
MBLAST-PK: A FAST ALGORITHM FOR 

RNA PSEUDOKNOTTED STRUCTURE PREDICTION 

by 

JIANLIANG DAI 

(Under the Direction of Liming Cai) 

ABSTRACT 

RNA secondary structure including pseudoknots is computationally difficult to predict. Almost all 

existing algorithms for optimal pseudoknot prediction entail O(n6) running time and  O(n4) memory space 

even for restricted categories of pseudoknots, making pseudoknot prediction unrealistic for RNA of more 

than 100 nucleotides.  

We introduced a new heuristic algorithm mBLAST-PK for RNA pseudoknot prediction that can 

substantially reduce the computational costs.  The new algorithm preprocesses the RNA sequence to find 

all base pairing regions in a sequence based on a modified BLAST technique. It then non-trivially extends 

Nussinov folding to calculate the structure including pseudoknots. Our program predicted the RNA 

pseudoknot structures in bacterial tmRNA sequences at about 81% accuracy.  The running time and 

memory space consumption by the algorithm are both reduced by at least two orders of magnitude, 

making the task of pseudoknot prediction routine on desktop computers. 
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Ribonucleic acid (RNA) is an important macromolecule in most living organisms. RNA molecules 

play essential roles in many processes such as translation and gene regulation. Single stranded RNA 

molecules have the property that they can fold to form intramolecular base-paired structures (double 

helices), either in a nested and parallel fashion called stem-loops or in a crossing fashion called 

pseudoknots. These structures are essential to the function of RNA molecules. Pseudoknots were found in 

many important RNAs, with a role in translation [8], viral genome structure [14] and ribozyme active 

sites [20]. Computational prediction of RNA structure can be made for two different types of sequence 

data: either a single RNA sequence or multiple RNA sequences.  

Due to its inherent complexity, an RNA pseudoknot structure is computationally difficult to predict 

[6]. Algorithms currently available for optimal pseudoknot prediction are evolved from stem-loop 

prediction algorithms based on thermodynamics, formal grammars, graph theoretics, and other theoretical 

frame works.  

For single RNA sequences, the Nussinov dynamic programming algorithm finds the stem-loop 

structure by computing the maximum number of base pairings [13, 6]. The algorithm checks four ways in 

which the best structure for a subsequence X[i..j] from position i to position j can be made from the best 

structure for smaller subsequences by adding the nucleotide at position i and/or the one at position j: (a) 

Add an unpaired base i to the best structure for the subsequence X[i+1, j]; (b) Add an unpaired base j to 

the best structure for the subsequence X[i, j-1]; (c) Add paired bases i-j to the best structure for the 

subsequence X[i+1, j-1]; (d) Combine two optimal substructures i, k and k+1, j (Figure 1-1). Combined 

with thermodynamic parameters, the Nussinov RNA folding algorithm was later developed into widely 

used software systems such as MFOLD and Vienna [23, 24]. These programs can predict non-pseudoknot 

structure for any given single RNA sequence at 70% accuracy. Recently thermodynamic energy 

minimization is extended to find pseudoknots[12]. In particular, Rivas and Eddy created a dynamic 

programming algorithm based on MFOLD which can find optimal folding in O(n6) time and O(n4) space 

[15]. There are other algorithms developed for pseudoknot prediction based on thermodynamics, however 

these methods do not guarantee optimality [1, 12]. 
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    a. Add an unpaired base i to the best structure for the subsequence i+1, j  

   b. Add an unpaired base j to the best structure for the subsequence i, j-1  

    c. Add paired bases i-j to the best structure for the subsequence i+1, j-1  

    d. Combine two optimal substructures i, k and k+1, j  

 

Nussinov RNA folding algorithm 
 

Initialization: 

S (i, i) = 0  for i = 1 to L, 

S (i, i-1) = 0  for i = 2 to L,  

Recursion: 
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covariance analysis. If only a single sequence or a small family of RNAs with little sequence diversities is 

available, this method cannot be applied [15]. 

Some heuristic approaches have been introduced for RNA single-sequence structure prediction. For 

example, a quasi-Monte Carlo search method and several genetic algorithms exist for pseudoknot 

prediction, but these methods are not guaranteed to find the optimal structures [18, 26, 27]. Recently, 

Dirks and Pierce described an O(n5) dynamic programming for computing the partition function and 

minimum energy structure over a pseudoknot. However, the testing results are subject to the limitations of 

the approximate physical model on which the partition function is based [29].  

A different approach to pseudoknot prediction is based on various aspects of graph theory.  A tree 

adjoining grammar was used for RNA pseudoknot prediction [22], but later it was found that the tree 

adjoining grammar is not critical while the parsing procedure is important [1].  Another method is called 

Maximum Weighted Matching (MWM) [4, 19]. In MWM, the graph represents bases as vertices and all 

possible interactions as weighted edges among all the bases (vertices) for the RNA. MWM gives the RNA 

for folding with matching having the maximal summed edge weights. However, MWM seems to work 

best to folding sequences for which a previous multiple alignment exists [15]. MWM also has a problem 

of producing spurious base pairs [4]. 

Alternatively, when the consensus structure of a set of aligned homologous RNA sequences is 

available through comparative sequence analysis, a covariance model can be constructed for the structure 

using stochastic context-free grammars (SCFG). With a SCFG probabilistic model, not only can single-

sequence structure prediction be performed, but also profiles can be developed for structural homology 

recognition in database searches. Although RNA stem-loops have been successfully modeled with SCFG, 

RNA pseudoknot modeling requires context-sensitive grammars, which are much more complex and 

clumsy to implement. As a result, most efforts have been made to model pseudoknots with the other kinds 

of grammars, essentially extensions of SCFG [15]. For example, Cai et al [2003] introduced a grammar 

modeling approach for pseduoknot structure based on parallel communicating grammar systems (PCGS) 

and showed that technically a pseudoknot model specification could be as simple as SCFG [5]. But most 
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of these grammars are still very complicated [16, 22] and computationally intensive as well as memory 

consuming [7].  

For consensus pseudoknot structure prediction, there are a small number of algorithms that are based 

on thermodynamic methods [17, 9], genetic algorithms [10] and graph theory [11]. These methods while 

successful at their specific aims, are computationally resource consuming in addition to being lack in 

generality.    

Algorithms currently available for optimal pseudoknot prediction requires O(n4) memory and O(n6) 

run-time even for restricted pseudoknot categories. The memory and CPU time requirements of these 

algorithms have made it impossible to predict pseudoknots for an RNA sequence longer than 200 

nucleotides [21]. Improvements in space and time complexity are needed. Generally speaking, RNA 

structure prediction could be speeded up either through implementation techniques such as parallel 

computing or through the use of heuristic methods with some tradeoffs. 

In this study we propose a novel approach to speed up and reduce the memory cost of single-

sequence RNA pseudoknot prediction. The proposed algorithm extends and combines the idea of BLAST 

and Nussinov folding algorithms. The BLAST algorithm was developed to find local alignments between 

a query sequence and a target database [2]. It is based on the idea that high score alignments are very 

likely to contain a short stretch of exact matches. The BLAST algorithm first creates a list of scoring 

words of length W, then uses them as seeds to perform database search and identify exact matches (hits). 

For each word match, BLAST extends the alignment in both direction to find alignments that score 

greater than the threshold (Figure 1-2).  Since there are similarities between the RNA folding process and 

sequence local alignment, pre-proccessing the RNA sequence to find all the base pairing regions that can 

form double helices may provide a solution to speeding up RNA structure prediction, especially for 

pseudoknots. In particular, the Nussinov folding algorithm can be modified to work on the base pairing 

regions rather than on individual bases. For pseudoknots, the Nussinov algorithm is extended based on a 

similar idea developed for stochastic grammar based prediction [5].  It is expected as well that the method 

may provide feasible solutions to multiple-sequence consensus structure prediction. 
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Fig. 1-2. The BLAST algorithm works in three steps: preproccessing of the query, exact-match database 

search, and extensions of the hits. Figure taken from [30].    



CHAPTER 2 

MBLAST ALGORITHM 
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We propose a novel algorithm for efficient RNA pseudoknot prediction .The algorithm, 

mBLAST-PK, consists of two major components. The function of the first component is finding all the 

existing base-pairing regions in the RNA sequence. Each of these base-pairing regions can form a double 

helix with some other base-pairing region. It is accomplished with a modified BLAST algorithm.  

The original BLAST algorithm involves three distinct steps: preproccessing of the query, exact-

match database search and extensions of the hits [30]. Instead of doing an exhaustive database search, this 

algorithm pre-processes the query sequence based on a list of seeds and performs heuristic seed-search, 

thereby reducing computation time dramatically. The RNA folding process could be thought of as a local 

alignment process, in which one short base region aligns to another complementarily pairing base region 

(to form a double helix). Following this idea, we modified the BLAST algorithm so that it could be used 

to find all the base-pairing regions that may form double helices. The modified BLAST algorithm (Figure 

2-1) proceeds in three steps: generation of a complementary sequence, exact-match search, and extension 

of the hits. 

(1) Generation of a complementary sequence: RNA structure consists of a number of double helices. 

Each double helix is formed by two base-pairing regions.  A new RNA sequence is first 

generated that is complementary to the original RNA sequence. Assume that a complementary 

sequence X’ was generated from the sequence X of length N. The nucleotide of X’ at position k 

is the complementary base of the nucleotide at position N-k+1 of X.  

(2) Exact-match search: Starting from the 5’ end of sequence X’, for each position k, every 3 or 4 

consecutive nucleotides from 5’ to 3’ are used as a seed (assume the minimum length of a double 

helix is 3 or 4), to scan through the original RNA sequence from 5’ to 3’. That is, we compare 

every 3 or 4 consecutive nucleotides in X’ from 5’ to 3’ with every 3 or 4 consecutive 

nucleotides in X from 5’ to 3’. We also use 4 consecutive nucleotides in X’ from 5’ to 3’ as a 

seed when one of 4 nucleotides is C or A (correspondent to G or U in X). If the compared 

nucleotide in X is U or G, it is also a hit, so that the non-canonical pair G-U is allowed in the 

stacked base pairs, which occurs quite often. We stop scanning when the distance between the 
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last position compared in X and the first position of the seed in X (N-1-k-2) is less than the 

predefined minimum loop length. Once we get a hit (exact match), we perform step (3). 

 

         GCA 
                                     |  |  |        
  X    5’ CGAGGG GGCCUCGUAAAA    3’ 
  X’    3’ GCUCCCCGUCAACCGGAGCAUUUUUCGACG  5’ 
                                                                                                ACG            
                                                                                             GAC 
                       CGA 
          ...... 

 

 

 

 

 

 

Fig. 2-1. The mBLAST algorithm scans the RNA sequence X using a seed GCA from the complementary   

sequence X’, identify an exact-match (hit) and extend the hit to find two longer base pairing regions (outlined) 

Ungapped extensions are performed. 

 

(3) Extension of the hits: once we get a hit, we perform ungapped extension in the direction of 5’ to 

3’ for both sequence X’ and sequence X by continuing to compare the nucleotides at the 

following positions from X and X’. Mismatch extension (One or two mismatches) is allowed 

only under the condition that mismatches are followed by more matches so that the net log odds 

score for the mismatch extension is positive. The non-canonical G-U pair is also allowed during 

the ungapped extension. 

 

This algorithm runs in time O (N2). The types of base regions that could be identified using this 

algorithm depend on the types of matches searched in step (2) and/or in step (3). For example, if a match 

consists of 5 matched base pairs, then the regions identified will have at least 5 base pairs. If one 

mismatch is allowed in the middle of comparisons in step (2) and/or in step (3), then the double helix 

formed by these two base regions will include a pair of bulges. If such information is available about the 

RNA structure and incorporated into step (2) and/or step (3), the accuracy of structure prediction could be 

greatly enhanced. 
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A hit in step (2) followed by extensions in step (3) identifies two base-pairing regions in the original 

sequence. The region from sequence X is represented by symbol α(i) (which essentially is the first 

position index i of this base region), and the other pairing region in X is represented by symbol β(j) 

(which essentially is the last position index j of this base region, i.e. the first position of the seed k in X’ 

and N-k+1 in X). Note that the index α(i) or β(j) may refer to more than one base region, because there 

may be more than one base region starting at this position but with the different length. Therefore, a 

single α(i) or single β(j) cannot uniquely identify a double helix, only α(i) together with β(j) can uniquely 

determine a double helix. At this point, the sequence X could be represented by “a base region sequence”, 

namely, a sequence of base regions indexed by α(i) and β(j).  

 

 

α(i)              α(i1)                        β(j)                β(j1)          

Fig. 2-2. A base region sequence; One base region may have multiple complementary base regions. 

  

α(i)       a base region starting at the position i1,              β(j)  a base region ending at the positon j ,  

                 the RNA backbone                                          two base pairing regions are considered 
                            in the current optimal solution calculation. 

 

The log odds scores are calculated for every complete double helix formed by α(i) and β(j) and its 

three subhelices. The log odds score of a double helix is the summation of the log odds ratio of every base 

pair                                    where                                            is the log odds ratio of a base pair (a, b)[6]. 

The base probability qa and qb, and the base-pairing probability pab are obtained from the training data set 

described before [5]. 

The purpose of considering subhelices is that although the complete helix is excluded because it 

overlaps with other double helices, one of these subhelices still could be included in the prediction result. 

These three sub-helices share the same starting positions i and j, but with different lengths (i.e. for a 

double helix of length L, then three sub-helices have the lengths of L-1, L-2 and L-3 respectively. The 



 11

mismatch extension part is treated as a single residue). The log-odds scores and their associated lengths 

are stored in tables. If the region α(i) does not complementarily pair with region β(j), all these values are 

set to zero. If any of L-1, L-2 and L-3 is less than the assumed minimal length of a double helix, the 

relevant value(s) are set to zero.  



CHAPTER 3 

NUSSINOV-PK ALGORITHM
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The second component of the mBlast-PK algorithm is in the spirit of Nussinov folding algorithm. 

The Nussinov algorithm was modified and extended so that it treats each base-pairing region as a single 

nucleotide and is capable of finding all the base regions that could form a structure, including 

pseduoknots, with the highest score. 

The Nussinov algorithm component calculates the structure with the maximum number of base-pairs. 

The dynamic programming recursively calculates the best structures for smaller subsequences and works 

it ways outwards to larger subsequences [6]. I modified Nussinov algorithm to handle the indices of base 

regions α(i) and β(j) rather than the nucleotide indices i and j.  Two complementary base regions form 

one double helix in a RNA sequence. Formally, let α(i) represent the base region that is close to the 5’ 

end of the RNA sequence and this region starts at position i, β(j) refers to the complementary base region 

that is close to the 3’ end of the RNA sequence and this region ends at position j. Let function first(α(i)) 

return i, the first position of base region α(i), function last(β(j)) return j, the last position of base region 

β(j). Let X[α(i)..β(j)] be the subsequence from position i to position j. We say α(i) is complementarily 

matchable (simply, matchable) with β(j) when they can form a stable double helix. Symbol h(α(i), β(j)) 

indicates the double helix formed by base region α(i) and base region β(j).  Note that j must be larger than 

or equal to i+8 for subsequence X[α(i)..β(j)] to form a stem-loop structure if we assume that a double 

helix has at least 3 base pairs and the minimum loop length is 3. Let S(α(i), β(j)) be the maximum score 

for h[α(i)..β(j)]. Let l(α(i), β(j)) be the number of base pairs and δ(α(i), β(j)) be the log odds score of the 

complete double helix h(α(i),β(j)). The other important functions and indices are defined as follows: 

1. next(α(i)) returns the base region starting at the first position  > first(α(i)), it may overlap with  

    the base region α(i),  

2. prev(β(j)) returns the base region ending at the first position < last(β(j)), it  may overlap with  

    the base region β(j),  

3. nextNo(α(i)) returns the base region starting at the first position > last(α(i)), it cannot overlap with  
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    the base region α(i),  

4. prevNo(β(j)) returns the base regions ending at the first position < first(β(j)), it cannot overlap     

    with the base region β(j), 

7. nextStart(β(k)) returns the base regions starting at the first position > last(β(k)), 

Table 3-1.  The extended Nussinov algorithm for calculating the score of subsequence X[α(i)..β(j)]. Formula  

(1), (2), (3) and (4) are analogues to formula (a), (b), (c) and (d) in the Table 1-1.  Formula (5) looks for a  

pseudoknot formed by a double helix h(α(i), β(j1)) and a second double helix h(α(i1), β(j2)). In this case  

X[α(i)..β(j)] is partitioned into two parts and calculated by function P(α(i),β(j1),α(i1)) and Q(nextStart(β(j1)),  

β(j), β(j2)), respectively. These two functions are defined in table 3-2. 
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                   S (next(α(i)), β(j)),                (1) 

                         S (α(i), prev(β(j))),                     (2) 

S (α(i), β(j)) = max      S (nextNo(α(i)), prevNo(β(j))) + δ(α(i), β(j)),                  (3) 
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he modified Nussinov algorithm is shown in the Table 3-1. Formula (1), (2), (3) and (4) in the 

-1 are analogues to formulas (a), (b), (c) and (d) in the Table 1-1, which shows the original 

ov algorithm. Similarly, formulas (1), (2), (3) and (4) check the four possible ways in which the 

se-paired structure for X[α(i)..β(j)] can be made from smaller subsequences. Specifically, formula 

ludes the non-matching base region α(i), the best structure for subsequence X[α(i)..β(j)] that 

s the same set of base regions as that for X[next(α(i))..β(j)].  Formula (2) excludes a non-matching 

gion β, the best base-paired structure for X[α(i)..β(j)] that includes the same set of base regions as 

r X[α(i)..prev(β(j))].  Formula (3) adds matchable base regions α(i) and β(j) to the best base-paired 

re for the subsequence X[nextNo(α(i))..prevNo(β(j))]; Formula (4) combines two optimal 

ctures for X[α(i)..β(k)] and  X[nextStart(β(k))..β(j)], choosing the best base region between α(i) 

j).   
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                                (1) α(i) unpaired                                         

 

 

 

              (3) α(i) β(j) paired                                 

        

 

 

 

  

 

(5) pseudokno

 

Fig. 3-1. For subsequence X[α(i)..β(j)], formulas (1), (2), (3) a

the best base-paired structure for X[α(i)..β(j)] can be made fro

pseudoknot formed by a double helix h(α(i), β(j1)) and a secon

partitioned into two parts (indicated by two circles): X[α(i).. β

P(α(i),β(j1),α(i1)), and X[nextStart(β(j1)), β(j)] including regio

β(j2)).  Base regions α(i), β(j1) , α(i1) and β(j2) cannot be overl

 

In addition to checking four ways in which the best struc

smaller subsequences, we also calculate the maximum score f

by X[α(i)..β(j)] with the formula (5).  In this case, base region

and base region α(i1) and β(j2) must form a double helix, so th

form a pseudoknot (Figure 3-2). In the calculations of formula

base regions α(i) and β(j) are considered, the complete h(α(i),

one that results in the structure with highest log odds score is 
α(i)                              prev(β(j))           β(j) 
          α(i)           next(α(i))                                β(j)

                      (2)  β(j) unpaired                

 
α(i)      next(α(i))                     prev(β(j))    β(j)

                                 (4) bifurcation 
α(i)                        β(k) nextStart(β(k))        β(j)
 
α(i)         α(i1)                        β(j1) nextStart(β(j1))    β(j2)       β(j)
t 

nd (4) check four possible ways in which  

m smaller subsequences. Formula (5) looks for a  

d double helix h(α(i1), β(j2)). X[α(i)..β(j)] is  

(j1)] including region α(i1), calculated by  

n β(j2), calculated by Q(nextStart(β(j1)), β(j),  

apped with other base regions.    

ture for X[α(i)..β(j)] can be made from 

or the pseudoknot structure possibly formed 

 α(i) and β(j1) must form a double helix, 

at double h(α(i),β(j1)) and h(α(i1),β(j2)) 

 (3) and formula (5), whenever matchable 

β(j)) and its three sub-helices are tried, the 

used.  
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To calculate the pseudoknot score, X[α(i)..β(j)] is partitioned into two parts: X[α(i).. β(j1)] including 

region α(i1), calculated by P(α(i), β(j1), α(i1)), and X[nextStart(β(j1), β] including region β(j2), calculated 

by Q(nextStart(β(j1)), β(j), β(j2)). These two parts are not the same as, but are similar to, the “P-structure” 

described in Cai et al. [2003]. P(α(i), β(j), α(i1)) and Q(α(i), β(j), β(j1)) are calculated by PK(α(i), β(j), 

s1, s2) and QK(α(i), β(j), s1, s2), respectively, which are defined in Table 3-2. 

 

Table 3-2. The modified Nussinov algorithm for calculating PK(α(i), β(j), s1, s2)and QK(α(i), β(j), s1, s2).    

 P(α(i), β(j), α(i1))  = PK (α(i), β(j), s1, s2) = QK(nextNo(α(i)), prevNo(β(j)), s1, s2)+ δ(α(i), β(j)).               (6) 

Q(α(i), β(j), β(j1))  = QK (α(i), β(j), s1, s2).         (7)   

                 QK(next(α(i)), β(j), s1, s2),     if (last(next(α(i)))<s1)                (8a) 

          S(next(α(i)), β(j)),          if (s2<first(next(α(i))))                    (8b) 

          QK(α(i), prev(β(j)), s1, s2),  if (s2<first(prev(β(j))))                     (9a)

        S(α(i), prev(β(j))),                       if (last(prev(β(j)))<s1)                     (9b)

          QK(nextNo(α(i)), prevNo(β(j)),s1,s2)+δ(α(i), β(j)),              

                   if (last(nextNo(α(i)))<s1 and  s2<first(prevNo(β(j))))              (10a)

          S(nextNo(α(i)), prevNo(β(j))) + δ(α(i), β(j)),                       

           if (last(nextNo(α(i)))<last(prevNo(β(j)))<s1or         

QK(α(i),β(j),s1,s2)=max                                           s2<first(nextNo(α(i)))<fisr(prevNo(β(j))))                     (10b)

                                              max{max i<k<fisrt(nextStart(β(k)))<s1[S(α(i),β(k))+QK(nextStart(β(k)),β(j),s1,s2)],   (11a) 

                                      max s2<k< fisrt(nextStart(β(k)))<j [QK(α(i),β(k),s1,s2)+S(nextStart((β(k)),β(j))],  (11b) 

                                           max i<k<s1and s2<first(nextStart(β(k)))<j [S (α(i),β(k)) + S(nextStart(β(k), β(j))]       (11c)   

                         }, 

    max  { max i<i2<j2<s1     [ P(α(i), β(j2),α(i2))+Q(s2+1,β(j), β(j3)) +  

             s2<j3<=j         S(nextStart(β(j2)), s1-1)+δ(α(i2), β(j3))]                        (12a) 

 max s2<i2<j2<j       [ P(α(i2), β(j), β(j2))+Q(α(i), s1-1, (α(i3)) + 

i=<i3<s1         S(s2+1, prevNo(α(i2))+δ( (α(i3), β(j2))]                       (12b)

                                                       } 

           Note: s1=first(α(i1)) or first(β(j1)),  s2 = last(α(i1)) or last(β(j1)). s1 and s2 are constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The most important objective of this algorithm is to guarantee that the indices used for a recursive 

call are smaller than s1 and larger than s2 so that the pseudoknot-base-regions α(i1) or β(j1) are not 
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overlapped by other base regions throughout the calculation. Formulas (8a) and (8b) calculate the score of 

the structure for X[α(i)..β(j)] excluding base region X[s1..s2] when the non-matching region α is not 

considered (Fig. 3-3). Formula (8a) handles the case that next(α(i)) returns base regions starting at 

position < s1; formula (8b) deals with the case that next(α(i)) returns base regions starting at position > 

s2; Similarly, formula (9a) and (9b) calculate the score of the structure for X[α(i)..β(j)] excluding base 

region X[s1..s2] when the non-matching region β(j) is excluded (Fig. 3-4). Formula (9a) handles the case 

that prev(β(j)) returns base regions ending at position < s1; formula (9b) handles the case that prev(β(j)) 

returns base regions ending at position > s2. 

 

 

 α(i)         next(α(i))                          X[s1..s2]                   β(j) 
     

       (3-3a) 

     

   α(i)                               X[s1..s2] next(α(i))                      β(j)      

       (3-3b) 

Fig. 3-2. For subsequence X[α(i)..β(j)], formulas (8a and 8b) calculate the score of the structure for  

X[α(i)..β(j)] excluding base region X[s1..s2] when the non-matching region α(i) is not considered. The parts  

that are used for recursive calls are indicated by the circles, where s1 and s2 are defined in table 3-2. 

 

 

   α(i)                                  X[s1..2]               prev(β(j))       β(j)      

         (3-4a) 

     

  α(i)                            prev(β(j))      X[s1..s2]                    β(j)  

                     (3-4b) 

Fig. 3-3. For subsequence X[α(i)..β(j)], formulas (9a) and (9b) calculate the score of the structure for  

X[α(i)..β(j)] excluding base region X[s1..s2] when the non-matching region β(j) is excluded. The parts that are  

used for recursive calls are indicated by the circles.  
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Formula (10a) and (10b) calculate the score of the structure for X[α(i)..β(j)] excluding base region 

X[s1..s2] when the matchable region β(j) is included (Fig. 3-5). Formula (10a) handles the case that 

nextNo(α(i)) returns base regions starting at position < s1 and prev(β(j)) returns base regions ending at 

position > s2; formula (10b) handles the case that nextNo(α(i)) returns base regions starting at position > 

s2 or prev(β(j)) returns base regions ending at position < s1.  

 

 

     

           (3-5a) 

   α(i)      next(α(i))            X[s1..s2]             prev(β(j))          β(j) 

   α(i)        next(α(i))        prev(β(j))    X[s1..s2]                     β(j) 

 

 

     

                                                                                  (3-5b-1) 

 

   α(i)                   X[s1..s2]  next(α(i))               prev(β(j))      β(j) 

 

     

                                 (3-5b-2) 

Fig. 3-4. For subsequence X[α(i)..β(j)], formulas (10a and 10b) calculate the score of the structure for  

[α(i)..β(j)] excluding base region X[s1..2] when the matchable region α(i) and β(j) are included. The parts that  

are used for further recursive calls are indicated by the circles. 

 

 

Formula (11a), (11b) and (11c) combines two optimal substructures for X[α(i).. β(k)] and  

X[nextStart(β(k))..β(j)]. Formula (11a) handles the case that the partitioning point is located at positions < 

s1; formula (11b) handles the case that the partitioning point is located at position > s2; formula (11c) 

deals with the case that the base region X[s1..s2] is located between base region β(k) and nextStart(β(k)) 

(see Fig. 3-6). 
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      (3-6a)      

 

     

       (3-6b) 

   α(i)                      β(k) nextStart(β(k))    X[s1..s2]               β(j) 

   α(i)             X[s1..s2]          β(k)   nextStart(β(k))                β(j) 

   α(i)                         β(k) X[s1..s2]  nextStart(β(k))             β(j) 

      

 

       (3-6c) 

Fig. 3-5. For subsequence X[α(i)..β(j)], formulas (11a), (11b) and (11c) combines two optimal substructures  

for X[α(i)..β(k)] and X[nextStart(β(k))..β(j)]. The circles indicate the parts that are used for further recursive  

calls. 

 

α(i)         α(i2)                      β(j2)  X[ s1..s2]       β(j3)          β(j)   

 

     

        (3-7a) 

 

      α(i)      α(i3)        X[ s1..s2]      α(i2)                β(j2)        β(j) 

 

     

       (3-7b) 

Fig. 3-6. For subsequence X[α(i)..β(j)], formulas (12a and 12b) looks for (a) a pseudoknot formed by a  

double helix h(α(i), β(j2)) and a second double helix h(α(i2), β(j3)), (b) a pseudoknot formed by a double helix     

h(α(i2), β(j)) and a second double helix h(α(i3), β(j2)). The circles indicate the parts that are used for further  

recursive calls. 

 

In this modified algorithm, we continue to look for a pseudoknot and calculate the maximum score 

for the possible pseudoknot by formulas (12a) and (12b). The pseudoknots are assumed to occur in two 

situations here, one is that α(i) forms a double helix with a base region β(j2), where last(β(j2)) < s1 and 
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α(i2) forms a second double helix with β(j3), where last(α(i))<first(α(i2))<last(α(i2))<first(β(j2)), 

s2<first(β(j3))< last(β(j3))<=last(β(j)) (Formula (12a), Fig. 3-7a). The other is that β(j) form a double 

helix with a base region α(i2), where s2<first(α(i2)) and α(i3) forms a second double helix with β(j2), 

where first(α(i)) =< first(α(i3))<last(α(i3))<s1, last(α(i2))<first(β(j2))<last(β(j2))<first(β(j)) (Formula 

(12b), Fig. 3-7b). The subsequence X[α(i)..β(j)] is partitioned into three parts which are indicated by 

three circles, for the recursive calculation of the overall log odds score. Because the algorithm looks for 

pseuoduknots in these two situations, more complex pseudoknot structures could be missed in the 

calculation. As in the calculation of formulas (3) and (5), whenever matchable base regions α(i) and β(j) 

are considered in the calculation of the formula (10a-b) and (12a-b), the complete helix αβ and its three 

subhelices are tried. The one that results in the structure with highest log odds score is used. The 

algorithm runs in time O(M3), where M is the number of the base pairing regions. 



CHAPTER 4 

IMPLEMENTATION AND PRELIMINARY TESTS
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We have implemented the algorithm in C++ on the UNIX/Solaris platform of a SUN workstation. 

The input to the program is a standard FASTA formatted RNA sequence, a 1x5 base probability matrix, a 

5x5 base-pairing matrix and several RNA structure parameters (4 bases plus gaps). The probability data is 

used to calculate the log odds score for each double helix.  

In the implementation of mBLAST-PK algorithm, two techniques were used to reduce the space and 

time usage. One technique is that we use arrays of lists instead of high dimensional matrices to store the 

information of base regions and the scores for the pseudoknots. The list of all of base regions is stored in 

a one-dimensional array. Each element in the array represents a cell of α(i) and references a list of nodes, 

with each node containing the information of a base region β(j) that can form a double helix with base 

region α(i). This implementation not only saves space, but also reduces the running time, because, when 

we calculate formulas (5), (12a) or (12b), it is unnecessary to check all the base regions for region α(i), 

α(i1) and β(j) to find the pairing region β(j1), β(j2) and α(i1). We only need to check the base regions 

stored in the lists referenced by the cell of α(i), the cell of α(i1) and the cell of β(j). The value of QK(α(i), 

β(j), s1, s2) is stored in a two dimensional array of lists in which the cell of α(i) and β(j) references to a 

list of nodes. Each node contains the score, trace back pathway and pseudoknot information with 

specified s1 and s2.  This greatly simplifies the storage of data. 

To avoid repeatedly calculating the score for the same subsequence, the modified Nussinov 

algorithm is implemented with a memoized recursive algorithm, a variation of dynamic programming. A 

top-down memoization recursive algorithm memoizes the solution of a subsequence the first time it is 

completed. The solution can be simply looked up and returned when it is needed at a subsequent time.  

The memoization recursive algorithm offers advantages over the bottom-up dynamic programming since 

only the scores for indices of α(i) and β(j) that are valid, need to be calculated.  

To evaluate the success of this algorithm, we ran our program on a set of tRNA sequences and a set 

of tm RNA sequences. Our predicted structures for these sequences have been classified into three 

categories. The first category includes the sequences for which our predicted structures are exactly the  
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Table 4-1 Running time comparisons between mBlast-PK algorithm and other pseudoknot structure   

prediction algorithms-PKNOTS and PCGS (parallel communicating grammar systems). The numbers in  

parenthesis are the number of double helices regions identified by the mBLAST algorithm.      

 
Sequence length             Algorithm  Running time  References 

           
84 nucleotides                PKNOTS  47 min   Rivas and Eddy 1999 [15] 
105            PKNOTS  235 min   Rivas and Eddy 1999 [15] 

        100             PCGS  60 min   Cai et al. [5] 
150 (70)           mBLAST-PK 0.05 min   

         204 (144)          mBLAST-PK 0.9 min  
 

same as their known structure. The second category includes the sequences for which our predicted 

structures include the same set of double helices, but with errors in the boundaries of some base regions 

or with an extra double helix. The third category includes the sequences for which our predicted 

structures missed one or more double helices. The accuracy of the prediction is calculated as the ratio of 

the number of sequences in the first category and the secondary categories to the total number of the 

sequences tested. 

We first ran our program on a yeast tRNA-phe sequence (Figure 4) and all the available E. coli-K12 

tRNA sequences (88 tRNA sequences from the tRNA database (http://rna.wustl.edu/GtRDB/Eco/)). The  

  
 

 

 

 

 

 

 
  
  
     predicted structure for tRNA-phe length 76 
     GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAAAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA 
     AAAAAAA--BBBB--------bbbb-CCCCC-------ccccc-----ZZZZZ-------zzzzzaaaaaaa---- 

 

          Fig. 4. The stem-loop structure of yeast tRNA-phe [6] and the predicted structure for it. 
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Table 4-2. Some typical outcomes of the prediction test on 88 E. coli-k12 tRNA sequences. Under each sequence is 

the correct stem-loop structure followed by the predicted structures. The correct structures (in the first category) as 

in sequence trna70 totaled 83% of the prediction.  The incorrect predictions in the third category are shown as in 

sequence trna52. 

 
Ecoli-K12.trna70 length 76  
GGGGCUAUAGCUCAGCUGGGAGAGCGCUUGCAUGGCAUGCAAGAGGUCAGCGGUUCGAUCCCGCUUAGCUCCACCA  
AAAAAAA--BBBB--------BBBB-CCCCCCC---CCCCCCC-----ZZZZZ-------ZZZZZAAAAAAA---- 
AAAAAAA--BBBB--------BBBB-CCCCCCC---CCCCCCC-----ZZZZZ-------ZZZZZAAAAAAA---- 
 
Ecoli-K12.trna52 length 87  
GCGAAGGUGGCGGAAUUGGUAGACGCGCUAGCUUCAGGUGUUAGUGUCCUUACGGACGUGGGGGUUCAAGUCCCCCCCCCUGCACCA  
AAAA-AA--BBB-----------BBB-CCCCC------CCCCC--ZZZZ----ZZZZ--DDDDD-------DDDDDAA-AAAA---- 
--AAAA-BBBBB-------------BBBBB-AAAA-CCCCCCCCCZZZZZ---ZZZZZ-DDDDD-------DDDDD--CCCCCCCC- 
 
 

secondary structure of a tRNA sequence only consists of stem-loops. Compared with Cove-predicted  

tRNA secondary structures rendered by NAVIEW (c) (http://rna.wustl.edu/GtRDB/Eco/Eco-structs.html), 

our predicted structures for the tRNA sequences have been classified into two categories. The first 

category includes 73 tRNA sequences for which our predicted structures are exactly the same as the  

Cove-predicted. The second category includes 15 the tRNA sequences for which our predicted structures 

are not the same as the Cove-predicted. The accuracy of our prediction for these tRNA sequences is 73/88 

= 83% (Table 4-1). 

We further tested our program on a set of 80 tmRNA sequences from the tmRNA database 

(http://psyche.uthct.edu/dbs/tmRNA). In the first trial, if any double helix in the structure is assumed to 

have at least 3 base pairs, mismatch extension of hits was not performed and subhelices were not 

considered in the score calculation. Our program predicted pseudoknots in 76 sequences of the 80 

sequences. For 41 of the 76, the program correctly predicted the pseudoknot with the structure and exact 

base-pairing regions (the first category). For 13 sequences, the overall structure was correctly predicted 

with errors in the length of the base regions (the second category).  The algorithm predicted the 

pseudoknots incorrectly for the remaining 28 sequences (the third category). The program could not 

predict the pseudoknots successfully for 22 of the 28 because these sequences have bulges or 

noncanonical base pairs in their structures.  The pseudoknots of the remaining 6 sequences were predicted  
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Table 4-3. The improvement of the prediction accuracy for psedoknot structures using different input  

parameters. The prediction accuracy reaches 81% when the minimal length of a double helix is either 3 or 4,   

match and mismatch extensions are allowed in the mBLAST algorithm and subhelices are considered in the  

extended Nussinov algorithm. 

 
Prediction accuracy the min double  match   mismatch  sub-helices 

    helix length  extension extension considered 

(41+13)/80 = 68%  3    yes   no   no 
(45+16)/80 = 75%  4    yes   no   no  
(48+19)/80 = 81%  3 or 4   yes  yes  yes 

 
 

incorrectly because these sequences have a pseudoknot with only 1 or 2 base pairs. This is the same 

reason that the program also missed predicting pseudoknots in the remaining 4 of 80 tmRNA sequences. 

The correct and nearly correct structures account for (41+13)/80 = 68%.   

Since most of the double helices in the tested tmRNA have at least 4 base pairs, we tested our 

program on the tmRNA data assuming the minimum length of a stem is 4, without performing mismatch 

extension of hits and without considering subhelices in the score calculation. In that case, the percentage 

of the correct structure (the first category) and nearly correct structures (the second category) increased up 

to (45+16)/80 = 75%.  Finally, we tested our program on the same tmRNA sequences performing 

extension in the mBLAST algorithm and considering subhelices in the score calculation, while the 

minimal length was assumed to be either 3 or 4. Using the optimized structure parameters, the program 

predicted the structure correctly for 48 sequences and nearly correctly for 19 sequences. The percentage 

of the correct and nearly correct structures increased up to (48+19)/80 = 81%.  The algorithm failed to 

predict the pseudoknots correctly for the remaining 13 sequences, of which 6 sequences have a 

pseudoknot with only 1 or 2 base pairs.   

In the examples shown in Table 4-2, sequence 37 demonstrate an exactly correct prediction; 

sequence 8 shows a prediction of a pseudoknot, but with an extra double helix; sequence 35 shows a 

prediction that is structurally correct, but with errors in the regions; sequence 7 demonstrates failure to 

predict the structure. 
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Table 4-4. Some typical outcomes of the prediction test on tmRNA sequences. Under each sequence is the correct 

pseudoknotted structure followed by the predicted structures. The correct structures as in sequence 37 (the first 

category) plus nearly correct predictions (the second category), similar to sequence 8, totaled 81% of the prediction.   

 

Sequence pk2-37 
CGUUGCAGCAGUCGGUCAAUGGGCUGUGUGGCGAAAGCCACCGCAACGUCAUCUUACAUUGA 
AAAAAA--HHHHH--BBBBBBHHHHH-LLLLL----LLLLL-AAAAAA--------BBBBBB 
AAAAAA--HHHHH--BBBBBBHHHHH-LLLLL----LLLLL-AAAAAA--------BBBBBB 
 
Sequence pk2-8 
CCCUCUGCCCGGAUUUGUCUGUGGAUCCGGAGCCGAAAGGCGCGCGGAGGGUCAUGAAACACGGA  
AAAAAAAAHHHHHHH--BBBBBBHHHHHHH-------------AAAAAAAA--------BBBBBB 
AAAAAAAAHHHHHHH--BBBBBBHHHHHHH-QQQ----QQQ--AAAAAAAA--------BBBBBB 

 

Sequence pk2-35 
CGCUGCACUGAUCUGUCCUUGGGUCAGGCGGGGAAGGCAACUUCACAGGGG 
CCCCCC-BBBBB---AAAAABBBBBBCCCCCC-------------AAAAA- 
--CCCC-BBBB-----AAAAA--BBBBCCCC--DDDD---DDDD-AAAAA- 
 
Sequence pk1-7 
GUAUGAUUCCACCGGIGGUUUUUGCCAUAUGGAUCA 
AAAAAAA--------BBBB----AAAAAAA--BBBB 
---AAAAAA------BBBB----BBBB---AAAAAA 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 



CHAPTER 5 

DISCUSSIONS AND CONCLUSIONS
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RNA secondary structure including pseudoknots is computationally difficult to predict. Almost all 

existing algorithms for optimal pseudoknot prediction entail O(n6) running time and  O(n4) memory space 

even for restricted categories of pseudoknots, making pseudoknot prediction unrealistic for RNA of more 

than 100 nucleotides.  

We introduced a novel algorithm mBLAST-PK for RNA pseudoknot prediction that can 

substantially reduce the computational costs.  Following the idea of the BLAST algorithm, the new 

algorithm preprocesses the RNA sequence to find all base pairing regions in the sequence based on a 

modified BLAST process. It then non-trivially extends Nussinov folding to calculate the optimal structure 

including pseudoknots. Our experiments with the implemented algorithm showed its effectiveness and 

predicted the RNA stem-loop structures in bacterial tRNA sequences at about 83% accuracy, and the 

RNA pseudoknot structures in bacterial tmRNA sequences at about 81% accuracy. The running time and 

memory space consumption by the algorithm are both reduced by at least two orders of magnitude, 

making the task of pseudoknot prediction routine on desktop computers. Currently, the mBLAST -PK 

algorithm is applied to single RNA structure prediction; however, potentially the algorithm may provide 

feasible solutions to multiple-sequence consensus structure prediction. 

To speed up the prediction process, a double helix is assumed to have at least 3 base pairs and the 

non-canonical base pair G-U is only allowed under certain conditions. These assumptions and the way in 

which the pseudoknot is computed imply that the algorithm is not able to predict all kinds of RNA 

structures that may occur in reality.  The algorithm can predict a bulge structure under the condition that 

the base-pairing regions on both sides of a bulge are longer than 2; the algorithm is not able to predict the 

bulge structure without this condition.  

The accuracy might be enhanced by allowing more flexible conditions for when a hit can extend or 

permitting the G-U base pair to occur in the mBLAST algorithm. More flexible conditions may slow 

down the prediction process because many more base regions will be identified in the preprocessing. Our 

experiments also showed that the prediction accuracy of our program decreases as the length of the testing 

RNA sequence increases. In our current implementation of this algorithm, the log odds score is calculated 



 29

based on the base probabilities and base pairing probabilities, which were obtained from the training 

tmRNA sequence dataset. No further biological information is involved in the prediction process. 

Additional information could be incorporated into the rules to yield a biologically meaningful folding of a 

molecule [23], especially for long RNA sequences.  
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