MAXIMUM LIKELIHOOD APPROACH
For

MODEL-FREE INVERSE REINFORCEMENT LEARNING
by
VINAMRA JAIN

(Under the Direction of Prashant Doshi)

ABSTRACT

Preparing an intelligent system in advance to respond optimally in every possible situa-
tion is difficult. Machine learning approaches like Inverse Reinforcement Learning can help
learning behavior using a limited number of demonstrations. We present a model-free tech-
nique by applying maximum likelihood estimation to an IRL problem. To make our approach
model-free, we model the environment using the canonical Markov Decision Process tuple,
except we exclude the transition function. We define our reward function as a linear function
of a known set of features. We use a modified Q-learning technique,called Q-Averaging. The
direction for optimization is guided by the gradient of likelihood function for current feature
weights until the unknown reward function is identified.

Experimental results over a grid world problem supports our model-free representation
of an IRL technique. We also extend our experiments to real-world freeway merging problem
of autonomous cars and the results are significant.

INDEX WORDS: Maximum Likelihood, Inverse Reinforcement Learning, Model Free,
Markov Decision Process, Q-Averaging

MAXIMUM LIKELIHOOD APPROACH
For

MODEL-FREE INVERSE REINFORCEMENT LEARNING

by

VINAMRA JAIN

B.E., Rajiv Gandhi Technical University, 2014

A Thesis Submitted to the Graduate Faculty
of The University of Georgia in Partial Fulfillment
of the

Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2017

© 2017
Vinamra Jain

All Rights Reserved

MAXIMUM LIKELIHOOD APPROACH
For

MODEL-FREE INVERSE REINFORCEMENT LEARNING

by

VINAMRA JAIN

Major Professor: Prashant Doshi

Committee: Yi Hong
Frederick Maier

Electronic Version Approved:

Suzanne Barbour

Dean of the Graduate School
The University of Georgia
December 2017

DEDICATION

To my Mom and Dad.

v

ACKNOWLEDGMENTS

I would first express my deepest gratitude to my major professor Dr. Prashant Doshi for his
countless motivation and support. The weekly meetings and discussions held by Prof. Doshi
kept me pushing towards the success of this thesis. I would also like to thank Dr. Yi Hong
and Dr. Frederick Maier for being a part of my thesis committee. Prof. Maier also helped
me in getting access to some of the great resources of university.

I would like to thank Roi Ceren and Helene Halstead for helping me proofread my thesis
document. I would like to thank Sanath Bhat for his insights and expertise. His guidance
helped me to understand my work even deeper.

I would like to thank my parents and my sister for never losing faith in me and always
encouraging me to achieve my goals. I would like to extend a very special thanks to Lovina
Dmello for forcing me to keep moving ahead even in difficult times. I would like to thank
Jugal Panchal and Chirag Jain for their unfailing support.

Finally, I must express my profound gratitude to the Thinc Lab and Department of
Computer Science with all faculties and students for all the stimulating discussions and

insightful comments throughout my master’s degree.

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . .« . v v v v e e e e e e s s v

LiST OF FIGURES o o e s s viii

LI1ST OF TABLES o o o o e s X
CHAPTER

1 INTRODUCTION o v v o i i e e s s s s s s, 1

1.1 PROBLEM e e 1

1.2 MOTIVATION o o o o e s e s s 2

1.3 CONTRIBUTION . . . v v v v v i e e e s s 3

1.4 STRUCTURE OF THESIS v v v v v v v v oo 4

1.5 SUMMARY . . .« « o v o v o e 4

2 BACKGROUND v o v e i e e e s s s s, 5

2.1 MARKOV DECISION PROCESS o v v v v . 5

2.2 MAXIMUM LIKELIHOOD ESTIMATION 6

2.3 REINFORCEMENT LEARNING o v v i s . 7

2.4 INVERSE REINFORCEMENT LEARNING« v v v v v o .. 11

2.5 MODEL-FREE INVERSE REINFORCEMENT LEARNING 15

2.6 SUMMARY . « v v v v e e s, 16

3 RELATED WORK o e s e s s 17

3.1 RELATIVE ENTROPY IRL 17

3.2 SURVEY OF DIFFERENT IRL PROBLEM DOMAINS 19

vi

3.3 SUMMARY . . .

4 MAXIMUM LIKELIHOOD APPROACH FOR MODEL-FREE INVERSE REIN-

FORCEMENT LEARNING (MLMFIRL)

4.1 MATHEMATICAL MODEL FOR MLMFIRL

4.2 GRADIENT IMPLEMENTATION DETAILS

4.3 MLMFIRL ALGORITHM « v v v v i it i it d .

4.4 ANALYSIS OF MLMFIRL ALGORITHM o

4.5 SUMMARY . . .« o v v v i e e

5 DOMAIN SETUP AND DATASET v v v i i i i i it s s,

5.1 ABC MODEL e e s,

5.2 NGSIM PROGRAM AND I-80 DATASET

5.3 VEHICLE TRAJECTORY DATA EXTRACTION

5.4 MODEL INSTANTIATION . . .« « v v v v i e i et s s

5.5 SUMMARY . . v v v v et e e,

6 EXPERIMENTAL EVALUATION o o v v v o it e

6.1 GRID WORLD s

6.2 FREEWAY MERGING PROBLEM o

6.3 QUALITATIVE EVALUATION

6.4 SUMMARY

7 CONCLUSION AND FUTURE WORK o v i i i i i,

BIBLIOGRAPHY o s
APPENDIX

A NGSIM I-80 DATASET

vil

26

5]

57

1.1

2.1

2.2
2.3

2.4

3.1

3.2

3.3

Li1sT OF FIGURES

The typical framing of an Inverse Reinforcement Learning (IRL) scenario: an
agent takes expert’s trajectories as input and with prior knowledge of expert’s
environment, it tries to infer the expert’s reward function.
The typical framing of a Reinforcement Learning (RL) scenario: an agent takes
actions in an environment, which results into a reward and a representation
of the state, which are fed back to the agent [21].
Q-learning algorithm for an exploratory agent [21].
Relationship between the RL and IRL problems. The expert tries to learn the

optimal policy using RL technique. The learner, however, uses the expert’s

trajectories (optimal policies) and infers expert’s rewards using IRL technique. 11

Maximum Likelihood IRL algorithm[1].
(a) Grid World Domain. An agent tries to learn an optimal policy to reach
the goal state with minimum cumulative cost. Each grid color has a unique
cost associated with it. (b) Gird World Domain with obstacles. The agent is
not allowed to pass through obstacle states. The goal still remains the same.
Image of mountain car problem [3]. The goal here is to get the car with
insufficient engine power out of the valley. This could be achieved by building
momentum using actions like driving backward, forward, or neutral. Each
action has a cost associated with it. 0oL
ABC model for Freeway Merging Domain. Car B is autonomous car trying to
merge onto the freeway in between two human-driven cars traveling on the
freeway. The goal here is for the car B to learn the preference of car A’s driver

and make an optimal decision about when to merge.

Viil

14

21

3.4

5.1

5.2

5.3

6.1

Grasping an unknown object as a Markov Decision Process. The process is
represented by three steps: reaching, preshaping and grasping. The robot can
move ahead at each step or can start over[5].
Detailed ABC model to represent the freeway merging problem. B is an
autonomous vehicle about to merge onto the freeway. Relative variables like
velocity and distance between any two vehicles plays crucial role in defining
the state of each vehicle. o
Left: The aerial photo of I-80 showing the study area covered during data
collection. Right: Schematic drawing describing all the lanes of 1-80 freeway
including the onramp.[24]o Lo
Snapshot of the processed video from NGSIM I-80 freeway merging study.
The processing of video helped in detecting all the vehicles in each frame and
assigned them unique IDs. oo oo
The graphical user interface for grid world environment used to demonstrate
our approach. The gray circle is an agent exploring the 5x5 grid. Each different
color grid represents a unique cost of reaching to that state. The agent tries

to learn the cost associated each grid using the expert’s trajectories.

1X

6.1

6.2

6.3

LisT OF TABLES

Comparison of learned feature weights and corresponding maximum log-
likelihood values of trajectories for grid world domain using MF-MLIRL and
MLIRL algorithms. o
Comparison of learned feature weights and corresponding maximum log-
likelihood values of trajectories for the freeway merging domain using model-
free and model-based algorithms.
Qualitative evaluation results for MF-MLIRL and MLIRL. QE I corresponds
to trajectories demonstrating safe driving. QE II includes trajectories where
drivers tend to accelerate in order to reach the destination quickly. QE III is

modeling the preferences of drivers when vehicle B is a truck.

CHAPTER 1

INTRODUCTION

In this chapter, we catalog the purpose and significance of this thesis. Section 1.1 describes
the problem that is solved during the course of thesis. Section 1.2 illustrates the motivation
behind this thesis. The freeway merging problem involving autonomous cars and the need of
solving that problem using our approach is well discussed in motivation. The contributions

are noted in Section 1.3 and the structure of thesis is outlined in Section 1.4.

1.1 PROBLEM

Machine Learning is the technology that enables computers to become intelligent. Google’s
self-driving cars and robots are programmed using machine learning algorithms to learn how
to make optimal decisions in any given environment. One way of programming an agent is by
a Reinforcement Learning (RL) algorithm. In each time-step, the agent makes a decision and
performs an action, this results in some specific rewards. If rewards are positive, the agent is
more likely to perform similar actions in the future. If rewards are negative, the agent tries
to avoid similar actions for this state. Hence, in reinforcement learning, the agent’s action in
future situations are determined by the rewards achieved in the past for similar situations.
However, explicitly defining a reward function is not always easy. Also, RL algorithms usually
require a large number of iterations before converging to a near-optimal policy, which is not
efficient.

Another way of programming an agent to learn how to perform is using Inverse Rein-
forcement Learning (IRL). Here, the reward function is not defined explicitly; instead, it is

expressed in term of features affecting the reward of an agent. IRL is the inverse of RL as

1

the input and output of each are interchanged. The input to an RL is the rewards from
previous actions and the output is the learned optimal policy, whereas the input to IRL
is an optimal policy (referred as expert’s trajectories) and the output is the learned reward
function as shown in figure 1.1. It is also categorized as supervised learning since the expert’s
demonstrations play a crucial role in an agent’s learning. IRL problems are mostly modeled
as a Markov Decision Process (MDP). In this thesis, expert’s trajectories are modeled as a
likelihood function. The solution of the IRL problem over a likelihood function is expected

to return the reward function of the expert.

Environment model
(MDP\r), except expert’s
reward function

AV

Agent

Expert’s Reward

Trajectories Function

Figure 1.1: The typical framing of an Inverse Reinforcement Learning (IRL) scenario: an
agent takes expert’s trajectories as input and with prior knowledge of expert’s environment,
it tries to infer the expert’s reward function.

1.2 MOTIVATION

Motivated by a freeway merging domain involving autonomous cars, we develop a model
which can be used by an autonomous car in making optimal decisions about merging onto
a freeway. The industries investing in self-driving cars are highly concerned with the safety
of passengers but they also want an optimal mobility of the vehicle. Researchers focusing
on autonomous vehicles have raised the freeway merging problem as one of the significant

unresolved challenges. The preferences of a driver for allowing a car to merge on the freeway

occasionally changes depending on multiple factors. We present a novel approach to devel-
oping this preference model by maximizing the likelihood of trajectories of vehicles on right-
most lane of a freeway using our IRL algorithm. This model can be used by autonomous
cars for making strategic decisions.

The complexity of manually specifying rewards in this domain urge us to prefer inverse
reinforcement learning over reinforcement learning. Also, IRL helps us to learn the behavior
of experts using their trajectories as input. In the freeway merging domain we have the
trajectories of drivers of vehicles in the rightmost lane of the freeway and they are assumed
to behave optimally in the environment. Hence, using these trajectories as input to an IRL
setting, we can learn the preference model of these drivers. The modeling of the transition
function in presence of stochastic human drivers in the environment may compromise the
safety of passengers in autonomous cars. This inspires the need to develop a model-free

approach to perform IRL.

1.3 CONTRIBUTION

This thesis has three contributions:

1. Most of the previous work in the field of IRL depends heavily on the system’s ability
to learn transition model from a limited number of trajectories, if not available in
environment model of the domain. We devise a model-free IRL approach by dropping

the need for a transition function from the standard maximum likelihood IRL approach.

2. We incorporate a modified Q-learning algorithm, dubbed Q-Averaging, to remove the
max operator from the canonical Q-learning algorithm. This would resolve the issue
of Q-function being non-differentiable. Also, using Q-Averaging helps us eliminate the

dependency of transition function without affecting the learning abilities of an agent.

3. We illustrate the validity of our algorithm on a real-world domain of freeway merging
for autonomous cars. The vehicle trajectory data used for learning the behavior is

extracted from NGSIM Interstate-80 freeway dataset.

1.4 STRUCTURE OF THESIS

This thesis is structured as follows. In Chapter 2, we discuss a few concepts that, in general,
which will make the thesis more comprehensible. It includes topics like the Markov Decision
Process (MDP), Reinforcement Learning (RL), Inverse Reinforcement learning (IRL), with
details about two existing IRL algorithms which are used in the body of work. Chapter 3
outlines a survey of related works in the field of IRL. Chapter 4 describes the main algorithm
of the thesis. It also includes a mathematical model for our approach. The problem domains
and datasets are illustrated in Chapter 5. Chapter 6 demonstrates the experiments and results
of the IRL problem and their comparisons with existing methods. Finally, this document

concludes in Chapter 7.

1.5 SUMMARY

In this chapter, the focus was to give a very broad idea of the context of this work. We
started by describing the problem statement and the motivation behind selecting IRL over
RL and the rationale for pursing a model-free approach. In the middle of this chapter we
discussed the contributions we made in this thesis. We concluded by giving the basic outline

of the rest of the thesis.

CHAPTER 2

BACKGROUND

In this chapter, we define several terms and concepts which build the foundation to compre-
hend the later sections of thesis. We start by defining the Markov Decision Process (MDP)
in Section 2.1. In Section 2.2, we discuss the concept of maximum likelihood estimation. In
Section 2.3 and Section 2.4, we describe reinforcement learning (RL) and inverse reinforce-
ment learning respectively, followed by their closely related algorithms. The term model-free
IRL is discussed significantly in Section 2.5 and the concept of gradient-based optimization

is covered in Section 2.6.

2.1 MARKOV DECISION PROCESS

In domains of robotics and automated control systems, the problem of sequential decision
making for stochastic environments is often modeled mathematically as the Markov Decision
Process (MDP). Sequential decision making requires optimization to maximize the utility
from agent’s actions in past. MDPs are helpful in exploring optimization problems solved
using reinforcement learning, inverse reinforcement learning, and many other dynamic pro-

graming techniques. An MDP is defined as tuple (S, A, T, R,), where
e S is a finite set of states.
e A is a finite set of actions.
e T is the state transition probability function, T': S x A x S — [0, 1]
T(s' | s,a) = P(sgs1 =8| 8¢ = s,a; = a)

T(s' | s,a) gives the probability of reaching s’ from s executing action a.

5

e R is the reward function. Reward functions can be modeled as R(s,a,s’) : SxAxS — R

or as R(s,a): S x A — R depending upon the environment in play.

R(s,a,s’) is the reward expected when an agent in state s takes an action a and lands

in state s'.

R(s,a) is the immediate reward associated with the agent executing an action a being

in state s.

e 7 is the discount factor, parameter that determines the importance of future rewards.

v €1[0,1]

The solution of an MDP is a policy that associates an action with every state that the
agent might reach. The utility of a state sequence is the sum of all the rewards over the
sequence, often discounted over time. The goal is to solve the MDP to find an optimal policy
that maximizes the utility of the state sequences.

The utility of a state is the expected utility of the state sequences encountered when
an optimal policy is executed when starting in that state. The value iteration algorithm for
solving MDPs works by iteratively solving the equations relating the utility of each state to
those of its neighbors, whereas the policy iteration algorithm alternates between calculating
the utilities of states under the current policy and improving the current policy with respect

to the current known utilities.

2.2 MAXIMUM LIKELIHOOD ESTIMATION

Maximum likelihood estimation is a widely applicable statistical method of estimating
unknown parameter values for fixed sets of data and a known statistical model. The likeli-
hood of a set of data is the probability of obtaining that particular set of data, given the
probability distribution model. In simple terms, it is the value of parameters which makes

the observed data most probable. Maximum likelihood estimation gives a unified approach

to estimation, which is well-defined in the case of the normal distribution and many other
problems.

Suppose Xi, Xo, ..., X,, is a sample of n independent and identically distributed (i.i.d.)
observations. The assumed probability distribution depends on some unknown parameter 6.
The goal of maximum likelihood estimation in this case is to find the values of unknown
parameters that maximize the probabilistic likelihood of the observed data.

The joint density function of all observations can be denoted as fy. For an i.i.d. sample,

this joint density function is

fo(z1, o, .y xy) = flay, xoy sy | 0) = f(z1 | 0) X f(xa | 0) x - X f(z, |) (2.1)

In the maximum likelihood method, we represent the joint density function as likelihood

function, L(0),

L(O; 1, 3a, ..., 1) = Hf(mi | 6) (2.2)

The value of each f(x; | 0) is a fraction and multiplying these fractions tends to reach
the total value of likelihood towards zero. Rather than maximizing this product, which can
be quite tedious and also could lead to extremely small value, we often use the fact that the
logarithm is a monotonically increasing function, so it will be equivalent to maximize the

log-likelihood:
i=1
The maximum likelihood estimation method the calculates the value of § that maximizes

the value of L(#).

0= argmeaxL(H;xl,a:g,...,xn) (2.4)

2.3 REINFORCEMENT LEARNING

Reinforcement learning (RL) is a type of machine learning technique which allows an agent
to learn its behavior in order to maximize its performance. The agent does not know a

priori which action to take, but instead it must explore which action yields the most reward,

7

based on reward feedback from the environment, also known as a reinforcement signal. This
behavior is adaptive in nature. If the problem is modeled with care, some RL algorithms can

converge to the global optimum; this is the ideal behavior that maximizes the reward.

>| Agent
state reward action

Sr Rr A
L Rt+1 (
_S.. | Environment]4—

<

\

\.

Figure 2.1: The typical framing of a Reinforcement Learning (RL) scenario: an agent takes
actions in an environment, which results into a reward and a representation of the state,
which are fed back to the agent [21].

Reinforcement signals are different than supervised learning. In supervised learning, an
agent learns from the feedback of an expert’s behavior, but such feedback is not always
available. If no feedback is available, an agent can learn a transition model for its own moves
and can perhaps learn to predict the opponent’s moves, but the agent will have no grounds for
deciding which moves to make. Reinforcement signals from the environment can be received
at each time step or together at the end. For example, in games like chess, the reinforcement
is received at the end, which helps agents learn what moves not to make when playing the
next turn. In games like darts, each point scored is a reward and it helps in improving the
agent in the next shot.

Apart from the agent and the environment, the reinforcement learning problem needs to
define following four elements as well: a policy, a reward function, a value function, and a
model of the environment.

A policy is mapping each state of the environment to an action taken from those states.
A policy can be stochastic or deterministic. An optimal policy, usually denoted by 7*, is the
best policy, i.e. one that maximizes the cumulative reward over the likelihood of all possible

states.

A reward function maps each state or a state-action pair of the environment to a real
number. The action selected by the policy results in the reward for that event. As the sole
objective of reinforcement learning is to receive maximum reward, if the reward is poor the
policy needs to be altered in order to improve the reward.

Value iteration is an algorithm used to calculate the utility of each state from the envi-
ronment. The utility of a state is the immediate reward for that state plus the expected
discounted utility of the next state, assuming that the agent responds according to the most
optimal policy available. The value iteration algorithm helps produce an optimal policy that
maximizes the accumulated reward.

The environment is modeled as stochastic finite state machine with inputs being actions
sent from the agent and outputs being observations and rewards sent to the agent. MDPs are
widely used for modeling sequential decision-making environments. Algorithms for solving
reinforcement learning problems that use models and planning are known as model-based
algorithms, whereas model-free algorithms can be conceived of as trial and error learners

with no transition model or planning involved.

2.3.1 Q-LEARNING

Learning by an agent can be passive or active. In passive learning, the agent learns the
utilities of states or state-action pairs using a fixed policy. In contrast, in active learning an
agent explores a model of the environment to learn how to behave by altering its policy to
maximize the cumulative reward over time. QQ-learning is a very popular model-free active
learning technique used to solve reinforcement learning problems. A Q-learning agent learns

an action-value function, @), also known as ()-function,
Q:SxA—->R

giving the expected utility of taking an action in a given state. Q-learning is an off-policy
method for Temporal Difference (TD) learning. Off-policy means that the Q-learning calcu-

lates an optimal Q-function, @*, and hence learns the optimal policy, 7* even when actions

9

are selected in a more random or exploratory fashion rather than directly from the policy in

play. The basic Q-update equation for Q-learning is defined as:

Q(s,a) < Q(s,a) + a(R +ymax Q(s',a') — Q(s, a)) (2.5)

Equation 2.5 is calculated whenever the agent executes action a € A from state s € S
and moves to s’ € S, receiving the reward stimulus specified in the reward function R. The
(-table is initiated with random values. Then, at each iteration, the agent selects an action
and observes the reward and the next state. The action selected by agent at each step is
the action that has the highest observed reward. The overall reward resulting from all the
actions of agent is accumulated as the weighted sum of individual rewards at each time step.
R is the immediate reward received from the behavior of the agent.

The learning schedule « € [0, 1], governs the magnitude of the update. If & = 0, then
the @Q-function will never be updated, and if & = 1, only the most recent information is
considered.

The learning schedule v € [0, 1], weights the rewards of all future steps reachable from
current steps. If v = 0, it means that the agent will consider only the current rewards and
neglects the future ones, while if v = 1, the utilities might reach infinite value for non-

terminating or lengthy episodes.

Initialize Q(s, a), Vs € 8, a € A(=), arbitrarily, and Q{terminal-state, -) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from () (e.g., s-greedy)
Take action A, observe R, S’
Q(S. A) + Q(S, A) + a[R + ymax, Q(S", a) — Q(S, A)]
5 5"

until 5 15 terminal

Figure 2.2: Q-learning algorithm for an exploratory agent [21].

10

2.4 INVERSE REINFORCEMENT LEARNING

RL problems assume that the reward function is known and fixed, but is not always the
case. Stuart Russell [2] proposed the need for a technique that could achieve the same task
as RL but without specifying the reward function manually, called Inverse reinforcement
learning (IRL). IRL is the problem of learning the most favorable reward function with the
help of an expert agent’s demonstrations. In IRL, the agent that tries to learn the reward
function is usually referred to as the learner, and the agent whose behavior is mimicked by
learner is known as the expert. The expert is assumed to behave optimally and, hence, its
demonstrations are assumed to generate maximum rewards. The learner does not have access
to expert’s reward function. In IRL, the environment is modeled as an MDP without the
reward function, MDP\r : < S| A, T,y >. IRL is based on Learning from Demonstrations
(LfD), also known as Imitation Learning or Apprenticeship Learning (AL). Unlike AL, where
the goal is to find a policy that performs like the expert, in IRL the goal is to find a reward

function that is similar to that of the expert.

s Demonstrations

{ls,a) , (s,a),...}

2

Learner

/
3 Environment
MDP\r : <S,ATy>

Figure 2.3: Relationship between the RL and IRL problems. The expert tries to learn the
optimal policy using RL technique. The learner, however, uses the expert’s trajectories
(optimal policies) and infers expert’s rewards using IRL technique.

Figure 2.3 illustrates the basic difference between RL problems and IRL problems. As
the name suggests, IRL is essentially the inverse of RL. The input in RL problems is the
reinforcement signal or reward function, Rg, and the output is policy. However, in IRL,
the input is a policy or demonstrations and the output is the inferred reward function, Rg.

Demonstrations are assumed to maximize the reward as the expert behaves as in canonical

11

RL, choosing an action according to the previous rewards. The learner receives the expert’s
demonstrations and infers a reward function using the IRL method.

In IRL problems, the reward function is widely expressed as weighted sum of binary
features [4]. R(s,a) =Y. ¢i(s,a)d;, where 6; € R are weights and ¢;(s,a) — 0,1 are binary
feature functions for each state-action pair. However, there might be multiple reward func-
tions that corresponds to an expert’s behavior. Ng and Russell [3] proposed a solution for
removing this degeneracy by formulating the IRL problem as linear program which results
in a unique optimal policy.

The demonstrations are a set of trajectories, each of which is a sequence of state-action

pairs recorded from expert’s behavior.

D= {Cla(% 7Cn}

G={(s1,a1)", (52,a2)", ..., (Sm,)"}

2.4.1 BAYESIAN IRL

IRL has always been seen to accomplish either of the two tasks: reward learning or appren-
ticeship learning. Ramachandran and Amir [9] proposed a different way to model an IRL
problem using a Bayesian inferencing approach. As we discussed before, multiple reward
functions might explain the expert’s behavior. Bayesian IRL (BIRL), allows us to derive a
probability distribution over the space of reward functions. The actions of the expert are con-
sidered as evidence and the prior knowledge on an expert’s reward function can be included
in the inference. BIRL relaxes the assumption that the expert always behaves optimally and
that its demonstrations will produce maximum rewards.

The mathematical model for BIRL derives a posterior distribution for rewards from the
prior distribution. Let us consider an agent F, operating in a MDP :< S, A, T,y >. R is
the reward function of the expert, chosen from prior distribution Pg. The demonstrations
Dg = {(s1,a1), (82,a2), ..., (Sm,a,m)}, recorded from an expert’s behavior, is also given as

an input to IRL problem. BIRL models the likelihood of an state-action pair given prior

12

distribution as an exponential distribution of the Q-function.The larger the Q*(s,a), the

more likely this state-action pair is in demonstration.

1 (s an
Pg((si,a;) | R) = ZGQEQ (80,04, R) (2.6)

where, ag is a confidence parameter that controls the expert’s ability to choose the action

with highest value. Similarly, the likelihood of an expert’s entire demonstrations is:
1
Pp(Dp | R) = geaEE(DE’R) (2.7)

where, E(Dg, R) =), Q*(s;,a;, R) and Z is a normalization constant.
Applying Bayes theorem to calculate the posterior probability of reward function R con-
ditioned on expert’s evidence,

Pg(Dg | R)Pr(R)
P(Dg)

Pg(R | Dg) =
) (2.8)
= 7604EE(DE7R)PR(R)

The normalization constant, Z', is hard to compute, hence the posterior is estimated using
a sampling technique. The authors [9] use modified Markov Chain Monte Carlo (MCMC)
with a uniform prior for inferencing. Now the two tasks of IRL becomes reward estimation
and policy estimation from reward learning and apprenticeship learning, respectively. The
reward estimation task can be achieved by minimizing the loss function, calculated as the
norm distance between the actual and estimated rewards. This loss function is minimized by
setting the estimated rewards as the mean of the posterior from which the actual rewards
are drawn. In the case of policy estimation, the loss function is defined as the norm distance
between the value of each state achieved by the optimal policy and the value of the expected
policy that minimizes the loss over posterior rewards.

Ramachandran and Amir [9], were the first to propose the idea of Bayesian inferencing

in IRL problems which later become the framework of many other algorithms [15, 16]

13

2.4.2 MaxiMmuM LIKELIHOOD IRL

Since Maximum Likelihood IRL (MLIRL) is just another approach to solve an IRL problem,
the framework still remains the same. As such, the expert, learner, and environment are
modeled as an MDP :< S, A, T,~v >, the expert’s demonstrations Dg = {(1,(s ..., (,} and
other IRL settings. Babes et al. [1] expressed the reward function as Ry(s,a) = 07 ¢(s,a),
where, 6 is a set of reward weights and ¢(s, a) is feature set for state s € S and action a € A
pair. Since the learner is unaware of the expert’s reward function, the goal of learner is to
use the available information from the environment and the expert’s trajectories to estimate

the feature weights 6, that mimic the values that are used to generate those demonstrations.

Algorithm : Maximum Likelihood IRL

Input: MDP\r, features ¢, trajectories {1, ..., {n}, number of iterations M,
step size for each iteration (f) a;, 1 < t < M.
Initialize: Choose random set of reward weights 6;.
fort =1to M do

Compute Qp,, 7p,.

L=Y Y |log(mg(s a)).

i (sa)ed
gt—l—l — 0y +a; VL.

end for
Output: Return 84 = 6.

Figure 2.4: Maximum Likelihood IRL algorithm[1].

Figure 2.4 shows the MLIRL algorithm [1], which starts by assigning a random set of
values to the learner’s feature weights. This helps in assigning the likelihood to the expert’s
trajectory. The optimization is guided by the gradient of the likelihood function at current
known feature weight values 67,.

Let us scrutinize the implementation details of the MLIRL [1] approach. First, 6, is used

to calculate the expected values discounted over horizon:

3, Q(s, a)efRs)
QGL (8’ CL) = RQL (87 a) +7 Z/ T(S7 a, Sl) Za/ eBR(s,a”) (29)

14

The max operator from the conventional Bellman equation was making the likelihood func-
tion non-differentiable. In order to use the gradient approach for optimization of likelihood
function, it needs to be differentiable. Babes et al. [1] replaces the max operator by using the
Boltzmann exploration for calculating the Q-values and thus making the likelihood function
differentiable.

Instead of calculating the likelihood of trajectories in [1], authors calculate the log-
likelihood of trajectories as we discussed above the advantages of doing so. The log-likelihood

function is defined as:

N
L(D|0) logH H (s, a) Z log (s, a) (2.10)

=1 (s,a)€¢; i=1 (s,a)€¢;

The policy my(s,a) is calculated using the Boltzmann exploration as:

eﬁQ@(sva)
7T9(S,0J) = W (211)
Thus, the solution for maximum likelihood in MLIRL [1] is expressed as:
0, = argméle(D | 6) (2.12)

Unlike other conventional IRL approaches, MLIRL resolves the issue of receiving multiple
reward functions explaining the expert’s optimal behavior by searching for only a single
optimal reward function. MLIRL even allows to solve the IRL problems with stochastic

demonstrations available from expert.

2.5 MODEL-FREE INVERSE REINFORCEMENT LEARNING

IRL has solved the issue of specifying the reward function manually, but applying IRL algo-
rithms requires an optimal policy. This optimal policy can be generated easily by solving
different planning or reinforcement learning algorithms with the knowledge of demonstra-
tions. Such algorithms are complex and could degrade the performance of high-dimensional

systems with large state spaces or continuous state spaces. To overcome these limitations,

15

an alternate method for these calculations is required, which can be achieved by creating
a model-free system which can generate the policy that performs at least as well as expert
policy.

Like model-free RL, IRL can also be model-free (i.e. no knowledge of transition function
or planning is involved). The MDP of a model-free IRL environment looks like: < S| A,y >.
Model-free IRL approaches are very helpful in solving IRL problems where the transition
model is not available. The accuracy of model-free IRL algorithms over model-based ones is
still an open question. One of the model-free approaches is Relative Entropy Inverse Rein-
forcement Learning [7], where authors compare their results with those from model-based

approaches. We will further discuss this approach in Section 3.1.

2.6 SUMMARY

In this chapter, we described some concepts which will make the further parts of this thesis
easy to understand. We discussed the basic concept of RL and IRL and how to model the
environment using an MDP. We showed the basics of maximum likelihood estimation and
the significance of the term model-free in context of both RL and IRL. We also discussed

the details of BIRL and MLIRL approaches and examined the advantages of each approach.

16

CHAPTER 3

RELATED WORK

In this chapter, we will discuss a few concepts which are not used in this work but are
similar to topics underlying in this work and worth mentioning. In Section 3.1, we describe
the model-free method, Relative Entropy IRL. Section 3.2 includes a survey of different IRL

problem domains used by researchers to validate their approaches.

3.1 RELATIVE ENTROPY IRL

Many approaches used to solve an IRL problem are based on the assumption that the
dynamic model of the underlying MDP is known or can be learned from sampled trajecto-
ries. Learning from limited number of trajectories might be unreliable. Also, these learning
methods require planning, which makes the algorithm computationally expensive and cannot
be directly applicable to systems with a large or continuous state spaces. Inspired by Rela-
tive Entropy Policy Search [13] and based on Mazimum Entropy IRL [6], Boularias et al. [7]
proposed a model-free IRL algorithm that not only addresses the issues of learning a model
from trajectories but is also able to learn good policies from a limited number of demonstra-
tions. Relative entropy IRL [7], tries to minimize the relative entropy between the empirical
distribution of the expert’s demonstrations under a baseline policy and under the policy (ini-
tially arbitrary) that matches the reward feature counts of the demonstrations. The baseline
policy is essentially a distribution over the set of expert trajectories. The gradient descent
optimization technique used in the algorithm to minimize the relative entropy was estimated

without the help of MDP. The relative entropy here is formulated as KL divergence.

17

The problem statement in [7] is to minimize the relative entropy which can be expressed

mathematically by reformulating Maximum Entropy IRL [6] as

manP P(r) (3.1)

7_

where, T is set of trajectories, T = {7, 7s,...,7n}, P is probability distribution on the
trajectories under current policy, and () is the probability distribution on trajectories under
a baseline policy.

The problem statement is subject to following constraints:

Vie {1,.k}:|Y PO~ fi < e

TET

ZP(T) =

TeT
VreT:P(1)>0
where, f7 is discounted feature expectation of a feature f; along a trajectory 7, ﬁ is empirical
expectation of feature f;, and ¢; is the threshold that can be calculated using Hoeffding’s
bound.
The solution of the problem statement was given by Dudik and Schapire [14] as the
Lagrangian function:

L(P,0,m) => P(r) Eg—i@(ZP(ﬂf{)Zl@\emtn(zp)32)

TET i=1 TET TET

using the Karush-Kuhn-Tucker (KKT) condition,

k
=0

On solving the above equation, we get:
k
P(r) = Q(T)@pr(Z 0if7 —n— 1) (3.4)
i=1

18

Summing over all the trajectories on both side and solving using > P(7) = 1, we get the
normalization constant, Z(0)

exp(n+1)= 3 @mexp(z 9¢ff) _ 2(6) (35)

TET

Therefore,

)

The dual problem resulting from the step above is to maximize the resultant dual function

P(r]0)= %Q(r)ew(Z&f{) (3.6)

using sub-gradient ascent. The sub-gradient of the dual function cannot be obtained without
using the transition function, which is not available. Hence, Boularias et al. [7] presents an
alternate method for estimating the gradient using Importance Sampling.

The Relative Entropy IRL [7] approach was validated using three different problem
domains and the results were compared with other well-known approaches. The perfor-
mances of different IRL methods are compared by calculating the optimal policies using
the transition function corresponding to the learned reward functions. In experiments, the
relative entropy IRL approach learned the reward functions close to the expert’s one in all
the three problem domains using a very small number of sampled trajectories.

In contrast to Relative Entropy IRL, our approach tries to relax the assumption that the
trajectories are of a fixed horizon. Boularias et al. [7] reformulate the Maximum Entropy IRL
[6] as the problem of minimizing the relative entropy between the probability distribution on
the trajectories and the distribution on trajectories under a baseline policy. This approach
mitigates the issue of learning false reward function which might lead to same expert’s policy.
We model the IRL problem using maximum likelihood estimation. The issue of learning

incorrect reward function is handled by maximizing the likelihood of trajectories.

3.2 SURVEY OF DIFFERENT IRL PROBLEM DOMAINS

A problem domain is an application that needs to be examined to solve a problem. Problem

domains can be thought of as test beds on which experiments are performed or algorithms

19

are executed, and the accuracy of solutions to that problem helps us assess the correctness
of an algorithm or method used to solve that problem. Thus, problem domains play a crucial
role in evidencing the authentication of an algorithm or hypothesis.

Selection criteria for a problem domain depends primarily on the algorithm used to solve
it, or vice versa. For experimenting with an IRL algorithm, we must select a domain where we
can have access to the behavior of an expert and partial knowledge of an experts environment.

IRL problem domains can be categorized depending on their nature.

3.2.1 SYNTHETIC TOY PROBLEMS

Synthetic toy problems are not real-world problems, but are created or simulated as an
environment with some goals. It’s more like a toy or puzzle one can play with to achieve the

goal using an IRL algorithm.

GRID WORLD DOMAIN

Grid world are the most commonly used problems to experiment with an IRL algorithm.
Grid world represents the environment in form of n x n grids of equal dimensions mostly.
Each grid represents a state, while each movement direction represents an action. Each grid
is associated with a reward value (usually its negative reward each state except the goal
state). The problem in this domain is to learn the reward associated with each grid from the
trajectories of expert using an IRL algorithm. The expert is assumed to behave optimally,
i.e. it will prefer to maximize its reward for reaching the goal state from its initial state. The
learner tries to do the same and assigns reward values to each grid by learning them from
an experts trajectories.

Figure 3.1. (a) shows the basic grid world problem domain. Different colors represent
different reward values and are highest for the goal state and lowest for the sink state (both

are terminal states), while an arrow means one of the four possible movement directions.

20

— — OBSTACLE

(OBSTACLE

START

(a) (b)

Figure 3.1: (a) Grid World Domain. An agent tries to learn an optimal policy to reach the
goal state with minimum cumulative cost. Each grid color has a unique cost associated with
it. (b) Gird World Domain with obstacles. The agent is not allowed to pass through obstacle
states. The goal still remains the same.

Figure 3.1. (b) is the slight variation of grid world problem, where obstacles are explicitly
introduced, indicating those states can never be visited by an expert. If an agent tries to
move to an obstacle state, or tries to go out of the assigned grid area, it ends up in the prior

state.

MOoOUNTAIN CAR DOMAIN

The mountain car problem is commonly used as a benchmark reinforcement learning problem
to evaluate learning algorithms. In Algorithms for IRL [3], authors use the same problem to
evaluate an IRL algorithm. This problem can be described as a car being placed in a valley,
with the goal being to get the car out of the valley. The engine of the car is not powerful
enough to drive it out of the valley. Hence, the car must build up a momentum by driving
up the opposite side of the valley. The states are defined by the cars x-position, velocity, and

actions, which are driving forward, backward, or neutral. The true, undiscounted, reward is

21

-1 per step until the car reaches the goal at the top of the hill. As in IRL algorithms, the
expert is assumed to behave optimally, and the learner tries to achieve the goal by learning

rewards from the experts trajectories.

Goal

Figure 3.2: Image of mountain car problem [3]. The goal here is to get the car with insufficient
engine power out of the valley. This could be achieved by building momentum using actions
like driving backward, forward, or neutral. Each action has a cost associated with it.

ROLE-PLAYING GAMES

Role-playing games are also simulated and presented as a problem domain with a set of
some experts demonstrations to learn the reward function. Ramachandran and Amir [9)
applied their method of reward learning to the very famous role-playing game Dungeons
and Dragons. In this game, an agent explores the dungeon, seeking to collect various items
of treasure (positive rewards), while avoiding obstacles such as walls or dragons (negative
rewards). The state space was represented as m-dimensional binary feature vector indicating
the position of the agent and the value of various fluent. The actions are decisions made by

the agent such as picking up treasure or other in-game movements.

3.2.2 AutoNOoMOUS DRIVING PROBLEMS

Autonomous vehicles are no longer part of the realm of fiction, and to improve the efficiency
and accuracy of such vehicles, their working environments are often simulated and the issues

are resolved using various algorithms. Unlike in previous categories, here we try to solve some

22

real-time issues faced by autonomous vehicles like learning to merge in lanes and driving on
a highway. Here, we will discuss two of such domains being used to solve the issues using an

IRL algorithm.

FREEwWAY MERGING DOMAIN

Merging safely onto a congested freeway from a ramp is still a challenge for an autonomous
vehicle in the presence of stochastic human drivers. Many researchers are trying to investigate
this problem by representing the similar domains in different models, and trying to solve it
using standard algorithms. We are modeling this problem as ABC car model, car B being the
autonomous car, and car A and car C are human driven vehicles moving behind and ahead
relative to car B, but on the rightmost lane of the freeway. Here, we are trying to solve the
freeway merging problem using an IRL algorithm. Car A’s trajectories are used to model the

reward function, which can later be used by car B (autonomous vehicle) in decision making.

Figure 3.3: ABC model for Freeway Merging Domain. Car B is autonomous car trying to
merge onto the freeway in between two human-driven cars traveling on the freeway. The goal
here is for the car B to learn the preference of car A’s driver and make an optimal decision
about when to merge.

The state space is defined as the combination of state variables like the x-distance and
velocity between car A and car C, and similarly between car A and car B. Actions are
acceleration values of car A, and are discretized as full brake to full acceleration depending

upon the bin it lies in. The data used as trajectories of car A is real-world data are taken

23

from the Next Generation Simulation (NGSIM) dataset collected under the supervision of
the Federal Highway Administration (FHWA). This dataset was collected from I-80 freeway
in San Francisco, CA using six synchronous cameras covering over 1640 feet in length and
all seven lanes, including the onramp, over three different time intervals of fifteen minutes
each. All the videos from cameras were processed and the dataset is now available and ready

to use in tabular format.

HiGHWAY DRIVING SIMULATOR

A driving simulator is a software used to simulate and visualize (often) the real-world driving
experience. Pieter and Andrew [4] used a driving simulator to learn different driving styles
on highways. They considered five styles: Nice, Nasty, Right lane nice, Right lane nasty, and
middle lane. The driving speed was kept constant at 56 MPH during the whole experiment
and trajectories were recorded for all five different driving styles. The Markov Decision
Process (MDP) of the problem had 5 actions as values, from handling the steering wheel of
the vehicle, 3 of which allows driving smoothly on one of the lanes, and 2 causing the vehicle
to drive off the road to avoid hitting the cars. The state space was defined indicating the
current lane of the car and space between the car in front. Once the trajectories for different

styles were available, the learner could mimic them using an IRL algorithm.

3.2.3 ROBOTICS BASED PROBLEMS

Robotics is not just about mimicking the event or performing a predefined set of operations.
If a robot must perform in an unpredictable or a dynamic environment, it is nearly impossible
to prepare it for all possible situations, and there might be times when an autonomous robot
might find itself in a situation not considered by its designer. Robot learning allows a robot
to adapt to the surrounding environment and behave optimally in unexpected circumstances.

To test the learning skills of robots and to evaluate the accuracy of learning algorithm used

24

by robots, we need problem domains which relate to ones in which robots face in the real

world.

RoBOT GRASPING UNKNOWN OBJECTS

=0 i o)

Action : reaching PR AN

\l =./// k// E \\N \\\.
t=1 ') SR — ..
Action : preshaping T R

t_ o b . P . P

Action : grasping

Figure 3.4: Grasping an unknown object as a Markov Decision Process. The process is
represented by three steps: reaching, preshaping and grasping. The robot can move ahead
at each step or can start over|[5].

Boularias et al. [5], discussed the structure and observations of their experiment of a
learning algorithm over a problem domain in which the robot tries to learn how to grasp an
unknown object. They represented grasping an object as MDP with three steps: reaching,
preshaping, and grasping. The reward of each step depends on the current state, and the
robot can move ahead or restart at any step. The robot starts from the initial state at t =
0, and the set of actions corresponds to the set of points on the surface of the object. At t
= 1, the state is given by a surface point and an approaching direction, the set of actions
corresponds to the set of all possible hand orientations. At t = 2, the state is given by a
surface point, an approach direction, and a hand orientation. Lastly, the robot either closes
its finger and grasps the object, or restarts from the initial state. They used one object and

six trajectories leading to a successful grasp from its handle by a robot.

25

PATROLLING ROBOTS

Patrolling robots are autonomous robots trained to patrol in a specified environment,
assuring security of that area. These robots are designed in a way so that they can behave
optimally in strange situations by learning their moves using a learning algorithm. In exper-
imenting with the Robust IRL algorithm [17], two Turtlebots were used, one as patroller
(expert) and other as intruder (learner). The patroller moves around the specified area and
the learner is hidden from the sight of patroller. The trajectories of patroller are not directly
available to the learner, instead the only observation available is the sound from the drones
propeller. Hence, the problem is modeled as Hidden Markov Decision Process (hMDP). The
state space is the location and orientation of the drone in the environment. The drone has
3 actions: going forward, turning around, and hovering. The intruder learns the patroller’s

policy and tries to reach its goal state without being seen by the patroller.

3.3 SUMMARY

In the first part of this chapter, we discussed the details of Relative Entropy IRL approach.
In the later part, we categorized the different type of problems which can be solved using an

IRL algorithm and cataloged the few domains of each type.

26

CHAPTER 4

MAXIMUM LIKELIHOOD APPROACH FOR MODEL-FREE INVERSE REINFORCEMENT

LeEARNING (MLMFIRL)

In this chapter, we discuss our approach for solving an inverse reinforcement learning problem
when the complete model of the environment is not available directly. We start by defining
the likelihood function and its mathematical representation in Section 4.1. In section 4.2, we
introduce the Q-Averaging approach to replace the conventional Q-learning equation. Details
about the gradient implementation of the likelihood function are cataloged in Section 4.3.

The MLMFIRL algorithm is described in Section 4.4 with its analysis in Section 4.5.

4.1 MATHEMATICAL MODEL FOR MLMFIRL

Like MLIRL [1], our approach also uses a maximum likelihood model to learn an expert’s
behavior and gradient method to find the optimal solution. However, unlike MLIRL our
approach eliminates the dependency on the transition function and makes the method com-
putationally efficient and more reliable for learning with a limited number of demonstrations.
The step by step mathematical model of our approach is illustrated below.

The following items are given as input to MLMFIRL:
e Expert’s MDP : <set of states S, set of actions A, discount factor v >
e Expert’s trajectories, T = {(1, (s, ..., (w}

e Features, ® = {¢1, ¢o, ..., Pa}

27

The goal of MLMFIRL approach is to learn the feature weight vector 0 :< 01,05,0, >
that maximizes the likelihood of the expert’s trajectories. The problem statement can be
expressed as:

—

§ = arg max L(f) (4.1)
0

—

where, L(6) is the log-likelihood of the trajectories in 7.

— —

L(#) =1log P(T | 0) (4.2)

Since all the trajectories in T are independent of each other given 0 and are equally likely,

—

we can unscramble P(7 | 0) as

)) = HP(Q | 6) (4.3)

Since the expert is assumed to execute a policy that does not depend on the actions and

observations of previous time step, we can apply following conditional independence rule:

PG| 0) = H P((s,a) | 6) (4.4)

—

P((s,a) |) is the probability of taking an action a € A in state s € S given g, ie. policy
value for (s,a) given 0. We denote the policy value for any (s,a) as mz(s, a). Using equations
(4.3) and (4.4) in equation (4.2) we have the log-likelihood function as:
logH H m5(s, a) Z Z log 7(s, a) (4.5)
=1 (s,a)€(; i=1 (s,a)€(;
We model my(s, a) as the Boltzmann exploration policy:

eﬂQé’(saa)

>, Pt 0

m5(s,a) =

where, 5 is the Boltzmann temperature, that controls the degree of confidence in agent’s
ability to choose actions based on Q values. The Q-value of a state-action pair, (s, a), is the

optimal value which can be achieved using the conventional Q-learning equation [20]:

Q(s,a) < Q(s,a) + a(R(s,a) + 7 max Q(s',d') — Q(s,a)) (4.7)

28

where, ais the learning schedule, v is the discount factor, and R(s, a) is the immediate reward

for taking action a in state s. We define our reward function as R(s,a) = Zle 0;0i(s,a)
For optimization we use the gradient ascent approach. The optimization is achieved by

using the gradient of likelihood function at its current known feature weight values in order

to update the feature weights until a locally optimal parameter value is achieved.

VL(G) = {VLi(6), VLs(8), ..., VLi(8)} = {aaLe(e) age(j)’ agée)}

where, oy is step size of iteration t and V L;(0) is gradient of likelihood function w.r.t. 6;.

() = Z 1 Omy(s,a) (4.9)

w7(s,a) 00
7/:1 87a)eCl 0 !

Since 7y is a function of Q-function, we can write the partial derivative of m; as:

omg(s,a) 0Q(s,a)
9Q(s,a) 06,

O0mg(s,a) = (4.10)

If we can compute the gradient of the Q-function, we can use it to differentiate all of
the above equations to achieve the optimal values of feature weights. However, the “max”
operator in standard Q-learning (equation 4.7) makes it non-differentiable w.r.t. ¢;. This
makes the gradient of the likelihood function non-differentiable and the use of the gradient

ascent method for optimization impractical. We propose a method called Q-Averaging.

4.1.1 Q-AVERAGING

To address the issue we described above about the likelihood function being non-differentiable
due to the “max” operator in equation 4.7, we propose an approach to replace the “max”
operator with an average operator in equation 4.7. We call this approach as Q-Averaging

because it is Q-learning with averaging.

Z Q(s', ')

Q(s,a) + Q(s,a) + a(R(s, a) + \A[

—Q(s,a)) (4.11)

29

where, |A] is number of actions applicable in state s'.

Using equation 4.11 in our approach, makes the likelihood function differentiable. The
“max” operator in equation 4.7 is responsible for selecting the action which produces the
maximum Q-value in state s', i.e. the most favorable action. To support our hypothesis about
replacing the standard Q-learning with Q-Averaging, we performed few experiments. We used
both the standard Q-learning and the Q-Averaging approaches to solve an RL problem and
compared the results for both. We performed the experiment over different RL domains like
grid world, mountain car, etc., and observed that the learner achieved the similar policies
but with a lower magnitude of rewards. Also, the convergence in case of Q-Averaging took
more iterations than in standard Q-learning.

To conclude, the Q-Averaging approach makes the likelihood function differentiable
without affecting the learning ability of learner at the cost of few more iterations than

the standard Q-learning.

4.2 GRADIENT IMPLEMENTATION DETAILS

We have likelihood function and policy from Section 4.1 as

N

L(§) = Z Z log (s, a)

i=1 (s,0)€C;

eﬂQé’(sva)

7T9_'(S;a/) — —z ,eﬂQg(Saal)
a

and Q-function from Section 4.2 as:

Q(s,a) « Q(s,a) + a(R(s,a) + ’YW —Q(s,a))

Also, we have expert’s MDP:< S, A, v >, expert’s trajectories 7 and feature set ®.

We have randomly initialize the feature weight vector 00 < 69,69, ...,0% > and calculate

the reward function as:

d
Ro(S, CL) = Ze?¢l(57 a)
i=1

30

For t'" iteration,
V(s,a) €T,

QV(s,a) = Ry(s,a) Zet@ s, a)

(s,a) = %Rxs,a) = 64(s,a)

For k' iteration, towards Q-value convergence:

it = o v+ fy [

S) — Z ePQt(s,a")

eﬁQt(Sva‘)
Zy(s)

N
Z Z log m(s, a)
=1 (s,a)€¢

(s, a) =

- }Z@)— £1(5,a)

(s,a) = 8(2 kl(s,a)—ka(aaeRt(sa) A { 7} 89 a’)

0 .
_80 1]: I(S,CL))

Lt(g) is the likelihood of trajectories in 7 after ¢! iteration, given feature weights. Now

we will apply gradient ascent approach to update the value of feature weights. To do so, we

will calculate the gradient value of the likelihood function.

31

) o N 1 Om(s,a)
aeiL(e)_Z Z T 00,

+(s,a)

i=1 (s,a)€¢;
0 ro(s,a) = BZt<3)€BQt(S’a)3%iQt(57a) - eﬁQt(s’a)a%Z.Zt(S)
06; " Zi(s)
0

0
— BQt(Sza)
a0, Zi(s)=p Ea/ e a0, Q:(s,a)

—

Vi, 0 = 0! + a, V L;(0)

Optimal feature weight vector, 0 =< 07,05,,07 >

4.3 MLMFIRL ALGORITHM

Algorithm 1 MF-MLIRL algorithm

1: Initialize 0 : (01,0,, ...,04) randomly.
2: Initialize local variables L and L’ with zero

3: repeat
4: L+ L
5. R(s,a) = YL, 0i(s, a)
6: for all (s,a) € {(s,a)|(s,a) D, eTi€{1,2,..,N}} do
7 Q*(s,a) + Q-Averaging (equation 77?)
. L8R (sa)
8: 71'(8, a) = W
9: end for

10: L(Q> = sz\il Z(s,a)eg}; lOgﬂ'(S, CL)
11: L« L(0)

12: for all §; € g do

14: end for

15 d=|L' — L]

16: until 6 < e(1 —7)/y

17: return 0

The input to the MLMFIRL algorithm is set of expert’s trajectories, environment model
as MDP, features affecting the reward functions, and other controlling parameters like

learning rates, step size, and the tolerance error to set convergence criteria. The algorithm

32

uses the inputs and calculates the likelihood of expert’s trajectories using the randomly ini-
tialized feature weights and optimizes them using gradient ascent approach. This process
continues unless the convergence criteria are achieved. We scrutinize the algorithm piecewise
below.

In the first step, we initialize the feature weight vector with random values. In the second
step, we initialize two variables to store log-likelihood values of trajectories with zero. L stores
the log-likelihood value from (¢ — 1) iteration and L’ stores the value of likelihood calculate
in ' iteration. Steps 3.a to 3.f are repeated until the convergence criteria are satisfied. The
rewards for each state-action pair is calculated as vector multiplication of binary features
and feature vector weights. In step 3.c, the Q-values are calculated using the Q-Averaging
approach followed by policy calculation using the Boltzmann policy exploration for all the
state-action pair in expert’s trajectory set. Using the action probability values calculated
using the Boltzmann policy exploration for each state-action pair, we calculate the cumulative
log-likelihood for the set of expert’s trajectories. We update the 5, using the gradient ascent
approach and perform the same set of operations using updates feature weights values. When
the convergence criteria is satisfied, we return the learned feature weight vector that produces
the closest optimal policy as of expert’s. Also, the learned feature weight vector generates

the maximum log-likelihood of the trajectories.

4.4 ANALYsiS OF MLMFIRL ALGORITHM

Analysis of an algorithm is important because by doing so we learn its characteristics needed
to evaluate its functionality for various applications or compare it with other algorithms
for the same application. An algorithm can be analyzed in many ways but for practical
applications or comparisons, we only pay attention to the order of growth of the running time
of the algorithm. That is, we learn how efficient the algorithm is mainly when the input size

is large. Instead of reporting time of execution in units, we try to learn asymptotic efficiency

33

of an algorithm, i.e. how the running time of an algorithm increases with the increase in the
size of inputs. We will be analyzing our algorithm for worst case performance.

Our algorithm MLMFIRL is affected significantly by size of the set of trajectories as it is
crucial in calculating the likelihood function of trajectories given current feature weights. Let
N be the number of trajectories and |(,,| be the size of longest trajectory. The algorithm also
iterates over the action space of size | A|. The asymptotic efficiency for worst-case performance
of MLMFIRL algorithm is

O(N[Cml|Al)

4.5 SUMMARY

In this chapter, we discussed the detailed mathematical model of MLMFIRL approach. We
raised the non-differentiability issue with the standard Q-learning and proposed an alternate
approach, dubbing Q-Averaging. Details on gradient implementation were also illustrated
followed by the MLMFIRL algorithm and its analysis. Theoretically, we validated the MLIRL
approach in this chapter. Experimental results and comparisons were also favorable (See

Chapter 6).

34

CHAPTER 5

DOMAIN SETUP AND DATASET

In this chapter, we will discuss the freeway merging domain and Next Generation SIMula-
tion(NGSIM) I-80 dataset used for our experiments. As discussed in Chapter 1, freeway
merging problem involving autonomous vehicles is the motivation behind this research.
During busy hours, when the freeways are congested with vehicles, drivers of the right-
most lane have different preferences about allowing the vehicle on the on-ramp to merge.
The goal of this thesis is to learn those preferences. To do so, we defined the ABC model in
Section 5.1 and used trajectory data from NGSIM dataset. In Section 5.2, we will describe
NGSIM program and details on metadata for I-80 dataset. Steps on extracting trajectories
from one big dataset are illustrated in Section 5.3. Our environmental model for our test

domain is discussed in Section 5.4.

5.1 ABC MODEL

The freeway merging domain as discussed in Section 3.2 is a real-world problem faced by
autonomous vehicles in making decisions about when to merge, keeping in consideration
stochastic behavior of human drivers on the freeway. Solving the freeway merging problem
requires modeling of the traffic. Here, we model this problem using an ABC model as shown
in Figure 5.1. Vehicle B is an autonomous vehicle that is about to merge onto the freeway. A
is the vehicle on rightmost lane of the freeway but relatively behind B. C is also the vehicle
on rightmost lane of the freeway but relatively ahead of B. The problem is that vehicle B

must merge between A and C but the preferences of A’s driver about allowing B to merge

35

is unpredictable. Our objective is to model the variation in the preferences of A’s driving

model as it detects B using MLMFIRL settings.

Vehicle A Vehicle C

et o) o ——
— Vac [Dac £,
(= = (m =
Pane

T “_'_.‘Et‘"""" =

L, :
g

Figure 5.1: Detailed ABC model to represent the freeway merging problem. B is an
autonomous vehicle about to merge onto the freeway. Relative variables like velocity and
distance between any two vehicles plays crucial role in defining the state of each vehicle.

In Figure 5.1, A, B and C are vehicle fitting the characteristics of each vehicle in ABC
model as discussed above. To define these vehicles, we used real-world freeway data from

Interstate-80 collected under NGSIM program.

5.2 NGSIM PROGRAM AND I-80 DATASET

5.2.1 THE NGSIM PROGRAM

The Next Generation SIMulation (NGSIM) program was launched by United States Depart-
ment of Transportation (US DOT) Federal Highway Administration (FHWA)’s Traffic Anal-
ysis Tools Program to develop algorithms in support of traffic simulation, with a primary
focus on microscopic modeling. The detailed and high-quality real-world vehicle trajectory

datasets collected under NGSIM turned out very useful in understanding microscopic driver

36

behavior. Through the NGSIM program, FHWA developed several driver behavioral algo-
rithms to describe the interaction of travelers, vehicles, and highway systems. The NGSIM
products are freely available at FHWA website along with supporting documentation. The
Interstate-80 (I-80) [24] freeway dataset was the first dataset collected under the NGSIM

program.

5.2.2 I-80 DATASET

On April 13, 2005, the researchers for the NGSIM program collected detailed vehicle tra-
jectory data on eastbound I80 in the San Francisco Bay area in Emeryville, CA. Seven
synchronized digital video cameras were mounted on the top of a 30-story building adjacent
to the freeway to record vehicle passing through over approximately 500 meters (1640 feet)
in length. The study included all 6 freeway lanes and an additional onramp merging to the

freeway.

Figure 5.2: Left: The aerial photo of I-80 showing the study area covered during data col-
lection. Right: Schematic drawing describing all the lanes of I-80 freeway including the
onramp.[24]

37

The full I-80 freeway dataset includes total 45 minutes of data, recorded in three 15-
minutes time intervals: 4:00pm - 4:15pm; 5:00pm - 5:15pm; and 5:15pm -5:30pm. These

periods represent the buildup of congestion, or the transition between uncongested and

congested conditions, and full congestion during the peak period.

Figure 5.3: Snapshot of the processed video from NGSIM I-80 freeway merging study. The
processing of video helped in detecting all the vehicles in each frame and assigned them
unique IDs.

NG-VIDEO is a software application developed for the NGSIM program to transcribe
the vehicle trajectory data from the video. The dataset catalogs details like location, lane
position etc. for each vehicle within the study area every one-tenth of a second.

The full I-80 dataset is freely available at the NGSIM website. It includes vehicle trajec-
tory data, computer-aided design, and geographic information system files, aerial orthorec-
tified photos, freeway loop detector data within and surrounding the study area, raw and
processed video, signal timing settings on adjacent arterial roads, traffic sign information

and locations, weather data, and aggregate data analysis reports.

38

METADATA DETAILS FOR I-80 DATASET

The fully transcribed I-80 dataset consists of around 4.5 million rows each having 18 columns.
Each row is a unique tuple corresponding to 18 different useful piece of information about
one vehicle in one frame, i.e. recorded every one-tenth of a second. Below are the details [25]

on the significance of each column:

e Column 1: Unique vehicle identification number for each vehicle in study area ascending

by the time of entry.
e Column 2: Frame ID incremented every 1/10 of a second.
e Column 3: Total number of frames in which the vehicle appears in this dataset.
e Column 4: Global Time (Epoch Time) in milliseconds.

e Column 5: Lateral (X) coordinate of the front center of the vehicle with respect to the

leftmost edge of the section in the direction of travel in feet.

e Column 6: Longitudinal (Y) coordinate of the front center of the vehicle with respect

to the entry edge of the section in the direction of travel in feet.

e Column 7: X Coordinate of the front center of the vehicle based on CA State Plane I11

in NADS3 in feet.

e Column 8: Y Coordinate of the front center of the vehicle based on CA State Plane I11

in NADS3 in feet.
e Column 9: Length of vehicle in feet.
e Column 10: Width of vehicle in feet.
e Column 11: Vehicle type: 1-motorcycle; 2: auto/car, 3: truck.
e Column 12: Instantaneous velocity of the vehicle in feet/second.

39

e Column 13: Instantaneous acceleration of the vehicle in feet/second?,

e Column 14: Current lane position of vehicle. Lane 1 is the leftmost lane and lane 6 is

rightmost. Lane 7 is onramp and lane 9 is right shoulder.

e Column 15: Vehicle ID of the lead vehicle in the same lane. 0 signifies now preceding

vehicle.

e Column 16: Vehicle ID of the vehicle following the subject vehicle in same lane. Again,

0 means lo following vehicle.

e Column 17: Spacing provides the distance between the front-center of a vehicle to the

front-center of the preceding vehicle in feet.

e Column 18: Headway: Headway provides the time to travel from the front-center of
a vehicle (at the speed of the vehicle) to the front-center of the preceding vehicle. A
headway value of 9999.99 means that the vehicle is traveling at zero speed (congested

conditions) in seconds.

Appendix A includes the snapshots of transcribed NGSIM I-80 freeway dataset for a

better understanding of vehicle trajectory data.

5.3 VEHICLE TRAJECTORY DATA EXTRACTION

The I-80 dataset received from NGSIM includes all the vehicles that passed through the study
area during the time interval. For modeling freeway merging problem with ABC model, we
need data for only those vehicles that fit into one of the three A, B or C vehicle roles. The

following steps illustrate the extraction of useful vehicle trajectories from full dataset.

1. Select all the tuples with Column 14 values as 6 or 7, i.e. vehicles in lane 6 (rightmost

lane of the freeway) or lane 7 (onramp).

2. Identify the vehicle B 1D, i.e. select the vehicle which is about to merge to the freeway.

40

5.4

Identify the correct vehicle A and vehicle C with the same frame ID as that of the
vehicle B. Vehicle A will be the one having Column 6 value (y-coordinate) minimum
less than that for vehicle B in same frame whereas vehicle C will have Column 6 value

minimum more than that for vehicle B.

. We back propagate to get complete trajectories for all the three vehicles from the time

they entered study area.
Join tuples of A, B, and C in same frame.

Now we trim the columns. For each vehicle, we only need vehicle ID, Frame ID, local Y,
instantaneous velocity, instantaneous acceleration and vehicle type. Hence, we remove

rest of the unwanted columns from the extracted tuples.

Finally, we extract all trajectories of vehicle A, with complete details of corresponding

vehicle B and vehicle C in each frame.

MODEL INSTANTIATION

In this section, we define the MDP model of our freeway merging environment. This model is

provided as input to our IRL approach which helps the learner to predict the expert’s rewards

using demonstrations. Since we are modeling vehicle A’s environment, all the references will

be w.r.t vehicle A.

5.4.1

STATE SPACE

State space is a set of all possible states accessible to an agent in the given environment.

Every state is defined using some state variables. For our model we are using following 5

state variables:

41

dac: DISTANCE BETWEEN VEHICLE A AND VEHICLE C

d s is the horizontal distance between the vehicle A and vehicle C, i.e. difference of column
6 of each vehicle.

dac =Ya — Yo

We use the extracted vehicle trajectory data to calculate the da¢ for each tuple in every

trajectory. For our dataset we found the following minimum and maximum values of d4¢:
min(dac) = —690.002 ft. and max(dac) = —7.703 ft.

We discretized d ¢ into 5 intervals:

e dyc < —85.000

—85.000 < dac < —65.000

—65.000 < dac < —50.000

—50.000 < daec < —35.000

—35.000 < dac

dap: DISTANCE BETWEEN VEHICLE A AND VEHICLE B

This variable gives the horizontal distance between the vehicle A and vehicle B, i.e. difference
of column 6 of each vehicle.

dap=Ya—Yp
The minimum and maximum values of d4p calculate from extracted trajectory data are:
min(dap) = —603.358 ft. and maz(dap) = —0.001 ft.
We discretized d4p into 5 intervals:
e dap < —45.000

42

—45.000 < dsp < —35.000

—35.000 < dap < —25.000

—25.000 < dap < —15.000

—15.000 < dap

vac: RELATIVE VELOCITY OF VEHICLE A AND VEHICLE C

vac gives the instantaneous relative velocity of vehicle A and vehicle C, i.e. difference of

column 12 of each vehicle.
VA = VA — Vo

The minimum and maximum values of v4¢ from extracted data are:
min(vac) = —36.18 ft./sec. and mazx(vac) = 32.41 ft./sec.

We discretized vye into 5 intervals:

o vyc < —5.00

e —5.00 <wvyc <—2.00

—2.00 < wvae < 0.00

0.00 < vy < 3.00

3.00 S VAC

vap: RELATIVE VELOCITY OF VEHICLE A AND VEHICLE B

This variable signifies the instantaneous relative velocity of vehicle A and vehicle B, i.e.

difference of column 12 of each vehicle.

VAac = VA — UB

43

The minimum and maximum values of v p from extracted trajectory data are:
min(vap) = —52.79 ft./sec. and maz(vap) = 35.06 ft./sec.

We discretized v4p into 5 intervals similar to those of v4c:

e vy < —5.00

—5.00 < vap < —2.00
o —2.00<wv4p<0.00
e 0.00 <wyp <3.00

e 3.00 <wvyp

VEHICLE TYPE

This variable determines the type of vehicle B for each vehicle A. This variable is crucial
as the driving preferences of vehicle A’s driver usually changes depending upon the type of
vehicle trying to merge. For example, a normal human driver might allow a car type vehicle
to merge but might not want to get behind a truck, especially during heavy traffic conditions.
The type of vehicle can directly be determined from value of column 11 in dataset. We merged
the motorcycle and auto/car vehicle types into same category. Hence vehicle type can either
be 0, i.e. car or motorcycle, or 1, i.e. truck.

Using all the five state variables we can define the state of vehicle A at any instant of
time. With 5-5 intervals of dac, dap, vac and vap and 2 unique values of vehicle type, we

have a state space of 1250 states.

5.4.2 ACTION SPACE

The instantaneous acceleration values are modeled as actions of the driver. These values are

directly available from dataset via column 13 of each tuple. The minimum and maximum

44

value of accelerations from datasets are:
min(acc) = —11.20 ft/sec*. and maz(acc) = 11.2 ft./sec’.
We discretized the acceleration into five intervals and named them as the following actions:
e High Brake: —11.20 < acc < —4.80

Low Brake: —4.79 < acec < —0.60

Zero Acceleration: —0.59 < ace < 0.59

Low Acceleration: 0.60 < ace < 4.79

High Acceleration: 4.80 < acc < 11.2

5.4.3 FEATURE SPACE

An agent is assumed to behave optimally in IRL setting, which means that the action
sequence of an agent is the result of some parameters that affect the cumulative rewards
of the agent. Considering those parameters, we accounted 3 binary features to our model.

Any feature is considered active with the value 1 and inactive when the value is 0.

e Feature 1: Safe. This feature is inactive only when dac > 20 ft. and acc > 0.6 ft./sec?,
i.e. distance from the preceding vehicle is less than 20 ft and vehicle is accelerating.

This feature signifies the preference of being safe when active.

e Feature 2: Time to travel. This feature is active when acc > —0.6 ft./sec?, i.e. either
the vehicle is accelerating or moving with a constant speed. This feature signifies the

importance of time to reach destination.

e Feature 3: Type of vehicle B. This feature is active when the vehicle B is a truck.

45

5.5 SUMMARY

In this Chapter, we defined the characteristics of ABC model for solving a freeway merging
problem. We discussed the importance of the freely available Interstate-80 freeway dataset
collected under NGSIM program by FHWA in the microscopic modeling of traffic. The
vehicle trajectory data required to solve the freeway merging problem using an IRL approach
can be extracted as per our requirements. In the last section, we illustrated details of our
experimental model.

Since we have discussed the MLMFIRL approach and covered sufficient details on domain
setup and dataset, we will be presenting some experimental results with analysis and com-

parisons in next chapter.

46

CHAPTER 6

EXPERIMENTAL EVALUATION

In this chapter, we will analyze our model-free MLMFIRL approach with the help of experi-
mental results and compare them with the modeled MLIRL [1] technique. In Section 6.1, we
evaluate the performance of both approaches in a grid world environment. In Section 6.2, we
show that our approach for solving the freeway merging problem produces more satisfactory
results than Babe et al.’s [1] approach. We also justify the validity of our algorithm with the

help of few qualitative evaluations in section 6.3.

6.1 GRID WORLD

For evaluating our MLMFIRL approach and comparing it with MLIRL, I used the BURLAP
[26] implementation of the grid world environment with grid size 5 x 5. Figure 6.1 depicts the
graphical user interface for our grid world environment. The gray colored circle is an agent
which can move along the 25 states using 4 actions. The five different color grids signify the
unique location features.

The MDP model for the grid world environment includes 25 states, 4 actions, and the
discount factor of 0.99. The 5 location features were initiated with random weights to generate
a reward matrix for grid world. We used the Boltzmann temperature (/) as 10.

We recorded 10 trajectories by moving the agent around the grids. These trajectories are
used to recover the rewards for each grid using both MLIRL and MLMFIRL approaches.
Results for MLIRL were recorded using the BURLAP [26] implementation of MLIRL algo-
rithm. Below are the mean and standard deviation of results recorded from multiple execu-

tions using both approaches with same MDP model and demonstrations.

47

Figure 6.1: The graphical user interface for grid world environment used to demonstrate
our approach. The gray circle is an agent exploring the 5 x 5 grid. Each different color grid
represents a unique cost of reaching to that state. The agent tries to learn the cost associated
each grid using the expert’s trajectories.

Table 6.1 shows the mean and standard deviations of learned feature weights and cor-
responding maximum log-likelihood values generated using MLMFIRL and MLIRL algo-
rithms. To analyze the results, we compare the mean maximum log-likelihood values of both
the approaches. For MLMFIRL, the mean maximum log-likelihood value is —9170.868 with
a standard deviation of 195.940. For MLIRL, the mean maximum log-likelihood value is
—24142.833 with a standard deviation of 1338.954. Hence within a fixed number of itera-
tions, MLMFIRL not only outperforms MLIRL but also produces more consistent results.

The ideal maximum log-likelihood value is expected to be 0. Here, the main reason for get-
ting high log-likelihood values is because the trajectories we produced does not corresponds
to an ideal behavior. We randomly move the agent on grids to produce the trajectories. If
we use all the trajectories demonstrating the same behavior, we get lucky to achieve ideal
results.

We have analyzed the results using descriptive statistics like mean and standard deviation
that describes the results but gives no clue about the significance of results. Hence, we can

not generalize the results. We here use another statistical approach known as T-Test to get

48

Learned feature weight vector Maximum
Approach 0 = (01, 0,,05,04,05) log-likelihood
Mean + Standard Deviation Mean + St. Dev.

Model-Free | (—20.979 4+ 0.491, —15.370 4 0.244, —15.488 + 0.176, | —9170.868 + 195.941

MLIRL —14.740 £ 0.134, —14.381 + 0.212)
Model-based (—31.809 4+ 0.530, —20.710 £ 10.999, —24142.883 £ 1338.954
MLIRL —12.010 £ 10.115, —8.068 £ 2.535, —16.073 £ 17.406)

Table 6.1: Comparison of learned feature weights and corresponding maximum log-likelihood
values of trajectories for grid world domain using MF-MLIRL and MLIRL algorithms.

the inferential significance of our results. Inferential statistical approaches not only describes
our data but also generalizes the results.

Each T-Test has a p-value attached to it. P-value is the probability that the pattern
produced by our data could be produced by random data. If p < 0.05, results are consid-
ered significant. We applied the T-Test to the set of log-likelihood values recorded using
MLMFIRL and MLIRL approaches. The resultant p-value was:

p = 0.00000000005914

Since the p-value was less than 0.05, we conclude that the MLMFIRL approach produces

significantly better results than MLIRL approach.

6.2 FREEWAY MERGING PROBLEM

To solve the freeway merging problem, we model the environment and use the extracted
NGSIM dataset as illustrated in Chapter 5. Below is the complete details of the experimental

setup.

e MDP:< S, A,y > = < 1250,5,0.99 >

e Features ® = {¢1, o, 3}

49

Learned feature weight vector Maximum
Approach 0= (01,04, 03) log-likelihood
Mean + Standard Deviation Mean =+ St. Dev.
MF-MLIRL | (0.845 £ 0.093,7.975 £+ 0.103,0.297 £ 0.180) —47194.575 4+ 0.699
MLIRL (1.525 4+ 0.052,17.063 £ 0.508,0.062 £ 0.055) | —51055.275 + 284.681

Table 6.2: Comparison of learned feature weights and corresponding maximum log-likelihood
values of trajectories for the freeway merging domain using model-free and model-based
algorithms.

T = {C,C, .., Ca60}, i.e. set of 260 expert’s trajectory extracted from 1-80 NGSIM

dataset.

Boltzmann temperature, § = 0.01

e Learning rate for Q-Averaging, o = 0.1

Variable step size for gradient ascent.

We used the same setup and the same trajectories to learn the preference models of real
drivers of vehicle A on the freeway using two different IRL approaches, modeled MLIRL and
model-free MLMFIRL. We recorded our results, below, followed by detailed comparison.

Table 6.2 exhibits the learned feature weights and corresponding maximum log-likelihood
values of trajectories using our model-free IRL approach and previously existing MLIRL
approach. The mean maximum log-likelihood value for MLMFIRL over multiple executions
is —47194.575 with a standard deviation of 0.699. However, the mean maximum log-likelihood
value for MLIRL is —51055.275 with a standard deviation of 284.681 which is less than that
of MLMFIRL and more varied.

Despite the fact that our approach does not produce ideal log-likelihood, the figures are
better than what we get from MLIRL. Also, our model-free approach is more reliable as

the learning procedure of transition function for freeway merging domain is questionable.

20

Figure 77 illustrates the algorithm we used to learn the transition model of freeway merging
domain which uses sampling method which is not ideal in the environment of human drivers.
Also, learning the transition function using limited trajectories for sampling could be highly
inaccurate.

We applied T-Test to samples of log-likelihood values received using MLMFIRL and

MLIRL approaches. The resultant p-values was:

p = 0.000000083894

Since the p-value was less than 0.05, we conclude that the MLMFIRL approach produces

significantly better results than MLIRL approach.

Algorithm 2 State Transition Probability
1: for trajectory in all trajectories do

2: for t in trajectory do
3 s <— current state if trajectory|t][state]
4 for a in all actions do
5: s« sample 100 next states with SampleNextState(t,a)
6 vf[s,a,s'] « visitation frequency of s, a, s’
7 end for
8 for a in all actions do
9: for s’ in all states do
10: tp(s,a,s") < vf(s,a,s")/sum(vf[s,a,:])
11: end for
12: end for
13: end for
14: end for

15: return itp
SampleNextState(t,a)

16: s < trajectories|t][state]

17: s « trajectories[t+1][state]

18: a < a + Noise

19: §'[vac] < slvac] +ax0.1

20: return s

The State Transition Probability algorithm is used to recover the transition model
of freeway merging problem domain using NGSIM I-80 vehicle trajectories. To recover

the unknown state transition model, we traverse through all the states in each trajectory

o1

sequence. At each time step in a trajectory, we take the current state and we sample 100
next states for each action executed from current step. We then record the number of tran-
sition of (s, a, s") tuple as visitation frequency of the resultant next state. Once we have the
visitation frequencies of all next states from each current state in state space and each action
in action space, we calculate the transition probabilities for each (s,a,s’) by normalizing
their visitation frequencies. The next steps are sampled based on motion model calculation

in probabilistic robotics[23].

6.3 QUALITATIVE EVALUATION

To reinforce the validity of our approach we also performed few supplementary experiments
where the output was deterministic. The variation of experiments was carried on the type
of trajectories given as input. We first categorized the trajectories into sets with drivers of
vehicle A demonstrating the similar behavior in each set. Then, we used our MLMFIRL
approach to learn the behavior using similar demonstrations and analyzed the results. Also,
we used the same set of results and tried to learn the expert’s behavior using MLIRL approach
and compared the results with our approach. All the trajectories used for qualitative evalu-

ation are extracted from NGSIM I-80 freeway dataset.

EvAaLuaTION 1

In the first evaluation, we focused on trajectories where drivers of vehicle A prefers to demon-
strate safe driving behavior, i.e. maintaining enough distance from the preceding car and not
accelerating. We selected the trajectories that signify safe behavior, even when the driver
detects vehicle B as a truck. When the distance from preceding car is too long we found few
time steps where vehicle A does accelerates, but the majority of times it prefers being safe.

The first set of column in Table 6.3 shows the learned feature weights and corresponding
maximum log-likelihood using MLMFIRL and MLIRL approaches. Here we analyze the

results at two-fold. First, the feature weights corresponding to safe driving feature dominates

52

Learned feature weight vector Maximum
Approach = (01,05, 03) log-likelihood
Mean + Standard Deviation Mean + St. Dev.
QE | ME-MLIRL | (5.955 £ 0.001, 0.527 £ 0.00, 2.814 £+ 0.001) —2314.667 + 0.003
I MLIRL (10.250 + 0.392,6.724 + 0.304, 8.909 + 0.667) | —2557.134 + 3.238
QE | ME-MLIRL | (8.472 £ 0.386, 86.798 £ 0.008, 9.508 £+ 0.225) | —428.822 + 0.034
II MLIRL (7.792 +0.275,87.719 + 6.085,13.103 £+ 0.488) | —546.791 4+ 3.162
QE | ME-MLIRL | (0.659 4 0.292,20.729 + 0.004, 22.809 + 0.011) | —704.670 £ 0.041
I11 MLIRL (0.998 +0.387,19.174 + 1.828,29.025 + 1.929) | —821.379 4+ 5.735

Table 6.3: Qualitative evaluation results for MF-MLIRL and MLIRL. QE I corresponds to
trajectories demonstrating safe driving. QE II includes trajectories where drivers tend to
accelerate in order to reach the destination quickly. QE IIT is modeling the preferences of
drivers when vehicle B is a truck.

the other weights, i.e. the trajectories demonstrate the safe driving behavior. Second, the

MLMFIRL approach generates better maximum log-likelihood values than MLIRL approach.

EvarLuaTion 11

In the second evaluation, we tried to learn the behavior of drivers using trajectories demon-
strating the preference of accelerating in order to reach the destination on time. These
trajectories correspond to our second feature, i.e. travel time. Since we used the real drivers’
data, finding the trajectories with accelerating actions for each time steps was unrealistic.
Hence, we preferred those trajectories that most fit the behavior.

On analyzing the results from the middle rows of Table 6.3, the feature weight values
corresponding to the second feature, i.e. travel time to reach the destination is higher than
the other feature weights (as expected). Also, the maximum log-likelihood value for this set

of trajectories is better in case of MLMFIRL than MLIRL.

93

EvarLuation III

In our third evaluation, we modeled the preferences of vehicle A’s drivers when they detect
vehicle B as a truck. This evaluation is important as the driving preferences of drivers usually
changes when the merging vehicle is a big truck. Drivers tend to accelerate and go ahead of
big vehicles.

The last set of columns in Table 6.3 shows the learned feature weights and corresponding
maximum log-likelihood for the third set of trajectories using MLMFIRL and MLIRL
approaches. As the previous two, here also we analyze the results at two-fold. First, the
feature weights corresponding to the third feature, i.e. the type of vehicle B dominates the
other two feature weights. Also, as expected the feature weights corresponding to acceler-
ation is higher than the safe driving feature. Second, the MLMFIRL approach generates

better maximum log-likelihood values than MLIRL approach.

6.4 SUMMARY

In this chapter, we practically evaluated our model-free MLMFIRL approach for both grid
world toy problem domain and the real-world freeway merging problem domain. The results
from both the domain were remarkable. We also evaluated our approach using some special
test trajectories for a deeper understanding of its functionality. The comparisons illustrated
above infers that our approach is better than MLIRL and also more reliable for environments

with unknown transition model.

o4

CHAPTER 7

CoNcLUSION AND FUTURE WORK

In this thesis, we propose a novel inverse reinforcement learning approach to resolve the
issues of existing techniques. Learning the behavior of an expert with complete knowledge
of the environment has been solved in contemporary literature. Here, we successfully learn
the behavior of expert with only partial knowledge of its environment. For real-world envi-
ronments, like the one we discussed, it is not easy to learn the transition model accurately.
Our solution entirely eliminates the dependency on the transition function from learning
via an expert’s trajectories, making the approach model-free. In order to accomplish our
desired goal, we apply some renowned techniques including maximum likelihood estimation,
Q-learning, and gradient ascent. Additionally, to address some mathematical challenges, we
introduced some alterations in canonical approaches and justified them.

We showed that MLMFIRL is effective in recovering the expert’s reward, even with a
limited number of expert’s trajectories, outperforming existing IRL algorithm in a grid-world
environment. The Q-values for each state-action pair in trajectory set is calculated using
the Q-Averaging technique which is then used to produce the optimal action probabilities
using the Boltzmann policy exploration technique. We used gradient ascent to iteratively
update the feature weight values in the direction of the gradient of the log-likelihood of
expert’s trajectory. To summarize, the MLMFIRL algorithm is simple, easy to implement,
time efficient and even space efficient.

MLMFIRL demonstrates promising results for the freeway merging problem domain using
the NGSIM [-80 dataset. The learned model can be used in self-driving cars to make an

optimal decision about when to merge by monitoring behavior of cars on rightmost lane of

95

the freeway. The evaluation and comparison of results with other contemporary techniques
are significant. Using MLMFIRL, we are not only able to produce better learning results but
also more reliable results from a limited number of trajectories.

Future work may include implementing the MLMFIRL approach with other optimization
techniques which do not require differentiating the likelihood function. This will allow the
use of conventional QQ-learning with the “max” operator. Additionally, an avenue may be to
replace the “max” operator entirely.

We described the MLMFIRL algorithm for a single expert setting. It would be interesting
to predict the behavior in presence of multiple agents. Modeling of a multi-agent environment
and their interaction with other experts in the environment might lead to better learning of
behavior.

In experimental settings, applying the MLMFIRL approach to a larger dataset collected
from different demographic locations is expected to yield even better results. Recent advance-
ments in the field of inverse reinforcement learning and maximum likelihood estimation can

be integrated to make the algorithm more efficient and scalable.

o6

BIBLIOGRAPHY

Babes, Monica, Vukosi Marivate, Kaushik Subramanian, and Michael L. Littman.
“Apprenticeship learning about multiple intentions.” In Proceedings of the 28th Interna-

tional Conference on Machine Learning (ICML-11), pp. 897-904. 2011.

Russell, Stuart. “Learning agents for uncertain environments.” In Proceedings of the

eleventh annual conference on Computational learning theory, pp. 101-103. ACM, 1998.

Ng, Andrew Y., and Stuart J. Russell. “Algorithms for inverse reinforcement learning.”

In Ieml, pp. 663-670. 2000.

Abbeel, Pieter, and Andrew Y. Ng. “Apprenticeship learning via inverse reinforce-
ment learning.” In Proceedings of the twenty-first international conference on Machine

learning, p. 1. ACM, 2004.

Boularias, Abdeslam, Oliver Krmer, and Jan Peters. “Structured apprenticeship

learning.” Machine Learning and Knowledge Discovery in Databases (2012): 227-242.

Ziebart, Brian D., Andrew L. Maas, J. Andrew Bagnell, and Anind K. Dey. “Maximum
Entropy Inverse Reinforcement Learning.” In AAAIL vol. 8, pp. 1433-1438. 2008.

Boularias, Abdeslam, Jens Kober, and Jan Peters. “Relative entropy inverse reinforce-
ment learning.” In Proceedings of the Fourteenth International Conference on Artificial

Intelligence and Statistics, pp. 182-189. 2011.

Ho, Jonathan, Jayesh Gupta, and Stefano Ermon. “Model-free imitation learning with
policy optimization.” In International Conference on Machine Learning, pp. 2760-2769.

2016.

57

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Ramachandran, Deepak, and Eyal Amir. “Bayesian inverse reinforcement learning.”

Urbana 51, no. 61801 (2007): 1-4.

Scholz, F. W. “Maximum likelihood estimation.” Encyclopedia of statistical sciences.

Wiley Online Library (1985).

Neu, Gergely, and Csaba Szepesvri. “Apprenticeship learning using inverse reinforce-
ment learning and gradient methods.” In Conference on Uncertainty in Artificial Intel-

ligence, pp. 31-46. 2007.

Choi, Jaedeug, and Kee-Eung Kim. “Inverse reinforcement learning in partially observ-

able environments.” Journal of Machine Learning Research 12, no. Mar (2011): 691-730.

Peters, Jan, Katharina Mlling, and Yasemin Altun. “Relative Entropy Policy Search.”
In AAAI pp. 1607-1612. 2010.

Dudk, Miroslav, and Robert E. Schapire. “Maximum entropy distribution estimation

with generalized regularization.” In Proc. COLT, pp. 123-138. 2006.

Choi, Jaedeug, and Kee-Fung Kim. “Nonparametric Bayesian inverse reinforcement
learning for multiple reward functions.” In Advances in Neural Information Processing

Systems, pp. 305-313. 2012.

Lopes, Manuel, Francisco Melo, and Luis Montesano. “Active learning for reward esti-
mation in inverse reinforcement learning.” In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pp. 31-46. Springer, Berlin, Heidel-
berg, 2009.

Shahryari, Shervin. “Inverse reinforcement learning under noisy observations (Robust

IRL).” Masters’ Thesis, The University of Georgia. 2016.

Das, Indrajit. “Inverse reinforcement learning of risk-sensitive utility.” Masters’ Thesis,

The University of Georgia. 2016.

o8

[19]

[20]

[21]

[22]

23]

[24]

Watkins, Christopher JCH, and Peter Dayan. “Q-learning.” Machine learning 8, no. 3-4

(1992): 279-292.

Russell, Stuart, and Peter Norvig. Artificial Intelligence: A modern approach, third
edition.Upper Saddle River (2010).

Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. Vol.

1, no. 1. Cambridge: MIT press, 1998.

Puterman, Martin L. Markov decision processes: discrete stochastic dynamic program-

ming. John Wiley & Sons, 2014.

Thrun, Sebastian. “Probabilistic robotics.” Communications of the ACM 45, no. 3

(2002): 52-57.

United State Department of Transportation (US DOT).“Fact sheet Interstate-80

freeway dataset.” Federal HighWay Administration(FHWA), 2006.

Federal HighWay Administration(FHWA).“Vehicle Trajectory File Data Dictionary.”

Neat Generation Simulation (NGSIM) Program, 2006.

MacGlashan, James. “The Brown-UMBC Reinforcement Learning and Planning
(BURLAP).” Brown University, University of Maryland, Baltimore County, August

2017. http://burlap.cs.brown.edu/

29

APPENDIX A

NGSIM I-80 DATASET

As described in Section 5.2.2, I-80 dataset was collected under NGSIM program by FHWA in
2005 using seven synchronized digital cameras. The recoded video data was then transcribed
into vehicle trajectory data using NG-VIDEQ, a customized software application developed
for NGSIM program. Below are few snapshots of transcribed I-80 freeway merging dataset.

The complete NGSIM [-80 dataset consists of approximately 4.5 million rows. Each row
is a unique combination of 14 columns. We illustrate the detailed significance of each column

values in Section 5.2.2.

1 13 884 1113433136200 16,5938 45.463 6042842.012 2133118.5%09% 14.3 6.4 2 12.50 0.00 2 0 0 0.00 0.00
1 14 884 1113433136300 16,991 50.712 6042841.508 2133120.155 14.3 6.4 2 1z.50 0.00 Z 0 0 0.00 0.00
1 15 884 1113433136400 17.045 51.963 6042841.805 2133121.402 14.3 6.4 2 1z.50 0.00 Z 0 0 0.00 0.00
1 16 884 1113433136500 17.098 53.213 6042841.701 2133122.649 14.3 6.4 2 12.50 0.00 =2 0 0 0.00 0.00
1 17 884 1113433136600 17.151 54.463 6042841.597 2133123.895 14.3 6.4 2 12.4% -0.09 =2] 0 0.00 0.00
1 18 884 1113433136700 17.204 55.712 6042841.493 2133125.142 14.3 6.4 I 12.48 -0.08 =% 0 0 0.00 0.00
1 19 884 1113433136800 17.257 56.956 6042841.38% 2133126.38% 14.3 6.4 I 12.52 0.55 =2 0 0 0.00 0.00
1 20 884 1113433136900 17.330 58.19% 6042841.306 2133127.628 14.3 6.4 2 1zZ.e7 2.Z1 Z 0 0 0.00 0.00
1 21 884 1113433137000 17.289 59.463 6042841.107 2133128.871 14.3 6.4 2 13.00 4.43 =2 0 0 0.00 0.00
1 22 884 1113433137100 17.197 60.776 €042840.852 2133130.155 14.3 6.4 2 13.45% 5.64 2] 0 0.00 0.00
1 23 884 1113433137200 17.027 62.157 €042840.510 2133131.507 14.3 6.4 2 13.98 4.77 2 0 0 0.00 0.00
1 24 884 1113433137300 16.863 63.592 6042840.166 2133132.522 14.3 6.4 2 14.36 2.84 2 0 0 0.00 0.00
1 25 884 1113433137400 1e.752 65.054 6042839.872 2133134.362 14.3 6.4 2 14.58 1.17 =2 0 0 0.00 0.00
1 26 884 1113433137500 16.731 66.526 €042839.670 2133135.799 14.3 6.4 2 14.64 0.08 =2 0 0 0.00 0.00
1 27 884 1113433137600 le.682 67.953 €042839.442 2133137.232 14.3 6.4 2 14.62 -0.40 2 0 0 0.00 0.00
1 28 884 1113433137700 le.632 69.455 €042839.214 2133138.€65 14.3 6.4 2 14.5% -0.54 2 0 0 0.00 0.00
1 2% 884 1113433137800 16.583 70.913 6042838.5987 2133140.098 14.3 6.4 2 14.52 -0.65% = 0 0 0.00 0.00
1 30 884 1113433137900 1e.328 72.367 6042838.733 2133141.53% 14.3 6.4 I 14.38 -1.71 = 0 0 0.00 0.00
1 31 884 1113433138000 16.478 73.80% 6042838.525 2133142.971 14.3 6.4 I 14.13 -3.49 = 0 0 0.00 0.00
1 32 884 1113433138100 16.453 75.210 6042838.328 2133144.363 14.3 6.4 2 13.75 -4.36 = 0 0 0.00 0.00
1 33 884 1113433138200 le. 462 76.559 6042838.171 2133145.69% 14.3 6.4 2 13.37 -3.51 =] 0 0.00 0.00
1 34 884 1113433138300 16,4595 77.867 6042838.044 2133146.593 14.3 6.4 I 13.11 -1.72 = 0 0 0.00 0.00
1 35 884 1113433138400 16.334 79.159% 6042837.524 2133148.279% 14.3 6.4 I 13.00 -0.30 Z 0 0 0.00 0.00
1 36 884 1113433138500 16.367 80.454 6042837.797 2133149.573 14.3 6.4 2 12.98 0.1e 2 0 0 0.00 0.00
1 37 884 1113433138600 16.601 81.754 €042837.671 2133150.867 14.3 6.4 2 13.00 0.07 2 0 0 0.00 0.00
1 38 884 1113433138700 1e.634 83.054 €042837.544 2133152.162 14.3 6.4 2 13.00 0.00 2] 0 0.00 0.00
1 3% 884 1113433138800 16.667 84.354 6042837.417 2133153.456 14.3 6.4 2 13.00 0.00 2 0 0 0.00 0.00
1 40 884 1113433138500 1e.701 85.654 6042837.251 2133154.750 14.3 6.4 2 13.00 0.00 2 0 0 0.00 0.00
1 41 884 111343313%000 16.734 86.954 6042837.164 2133156.044 14.3 6.4 2 13.00 0.00 2 0 0 0.00 0.00
1 42 884 1113433139100 16.767 88.254 €042837.037 2133157.339 14.3 6.4 2 13.00 0.00 2 0 0 0.00 0.00
1 43 884 1113433135200 1e.801 89.554 €042836.511 2133158.6€33 14.3 6.4 2 13.00 0.00 2] 0 0.00 0.00
1 44 884 1113433139300 1e.834 50.854 €042836.784 2133159.527 14.3 6.4 2 13.00 0.00 2 0 0 0.00 0.00

60

N T Y e T Y N Y N T S Y T NV Y N Y N S SN

1586
1886
1986
1986
198¢
198¢
1986
1886
1586
1986
198¢
198¢
1986
1886
1586
1986
198¢
198¢
198¢
1987
1587
1987
1587
1587
1587
1587
1587
1587
1587
1587
1587

306

308
310
311
312
313
314
313
31e
317
318
318

7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7154
7185
7196
7197
7198
7199
7200
6353
6354
6355
6356
6357
6358
63595
6360
6361
6362
6363
6364

749
749
749
749
749
749
749
749
749
749
749
749
749
749
749
749
749
749
749
749
749
749
749
749
749
749
749
749
749
749
749
749

1202
1202
1202
1202
120z
120z
1202
1202
1202
1202
120z
120z
1202
1202
1202
1202
120z
120z
120z
366
366
366
366
366
366
366
366
366
366
366
366

1113433163700
1113433163800
1113433163500
1113433164000
1113433164100
1113433164200
1113433164300
1113433164400
1113433164500
1113433164600
1113433164700
1113433164800
1113433164500
1113433165000
1113433165100
1113433165200
1113433165300
1113433165400
1113433165500
1113433165600
1113433165700
1113433165800
1113433165900
1113433166000
1113433166100
1113433166200
1113433166300
1113433166400
1113433166500
1113433166600
1113433166700
1113433166800

1113437485100
1113437485200
1113437485300
1113437485400
1113437485500
1113437485600
1113437485700
1113437485800
1113437485500
1113437486000
1113437486100
1113437486200
1113437486300
1113437486400
1113437486500
1113437486600
1113437486700
1113437486800
1113437486900
1113437402200
1113437402300
1113437402400
1113437402500
1113437402600
1113437402700
1113437402800
1113437402500
1113437403000
1113437403100
1113437403200
1113437403300

52.
52,
52.
52,
52.
53.
53.
53.
53.
53.
53.
53.
53.
53.
53.
53.
53.
53.
53.
53.
53.
53.
53.
53.
53.
53.
53.
53.
53.
53.
53.
53.

30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.

oo o oy oy Y R Oh R O oY o

101
109
118
125

.40z

301.
301,
301.
301,
3anl.
302.
a0z,
302.
a0z,
303.
303.

303
303
303
303

3a04.
304.

305

305.

306
306

306.

306
307

307.

307
308
308

308.

309

310.

310

1638.
1635,
1640,
leal.
le4z.
1643,
le44.
1645,
1646,
1647,
le4a.
1649,
1650.
1651,
1652,
1633,
1654,
1655,
1656,
6l.
65.
70.
74.
79.
84.
8s.
53.
58.
103.
108.
113.

6042846,
6042846,
6042846,
6042846,
6042846,
6042846.
6042846,
6042846.
6042846,
6042846.
6042846,
6042846,
6042846,
6042846,
.03z
.087
6042847,
.051
6042846.
6042846,
6042846.
6042846,
6042846.
6042846,
6042846,
6042846,
6042846,
6042846,
6042846,
6042846.
6042846,
6042846.

6042847
6042847

6042847

6042632

6042631,
6042631,
6042631.
6042631,
6042631,
6042631,
6042630,
6042630,
6042630,
6042630,
6042630,
6042630.
6042630,
6042625,
6042629,
6042625,
6042625,
6042625,
6042830,
6042825,
6042829,
6042828.
.038

.422

6042828
6042827

6042826,
6042826,
6042825,
6042824,
.298

6042824

6042823,

483
457
518
618
782
857
898
838
814
196
174
731
781
fee

123

982
521
a8l
863
845
806
744
679
618
557
495
408
419
462

.050

k1
742
587
433
278
124
870
815
66l
507
352
198
044
889
735
580
426
272
3le
762
146
633

791
168
544
521

674

2133373

2133373,
2133373.
2133373,
2133373,
2133373.
2133374.
2133374.
2133374.
2133374.
2133374.
2133375.
2133375.
2133375.
2133375,
2133375,
2133376,
2133376,
2133377.
2133377.
2133378.
2133378.
2133378.
2133378.
2133375,
2133375,
2133380.
2133380.
2133381,
2133381.
2133382,
213338Z.

2134654

2134655,
2134656,
2134657,
21346598,
2134699,
2134700.
2134701.
2134702,
2134703.
2134704,
2134705,
2134706.
2134707.
2134708.
2134709,
2134710.
2134711.
2134712,
2133128,
2133133,
2133138.
2133142,

2133147

2133152,

2133157

21331el.
2133166,

2133171
213317¢
2133180

61

.495

.466
189
.018
778
549
.319
.090
.86l

13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.

13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.

T Y N S A Y S N Y Y - T T T Y S Y At Y A N N N S S S

LI L3 L) G W W G L L L L L) 0D 00 O3 00 00 D 0D OO OO D OO OO 0D 00 0D 0D o0 oo oo

P e T T T T L L . e JEC [P IR I e B T R e i i i |
Lo La LD 0 W W W W W W W W W W W W W W W W W W W

L n LN N Ln R L1 N 6N N N n Kn Ln KRN LN G L0 nKnLnknLnLnGnnnen
W Wow W W W www wwwowwwwwi wwwwwiwwwwww

[T T O O O N O N N O RO 1 S T 06 00 N O 6 R N T R (R S (O R R (- RN R S R R S R)

[T T O S R Y N U O U U O U0 T U0 O 0 O 0 T 0 S S0 B S B R R R G 15 16 SO0 N (6 T (T (6 I I O Y

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
48.
48.
48.
48.
48.
48.
48.
48.
48.
48.
48.
48.

[BT N e R B T B N e O I T e e e R B S R R R S =)

|
Lo
@ o

| |
(== I, R R At}

=]

=]

R R P S

.00
.00
.00
.03
.91
.71
.86
.09
.84
.56
.28
.05
.48
.32

16

.57
.70
.76
.45
.70
.05

24

.74
.63
.64
.37
.06
.05
.05
.15
.11

.00
.29
.54

26
27
54
25
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
63
40

.46
.38
.00
.05
.04

(LN BT BT T BT T T B, B Y I B B B B BT B B Y T R T B B T RS B Y I T]

o e D D) b W W W W W W L) L D))) W

21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21

= = =T = R N = N N =N =]

=1

1977
1977
1977
1977
1977
1977
1977
1977
1977
1977
1977
1977

27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27

2

)
L R R I = R = I =T =R R R R R R R R R)

269.
268.
269.
269.
269.
269.
268.
.74

268

Z68.
Z68.
.71

268

.32
LE1
.85
.18
.24
.27
.38
.56
W67
.11
]
.81
.21
.56

.89

.52
.54

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.9z

01
63
30
04
08
o0
50

61
60

5959,
5999.
5959,

N ot non ok ot ey o

L R R Y R R R R R = = i i R R R R R =R =R =T =1

.70

.85
.24
.16
.64

49
06
45
59
65
€5

.53

39
45
81
83
31
1z
11
11
10
10

00
o0
00
00
00
00
00
o0
o0
00
00
00
00
o0
o0
00
00
00
00
&0
60
59
61
60
60
57
58
58
58
58
59

2029
2029
2028
2029
2029
2029
2029
2029
2028
2029
2029
2029
2029
2029
2028
2029
2029
2029
2029
2029
2029
2029
2029
2029
2029
2029
2029
2029
2029
2029
2029

3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366

6899
6900
6501
6902
6503
6904
6905
6906
6907
6908
6509
6910
6911
6912
6513
6914
6915
6916
6917
6918
6919
6520
6521
6922
6923
6924
6925
6526
6927
6928
6929

3177
3178
3179
3180
3181
3182
3183
3184
3185
3lse
3187
3188
3189
31%0
3151
3192
3193
3154
3195
31%¢
3197
3198
3199
3200
3201
3zoz2
3203
3204
3205
3206
3207

291
291
291
291
291
291
291
291
291
291
291
291
291
291
291
291
291
291
291
291
291
291
291
291
291
291
291
291
291
291
291

1113437456800
1113437456900
1113437457000
1113437457100
1113437457200
1113437457300
1113437457400
1113437457500
1113437457600
1113437457700
1113437457800
1113437457900
1113437458000
1113437458100
1113437458200
1113437458300
1113437458400
1113437458500
1113437458600
1113437458700
1113437458800
1113437458500
1113437459000
1113437459100
1113437459200
1113437459300
1113437459400
1113437459500
1113437459600
1113437459700
1113437459800

1113433452600
1113433452700
1113433452800
1113433452500
1113433453000
1113433453100
1113433453200
1113433453300
1113433453400
1113433453500
1113433453600
1113433453700
1113433453800
1113433453900
1113433454000
1113433454100
1113433454200
1113433454300
1113433454400
1113433454500
1113433454600
1113433454700
1113433454800
1113433454500
1113433455000
1113433455100
1113433455200
1113433455300
1113433455400
1113433455500
1113433455600

40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.
40.

31D 13 1) W oW L W L L L W L W W W W W W W W L L L W W W WL

943
942
943
943
943
943
943
942
943
942
942
942
942
942
942
942
942
942
941
941
941
941
941
941
941
941
941
941
940
944
950

589.
590.
§91.
.318

993.

594.

§95.

g%6.

897.

998.

999.
1000.
1001.
1002.
1003.
1005.
1006.
1007.
1008.
1009.
1010.
1011.
101z,
1013.
1014.
101e.
1017.
1018.
101%.
1020.
1021.

992

1318.
1325.
1331.
1337.
1343.
13459,
1355.
1361,
1367.
1373.
1378,
1385.
13981.
1397.
1403.
1409.
1415.
1421.
1427.
1433.
1439,
1445.
1452,
1458.
1464.
1470.
147¢6.
1483.
1480.
14%6.
1502,

790

481

182
112
132
218

6042745,
6042745,
6042745,
6042745.
6042745.
6042745,
.881
.718
.554
.391
.229

.067

6042744
6042744
6042744
6042744
6042744
6042744

6042743,
6042743,
6042743,
6042743,
6042743.
6042743,
6042742,
.768

6042742

6042742,
.443
.281

6042742
6042742

6042742,
6042741.
6042741.
6042741,
6042741,
6042741,
6042741,
6042740.

6042656,
6042655,
.BE8

6042654

6042653,
6042652,
6042651,
6042650.
6042645,
6042648,
6042647,
.010
6042646,
6042645,
.063

6042647

6042644

6042643,
.091

6042642

6042641,
6042640.
6042635,
.089
.098

6042638
6042637

6042636,
6042635.
.080

6042634

6042633,
6042632,
6042631,
60426259,
6042628,
.88
6042626,

6042627

668
542
417
254
169
03z

504
742
580
417
255
093
530

605

118
537
750
618
441
262
085
508

83z
850

:3:1
903
921
939
957
973
992

028
046

081

146
103
081

153
110

117
102
048
985
929

825

2134053,
2134056,
2134057.
2134057.
2134058.
2134058.
2134060.
2134061.
2134062,
2134063,
21340865,
2134066.
2134067.
2134068.
2134065.
2134070.
2134071,
2134072,
2134073,
2134074,
2134075.
2134077.
2134078.
2134079,
2134080.
2134081.
2134082,
2134083,
2134084.
2134086.
2134087.

2134375.
2134381.
.314
2134393,
2134399,
2134405.
2134410.
2134416,
.829
2134428.
2134434,
2134440.
213444¢.
2134452,
2134458.
2134464,
2134470.
2134476,
2134482,
21344488.
2134494,
2134500.
2134506.
2134512,
2134518.
2134524,
2134530.
2134537.
2134543,
2134550.
2134556,

2134387

2134422

62

476
385

233
152
071
590
509

667
586

14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14

le.
le.
16.
1ée.
le.
16.
16.
le.
le.

16

1ée.

16

16.
16.
le.
le.
16.
1ée.
le.
16.
16.
le.
le.

16

1ée.

16

16.
16.
16.
16.
16.

GO D 0 o o D D 0D 0 00 00 0 60 0 0 60 60 OO D OO 00 O (0 00 6D 0D o0 D 60 oo oo

O M D 0D 0D 0O 0D OO0 0 0D 0D OO OO OO 0D 0D 0D 0D O 0 D 0D 00 03 OO OO 0 0 oD o0 oo

[- NS . N N - - . S S S M- M- SO M M- M- M- M- - . S M S S I - -

[I - I T . . S S T O O A)

LW W W W W WD W W W0 WO L0 L0 W LD WD WD W W W W W W LD LD LD LD LD WD WD WD

MDD WD WD WD WD WD LD LD WD WD WD WD WD LD LD WD LD WD WD WD LD LD D LD LD WD WD WD WD D

L3 02 L2 L3 L3 L3 L3 L) b3 L3 b3 b3 b3 b3 b3 b3 b3 L3 L3 L3 L3 L3 b3 b3 b3 b3 b3 b3 b3 L3 L3

T B B B T B B R R L (T (T (T R R N R T (T (S (N S SR ST S P (R SR

10.
10.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
10.
11.
11.
11.
11.
11.
11.
11.
11.
11.

60.
60.
60.
€0.
60.
59.
60.
60.
60.
60.
€0.
60.
60.
60.
.53
60.
63.
.35
61.
.53
60.
62.
59.
60.
.43
63.
.43
6.
.07
61.
.73

58

62

58

62

64

64

62

Wwow oo @ oo o

00
0o
00
00
00

03
04
01
00
00
00
13
36

92
45

94
EE]

=13

g1

47

-10.
-11.
-10.
11.
11.
-11.

11.
11.

-11.
-11.
10.
10.

A e T T T T S St N Y N A N R N A T T L A

el i el e e e e e e e e e e e el i el el S S S S e S S e S

2023
2023
z0z3
z0z3
z0z3
2023
2023
2023
2023
z0z3
z0z3
2023
2023
2023
2023
z0z3
z0z3
2023
2023
2023
2023
z0z3

977
977
977
977
977
977
977
977
977
977
977
977
977
977
977
977
977
977
977
977
977
977
977
977
977
977
977
977
977
977
977

2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036
2036

978
978
978
978
978
978
978
978
978
978
978
978
978
978
978
978
978
978
978
978
978
978
978
978
978
978
978
978
978
978
978

31.
3Z.
32
32
32
3z
3Z.
3z
32
32
32
3Z.
3Z.
3z
32
32
32
32
3z
3z
32.
3z,
32
32
3z
33.
33.
33.
33.
34.
34

130.
130.
131.
131.
131.
13z,
13z,
13z,
13z2.
13z,
133.
133.
133.
133.
133.
134
134.
134
135.
135.
135.
135.
135.
135.
135.
135.
135.
134
134
133.
13z,

95
14

.36
.57
.76
.68

91

.87
.81
.75
.70

65
60

.55
.50
.45
.41
.36
.31
.24

17
15

.23
.44
.74

05
32
57
85
16

.45

50
70
0z
45
96
31
53
65
a3
53

13
3z
57
88

.50

65

.78

0z
34
54
a7
36
75
73
62
36

.89
.01

53
84

[T T e T R O N O T O N 1 T (G T SO B S0 B SO S S0 N SR S R S R S B SR S S IS T SO T KO T SR SUR SUR SUR SR PR TR T

[T e T T S R O B O 10 T O O 0 N N 1 16 O 06 T (0 T (O O B S N U TN (S TN 16 N 6 Y S0 Y S S 16 S S S S T 5

LW WD WD 0D 0D WD WD WD WD LD LD LD LD WD WD WD WD WD WD WD WD WD D L N] D]

D = T T R S T B e B L Y S T S T T T T T IS T N Y S

