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Abstract

Preparing an intelligent system in advance to respond optimally in every possible situa-

tion is difficult. Machine learning approaches like Inverse Reinforcement Learning can help

learning behavior using a limited number of demonstrations. We present a model-free tech-

nique by applying maximum likelihood estimation to an IRL problem. To make our approach

model-free, we model the environment using the canonical Markov Decision Process tuple,

except we exclude the transition function. We define our reward function as a linear function

of a known set of features. We use a modified Q-learning technique,called Q-Averaging. The

direction for optimization is guided by the gradient of likelihood function for current feature

weights until the unknown reward function is identified.

Experimental results over a grid world problem supports our model-free representation

of an IRL technique. We also extend our experiments to real-world freeway merging problem

of autonomous cars and the results are significant.

Index words: Maximum Likelihood, Inverse Reinforcement Learning, Model Free,
Markov Decision Process, Q-Averaging
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Chapter 1

Introduction

In this chapter, we catalog the purpose and significance of this thesis. Section 1.1 describes

the problem that is solved during the course of thesis. Section 1.2 illustrates the motivation

behind this thesis. The freeway merging problem involving autonomous cars and the need of

solving that problem using our approach is well discussed in motivation. The contributions

are noted in Section 1.3 and the structure of thesis is outlined in Section 1.4.

1.1 Problem

Machine Learning is the technology that enables computers to become intelligent. Google’s

self-driving cars and robots are programmed using machine learning algorithms to learn how

to make optimal decisions in any given environment. One way of programming an agent is by

a Reinforcement Learning (RL) algorithm. In each time-step, the agent makes a decision and

performs an action, this results in some specific rewards. If rewards are positive, the agent is

more likely to perform similar actions in the future. If rewards are negative, the agent tries

to avoid similar actions for this state. Hence, in reinforcement learning, the agent’s action in

future situations are determined by the rewards achieved in the past for similar situations.

However, explicitly defining a reward function is not always easy. Also, RL algorithms usually

require a large number of iterations before converging to a near-optimal policy, which is not

efficient.

Another way of programming an agent to learn how to perform is using Inverse Rein-

forcement Learning (IRL). Here, the reward function is not defined explicitly; instead, it is

expressed in term of features affecting the reward of an agent. IRL is the inverse of RL as

1



the input and output of each are interchanged. The input to an RL is the rewards from

previous actions and the output is the learned optimal policy, whereas the input to IRL

is an optimal policy (referred as expert’s trajectories) and the output is the learned reward

function as shown in figure 1.1. It is also categorized as supervised learning since the expert’s

demonstrations play a crucial role in an agent’s learning. IRL problems are mostly modeled

as a Markov Decision Process (MDP). In this thesis, expert’s trajectories are modeled as a

likelihood function. The solution of the IRL problem over a likelihood function is expected

to return the reward function of the expert.

Figure 1.1: The typical framing of an Inverse Reinforcement Learning (IRL) scenario: an
agent takes expert’s trajectories as input and with prior knowledge of expert’s environment,
it tries to infer the expert’s reward function.

1.2 Motivation

Motivated by a freeway merging domain involving autonomous cars, we develop a model

which can be used by an autonomous car in making optimal decisions about merging onto

a freeway. The industries investing in self-driving cars are highly concerned with the safety

of passengers but they also want an optimal mobility of the vehicle. Researchers focusing

on autonomous vehicles have raised the freeway merging problem as one of the significant

unresolved challenges. The preferences of a driver for allowing a car to merge on the freeway
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occasionally changes depending on multiple factors. We present a novel approach to devel-

oping this preference model by maximizing the likelihood of trajectories of vehicles on right-

most lane of a freeway using our IRL algorithm. This model can be used by autonomous

cars for making strategic decisions.

The complexity of manually specifying rewards in this domain urge us to prefer inverse

reinforcement learning over reinforcement learning. Also, IRL helps us to learn the behavior

of experts using their trajectories as input. In the freeway merging domain we have the

trajectories of drivers of vehicles in the rightmost lane of the freeway and they are assumed

to behave optimally in the environment. Hence, using these trajectories as input to an IRL

setting, we can learn the preference model of these drivers. The modeling of the transition

function in presence of stochastic human drivers in the environment may compromise the

safety of passengers in autonomous cars. This inspires the need to develop a model-free

approach to perform IRL.

1.3 Contribution

This thesis has three contributions:

1. Most of the previous work in the field of IRL depends heavily on the system’s ability

to learn transition model from a limited number of trajectories, if not available in

environment model of the domain. We devise a model-free IRL approach by dropping

the need for a transition function from the standard maximum likelihood IRL approach.

2. We incorporate a modified Q-learning algorithm, dubbed Q-Averaging, to remove the

max operator from the canonical Q-learning algorithm. This would resolve the issue

of Q-function being non-differentiable. Also, using Q-Averaging helps us eliminate the

dependency of transition function without affecting the learning abilities of an agent.
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3. We illustrate the validity of our algorithm on a real-world domain of freeway merging

for autonomous cars. The vehicle trajectory data used for learning the behavior is

extracted from NGSIM Interstate-80 freeway dataset.

1.4 Structure of Thesis

This thesis is structured as follows. In Chapter 2, we discuss a few concepts that, in general,

which will make the thesis more comprehensible. It includes topics like the Markov Decision

Process (MDP), Reinforcement Learning (RL), Inverse Reinforcement learning (IRL), with

details about two existing IRL algorithms which are used in the body of work. Chapter 3

outlines a survey of related works in the field of IRL. Chapter 4 describes the main algorithm

of the thesis. It also includes a mathematical model for our approach. The problem domains

and datasets are illustrated in Chapter 5. Chapter 6 demonstrates the experiments and results

of the IRL problem and their comparisons with existing methods. Finally, this document

concludes in Chapter 7.

1.5 Summary

In this chapter, the focus was to give a very broad idea of the context of this work. We

started by describing the problem statement and the motivation behind selecting IRL over

RL and the rationale for pursing a model-free approach. In the middle of this chapter we

discussed the contributions we made in this thesis. We concluded by giving the basic outline

of the rest of the thesis.
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Chapter 2

Background

In this chapter, we define several terms and concepts which build the foundation to compre-

hend the later sections of thesis. We start by defining the Markov Decision Process (MDP)

in Section 2.1. In Section 2.2, we discuss the concept of maximum likelihood estimation. In

Section 2.3 and Section 2.4, we describe reinforcement learning (RL) and inverse reinforce-

ment learning respectively, followed by their closely related algorithms. The term model-free

IRL is discussed significantly in Section 2.5 and the concept of gradient-based optimization

is covered in Section 2.6.

2.1 Markov Decision Process

In domains of robotics and automated control systems, the problem of sequential decision

making for stochastic environments is often modeled mathematically as the Markov Decision

Process (MDP). Sequential decision making requires optimization to maximize the utility

from agent’s actions in past. MDPs are helpful in exploring optimization problems solved

using reinforcement learning, inverse reinforcement learning, and many other dynamic pro-

graming techniques. An MDP is defined as tuple 〈S,A, T,R, γ〉, where

• S is a finite set of states.

• A is a finite set of actions.

• T is the state transition probability function, T : S × A× S → [0, 1]

T (s′ | s, a) = P (st+1 = s′ | st = s, at = a)

T (s′ | s, a) gives the probability of reaching s′ from s executing action a.
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• R is the reward function. Reward functions can be modeled asR(s, a, s′) : S×A×S → R

or as R(s, a) : S × A→ R depending upon the environment in play.

R(s, a, s′) is the reward expected when an agent in state s takes an action a and lands

in state s′.

R(s, a) is the immediate reward associated with the agent executing an action a being

in state s.

• γ is the discount factor, parameter that determines the importance of future rewards.

γ ∈ [0, 1]

The solution of an MDP is a policy that associates an action with every state that the

agent might reach. The utility of a state sequence is the sum of all the rewards over the

sequence, often discounted over time. The goal is to solve the MDP to find an optimal policy

that maximizes the utility of the state sequences.

The utility of a state is the expected utility of the state sequences encountered when

an optimal policy is executed when starting in that state. The value iteration algorithm for

solving MDPs works by iteratively solving the equations relating the utility of each state to

those of its neighbors, whereas the policy iteration algorithm alternates between calculating

the utilities of states under the current policy and improving the current policy with respect

to the current known utilities.

2.2 Maximum Likelihood Estimation

Maximum likelihood estimation is a widely applicable statistical method of estimating

unknown parameter values for fixed sets of data and a known statistical model. The likeli-

hood of a set of data is the probability of obtaining that particular set of data, given the

probability distribution model. In simple terms, it is the value of parameters which makes

the observed data most probable. Maximum likelihood estimation gives a unified approach
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to estimation, which is well-defined in the case of the normal distribution and many other

problems.

Suppose X1, X2, ..., Xn is a sample of n independent and identically distributed (i.i.d.)

observations. The assumed probability distribution depends on some unknown parameter θ.

The goal of maximum likelihood estimation in this case is to find the values of unknown

parameters that maximize the probabilistic likelihood of the observed data.

The joint density function of all observations can be denoted as fθ. For an i.i.d. sample,

this joint density function is

fθ(x1, x2, ..., xn) = f(x1, x2, ..., xn | θ) = f(x1 | θ)× f(x2 | θ)× · · · × f(xn | θ) (2.1)

In the maximum likelihood method, we represent the joint density function as likelihood

function, L(θ),

L(θ;x1, x2, ..., xn) =
n∏
i=1

f(xi | θ) (2.2)

The value of each f(xi | θ) is a fraction and multiplying these fractions tends to reach

the total value of likelihood towards zero. Rather than maximizing this product, which can

be quite tedious and also could lead to extremely small value, we often use the fact that the

logarithm is a monotonically increasing function, so it will be equivalent to maximize the

log-likelihood:

L(θ;x1, x2, ..., xn) =
n∑
i=1

log f(xi | θ) (2.3)

The maximum likelihood estimation method the calculates the value of θ̂ that maximizes

the value of L(θ).

θ̂ = arg max
θ
L(θ;x1, x2, ..., xn) (2.4)

2.3 Reinforcement Learning

Reinforcement learning (RL) is a type of machine learning technique which allows an agent

to learn its behavior in order to maximize its performance. The agent does not know a

priori which action to take, but instead it must explore which action yields the most reward,
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based on reward feedback from the environment, also known as a reinforcement signal. This

behavior is adaptive in nature. If the problem is modeled with care, some RL algorithms can

converge to the global optimum; this is the ideal behavior that maximizes the reward.

Figure 2.1: The typical framing of a Reinforcement Learning (RL) scenario: an agent takes
actions in an environment, which results into a reward and a representation of the state,
which are fed back to the agent [21].

Reinforcement signals are different than supervised learning. In supervised learning, an

agent learns from the feedback of an expert’s behavior, but such feedback is not always

available. If no feedback is available, an agent can learn a transition model for its own moves

and can perhaps learn to predict the opponent’s moves, but the agent will have no grounds for

deciding which moves to make. Reinforcement signals from the environment can be received

at each time step or together at the end. For example, in games like chess, the reinforcement

is received at the end, which helps agents learn what moves not to make when playing the

next turn. In games like darts, each point scored is a reward and it helps in improving the

agent in the next shot.

Apart from the agent and the environment, the reinforcement learning problem needs to

define following four elements as well: a policy, a reward function, a value function, and a

model of the environment.

A policy is mapping each state of the environment to an action taken from those states.

A policy can be stochastic or deterministic. An optimal policy, usually denoted by π∗, is the

best policy, i.e. one that maximizes the cumulative reward over the likelihood of all possible

states.
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A reward function maps each state or a state-action pair of the environment to a real

number. The action selected by the policy results in the reward for that event. As the sole

objective of reinforcement learning is to receive maximum reward, if the reward is poor the

policy needs to be altered in order to improve the reward.

Value iteration is an algorithm used to calculate the utility of each state from the envi-

ronment. The utility of a state is the immediate reward for that state plus the expected

discounted utility of the next state, assuming that the agent responds according to the most

optimal policy available. The value iteration algorithm helps produce an optimal policy that

maximizes the accumulated reward.

The environment is modeled as stochastic finite state machine with inputs being actions

sent from the agent and outputs being observations and rewards sent to the agent. MDPs are

widely used for modeling sequential decision-making environments. Algorithms for solving

reinforcement learning problems that use models and planning are known as model-based

algorithms, whereas model-free algorithms can be conceived of as trial and error learners

with no transition model or planning involved.

2.3.1 Q-learning

Learning by an agent can be passive or active. In passive learning, the agent learns the

utilities of states or state-action pairs using a fixed policy. In contrast, in active learning an

agent explores a model of the environment to learn how to behave by altering its policy to

maximize the cumulative reward over time. Q-learning is a very popular model-free active

learning technique used to solve reinforcement learning problems. A Q-learning agent learns

an action-value function, Q, also known as Q-function,

Q : S × A→ R

giving the expected utility of taking an action in a given state. Q-learning is an off-policy

method for Temporal Difference (TD) learning. Off-policy means that the Q-learning calcu-

lates an optimal Q-function, Q∗, and hence learns the optimal policy, π∗ even when actions
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are selected in a more random or exploratory fashion rather than directly from the policy in

play. The basic Q-update equation for Q-learning is defined as:

Q(s, a)← Q(s, a) + α(R + γmax
a′

Q(s′, a′)−Q(s, a)) (2.5)

Equation 2.5 is calculated whenever the agent executes action a ∈ A from state s ∈ S

and moves to s′ ∈ S, receiving the reward stimulus specified in the reward function R. The

Q-table is initiated with random values. Then, at each iteration, the agent selects an action

and observes the reward and the next state. The action selected by agent at each step is

the action that has the highest observed reward. The overall reward resulting from all the

actions of agent is accumulated as the weighted sum of individual rewards at each time step.

R is the immediate reward received from the behavior of the agent.

The learning schedule α ∈ [0, 1], governs the magnitude of the update. If α = 0, then

the Q-function will never be updated, and if α = 1, only the most recent information is

considered.

The learning schedule γ ∈ [0, 1], weights the rewards of all future steps reachable from

current steps. If γ = 0, it means that the agent will consider only the current rewards and

neglects the future ones, while if γ = 1, the utilities might reach infinite value for non-

terminating or lengthy episodes.

Figure 2.2: Q-learning algorithm for an exploratory agent [21].
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2.4 Inverse Reinforcement Learning

RL problems assume that the reward function is known and fixed, but is not always the

case. Stuart Russell [2] proposed the need for a technique that could achieve the same task

as RL but without specifying the reward function manually, called Inverse reinforcement

learning (IRL). IRL is the problem of learning the most favorable reward function with the

help of an expert agent’s demonstrations. In IRL, the agent that tries to learn the reward

function is usually referred to as the learner, and the agent whose behavior is mimicked by

learner is known as the expert. The expert is assumed to behave optimally and, hence, its

demonstrations are assumed to generate maximum rewards. The learner does not have access

to expert’s reward function. In IRL, the environment is modeled as an MDP without the

reward function, MDP\r : < S,A, T, γ >. IRL is based on Learning from Demonstrations

(LfD), also known as Imitation Learning or Apprenticeship Learning (AL). Unlike AL, where

the goal is to find a policy that performs like the expert, in IRL the goal is to find a reward

function that is similar to that of the expert.

Figure 2.3: Relationship between the RL and IRL problems. The expert tries to learn the
optimal policy using RL technique. The learner, however, uses the expert’s trajectories
(optimal policies) and infers expert’s rewards using IRL technique.

Figure 2.3 illustrates the basic difference between RL problems and IRL problems. As

the name suggests, IRL is essentially the inverse of RL. The input in RL problems is the

reinforcement signal or reward function, RE, and the output is policy. However, in IRL,

the input is a policy or demonstrations and the output is the inferred reward function, R̂E.

Demonstrations are assumed to maximize the reward as the expert behaves as in canonical
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RL, choosing an action according to the previous rewards. The learner receives the expert’s

demonstrations and infers a reward function using the IRL method.

In IRL problems, the reward function is widely expressed as weighted sum of binary

features [4]. R(s, a) =
∑

i φi(s, a)θi, where θi ∈ R are weights and φi(s, a)→ 0, 1 are binary

feature functions for each state-action pair. However, there might be multiple reward func-

tions that corresponds to an expert’s behavior. Ng and Russell [3] proposed a solution for

removing this degeneracy by formulating the IRL problem as linear program which results

in a unique optimal policy.

The demonstrations are a set of trajectories, each of which is a sequence of state-action

pairs recorded from expert’s behavior.

D = {ζ1, ζ2, .., ζn}

ζi = {(s1, a1)i, (s2, a2)i, ..., (sm, am)i}

2.4.1 Bayesian IRL

IRL has always been seen to accomplish either of the two tasks: reward learning or appren-

ticeship learning. Ramachandran and Amir [9] proposed a different way to model an IRL

problem using a Bayesian inferencing approach. As we discussed before, multiple reward

functions might explain the expert’s behavior. Bayesian IRL (BIRL), allows us to derive a

probability distribution over the space of reward functions. The actions of the expert are con-

sidered as evidence and the prior knowledge on an expert’s reward function can be included

in the inference. BIRL relaxes the assumption that the expert always behaves optimally and

that its demonstrations will produce maximum rewards.

The mathematical model for BIRL derives a posterior distribution for rewards from the

prior distribution. Let us consider an agent E, operating in a MDP :< S,A, T, γ >. R is

the reward function of the expert, chosen from prior distribution PR. The demonstrations

DE = {(s1, a1), (s2, a2), ..., (sm, a,m)}, recorded from an expert’s behavior, is also given as

an input to IRL problem. BIRL models the likelihood of an state-action pair given prior
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distribution as an exponential distribution of the Q-function.The larger the Q∗(s, a), the

more likely this state-action pair is in demonstration.

PE((si, ai) | R) =
1

Zi
eαEQ

∗(si,ai,R) (2.6)

where, αE is a confidence parameter that controls the expert’s ability to choose the action

with highest value. Similarly, the likelihood of an expert’s entire demonstrations is:

PE(DE | R) =
1

Z
eαEE(DE ,R) (2.7)

where, E(DE, R) =
∑

iQ
∗(si, ai, R) and Z is a normalization constant.

Applying Bayes theorem to calculate the posterior probability of reward function R con-

ditioned on expert’s evidence,

PE(R | DE) =
PE(DE | R)PR(R)

P (DE)

=
1

Z ′
eαEE(DE ,R)PR(R)

(2.8)

The normalization constant, Z
′
, is hard to compute, hence the posterior is estimated using

a sampling technique. The authors [9] use modified Markov Chain Monte Carlo (MCMC)

with a uniform prior for inferencing. Now the two tasks of IRL becomes reward estimation

and policy estimation from reward learning and apprenticeship learning, respectively. The

reward estimation task can be achieved by minimizing the loss function, calculated as the

norm distance between the actual and estimated rewards. This loss function is minimized by

setting the estimated rewards as the mean of the posterior from which the actual rewards

are drawn. In the case of policy estimation, the loss function is defined as the norm distance

between the value of each state achieved by the optimal policy and the value of the expected

policy that minimizes the loss over posterior rewards.

Ramachandran and Amir [9], were the first to propose the idea of Bayesian inferencing

in IRL problems which later become the framework of many other algorithms [15, 16]
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2.4.2 Maximum Likelihood IRL

Since Maximum Likelihood IRL (MLIRL) is just another approach to solve an IRL problem,

the framework still remains the same. As such, the expert, learner, and environment are

modeled as an MDP :< S,A, T, γ >, the expert’s demonstrations DE = {ζ1, ζ2 ..., ζn} and

other IRL settings. Babes et al. [1] expressed the reward function as Rθ(s, a) = θTφ(s, a),

where, θ is a set of reward weights and φ(s, a) is feature set for state s ∈ S and action a ∈ A

pair. Since the learner is unaware of the expert’s reward function, the goal of learner is to

use the available information from the environment and the expert’s trajectories to estimate

the feature weights θL that mimic the values that are used to generate those demonstrations.

Figure 2.4: Maximum Likelihood IRL algorithm[1].

Figure 2.4 shows the MLIRL algorithm [1], which starts by assigning a random set of

values to the learner’s feature weights. This helps in assigning the likelihood to the expert’s

trajectory. The optimization is guided by the gradient of the likelihood function at current

known feature weight values θL.

Let us scrutinize the implementation details of the MLIRL [1] approach. First, θL is used

to calculate the expected values discounted over horizon:

QθL(s, a) = RθL(s, a) + γ
∑
s′

T (s, a, s′)

∑
aQ(s, a)eβQ(s,a)∑

a′ e
βQ(s,a′)

(2.9)
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The max operator from the conventional Bellman equation was making the likelihood func-

tion non-differentiable. In order to use the gradient approach for optimization of likelihood

function, it needs to be differentiable. Babes et al. [1] replaces the max operator by using the

Boltzmann exploration for calculating the Q-values and thus making the likelihood function

differentiable.

Instead of calculating the likelihood of trajectories in [1], authors calculate the log-

likelihood of trajectories as we discussed above the advantages of doing so. The log-likelihood

function is defined as:

L(D | θ) = log
N∏
i=1

∏
(s,a)∈ζi

πθ(s, a) =
N∑
i=1

∑
(s,a)∈ζi

log πθ(s, a) (2.10)

The policy πθ(s, a) is calculated using the Boltzmann exploration as:

πθ(s, a) =
eβQθ(s,a)∑
a′ e

βQθ(s,a′)
(2.11)

Thus, the solution for maximum likelihood in MLIRL [1] is expressed as:

θL = arg max
θ
L(D | θ) (2.12)

Unlike other conventional IRL approaches, MLIRL resolves the issue of receiving multiple

reward functions explaining the expert’s optimal behavior by searching for only a single

optimal reward function. MLIRL even allows to solve the IRL problems with stochastic

demonstrations available from expert.

2.5 Model-Free Inverse Reinforcement Learning

IRL has solved the issue of specifying the reward function manually, but applying IRL algo-

rithms requires an optimal policy. This optimal policy can be generated easily by solving

different planning or reinforcement learning algorithms with the knowledge of demonstra-

tions. Such algorithms are complex and could degrade the performance of high-dimensional

systems with large state spaces or continuous state spaces. To overcome these limitations,
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an alternate method for these calculations is required, which can be achieved by creating

a model-free system which can generate the policy that performs at least as well as expert

policy.

Like model-free RL, IRL can also be model-free (i.e. no knowledge of transition function

or planning is involved). The MDP of a model-free IRL environment looks like: < S,A, γ >.

Model-free IRL approaches are very helpful in solving IRL problems where the transition

model is not available. The accuracy of model-free IRL algorithms over model-based ones is

still an open question. One of the model-free approaches is Relative Entropy Inverse Rein-

forcement Learning [7], where authors compare their results with those from model-based

approaches. We will further discuss this approach in Section 3.1.

2.6 Summary

In this chapter, we described some concepts which will make the further parts of this thesis

easy to understand. We discussed the basic concept of RL and IRL and how to model the

environment using an MDP. We showed the basics of maximum likelihood estimation and

the significance of the term model-free in context of both RL and IRL. We also discussed

the details of BIRL and MLIRL approaches and examined the advantages of each approach.
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Chapter 3

Related Work

In this chapter, we will discuss a few concepts which are not used in this work but are

similar to topics underlying in this work and worth mentioning. In Section 3.1, we describe

the model-free method, Relative Entropy IRL. Section 3.2 includes a survey of different IRL

problem domains used by researchers to validate their approaches.

3.1 Relative Entropy IRL

Many approaches used to solve an IRL problem are based on the assumption that the

dynamic model of the underlying MDP is known or can be learned from sampled trajecto-

ries. Learning from limited number of trajectories might be unreliable. Also, these learning

methods require planning, which makes the algorithm computationally expensive and cannot

be directly applicable to systems with a large or continuous state spaces. Inspired by Rela-

tive Entropy Policy Search [13] and based on Maximum Entropy IRL [6], Boularias et al. [7]

proposed a model-free IRL algorithm that not only addresses the issues of learning a model

from trajectories but is also able to learn good policies from a limited number of demonstra-

tions. Relative entropy IRL [7], tries to minimize the relative entropy between the empirical

distribution of the expert’s demonstrations under a baseline policy and under the policy (ini-

tially arbitrary) that matches the reward feature counts of the demonstrations. The baseline

policy is essentially a distribution over the set of expert trajectories. The gradient descent

optimization technique used in the algorithm to minimize the relative entropy was estimated

without the help of MDP. The relative entropy here is formulated as KL divergence.
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The problem statement in [7] is to minimize the relative entropy which can be expressed

mathematically by reformulating Maximum Entropy IRL [6] as:

min
P

∑
τ∈T

P (τ) ln
P (τ)

Q(τ)
(3.1)

where, T is set of trajectories, T = {τ1, τ2, ..., τn}, P is probability distribution on the

trajectories under current policy, and Q is the probability distribution on trajectories under

a baseline policy.

The problem statement is subject to following constraints:

∀i ∈ {1, ..k} : |
∑
τ∈T

P (τ)f τi − f̂i ≤ εi,

∑
τ∈T

P (τ) = 1,

∀τ ∈ T : P (τ) ≥ 0

where, f τi is discounted feature expectation of a feature fi along a trajectory τ , f̂i is empirical

expectation of feature fi, and εi is the threshold that can be calculated using Hoeffding’s

bound.

The solution of the problem statement was given by Dudik and Schapire [14] as the

Lagrangian function:

L(P, θ, η) =
∑
τ∈T

P (τ) ln
P (τ)

Q(τ)
−

k∑
i=1

θi

(∑
τ∈T

P (τ)f τi −f̂i
)
−

k∑
i=1

|θi|εi+η
(∑
τ∈T

P (τ)−1

)
(3.2)

using the Karush-Kuhn-Tucker (KKT) condition,

∂P (τ)L(P, θ, η) = ln(P (τ)/Q(τ))−
k∑
i=1

θif
τ
i + η + 1

= 0

(3.3)

On solving the above equation, we get:

P (τ) = Q(τ)exp

( k∑
i=1

θif
τ
i − η − 1

)
(3.4)
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Summing over all the trajectories on both side and solving using
∑

τ∈T P (τ) = 1, we get the

normalization constant, Z(θ)

exp(η + 1) =
∑
τ∈T

Q(τ)exp

( k∑
i=1

θif
τ
i

)
= Z(θ) (3.5)

Therefore,

P (τ | θ) =
1

Z(θ)
Q(τ)exp

( k∑
i=1

θif
τ
i

)
(3.6)

The dual problem resulting from the step above is to maximize the resultant dual function

using sub-gradient ascent. The sub-gradient of the dual function cannot be obtained without

using the transition function, which is not available. Hence, Boularias et al. [7] presents an

alternate method for estimating the gradient using Importance Sampling.

The Relative Entropy IRL [7] approach was validated using three different problem

domains and the results were compared with other well-known approaches. The perfor-

mances of different IRL methods are compared by calculating the optimal policies using

the transition function corresponding to the learned reward functions. In experiments, the

relative entropy IRL approach learned the reward functions close to the expert’s one in all

the three problem domains using a very small number of sampled trajectories.

In contrast to Relative Entropy IRL, our approach tries to relax the assumption that the

trajectories are of a fixed horizon. Boularias et al. [7] reformulate the Maximum Entropy IRL

[6] as the problem of minimizing the relative entropy between the probability distribution on

the trajectories and the distribution on trajectories under a baseline policy. This approach

mitigates the issue of learning false reward function which might lead to same expert’s policy.

We model the IRL problem using maximum likelihood estimation. The issue of learning

incorrect reward function is handled by maximizing the likelihood of trajectories.

3.2 Survey of Different IRL Problem Domains

A problem domain is an application that needs to be examined to solve a problem. Problem

domains can be thought of as test beds on which experiments are performed or algorithms
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are executed, and the accuracy of solutions to that problem helps us assess the correctness

of an algorithm or method used to solve that problem. Thus, problem domains play a crucial

role in evidencing the authentication of an algorithm or hypothesis.

Selection criteria for a problem domain depends primarily on the algorithm used to solve

it, or vice versa. For experimenting with an IRL algorithm, we must select a domain where we

can have access to the behavior of an expert and partial knowledge of an experts environment.

IRL problem domains can be categorized depending on their nature.

3.2.1 Synthetic Toy problems

Synthetic toy problems are not real-world problems, but are created or simulated as an

environment with some goals. It’s more like a toy or puzzle one can play with to achieve the

goal using an IRL algorithm.

Grid World Domain

Grid world are the most commonly used problems to experiment with an IRL algorithm.

Grid world represents the environment in form of n × n grids of equal dimensions mostly.

Each grid represents a state, while each movement direction represents an action. Each grid

is associated with a reward value (usually its negative reward each state except the goal

state). The problem in this domain is to learn the reward associated with each grid from the

trajectories of expert using an IRL algorithm. The expert is assumed to behave optimally,

i.e. it will prefer to maximize its reward for reaching the goal state from its initial state. The

learner tries to do the same and assigns reward values to each grid by learning them from

an experts trajectories.

Figure 3.1. (a) shows the basic grid world problem domain. Different colors represent

different reward values and are highest for the goal state and lowest for the sink state (both

are terminal states), while an arrow means one of the four possible movement directions.
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Figure 3.1: (a) Grid World Domain. An agent tries to learn an optimal policy to reach the
goal state with minimum cumulative cost. Each grid color has a unique cost associated with
it. (b) Gird World Domain with obstacles. The agent is not allowed to pass through obstacle
states. The goal still remains the same.

Figure 3.1. (b) is the slight variation of grid world problem, where obstacles are explicitly

introduced, indicating those states can never be visited by an expert. If an agent tries to

move to an obstacle state, or tries to go out of the assigned grid area, it ends up in the prior

state.

Mountain Car Domain

The mountain car problem is commonly used as a benchmark reinforcement learning problem

to evaluate learning algorithms. In Algorithms for IRL [3], authors use the same problem to

evaluate an IRL algorithm. This problem can be described as a car being placed in a valley,

with the goal being to get the car out of the valley. The engine of the car is not powerful

enough to drive it out of the valley. Hence, the car must build up a momentum by driving

up the opposite side of the valley. The states are defined by the cars x-position, velocity, and

actions, which are driving forward, backward, or neutral. The true, undiscounted, reward is
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-1 per step until the car reaches the goal at the top of the hill. As in IRL algorithms, the

expert is assumed to behave optimally, and the learner tries to achieve the goal by learning

rewards from the experts trajectories.

Figure 3.2: Image of mountain car problem [3]. The goal here is to get the car with insufficient
engine power out of the valley. This could be achieved by building momentum using actions
like driving backward, forward, or neutral. Each action has a cost associated with it.

Role-Playing Games

Role-playing games are also simulated and presented as a problem domain with a set of

some experts demonstrations to learn the reward function. Ramachandran and Amir [9]

applied their method of reward learning to the very famous role-playing game Dungeons

and Dragons. In this game, an agent explores the dungeon, seeking to collect various items

of treasure (positive rewards), while avoiding obstacles such as walls or dragons (negative

rewards). The state space was represented as m-dimensional binary feature vector indicating

the position of the agent and the value of various fluent. The actions are decisions made by

the agent such as picking up treasure or other in-game movements.

3.2.2 Autonomous Driving Problems

Autonomous vehicles are no longer part of the realm of fiction, and to improve the efficiency

and accuracy of such vehicles, their working environments are often simulated and the issues

are resolved using various algorithms. Unlike in previous categories, here we try to solve some
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real-time issues faced by autonomous vehicles like learning to merge in lanes and driving on

a highway. Here, we will discuss two of such domains being used to solve the issues using an

IRL algorithm.

Freeway Merging Domain

Merging safely onto a congested freeway from a ramp is still a challenge for an autonomous

vehicle in the presence of stochastic human drivers. Many researchers are trying to investigate

this problem by representing the similar domains in different models, and trying to solve it

using standard algorithms. We are modeling this problem as ABC car model, car B being the

autonomous car, and car A and car C are human driven vehicles moving behind and ahead

relative to car B, but on the rightmost lane of the freeway. Here, we are trying to solve the

freeway merging problem using an IRL algorithm. Car A’s trajectories are used to model the

reward function, which can later be used by car B (autonomous vehicle) in decision making.

Figure 3.3: ABC model for Freeway Merging Domain. Car B is autonomous car trying to
merge onto the freeway in between two human-driven cars traveling on the freeway. The goal
here is for the car B to learn the preference of car A’s driver and make an optimal decision
about when to merge.

The state space is defined as the combination of state variables like the x-distance and

velocity between car A and car C, and similarly between car A and car B. Actions are

acceleration values of car A, and are discretized as full brake to full acceleration depending

upon the bin it lies in. The data used as trajectories of car A is real-world data are taken
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from the Next Generation Simulation (NGSIM) dataset collected under the supervision of

the Federal Highway Administration (FHWA). This dataset was collected from I-80 freeway

in San Francisco, CA using six synchronous cameras covering over 1640 feet in length and

all seven lanes, including the onramp, over three different time intervals of fifteen minutes

each. All the videos from cameras were processed and the dataset is now available and ready

to use in tabular format.

Highway Driving Simulator

A driving simulator is a software used to simulate and visualize (often) the real-world driving

experience. Pieter and Andrew [4] used a driving simulator to learn different driving styles

on highways. They considered five styles: Nice, Nasty, Right lane nice, Right lane nasty, and

middle lane. The driving speed was kept constant at 56 MPH during the whole experiment

and trajectories were recorded for all five different driving styles. The Markov Decision

Process (MDP) of the problem had 5 actions as values, from handling the steering wheel of

the vehicle, 3 of which allows driving smoothly on one of the lanes, and 2 causing the vehicle

to drive off the road to avoid hitting the cars. The state space was defined indicating the

current lane of the car and space between the car in front. Once the trajectories for different

styles were available, the learner could mimic them using an IRL algorithm.

3.2.3 Robotics based problems

Robotics is not just about mimicking the event or performing a predefined set of operations.

If a robot must perform in an unpredictable or a dynamic environment, it is nearly impossible

to prepare it for all possible situations, and there might be times when an autonomous robot

might find itself in a situation not considered by its designer. Robot learning allows a robot

to adapt to the surrounding environment and behave optimally in unexpected circumstances.

To test the learning skills of robots and to evaluate the accuracy of learning algorithm used
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by robots, we need problem domains which relate to ones in which robots face in the real

world.

Robot Grasping Unknown Objects

Figure 3.4: Grasping an unknown object as a Markov Decision Process. The process is
represented by three steps: reaching, preshaping and grasping. The robot can move ahead
at each step or can start over[5].

Boularias et al. [5], discussed the structure and observations of their experiment of a

learning algorithm over a problem domain in which the robot tries to learn how to grasp an

unknown object. They represented grasping an object as MDP with three steps: reaching,

preshaping, and grasping. The reward of each step depends on the current state, and the

robot can move ahead or restart at any step. The robot starts from the initial state at t =

0, and the set of actions corresponds to the set of points on the surface of the object. At t

= 1, the state is given by a surface point and an approaching direction, the set of actions

corresponds to the set of all possible hand orientations. At t = 2, the state is given by a

surface point, an approach direction, and a hand orientation. Lastly, the robot either closes

its finger and grasps the object, or restarts from the initial state. They used one object and

six trajectories leading to a successful grasp from its handle by a robot.
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Patrolling Robots

Patrolling robots are autonomous robots trained to patrol in a specified environment,

assuring security of that area. These robots are designed in a way so that they can behave

optimally in strange situations by learning their moves using a learning algorithm. In exper-

imenting with the Robust IRL algorithm [17], two Turtlebots were used, one as patroller

(expert) and other as intruder (learner). The patroller moves around the specified area and

the learner is hidden from the sight of patroller. The trajectories of patroller are not directly

available to the learner, instead the only observation available is the sound from the drones

propeller. Hence, the problem is modeled as Hidden Markov Decision Process (hMDP). The

state space is the location and orientation of the drone in the environment. The drone has

3 actions: going forward, turning around, and hovering. The intruder learns the patroller’s

policy and tries to reach its goal state without being seen by the patroller.

3.3 Summary

In the first part of this chapter, we discussed the details of Relative Entropy IRL approach.

In the later part, we categorized the different type of problems which can be solved using an

IRL algorithm and cataloged the few domains of each type.
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Chapter 4

Maximum Likelihood Approach For Model-Free Inverse Reinforcement

Learning (MLMFIRL)

In this chapter, we discuss our approach for solving an inverse reinforcement learning problem

when the complete model of the environment is not available directly. We start by defining

the likelihood function and its mathematical representation in Section 4.1. In section 4.2, we

introduce the Q-Averaging approach to replace the conventional Q-learning equation. Details

about the gradient implementation of the likelihood function are cataloged in Section 4.3.

The MLMFIRL algorithm is described in Section 4.4 with its analysis in Section 4.5.

4.1 Mathematical Model for MLMFIRL

Like MLIRL [1], our approach also uses a maximum likelihood model to learn an expert’s

behavior and gradient method to find the optimal solution. However, unlike MLIRL our

approach eliminates the dependency on the transition function and makes the method com-

putationally efficient and more reliable for learning with a limited number of demonstrations.

The step by step mathematical model of our approach is illustrated below.

The following items are given as input to MLMFIRL:

• Expert’s MDP : <set of states S, set of actions A, discount factor γ >

• Expert’s trajectories, T = {ζ1, ζ2, ..., ζN}

• Features, Φ = {φ1, φ2, ..., φd}
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The goal of MLMFIRL approach is to learn the feature weight vector ~θ :< θ1, θ2, ..., θd >

that maximizes the likelihood of the expert’s trajectories. The problem statement can be

expressed as:

~θ = arg max
~θ
L(~θ) (4.1)

where, L(~θ) is the log-likelihood of the trajectories in T .

L(~θ) = logP (T | ~θ) (4.2)

Since all the trajectories in T are independent of each other given ~θ and are equally likely,

we can unscramble P (T | ~θ) as:

P (T | ~θ) =
N∏
i=1

P (ζi | ~θ) (4.3)

Since the expert is assumed to execute a policy that does not depend on the actions and

observations of previous time step, we can apply following conditional independence rule:

P (ζi | ~θ) =
∏

(s,a)∈ζi

P ((s, a) | ~θ) (4.4)

P ((s, a) | ~θ) is the probability of taking an action a ∈ A in state s ∈ S given ~θ, i.e. policy

value for (s,a) given ~θ. We denote the policy value for any (s, a) as π~θ(s, a). Using equations

(4.3) and (4.4) in equation (4.2) we have the log-likelihood function as:

L(~θ) = log
N∏
i=1

∏
(s,a)∈ζi

π~θ(s, a) =
N∑
i=1

∑
(s,a)∈ζi

log π~θ(s, a) (4.5)

We model πθ(s, a) as the Boltzmann exploration policy:

π~θ(s, a) =
eβQ~θ(s,a)∑
a′ e

βQ~θ(s,a
′)

(4.6)

where, β is the Boltzmann temperature, that controls the degree of confidence in agent’s

ability to choose actions based on Q values. The Q-value of a state-action pair, (s, a), is the

optimal value which can be achieved using the conventional Q-learning equation [20]:

Q(s, a)← Q(s, a) + α
(
R(s, a) + γmax

a′
Q(s′, a′)−Q(s, a)

)
(4.7)
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where, α is the learning schedule, γ is the discount factor, and R(s, a) is the immediate reward

for taking action a in state s. We define our reward function as R(s, a) =
∑d

i=1 θiφi(s, a)

For optimization we use the gradient ascent approach. The optimization is achieved by

using the gradient of likelihood function at its current known feature weight values in order

to update the feature weights until a locally optimal parameter value is achieved.

∇L(~θ) =
{
∇L1(~θ),∇L2(~θ), ...,∇Li(~θ)

}
=

{
∂L(~θ)

∂θ1
,
∂L(~θ)

∂θ2
, ...,

∂L(~θ)

∂θi

}
θi = θi + αt∇Li(θ) (4.8)

where, αt is step size of iteration t and ∇Li(θ) is gradient of likelihood function w.r.t. θi.

∇Li(~θ) =
N∑
i=1

∑
(s,a)∈ζi

1

π~θ(s, a)

∂π~θ(s, a)

∂θi
(4.9)

Since π~θ is a function of Q-function, we can write the partial derivative of π~θ as:

∂π~θ(s, a) =
∂π~θ(s, a)

∂Q(s, a)
· ∂Q(s, a)

∂θi
(4.10)

If we can compute the gradient of the Q-function, we can use it to differentiate all of

the above equations to achieve the optimal values of feature weights. However, the “max”

operator in standard Q-learning (equation 4.7) makes it non-differentiable w.r.t. θi. This

makes the gradient of the likelihood function non-differentiable and the use of the gradient

ascent method for optimization impractical. We propose a method called Q-Averaging.

4.1.1 Q-Averaging

To address the issue we described above about the likelihood function being non-differentiable

due to the “max” operator in equation 4.7, we propose an approach to replace the “max”

operator with an average operator in equation 4.7. We call this approach as Q-Averaging

because it is Q-learning with averaging.

Q(s, a)← Q(s, a) + α
(
R(s, a) + γ

∑
a′ Q(s′, a′)

|A|
−Q(s, a)

)
(4.11)
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where, |A| is number of actions applicable in state s′.

Using equation 4.11 in our approach, makes the likelihood function differentiable. The

“max” operator in equation 4.7 is responsible for selecting the action which produces the

maximum Q-value in state s′, i.e. the most favorable action. To support our hypothesis about

replacing the standard Q-learning with Q-Averaging, we performed few experiments. We used

both the standard Q-learning and the Q-Averaging approaches to solve an RL problem and

compared the results for both. We performed the experiment over different RL domains like

grid world, mountain car, etc., and observed that the learner achieved the similar policies

but with a lower magnitude of rewards. Also, the convergence in case of Q-Averaging took

more iterations than in standard Q-learning.

To conclude, the Q-Averaging approach makes the likelihood function differentiable

without affecting the learning ability of learner at the cost of few more iterations than

the standard Q-learning.

4.2 Gradient Implementation Details

We have likelihood function and policy from Section 4.1 as

L(~θ) =
N∑
i=1

∑
(s,a)∈ζi

log π~θ(s, a)

π~θ(s, a) =
eβQ~θ(s,a)∑
a′ e

βQ~θ(s,a
′)

and Q-function from Section 4.2 as:

Q(s, a)← Q(s, a) + α
(
R(s, a) + γ

∑
a′ Q(s′, a′)

|A|
−Q(s, a)

)
Also, we have expert’s MDP:< S,A, γ >, expert’s trajectories T and feature set Φ.

We have randomly initialize the feature weight vector ~θ0 :< θ01, θ
0
2, ..., θ

0
d > and calculate

the reward function as:

R0(s, a) =
d∑
i=1

θ0i φi(s, a)
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For tth iteration,

∀(s, a) ∈ T ,

Q0
t (s, a) = Rt(s, a) =

d∑
i=1

θtiφi(s, a)

∂

∂θi
Q0
t (s, a) =

∂

∂θi
Rt(s, a) = φi(s, a)

For kth iteration, towards Q-value convergence:

Qk
t (s, a) = Qk−1

t (s, a) + α

(
Rt(s, a) +

γ

|A|

[
1− γk−1

1− γ

]∑
a′

Qk−1
t (s′, a′)

)
−Qk−1

t (s, a)

∂

∂θi
Qk
t (s, a) =

∂

∂θi
Qk−1
t (s, a) + α

(
∂

∂θi
Rt(s, a) +

γ

|A|

[
1− γk−1

1− γ

]∑
a′

∂

∂θi
Qk−1
t (s′, a′)

− ∂

∂θi
Qk−1
t (s, a)

)

Qt(s, a) = Q∗t (s, a)

∂

∂θi
Qt(s, a) =

∂

∂θi
Q∗t (s, a)

Zt(s) =
∑
a′

eβQt(s,a
′)

πt(s, a) =
eβQt(s,a)

Zt(s)

Lt(~θ) =
N∑
i=1

∑
(s,a)∈ζi

log πt(s, a)

Lt(~θ) is the likelihood of trajectories in T after tth iteration, given feature weights. Now

we will apply gradient ascent approach to update the value of feature weights. To do so, we

will calculate the gradient value of the likelihood function.
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∇Lt(~θ) =

{
∂Lt(~θ)

∂θ1
,
∂Lt(~θ)

∂θ2
, ...,

∂Lt(~θ)

∂θi

}
∂

∂θi
L(~θ) =

N∑
i=1

∑
(s,a)∈ζi

1

πt(s, a)

∂πt(s, a)

∂θi

∂

∂θi
πt(s, a) =

βZt(s)e
βQt(s,a) ∂

∂θi
Qt(s, a)− eβQt(s,a) ∂

∂θi
Zt(s)

Z2
t (s)

∂

∂θi
Zt(s) = β

∑
a′

eβQt(s,a)
∂

∂θi
Qt(s, a)

∀i, θt+1
i = θti + αt∇Li(~θ)

Optimal feature weight vector, ~θ∗ =< θ∗1, θ
∗
2, ..., θ

∗
i >

4.3 MLMFIRL Algorithm

Algorithm 1 MF-MLIRL algorithm

1: Initialize ~θ : 〈θ1, θ2, ..., θd〉 randomly.
2: Initialize local variables L and L′ with zero
3: repeat
4: L← L′

5: R(s, a) =
∑d

i=1 θiφi(s, a)
6: for all (s, a) ∈ {(s, a)|(s, a) w ζi, ζi ∈ τ, i ∈ {1, 2, ..., N}} do
7: Q∗(s, a)← Q-Averaging (equation ??)

8: π(s, a) = eβQ
∗(s,a)∑

a′ e
βQ∗(s,a′)

9: end for
10: L(~θ) =

∑N
i=1

∑
(s,a)∈ζi log π(s, a)

11: L′ ← L(~θ)

12: for all θi ∈ ~θ : do
13: θi ← θi + αn∇iL(~θ)
14: end for
15: δ = |L′ − L|
16: until δ < ε(1− γ)/γ

17: return ~θ

The input to the MLMFIRL algorithm is set of expert’s trajectories, environment model

as MDP, features affecting the reward functions, and other controlling parameters like

learning rates, step size, and the tolerance error to set convergence criteria. The algorithm
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uses the inputs and calculates the likelihood of expert’s trajectories using the randomly ini-

tialized feature weights and optimizes them using gradient ascent approach. This process

continues unless the convergence criteria are achieved. We scrutinize the algorithm piecewise

below.

In the first step, we initialize the feature weight vector with random values. In the second

step, we initialize two variables to store log-likelihood values of trajectories with zero. L stores

the log-likelihood value from (t−1)th iteration and L′ stores the value of likelihood calculate

in tth iteration. Steps 3.a to 3.f are repeated until the convergence criteria are satisfied. The

rewards for each state-action pair is calculated as vector multiplication of binary features

and feature vector weights. In step 3.c, the Q-values are calculated using the Q-Averaging

approach followed by policy calculation using the Boltzmann policy exploration for all the

state-action pair in expert’s trajectory set. Using the action probability values calculated

using the Boltzmann policy exploration for each state-action pair, we calculate the cumulative

log-likelihood for the set of expert’s trajectories. We update the ~θ, using the gradient ascent

approach and perform the same set of operations using updates feature weights values. When

the convergence criteria is satisfied, we return the learned feature weight vector that produces

the closest optimal policy as of expert’s. Also, the learned feature weight vector generates

the maximum log-likelihood of the trajectories.

4.4 Analysis of MLMFIRL Algorithm

Analysis of an algorithm is important because by doing so we learn its characteristics needed

to evaluate its functionality for various applications or compare it with other algorithms

for the same application. An algorithm can be analyzed in many ways but for practical

applications or comparisons, we only pay attention to the order of growth of the running time

of the algorithm. That is, we learn how efficient the algorithm is mainly when the input size

is large. Instead of reporting time of execution in units, we try to learn asymptotic efficiency
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of an algorithm, i.e. how the running time of an algorithm increases with the increase in the

size of inputs. We will be analyzing our algorithm for worst case performance.

Our algorithm MLMFIRL is affected significantly by size of the set of trajectories as it is

crucial in calculating the likelihood function of trajectories given current feature weights. Let

N be the number of trajectories and |ζm| be the size of longest trajectory. The algorithm also

iterates over the action space of size |A|. The asymptotic efficiency for worst-case performance

of MLMFIRL algorithm is

O(N |ζm||A|)

4.5 Summary

In this chapter, we discussed the detailed mathematical model of MLMFIRL approach. We

raised the non-differentiability issue with the standard Q-learning and proposed an alternate

approach, dubbing Q-Averaging. Details on gradient implementation were also illustrated

followed by the MLMFIRL algorithm and its analysis. Theoretically, we validated the MLIRL

approach in this chapter. Experimental results and comparisons were also favorable (See

Chapter 6).
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Chapter 5

Domain Setup and Dataset

In this chapter, we will discuss the freeway merging domain and Next Generation SIMula-

tion(NGSIM) I-80 dataset used for our experiments. As discussed in Chapter 1, freeway

merging problem involving autonomous vehicles is the motivation behind this research.

During busy hours, when the freeways are congested with vehicles, drivers of the right-

most lane have different preferences about allowing the vehicle on the on-ramp to merge.

The goal of this thesis is to learn those preferences. To do so, we defined the ABC model in

Section 5.1 and used trajectory data from NGSIM dataset. In Section 5.2, we will describe

NGSIM program and details on metadata for I-80 dataset. Steps on extracting trajectories

from one big dataset are illustrated in Section 5.3. Our environmental model for our test

domain is discussed in Section 5.4.

5.1 ABC Model

The freeway merging domain as discussed in Section 3.2 is a real-world problem faced by

autonomous vehicles in making decisions about when to merge, keeping in consideration

stochastic behavior of human drivers on the freeway. Solving the freeway merging problem

requires modeling of the traffic. Here, we model this problem using an ABC model as shown

in Figure 5.1. Vehicle B is an autonomous vehicle that is about to merge onto the freeway. A

is the vehicle on rightmost lane of the freeway but relatively behind B. C is also the vehicle

on rightmost lane of the freeway but relatively ahead of B. The problem is that vehicle B

must merge between A and C but the preferences of A’s driver about allowing B to merge
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is unpredictable. Our objective is to model the variation in the preferences of A’s driving

model as it detects B using MLMFIRL settings.

Figure 5.1: Detailed ABC model to represent the freeway merging problem. B is an
autonomous vehicle about to merge onto the freeway. Relative variables like velocity and
distance between any two vehicles plays crucial role in defining the state of each vehicle.

In Figure 5.1, A, B and C are vehicle fitting the characteristics of each vehicle in ABC

model as discussed above. To define these vehicles, we used real-world freeway data from

Interstate-80 collected under NGSIM program.

5.2 NGSIM Program and I-80 Dataset

5.2.1 The NGSIM Program

The Next Generation SIMulation (NGSIM) program was launched by United States Depart-

ment of Transportation (US DOT) Federal Highway Administration (FHWA)’s Traffic Anal-

ysis Tools Program to develop algorithms in support of traffic simulation, with a primary

focus on microscopic modeling. The detailed and high-quality real-world vehicle trajectory

datasets collected under NGSIM turned out very useful in understanding microscopic driver
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behavior. Through the NGSIM program, FHWA developed several driver behavioral algo-

rithms to describe the interaction of travelers, vehicles, and highway systems. The NGSIM

products are freely available at FHWA website along with supporting documentation. The

Interstate-80 (I-80) [24] freeway dataset was the first dataset collected under the NGSIM

program.

5.2.2 I-80 Dataset

On April 13, 2005, the researchers for the NGSIM program collected detailed vehicle tra-

jectory data on eastbound I80 in the San Francisco Bay area in Emeryville, CA. Seven

synchronized digital video cameras were mounted on the top of a 30-story building adjacent

to the freeway to record vehicle passing through over approximately 500 meters (1640 feet)

in length. The study included all 6 freeway lanes and an additional onramp merging to the

freeway.

Figure 5.2: Left: The aerial photo of I-80 showing the study area covered during data col-
lection. Right: Schematic drawing describing all the lanes of I-80 freeway including the
onramp.[24]
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The full I-80 freeway dataset includes total 45 minutes of data, recorded in three 15-

minutes time intervals: 4:00pm - 4:15pm; 5:00pm - 5:15pm; and 5:15pm -5:30pm. These

periods represent the buildup of congestion, or the transition between uncongested and

congested conditions, and full congestion during the peak period.

Figure 5.3: Snapshot of the processed video from NGSIM I-80 freeway merging study. The
processing of video helped in detecting all the vehicles in each frame and assigned them
unique IDs.

NG-VIDEO is a software application developed for the NGSIM program to transcribe

the vehicle trajectory data from the video. The dataset catalogs details like location, lane

position etc. for each vehicle within the study area every one-tenth of a second.

The full I-80 dataset is freely available at the NGSIM website. It includes vehicle trajec-

tory data, computer-aided design, and geographic information system files, aerial orthorec-

tified photos, freeway loop detector data within and surrounding the study area, raw and

processed video, signal timing settings on adjacent arterial roads, traffic sign information

and locations, weather data, and aggregate data analysis reports.
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Metadata Details for I-80 Dataset

The fully transcribed I-80 dataset consists of around 4.5 million rows each having 18 columns.

Each row is a unique tuple corresponding to 18 different useful piece of information about

one vehicle in one frame, i.e. recorded every one-tenth of a second. Below are the details [25]

on the significance of each column:

• Column 1: Unique vehicle identification number for each vehicle in study area ascending

by the time of entry.

• Column 2: Frame ID incremented every 1/10 of a second.

• Column 3: Total number of frames in which the vehicle appears in this dataset.

• Column 4: Global Time (Epoch Time) in milliseconds.

• Column 5: Lateral (X) coordinate of the front center of the vehicle with respect to the

leftmost edge of the section in the direction of travel in feet.

• Column 6: Longitudinal (Y) coordinate of the front center of the vehicle with respect

to the entry edge of the section in the direction of travel in feet.

• Column 7: X Coordinate of the front center of the vehicle based on CA State Plane III

in NAD83 in feet.

• Column 8: Y Coordinate of the front center of the vehicle based on CA State Plane III

in NAD83 in feet.

• Column 9: Length of vehicle in feet.

• Column 10: Width of vehicle in feet.

• Column 11: Vehicle type: 1-motorcycle; 2: auto/car, 3: truck.

• Column 12: Instantaneous velocity of the vehicle in feet/second.

39



• Column 13: Instantaneous acceleration of the vehicle in feet/second2.

• Column 14: Current lane position of vehicle. Lane 1 is the leftmost lane and lane 6 is

rightmost. Lane 7 is onramp and lane 9 is right shoulder.

• Column 15: Vehicle ID of the lead vehicle in the same lane. 0 signifies now preceding

vehicle.

• Column 16: Vehicle ID of the vehicle following the subject vehicle in same lane. Again,

0 means lo following vehicle.

• Column 17: Spacing provides the distance between the front-center of a vehicle to the

front-center of the preceding vehicle in feet.

• Column 18: Headway: Headway provides the time to travel from the front-center of

a vehicle (at the speed of the vehicle) to the front-center of the preceding vehicle. A

headway value of 9999.99 means that the vehicle is traveling at zero speed (congested

conditions) in seconds.

Appendix A includes the snapshots of transcribed NGSIM I-80 freeway dataset for a

better understanding of vehicle trajectory data.

5.3 Vehicle Trajectory Data Extraction

The I-80 dataset received from NGSIM includes all the vehicles that passed through the study

area during the time interval. For modeling freeway merging problem with ABC model, we

need data for only those vehicles that fit into one of the three A, B or C vehicle roles. The

following steps illustrate the extraction of useful vehicle trajectories from full dataset.

1. Select all the tuples with Column 14 values as 6 or 7, i.e. vehicles in lane 6 (rightmost

lane of the freeway) or lane 7 (onramp).

2. Identify the vehicle B ID, i.e. select the vehicle which is about to merge to the freeway.
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3. Identify the correct vehicle A and vehicle C with the same frame ID as that of the

vehicle B. Vehicle A will be the one having Column 6 value (y-coordinate) minimum

less than that for vehicle B in same frame whereas vehicle C will have Column 6 value

minimum more than that for vehicle B.

4. We back propagate to get complete trajectories for all the three vehicles from the time

they entered study area.

5. Join tuples of A, B, and C in same frame.

6. Now we trim the columns. For each vehicle, we only need vehicle ID, Frame ID, local Y,

instantaneous velocity, instantaneous acceleration and vehicle type. Hence, we remove

rest of the unwanted columns from the extracted tuples.

7. Finally, we extract all trajectories of vehicle A, with complete details of corresponding

vehicle B and vehicle C in each frame.

5.4 Model Instantiation

In this section, we define the MDP model of our freeway merging environment. This model is

provided as input to our IRL approach which helps the learner to predict the expert’s rewards

using demonstrations. Since we are modeling vehicle A’s environment, all the references will

be w.r.t vehicle A.

5.4.1 State Space

State space is a set of all possible states accessible to an agent in the given environment.

Every state is defined using some state variables. For our model we are using following 5

state variables:
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dAC: Distance Between Vehicle A and Vehicle C

dAC is the horizontal distance between the vehicle A and vehicle C, i.e. difference of column

6 of each vehicle.

dAC = YA − YC

We use the extracted vehicle trajectory data to calculate the dAC for each tuple in every

trajectory. For our dataset we found the following minimum and maximum values of dAC :

min(dAC) = −690.002 ft. and max(dAC) = −7.703 ft.

We discretized dAC into 5 intervals:

• dAC < −85.000

• −85.000 ≤ dAC < −65.000

• −65.000 ≤ dAC < −50.000

• −50.000 ≤ dAC < −35.000

• −35.000 ≤ dAC

dAB: Distance Between Vehicle A and Vehicle B

This variable gives the horizontal distance between the vehicle A and vehicle B, i.e. difference

of column 6 of each vehicle.

dAB = YA − YB

The minimum and maximum values of dAB calculate from extracted trajectory data are:

min(dAB) = −603.358 ft. and max(dAB) = −0.001 ft.

We discretized dAB into 5 intervals:

• dAB < −45.000
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• −45.000 ≤ dAB < −35.000

• −35.000 ≤ dAB < −25.000

• −25.000 ≤ dAB < −15.000

• −15.000 ≤ dAB

vAC: Relative Velocity of Vehicle A and Vehicle C

vAC gives the instantaneous relative velocity of vehicle A and vehicle C, i.e. difference of

column 12 of each vehicle.

vAC = vA − vC

The minimum and maximum values of vAC from extracted data are:

min(vAC) = −36.18 ft./sec. and max(vAC) = 32.41 ft./sec.

We discretized vAC into 5 intervals:

• vAC < −5.00

• −5.00 ≤ vAC < −2.00

• −2.00 ≤ vAC < 0.00

• 0.00 ≤ vAC < 3.00

• 3.00 ≤ vAC

vAB: Relative Velocity of Vehicle A and Vehicle B

This variable signifies the instantaneous relative velocity of vehicle A and vehicle B, i.e.

difference of column 12 of each vehicle.

vAC = vA − vB

43



The minimum and maximum values of vAB from extracted trajectory data are:

min(vAB) = −52.79 ft./sec. and max(vAB) = 35.06 ft./sec.

We discretized vAB into 5 intervals similar to those of vAC :

• vAB < −5.00

• −5.00 ≤ vAB < −2.00

• −2.00 ≤ vAB < 0.00

• 0.00 ≤ vAB < 3.00

• 3.00 ≤ vAB

Vehicle Type

This variable determines the type of vehicle B for each vehicle A. This variable is crucial

as the driving preferences of vehicle A’s driver usually changes depending upon the type of

vehicle trying to merge. For example, a normal human driver might allow a car type vehicle

to merge but might not want to get behind a truck, especially during heavy traffic conditions.

The type of vehicle can directly be determined from value of column 11 in dataset. We merged

the motorcycle and auto/car vehicle types into same category. Hence vehicle type can either

be 0, i.e. car or motorcycle, or 1, i.e. truck.

Using all the five state variables we can define the state of vehicle A at any instant of

time. With 5-5 intervals of dAC , dAB, vAC and vAB and 2 unique values of vehicle type, we

have a state space of 1250 states.

5.4.2 Action Space

The instantaneous acceleration values are modeled as actions of the driver. These values are

directly available from dataset via column 13 of each tuple. The minimum and maximum
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value of accelerations from datasets are:

min(acc) = −11.20 ft/sec2. and max(acc) = 11.2 ft./sec2.

We discretized the acceleration into five intervals and named them as the following actions:

• High Brake: −11.20 ≤ acc ≤ −4.80

• Low Brake: −4.79 ≤ acc ≤ −0.60

• Zero Acceleration: −0.59 ≤ acc ≤ 0.59

• Low Acceleration: 0.60 ≤ acc ≤ 4.79

• High Acceleration: 4.80 ≤ acc ≤ 11.2

5.4.3 Feature Space

An agent is assumed to behave optimally in IRL setting, which means that the action

sequence of an agent is the result of some parameters that affect the cumulative rewards

of the agent. Considering those parameters, we accounted 3 binary features to our model.

Any feature is considered active with the value 1 and inactive when the value is 0.

• Feature 1: Safe. This feature is inactive only when dAC > 20ft. and acc > 0.6ft./sec2,

i.e. distance from the preceding vehicle is less than 20 ft and vehicle is accelerating.

This feature signifies the preference of being safe when active.

• Feature 2: Time to travel. This feature is active when acc > −0.6 ft./sec2, i.e. either

the vehicle is accelerating or moving with a constant speed. This feature signifies the

importance of time to reach destination.

• Feature 3: Type of vehicle B. This feature is active when the vehicle B is a truck.
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5.5 Summary

In this Chapter, we defined the characteristics of ABC model for solving a freeway merging

problem. We discussed the importance of the freely available Interstate-80 freeway dataset

collected under NGSIM program by FHWA in the microscopic modeling of traffic. The

vehicle trajectory data required to solve the freeway merging problem using an IRL approach

can be extracted as per our requirements. In the last section, we illustrated details of our

experimental model.

Since we have discussed the MLMFIRL approach and covered sufficient details on domain

setup and dataset, we will be presenting some experimental results with analysis and com-

parisons in next chapter.
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Chapter 6

Experimental Evaluation

In this chapter, we will analyze our model-free MLMFIRL approach with the help of experi-

mental results and compare them with the modeled MLIRL [1] technique. In Section 6.1, we

evaluate the performance of both approaches in a grid world environment. In Section 6.2, we

show that our approach for solving the freeway merging problem produces more satisfactory

results than Babe et al.’s [1] approach. We also justify the validity of our algorithm with the

help of few qualitative evaluations in section 6.3.

6.1 Grid World

For evaluating our MLMFIRL approach and comparing it with MLIRL, I used the BURLAP

[26] implementation of the grid world environment with grid size 5×5. Figure 6.1 depicts the

graphical user interface for our grid world environment. The gray colored circle is an agent

which can move along the 25 states using 4 actions. The five different color grids signify the

unique location features.

The MDP model for the grid world environment includes 25 states, 4 actions, and the

discount factor of 0.99. The 5 location features were initiated with random weights to generate

a reward matrix for grid world. We used the Boltzmann temperature (β) as 10.

We recorded 10 trajectories by moving the agent around the grids. These trajectories are

used to recover the rewards for each grid using both MLIRL and MLMFIRL approaches.

Results for MLIRL were recorded using the BURLAP [26] implementation of MLIRL algo-

rithm. Below are the mean and standard deviation of results recorded from multiple execu-

tions using both approaches with same MDP model and demonstrations.
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Figure 6.1: The graphical user interface for grid world environment used to demonstrate
our approach. The gray circle is an agent exploring the 5× 5 grid. Each different color grid
represents a unique cost of reaching to that state. The agent tries to learn the cost associated
each grid using the expert’s trajectories.

Table 6.1 shows the mean and standard deviations of learned feature weights and cor-

responding maximum log-likelihood values generated using MLMFIRL and MLIRL algo-

rithms. To analyze the results, we compare the mean maximum log-likelihood values of both

the approaches. For MLMFIRL, the mean maximum log-likelihood value is −9170.868 with

a standard deviation of 195.940. For MLIRL, the mean maximum log-likelihood value is

−24142.833 with a standard deviation of 1338.954. Hence within a fixed number of itera-

tions, MLMFIRL not only outperforms MLIRL but also produces more consistent results.

The ideal maximum log-likelihood value is expected to be 0. Here, the main reason for get-

ting high log-likelihood values is because the trajectories we produced does not corresponds

to an ideal behavior. We randomly move the agent on grids to produce the trajectories. If

we use all the trajectories demonstrating the same behavior, we get lucky to achieve ideal

results.

We have analyzed the results using descriptive statistics like mean and standard deviation

that describes the results but gives no clue about the significance of results. Hence, we can

not generalize the results. We here use another statistical approach known as T-Test to get
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Learned feature weight vector Maximum

Approach ~θ = 〈θ1, θ2, θ3, θ4, θ5〉 log-likelihood
Mean ± Standard Deviation Mean ± St. Dev.

Model-Free 〈−20.979± 0.491,−15.370± 0.244,−15.488± 0.176, −9170.868± 195.941
MLIRL −14.740± 0.134,−14.381± 0.212〉

Model-based 〈−31.809± 0.530,−20.710± 10.999, −24142.883± 1338.954
MLIRL −12.010± 10.115,−8.068± 2.535,−16.073± 17.406〉

Table 6.1: Comparison of learned feature weights and corresponding maximum log-likelihood
values of trajectories for grid world domain using MF-MLIRL and MLIRL algorithms.

the inferential significance of our results. Inferential statistical approaches not only describes

our data but also generalizes the results.

Each T-Test has a p-value attached to it. P-value is the probability that the pattern

produced by our data could be produced by random data. If p < 0.05, results are consid-

ered significant. We applied the T-Test to the set of log-likelihood values recorded using

MLMFIRL and MLIRL approaches. The resultant p-value was:

p = 0.00000000005914

Since the p-value was less than 0.05, we conclude that the MLMFIRL approach produces

significantly better results than MLIRL approach.

6.2 Freeway Merging Problem

To solve the freeway merging problem, we model the environment and use the extracted

NGSIM dataset as illustrated in Chapter 5. Below is the complete details of the experimental

setup.

• MDP :< S,A, γ > = < 1250, 5, 0.99 >

• Features Φ = {φ1, φ2, φ3}
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Learned feature weight vector Maximum

Approach ~θ = 〈θ1, θ2, θ3〉 log-likelihood
Mean ± Standard Deviation Mean ± St. Dev.

MF-MLIRL 〈0.845± 0.093, 7.975± 0.103, 0.297± 0.180〉 −47194.575± 0.699
MLIRL 〈1.525± 0.052, 17.063± 0.508, 0.062± 0.055〉 −51055.275± 284.681

Table 6.2: Comparison of learned feature weights and corresponding maximum log-likelihood
values of trajectories for the freeway merging domain using model-free and model-based
algorithms.

• T = {ζ1, ζ2, ..., ζ260}, i.e. set of 260 expert’s trajectory extracted from I-80 NGSIM

dataset.

• Boltzmann temperature, β = 0.01

• Learning rate for Q-Averaging, α = 0.1

• Variable step size for gradient ascent.

We used the same setup and the same trajectories to learn the preference models of real

drivers of vehicle A on the freeway using two different IRL approaches, modeled MLIRL and

model-free MLMFIRL. We recorded our results, below, followed by detailed comparison.

Table 6.2 exhibits the learned feature weights and corresponding maximum log-likelihood

values of trajectories using our model-free IRL approach and previously existing MLIRL

approach. The mean maximum log-likelihood value for MLMFIRL over multiple executions

is−47194.575 with a standard deviation of 0.699. However, the mean maximum log-likelihood

value for MLIRL is −51055.275 with a standard deviation of 284.681 which is less than that

of MLMFIRL and more varied.

Despite the fact that our approach does not produce ideal log-likelihood, the figures are

better than what we get from MLIRL. Also, our model-free approach is more reliable as

the learning procedure of transition function for freeway merging domain is questionable.
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Figure ?? illustrates the algorithm we used to learn the transition model of freeway merging

domain which uses sampling method which is not ideal in the environment of human drivers.

Also, learning the transition function using limited trajectories for sampling could be highly

inaccurate.

We applied T-Test to samples of log-likelihood values received using MLMFIRL and

MLIRL approaches. The resultant p-values was:

p = 0.000000083894

Since the p-value was less than 0.05, we conclude that the MLMFIRL approach produces

significantly better results than MLIRL approach.

Algorithm 2 State Transition Probability

1: for trajectory in all trajectories do
2: for t in trajectory do
3: s← current state if trajectory[t][state]
4: for a in all actions do
5: s′ ← sample 100 next states with SampleNextState(t,a)
6: vf [s, a, s′]← visitation frequency of s, a, s′

7: end for
8: for a in all actions do
9: for s′ in all states do
10: tp(s, a, s′)← vf(s, a, s′)/sum(vf [s, a, :])
11: end for
12: end for
13: end for
14: end for
15: return tp

SampleNextState(t,a)
16: s← trajectories[t][state]
17: s′ ← trajectories[t+1][state]
18: a← a + Noise
19: s′[vAC ]← s[vAC ] + a ∗ 0.1
20: return s′

The State Transition Probability algorithm is used to recover the transition model

of freeway merging problem domain using NGSIM I-80 vehicle trajectories. To recover

the unknown state transition model, we traverse through all the states in each trajectory
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sequence. At each time step in a trajectory, we take the current state and we sample 100

next states for each action executed from current step. We then record the number of tran-

sition of (s, a, s′) tuple as visitation frequency of the resultant next state. Once we have the

visitation frequencies of all next states from each current state in state space and each action

in action space, we calculate the transition probabilities for each (s, a, s′) by normalizing

their visitation frequencies. The next steps are sampled based on motion model calculation

in probabilistic robotics[23].

6.3 Qualitative Evaluation

To reinforce the validity of our approach we also performed few supplementary experiments

where the output was deterministic. The variation of experiments was carried on the type

of trajectories given as input. We first categorized the trajectories into sets with drivers of

vehicle A demonstrating the similar behavior in each set. Then, we used our MLMFIRL

approach to learn the behavior using similar demonstrations and analyzed the results. Also,

we used the same set of results and tried to learn the expert’s behavior using MLIRL approach

and compared the results with our approach. All the trajectories used for qualitative evalu-

ation are extracted from NGSIM I-80 freeway dataset.

Evaluation I

In the first evaluation, we focused on trajectories where drivers of vehicle A prefers to demon-

strate safe driving behavior, i.e. maintaining enough distance from the preceding car and not

accelerating. We selected the trajectories that signify safe behavior, even when the driver

detects vehicle B as a truck. When the distance from preceding car is too long we found few

time steps where vehicle A does accelerates, but the majority of times it prefers being safe.

The first set of column in Table 6.3 shows the learned feature weights and corresponding

maximum log-likelihood using MLMFIRL and MLIRL approaches. Here we analyze the

results at two-fold. First, the feature weights corresponding to safe driving feature dominates
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Learned feature weight vector Maximum

Approach ~θ = 〈θ1, θ2, θ3〉 log-likelihood
Mean ± Standard Deviation Mean ± St. Dev.

QE MF-MLIRL 〈5.955± 0.001, 0.527± 0.00, 2.814± 0.001〉 −2314.667± 0.003
I MLIRL 〈10.250± 0.392, 6.724± 0.304, 8.909± 0.667〉 −2557.134± 3.238

QE MF-MLIRL 〈8.472± 0.386, 86.798± 0.008, 9.508± 0.225〉 −428.822± 0.034
II MLIRL 〈7.792± 0.275, 87.719± 6.085, 13.103± 0.488〉 −546.791± 3.162

QE MF-MLIRL 〈0.659± 0.292, 20.729± 0.004, 22.809± 0.011〉 −704.670± 0.041
III MLIRL 〈0.998± 0.387, 19.174± 1.828, 29.025± 1.929〉 −821.379± 5.735

Table 6.3: Qualitative evaluation results for MF-MLIRL and MLIRL. QE I corresponds to
trajectories demonstrating safe driving. QE II includes trajectories where drivers tend to
accelerate in order to reach the destination quickly. QE III is modeling the preferences of
drivers when vehicle B is a truck.

the other weights, i.e. the trajectories demonstrate the safe driving behavior. Second, the

MLMFIRL approach generates better maximum log-likelihood values than MLIRL approach.

Evaluation II

In the second evaluation, we tried to learn the behavior of drivers using trajectories demon-

strating the preference of accelerating in order to reach the destination on time. These

trajectories correspond to our second feature, i.e. travel time. Since we used the real drivers’

data, finding the trajectories with accelerating actions for each time steps was unrealistic.

Hence, we preferred those trajectories that most fit the behavior.

On analyzing the results from the middle rows of Table 6.3, the feature weight values

corresponding to the second feature, i.e. travel time to reach the destination is higher than

the other feature weights (as expected). Also, the maximum log-likelihood value for this set

of trajectories is better in case of MLMFIRL than MLIRL.
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Evaluation III

In our third evaluation, we modeled the preferences of vehicle A’s drivers when they detect

vehicle B as a truck. This evaluation is important as the driving preferences of drivers usually

changes when the merging vehicle is a big truck. Drivers tend to accelerate and go ahead of

big vehicles.

The last set of columns in Table 6.3 shows the learned feature weights and corresponding

maximum log-likelihood for the third set of trajectories using MLMFIRL and MLIRL

approaches. As the previous two, here also we analyze the results at two-fold. First, the

feature weights corresponding to the third feature, i.e. the type of vehicle B dominates the

other two feature weights. Also, as expected the feature weights corresponding to acceler-

ation is higher than the safe driving feature. Second, the MLMFIRL approach generates

better maximum log-likelihood values than MLIRL approach.

6.4 Summary

In this chapter, we practically evaluated our model-free MLMFIRL approach for both grid

world toy problem domain and the real-world freeway merging problem domain. The results

from both the domain were remarkable. We also evaluated our approach using some special

test trajectories for a deeper understanding of its functionality. The comparisons illustrated

above infers that our approach is better than MLIRL and also more reliable for environments

with unknown transition model.
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Chapter 7

Conclusion And Future Work

In this thesis, we propose a novel inverse reinforcement learning approach to resolve the

issues of existing techniques. Learning the behavior of an expert with complete knowledge

of the environment has been solved in contemporary literature. Here, we successfully learn

the behavior of expert with only partial knowledge of its environment. For real-world envi-

ronments, like the one we discussed, it is not easy to learn the transition model accurately.

Our solution entirely eliminates the dependency on the transition function from learning

via an expert’s trajectories, making the approach model-free. In order to accomplish our

desired goal, we apply some renowned techniques including maximum likelihood estimation,

Q-learning, and gradient ascent. Additionally, to address some mathematical challenges, we

introduced some alterations in canonical approaches and justified them.

We showed that MLMFIRL is effective in recovering the expert’s reward, even with a

limited number of expert’s trajectories, outperforming existing IRL algorithm in a grid-world

environment. The Q-values for each state-action pair in trajectory set is calculated using

the Q-Averaging technique which is then used to produce the optimal action probabilities

using the Boltzmann policy exploration technique. We used gradient ascent to iteratively

update the feature weight values in the direction of the gradient of the log-likelihood of

expert’s trajectory. To summarize, the MLMFIRL algorithm is simple, easy to implement,

time efficient and even space efficient.

MLMFIRL demonstrates promising results for the freeway merging problem domain using

the NGSIM I-80 dataset. The learned model can be used in self-driving cars to make an

optimal decision about when to merge by monitoring behavior of cars on rightmost lane of
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the freeway. The evaluation and comparison of results with other contemporary techniques

are significant. Using MLMFIRL, we are not only able to produce better learning results but

also more reliable results from a limited number of trajectories.

Future work may include implementing the MLMFIRL approach with other optimization

techniques which do not require differentiating the likelihood function. This will allow the

use of conventional Q-learning with the “max” operator. Additionally, an avenue may be to

replace the “max” operator entirely.

We described the MLMFIRL algorithm for a single expert setting. It would be interesting

to predict the behavior in presence of multiple agents. Modeling of a multi-agent environment

and their interaction with other experts in the environment might lead to better learning of

behavior.

In experimental settings, applying the MLMFIRL approach to a larger dataset collected

from different demographic locations is expected to yield even better results. Recent advance-

ments in the field of inverse reinforcement learning and maximum likelihood estimation can

be integrated to make the algorithm more efficient and scalable.
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Appendix A

NGSIM I-80 Dataset

As described in Section 5.2.2, I-80 dataset was collected under NGSIM program by FHWA in

2005 using seven synchronized digital cameras. The recoded video data was then transcribed

into vehicle trajectory data using NG-VIDEO, a customized software application developed

for NGSIM program. Below are few snapshots of transcribed I-80 freeway merging dataset.

The complete NGSIM I-80 dataset consists of approximately 4.5 million rows. Each row

is a unique combination of 14 columns. We illustrate the detailed significance of each column

values in Section 5.2.2.
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