is able to reduce to model (4.2.3) or not and the results are given below in 

Table 4.2.3.  

Table 4.2.3 F-test of reduction for Model (4.2.2) and Model (4.2.3) 

Model Res. Df RSS Df Diff Sum of Sq F Statistic P value 

(4.2.3) 24 691.89 - - - - 

(4.2.2) 17 468.00 7 223.88 1.1618 0.3736 

 

         Our p -value is 0.3736 which means we fail to reject null hypothesis (H0: It is permissible 

to reduce complex model to simpler model.) and it is permissible to reduce model (4.2.2) to 

model (4.2.3). Before we make a conclusion that model (4.2.3) is the best model for Full 2, we 

would like to check whether the interaction term is necessary or not. Therefore, we have the 

following model (4.2.4) which is without interaction term. 

𝑦𝑖𝑒𝑙𝑑 = 134.5864 − 4.9352 ∗ meanT in Jul − 1.0844 ∗ meanT in May 

                   +1.0731 ∗ diffT in May + 2.4283 ∗ ppt in May − 2.1844 ∗ ppt in Aug           (4.2.4) 

          We perform the F test of reduction for reducing model (4.2.3) to model (4.2.4) and the 

results are given below in Table 4.2.4. 
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Table 4.2.4 F-test of reduction for Model (4.2.3) and Model (4.2.4) 

Model Res. Df RSS Df Diff Sum of Sq F Statistic P value 

(4.2.4) 25 761.00 - - - - 

(4.2.3) 24 691.89 1 69.115 2.3974 0.1346 

 

          Our p -value is 0.1346 which means we fail to reject null hypothesis and it is permissible 

to reduce model (4.2.3) to model (4.2.4), indicating that the interaction term is not necessary. 

Finally, we choose model (4.2.4) as our best model for Full 2. The two best models from Full 1 

and Full 2 are summarized in Table 4.2.5. 

Table 4.2.5 Summary of Two Best Models for Barley 

Model Parm # df RMSE RSS AIC BIC R-Sq 

(4.2.1) 3 28 5.935 986.36 113.26 117.56 0.5406 

(4.2.4) 6 25 5.517 761.00 111.22 119.82 0.6456 

*Bolded value means better 

          By comparing model (4.2.1) and model (4.2.4), we find model (4.2.4) has both smaller 

AIC and RMSE although BIC is bigger than model (4.2.1). R square value for model (4.2.4) is 

bigger than model (4.2.1). Therefore, we select model (4.2.4) as our final best model. To be 

prudent, we perform the F-test of reduction to help us make the final decision in order to check 

whether model (4.2.4) is permissible to reduce to model (4.2.1) and the results are given below in 

Table 4.2.6. 

Table 4.2.6 F-test of reduction for Model (4.2.4) and Model (4.2.1) 

Model Res. Df RSS Df Diff Sum of Sq F Statistic P value 

(4.2.1) 28 986.36 - - - - 

(4.2.4) 25 761.00 3 225.35 2.4677 0.0855 
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          Our p -value is 0.0855. At α level 0.1, we have sufficient evidence to reject the null 

hypothesis and conclude that it is not permissible to reduce model (4.2.4) to model (4.2.1). 

Therefore, we are confident to conclude that model (4.2.4) is the best model for barley. Further, 

we check the residual plot and the normality of residuals. 

 

 

 

 

 

 

  Figure 4.2.1 Residual Plot for Barley                              Figure 4.2.2 Q-Q Plot for Barley 

          Based on the residual plot and Q-Q plot, one could see the mean of the residuals is 0 and 

they are roughly normally distributed, while the dots in the Q-Q plot are not off the straight line 

too much. Shapiro-Wilk normality test is also used to check the normality of the residual. The 

result is shown in Table 4.2.7. 

Table 4.2.7 Shapiro-Wilk Normality Test for Barley 

Model Statistics p -value 

(4.2.4) 0.9694 0.5028 
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          Our p -value for Shapiro-Wilk normality test is 0.5028. At α level 0.1, we fail to reject the 

null hypothesis (H0: Residuals have a normal distribution) and conclude that the residuals for 

model (4.2.4) have a normal distribution. We expect the residuals for a good model are normally 

distributed. The results confirm that model (4.2.4) is a good model. 

          We would like to interpret the model (4.2.4) in the following way. The negative coefficient 

for mean temperature in May and July tells us that if mean temperature in May and July is high, 

it will decrease barley yield. The positive coefficient for difference temperature in May tells us 

that if the volatility of temperature is big in May, it will benefit barley growing and will increase 

barley yield. We also find that the coefficient is positive for precipitation in May while it is 

negative for precipitation in August. That is because barley is grass-like in May and needs more 

water to grow up and head well. If precipitation in May is sufficient, it will benefit barley’s 

growing and result in a larger yield. However, barley has already grown up and is ready to be 

harvested in August. If the precipitation in August is too much, it causes barley to rot and of 

course, will decrease barley yield. 



47 
 

4.3     CANOLA 

          From table 3.3.1, we find that p -values of either distance correlation test or Pearson 

correlation test for difference temperature in June and July, mean temperature in June and July 

and precipitation in May are smaller than 0.1. This indicates that all these five variables diffT in 

June, diffT in July, meanT in June, meanT in July and ppt in May are significant variables. 

Based on the definition for Full 1in the introduction part, we include these significant variables 

as well as the cumulative precipitation in February and March. The Full 1 is. 

𝑦𝑖𝑒𝑙𝑑 = 𝛽0̂ + 𝛽1̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑛 + 𝛽2̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑙 + 𝛽3̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑛 

+𝛽4̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑙 + 𝛽5̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 + 𝛽6̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐹𝑒𝑏 𝑎𝑛𝑑 𝑀𝑎𝑟 

          Also, based on the definition for Full 2, we include significant variables and interaction 

terms as well as the cumulative precipitation in February and March. The Full 2 is. 

𝑦𝑖𝑒𝑙𝑑 = 𝛽0̂ + 𝛽1̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝑀𝑎𝑦 + 𝛽2̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑛 + 𝛽3̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑙 

+𝛽4̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝑀𝑎𝑦 + 𝛽5̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑛 + 𝛽6̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑙 + 𝛽7̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 

+𝛽8̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑛 + 𝛽9̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑙 + 𝛽10̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐹𝑒𝑏 𝑎𝑛𝑑 𝑀𝑎𝑟 

+𝛽11̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝑀𝑎𝑦 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 + 𝛽12̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑛 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑛 

+𝛽13̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑙 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑙𝑦 + 𝛽14̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝑀𝑎𝑦 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 

+𝛽15̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑛 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑛 + 𝛽16̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑙 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑙 
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For Full 1, we use backward selection method first, which returns us the following model. 

𝑦𝑖𝑒𝑙𝑑 = 80.261 − 1.228 ∗ diffT in Jun − 2.248 ∗ meanT in Jul          (4.3.1) 

Then, we use forward selection, stepwise selection starts from full and stepwise selection starts 

from null. All the 4 methods return us the same best model for Full 1. Table 4.3.1 is the 

summary of this model.  

Table 4.3.1 Summary of Model Selection of Full 1 for Canola 

Model Parm # df RMSE RSS AIC BIC R-Sq 

(4.3.1) 3 24 4.084 400.25 78.8 82.69 0.4658 

 

For full 2, we use backward selection method first. This returns us the following model. 

𝑦𝑖𝑒𝑙𝑑 = 97.1720 − 0.032 ∗ diffT in Jul − 3.77589 ∗ meanT in Jul − 2.47821 ∗ ppt in Jul 

−1.2177 ∗ diffT in Jul ∗ ppt in Jul + 0.9048 ∗ meanT in Jul ∗ ppt in Jul           (4.3.2) 

which is the same model we get using stepwise selection starting from the full model. 

Then, we use forward selection method. This returns us the following model. 

𝑦𝑖𝑒𝑙𝑑 = 80.261 − 1.228 ∗ diffT in Jun − 2.248 ∗ meanT in Jul          (4.3.3) 

which is the same model we get using stepwise selection starting from the null model. 

          We have two options from full 2 and we need to determine which one is better. Table 4.3.2 

is the summary of the two models.
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Table 4.3.2 Summary of Model Selection of Full 2 for Canola 

Model Parm # df RMSE RSS AIC BIC R-Sq 

(4.3.2) 6 21 4.032 341.37 80.5 88.28 0.5444 

(4.3.3) 3 24 4.084 400.25 78.8 82.69 0.4658 

 

          By comparing model (4.3.2) and model (4.3.3), we find model (4.3.3) has both smaller 

AIC and BIC. Further, RMSE for the two models are close to each other and the number of 

parameters for model (4.3.3) is less than that of model (4.3.2). Therefore, we conclude that 

model (4.3.3) outperforms model (4.3.2). We select model (4.3.3) as our best model from Full 2. 

          Since model (4.3.1) from Full 1 is the same as model (4.3.3) from Full 2, it seems that 

model (4.3.1) might be our final best model. However, before we make that decision, let take a 

look at the following model (4.3.4):  

𝑦𝑖𝑒𝑙𝑑 = 75.66 − 1.134 ∗ diffT in Jun − 2.142 ∗ meanT in Jul + 0.8461 ∗ ppt in May    (4.3.4) 

          The difference between model (4.3.4) and model (4.3.1) is that we have one extra term ppt 

in May in model (4.3.4) and also, model (4.3.4) is the second best model from both Full 1 and 

Full 2 by using forward selection method. The summary of model (4.3.4) and model (4.3.1) is 

shown in Table 4.3.3. 

Table 4.3.3 Summary of Model (4.3.1) and Model (4.3.4) for Canola 

Model Parm # df RMSE RSS AIC BIC R-Sq 

(4.3.4) 4 23 4.101 386.84 79.9 85.06 0.4837 

(4.3.1) 3 24 4.084 400.25 78.8 82.69 0.4658 
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          From the Table 4.3.3, based on the criteria we use (i.e. AIC or BIC etc.), model selections 

do give us the best option which is model (4.3.1). However, we would like to argue that model 

(4.3.4) is our final best model based on the 3 following reasons. First, although AIC and BIC of 

model (4.3.4) is bigger, the RMSE of model (4.3.4) is smaller and R square of model (4.3.4) is 

bigger which indicate that model (4.3.4) might be a good model as well. Second, recall that p -

values of both distance correlation test and Pearson correlation test for precipitation in May are 

small. This indicates that ppt in May might be a significant factor to impact canola yield. Lastly, 

let’s take a look at Figure 3.3.5 again.  

 

 

 

 

 

 

          From Figure 3.3.5, we find there is a very clear upward trend which implies ppt in May 

positively impacts canola yield and model (4.3.4) reveals this fact perfectly since the coefficient 

of ppt in May is positive! However, model (4.3.1) fails to tell us that! Therefore, we are 

confident to conclude that model (4.3.4) is the best model for canola. Further, we check the 

residual plot and the normality of residuals. 



51 
 

 

 

 

 

 

  

       Figure 4.3.1 Residual Plot for Canola                      Figure 4.3.2 Q-Q Plot for Canola 

          Based on the residual plot and Q-Q plot, we would say that the residuals may not have a 

good normal distribution. The mean of the residuals is a little bit off 0 while the dots in the Q-Q 

plot are off the straight line as well. Shapiro-Wilk normality test is also used to check the 

normality of the residual. The result is shown in the Table 4.3.4. 

Table 4.3.4 Shapiro-Wilk Normality Test for Canola 

Model Statistics p -value 

(4.3.4) 0.9318 0.0766 

 

          Our p -value for Shapiro-Wilk normality test is 0.0766. At α level 0.1 (it really depends 

on α level), we reject the null hypothesis and conclude that (Ha: Residuals do not have a normal 

distribution) the residuals for model (4.3.4) do not have a normal distribution. We expect the 

residuals for a good model to have a normal distribution but still, we choose model (4.3.4) as our 

best model for canola. 
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          We would like to interpret the model (4.3.4) in the following ways. The negative 

coefficient for difference temperature in June tells us that if the volatility of temperature is big in 

June, it will not benefit canola growing and will decrease canola yield. The negative coefficient 

for mean temperature in July tells us that if the mean temperature in July is high, it will not 

benefit canola growing and will also decrease canola yield. We find that coefficient is positive 

for precipitation in May. Our explanation is that canola in May needs more water to grow up. If 

precipitation in May is sufficient, it will benefit canola growing and result in large yield.  
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4.4     Flax 

          From Table 3.4.1, we find that p -values of both distance correlation test and Pearson 

correlation test for difference temperature in May, June and July, mean temperature in July and 

precipitation in June are smaller than 0.1. This indicates that all these five variables diffT in May, 

diffT in June, diffT in July, meanT in July and ppt in June are significant variables. Based on the 

definition for Full 1in the introduction part, we include these significant variables as well as the 

cumulative precipitation in February and March. The Full 1 is. 

𝑦𝑖𝑒𝑙𝑑 = 𝛽0̂ + 𝛽1̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝑀𝑎𝑦 + 𝛽2̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑛 + 𝛽3̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑙 

+𝛽4̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑙 + 𝛽5̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑛 + 𝛽6̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐹𝑒𝑏 𝑎𝑛𝑑 𝑀𝑎𝑟 

          Also, based on the definition for Full 2, we include significant variables and interaction 

terms as well as the cumulative precipitation in February and March. The Full 2 is. 

𝑦𝑖𝑒𝑙𝑑 = 𝛽0̂ + 𝛽1̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝑀𝑎𝑦 + 𝛽2̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑛 + 𝛽3̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑙 

+𝛽4̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑛 + 𝛽5̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑙 + 𝛽6̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 + 𝛽7̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑛 

+𝛽8̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑙 + 𝛽9̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐹𝑒𝑏 𝑎𝑛𝑑 𝑀𝑎𝑟 + 𝛽10̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝑀𝑎𝑦 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 

+𝛽11̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑛 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑛 + 𝛽12̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑙 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑙 

+𝛽13̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑛 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑙𝑛 + 𝛽14̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑙 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑙 
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For Full 1, we use backward selection method first. This returns us the following model. 

𝑦𝑖𝑒𝑙𝑑 = 55.067 − 0.896 ∗ diffT in May − 1.447 ∗ meanT in Jul + 1.542 ∗ ppt in Jun    (4.4.1) 

which is the same model we get using stepwise selection starting from full model. 

Then, we use forward selection method. This returns us the following model. 

𝑦𝑖𝑒𝑙𝑑 = 61.066 − 1.17 ∗ diffT in Jul − 1.157 ∗ diffT in Jun − 0.75 ∗ diffT in May       (4.4.2) 

which is the same model we get using stepwise selection starting from null model. 

          We have two options from Full 1 and we need to determine which one is better. Table 

4.4.1 is the summary of the 2 models. 

Table 4.4.1 Summary of Model Selection of Full 1 for Flax 

Model Parm # df RMSE RSS AIC BIC R-Sq 

(4.4.1) 4 27 3.385 309.43 79.323 85.059 0.4998 

(4.4.2) 4 27 3.635 356.72 83.732 89.468 0.4233 

 

          By comparing model (4.4.1) and model (4.4.2), we find model (4.4.1) has smaller AIC, 

BIC and RMSE as well as RSS. R square for model (4.4.1) is also bigger than model (4.4.2).  

Further, the two models have the same parameters and residual degree freedom. All the 

information indicates that model (4.4.1) perfectly outperform model (4.4.2). Therefore, we select 

model (4.4.1) as our best model from Full 1. 
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For Full 2, we use backward selection method first. This returns us the following model. 

𝑦𝑖𝑒𝑙𝑑 = 80.903 − 1.1 ∗ diffT in Jul − 2.437 ∗ diffT in Jun − 0.667 ∗ diffT in May 

−0.0186 ∗ meanT in Jul − 0.733 ∗ meanT in Jun − 17.823 ∗ ppt in Jun 

+1.968 ∗ ppt in Jul + 1.04136 ∗ diffT in Jul ∗ ppt in Jul + 0.793 ∗ diffT in Jun ∗ ppt in Jun 

         −0.766 ∗ meanT in Jul ∗ ppt in Jul + 0.577 ∗ meanT in Jun ∗ ppt in Jun               (4.4.3) 

which is the same model we get using stepwise selection starting from full model. 

Then, we use forward selection method. This returns us the following model. 

𝑦𝑖𝑒𝑙𝑑 = 56.447 − 1.26 ∗ diffT in Jul − 1.454 ∗ diffT in Jun − 0.754 ∗ diffT in May 

                   +0.61 ∗ meanT in Jun                                                                                   (4.4.4) 

which is the same model we get using stepwise selection starting from null model. 

          We have two options from Full 2 and we need to determine which one is better. Table 

4.4.2 is the summary of the two models. 

Table 4.4.2 Summary of Model Selection of Full 2 for Flax 

Model Parm # df RMSE RSS AIC BIC R-Sq 

(4.4.3) 12 19 3.434 224.11 85.322 102.53 0.6377 

(4.4.4) 5 26 3.538 325.50 82.893 90.063 0.4738 

 

          By comparing model (4.4.3) and model (4.4.4), we find model (4.4.4) has both smaller 

AIC and BIC. Further, RMSE for the two models are close to each other and the number of 

parameters for model (4.4.4) is much less than model (4.4.3). These information tells us that 
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model (4.4.4) is better than model (4.4.3). To be prudent, we perform F-test of reduction to check 

whether model (4.4.3) is permissible to reduce to model (4.4.4) or not and the results are given 

below in Table 4.4.3.  

Table 4.4.3 F-test of Reduction for Model (4.4.5) and Model (4.4.6) 

Model Res. Df RSS Df Diff Sum of Sq F Statistic P value 

(4.4.4) 26 325.50 - - - - 

(4.4.3) 19 224.11 7 101.39 1.228 0.3359 

 

         Our p -value is 0.3359 which means we fail to reject null hypothesis (H0: It is permissible 

to reduce complex model to simpler model.) and it is permissible to reduce model (4.4.3) to 

model (4.4.4). Therefore, we conclude that model (4.4.4) outperforms model (4.4.3) and we 

select model (4.4.4) as our best model from Full 2. The two best models from Full 1 and Full 2 

are summarized in Table 4.4.4. 

Table 4.4.4 Summary of Two Best Models for Flax 

Model Parm # df RMSE RSS AIC BIC R-Sq 

(4.4.1) 4 27 3.385 309.43 79.323 85.059 0.4998 

(4.4.4) 5 26 3.538 325.5 82.893 90.063 0.4738 

 

          By comparing model (4.4.1) and model (4.4.4), we find model (4.4.1) has smaller AIC, 

BIC and RMSE as well as RSS. R square for model (4.4.1) is also bigger than model (4.4.4).  

Further, model (4.4.1) has less parameter than model (4.4.4). All the information indicates that 

model (4.4.1) perfectly outperform model (4.4.4). Therefore, we select model (4.4.1) as our final 

best model. Further, we check the residual plot and the normality of residuals. 
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               Figure 4.4.1 Residual Plot for Flax                      Figure 4.4.2 Q-Q Plot for Flax 

          Based on the residual plot and Q-Q plot, one could see the mean of the residuals is roughly 

0 and also, the residuals are normal distributed while the dots in the Q-Q plot match the straight 

line very well. Shapiro-Wilk normality test is also used to check the normality of the residual. 

The result is shown in the Table 4.4.5. 

Table 4.4.5 Shapiro-Wilk Normality Test for Flax 

Model Statistics p -value 

(4.4.1) 0.9616 0.3223 

 

          Our p -value for Shapiro-Wilk normality test is 0.3223. At α level 0.1, we have 

insufficient evidence to reject the null hypothesis and conclude that the residuals for model (4.4.1) 

have a normal distribution. We expect the residuals for a good model to have a normal 

distribution. Therefore, based on the previous analysis, we are confident to choose model (4.4.1) 

as our best model for flax. 
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          Here are our explanations for model (4.4.1). The negative coefficient for difference 

temperature in May tells us that if the volatility of temperature is big in May, it will not benefit 

flax growing and will decrease flax yield. The negative coefficient for mean temperature in July 

tells us that if the mean temperature in July is high, it will not benefit flax growing and will 

decrease flax yield as well. We also find that coefficient is positive for precipitation in June. Our 

explanation is that flax in June needs more water to grow up. If precipitation in June is sufficient, 

it will benefit flax growing and result in greater yield.  

 

 

 

 



59 
 

4.5     Oats 

          From Table 3.5.1, we find that p -values of either distance correlation test or Pearson 

correlation test for difference temperature in June and July, mean temperature in July and 

precipitation in May are smaller than 0.1. This indicates that all these four variables diffT in June, 

diffT in July, meanT in Jul and ppt in May are significant variables. Based on the definition for 

Full , we include these significant variables as well as the cumulative precipitation in February 

and March. The Full 1 is. 

𝑦𝑖𝑒𝑙𝑑 = 𝛽0̂ + 𝛽1̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑛 + 𝛽2̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑙 + 𝛽3̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑙 

+𝛽4̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 + 𝛽5̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐹𝑒𝑏 𝑎𝑛𝑑 𝑀𝑎𝑟 

          Also, based on the definition for Full 2, we include significant variables and interaction 

terms as well as the cumulative precipitation in February and March. The Full 2 is. 

𝑦𝑖𝑒𝑙𝑑 = 𝛽0̂ + 𝛽1̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝑀𝑎𝑦 + 𝛽2̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑛 + 𝛽3̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑙 

+𝛽4̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝑀𝑎𝑦 + 𝛽5̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑙 + 𝛽6̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 + 𝛽7̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑛 

+𝛽8̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑙 + 𝛽9̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐹𝑒𝑏 𝑎𝑛𝑑 𝑀𝑎𝑟 + 𝛽10̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝑀𝑎𝑦 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 

+𝛽11̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑛 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑛 + 𝛽12̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑙 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑙𝑦 

+𝛽13̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝑀𝑎𝑦 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 + 𝛽14̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑙 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑙 
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For Full 1, we use backward selection method first, which returns. 

𝑦𝑖𝑒𝑙𝑑 = 166.1 − 2.514 ∗ diffT in July − 2.148 ∗ diffT in Jun − 2.653 ∗ meanT in Jul    (4.5.1) 

Then, we use forward selection, stepwise selection starts from full and stepwise selection starts 

from null. All the 4 methods return us the same best model for Full 1. Table 4.5.1 is the 

summary of this model. 

Table 4.5.1 Summary of Model Selection of Full 1 for Oats 

Model Parm # df RMSE RSS AIC BIC R-Sq 

(4.5.1) 4 27 7.6767 1590.8 130.08 135.814 0.5015 

 

For Full 2, we use backward selection method first. This returns us the following model. 

𝑦𝑖𝑒𝑙𝑑 = 178.494 − 2.142 ∗ diffT in Jun − 3.617 ∗ meanT in Jul − 2.87 ∗ meanT in May 

              −10.826 ∗ ppt in May + 1.144 ∗ meanT in May ∗ ppt in May                        (4.5.2) 

which is the same model we get using stepwise selection starting from full model. 

Then, we use forward selection method. This returns us the following model. 

𝑦𝑖𝑒𝑙𝑑 = 166.1 − 2.514 ∗ diffT in July − 2.148 ∗ diffT in Jun − 2.653 ∗ meanT in Jul    (4.5.3) 

which is the same model we get using stepwise selection starting from null model. 

          We have two options from Full 2 and we need to determine which one is better. Table 

4.5.2 is the summary of the two models. 
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Table 4.5.2 Summary of Model Selection of Full 2 for Oats 

Model Parm # df RMSE RSS AIC BIC R-Sq 

(4.5.2) 6 25 7.394 1366.8 129.37 137.98 0.5718 

(4.5.3) 4 27 7.676 1590.8 130.08 135.81 0.5015 

 

          By comparing model (4.5.2) and model (4.5.3), we find model (4.5.3) has smaller BIC 

while AIC is a little bit bigger than model (4.5.2). Further, RMSE for the two models are close to 

each other. Generally speaking, the performance for model (4.5.2) and model (4.5.3) are 

comparable. Since the number of parameters for model (4.5.3) is 2 less than model (4.5.2), we 

tend to choose model (4.5.3) as our best model from Full 2. 

          The best model (4.5.1) from Full 1 is the same as the best model (4.5.3) from Full 2. It 

seems that we may conclude model (4.5.1) as our final best model. However, before we make 

that decision, let take a look at the following model (4.5.4):  

𝑦𝑖𝑒𝑙𝑑 = 155.85 − 1.859 ∗ diffT in Jul − 2.323 ∗ diffT in Jun − 2.645 ∗ meanT in Jul 

                  +1.992 ∗ ppt in May                                                                            (4.5.4) 

          The difference between model (4.5.4) and model (4.5.1) is that we have one extra term ppt 

in May in model (4.5.4) and indeed, model (4.5.4) is the second best model from both Full 1 and 

Full 2 by using forward selection method. The summary of model (4.5.4) and model (4.5.1) is 

shown in Table 4.5.3. 

Table 4.5.3 Summary of Model (4.5.1) and Model (4.5.9) for Oats 

Model Parm # df RMSE RSS AIC BIC R-Sq 

(4.5.4) 5 26 7.609 1505.5 130.37 137.54 0.5283 

(4.5.1) 4 27 7.676 1590.8 130.08 135.81 0.5015 
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          From the Table 4.5.3, based on the criteria we use (i.e. AIC or BIC etc.), model selections 

do give us the best option which is model (4.5.1). However, we would like to argue that model 

(4.5.4) is our final best model based on the 3 reasons. First, although AIC and BIC of model 

(4.5.4) is bigger, the RMSE of model (4.5.4) is smaller and R square of model (4.5.4) is bigger. 

All these indicate that model (4.5.4) might be a good model as well. Second, recall that p -values 

of Pearson correlation test for precipitation is 0.057. This indicates that ppt in May is a 

significant factor to impact oats yield and we should include it. Lastly, let’s take a look at Figure 

3.5.5 again.  

 

           

 

 

 

 

          From Figure 3.5.5, we find there is a very clear upward trend which implies ppt in May 

positively impacts oats yield and model (4.5.4) reveals this fact perfectly since the coefficient of 

ppt in May is positive (1.992). However, the model (4.5.1) fails to tell us that! Therefore, we 

conclude that model (4.5.4) is the final best model for oats. Further, we check the residual plot 

and the normality of residuals. 
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         Figure 4.5.1 Residual Plot for Oats                          Figure 4.5.2 Q-Q Plot for Oats 

          Based on the residual plot and Q-Q plot, one would say that the residuals have a very good 

normal distribution. The mean of the residuals is roughly 0 and the dots in the Q-Q plot match 

the straight line very well. Shapiro-Wilk normality test is also used to check the normality of the 

residual. The result is shown in the Table 4.5.4 as below. 

Table 4.5.4 Shapiro-Wilk Normality Test for Oats 

Model Statistics p -value 

(4.5.4) 0.9834 0.8987 

 

          Our p -value for Shapiro-Wilk normality test is 0.8987. At α level 0.1, we have 

insufficient evidence to reject the null hypothesis and conclude the residuals for model (4.5.4) 

have a normally distribution. We expect the residuals for a good model to have a normal 

distribution. Therefore, the model (4.5.4) is our final best model to predict oats yield. 
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          In the model (4.5.4), the coefficients for difference temperature in both June and July are 

negative which imply that if the volatility of temperature is big in June or July, it will not benefit 

oats growing and will decrease oats yield. The negative coefficient for mean temperature in July 

tells us that if the mean temperature in July is high, it will not benefit oats growing and will also 

decrease oats yield. Finally, we have positive a coefficient for precipitation in May. Our 

explanation is that oats in May needs more water to grow up. If precipitation in May is sufficient, 

it will benefit oats growing and result in large yield.  
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4.6     Pea 

          From Table 3.6.1, we find that p -values of either distance correlation test or Pearson 

correlation test for difference temperature in June, mean temperature in May and June and 

precipitation in April, May and June are smaller than 0.1. This indicates that all these six 

variables diffT in June, meanT in May, meanT in Jun, ppt in April, ppt in May and ppt in June 

are significant variables. Based on the definition for Full 1in the introduction part, we include 

these significant variables as well as the cumulative precipitation in February and March.  

The Full 1 is. 

𝑦𝑖𝑒𝑙𝑑 = 𝛽0̂ + 𝛽1̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑛 + 𝛽2̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝑀𝑎𝑦 + 𝛽3̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑛 

+𝛽4̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐴𝑝𝑟 + 𝛽5̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 + 𝛽6̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑛 + 𝛽7̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐹𝑒𝑏 𝑎𝑛𝑑 𝑀𝑎𝑟 

          Also, based on the definition for Full 2, we include significant variables and interaction 

terms as well as the cumulative precipitation in February and March. The Full 2 is. 

𝑦𝑖𝑒𝑙𝑑 = 𝛽0̂ + 𝛽1̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐴𝑝𝑟 + 𝛽2̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝑀𝑎𝑦 + 𝛽3̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑛 

+𝛽4̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐴𝑝𝑟 + 𝛽5̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝑀𝑎𝑦 + 𝛽6̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑛 + 𝛽7̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐴𝑝𝑟 

+𝛽8̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 + 𝛽9̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑛 + 𝛽10̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐹𝑒𝑏 𝑎𝑛𝑑 𝑀𝑎𝑟 

+𝛽11̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐴𝑝𝑟 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐴𝑝𝑟 + 𝛽12̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝑀𝑎𝑦 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 

+𝛽13̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑛 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑛 + 𝛽14̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐴𝑝𝑟 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐴𝑝𝑟 

+𝛽15̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝑀𝑎𝑦 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 + 𝛽16̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑛 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑛 
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For Full 1, we use backward selection method first. This returns us the following model. 

𝑦𝑖𝑒𝑙𝑑 = 88.66 + 4.364 ∗ ppt in Feb and Mar + 3.657 ∗ ppt in Apr − 1.991 ∗ diffT in Jun 

                 −1.109 ∗ meanT in May − 1.869 ∗ meanT in Jun                                           (4.6.1) 

Then, we use forward selection method, stepwise selection method starts from full and 

stepwise selection method starts from null. All the 4 methods return us the same best model for 

Full 1. Table 4.6.1 is the summary of model (4.6.1). 

Table 4.6.1 Summary of Model Selection of Full 1 for Pea 

Model Parm # df RMSE RSS AIC BIC R-Sq 

(4.6.1) 6 14 4.032 227.60 60.637 66.612 0.8252 

 

For Full 2, we use backward selection method first. This returns us the following model. 

𝑦𝑖𝑒𝑙𝑑 = 30.178 + 4.0812 ∗ ppt in Feb and Mar − 3.611 ∗ diffT in Apr 

−3.577 ∗ diffT in May + 0.3428 ∗ meanT in May − 2.077 ∗ meanT in Jun 

+2.727 ∗ meanT in Apr − 24.194 ∗ ppt in Apr + 47.281 ∗ ppt in May 

+1.846 ∗ ppt in Jun + 3 ∗ diffT in Apt ∗ ppt in Apr − 2.423 ∗ diffT in May ∗ ppt in May 

−1.149 ∗ meanT in May ∗ ppt in May − 2.549 ∗ meanT in Apr ∗ ppt in Apr                     (4.6.2) 

which is the same model we get using stepwise selection starting from full model. 
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Then, we use forward selection method. This returns us the following model. 

𝑦𝑖𝑒𝑙𝑑 = 83.866 − 2.222 ∗ meanT in Jun − 0.9278 ∗ diffT in May − 1.381 ∗ meanT in May 

+1.141 ∗ ppt in Jun + 2.548 ∗ ppt in Apr + 3.522 ∗ ppt in Feb and Mar                       (4.6.3) 

which is the same model we get using stepwise selection starting from null model. 

          We have two options from full 2 and we need to determine which one is better. Table 4.6.2 

is the summary of the two models. 

Table 4.6.2 Summary of Model Selection of Full 2 for Pea 

Model Parm # df RMSE RSS AIC BIC R-Sq 

(4.6.2) 14 6 4.915 144.94 67.612 81.552 0.8887 

(4.6.3) 7 13 4.22 231.54 62.98 69.95 0.8222 

 

          By comparing model (4.6.2) and model (4.6.3), we find model (4.6.3) has both smaller 

AIC and BIC. RMSE for model (4.6.3) is also smaller than model (4.6.2). Further, the number of 

parameters for model (4.6.3) is less than model (4.6.2). All the information tells us that model 

(4.6.3) perfectly outperforms model (4.6.2). Therefore, we choose model (4.6.3) as our best 

model from full2. The two best models from full 1 and full 2 are summarized in Table 4.6.3. 

Table 4.6.3 Summary of Two Best Models for Pea 

Model Parm # df RMSE RSS AIC BIC R-Sq 

(4.6.1) 6 14 4.032 227.60 60.637 66.612 0.8252 

(4.6.3) 7 13 4.22 231.54 62.980 69.950 0.8222 
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          By comparing model (4.6.1) and model (4.6.3), we find model (4.6.1) has smaller AIC, 

BIC and RMSE as well as RSS. R square for model (4.6.1) is also bigger than model (4.6.3).  

Further, model (4.6.1) has less parameter than model (4.6.3). All the information indicates that 

model (4.6.1) perfectly outperform model (4.6.3). Therefore, we select model (4.6.1) as our final 

best model. Further, we check the residual plot and the normality of residuals. 

 

 

 

 

 

 

        Figure 4.6.1 Residual Plot for Pea                          Figure 4.6.2 Q-Q Plot for Pea 

          Based on the residual plot and Q-Q plot, one could see the mean of the residuals is roughly 

0 and also and the residuals are normally distributed while the dots in the Q-Q plot match the 

straight line well. Shapiro-Wilk normality test is also used to check the normality of the residual. 

The result is shown in the Table 4.6.4. 

Table 4.6.4 Shapiro-Wilk Normality Test for Pea 

Model Statistics p -value 

(4.6.1) 0.9697 0.7493 
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          Our p -value for Shapiro-Wilk normality test is 0.7493. At α level 0.1, we have 

insufficient evidence to reject the null hypothesis and conclude that the residuals for model (4.6.1) 

have a normal distribution. We expect the residuals for a good model to have a normal 

distribution. Therefore, based on the previous analysis, we are confident to choose model (4.6.1) 

as our best model for pea and it will predict pea yield well. 

          The model (4.6.1) is quite different from the previous ones for other crops. We find that 

the cumulative precipitation in February and March is included in the model and the coefficient 

for which is positive. This tells us, before peas are seeded, if there is sufficient water in the soil, 

it will benefit pea growing and result in greater yield! The coefficient is positive for precipitation 

in April as well which means that peas in April need more water to grow up. The negative 

coefficient for difference temperature in June tells us that if the volatility of temperature is big in 

June, it will not benefit pea growing and will decrease pea yield. The negative coefficient for 

mean temperature in both May and June tells us that if the mean temperature in May or June is 

high, it will not benefit fpea growing and will result in reducing pea yield.  
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4.7     Spring Wheat 

          From Table 3.7.1, we find that p -values of either distance correlation test or Pearson 

correlation test for difference temperature in June and July, mean temperature in June and July 

and precipitation in May are smaller than 0.1. This indicates that all these five variables diffT in 

Jun, diffT in Jul, meanT in Jun, meanT in Jul and ppt in May are significant variables. Based on 

the definition for Full 1in the introduction part, we include these significant variables as well as 

the cumulative precipitation in February and March. The Full 1 is defined as below. 

𝑦𝑖𝑒𝑙𝑑 = 𝛽0̂ + 𝛽1̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑛 + 𝛽2̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑙 + 𝛽3̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑛 

+𝛽4̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑙 + 𝛽5̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 + 𝛽6̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐹𝑒𝑏 𝑎𝑛𝑑 𝑀𝑎𝑟 

          Also, based on the definition for Full 2, we include significant variables and interaction 

terms as well as the cumulative precipitation in February and March. The Full 2 is. 

𝑦𝑖𝑒𝑙𝑑 = 𝛽0̂ + 𝛽1̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝑀𝑎𝑦 + 𝛽2̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑛 + 𝛽3̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑙 

+𝛽4̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝑀𝑎𝑦 + 𝛽5̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑛 + 𝛽6̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑙 + 𝛽7̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 

+𝛽8̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑛 + 𝛽9̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑙 + 𝛽10̂ ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐹𝑒𝑏 𝑎𝑛𝑑 𝑀𝑎𝑟 

+𝛽11̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝑀𝑎𝑦 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 + 𝛽12̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑛 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑛 

+𝛽13̂ ∗ 𝑑𝑖𝑓𝑓𝑇 𝑖𝑛 𝐽𝑢𝑙 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑙𝑦 + 𝛽14̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝑀𝑎𝑦 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝑀𝑎𝑦 

+𝛽15̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑛 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑛 + 𝛽16̂ ∗ 𝑚𝑒𝑎𝑛𝑇 𝑖𝑛 𝐽𝑢𝑙 ∗ 𝑝𝑝𝑡 𝑖𝑛 𝐽𝑢𝑙 
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For Full 1, we use backward selection method first. This returns us the following model. 

𝑦𝑖𝑒𝑙𝑑 = 66.727 − 0.8975 ∗ diffT in Jun − 1.536 ∗ meanT in Jul + 1.781 ∗ ppt in May   (4.7.1) 

Then, we use forward selection, stepwise selection starts from full and stepwise selection starts 

from null. All the 4 methods return us the same best model for Full 1. Table 4.7.1 is the 

summary of model (4.7.1). 

Table 4.7.1 Summary of Model Selection of Full 1 for Spring Wheat 

Model Parm # df RMSE RSS AIC BIC R-Sq 

(4.7.1) 4 27 3.983 428.33 89.403 95.139 0.4312 

 

For Full 2, we use backward selection method first. This returns us the following model. 

𝑦𝑖𝑒𝑙𝑑 = 118.038 + 2.494 ∗ ppt in Feb and Mar − 1.523 ∗ diffT in Jul − 0.817 ∗ meanT in Jun 

−1.691 ∗ meanT in Jul − 2.374 ∗ meanT in May − 11.607 ∗ ppt in Jul − 13.355 ∗ ppt in May 

+0.87 ∗ diffT in Jul ∗ ppt in Jul + 1.26 ∗ meanT in May ∗ ppt in May                               (4.7.2) 

which is the same model we get using stepwise selection starting from full model. 

Then, we use forward selection method. This returns us the following model. 

𝑦𝑖𝑒𝑙𝑑 = 66.727 − 0.8975 ∗ diffT in Jun − 1.536 ∗ meanT in Jul + 1.781 ∗ ppt in May   (4.7.3) 

which is the same model we get using stepwise selection starting from null model. 

          We have two options from full 2 and we need to determine which one is better. Table 4.7.2 

is the summary of the two models.
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Table 4.7.2 Summary of Model Selection of Full 2 for Spring Wheat 

Model Parm # df RMSE RSS AIC BIC R-Sq 

(4.7.2) 10 21 3.372 238.72 83.280 97.620 0.683 

(4.7.3) 4 27 3.983 428.33 89.403 95.139 0.4312 

 

          By comparing model (4.7.2) and model (4.7.3), we find model (4.7.2) has smaller AIC 

while model (4.7.3) has smaller BIC. RMSE for model (4.7.2) is smaller than model (4.7.3) and 

R square of model (4.7.2) is bigger. However, the number of parameter of model (4.7.2) is more 

than model (4.7.3). It seems that we are hard to make a decision since each model has advantages. 

Here, we add one more term diffT in Jun in model (4.7.2) so that model (4.7.3) becomes a sub-

model of model (4.7.2). Then we perform F-test of reduction to check whether it is permissible 

to reduce model (4.7.2) to model (4.7.3). The results are given below in Table 4.7.3.  

Table 4.7.3 F-test of reduction for Model (4.7.5) and Model (4.7.6) 

Model Res. Df RSS Df Diff Sum of Sq F Statistic P value 

(4.7.3) 27 428.33 - - - - 

(4.7.2) 20 231.37 7 196.96 2.4323 0.0563 

 

         Our p -value is 0.0.0563. At α level 0.1, we reject null hypothesis and conclude it is not 

permissible to reduce model (4.7.2) to model (4.7.3). However, we argue that if we choose α 

level 0.05, then we will accept the null so that we will choose model (4.7.3). Further, because of 

the principle of parsimony which tells us things are usually connected or behave in the simplest 

or most economical way especially with reference to alternative. Therefore, we choose the model 

(4.7.3) with less number of parameters as our best model for Full 2. Since model (4.7.3) is the 

same as model (4.7.1), we have the same best model for Full 1 and Full 2. Therefore, we 
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conclude that the model (4.7.1) is our final best model and below are the residual plot and the Q-

Q plot for model (4.7.1). 

 

 

 

 

 

   

    Figure 4.7.1 Residual Plot for Spring Wheat            Figure 4.7.2 Q-Q Plot for Spring Wheat 

          Based on the residual plot and Q-Q plot, one could see the mean of the residuals is roughly 

0 and also and the residuals are normally distributed while the dots in the Q-Q plot match the 

straight line well. Shapiro-Wilk normality test is also performed to check the normality of the 

residual. The result is shown in the Table 4.7.4. 

Table 4.7.4 Shapiro-Wilk Normality Test for Spring Wheat 

Model Statistics p -value 

(4.7.1) 0.987 0.962 

 

          Our p -value for Shapiro-Wilk normality test is 0.962. At α level 0.1, we have insufficient 

evidence to reject the null hypothesis and conclude that the residuals for model (4.7.1) have a 

normal distribution. We expect the residuals for a good model to have a normal distribution. 
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Therefore, based on the previous analysis, we are confident to choose model (4.7.1) as our final 

best model for spring wheat and it is able to predict spring wheat yield well. 

          In the model (4.7.1), the negative coefficient for difference temperature in June tells us 

that if the volatility of temperature is big in June, it will not benefit spring wheat growing and 

will decrease spring wheat yield. The negative coefficient for mean temperature in July tells us 

that if the mean temperature in July is high, it will not benefit spring wheat growing and will also 

decrease spring wheat yield. We also find that coefficient is positive for precipitation in May. 

Our explanation is that spring wheat in May needs more water to grow up. If precipitation in 

May is sufficient, it will benefit spring wheat growing and result in large yield.  
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CHAPTER 5 

CONCLUSION 

 

          In this thesis, we introduce distance correlation as a new statistical tool and compare it 

with Pearson correlation by simulating data for both linear and nonlinear. We use both distance 

correlation and Pearson correlation to help us determine two full models for each crop. Then we 

perform backward selection, forward selection, stepwise selection from null and stepwise 

selection from full on these full models. We take consideration of various factors such as RMSE, 

RSS, AIC, BIC, R square, number of parameters and so on and select the best model for each 

crop. Further, we use several statistical methods to check the goodness of fit of our best model 

such as Q-Q plot, residual plots etc. Finally, we have 6 best models for 6 different crops and 

these 6 best models are summarized in Table 5.1. 
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Table 5.1 Summary of Best Models 

   Yield   

 Barley Canola Flax Oat Pea Spr. Wheat 

Intercept 134.586 75.660 55.067 155.850 88.660 66.727 

Cum. ppt - - - - 4.364 - 

Apr ppt - - - - 3.657 - 

May ppt 2.428 0.846 - 1.992 - 1.781 

Jun ppt - - 1.542 - -1.991 - 

Aug ppt -2.184 - - - - - 

May diffT 1.073 - -0.896 - - - 

Jun diffT - -1.134 - -2.323 - -0.898 

Jul diffT - - - -1.859 - - 

May meanT -1.084 - - - -1.109 - 

Jun meanT - - - - 1.869 - 

Jul meanT -4.935 -2.142 -1.447 -2.645 - -1.536 
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CHAPTER 6 

FURTHER DIRECTION 

 

         The study of improving crop yield is very complicated. Actually, in addition to temperature 

and precipitation, there are many other factors could significantly impact crop yield. 

          First, sunshine. What time is sunrise and what time is sunset for everyday? Even sunny or 

cloudy days may affect yield. Normally, longer sunshine results in greater crop yield. Second, 

soil potential of hydrogen. Different crops may have different favorable conditions. Normally, 

the yield for a certain crop would be maximized at a certain Ph. Third, fertilizer. This is not a 

natural factor but it still impacts crop yield. Normally, too much or too little fertilizer will 

negatively affect crop yield. Last, but not the least, planting density. The density should be 

optimized. There might be an ideal density for a crop at which the yield would be maximized. If 

we were supplied by these factors in addition to climate variables, we believe we would have 

more accurate models so that we are able to predict crop yield better. 
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