

ADDRESSING NON FUNCTIONAL REQUIREMENTS THROUGH SYSTEM RE-
ENGINEERING

By

ANKIT JAIN

(Under the Direction of Krzysztof J. Kochut)

ABSTRACT

Scalability, availability and failover are some of the major problems of large software
systems today. The Web is growing at a fast pace and websites are experiencing high traffic
volumes and often are not able to scale up to meet the increased demand. This thesis
presents an approach to making a Web-based system more available and scalable to the end-
users. Our solution has been based on reusing the existing code and architecture to create a
distributed and scalable environment to handle high load levels. We show how we applied
open source technology to a deployed application to make it more available and scalable.
Our aim was to re-engineer the system in such a way so that it would fulfill the new non-
functional requirements through its refactoring. Additionally, we introduced support for
failover to the entire application. We have re-architected the existing system to achieve the
stated performance goals without a complete system redesign. Subsequently, we have
conducted performance comparison of the re-engineered system with the original one, which
showed that the improved system achieved the stated performance requirements.

INDEX WORDS: Distributed Systems, Performance, Scalability, Availability,

Failover, Re-engineering, Non-Functional Requirements.

ADDRESSING NON FUNCTIONAL REQUIREMENTS THROUGH SYSTEM RE-
ENGINEERING

By

ANKIT JAIN

B.E. Institute of Engineering and Technology, India 2007

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfilment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2012

© 2012

ANKIT JAIN

All Rights Reserved

ADDRESSING NON FUNCTIONAL REQUIREMENTS THROUGH SYSTEM RE-
ENGINEERING

By

ANKIT JAIN

 Major Professor: Krzysztof J. Kochut

 Committee: Ismailcem Budak Arpinar

 Thiab Taha

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

December 2012

	

	
 iv	

DEDICATION

This thesis is dedicated to my elder brother Ajay Jain who is the source of my inspiration.

This thesis is dedicated to him for his support, encouragement and belief in me. He is the

reason I am writing this thesis.

	

	
 v	

ACKNOWLEDGEMENTS

First, I would like to thank Ned Kalinovic for being my mentor, for his guidance support and

encouragement. I mean he really helped and supported me by coming out of the box. He is

like biggie in our company but whenever I go to him for help, guidance and support, he

always snatch the time out from his busy schedule for me. This thesis is totally dedicated to

him. He gave me the opportunity to work on some awesome projects and during this course

of time I learned a lot from him, every time I go to him I come like all fired up and always

get my basket filled with some or other knowledge. Secondly, I would also like to thank my

major professor Dr. Krys Kochut for his constant support through the past few years. He

always supported me and he gave me an open opportunity to pick something or some topic

or project at work, which has a potential to be considered as a masters thesis, and eventually

his idea and advice worked. I would also like to thank Dr. Budak Arpinar and Dr. Thiab

Taha for consenting to serve on my committee. I would also like to thank my teammates who

supported me through all these knowingly and unknowingly. I am also thankful to my

mother, elder brother and my beloved wife for all their unconditional love, support and

encouragement. Last thanks to my friend Ankit Singh Sengar for supporting me in all

endeavours of my life since we met. He is such an incredible friend and person.

	

	
 vi	

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER

 1 INTRODUCTION .. 1

 1.1 CHARACTERISTICS OF ONLINE SYSTEM ... 2

 1.2 ONLINE AUCTION SYSTEM .. 2

 2 BACKGROUND ... 4

 2.1 SOFTWARE ARCHITECTURES ... 4

 2.2 NON-FUNCTIONAL REQUIREMENTS ... 5

 3 RELATED WORK ... 7

 3.1 NON-FUNCTIONAL REQUIREMENT FRAMEWORK 7

 3.2 SYSTEM RE-ENGINEERING & REFACTORING 8

 3.3 OTHER ONLINE AUCTION SYSTEM .. 10

 4 PERFORMANCE REQUIREMENTS ... 11

 4.1 PROBLEM STATEMENT ... 11

 4.2 IMPROVING PERFORMANCE VIA SYSTEM RE-ARCHITECTING . 11

 4.3 DESIGN OF THE CURRENT SYSTEM ... 12

 4.4 MIDDLEWARE STORAGE SYSTEM EVALUATION 13

 4.5 ARCHITECTURE MODIFICATION .. 16

 5 IMPLEMENTATION ... 19

 5.1 PREVIOUS SYSTEM .. 19

 5.2 INCORPORATING REDIS TO THE SYSTEM 20

 5.3 SYSTEM MODIFICATIONS .. 27

	

	
 vii	

 5.4 THE NEW SYSTEM .. 30

 6 EVALUATION ... 33

 6.1 GOALS ACHIEVED ... 33

 6.2 RESULTS ... 33

 7 CONCLUSION AND FUTURE WORK ... 41

 REFERENCES………………………………………………………………………………43

	

	
 viii	

LIST OF TABLES

Page

Table 1: Advantages and Disadvantages of RDB Persistence ... 22

Table 2: Advantages and Disadvantages of AOF Persistence .. 22

Table 3: Static Hash Map (key-value) .. 28

Table 4: Serialized Auction Hash Map ... 29

	

	
 ix	

LIST OF FIGURES

Page

Figure 1: Previous architectural design of the system .. 17

Figure 2: Re-architected design of the system (Redis Introduction) .. 18

Figure 3: Current complete architectural design ... 19

Figure 4: Redis node cluster ... 24

Figure 5: Redis node cluster with 10 hash slots .. 24

Figure 6: Redis master-slave node cluster .. 25

Figure 7: Redis master-slave node cluster with 2 slaves down .. 25

Figure 8: Redis node cluster showing resharding ... 26

Figure 9: Redis node cluster showing resharding with master down ... 26

Figure 10: Redis fault-tolerance node cluster .. 27

Figure 11: Newly architected design of the system .. 31

Figure 12: Project and package representation .. 32

Figure 13: Chart Maximum users Vs. Response time for Auction Bid Page 34

Figure 14: Chart Latency Vs. Hits/Second .. 35

Figure 15: Chart Maximum users Vs. Response time for Auction Login Page 35

Figure 16: Graph for Users Vs. Response time for Login Page ... 36

Figure 17: Graph for Users Vs. Response time for Bid Page ... 37

Figure 18: Graph for Users Vs. Response time for Auction Details Page 37

Figure 19: Graph for Users Vs. Response time for Auction Page .. 38

Figure 20: Graph for hits vs. latency for Auction Bid Page ... 39

Figure 21: Graph for kilobytes/s vs. errors for Auction Bid Page .. 39

Figure 22: Aggregate Report .. 40

	

	
 1	

CHAPTER 1

INTRODUCTION

1.1 CHARACTERISTICS OF ONLINE SYSTEM

A large amount of research has been conducted in software re-engineering within the past

several years. Many techniques and tools have been implemented to support re-

engineering and system reconstruction. There are usually many reasons for organizations

to perform software re-engineering or reconstructions. Some of the examples include:

• Addressing non-functional requirements (NFRs).

• Re-documenting the architecture of existing system.

• Improving the quality of the system.

• For outsourcing situations.

• Providing system’s service to other clients.

At present, concept of live online bidding of the merchandise or services while seating on a

chair with a mouse click and getting it shipped to the home drives the attention to the

concept called online auctioning system. These days system provides a turnkey solution that

includes a team of in-house buyers that assess the seasonality and popularity of the auction

items, while also incorporating any of the customized preferences. System tracks review and

provide enhancement recommendations, ensuring we meet and exceed desired program

goals.

The more interesting point is the concept of extended time auctioning. Extended play

auctions have a unique feature that resets the timer by 5-10 seconds, when more than one

unique bid is placed during the final seconds. So this makes the auction more interesting

when multiple users are trying to win it. In the final seconds they are likely to bid thousands

of times and this makes this whole online auction system more interesting and engaging.

	

	
 2	

1.2 ONLINE AUCTION SYSTEM

An online Auction System is customizable; it increases the rewards currency (rewards

points, Airline miles or points) demands for any company, which offers rewards program for

their client. The system can have wide variety of prizes to engage end customers; system can

also analyze and report from anything to everything related to each and every single item

auctioned at a particular date and time. This system is exciting and engaging. It drives the

end users interest and makes them to earn more and more rewards currency or points to

participate in online auction. This further increases the sales of that particular client and

drives more and more users to enroll and engage into the Rewards Program.

The online auction system we discuss in this thesis is novel (In fact there are not many live

auctions applications available where thousands of users can bid every second, placing

thousands of bids.

In our work, an initial the Online Auction System has been developed for a limited number

of users. When it was being developed the focus was only on functional requirements and to

accomplish and develop the system as soon as possible and the non-functional requirements

were neglected entirely. However, the Non-functional requirements should be given equal

importance as the functional requirements. Later when this online system was subjected to

high loads, we realized that neglecting or not counting the non-functional requirements was a

huge mistake, because at high demand loads, the system lacked scalability and availability.

We noticed degradation in the system performance with more users coming in and using the

system. Scalability, availability, performance, and efficiency become critical issues, which

needed to be addressed. The system needs to be re-engineered to address all the lacking non-

functional requirements. Re-engineering should focus on addressing non-functional

requirements like scalability, availability, improved performance and efficiency, speed,

distributed load and last but not least is to have failover.

We started our study and research about how to re-engineer the existing system to address

the lacking non-functional requirements. After rigorous study, we learned that it could be

done in multiple ways with using existing open source servers available at no cost, which

could help in addressing the non-functional requirements and to improve performance.

	

	
 3	

In our case we are applying a NFRs driven approach to re-engineer the system to perform

better and achieve list of NFRs (scalability, availability, failover and self distributed load

mechanism). The goal of the system is to make system more available and scalable. We

also wanted to have failover and distributed load mechanism in the re-engineered system.

So our research work revolved to address the lacking NFRs and to have failover. So we

re-engineered the system with the introduction of open source Redis which took care of

lacking NFRs and also gave us other bonuses with less developing effort and cost.

The rest of the thesis is organized as follows. Chapter 2 includes background, necessary

techniques, frameworks or any other information needed to understand the project. It also

describes the Redis server and the Redis cluster we used. It explains how Redis can be used

and configured with the existing system to add failover and scalability. Chapter 3 discusses

closely related work and research being done in that needed context. In Chapter 4, we

detailed our work to the design part of the system and also talk about re-architecture being

done. Chapter 5 describes how we introduced the Redis server to the system and explains the

previous system and then shows how we solved the problem and the new system is described

as well. Evaluation is presented in Chapter 6. Finally, Chapter 7 contains conclusion and

future work.

	

	
 4	

CHAPTER 2

Background

In this section, we describe general concepts needed to understand the project. We explain a

little bit about non-functional requirements (NFRs) framework, system re-engineering.

2.1 SOFTWARE ARCHITECTURES

Software architecture of a computing system is the organization of the software system,

which comprises software components, the properties of those components and relationship

between them. It is a blueprint or plan that software will follow during the development and

implementation. It is a overall design and make-up of the system.

2.1.1 MASTER SLAVE RELATIONSHIP

Master slave is a model of communication where devices communicate to other devices in

the group and one among them is called Masters and rest are called as Slaves. In database

language the master database is the main source to hold all data and the slaves are

synchronized to it by required means and programming. Once the master – slave relationship

is established, the main source to serve the system is always master but if something happens

to master like failover or crash then slave is brought into picture and it changes its role from

slave to master. Sometime this change of role is temporary until the master is running up

back again but sometimes slaves’ remains master until it fails or crashes. In our system we

have the later master-slave relationship, where slaves becomes master when master fails and

remain master until it fails and master will be back running up and it will become slave.

2.1.2 SYSTEM RE-ENGINEERING

System re-engineering is the modification of a software system to add new functionality or to

correct errors. Reverse engineering is the initial examinations of the system and re-

engineering is the subsequent modifications. Legacy system often needs to be re-engineered

for various reasons. Re-engineering is frequently performed to improve maintainability.

	

	
 5	

There are no specific criteria for re-engineering a system. However, there are a few aspects

that should be taken into an account before thinking of any type of transformation. [26]

Paper talks about few patterns. First for the restructuring transformations, they have

considered a ‘‘Primitive Structural’’ design pattern namely, the Composite design pattern

that is the most popular one as it is used by four other design patterns and is refined by three

other design patterns. The Composite pattern describes how to build a class hierarchy that is

made up of different kinds of objects. In this category, another design pattern for re-

architecting a software system into subsystems and helping minimize the communication and

data flow dependencies between subsystems is the Facade design pattern. This pattern

shields clients from the subsystem components, thereby reducing the number of objects that

clients deal with and making the subsystems easier to use and maintain.

Software quality is a subjective term (for some its also includes NFR) and everybody has his

or her own ideas of what quality is. So it is difficult to decide a unique list of criteria to re-

engineer the software system. Main problem one has to face in quality and NFR driven re-

engineering where only the non- functional requirements are addressed.

The goal of our research is not to re-engineer or reconstruct the every aspect of architecture

but to provide the lacking failover mechanism and to address the non-functional

requirements (scalability, availability, maintainability)

2.2 NON-FUNCTIONAL REQUIREMENTS (NFRs)

Due to enormous pressure towards deploying and releasing software as fast as possible,

functional requirements gets all the focus of software development and implementations at

the expense of NFRs such as performance, security, scalability and availability, etc. In

enterprise applications NFRs got neglected to such a great extent that sometimes project

leads to failure even though it completes all functional requirements. So organizations and

development team have to stop focusing only on functional requirements and should give

equal importance to NFRs, as well.

However, several definitions of NFRs exist. IEEE defines non-functional requirements as “ a

	

	
 6	

software requirement that describes not what the software will do, but how the software will

do”. Many enterprises neglected the inclusion of NFRs during the software development life

cycle; it is because normally satisfying one may affect another. Despite the very much

importance of NFRs it is being neglected and left for verification after the complete

implementation is done. And once the complete implementation is done than achieving those

missed NFRs is a tedious task which gives rise to system re-engineering to address the set of

NFRs specific to application.

It has been observed that many software projects focus on delivering software, which meets

certain functionalities, whereas Non-Functional-Requirements are frequently neglected.

Examples of NFRs, which are also known as Quality Requirements, can be reliability,

scalability, availability, security, maintainability, portability and accuracy. Major problem of

NFRs is that under different situations they can be interpreted differently and further it is not

easy to formalize and generalize them. As software complexity and demands grows NFRs

can no longer be ignored. NFRs should be considered as an important part of software

development life cycle but many software companies have ignored that and now they are

facing the issue with that which either leaves them with two choices. First, either design the

new system from scratch with that NFRs been taking care of or re-engineer the existing

system to take care of those with less human effort and cost. Proposed system is taking care

of the later choice. Our work can be used as a case study to re-engineer the existing software

application to address NFRs like scalability, availability, failover, distributed load and

maintainability.

	

	
 7	

CHAPTER 3

Related work

Ideally we should address NFRs during the initial phase of software development life cycle.

There are plenty of formal and informal (semi-formal) approaches to address NFRs

depending on the software system. Adapting the informal is in great use, as it does not

require a high human expertise. NFR framework is the most popular approach in these

regards. The quality attributes taxonomy [24] is another semi-formal work in the list. Agile

development to address the specification and testing of performance is an important type of

NFR. After each sprint or iteration development team can identify and specify performance

requirements incrementally, which eventually leads to desired level of detail description.

3.1 NON-FUNCTIONAL REQUIREMENT (NFR) FRAMEWORK

The NFR Framework [24] is one significant step towards making the relationships between

quality requirements and design decisions explicit. In the NFR Framework, quality

requirements are treated as potentially conflicting or synergistic goals that need be achieved,

and are used to model and rationalize the various design decisions to be taken during system/

software development. Accordingly, the NFR Framework introduces the concept of soft-

goals whose achievement is judged by the sufficiency of contributions from other (sub) soft-

goals. In this context, a soft-goal interdependency graph is used to support the systematic

modeling of the design rationale. The first step is to identify the NFRs and then main NFRs

are treated as soft goals to be achieved. The framework uses NFRS in order to support

architectural design and to model the impact of design alternatives. Given a quality

constraint for a re-engineering problem, one can look up the soft-goal interdependency graph

for that quality, and examine how it relates to other goals, and what are additional

transformations that may affect the desired quality positively or negatively. Transformations

are also represented as soft-goals, which are fulfilled when they are included in the re-

engineering process.

The problem of coping with NFR framework during re-engineering has been experimentally

	

	
 8	

tackled by developing a number of tools that met particular quality requirements. First, a tool

has been developed to perform the re-engineering task, then a trial-and-error strategy was

used to select a particular set of transformations which ensured that the re-engineered code

satisfied given quality constraints.

However, not much effort has been made to provide a solution for large enterprise

applications to re-engineer the existing system lacking some non-functional requirements

and to re-engineer the existing product at architectural level. In this context we believe that

our case study will help organizations to re-model their existing system at the architectural

level to overcome set of non-functional requirements (scalability, availability,

maintainability and failover with distributed load among servers)

3.2 SYSTEM RE-ENGINEERING AND RE-FACTORING

In software re-engineering a system is restructured to conform to satisfy Functional and Non-

Functional Requirements (NFR). However the main part of software reengineering is still

driven by the Functional Requirements, although the NFRs are just as crucial to the success

of the system and it should be taken into account as serious as functional requirements.

[Rebecca Tiarks] A lot of research was done on the field of quality-driven refactoring but

there is no systematic way of building quality into software automatically. One main

problem is that each decision made in the development process typically affects more than

just one quality issue. Further it is difficult to integrate these desired qualities into the re-

engineering process.

It is necessary to model and identify non-functional requirements in such a way that their

dependencies among each other should be clear so that it will be easy to establish out which

refactoring plan will help to reach the desired NFR.

The main aim of system and software re-engineering is that it should address the needed

requirements, which could be addressing functional or non-functional requirements. Original

system should be analysed properly to define the re-engineering process. In the paper [24]

they described the software re-engineering model that is driven by specific non-functional

requirements (NFRs) and addresses issues related to the evolution of the system

	

	
 9	

requirements and software architecture. There are several research areas, which should be

investigated before re-engineering the system, some of them are:

• List of software re-engineering techniques, which address the particular

software qualities and non-functional requirements.

• The impact of those techniques on the non-functional requirements.

• There should be a software metrics, which keeps track of re-engineering

impact on each and every non-functional requirement.

The International Organizations for Standardization introduced taxonomies of quality

attributes, which divide quality into six characteristics namely: functionality, reliability,

usability, efficiency, maintainability and portability. Complementary to the product-oriented

approaches, the NFR Framework [24] takes a process-oriented approach to dealing with

quality requirements. The NFR Framework is one significant step towards making the

relationships between quality requirements and design decisions explicit. The framework

uses NFR to drive the design to support architectural design level and to deal with the

changes.

As the re-engineering of the enterprise application has become a major concern in today’s

software industry, most re-engineering efforts were focused towards the analysis of quality,

performance and security.

3.2.1 SOFTWARE REFACTORING PROCESS

To meet non-functional requirements (NFRs) an iterative process is necessary. Usually the

goals cannot be reached by a single transformation, but by a sequence of transformations.

The 4 steps defined in [25] were:

• Setting up a goal-reasoning model, quantifying satisfaction or denial attributes of

each soft goal in a metric.

• Quantitatively measuring software qualities so as to establish which alternative soft

goal should be applied first.

• Picking an effective refactoring method among various transformations that

contribute to the claimed soft goal.

	

	
 10	

• Applying the selected refactoring technique, which leads to iterative evaluations,

leading back to step 2. Repeat that step until the soft goal is reached.

3.3 OTHER ONLINE AUCTION SYSTEM

There are dozens of online auction systems where users can go online and use either their

miles and rewards points or real money to bid on a product and win. For example, eBay has

an online auction system, United Airlines has launched the online auction using their miles,

and they offer exciting merchandise to their customers for the frequent travel miles they have

accumulated. Some auctions systems extend auctions usually to eliminate sniping, and to

extend the availability of the auction. In our system we allow user to increase the bid by only

one increment to engage more and more user with a chance and hope of winning an auction

(rather than outbid others who are willing to spend). So, this extended auction feature with

only one incremental bid is the main feature of the system we are discussing here. This

change increases the demand for this system to make it more scalable, available and

performance efficient. That is why Redis has been introduced to overcome all these non-

functional requirements (scalability, availability, efficiency) with failover mechanism.

	

	
 11	

CHAPTER 4

PERFORMANCE REQUIREMENTS

4.1 PROBLEM STATEMENT

Current auction module has some flaws when it comes to scalability, availability and

failover. With the successful launch of auctions, and increased demands placed on our

systems, we wanted to re-architect the auctions module to overcome the drawbacks it has

when it is exposed to big clients with millions users. The re-architecture shall focus on

scalability, availability, and try to maintain as many prototype components as possible.

Current Auction architecture has no fail-over mechanism and load balancing, lacking

distributed mechanism and scalability. Current system has only one auction manager

handling the entire bid request, serving everything needed and if that goes down the whole

application is crashed. So we were looking to modify the existing system to be intelligent

enough to balance load, overcome failure, more scalable and available when exposed to

bigger chunk of users bidding at the same time. So technically we want our Auction Module

to be smart enough to equally distribute the load among them.

We want our system to be capable of:

• Multiple Auction Managers running at the same time.

• Single Authority for Auctions.

• Scalability (Splitting Queries and filtering at many levels)

• Availability (Multiple Web servers, load balance) (Master-Slave relationship)

4.2 IMPROVING PERFORMANCE VIA SYSTEM RE-ARCHITECTING

These days many organizations are dependent on computer aided software to improve

performance because there is too much human effort involved to re-engineer the existing

systems to address the required non functional requirements. [23] Paper presents a

framework that allows specific NFR such as performance and maintainability to guide the re-

engineering process. Understanding the architecture of an existing system assists in

	

	
 12	

predicting the impact evolutionary changes may have on specific quality characteristics of

the system [23]. In order to understand and to re-engineer the existing system, it is necessary

to capture its current design, architecture and the relationship between its different entities of

implementation. In sum, a preliminary model is required in order to document the existing

system before actually start thinking of re-engineering the product.

For this research work, we were particularly interested to investigate design patterns and

their relationships as a means to restructure an existing online auction system so that the new

system conforms and addresses all non-functional requirements such as scalability,

availability, distributed load and failover. For achieving this goal, we needed to develop a list

of specific design patterns and refactoring operations that can be used to enhance specific

software qualities during reengineering namely, performance, maintainability, scalability,

availability and enhancements for the new re-engineered system.

4.3 DESIGN OF THE CURRENT SYSTEM

Initially online auction system was developed at the company (for confidentiality reasons

name is not mentioned anywhere is the thesis document). The company provides incentive

rewards program to their clients. Online auction is one of their developed modules. An

existing online auction system is being re-engineered in order to conform to a quality

requirement (i.e., scalability, availability, distributed load mechanism, and failover). After

studying the code and the desired requirements, it has been concluded that the existing

structure of the program makes the desired extension difficult to achieve, and that the

application of some design patterns, or source code transformations would help to achieve

the desired properties with the help of existing server, which could be implemented with the

current system to overcome the missing NFRs. In this context, the aim was to provide

support for the developer to decide what design patterns or transformations to apply towards

achieving the specific quality requirement for the new system.

Initially, the Online Auction System was developed as a proof of concept prototype that

could be used to gauge user interest in rewards auctions. With the successful launch of

auctions, and increased demands placed on our systems, we were looking to re-architect the

	

	
 13	

auctions module. The re-architecture had to focus on scalability, availability, and tried to

maintain as many prototype components as possible. Current Auction architecture has no

fail-over mechanism and load balancing, lacking distributed mechanism and scalability. Only

one auction manager handles the entire bid request, serving everything and in case of its

failure the whole application crashed. What we needed was multiple level of load balancing,

multiple Auction managers running to equally distribute the load. We want Auction Manager

to be smart enough to equally distribute the load among auctions managers.

We wanted our system to be capable of running multiple auction managers at the same time.

It should have a single authority for auctions. System should possess Scalability (Splitting

Queries and filtering at many levels) and Availability (Multiple Web servers, load balance)

(Master-Slave relationship). So, we created a design, which involved the introduction of the

Redis to the system. We chose Redis after researching a lot because it demanded less coding,

less re-architecting, less time and most importantly thing is that it was an open source, so it

would be free to use. We used the Jedis Java-based API to communicate with Redis but it

accepts data in some different format so we have to format the data in Jedis Specific format

which is converting the data into bytes and converting it back while reading from Jedis

serialized Auction Hash.

4.4 MIDDLEWARE STORAGE SYSTEMS EVALUATION

We researched many middleware systems and techniques available in the market; some are

Redis, VoltDB, JBoss-Cache, Memcached, TerraCotta, and Hazelcast. In this section we will

explain that why we chose Redis on above all these.

4.4.1 VOLTDB

VoltDB is an in-memory database. It is a blazingly fast New SQL database system

specifically designed to run on modern architectures based around fast, inexpensive servers

connected via high-speed data networks. VoltDB is aimed at a new generation of database

applications – real-time feeds, sensor-driven data streams, micro-transactions, low-latency

trading systems – requiring database throughput that can reach millions of operations per

	

	
 14	

second. Moreover, the applications that use this data must scale on demand, provide flawless

fault tolerance and enable real-time visibility into the data that drives business value. VoltDB

is more than an ultra-fast database but it does not provide us with the entire thing, which we

looked for. It provides scalability but at the cost of database transactions even though its high

speed. No failover is provided with VoltDB. Failover can be achieved but then we have to

code to achieve that in case if we move forward with VoltDB. So we ruled out this option.

4.4.2 MEMCACHED

Memcached is a free & open source, high-performance, distributed memory object caching

system, it is generic in nature, but intended for use in speeding up dynamic web applications

by alleviating database load. Memcached is an in-memory key-value store for small chunks

of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

Memcached is simple yet powerful. Its simple design promotes quick deployment, ease of

development, and solves many problems facing large data caches. Its API is available for

most popular programming languages. It is perfect for what we are looking for but it lacks

failover mechanism and locking mechanism, which is the important key in this system.

4.4.3 TERRACOTTA

Terracotta is a commercial open source company. Big-Memory is one of the most successful

commercial products of Terracotta. BigMemory stores “big” amounts of data in machine’s

main memory for high-speed access.

Terracotta is one of the best systems for our needs (offers good technical support, failover,

and multiple servers running together with synchronized data). However, it is expensive

(they charge for each server) and since our organization is small, we are always careful about

the money we spend. Consequently, we ruled out this.

4.4.4 JBOSS CACHE

JBoss Cache is designed to cache frequently accessed java objects in order to improve the

	

	
 15	

performance of the applications. JBoss Cache’s goal is to provide enterprise-grade clustering

solutions to Java-based frameworks, application servers or custom-designed Java

applications. JBoss Cache is a replicated cache; state is always kept in synchronize form with

other servers in the cluster. This makes any state stored in JBoss Cache resilient to server

crashes or restarts, achieving high availability. JBoss Cache is an advanced, 'enterprise-

grade' data grid solution, providing features such as transactions, eviction, and cache loading

in addition to replication. JBoss cache also good provides us high availability; fewer

database transactions, synchronized clustered servers, but lack the failover mechanism. As a

result we have eliminated it from considerations.

4.4.5 HAZELCAST

Hazelcast is an open source clustering and highly scalable data distribution platform for Java,

which is:

1. Lightning-fast; thousands of operations/sec.

2. Fail-safe; no losing data after crashes.

3. Dynamically scalable as new servers are added.

4. Easy to use included as a single jar.

Hazelcast stores data into a java heap, which is subject to garbage collection. As the heaps

get bigger, garbage collection might cause the application to pause for significant amount of

time, badly affecting the application performance. So, even with terabytes of cache in-

memory with numerous updates, garbage collection will have almost zero effect, resulting in

more predictable latency and throughput.

4.4.6 REDIS

Redis is an advanced persistent Key-Value Store, also referred as a data structure server

since keys can contain strings, hashes, lists, sets and sorted sets. Redis is an in-memory

advanced persistent key-value store.

Benefits of Using Redis:

	

	
 16	

○ Multiple auction managers - clustered under a load balancer.

○ All auction managers connect to redis master through the load balancer with

stickiness. (Load balancer basically sticks to one server below it. It uses only

that server till that goes down)

○ Slave auto SYNCs with master after background data save by master.

○ In case master redis server goes down, bid requests are sent to one of the

slave. Slave marked is not a slave anymore

○ Auction Updates are retrieved from the Slave

○ Many Auction Managers can handle load efficiently – One auction manager

to two had a significant increase in response time.

○ Failover at Redis server.

○ Redis is open-source and free to all users.

○ It offers good technical support.

○ It satisfies all our needs.

4.5 ARCHITECTURE MODIFICATION

In this section we will describe what re-architecture we have performed and how we

incorporated redis to our system. In the previous system (see the Figure 1) the auction

manager accessed the static auction hash, which communicated with the database and

provide updates and access to Auction manager. So whenever a write request on that static

hash was issued the complete hash acquired a lock and prevented further processing until

lock is released, which resulted in decreased performance, deadlocks.

	

	
 17	

Figure 1: Previous architectural design of the system

Now we incorporated Redis (Jedis serialized Auction Hash Map) where we store all key-

value pairs. The auction manager communicates with Redis via Jedis API, which is used

specifically for Java based systems. Now the auction manager communicates with Auction

manager client, who in turn communicate with database and get the latest required results

and then the same auction manager client also convert that data into bytes for Jedis (see

Figure 2). That conversion is called marshaling of data into Jedis specific format. While

reading the data from Jedis by auction manager that data is again being converted into an

array by un- marshaling.

	

	
 18	

Figure 2: Re-architected design of the system (Redis Introduction)

We replaced the static hash map by the Jedis serialized Auction Hash Map, because the static

hash map acquires a lock on the entire hash map and prevents any further access to the hash

map until lock is released. However, with the Jedis serialized Auction Hash Map, we acquire

a lock to a particular entry and all the remaining the entire hash map available for read and

write. This way, the performance is improved and no reads and writes have to wait until the

lock is released if it is other than that locked particular entry. So, by incorporating Redis we

improved the responsiveness of the system. The system is faster, and more efficient and

responsive than before.

	

	
 19	

CHAPTER 5

IMPLEMENTATION

5.1 PREVIUOS SYSTEM

Initially we offered this Auction Module to small clients and did not realize its shortcomings.

As soon as we introduced it to high volume clients we realized that we needed more robust

and scalable module. We had to create an architecture providing failover and most

importantly multiple Auctions Managers running at the same time. We wanted to build our

own backing mechanism but at this point we want to re-architect our system using a large

number of servers, which could serve our purpose.

Figure 3: Current complete architectural design

As you can see (Figure 3) we had only one level of load balancing, one Auction Manager,

and an Auction Hash, which contains all the data.

	

	
 20	

We wanted to create a system with single authority not implemented in a database. We

needed multiple levels of filters to serve bid request and auction updates. Essentially, we

were looking for a distributed caching mechanism like memory-based key/value stores.

Thus, vertical scale can be achieved by provisioning more RAM to the machine. A more

sustainable scale is possible by cloning and replicating nodes and partitioning the key space.

We started our research on existing open source severs which can solve the purpose at a low

cost or no cost to the organization. Our research was focused on re-engineering the existing

system to address the missing non-functional requirements.

5.2 INCORPORATING REDIS TO THE SYSTEM

The online auction module has been developed for almost a year now and uses only one

auction manager to serve all bids and updates. We were using the static auction hash to store

all the information; data in auction hash should be same across all requests, so queued up

requests compete for one synchronized Auction Hash object. There is no failover

mechanism. The system is dependent only on a single auction manager, which performs

everything. It is a single point of failure. We incorporated Redis to this online auction system

to address the failover, to make the system more scalable and available to thousands of users.

Redis is an open source, advanced persistent key-value store, also referred to as a data

structure server since the keys can contain hashes, lists, sets and sorted sets. Redis uses

hashing to optimize the memory and the key-value store designed using Redis is

significantly more efficient.

5.2.1 REDIS REPLICATION

Redis replication is very simple to use and configure. It offers master-slave replication that
allows slave Redis servers to be exact copies of the master servers.

PROPERTIES OF REDIS REPLICATION:

1. A master can have multiple slaves.

2. Aside from connecting number of slaves to masters, slaves can also be connected to

other slaves in a graph like structure to have more peer-to-peer like structure to

	

	
 21	

support failover.

3. Redis replication is non-blocking on master side, which means that master will

continue to serve queries when one or more slaves performs the very first

synchronization. It is also non-blocking on the slave side, which means that when a

slave is performing the synchronization it can also reply to queries using old version

of data set. These configurations can be done in redis.conf file or can be configured

to send an error message to client when the master is down.

4. Replication can be used for scalability in order to have multiple slaves for read only

queries.

5. It is possible to avoid saving on master server, just a small configuration is needed.

REPLICATION

The slave upon connection sends the SYNC command. As soon as master receive the SYNC

command it starts background saving, and collects all new commands received that will

modify the existing dataset. When the background saving process is complete the master

send the dataset to slaves, which saves dataset on disk, and then loads the dataset into the

memory. The master then sends to the slaves all accumulated commands, and all new

commands received from users that will modify the dataset. This is performed as a stream of

commands.

Whenever the master-slave link fails, slaves try to reconnect to the master and if the master

receives multiple connection requests from slaves it performs a single background save in

order to serve all of them. As soon as the connection is established between the master and

the slaves a full resynchronization has been performed.

5.2.2 REDIS PERSISTENCE

Redis provides different types of persistence:

1. RDB: It performs point-in-time snapshots of the dataset at specified intervals.

2. AOF: It logs every write operation received by the server.

Persistence can be disabled in case the data needs to be available only as long as server is

running. It is also possible to combine RDB and AOF in the same instance. But in that case,

when the redis server restarts the AOF file will be used to reconstruct the original dataset

	

	
 22	

since it is guaranteed to be the most complete.

Table 1: Advantages and Disadvantages of RDB Persistence

S.No. Advantages Disadvantages

1. RDB is a very compact single-point-

in-time representation of your Redis

data.

RDB is not good if you need to minimize

the chance of data loss in case Redis stops

working.

2. It is very good for disaster recovery. RDB needs to fork often in order to

persist on disk. using a child process.

3. It allows faster restarts with big

datasets compared with AOF.

fork can be time consuming depending on

the size of the dataset.

Table 2: Advantages and Disadvantages of AOF Persistence

S.No.

Advantages

Disadvantages

1. Using AOF Redis is much more

durable: different synchronization

policies could be achieved.

AOF file is usually bigger than

corresponding RDB file for the same

dataset.

2.

The AOF log is an append only log, no

seeks, no corruption problems if there

is a power outage.

It is slower than RDB.

3. Redis is able to automatically rewrite

the AOF in background when it gets

too big.

Bugs are possible in AOF but are almost

impossible in RDF format.

4. AOF contains a log of all the

operations one after the other in an

Redis AOF works incrementally updating

an existing state.

	

	
 23	

easy to understand and parse format.

It is advisable to use both persistence methods to provide a high degree of data safety.

5.2.3 BACKING UP REDIS DATA

Redis is backup friendly. It is possible to copy the files while database is running. The

following steps can be taken to backup the files:

• Regular snapshots on an hourly or daily basis in different directories and server.

• Old snapshots or files should be deleted. Versioning of the files should be

maintained.

• Data could be transferred to a safe location other than the regular data centre

periodically.

5.2.4 DISASTER RECOVERY

Disaster recovery is the ability to backup or transfer data to several places. This way data is

safe and secured in case something unexpected happens to the Redis server. Common

disaster recovery techniques are transferring data to Amazon S3 in an encrypted form or

doing SCP to the servers located far away at various different locations.

5.2.5 HIGH AVAILABILITY

Redis sentinel is a system designed to monitor the Redis resources. Its major task is to

monitor whether master and all slaves functioning correctly, if not than it notifies the

administrator that something is wrong with one of the nodes or instances. If the master does

not function well than it promotes one of the slaves to behave as the master and remaining

nodes in the cluster are reconfigured automatically to use the new master and the application

using the redis server is informed to connect to the new address of new master.

5.2.6 REDIS CLUSTER

The redis cluster is a pragmatic approach to distribution. All nodes are directly connected to

each other. They do not proxy queries. Clients talk to nodes. Nodes communicate to each

other by PING/PONG communication protocol. PING/PONG packets contain enough

	

	
 24	

information for the cluster to restart after it stopped. Each node has a unique ID (it lives

forever and never changes for any given node ever) and config file.

Figure 4: Redis node cluster

Hash slots: key space is divided into N hash slots. 10 hash slots in the below example are

divided among nodes.

Figure 5: Redis node cluster with 10 hash slots

There are of two types of nodes: master and slave nodes. Their functionality is essentially
same.

	

	
 25	

Figure 6: Redis master-slave node cluster

Above diagrams explains that every key exists only in one node and in its N replicas, which

never receive, any sort of write operations. Replicas or slaves use redis replication to remain

in sync. The best way is to allocate master and slave to the different physical server to avoid

loss of data completely in case one physical server fails.

The cluster will continue working as long as there is at least one node, which is up and

running. For example, in diagram below two nodes are down.

Figure 7: Redis master-slave node cluster with 2 slaves down

	

	
 26	

Re-sharding is a process of moving the hash slots from one node to a totally different or new

node (master or slave) if the former experiences a heavy load. Below is the example of

moving hash slot 7 from node C to node D.

Figure 8: Redis node cluster showing resharding

Here, if node C receives any request related to slot 7 it will pass on to the node D. All the

new keys for slot 7 will be created and updated in node D and will be moved or deleted from

node C.

Re-sharding can fail if a slave node or master who it is being transferred to is down. If it

happens, the hash slot goes to the slave of the failing node, as shown in the Figure.

Figure 9: Redis node cluster showing resharding with master down

	

	
 27	

Fault-Tolerance: All nodes continuously ping other nodes and at any given time any

particular node is marked as failed in the cluster if its timeout is longer than N seconds. In

the redis cluster, every ping-pong contains gossip information. For example, if node A in a

cluster thinks that node B is failing because PING request timed out, A cannot declare node

B as failed by itself, with the use of the gossip action A will communicates with node C and

if node C also thinks that node B is failing because of the time out then node A can mark

node B as failed and convey this information to the whole cluster.

Figure 10: Redis fault-tolerance node cluster

Redis-trib: Its role is to setup a new cluster environment and checks regularly if the cluster is

consistent or not. Its job is also to add new nodes to the cluster, either as master or as a slave

to an existing master node or as blank nodes for resharding purpose to reduce the heavy load.

5.3 SYSTEM MODIFICATIONS

After researching key-value data stores we narrowed our choices down to Terracotta and

Redis, Terracotta is more than what we needed and requires more time for implementation

	

	
 28	

within the existing system and high cost is involved for its implementation. We decided to

move forward with Redis, which is simple, provides persistence, free, open source and

offered what was needed. We re-architected the code to work with redis functionalities to

address the missing non-functional requirements we had in the existing system.

5.3.1 Hash Maps

Static Hash Map: Initially the static hash maps with the key was AuctionID and value was a

complete Auction Summary Object (It has everything in it name of the Auction, Redemption

type, starting big, client ID, auction status, start date, end date increment amount, display

start date and end date, etc.) was used. The problem with the static hash map was that when

it gets accessed the complete hash map acquired lock and prevented further processing until

the lock was released (see Table 3). This resulted in decreased performance of the system.

Table 3: Static Hash Map (key-value)

Serialized Auction Hash Map: It is the same as the static hash map, which means AuctionID

is the key and Auction Summary Object is a value. The only difference is that it is serialized

and it acquires a lock to a particular entry and the remaining entire hash map is available to

read and write. It has a locking mechanism and the lock is released once the process is

complete.

Key	
 Value	

100	
 Object	
 (Auction	
 Summary	

Object)	

123	
 Object	
 (Auction	
 Summary	

Object)	

456	
 Object	
 (Auction	
 Summary	

Object)	

623	
 Object	
 (Auction	
 Summary	

Object)	

	
 	

	
 	

Acquire	

Lock	
 on	

entire	
 hash	

map	

	

	
 29	

Table 4: Serialized Auction Hash

5.3.2 Code snippets (Jedis)

We used Jedis, since it is the most widely used API for Redis and it has a better support as

compared to others (Jredis, Gedis)

� Jedis jedis = new Jedis (“localhost”); can also be connected to remote server

with given port and timeout

� Jedis.connect(); //connect to Redis

� Jedis.set(“KEY”, “Value”); //set the value for the key

� String value = jedis.get(“KEY”); //get the value for the key which is case

sensitive

� Jedis.disconnect(); //disconnect from Redis- an important step as performance

deteriorates when multiple clients are connected even when they are not using

the connection in any way.

Jedis is Java API for locking Redis objects and it uses SETNX to lock the object or a

particular entry. Pseudo code:

Key	
 Value

100 Object (Auction
Summary Object)

123 Object (Auction
Summary Object)

456 Object (Auction
Summary Object)

623 Object (Auction
Summary Object)	

	
 	

	
 	

Acquire	
 Lock	

only	
 on	
 a	

particular	

entry	
 and	
 the	

remaining	

entire	
 hash	

map	
 is	

available	
 to	

read	
 and	

write	

	

	
 30	

While (AcquireTimeOut > 0) {

 If (setNX <lock key>, <current time + lock timeout +1> =1)

 Locked

 Else if (GET <lock key> less than Current Time)

 SET <current time + lock timeout +1>

 Locked

 Else

 Sleep

 Decrement AcquireTimeOut by total time taken
 for all the above steps

 }

After incorporating Redis within the Auction module, we observed significant change in

response time and load balancing. During testing master was set to fail on purpose to observe

and test the behavior of slave. This master failure posed no problems to end-users experience

at all.

5.4 THE NEW SYSTEM

In this section, we present the design of the newly re-engineered system, which was the goal

of this thesis. The new design shown below (Figure 12) explains the visual representation of

the re-engineered online auction system with multiple web servers, application servers, and

auction managers.

Below, we show the newly re-engineered system, which addresses all the missing non-

functional requirements in addition it provides the bonus to have failover, which was the

must requirement. This work can be used as a case study to address the set of missing non-

functional requirements via system re-engineering.

	

	
 31	

New Auction Architecture:

Figure 11: Newly architected design of the system

In the Figure 11, the auction manager communicates with Redis via a separate module called

Auction Manager Client (shown in the Figure), The Auction Manager has a dependency of a

	

	
 32	

project called Auction Manager Client which includes all utility methods written and all

Redis (Jedis) related methods such as configuration of Jedis, obtaining an instance of Jedis

and its slaves and the locking mechanism. The role of Auction Manager Client is to

communicate with the database to get the desired results and to store those results into the

Jedis serialized Auction Hash (in Jedis specific format). The Auction Manager Client also

has a utility method, which marshals the database results into Jedis Specific format.

It is obvious that the newly designed system have a load balancer at 3 levels, one is at the

Web server (web servers) level and application servers are buddy replicated to support

session failover. The second level is at the Auction Manager level (multiple cluster with

multiple nodes of the auction manager). The third level is at Redis server level with

stickiness (Load balancer sticks to a server below it until it fails). The new system has

failover mechanism, multiple application servers running together with synchronized

data. Auction application is smart enough to balance the load by itself. As a result, we have

achieved all stated goals without having to purchase any commercially developer software

and at a relatively small development effort.

Package Structure: We created a new package, which includes classes related to Jedis

implementation (see Figure 12)

Figure 12: Project and package representation

	

	
 33	

CHAPTER 6

EVALUATION

 6.1 GOALS ACHIEVED

We have achieved significant performance improvements after the Redis was incorporated

to the system. Now, the system has 4 clusters of buddy-replicated applications to support

session failover. The system also possesses load balanced gateway access, 6 web servers

(Load balanced). It has a cluster of multiple auction managers running on each node. When

count of auction managers was increased from 1 to 4 linear curve of performance

improvement was noticed. During load testing we observed that the Redis test server has a

capacity for 100,000 SET/GET request for a 3KB data set are:

1. 48852 SET request/sec (0.0205 millisecond/request)

2. 51894 GET request/sec (0.0193 millisecond/request)

After that, increasing the number of auction managers did not improve the performance

significantly. However, system supports for session failover, improved performance and

efficiency. The system is more scalable and available.

6.2 RESULTS

Database transactions are reduced to almost 99%. Initially, everything was done via database

transactions, which included all bid requests, rewards currency deductions, auction updates,

etc. This resulted in millions of hits on the database. Now, with the redis-based

implementation the database traffic has been reduced almost to zero.

	

	
 34	

Below, Figure is the chart for the actual bid page of the re-engineered auction system. Chart

shows the response time in milliseconds on the Y-axis and number of users in thousands on

the X-axis. Close examination of chart states that as the number of users increases from 50k

to 100K, the response time increases and after 175K it decreases which means the system is

more responsive for a large number of users. Scalability has been addressed in this new re-

engineered system.

	

	

Figure 13: Chart Maximum users Vs. Response time for Auction Bid Page

	

Next,	
 Figure	
 is	
 the	
 chart	
 for	
 Latency	
 versus	
 hits/second	
 for	
 a	
 auction	
 bid	
 gateway.	
 As	

hits/second	
 increased	
 the	
 latency	
 increased	
 and	
 then	
 it	
 dropped	
 suddenly.	
 Latency

limits the maximum rate that information can be transmitted, as there is often a limit on the

amount of information that is "in-flight" at any one moment.	

	

	
 35	

	

Figure 14: Chart Latency Vs. Hits/Second

	

Below,Figure	
 is	
 the	
 chart	
 for	
 a	
 response	
 time	
 versus	
 users	
 for	
 a	
 Auction	
 System	
 login	

page	
 for	
 users	
 (in	
 thousands)	
 on	
 the	
 X-­‐axis	
 and	
 response	
 time	
 (in	
 milli-­‐seconds)	
 on	
 the	

Y-­‐axis.	
 The	
 system	
 is	
 scalable	
 for	
 login	
 page	
 access	
 as	
 well.	
 	

	

	

Figure 15: Chart Maximum users Vs. Response time for Auction Login Page

	

	

	
 36	

Below we presents screen-shots obtained during load testing on the auction application.

Figure 16: Graph for Users Vs. Response time for Login Page

The plot in Figure 16 shows the response time for the Login Page. This measurement was

taken while load testing was being conducted and we noticed a significant improvement in

the response time as compared to the old system. The approach used in this paper gives the

noticeable amount of performance improvement on the server response time.

The graph in Figure 17 shows the response time of the main bidding page (the page where

user can actually bid with the use of the “Place Bid” button). It shows the response time as a

function of users vs. time (milliseconds).

	

	
 37	

Figure 17: Graph for Users Vs. Response time for Bid Page

Figure 18: Graph for Users Vs. Response time for Auction Details Page

	

	
 38	

The graph in Figure 18 shows the Response time noticed on the server when user hits the

Auction Details Page. This is the page where users can see minutes of auction details such as

amount he has available to place bid, current highest bid, number of online bidders and the

bid-history. This was a heavy load functionality, which usually takes longer time in the

previous system. After the re-engineering it is reduced to a significant number.

The graph in Figure 19 shows the response time noticed on the server when user hits the

Auction Page. This is the page where user can view all available auctions, upcoming

auctions, dual currency auctions and carousel to the most fascinating and lucrative auctions

and the auctions he participated in.

Figure 19: Graph for Users Vs. Response time for Auction Page

The graph in Figure 20 shows a variation between latency for the Auction Bid page versus
hits-per-second.

	

	
 39	

Figure 20: Graph for hits vs. latency for Auction Bid Page

Figure 21: Graph for kilobytes/s vs. errors for Auction Bid Page

The graph in Figure 21 shows a kilobytes-per-second versus errors. And a close examination

clearly states that zero error responses from the server were achieved. Previously, there were

	

	
 40	

130 to 140 errors due to a heavy load. By re-engineering the system it is reduced to zero.

The table in Figure 22 is the aggregate report for the various pages of the Auction system. It

describes the overall performance and efficiency of the system. It includes many indications,

including error percentage, hits/second, KB/second, Median, Average and Sample we took.

Figure 22: Aggregate Report

	

	
 41	

CHAPTER 7

CONCLUSION AND FUTURE WORK

Despite the fact that non-functional requirements are very difficult and expensive to deal

with, the increasing software complexity and competition in the software industry has

highlighted the need to consider NFRs as an integral part of software development process.

However, they are still disregarded and many shortcomings of the developed system remain.

In this paper, we have presented an NFR driven approach for software re-engineering at the

architectural level. The approach uses desirable qualities for the re-engineered code and

design to define and guide the re-engineering process. The work offers a workbench where

re-engineering activities do not occur in a vacuum, but could be evaluated and fine-tuned in

order to address specific quality requirements for the target system. Specifically, the

proposed re-engineered system would address the issues related to: scalability, availability,

failover and distributed load balancing.

In this work, we have shown that how redis was incorporated and configured. Redis an open

source system to improve performance, to gain scalability, availability and failover. We

evaluated the performance of the newly architected system and noticed a vast improvement

in terms of the server response time. This work describes in detail how Redis (which is

persistence in-memory key-value storage) could be used for an existing system to achieve

failover, to improve overall performance and how database traffic could be reduced to such a

great extent by implementing single point of authority. Results indicates that the system with

Redis implementation works even there is failure for master server and even if cluster or its

individual node fails. This work proves that performance and quality can be achieved by

using Redis in short span of time without implementing backing mechanism for a live

running module for clients with large number of users. Implementing separate mechanism

can be good but this introduction to redis to a live running module will beat that

implementation on all grounds. We did thorough testing of the new system and it

outperforms the previous system totally.

	

	
 42	

In this work Redis (Jedis API) mostly uses a single threaded design. This means that single

process serves the entire users request, using a technique called multiplexing. Speed is

achieved by writes not blocking the entire system (Hash in our case) calls like reading data to

and from socket. It is sequential and serves single request at a time. Some threads are also

used for I/O operations in the backend (mostly single threaded).

As a research continues on re-engineering or quality driven refactoring, it is necessary to

formalize the NFRs to get a general knowledge base. Another problem is that quality is still

neglected and has to come to developer’s pocket to take NFRs as serious as functional

requirements.

In the future we want to enhance the system capability more, currently when master fails

over once to slave, we do not have the capability of automatically making the old master the

slave of the new master. There is some manual intervention required to make sure the next

switch happens smoothly. Moreover, we now create individual Redis instances as needed

and disconnect after the usage. So in near future we are looking into a spring based Jedis

implementation, which will help in pooling the Redis instances.

	

	
 43	

REFERENCES

1. Matti Paksula, Helsinki Finland-Persisting Objects in Redis Key-Value Database.

Unpublished white paper.

2. Morris, R. 1968. Scatter storage techniques. Communication of the ACM 11, 1 (Jan.

1968), 38-44. DOI=http://doi.acm.org/10.1145/362851.362882.

3. Karl Seguin-The Little Redis Book. http://openmymind.net/2012/1/23/The-Little-

Redis-Book.

4. Josiah L. Carison-Redis in Action. http://www.manning.com/carlson.

5. Tiago Macedo, Fred Oliveira-2011 Redis Cookbook, Practical Techniques for fast

data manipulations. http://shop.oreilly.com/product/0636920020127.

6. M. Fayad and D. Schmidt, "Object-Oriented Application Frameworks,"

Communications of the ACM, vol. 40, October 1997.

7. Mateusz Berezecki, Eitan Frachtenberg, Mike Paleczny, and Kenneth Steele. Many-

core key-value stores. In Proceedings of the Second International Green Computing

Conference, Orlando, FL, August 2011.

8. N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman, and R. Wolski.

AppScale: Scalable and Open AppEngine Application Development and

Deployment. In Cloud Comp, 2009.

9. L. Tahvildari, K. Kontogiannis, and J. Mylopoulos, "Quality-Driven Software Re-

Engineering," Journal of Systems and Software, vol. 66, pp. 225-239, June, 2003.

10. R. Tiarks. Quality-driven refactoring. Technical report, University of Bremen, 2005.

11. International organizations for standardizations (ISO), 1996. Information

Technology, software product evaluation, quality characteristics and guidelines for

their use, ISO/IEC 9126, 1996.

12. Redis: http://redis.io

13. Memcached: http://memcached.org/

	

	
 44	

14. VoltDB: http://voltdb.com/

15. TerraCotta: http://terracotta.org/

16. Jboss Cache: http://www.jboss.org/jbosscache

17. Hazelcast: http://www.hazelcast.com/

18. I. Ivkovic and K. Kontogiannis, "A Framework for Software Architecture

Refactoring using Model Transformations and Semantic Annotations," presented at

the The Conference on Software Maintenance and Reengineering (CSMR'06), Bari,

Italy, 2006.

19. R.J. Figueiredo et al., “A case for grid computing on virtual machines,” 23rd

International Conference on Distributed Computing Systems, 2003, pp. 550-559.

20. S. Shrivastava and V. Shrivastava, "Impact of Metrics Based Refactoring on the

Software Quality: a Case Study," presented at the The 2008 IEEE Region 10

Conference (TENCON'08), Hyderabad, India, 2008.

21. L. Tahvildari, "Quality-Driven Object-Oriented Re-Engineering Framework,"

presented at the The 20th IEEE International Conference on Software Maintenance

(ICSM'04), Chicago, IL, USA, 2004.

22. Y. Yu and J. Mylopoulos. Software refactoring guided by multiple soft-goals. The

First International Workshop on Refactoring: Achievements, Challenges, Effects

(REFACE03), November 2003.

23. L. Grunske and R. Neumann, "Process Components for Quality Evaluation and

Quality Improvement," presented at the The 2nd Workshop on Method Engineering

for Object- Oriented and Component-Based Development (OOPSLA'04), The

International Conference on Object Oriented Programming, Systems, Languages and

Applications, 2004.

24. Bengtsson, P. and Bosch, J., Scenario-based Software Architecture Reengineering,

Proceedings of the 5th International Conference on Software Reuse (ICSR5), IEEE,

pp. 308-317, 2-5 June, 1998.

	

	
 45	

25. Matoussi,	
 A.,	
 and	
 Laleau,	
 R.:	
 ‘A	
 Survey	
 of	
 Non-­‐Functional	
 Requirements	
 in	

Software	
 Development	
 Process’,	
 Technical	
 report	
 TR-­‐LACL-­‐2008-­‐7,	
 University	
 of	

Paris	
 12,	
 2008.	

	

