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ABSTRACT 

Two sets of molecular isomers, the iron monoisocyanide (FeNC) / iron monocyanide (FeCN) 

pair, and the hydroboron monoxide (HBO) / boron hydroxide (BOH) pair, are investigated with a 

variety of high-level ab initio techniques. The electronic structure of the FeNC and FeCN pair 

does not easily succumb to the coupled cluster ansatz, even when newly developed correlation-

consistent polarized valence iron basis sets and inclusion of perturbative or partial iterative triple 

excitations are included in the wave function. Due to disparities between the one-electron 

properties obtained with multireference configuration interaction (MRCI) and coupled cluster 

methods, the coupled cluster wave function could be considered inapplicable, at least at the 

currently tractable coupled cluster excitation level. 

 On the contrary, the accuracy of linear and bent ground state BOH MRCI geometries, 

dipole moments, and harmonic frequencies are spectacularly poor with a full valence active 

space, while coupled cluster methods perform well. Using a new variant of the equation-of-

motion coupled cluster (EOM-CC) method to include partial triple excitations within excited 

state wave functions, seven linear and nine bent excited states of HBO and BOH are 

characterized. Adiabatic and vertical transition energies of low-lying BOH states will guide an 



 

experimental hypothesis that BOH, which has not yet been synthesized in any form, may be a 

suitable high energy-density material. 
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CHAPTER 1 

AN INFORMAL INTRODUCTION AND A SHORT REVIEW OF ELECTRONIC 

STRUCTURE THEORY  
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LEARNING TO CRAWL, LEARNING TO WALK, LEARNING TO TYPE 

The goal of modern computational technology has endeavored towards “smaller, faster, and 

cheaper” functionality.1,2 Since it was coined in 1965, Moore’s Law, in which the number of 

transistors able to be fit on a single integrated circuit doubles every few years, has qualitatively 

held true.3 Though Moore’s Law is often oversimplified or paraphrased incorrectly for marketing 

aims,4,5 it is generally used as a testament of the computer industry’s continual growth and the 

imperturbable decline of computing costs.    

Until the 1980’s, computational chemistry had been primarily performed on mainframes 

owned by academic or government institutions, and computing time was shared among many 

principal scientists. The scientific history of these mainframes and their host research institutions 

is quite rich.1,6,7. Administration and maintenance of such massive electronics was costly at best 

and the portability, or the flexibility of code to run properly on different computer architectures 

without substantial modification, of ab initio software was non-existent.  

The use of mini-computers in computational chemistry was pioneered by Schaefer and Miller 

at the Lawrence Berkeley Laboratory (LBL) in the late 1970’s.8 Their new Datacraft 6024/4 

mini-computer would “sit comfortably in a 10 ft x 12 ft room” and cut the cost of computing 

time by one-sixth compared to that of the LBL-owned CDC 7600 mainframe. Increasing the 

visibility of cheaper computational chemistry, the benchmarks of Schaefer and Miller would 

slowly shift the trend towards research groups purchasing and maintaining their own 

computational resources.  

In July of 1985, Susan Colwell published an article under the direction of Prof. Nicholas C. 

Handy entitled “Quantum Chemistry on Microcomputers”.9 Loaned a PC XT from IBM, the 

Handy group modified the CADPAC (Cambridge Analytical Derivatives PACkage) FORTRAN 
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code to run self-consistent field (SCF) energy computations with the IBM PC disk operating 

system (DOS 2.0). This publication represented the first reported ab initio computation on a 

personal computer. Prof. Handy was confident that “the future was very rosy for computation 

because of the relatively good time performance on a PC, and the huge reduction in cost.” Handy 

would also soon assist Strure Nordholm on the MICROMOL software package, presumably the 

first portable ab initio microcomputer code.10  

An IBM PC XT would have also been in the DeYonker household in July 1985, shortly after 

my seventh birthday. In fact, the IBM PC XT would be the third microcomputer that my family 

had access to. My father worked for IBM for the majority of his professional career, and had 

procured personal computers through purchase, testing, or loan for almost my entire cognizant 

life. While I initially learned some BASIC programming, the microcomputer would serve more 

as a source of entertainment for most of my childhood. Still, educational and recreational PC 

software instilled within me a never-ending curiosity towards math, science, and technology. 

Little would I expect to cross paths with the authors of the “Quantum Chemistry on 

Microcomputers.”  

In August 2004, I was invited to attend a conference in honor of Prof. Handy’s retirement, 

dubbed “Molecular Quantum Mechanics: The No-Nonsense Path to Progress”. It was 

spearheaded by the first generation of quantum chemists with PCs at their disposal. Personal 

interactions with Prof. Handy and many of the elder quantum chemists bolstered my appreciation 

for having unfettered access to such powerful technology.  

As it might forever be a dominant area of ab initio development, the topic of electron 

correlation was frequently discussed at the Handy conference. The research contained in this 

dissertation is concerned with the electronic correlation problem, but has an unusual focus. 
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While popular post-Hartree-Fock methods used to determine electron correlation can be applied 

with confidence towards well-behaved molecules, these methods can occasionally contradict 

each other or fail to provide an acceptable level of accuracy for “pathological” systems. 

Understanding why the standard methods are inappropriate, accepting limitations of current 

theory, and providing the best possible characterization of these challenging systems is a task 

that quantum chemists do not often voluntarily undertake.  

 

DETERMINATION OF ELECTRONIC STRUCTURE  

 

This summarization of electronic structure methodology is by no means complete, and readers 

are encouraged to seek historical and technical details in numerous review articles and books.11-18 

Manipulation of the time-independent non-relativistic Schrödinger equation using quantum 

mechanics based solely on fundamental physical constants has largely followed the same 

formula since Boys initiated the development of configuration interaction (CI) methods.19 The 

Schrödinger equation,  

 ˆ εΨ = ΨH  (1.1) 

is an eigenvalue equation dependent on the relative position vectors of the N electrons (rij) and 

the M nuclei (RAB) of atomic number Z, as well as the nuclear-electronic distance (riA). 

By assuming the N electrons are traveling in a static nuclear field, the Born-Oppenheimer 

approximation,20 or the “clamped-nuclei” approximation is applied. Terms from the Hamiltonian 

that depended on RAB are eliminated or held constant, thus allowing separate determination of the 

nuclear and electronic wave function. The total Hamiltonian operator is now the sum of the 

electronic Hamiltonian,  
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whose terms are the electronic kinetic energy, the Coulombic electron-nuclear attraction, and the 

electronic repulsion, respectively, plus a constant nuclear repulsion term, 

 
M M

A B

A B AB

Z Z
R∑∑ . (1.3) 

As is well-known, only for small and / or highly constrained many-body systems can Eq. 

1.2 be solved exactly, due to the mathematical challenge of determining the inter-electronic 

distance, 1N N

i j i ijr>
∑∑ .21-25 The unfortunate underlying truth of quantum chemistry is that it is built 

upon several layers of approximation. Yet even the simplest approximations of the electronic 

wave function met with encouraging early success when compared to experimentally known 

results.13,26-29 The entire field of quantum chemistry has then thrived with the goal of 

systematically and rigorously improving the accuracy and efficiency of these approximations.  

As a starting point for molecular systems, one can take linear combinations of atomic 

orbitals (functions describing the radial character of one electron in the component atoms) in 

order to define molecular orbitals (MOs).30 Taking the Pauli exclusion principle into account, 

Slater determinants are written as possible antisymmetrized products of MOs, describing both 

the spin and spatial distribution of one-electron (χa).13,31,32 In terms of defined finite atomic 

orbital basis sets for all atoms in the molecular system, one can use chemical intuition to write 

the Slater determinant as the ground state wave function, resulting in the Hartree-Fock (HF) 

wave function, 

 1 2 1 2( ) ( ) ( ) ( )HF
n a b z nχ χ χΨ =x x x x x xK K . (1.4) 
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The wave function of Equation 1.4 is computed by diagonalizing a matrix of the HF 

antisymmetrized MO products, 

 

1 1 1

2 2 21/ 2

( ) ( ) ( )
( ) ( ) ( )

( !)

( ) ( )

a b N

a b NHF

a N N N

N

χ χ χ
χ χ χ

χ χ

−Ψ =

x x x
x x x

x x

K

M O

L

. (1.5) 

The eigenvectors of this matrix can be optimized with the iterative SCF method26,33 and then 

operated upon to obtain expectation values for the electronic energy and observable physical 

quantities of the system at a specified nuclear geometry. Solution of the optimal MO set follows 

the variational principle,  

 0
ˆHF HF εΨ Ψ ≥H  (1.6) 

where the expectation value of the Hamiltonian operating on the HF wave function is an upper 

bound to the exact electronic energy of the system.  

In order to optimize the MOs, they must be represented in a form that can be 

parameterized. The most computationally elegant depiction of MOs is obtained by expansion of 

contracted Gaussian-type atomic orbitals (CGTOs).34,35 The use of a finite CGTO basis set 

implies that the SCF solution to the wave function is only an approximation of the true infinite 

basis (also called the “complete basis set”) Hartree-Fock wave function. 

 

ELECTRON CORRELATION  

 

By employing the HF approximation, the Schrödinger equation is treated as a one-body problem 

and a vast simplification is built into the electronic structure problem. Of course, the electronic 

wave function is actually dependent on the motion of all N-electrons, and the many-body 
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interactions of all electrons within the system must be included. Though HF theory can 

essentially recover 95 – 99% of the total energy for a given atomic or molecular system, it is on 

the scale of the unaccounted energy that chemically significant phenomena such as bonding, 

vibrational and rotational interactions, molecular isomerization, and electronic excitations occur. 

In the 1950’s, deficiencies of the HF method were already well known and it became prudent to 

employ a linear combination of a larger set of Slater determinants, inclusive of the HF Slater 

determinant, and to optimize their relative contributions to the electronic wave function. 

Generally termed configuration interaction (CI),19,34,36 it was proven that if the 

coefficients of the entire set of Slater determinants were determined, then the time independent, 

non-relativistic electronic wave function would be exactly solved within the constraints of the 

chosen finite basis sets. Inclusion of all Slater determinants gives what is called the “full CI” 

wave function. Löwdin27 first defined the correlation energy as the difference between the full CI 

energy expectation value and the HF energy expectation value, 

  corr full CI HFε ε ε= − . (1.7) 

For N electrons, and 2K spin orbitals (basis functions), the number of possible Slater 

determinants and thus the size of the CI matrix can be determined by, 

 (2 )!
!(2 )!

K
N K N−

, (1.8) 

which is computationally feasible for a small (but growing) number of systems. Truncating the 

full CI wave function and optimizing a smaller set of the most “important” Slater determinants 

remains the best trade-off of computational tractability and wave function accuracy.  

 Correlated ab initio methods employing a trial molecular wave function are generally 

divided into three major categories: (1) a many-body perturbation correction to the HF wave 

function, (2) CI expansions (also including multi-configuration self-consistent field methods), 
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where a linear excitation operator is applied to generate a range of possible substitutions from the 

occupied MOs of the HF reference into the unoccupied orbital space,  

 0
r r rs rs rst rst

CI HF a a ab ab abc abc
ra a b a b c

r s r s t

c c c c
< < <
< < <

Ψ = Ψ + Ψ + Ψ + Ψ +∑ ∑ ∑ L , (1.9) 

and (3) coupled cluster expansions where products of substituted determinants are incorporated 

in the exponential “cluster” excitation operators in order to approximate the effects of higher-

order substitutions,    

 T̂
CC HFeΦ ≡ Ψ  (1.10) 

 
2 3

ˆ ˆ ˆˆ1
2! 3!

T T Te T= + + + +L . (1.11) 

 A consequence of truncating the CI / CC expansion of the electronic wave function is that 

two different types of electron correlation emerge. One type is the short-range interaction of 

electrons in a system, often called the “instantaneous interaction”.  The antisymmetric nature of 

the Hartree-Fock wave function subtly accounts for some of this short-range interaction because 

of the Pauli exclusion principle, as the wave function will become zero (called a “Fermi hole”) 

when two electrons with equivalent spin occupy the same spatial coordinates. However, the 

positions of electrons with opposite spin do not depend on each other. The instantaneous 

Coulombic repulsion of electrons with opposite spin can be grossly underestimated. If electrons 

are allowed to “jump” into unoccupied MOs of higher energy, there is a small, but finite chance 

that N-electrons can occupy the same region of space. By allowing occupation of these MOs 

(previously unoccupied in the HF approximation) some percentage of this new Slater 

determinant will contribute to the correlated wave function. It is expected that the kinetic energy 

of the system will get higher and the potential energy of the system will lower dramatically when 

two electrons are about to “collide”. It is the Virial Theorem that dictates an overall lowering of 
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the electronic energy when considering electron correlation, as the electronic potential energy is 

proportional to double the kinetic energy, 

 2 ( ) ( )T Vχ χ− =  (1.12). 

To summarize, inclusion of excited determinants (configurations) and the instantaneous 

interaction of electrons within them describes the electron dynamics. Our terminology is 

combined to conclude that the configuration interaction is solved for in order to recover the 

“dynamical correlation” of electrons in the system. 

 Sinanoğlu37 first proposed the second type of electron correlation, when multiple Slater 

determinants strongly contribute to the wave function, sometimes approaching or containing 

degeneracy with the zeroth-order HF approximation. This can occur in situations when one is 

trying to characterize bond-breaking, geometries near transition-states, molecules containing 

atoms with near-degenerate atomic orbitals, or excited electronic states. This effect is known as 

long-range correlation, often called “nondynamical” or “static” correlation. Atoms or molecules 

containing significant nondynamical correlation are often referred to as “multireference” 

systems. 

 

CHALLENGING SYSTEMS 

 

Highly developed since the humble beginnings as a hypothesis of Sinanoğlu38 and its first 

implementations in modern form by Čížek and Paldus,39-41 coupled cluster algorithms are 

generally regarded as recovering the most dynamical correlation energy for the computational 

time required, while also adhering to the notion of wave function “size consistency”.42 The most 

useful forms of the coupled cluster equations are the coupled cluster singles and doubles (CCSD) 



 10

equations first derived by Purvis and Bartlett,43 and the perturbative triples correction [CCSD(T)] 

formalized by Raghavachari et al.44 Due to its success, speed, and accuracy level, the CCSD(T) 

method has often been dubbed the “gold-standard” of ab initio quantum chemistry. Interested 

readers are recommended more complete reviews of coupled cluster theory and 

applications.17,45-47 

As the coupled cluster expansion eventually reaches the full CI limit of the exact wave 

function, it has been shown that single-reference dynamically-correlated coupled cluster methods 

can also indirectly account for some nondynamical correlation when a high enough excitation 

level is utilized. An excellent example of this has been studies of ozone, a rather pesky 

multireference molecule.48-53 A transition-metal complex with multiple-bonded ligand species 

may present even larger dynamical and nondynamical correlation effects. Contrary to ozone, the 

coupled cluster wave function may fail in such a situation, even when using large basis sets and 

high orders of reference wave function excitation. A method that explicitly determines both 

dynamical and nondynamical correlation such as multireference configuration interaction 

(MRCI) must be employed.12,15,54 However, for very difficult systems, the amount of dynamical 

correlation recovered by MRCI methods might not be nearly enough to accurately quantify 

excitation energies and spectroscopic properties. An example of this situation is presented; the 

isomeric pair of iron monoisocyanide and iron monocyanide (FeNC / FeCN).  

Coupled cluster methods perform quite well in characterizing ground and excited 

electronic states of hydroboron monoxide and boron hydroxide (HBO / BOH). General quantum 

chemical intuition would lead one to believe that the ground states of this molecular pair would 

also be accurately described by the MRCI methods. Surprisingly, the MRCI wave functions of 

BOH and HBO are severely affected by active space problems, and a careful, non-“black box” 
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approach must be taken in order to unravel the mysteries of this deceptively complex system 

using multireference methods.  
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ABSTRACT 

With several levels of multireference and restricted open-shell single-reference electronic 

structure theory, optimum structures, relative energetics, and spectroscopic properties of the low-

lying 6∆,4∆, 4Π, 6Π, and 4Σ− states of linear FeNC and FeCN have been investigated using five 

contracted Gaussian basis sets ranging from Fe[10s8p3d], C/N[4s2p1d] to Fe[6s8p6d3f2g1h], 

C/N[6s5p4d3f2g]. Based on cc-pVQZ MRCISD+Q results appended with core correlation and 

relativistic corrections, we propose the relative energies: Te(FeNC), 6∆ (0) < 6Π (2300 cm-1) < 4∆ 

(2700 cm-1) < 4Π (4200 cm-1) < 4Σ−; and Te(FeCN), 6∆ (0) < 6Π (1800 cm-1) < 4∆ (2500 cm-1) < 

4Π (2900 cm-1) < 4Σ−. The 4∆ and 4Π states have massive multireference character, arising mostly 

from 11σ → 12σ promotions, whereas the sextet states are dominated by single electronic 

configurations. The single-reference CCSDT-3 method appears to significantly overshoot the 

stabilization of the quartet states provided by both static and dynamic correlation. The 4,6∆ and 

4,6Π states of both isomers are rather ionic, and all have dipole moments near 5 D. On the ground 

6∆ surface, FeNC is predicted to lie 0.6 kcal mol-1 below FeCN, and the classical barrier for 

isocyanide/cyanide isomerization is about 8 kcal mol-1. Our data support the recent spectroscopic 

characterization by Lei and Dagdigian [J. Chem. Phys. 114, 2137 (2000)] of linear 6∆ FeNC as 

the first experimentally observed transition-metal monoisocyanide. Their assignments for the 

ground term symbol, isotopomeric rotational constants, and the Fe-N ω3 stretching frequency are 

confirmed; however, we find rather different structural parameters for 6∆ FeNC: re(Fe-N) = 

1.940 Å and r(N-C) = 1.182 Å at the cc-pVQZ MRCISD+Q level. Our results also reveal that the 

observed band of FeNC originating at 27 236 cm-1 should have an analog in FeCN near 24 700 

cm-1 of almost equal intensity. Therefore, both thermodynamic stability and absorption intensity 

factors favor the eventual observation of FeCN via a 6Π ← 6∆ transition in the near-UV.  
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INTRODUCTION 

 

The electronic structure of small polyatomic molecules (M-X) containing a transition metal (M) 

and a common ligand (X) is of broad chemical interest. Theoretical studies of such molecules 

can provide general insight about metal-ligand bonding interactions and may greatly increase the 

chemical knowledge available for larger poly-ligand systems. Poly-ligand metal-cyanides are a 

prevalent class of compounds. The [Fe(CN)6]2-,4-
  ions, classic examples of low-spin octahedral 

complexes, are commonly referred to as “Prussian Blues,” and are useful for removing or 

identifying toxins in animals, humans, and plants.1,2 The Fe-CN bond is also thought to influence 

bioinorganic synthesis3 and hemeprotein chemistry.4 Observations of monocyanides and 

monoisocyanides in the interstellar medium using radio-frequency spectroscopy,5,6 as well as 

terrestrial characterizations using laser fluorescence excitation or laser induced fluorescence 

spectroscopy,7-12 have provided many opportunities to experimentally study the structure of the 

metal-cyanide and metal-isocyanide bonds.  

Due to the rather isotropic electronic charge distribution of the CN−/NC− ligand, the 

bonding within alkali-metal monocyanide/isocyanide molecules is often “polytopic”,13 meaning 

that the metal-ligand interaction is quite ionic and nondirectional. This characteristic allows the 

metal atom to orbit the CN− ligand on a flat potential energy surface at moderate temperatures. 

From an alternative dynamical perspective, if the metal atom is massive, the ligand executes 

facile internal rotation. The equilibrium structure of such polytopic compounds is often 

controversial.14-16 Two alkali-metal cyanide/isocyanide pairs (NaCN/NaNC and KCN/KNC) 

exhibit a “T-shaped” equilibrium structure.16,17 In the case of lithium and the alkaline earth 

metals, the linear isocyanide isomer is the equilibrium geometry, but slight vibrational excitation 
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allows these molecules to tunnel through low-energy internal rotation barriers, as experimentally 

and theoretically observed with MgNC, BeNC, CaNC, and SrNC, and also with AlNC.11,13,18-23 A 

few molecules, such as CuCN and NiCN, have been theoretically predicted or spectroscopically 

characterized to have a cyanide global minimum.24,25  

In the interstellar medium, iron is one of the ten most26 cosmically abundant atoms, and it 

is expected that a vast number of novel iron-containing compounds will be discovered. 

Terrestrial production of FeNC was recently achieved by Lei and Dagdigian,7 and substantiated 

with high-resolution fluorescence excitation spectroscopy, which indicated the linear isocyanide 

to be the most stable species. According to analysis of rotational-resolved lines near the 360 nm 

region, Lei and Dagdigian reported a linear 6∆ ground electronic state indicated by a Ω′ = 7/2 ← 

Ω′′= 9/2 transition attributed to a 6Π  ← 6∆ electronic excitation, believed identical to that of FeF 

and FeCl. Assuming that FeNC has a similar spin-orbit coupling constant to the FeF and FeCl 

high-spin ground states (A = −78.15 cm-1 and −75.88 cm-1, respectively), the observed rotational 

constants were fit using the Hund’s case (a) coupling scheme to obtain the bond distances of the 

ground state. The Fe-N and N-C bond lengths were reported to be 2.01 ± 0.05 Å and 1.03 ± 0.08 

Å, respectively. Lei and Dagdigian do not comment on this unusual C-N bond length, which is 

0.1 Å shorter than any C-N bond length observed theoretically or experimentally. A linear least-

squares fit to an observed (00v3) vibrational progression up to v3 = 7 yielded an ω3 Fe-N 

harmonic vibrational stretching frequency of 464 cm-1 , but no statistically significant ωexe value.  

Since iron is a d6 element, there are many possibilities of both high-spin and low-spin 

electronic configurations for polyatomic molecules with an iron center.27 Many of these states 

have potential energy surfaces that are very low-lying in energy near the ground state. The 

reasoning for an Fe-X molecule to have a high- or low-spin ground state is not simplistic, 
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beginning with the case of the simplest iron molecule, FeH, where the ground state is thought to 

be 4∆, although other nearly isoenergetic candidates exist.28,29 Comparisons of FeCN/FeNC to 

FeH will be discussed in detail in later sections. An excellent review by Harrison30 recently 

summarized the complexity of the electronic structure of Fe-X diatomics. Sophisticated levels of 

theory that include a multireference valence description to describe nondynamical correlation 

(also known as static correlation), high orders of electronic excitation to describe dynamical 

correlation, and large basis sets are necessary to ensure the relative energies of the ground state 

with respect to low-lying excited states are accurately determined.   

To add to the understanding of cyanide/isocyanide bonding, ab initio studies of transition 

metal CN/NC compounds have been undertaken in our laboratory to determine how the 

ionic/covalent nature of the metal-ligand bond affects the stability of the cyanide versus the 

isocyanide isomer. In this paper, equilibrium geometries, harmonic frequencies, and electronic 

excitation energies of FeNC and FeCN are compared to those found in the experimental work of 

Lei and Dagdigian.7 New basis sets and highly-correlated methods are used in order to determine 

the barrier height for internal rotation and relative energetics of various electronic states.  

 

THEORETICAL METHODS 

 

Five basis sets were utilized in this study of FeNC/FeCN.31 The first is of double-zeta quality and 

is a combination of the Fe(14s11p6d/10s8p3d) Wachters set32 and the Huzinaga-Dunning 

(9s4p1d/4s2p1d) basis33 for the C and N atoms. In their study of FeH, Sodupe et al.34 stress the 

importance of including f polarization functions to properly describe the energy difference 

between the ground state and low-lying excited states of iron-containing compounds. 
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Accordingly, the next basis set used for FeCN/FeNC was the Roos augmented double-zeta ANO 

basis set35,36 for all three atoms [Fe(21s15p10d6f/6s5p4d2f), C/N(14s9p4d/4s3p2d)]. A second 

ANO basis set developed at NASA Ames37,38 was also implemented, which is not only of  triple-

zeta quality, but also includes g functions for iron (21s15p10d6f4g/7s6p4d3f2g), and f and g 

functions for carbon and nitrogen (13s8p6d4f2g/5s4p3d2f1g). Triple- and quadruple-zeta 

correlation-consistent polarized valence (cc-pVXZ) basis sets very recently developed for iron by 

Ricca and Bauschlicher39  are new, high-quality basis sets developed for iron-containing 

molecules. These basis sets were conjoined with augmented correlation-consistent basis sets40 for 

the lighter atoms in order to describe any anionic character of the NC/CN ligand. The cc-

pVTZ/aug-cc-pVTZ basis has Fe(20s15p10d2f1g/6s8p6d2f1g) and C/N(11s6p3d2f/5s4p3d2f), 

and the cc-pVQZ/aug-cc-pVQZ basis has Fe(20s15p10d3f2g1h/6s8p6d3f2g1h) and 

C/N(13s7p4d3f2g/6s5p4d3f2g). To determine the effects of core-valence interactions, the cc-

pVTZ basis set was modified in the manner proposed by Ricca and Bauschlicher39 to create the 

cc-pCVTZ basis and combined with the standard aug-cc-pCVTZ basis set for C and N.41 

Full geometry optimizations were performed for all basis sets at the ROHF,42,43 CISD,44,45 

CCSD,46-48 and CCSDT-349 levels of theory for the lowest-lying states of each applicable term 

symbol of FeCN/FeNC: 6∆, 6Π, 4∆, 4Π,  and 4Σ−. In general, the correlation treatments included 

only valence electrons, freezing the 1s MOs of carbon and nitrogen, as well as the 1s, 2s, 2p, 3s, 

and 3p MOs of Fe. No virtual orbitals were frozen in this study. In computations with the cc-

pCVTZ basis set, the 3s and 3p orbitals of iron and the 1s orbitals of C/N were included to gauge 

core correlation effects.  

When investigating the multireference character of the molecules, state-averaged (SA) 

CASSCF geometry optimizations were performed with a 13 electron/12 MO active space.50,51 
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This active space includes all valence orbitals except the low-lying 2s orbitals of carbon and 

nitrogen, whose omission greatly reduced computation time. Internally contracted multireference 

CI52 was also performed using SA-CASSCF optimized MOs. Appendix Table A.1 gives the 

leading CI coefficients (0.10 cutoff) of the four electronic states for both isomers that were 

studied using multireference CI methods. These coefficients remained similar amongst basis sets. 

All configuration state functions (CSFs) contained in the SA-CASSCF wavefunction with CI 

coefficients greater than 0.02 in magnitude were used as references in internally-contracted MR-

CISD computations. Equilibrium geometries were also optimized upon the multireference 

Davidson corrected energy (MRCISD+Q).53 For the quartet states and sextet states, the MRCI 

computations employed 21-22 and 8 reference configurations, respectively. Quartet states had 

approximately 25-460 million uncontracted configurations contracted by one order of magnitude, 

while the sextet states had 16-325 million uncontracted configurations contracted one order of 

magnitude using the Wachters/DZP basis set and two orders of magnitude with cc-pVQZ. The 

sum of the squares of the reference configuration coefficients was between 0.993 and 0.997 in 

the final MRCI wavefunctions. The Psi 2.0.8,54 ACES II,55 and MOLPRO56,57 software packages 

were all extensively used in this study. 

Scalar relativistic corrections for relative energies were carried out by computing one-

electron mass-velocity and Darwin first-order perturbation terms,58-60 principally via MOLPRO 

at the valence MRCISD level with the fully uncontracted cc-pVQZ/aug-cc-pVQZ basis set. 

Comparative single-reference relativistic results were obtained via ACES II at the all-electron 

level with the cc-pVQZ/aug-cc-pVQZ basis, kept contracted due to program limitations. 
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RESULTS AND DISCUSSION 

 

The primary valence configurations for the five electronic states of FeNC/FeCN studied here are 

compiled in Table 2.1, along with C∞v and C2v state designations. In Tables 2.2 (FeNC) and 2.3 

(FeCN), ROHF geometries, harmonic vibrational frequencies, and dipole moments are collected 

for various states. Tables 2.4 (FeNC) and 2.5 (FeCN) show relative energies, geometries, and 

harmonic vibrational frequencies using the largest basis sets and correlated wavefunctions. 

Figure 2.1a and 2.1b depict equilibrium geometries for the two lowest-lying states (4∆ and 6∆) at 

various levels of theory.  

 

EQUILIBRIUM GEOMETRIES 

 

For FeNC, the ROHF geometries exhibit Fe-N distances in a relatively narrow 1.967-2.007 Å 

range, and with larger basis sets the ordering of r(Fe-N) values is 4∆ < 4Σ− < 6∆ < 4Π < 6Π. The 

corresponding N-C bond lengths lie in the 1.150-1.166 Å interval, with the quartet states 

displaying r(N-C) values shorter than in the sextet states by roughly 0.002 Å. For FeCN, the 

ROHF metal-ligand (Fe-C) distances, with a range of 2.037-2.120 Å, are longer and more 

dispersed than for FeNC, and the order of bond lengths among the states is quite different: 4Σ− < 

(4∆, 4Π) <   (6∆, 6Π). The larger metal-ligand separations are accompanied by r(C-N) values that 

are in a similar 1.134-1.150 Å interval compared to the isocyanide isomer. In contrast to FeNC, 

the C-N distances of the quartet cyanide states are longer than those of the sextet states. The 

Badger’s Rule correlation of decreasing bond distances with increasing stretching frequencies is 

generally but not inviolately found among the ROHF results. The real bending frequencies in 
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Tables 2.2 and 2.3 give a preliminary indication that all low-lying states of FeNC and FeCN have 

linear equilibrium geometries.  

As shown in Figure 2.1, Tables 2.4, 2.5, and Appendix A.2, methods which include 

dynamic correlation result in substantial Fe-C/Fe-N bond shortening, particularly for the quartet 

states. For quartet states, FeNC has r(Fe-N) distances of 1.869 - 1.896 Å, and FeCN has r(Fe-C) 

distances of 1.925 - 1.980 Å. FeNC sextet states have an r(Fe-N) range of 1.928 - 1.956 Å, and 

FeCN sextet states have an r(Fe-C) range of 2.031 - 2.055 Å. The order of Fe-N bond lengths for 

FeNC is 4∆ < 4Π < 6∆ < 6Π, and the Fe-C bond lengths order as 4Π < 4∆ < 6Π < 6∆. Thus, 

dynamic correlation changes the ROHF ordering of metal-ligand distances among electronic 

states. Examining r(C-N) for FeNC states, the ROHF bond distance ordering remains  

4Π < 4∆ < 6Π < 6∆ at dynamically correlated levels of theory. However, for FeCN, the correlated 

r(C-N) values are more tightly clustered and reordered (4∆ < 6∆ < 6Π < 4Π) compared to their 

ROHF counterparts. Clearly, as a possible measure of metal-ligand charge transfer and π back-

bonding, r(C-N) for the two isomers displays very subtle effects that require a more in depth 

study. The cc-pVQZ MRCISD+Q results show agreement of Fe-C/Fe-N bond lengths with 

CCSD to 0.008 Å for the ∆ states. The inclusion of core-valence effects does not significantly 

change equilibrium geometries.  

The equilibrium geometries agree with the trend that the cyanides typically have an M-C 

bond length that is 0.1 Å longer than the isocyanide M-N bond. Our C-N bond distances for 

FeNC/FeCN are in full accord with the 1.14-1.19 Å range of bond distances in other metal 

cyanide and/or isocyanide studies,61,62 as well as various results for the bond length of CN–  

anion, including the latest theoretical MRCISD+Q value (1.183 Å),63 our cc-pVQZ CCSDT-3 

prediction (1.181 Å), and a fitted re(CN–) of 1.177 Å from a photoelectron spectroscopy study.64 
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The experimental value7 of 1.03 ± 0.08 Å ascribed to linear 6∆ FeNC is far shorter than any 

known C-N bond distance and is most likely due to the large uncertainties in B0 when analyzing 

the results of laser excitation fluorescence spectra. Our theoretical results [re(N-C) = 1.183 Å 

with cc-pVQZ CCSDT-3 and 1.182 Å with cc-pVQZ MR-CISD+Q] are barely within twice the 

error interval of experiment. Our best Fe-N (cc-pVQZ MRCISD+Q) bond length of 1.93 Å is 

also in significant disagreement with the 2.01 ± 0.05 Å value of Lei and Dagdigian. The two 

isomers have very large Fe-C/Fe-N bond distances compared to those of diatomic Fe-C (re =  

1.58 Å)65,66 and Fe-N (re = 1.57 Å), 67,68 since strong multiple Fe-X bonding is not present within 

the cyanide and isocyanide isomers. In the initial study of the cc-pVXZ basis sets for Fe, Ricca 

and Bauschlicher39 compare FeCO geometries to observed rotational spectra.69 Their CCSD(T) 

results for X = 3-5 show Fe-C and C-O bond lengths within 0.02 Å and 0.005 Å of experiment, 

respectively. We expect similar accuracy of our results, highlighting strong disagreement with 

the experimental geometry of 6∆ FeNC. 

Carbon-13 isotopic substitution on FeNC agrees well with experiment, giving an average 

shift in the rotational constant of 0.062 cm-1 for our results compared to 0.060 cm-1 in Ref. 7. 

Validating Lei and Dagdigian’s characterization of the isocyanide isomer, the 13C-substituted 

cyanide isomer shows a lessening of Be of 0.0013 cm-1. The FeCN isotopic substitution is 

expected to have less of an effect on the rotational constants because the substituted atom is 

closer to the molecular center of mass. 
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TRANSITION STATE GEOMETRIES ON THE 6∆ SURFACE 

 

The transition state for a 6∆ surface isomerization representing rotation of the iron atom around 

the CN ligand is shown in Figure 2.1c. The energetics for this isomerization are shown in Table 

2.6. The Fe-C-N angle is sensitive to the level of theory, but the true value is apparently near 90°. 

The Fe-C bond length is elongated less than 0.05 Å from the FeCN minimum (cf. Figures 2.1a 

and 2.1b), and is much shorter than the Fe-N distance, giving an “L-shaped” structure. At the cc-

pVQZ CASSCF optimized geometry, the Fe-C distance is 2.148 Å and the Fe-N distance is 

2.411 Å. Only for Cu has a theoretical transition-metal CN/NC transition state geometry been 

reported thus far, by Boldyrev et al.62 At the MP2 6-311+G* level, their study shows a Cu-N 

bond 0.7 Å shorter than the Cu-C bond.  

 

DIPOLE MOMENTS 

 

All electronic states of FeNC and FeCN have large dipole moments. With the single-reference 

correlated methods, the µ values for the sextet states lie in the 4-5 Debye range. The 

corresponding dipole moments for the quartet state are at least 2 D higher, with this gap 

decreasing substantially as the dynamical electron correlation treatment is extended from CISD 

to CCSD. It is striking that after inclusion of nondynamical correlation, the quartet dipole 

moments are lowered so much that they become essentially the same as their sextet counterparts. 

In the CASSCF computations, the dipole moments of the 4,6Π and 4,6∆ states for both FeCN and 

FeNC cluster in the 4.87-5.84 D range, while the MRCISD values for the 4,6∆ states are 

uniformly smaller by roughly 0.5 D.  This trend can be understood from the contour plots shown 
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in Figure 2.2 of the 11σ(4∆) and 12σ( 6∆) ROHF molecular orbitals of FeCN. Clearly, 11σ → 

12σ promotions shift electron density to the Fe atom and in turn lower the magnitude of the 

dipole moment. The corresponding orbitals of FeNC are of similar nature, leading to the same 

effect on µ. The single-reference description of the quartet states has a (11σ)2(12σ)0 

configuration, and the ROHF dipole moments exceed 9 D. However, these states have prodigious 

multireference character (Appendix Table A.1), and the most important excited configurations 

involve single or double 12σ occupation, which serves to reduce the dipole moment to near 5 D. 

The sextet states are dominated in zeroth-order by a triplet-coupled (11σ)1(12σ1) configuration 

and thus have µ near 5 D. Mulliken partial charge analysis at the cc-pVQZ MRCISD level gives 

partial positive charges on Fe of 0.73-0.78 for quartet states and 1.08-1.14 for sextet states. One 

conclusion to be drawn from assessment of the dipole moment data for FeNC and FeCN is that 

the single-reference correlation methods overestimate the ionic character of the quartet states and 

may thus be dubious in their predictions of quartet/sextet energy differences. 

 

VIBRATIONAL FREQUENCIES 

 

The only vibrational frequency assigned by experiment for FeNC/FeCN is for the Fe-N 

stretching mode of the 6∆ state of the isocyanide isomer. As previously mentioned, a fit to an 

observed (00v3) progression gave the harmonic frequency ω3(FeNC) = 464 cm-1.7 With larger 

basis sets, the ROHF method gives harmonic frequencies of 470-475 cm-1
.  The valence 

correlation treatments contract the Fe-N bonds significantly, but the corresponding vibrational 

frequency predictions are only slightly higher, 488-494 cm-1. The inclusion of Fe outer core 

correlation yields ω3(FeNC) = 475 cm-1 with cc-pCVTZ CCSD, in excellent agreement with 
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experiment. By comparison, the same level of theory gives ω3(FeCN) = 417 cm-1 for the 6∆ state 

of the cyanide isomer. Thus, our predictions for the metal-ligand stretching vibrations favor the 

experimental assignment of the observed frequency to the isocyanide species. For FeNC, the 4∆ – 

6∆ difference for ω3 is about +10 cm-1 with coupled cluster methods, but when the quartet states 

are given a proper multireference correlation treatment (MRCISD+Q), the difference becomes  

–83 cm-1, enough to clearly distinguish the IR spectra of these two states.  

 For the C-N stretching mode (ω1), the cyanide frequencies are 84-165 cm-1 higher than 

their isocyanide counterparts for all states and across all levels of theory and are shown in Tables 

2.2 – 2.5. With the correlated methods, the ω1 values for the 4,6∆ and 4,6Π states of each isomer 

cluster in narrow intervals of less than 15 cm-1, making it difficult to distinguish amongst these 

states on this basis. Lei and Dagdigian7 proposed ω1(FeNC) = 2200 cm-1 as a rough estimate 

based on frequencies of other M-NC compounds. Except at the cc-pVTZ CCSDT-3 level, our 

values for ω1(FeNC, 6∆) vary between 2135 and 2145 cm-1. For isolated CN–, ωe is 2052 and 

2072 cm-1 with cc-pVQZ MRCISD+Q and cc-pVTZ CCSDT-3, respectively, as compared to 

2035 cm-1 from a photoelectron spectroscopy experiment.64 Adopting the cc-pVQZ MRCISD+Q 

predictions, this calibration suggests that ω1(FeNC, 6∆) should be near 2120 cm-1, somewhat 

lower than the estimate of Ref. 7. 

 The computation of bending frequencies for FeNC/FeCN is complicated by the necessity 

of retaining the correct root structure of the electronic Hamiltonian, of accounting for Renner-

Teller splitting, of overcoming convergence difficulties for the reference wave functions, and 

lastly, of averting variational collapse as the symmetry of the molecule is lowered to Cs. At the 

ROHF level, the energetic ordering of electronic states is 6∆ (6A′, 6A′′) < 6Π (2 6A′, 2 
6A′′) < 4Π 

(4A′,  
4A′′) < 4∆ (2 4A′, 2 

4A′′) , so that upon bending distortions, the only states not subject to 
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variational collapse are the A′ and A′′ components of the 6∆ and 4Π states. For these states, 

coupled cluster ω2 values may be computed by finite difference techniques, and selected results 

are reported in Tables 2.4 and 2.5. Because the bending frequencies of the 6∆ and 4Π are real, 

they can be positively assigned to have a linear geometry at correlated levels of theory. Full 

resolution of this issue is deferred for later studies that might invoke CASSCF analytic second 

derivatives, MRCISD finite differences methods, or EOM-CC techniques,70,71 for example.  

 

ADIABATIC EXCITATION ENERGIES IN THE IR REGION 

 

Numerous studies of FeH have determined that the relative energies of various electronic states 

are not similar between Hartree-Fock and correlated levels of theory. Early Hartree Fock 

calculations initially determined the ground state of FeH to be first 4Σ−72 and then 6∆.73 More 

than a decade passed before the ground state of FeH was consistently shown with both 

experimental74 and high-level theoretical methods28,75,76 to actually be 4∆. When larger basis sets, 

static correlation, and dynamic correlation were included, far more correlation energy for the 

lower spin quartet states was recovered. With high enough levels of theory, the X 4∆ energy 

eclipses that of the HF ground state a 6∆. Theoretical and experimental studies of the high-spin 

molecules FeCl77 and FeF78 determined that while dynamical correlation is a large factor in 

energy state ordering, it is not likely to switch the configuration of the ground state between 

uncorrelated and correlated levels of theory. Lei and Dagdigian7 predict that the spin-orbit 

couplings of FeNC/CN more closely match those of the iron-halogens, one of the factors of 

validating the 6∆ ground state. To ascertain if FeNC/FeCN behaves more like low-spin FeH or 
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high-spin FeF/FeCl, it is imperative to determine how correlated wavefunctions alter the energy 

splitting between high spin and low spin configurations.  

The most notable problem in predicting relative energies of the low-lying states of 

FeNC/FeCN is that the sextet states are dominated by single configurations, while the quartet 

states have large multireference character, as detailed in Appendix Table A.1. When single-

reference CCSD theory is applied to the 4∆ and 4Π states, extraordinarily large T1 amplitudes 

result for the  11σ → 12σ excitations, precisely those seen above which reduce the dipole 

moments. In contrast, for both isomers no T1 coefficient exceeds 0.06 for the 6∆ and 6Π states at 

any level of theory.  As a specific case, the Wachters/DZP CCSD wavefunction for the 4∆ state 

of FeCN shows a maximum T1 amplitude of 0.96 and 9 different T1 amplitudes over 0.06. The 

Wachters/DZP CCSDT-3 method fares even worse, giving for example, FeNC 4∆ and 4Π 

maximum amplitudes of 1.70 and 1.61, with 18 and 14 T1’s over 0.06, respectively! For quartet 

states, we find that the largest T1 amplitudes, as well as the number of amplitudes over 0.06, 

decrease significantly with increasing basis set size, but are as still as large as 0.50 at the cc-

pVQZ CCSDT-3 level. The large T1 amplitudes for the quartet states signal enormous orbital 

relaxation effects from the ROHF reference, and are consistent with the presence of competing 

electronic configurations, as seen in the CASSCF CI coefficients of Appendix Table A.1. Not 

surprisingly, our attempts to determine full CCSDT wavefunctions were crippled by severe 

convergence problems. Given these manifestations of multireference character, the popular 

CCSD(T) method79-81 should not be relied upon for FeNC/FeCN quartet states, because it should 

not be expected that connected triple excitations in these types of systems can be adequately 

treated by perturbation theory. Regarding the various CCSDT-n iterative partial triples methods, 

a recent study by He et al.82 concluded that CCSDT-1b may overestimate the contribution of 
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triple excitations, and we found that CCSDT-4 suffers from the same convergence problems as 

CCSDT. Therefore, we have used the CCSDT-3 method to gauge the effect of connected triple 

excitations. In this study, we do gain valuable information on relative energetics from analysis of 

coupled cluster results, but greater weight must be placed on the multireference configuration 

interaction predictions. 

In Tables 2.7 and 2.8, theoretical results are collected for the adiabatic excitations 

energies of the low-lying states of FeNC and FeCN. Variations with level of theory of the 

6∆ − 4∆ excitation energies obtained with the cc-pVQZ basis set are plotted in Figure 2.3. For the 

methods that do not include dynamical electron correlation, the excitation energies depend only 

weakly on basis set. Specifically, in Tables 2.7 and 2.8, the range of Te values across basis sets is 

generally less than 350 cm-1 for ROHF and 150 cm-1 for CASSCF. The ROHF ordering of 

electronic states for both isomers is 6∆ < 6Π << 4Π < 4∆ < 4Σ−, with 4∆ over 20 000 and 18 000  

cm-1 above 6∆ for FeNC and FeCN, respectively. Improving the zeroth-order description with the 

CASSCF method gives the ordering 6∆ < 6Π < 4∆ < 4Π for both isomers, now with 4∆ lowered to 

about 6400 and 6200 cm-1 above 6∆ FeNC and FeCN, respectively. 

As expected, the dynamically correlated Te predictions do display significant basis set 

dependence, as the addition of higher angular momentum functions slowly accounts for short-

range electron-electron cusp behavior.83-89 The effect is largest for quartet states, where 

differential correlation effects with the ground 6∆ state are greatest and valence basis set 

augmentation steadily lowers the excitation energies. For example, at the CCSD level, Te(4∆) for 

FeCN is lowered from 3372 cm-1 with Wachters/DZP to 2260 cm-1 with cc-pVTZ, and then 

finally to 2050 cm-1 with cc-pVQZ. However, comparison of cc-pVTZ and cc-pCVTZ valence 

correlation results shows that improved flexibility in the core/valence region raises the quartet 
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excitation energies by 100-250 cm-1. As shown in Fig. 3, both the ROHF → CISD → CCSD → 

CCSDT-3 and CASSCF → MRCISD → MRCISD+Q correlation series exhibit monotonic 

reductions in the 4∆ ← 6∆ excitation energy of FeNC and FeCN. In fact, such correlation trends 

are seen in all of the Te results in Tables 2.7 and 2.8. Using smaller basis sets, CCSDT-1b 6∆ – 4∆ 

energy splittings were within 115 cm-1 of the CCSDT-3 results; with the larger basis sets, we 

find the CCSD(T) method to give excitation energies intermediate between CCSD and 

CCSDT-3.90  

With the dipole moment and T1 amplitude discussions in mind, predicting the valence, 

nonrelativistic ab initio limits of the relative energies of low-lying states of FeNC and FeCN is 

treacherous. For the 6Π state, there is excellent agreement among the best coupled cluster and 

MRCI results in Tables 2.7 and 2.8: Te(6Π) = 2450 ± 50 cm-1 for FeNC and 1750 ± 100 cm-1 for 

FeCN. The data suggest that extrapolation to the complete basis set (CBS) limit would bring 

little change to the relative energy. In contrast, for Te(6∆) the CCSDT-3 values are lower than 

their MRCISD+Q counterparts by about 2800 cm-1 and 4000 cm-1 for FeNC and FeCN, 

respectively. With a faulty ROHF quartet reference wave function, devoid of important static 

correlation, the CCSDT-3 scheme apparently overshoots the stabilization of the 4∆ state. On the 

other hand, the 6∆ – 4∆ separation for FeH reveals that the cc-pVQZ MRCISD+Q method 

probably underestimates the stability of the quartet states by 800-1600 cm-1.28,75 Thus we believe 

that in the non-relativistic, valence limit Te(4∆) = 3000 ± 1200 cm-1 for both FeNC and FeCN, 

with the cyanide excitation being lower by a few hundred cm-1.  

Core correlation and relativistic corrections to the Te values are listed in Tables 2.7 and 

2.8 and plotted in Fig. 3. The effect of correlating the Fe (3s, 3p) and C/N (1s) electrons, at the 

size-extensive cc-pCVTZ CCSD level, is to decrease the energy separation from the 6∆ ground 
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state by 508 (612) and 845 (876) cm-1 for the 4∆ and 4Π states of FeNC (FeCN), respectively. 

The corresponding shifts in the 6Π – 6∆ separations are less than 100 cm-1. 

With regard to the relativistic corrections, completely different pictures are given by the 

single-reference CCSD and the multireference CISD computations. In the former case, the 

4∆ and 4Π states of FeNC/FeCN are raised by 1090 to 1990 cm-1 over the 6∆ ground states, 

amounts comparable to the magnitude of the analogous relativistic shift (2200 cm-1) in the        

5D – 5F separation of atomic Fe.75 We found that the large CCSD corrections obtained with 

ACES II are broadly confirmed by single-reference ROHF and CISD relativistic computations 

with MOLPRO. However, when MRCISD computations are executed via MOLPRO, the 

relativistic effect on the quartet adiabatic excitation energies drops by an order of magnitude, 

attesting to the dramatic changes static correlation makes on the electron density, as seen above 

in the dipole moment analysis. 

Giving preference to the MRCISD predictions, we conclude that the relativistic shifts in 

FeNC/FeCN are comparable to the similar correction for the 4∆ − 6∆ splitting in FeH.28 

Specifically, relativity increases Te of the 4∆ state of FeNC(FeCN) by 232 (192) cm-1 while 

affecting the 6Π – 6∆ separation by only −22 (−50) cm-1. The trends of relativistic effects of Te 

values of iron-containing species may be understood on the basis of total s, p, and d Mulliken 

populations in the various electronic states.75  

Appending the sizable core correlation and relativistic shifts to the valence, 

nonrelativistic limits inferred above, we arrive at final estimates for the relative energies: 

Te(FeNC), 6∆ (0) < 6Π (2300 cm-1) < 4∆ (2700 cm-1) < 4Π (4200 cm-1); and Te(FeCN), 6∆ (0) < 

6Π (1800 cm-1) < 4∆ (2500 cm-1) < 4Π (2900 cm-1). Uncertainties are difficult to reliably assess, 
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but perhaps are as large as ± 1500 cm-1 for the quartet states and a few hundred cm-1 for the 6Π 

states.  

 

ISOMERIZATION ENERGY AND BARRIER HEIGHT 

 

The data in Table 2.6 address the compelling question of which isomer of FeNC/FeCN is lower 

in energy, and what is the isocyanide/cyanide interconversion barrier. In the single-reference 

correlation series, FeCN starts out substantially above FeNC, but the energy gap steadily 

decreases as the level of theory is improved. For example, with the cc-pVTZ basis, the ROHF, 

CISD, CCSD, CCSD(T), and CCSDT-3 isomerization energies, ∆Ee(6∆, FeNC → FeCN), are 

1819, 856, 413, 251 and 343 cm-1 in order. Among the basis sets, the range of values is generally 

less than 100 cm-1, but for the correlated methods the NASA ANO set consistently gives outlying 

predictions 100-150 cm-1 lower than their cc-pVQZ counterparts. Comparing the cc-pVTZ and 

cc-pCVTZ valence CCSD treatments suggests that an improved description of the core/valence 

region may favor the FeCN isomer by around 200 cm-1. Interestingly, the multireference 

correlation series exhibits a reversal of trends, i.e., FeCN starts out substantially below FeNC but 

is steadily raised as the theoretical method is improved. Specifically, with the cc-pVQZ basis, the 

CASSCF, MRCISD, and MRCISD+Q isomerization energies are −1258, −509, and −166 cm-1, 

respectively. In summary, both the single- and multireference series predict isomerization 

energies less than 350 cm-1 (1 kcal mol-1) in magnitude, but in the former case FeNC is lower 

while in the latter case FeCN is lower. Because the 6∆ ground states of both isomers are well 

described in zeroth order by a single electronic configuration (Appendix Table A.1), preference 

is given here to the rigorously size-extensive coupled cluster results. Based on the cc-pVQZ and 
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cc-pCVTZ CCSDT-3 predictions, we estimate the nonrelativistic, valence limit of ∆Ee(6∆, FeNC 

→ FeCN) to be 200 ± 150 cm-1.  

As shown in Table 2.6, the core correlation (+11 cm-1) and ZPVE corrections (+89 cm-1) 

do not substantially alter the FeNC/FeCN separation. Similarly to the adiabatic excitation 

energies, CCSD computations with ACES II predict a substantial relativistic effect (+745 cm-1) 

on the FeNC/FeCN isomerization energy, but the application of MRCISD theory via MOLPRO 

gives a relativistic shift of only −74 cm-1. Giving preference to the MRCISD result, our final 

prediction becomes ∆E0(6∆, FeNC → FeCN) = 200 + 11 + 89 – 74 ≈ 225 cm-1 with an 

uncertainty of perhaps a few hundred wavenumbers. 

Several studies21,24,91 of cyanide/isocyanide pairs have asserted that as the degree of 

covalency(ionicity) increases the cyanide(isocyanide) isomer becomes more stable and the 

isomerization barrier is heightened(lowered). As mentioned above, our Mulliken analysis at the 

cc-pVQZ MRCISD level gives partial charges on Fe of about +1.1 for the ground 6∆ states of 

both FeNC and FeCN, revealing that both species are quite ionic. Nonetheless, our work shows 

that FeNC and FeCN are almost isoenergetic, with the isocyanide lower by about 0.6 kcal mol-1. 

In their study of NiCN, Kingston et al.24 propose that the cyanide isomer is lower in energy 

because electron density is better drawn to the peripheral lone-pair nitrogen orbitals than those 

orbitals of the carbon atom. In FeNC/FeCN there is always greater negative charge on the atom 

adjacent to Fe, but the nitrogen in FeCN indeed has a –0.4 partial charge while that for the 

carbon in FeNC is only –0.1. Thus, the same type of charge distribution is present in the iron 

case as in the nickel case, but this feature is not associated with the existence of a lower-energy 

iron-cyanide isomer.  
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From a cc-pVQZ MRCISD+Q single-pont determined on top of the corresponding 

CASSCF transition state, the FeNC → FeCN classical barrier on the 6∆ surface is predicted to be 

2775 cm-1, or about 8 kcal mol-1. While this barrier is large for a polytopic system, it is much 

smaller than expected for a covalently bonded species. The only available theoretical barrier 

height for a transition metal cyanide/isocyanide interconversion is 1.8 kcal mol-1 for 

CuCN/CuNC at the 6-311+G* MP2 level,62 a value much lower than that for FeNC/FeCN. Our 

FeNC/FeCN barrier height and transition state geometry more closely match that of AlNC/AlCN 

studied by Ma and co-workers.20 More information about similar barrier heights needs to be 

determined before a quantitative model can be made of barrier height/covalency versus 

directional preference of cyanide/isocyanide pairs of molecules. 

 

 NEAR-UV 6Π ← 6∆ EXCITATION ENERGIES AND TRANSITION INTENSITIES 

 

The experimentally observed band of FeNC starting at 27 236 cm-1, which corresponds to an 

excitation from the 6∆ ground state to a 6Π state lying in the near-UV region, closely matches 

analogous excitations in FeCl (28 025 cm-1)92,93 and FeF (30 239 cm-1).94,95 The iron 

monohalogens have been thoroughly studied experimentally and determined to have high-spin 6∆ 

ground states. However, the analogous e 6Π ← a 6∆ excitation for low-spin FeH occurs near     

19 000 cm-1.29,96 We investigated electronic excitations of FeNC/FeCN between the ground 

6∆ state and the 6Π state lying in the near-UV region to compare with the experimentally 

observed transition energy. Table 2.9 shows the theoretical excitation energies of the near-UV 

6Π ← 6∆ bands of FeCN and FeNC along with corresponding excitation energies of other iron-

containing compounds. At the cc-pVQZ MRCISD+Q level, the FeNC vertical excitation energy 
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is 28 224 cm-1 with an MRCISD square transition dipole matrix element 
2

fiµ of 7.330 D2. The 

analogous FeCN vertical excitation energy is found near 25 014 cm-1 with 
2

fiµ = 6.074 D2. The 

FeCN square transition dipole matrix element is 83% that of FeNC, indicating that the 6Π ← 6∆ 

excitation for FeCN should be almost as intense as that of FeNC. Analyzing MO coefficients of 

both isomers shows an excitation from the 12σ to 4π orbital, essentially an Fe(4p←4s) transition 

akin to that identified by Lei and Dagdigian.7 Our predictions of the FeNC 6Π ← 6∆ excitation 

are in good agreement with experiment, overestimating the absorption energy by approximately 

1000 cm-1. Assuming a similar overestimation for the cyanide isomer, the FeCN excitation is 

expected to occur near 24 000 cm-1. Lei and Dagdigian7 scanned a frequency region between  

26 900-29 400 cm-1 in their initial study, so the FeCN excitation would be out of the range of 

their experiment. From Table 2.9 and from theoretical transition dipole matrix elements of the 

excitation, we conclude that both thermodynamic stability and absorption intensity factors favor 

the eventual observation of an FeCN 6Π ← 6∆ transition in the near-UV. 

 

CONCLUSIONS 

 

In this study of FeCN and FeNC, the ROHF, CISD, CCSD, CCSDT-3, CASSCF, MRCISD, and 

MRCISD+Q methods have been employed with five Fe/C,N basis sets, namely, Wachters/DZP, 

two ANO basis sets of double- and triple-zeta quality, and the correlation consistent cc-

pVTZ/aug-cc-pVTZ and cc-pVQZ/aug-cc-pVQZ sets recently constructed for iron containing 

molecules. Corrections for core correlation and relativistic effects have also been included. Our 

principal conclusions are as follows: 



 38

(1) Both FeNC and FeCN have 6∆ ground electronic states. Low-lying 6Π, 4∆, 4Π states 

are present in the IR and near-IR regions, with respective Te values near 2300, 2700, 4200 cm-1 

for FeNC and 1800, 2500, and 2900 cm-1 for FeCN. 

(2) The 4,6∆ and 4,6Π states of both isomers are quite ionic, with Mulliken partial charges 

on Fe of 0.73-0.78 for the quartet states and 1.08-1.14 for sextet states. In the final analysis, all of 

these states have dipole moments near 5 D.  

(3) On the ground state surface, FeNC and FeCN are nearly isoenergetic, with the 

isocyanide isomer lying lower by only 0.6 kcal mol-1.  

(4) The classical barrier for the FeNC → FeCN isomerization is about 8 kcal mol-1, 

certainly much smaller than anticipated for a covalent system. However, true polytopic species 

of high ionicity and nondirectionality, such as the monocyanides/isocyanides of alkali earth 

metals, have barriers of only 0-2 kcal mol-1, significantly smaller than for FeNC/FeCN. There is 

very little data on the isomerization of other transition-metal NC/CN compounds, and studies of 

the analogs for the 3d1 to 3d5 metals are greatly needed before bonding trends can be firmly 

established.  

(5) The 4∆ and 4Π states of both FeNC and FeCN have striking multireference character, 

whereas the corresponding sextet states are dominated by single electronic configurations. The 

additional configurations necessary for a proper zeroth-order decription of the quartet states arise 

from single and double 11σ → 12σ promotions, which are metal-ligand bonding to antibonding 

in character. The importance of including these configurations in the quartet reference wave 

functions is dramatically seen in the computation of the dipole moments, which are otherwise 

overestimated by 2-4 D.  
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(6) The recent spectroscopic characterization of linear 6∆ FeNC by Lei and Dagdigian7 is 

largely validated by our theoretical work, particularly the assignment of the ground term symbol, 

the 13C shift in the rotational constant, and the Fe-N stretching frequency of 464 cm-1. Moreover, 

our results confirm the essential features of the near-UV 6Π ← 6∆ excitation on which the 

experimental analysis was based, including the band origin, the absorption intensity, and the 

qualitative identification of the excitation as Fe(4p ←4s). However, the empirically derived bond 

distances, re(Fe-N) =  2.01 ± 0.05 Å and re(N-C) = 1.03 ± 0.08 Å, are vitiated by theory. The cc-

pVQZ MRCISD+Q level predicts re(Fe-N) =  1.940 Å and re(N-C) = 1.182 Å. 

(7) Our computations reveal that the observed band of FeNC originating at 27 236 cm-1 

should have an analog in FeCN near 24 000 cm-1 with a square transition dipole moment less 

than 20% smaller. This 6Π ← 6∆ FeCN band is out of range of the XeCl excimer dye laser 

apparatus used in the experiments of Ref. 7, giving one explanation for why only FeNC was 

observed. Because FeCN lies less than 1 kcal mol-1
 above FeNC, it should be possible to 

overcome Boltzmann factors and obtain sufficient intensity to observe FeCN via its 6Π ← 6∆ 

transition in the near-UV.  

Finally, the gross differences in electronic structure of the quartet vs. sextet states, as well 

as the isocyanide vs. cyanide isomers, make it particularly difficult to obtain converged ab initio 

predictions for the recalcitrant FeNC/FeCN system. For the quartet states, single-reference 

coupled cluster methods including connected triple excitations appear to underestimate the 

energy relative to the 6∆ ground state, or have severe convergence problems. In contrast, 

calibrations on FeH suggest that the MRCISD wavefunctions computed here are missing 

significant dynamical correlation that lowers the relative energies of the FeNC/FeCN quartet 

states. The application of more advanced, multireference coupled-cluster methods and open-shell 



 40

ab initio theory would be helpful to refine our best predictions and elucidate the approach to the 

full CI limit in these model systems. Though many advances are needed in production-level ab 

initio theory to completely unravel the mysteries of transition-metal containing compounds, this 

study shows the progress of computational chemistry in attacking such difficult systems. 
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Table 2.1: Predominant valence electronic configurations of five low-lying electronic states of 

FeNC and FeCN. 

C∞ v C2v
a Configuration 

6∆  A1,A2 [core]b 8σ29σ23π410σ211σ14π21δ312σ1

6Π B1,B2 [core]8σ29σ23π410σ211σ14π31δ212σ1 
4∆ A1,A2 [core]8σ29σ23π410σ211σ24π21δ3 
4Π B1,B2 [core]8σ29σ23π410σ211σ24π31δ2 
4Σ− A2 [core]8σ29σ23π410σ211σ14π21δ4 

aThe first irreducible representation listed is that used in our electronic structure computations 

unless a state-averaged CASSCF was performed, whereupon the two states were weighted 50/50.  
b Core is represented by [core] = 1σ22σ23σ21π44σ25σ26σ27σ22π4.
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Table 2.2: Total energies and physical properties for FeNC at the ROHF level of theory.a  

Electronic State Energy r(Fe-N) r(N-C) µ ω1(σ) ω2(π)b ω3(σ) 

Wachters/DZP - Fe[10s8p3d], C/N[4s2p1d]  
 4Σ−  −1354.656636 1.9677 1.1619 9.177 2319 258c 395 
4∆  −1354.672023 1.9677 1.1619 9.000 2349 379c 427 
4Π  −1354.672422 1.9791 1.1622 9.101 2348  190(145)  434 
6Π  −1354.752339 1.9933 1.1645 5.289 2333  191(186)c 464 
6∆ −1354.764850 2.0074 1.1659 4.995 2321 206 450 

Roos DZ ANO - Fe[6s5p4d2f], C/N[4s3p2d]  
 4Σ−  −1354.713935 1.9792 1.1548 9.047 2337  418 
4∆  −1354.728965 1.9763 1.1557 8.963 2330  416 
4Π −1354.729836 1.9914 1.1551 9.101 2336 92 418 
6Π −1354.808299 1.9980 1.1571 5.211 2332  452 
6∆  −1354.820701 1.9806 1.1576 4.688 2319 116 472 

NASA ANO - Fe[7s6p4d3f2g], C/N[5s4p3d2f1g]  
 4Σ−  −1354.720483 1.9785 1.1506 8.984 2334  419 
4∆ −1354.735017 1.9713 1.1515 9.080 2326  417 
4Π −1354.735728 1.9881 1.1507 9.037 2332  423 
6Π −1354.815005 1.9963 1.1530 5.242 2318  455 
6∆ −1354.827143 1.9785 1.1537 4.736 2314  474 

cc-pVTZ / aug-cc-pVTZ - Fe[6s8p6d2f1g], C/N[5s4p3d2f]   
 4Σ−  −1354.720155 1.9783 1.1508 9.01 2333  422 
4∆ −1354.729044 1.9706 1.1529 8.92 2318  421 
4Π −1354.729814 1.9863 1.1523 9.06 2323 98 425 
6Π −1354.809247 1.9959 1.1544 5.244 2329  426 
6∆ −1354.821510 1.9782 1.1550 4.681 2306 124 475 

cc-pVQZ / aug-cc-pVQZ - Fe[6s8p6d3f2g1h], C/N[6s5p4d3f2g]     
4∆ −1354.734921 1.9727 1.1517 8.92 2326  418 
6∆ −1354.827188 1.9792 1.1538 4.692 2314 124 474 

Expt.d  6∆  2.01 ± 0.05 1.03 ± 0.08   464 ± 4.2  
 

aEnergies are in hartrees, bond distances in Å , dipole moments in D, harmonic  
vibrational frequencies in cm-1

. 

bFor the Π electronic states, which exhibit Renner-Teller splitting in the quadratic bending force 

constants, each A′ component is followed by its A′′ counterpart in parenthesis. 
cSubject to variational collapse; computed by analytic derivative techniques. 
dReference 7. 
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Table 2.3: Total energies and physical properties for FeCN at the ROHF level of theory.a  
Electronic State  Energy   r(Fe-C)  r(C-N) µ ω1(σ) ω2(π)b ω3(σ) 

Wachters/DZP - Fe[10s8p3d], C/N[4s2p1d]  
4Σ− −1354.661317 2.0353 1.1500 9.230 2441 210c 394 
4∆  −1354.672733 2.0642 1.1486 9.236 2456 235c 386 
4Π −1354.674048 2.0686 1.1495 9.364 2447  223(207)  386 
6Π −1354.746577 2.1196 1.1478 5.707 2463  213(204)c 399 
6∆ −1354.756322 2.1193 1.1471 5.359 2470 214 413 

Roos DZ ANO - Fe[6s5p4d2f], C/N[4s3p2d]  
4Σ− −1354.718857 2.0411 1.1416 9.305 2449  388 
4∆  −1354.730206 2.0710 1.1403 9.254 2463  379 
4Π −1354.731762 2.0746 1.1411 9.399 2455 219 381 
6Π −1354.802856 2.1195 1.1395 5.647 2471  393 
6∆ −1354.812460 2.1187 1.1389 5.287 2479 198 406 

NASA ANO - Fe[7s6p4d3f2g], C/N[5s4p3d2f1g]  
4Σ− −1354.725298 2.0433 1.1372 9.227 2443  387 
4∆ −1354.736183 2.0689 1.1359 9.161 2458  379 
4Π −1354.737600 2.0739 1.1367 9.308 2454  455 
6Π −1354.809575 2.1199 1.1352 5.654 2464  395 
6∆ −1354.818913 2.1186 1.1347 5.311 2471 204 408 

cc-pVTZ / aug-cc-pVTZ - Fe[6s8p6d2f1g], C/N[5s4p3d2f]  
4Σ− −1354.719230 2.0402 1.1385 9.290 2441  391 
4∆ −1354.730149 2.0676 1.1372 9.241 2455  382 
4Π −1354.731585 2.0719 1.1380 9.388 2447 213 384 
6Π −1354.803725 2.1187 1.1364 5.631 2462  394 
6∆ −1354.813221 2.1177 1.1358 5.279 2470 210 407 

cc-pVQZ / aug-cc-pVQZ - Fe[6s8p6d3f2g1h], C/N[6s5p4d3f2g]  
4∆ −1354.736036 2.0699 1.1361 9.213 2458  380 
6∆ −1354.818977 2.1186 1.1347 5.263 2472 199 409 

aEnergies are in hartrees, bond distances in Å , dipole moments in D, harmonic vibrational 

frequencies in cm-1
. 

bSee footnote b of Table 2.2. 
cSubject to variational collapse; computed by analytic derivative techniques.
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Table 2.4: Total energies and physical properties for FeNC at correlated levels of theory.a                                                        

Electronic State  Energy   r(Fe-N)  r(N-C) Be ∆(Be 13C) µ ω1(σ) ω2(π) ω3(σ) 
cc-pVQZ / aug-cc-pVQZ CISD                 

4Σ− −1355.255864 1.9161 1.1618 0.145976 0.006328 8.6743       
4∆  −1354.269043 1.8985 1.1627 0.147887 0.006441 8.5121       
4Π −1355.267765 1.9203 1.1621 0.145512 0.006316 8.6871       
 6Π −1355.296350 1.9586 1.1648 0.141228 0.006098 4.9975       
6∆ −1355.307876 1.9438 1.1655 0.142739 0.006179 4.4873       

cc-pVQZ / aug-cc-pVQZ CASSCF                 
4∆  −1354.897260 1.9611 1.1824 0.139795 0.006050 5.3582       
4Π −1354.886556 1.9704 1.1820 0.138862 0.006001 5.7234       
 6Π −1354.913835 2.0066 1.1822 0.135225 0.005813 5.8385       
6∆ −1354.926577 1.9887 1.1825 0.136980 0.005904 5.3366       

cc-pVQZ / aug-cc-pVQZ MRCISD                 
4∆  −1355.311606 1.9020 1.1775 0.146444 0.006398 4.8889       
6∆ −1355.334734 1.9480 1.1783 0.141426 0.006127 4.7868       

cc-pVQZ / aug-cc-pVQZ MRCISD+Q               
4∆  −1355.357202 1.8844 1.1813 0.148119 0.006483   2171   408 
6∆ −1355.377119 1.9395 1.1819 0.142084 0.006168   2135   491 

cc-pVQZ / aug-cc-pVQZ CCSD             
4Σ− −1355.326779 1.8903 1.1725 0.148089 0.006462         
4∆  −1355.348080 1.8825 1.1741 0.148880 0.006449 6.9814 2153   495 
4Π −1355.338984 1.8932 1.1731 0.147733 0.006457 7.8597 2154   465 
 6Π −1355.351508 1.9511 1.1744 0.141367 0.006126 5.0369 2148   473 
6∆ −1355.362780 1.9369 1.1751 0.142833 0.006213 4.3349 2145   488 

cc-pCVTZ / aug-cc-pCVTZ CCSD                 
4∆  −1355.317317 1.8887 1.1767 0.147985 0.006478   2143   487 
4Π −1355.307126 1.8978 1.1758 0.147152 0.006432   2144   467 
6Π −1355.322135 1.9592 1.1770 0.140358 0.006079   2135   473 
6∆ −1355.333281 1.9446 1.1776 0.141844 0.006157   2137   456 

cc-pCVTZ / aug-cc-pVTZ CCSD (5 frozen core orbitals)             
4∆  −1355.789401 1.8912 1.1745 0.147866 0.006466 6.7953 2152   482 
4Π −1355.781199 1.8963 1.1736 0.147359 0.006438 7.5994 2154   465 
6Π −1355.791400 1.9562 1.1749 0.140806 0.006097 4.8283 2143   458 
6∆ −1355.802917 1.9398 1.1755 0.142500 0.006194 4.5204 2143 118 475 

cc-pVQZ / aug-cc-pVQZ CCSD(T)                 
4∆  −1355.380342 1.8622 1.1815 0.150648 0.006630         
6∆ −1355.389455 1.9331 1.1830 0.142704 0.006214         
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Table 2.4 (continued): Total energies and physical properties for FeNC at correlated levels of 

theory.a                                                                                                                                                                                                                                                           

cc-pVTZ / aug-cc-pVTZ CCSDT-3             
Electronic  Energy   r(Fe-N)  r(N-C) Be ∆(Be 13C) µ ω1(σ) ω2(π) ω3(σ) 

4∆  −1355.344982 1.8694 1.1855 0.149535 0.006588   2070   506 
4Π −1355.336168 1.8698 1.1850 0.149516 0.006577   2066   485 
6Π −1355.341899 1.9406 1.1857 0.141731 0.006178   2065   479 
6∆ −1355.353022 1.9284 1.1864 0.142985 0.006245   2064   494 

cc-pVQZ / aug-cc-pVQZ CCSDT-3                 
4∆  −1355.382504 1.8690 1.1823 0.149805 0.006587         
6∆ −1355.388939 1.9329 1.1833 0.142704 0.006215         

Expt. 6∆b   2.01 1.03 B0 = 0.1452 ∆(B0 13C) = 0.006       464 
aug-cc-pVQZ MRCISD+Q 1Σ+ CN−   1.1838       2052     
aug-cc-pVTZ CCSDT-3 1Σ+ CN−   1.1813       2072     
 

aEnergies are in hartrees, bond distances in Å, dipole moments in D, rotational constants and 

frequencies in cm-1
.  Unless otherwise stated, only the valence electrons were correlated.  

bReference 7. 
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Table 2.5: Total energies and physical properties for FeCN at correlated levels of theory.a 

Electronic State  Energy   r(Fe-C)  r(C-N) Be ∆(Be 13C) µ ω1(σ) ω2(π) ω3(σ) 
cc-pVQZ / aug-cc-pVQZ CISD   

4Σ− −1355.274367 1.9652 1.1498 0.132650 0.001369 8.8121    
4∆  −1355.274274 1.9834 1.1482 0.131009 0.001339 8.6588    
4Π −1355.274731 1.9852 1.1493 0.130773 0.001336 8.8249    
6Π −1355.295825 2.0598 1.1492 0.124041 0.001396 5.1451    
6∆ −1355.304257 2.0642 1.1488 0.123658 0.001282 4.7841    

cc-pVQZ / aug-cc-pVQZ CASSCF   
4∆  −1354.904164 2.0767 1.1704 0.121366 0.001295 4.8719    
4Π −1354.895887 2.0696 1.1706 0.121949 0.001296 5.1062    
6Π −1354.921483 2.1121 1.1713 0.118402 0.001281 5.2877    
6∆ −1354.932360 2.1090 1.1709 0.118668 0.001282 4.9421    

cc-pVQZ / aug-cc-pVQZ MRCISD   
4∆  −1355.314810 2.0046 1.1638 0.128045 0.001305 4.6376    
6∆ −1355.337055 2.0613 1.1657 0.122925 0.001283 4.5984    

cc-pVQZ / aug-cc-pVQZ MRCISD+Q   
4∆  −1355.359703 1.9796 1.1672 0.130150 0.001334  2283  460 
6∆ −1355.377875 2.0506 1.1682 0.123715 0.001307  2271  467 

cc-pVQZ / aug-cc-pVQZ CCSD   
4Σ− −1355.340324 1.9264 1.1619 0.135612 0.001362     
4∆  −1355.351957 1.9684 1.1596 0.131681 0.001333 7.4413 2251  443 
4Π −1355.348032 1.9534 1.1607 0.133035 0.001336 7.9598 2238  431 
6Π −1355.353293 2.0461 1.1602 0.139946 0.001350 5.0011 2245  425 
6∆ −1355.361298 2.0520 1.1598 0.124076 0.001295 4.6359 2250  435 

cc-pCVTZ / aug-cc-pCVTZ CCSD   
4∆  −1355.321212 1.9745 1.1622 0.130928 0.001317  2240  435 
4Π −1355.316800 1.9560 1.1633 0.132609 0.001322  2227  425 
6Π −1355.324430 2.0563 1.1629 0.123525 0.001289  2237  415 
6∆ −1355.332428 2.0626 1.1625 0.123005 0.001288  2231  405 

cc-pCVTZ / aug-cc-pCVTZ CCSD (5 frozen core orbitals)   
4∆  −1355.793859 1.9720 1.1601 0.131300 0.001330 7.2854 2249  432 
4Π −1355.790380 1.9518 1.1611 0.133157 0.001327 7.8037 2238 237 429 
6Π −1355.793664 2.0510 1.1608 0.124107 0.001294 5.0370 2241  406 
6∆ −1355.802017 2.0550 1.1604 0.123755 0.001301 4.6604 2247 184 417 

cc-pVQZ / aug-cc-pVQZ CCSD(T)      
4∆  −1355.386847 1.9483 1.1680 0.133030 0.001316     
6∆ −1355.388759 2.0455 1.1680 0.124150 0.001285     

cc-pVTZ / aug-cc-pVQZ CCSDT-3      
4∆  −1355.349347 1.9498 1.1706 0.132704 0.001313  2171  456 
4Π −1355.345568 1.9247 1.1719 0.135055 0.001323  2154  448 
6Π −1355.343732 2.0305 1.1712 0.125273 0.001292  2164  423 
6∆ −1355.351457 2.0390 1.1707 0.124517 0.001289  2169  431 
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Table 2.5 (continued): Total energies and physical properties for FeCN at correlated levels of 

theory.a 

cc-pVQZ / aug-cc-pVQZ CCSDT-3   
Electronic State  Energy   r(Fe-C)  r(C-N) Be ∆(Be 13C) µ ω1(σ) ω2(π) ω3(σ) 

4∆  −1355.387477 1.9529 1.1674 0.132628 0.001316     
6∆ −1355.387853 2.0456 1.1676 0.124168 0.001285     

 

 aEnergies are in hartrees, bond distances in Å, dipole moments in D, rotational constants and 

frequencies in cm-1
.  Unless otherwise stated, only the valence electrons were correlated.  
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Table 2.6: Isomerization energies (in cm-1) of FeNC/FeCN on the 6∆ surface.a 

  ∆Ee  Barrier ( †
e∆E ) 

 (6∆, FeNC → FeCN) (6∆, FeNC → FeCN) 
Wachters/DZP ROHF 1872 4857 
Roos DZ ANO ROHF 1809   
NASA ANO ROHF 1806   
cc-pVTZ / aug-cc-pVTZ ROHF 1819   
cc-pVQZ / aug-cc-pVQZ ROHF 1802 4218 
Wachters/DZP CISD  810 3595 
Roos DZ ANO CISD  807   
NASA ANO CISD  685   
cc-pVTZ  / aug-cc-pVTZ CISD  856   
cc-pVQZ / aug-cc-pVQZ CISD  794   
Wachters/DZP CASSCF −1536   
Roos DZ ANO CASSCF −1324   
NASA ANO CASSCF −1269   
cc-pVTZ / aug-cc-pVTZ CASSCF −1258   
cc-pVQZ / aug-cc-pVQZ CASSCF −1269 313 
cc-pVQZ / aug-cc-pVQZ MRCISD −509   
Wachters/DZP MRCISD+Q −91   
cc-pVQZ / aug-cc-pVQZ MRCISD+Q −166 2775b 
Wachters/DZP CCSD  309   
Roos DZ ANO CCSD  345   
NASA ANO CCSD  194   
cc-pVTZ / aug-cc-pVTZ CCSD 413   
cc-pVQZ / aug-cc-pVQZ CCSD 325   
cc-pCVTZ / aug-cc-pCVTZ CCSD  187   
Wachters/DZP CCSD(T) 200   
Roos DZ ANO CCSD(T) 216   
NASA ANO CCSD(T) 6   
cc-pVTZ / aug-cc-pVTZ CCSD(T) 251    
cc-pVQZ / aug-cc-pVQZ CCSD(T) 153    
Wachters/DZP CCSDT-1b 160   
Roos DZ ANO CCSDT-1b 321   
Wachters/DZP CCSDT-3 362   
Roos DZ ANO CCSDT-3 313   
NASA ANO CCSDT-3 92   
cc-pVTZ / aug-cc-pVTZ CCSDT-3 343   
cc-pVQZ / aug-cc-pVQZ CCSDT-3 238    
Relativistic shift: cc-pVQZ / aug-cc-pVQZ CCSD +745   
                            cc-pVQZ / aug-cc-pVQZ MRCISDc −74  
Core correlation shift: cc-pCVTZ / aug-cc-pCVTZ CCSD +11   
ZPVE shift: cc-pCVTZ / aug-cc-pCVTZ CCSD +89   

aComputed at the optimum geometry for each electronic state and each level of theory, correlating only 
valence electrons unless otherwise specified. 
bComputed as a single point at the cc-pVQZ / aug-cc-pVQZ CASSCF optimized geometry. 
cComputed at the cc-pVQZ / aug-cc-pVQZ MRCISD+Q optimum geometry.
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Table 2.7: Adiabatic excitation energies (Te in cm-1) of FeNCa.  
4∆ 4Π 6∆ 6Π 4Σ- 

Wachters/DZP ROHF 20373 20286 0 2746 23750 
Roos DZ ANO ROHF 20133 19942 0 2722 23432 
NASA ANO ROHF 20220 20063 0 2664 23331 
cc-pVTZ / aug-cc-pVTZ ROHF 20294 20125 0 2691 23928 
cc-pVQZ / aug-cc-pVQZ ROHF 20251 20085 0 2661 23640 
Wachters/DZP CISD  10662 11513 0 2674 14191 
Roos DZ ANO CISD  9027 9429 0 2584 12138 
NASA ANO CISD  8657 8984 0 2539 9596 
cc-pVTZ  / aug-cc-pVTZ CISD  8874 9216 0 2545 9755 
cc-pVQZ / aug-cc-pVQZ CISD  8523 8800 0 2530 9387 
Wachters/DZP CASSCF 6566  0 2798  
Roos DZ ANO CASSCF 6461 8766 0 2771  
NASA ANO CASSCF 6438 8786 0 2800  
cc-pVTZ  / aug-cc-pVTZ CASSCF   6459 8813 0 2813  
cc-pVQZ / aug-cc-pVQZ CASSCF 6434 8784 0 2797  
cc-pVQZ / aug-cc-pVQZ MRCISD 5076  0   
Wachters/DZP MRCISD+Q 4718  0 2606  
cc-pVQZ / aug-cc-pVQZ MRCISD+Q 4371  0 2469  
Wachters/DZP CCSD  3910 9309 0 2827 10725 
Roos DZ ANO CCSD  3506 5768 0 2527 8720 
NASA ANO CCSD  3288 5380 0 2492 8140 
cc-pVTZ / aug-cc-pVTZ CCSD 3385 5492 0 2475 8250 
cc-pVQZ / aug-cc-pVQZ CCSD 3226 5223 0 2474 7901 
cc-pCVTZ / aug-cc-pCVTZ CCSD 3504 5612 0 2446  
Wachters/DZP CCSD(T)  8558 0 2624  
Roos DZ ANO CCSD(T) 2735 4753 0 2507  
NASA ANO CCSD(T) 2089 3992 0 2474  
cc-pVTZ / aug-cc-pVTZ CCSD(T) 2475 4351 0 2436  
cc-pVQZ / aug-cc-pVQZ CCSD(T) 2000  0   
Wachters/DZP CCSDT-1b 3217  0   
Roos DZ ANO CCSDT-1b 1961  0   
Wachters/DZP CCSDT-3 2960 5421 0 2593  
Roos DZ ANO CCSDT-3 1929 4027 0 2513  
NASA ANO CCSDT-3 1471 3446 0 2481  
cc-pVTZ / aug-cc-pVTZ CCSDT-3 1765 3699 0 2441  
cc-pVQZ / aug-cc-pVQZ CCSDT-3 1412  0   
      
      
Table 2.7 (continued): Adiabatic excitation energies (Te in cm-1) of FeNCa.  
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4∆ 4Π 6∆ 6Π 4Σ- 

Relativistic shift:       

      cc-pVQZ / aug-cc-pVQZ CCSD +1417 +1990 0 +437  
      cc-pVQZ / aug-cc-pVQZ MRCISDb +232  0 −22  
Core correlation shift:      
      cc-pCVTZ / aug-cc-pCVTZ CCSD −508 −845 0 −82  
 

aComputed at the optimum geometry for each electronic state and each level of theory, 

correlating only valence electrons unless otherwise specified.  
bComputed at the cc-pVQZ / aug-cc-pVQZ MRCISD+Q optimum geometry. 
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Table 2.8: Adiabatic excitation energies (Te in cm-1) of FeCNa.  

4∆ 4Π 6∆ 6Π 4Σ- 

Wachters/DZP ROHF 18345 18057 0 2139 20851 
Roos DZ ANO ROHF 18053 17711 0 2108 20543 
NASA ANO ROHF 18157 17846 0 2049 20546 
cc-pVTZ / aug-cc-pVTZ ROHF 18232 17917 0 2082 20628 
cc-pVQZ / aug-cc-pVQZ ROHF 18203 17888 0 2049 20590 
Wachters/DZP CISD  9039 9379 0 2030 11292 
Roos DZ ANO CISD  7096 7116 0 1912 9018 
NASA ANO CISD  6731 6670 0 1855 8493 
cc-pVTZ  / aug-cc-pVTZ CISD  6905 6851 0 1869 6890 
cc-pVQZ / aug-cc-pVQZ CISD  6581 6480 0 1851 6560 
Wachters/DZP CASSCF 6315 8086 0 2404  
Roos DZ ANO CASSCF 6199 7979 0 2367  
NASA ANO CASSCF 6189 8003 0 2388  
cc-pVTZ / aug-cc-pVTZ CASSCF 6223 8044 0 2408  
cc-pVQZ / aug-cc-pVQZ CASSCF 6188 8005 0 2387  
cc-pVQZ / aug-cc-pVQZ MRCISD 4882  0   
Wachters/DZP MRCISD+Q 4358 5330 0 2009  
cc-pVQZ / aug-cc-pVQZ MRCISD+Q 4208 4986 0 1788  
Wachters/DZP CCSD  3372 4938 0 1947 7813 
Roos DZ ANO CCSD  2459 3569 0 1826 5471 
NASA ANO CCSD  2160 3101 0 1771 4856 
cc-pVTZ / aug-cc-pVTZ CCSD 2260 3201 0 1760 4908 
cc-pVQZ / aug-cc-pVQZ CCSD 2050 2911 0 1757 4603 
cc-pCVTZ / aug-cc-pCVTZ CCSD 2462 3430 0 1755  
Wachters/DZP CCSD(T) 3688 5558 0 1907  
Roos DZ ANO CCSD(T) 1111 2116 0 1786  
NASA ANO CCSD(T) 534 1430 0 1730  
cc-pVTZ / aug-cc-pVTZ CCSD(T) 1685 1685 0 1699  
cc-pVQZ / aug-cc-pVQZ CCSD(T) 445  0   
Wachters/DZP CCSDT-1b 2499  0   
Roos DZ ANO CCSDT-1b 577  0   
Wachters/DZP CCSDT-3 2451 3743 0 1898  
Roos DZ ANO CCSDT-3 690 1712 0 1785  
NASA ANO CCSDT-3 179 1067 0 1728  
cc-pVTZ / aug-cc-pVTZ CCSDT-3 463 1292 0 1695  
cc-pVQZ / aug-cc-pVQZ CCSDT-3 83  0   
      
 

Table 2.8 (continued): Adiabatic excitation energies (Te in cm-1) of FeCNa.  
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Relativistic shift:       
      cc-pVQZ / aug-cc-pVQZ CCSD +1090 +1454 0 +276  
      cc-pVQZ / aug-cc-pVQZ MRCISDb +192 +67 0 −50  
Core correlation shift:       
      cc-pCVTZ / aug-cc-pCVTZ CCSD −612 −876 0 +79  
 

aComputed at the optimum geometry for each electronic state and each level of theory, 

correlating valence electrons only, unless otherwise specified. 
bComputed at the cc-pVQZ / aug-cc-pVQZ MRCISD+Q optimum geometry. 
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Table 2.9: Energies (in cm-1) of near-UV 6Π ← 6∆ electronic excitations in some iron-containing 

compounds. 
 Theoretical Te Experimental T0 

FeH 18964a 18765b 

FeF 30290c 30239d 

FeCl 28950e 28029f 

FeCN 25014g  
FeNC 28224g 27236h 

a Reference 29, Fe[7s6p4d2f]/H[5s4p2d]  MRCISD+Q. 
b Reference 96. 
c Reference 78, Fe[8s4p1d]/F[3s1p] CISD. 
d Reference 97. 
e Reference 93, Fe[8s4p1d]/Cl[5s2p] ROHF. 
f Reference 77. 
g Vertical excitation energies from this work, cc-pVQZ / aug-cc-pVQZ MRCISD+Q. 
h Reference 7. 
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Figure 2.1a. Equilibrium geometries in Å for the 4∆ states. 
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Figure 2.1b. Equilibrium geometries in Å for the 6∆ states. 
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Figure 2.1c. Equilibrium geometries in Å for the 6∆ isomerization transition state. 

 

102.89°
97.62°
87.85°

cc-pVQZ ROHF
Wachters/DZP CISD
cc-pVQZ CASSCF

2.1232
2.0890
2.1480

1.1437
1.1810
1.1837

2.6266
2.5324
2.4115

Fe C

N



 64

  (11σ)2 MO of 4∆ state 

 

 

 

 

 

 

 

 

 

(12σ) MO of 6∆ state  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2. Rationalizing dipole moment differences in quartet and sextet states. Orbital 

contour plots are shown from Wachters/DZP ROHF level. 
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Figure 2.3. Excitation energies from 6∆ to 4∆ state for FeNC and FeCN using the cc-

pVQZ basis set. 



1N. J. DeYonker, S. Li, Y. Yamaguchi, H. F. Schaefer, T. D. Crawford, R. A. King, and K. A. 
Peterson. Submitted to Journal of Chemical Physics. 3/24/05 

 

 

CHAPTER 3 

APPLICATION OF EQUATION-OF-MOTION COUPLED CLUSTER METHODS TO LOW-

LYING SINGLET AND TRIPLET ELECTRONIC STATES OF HBO AND BOH1 



 67

ABSTRACT 

 

Equilibrium structures and physical properties of the X% 1Σ+ linear electronic states, linear excited 

singlet and triplet electronic states of HBO ( A% 1Σ−, B% 1∆, a% 3Σ+, and b% 3∆) and BOH ( A% 1Σ+, 

B% 1Π, and b% 3Π), and their bent counterparts (HBO a% 3A′, b% 3A′′, A% 1A′′, B% 1A′ and BOH X% 1A′, 

b% 3A′, c% 3A′′, A% 1A′, B% 1A′, C% 1A′′) are investigated using excited electronic state ab initio 

equation-of-motion coupled cluster (EOM-CC) methods. A new implementation of open-shell 

EOM-CC including iterative partial triple excitations (EOM-CC3) was tested. Coupled cluster 

wave functions with single and double excitations (CCSD), single, double, and iterative partial 

triple excitations (CC3), and single, double, and full triple excitations (CCSDT) are employed 

with the correlation consistent quadruple- and quintuple-zeta basis sets. The linear HBO X% 1Σ+ 

state is predicted to lie 48.3 kcal mol-1 (2.09 eV) lower in energy than the BOH X% 1Σ+ linear 

stationary point at the CCSDT level of theory. The CCSDT BOH barrier to linearity is predicted 

to be 3.7 kcal mol-1 (0.16 eV). With a harmonic zero-point vibrational energy correction, the 

HBO X% 1Σ+ - BOH X% 1A′ energy difference is 45.2 kcal mol-1 (1.96 eV). The lowest triplet 

excited electronic state of HBO, a% 3A′, has a predicted excitation energy (Te) of 115 kcal mol-1 

(4.97 eV) from the HBO ground state minimum, while the lowest bound BOH excited electronic 

state, b% 3A′, has a Te of 70.2 kcal mol-1 (3.04 eV) with respect to BOH X% 1A′. The Te values 

predicted for the lowest singlet excited states are A% 1A′′ ← X% 1Σ+ = 139 kcal mol-1 (6.01 eV) for 

HBO and A% 1A′ ← X% 1A′ = 102 kcal mol-1 (4.42 eV) for BOH. Also for BOH, the triplet vertical 

transition energies are b% 3A′ ← X% 1A′ = 71.4 kcal mol-1 (3.10 eV) and c% 3A′′ ← X% 1A′ = 87.2 

kcal mol-1 (3.78 eV).  
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INTRODUCTION 

 

Hydroboron monoxide (HBO) is an intermediate or by-product of many reactions involving 

boron compounds.1-4 Boron-containing compounds are candidates for fuel additives5,6 and solid 

propellants that can increase rocket motor efficiency.7,8 HBO and its isomer boron hydroxide 

(BOH) have long been targets of experimental and theoretical studies. In the mid-1960s, HBO 

was first observed in the trimeric gas phase form, boroxine (H3B3O3), as a product of high-

energy9,10 and combustion reactions.11 Shortly thereafter, Lory and Porter identified monomeric 

HBO in an argon matrix and reported its vibrational frequencies.12 

  The first theoretical study on the HBO / BOH system was performed by Thomson and 

Wishart13 in 1974. It was concluded from a Mulliken population analysis14 that HBO has an 

unusual B-O bond order between two and three, demonstrating an electron-deficient boron 

center. In 1977, Summers and Tyrrell15 reported a Hartree-Fock study of isoelectronic 14-

electron species, determining the equilibrium geometry of linear BOH to have a higher energy 

than that of linear HBO. In 1979 Zyubina, Charkin, and Gurvich16 were the first to analyze a 

potential energy surface (PES) of the isomerization from HBO to BOH and noted some 

similarity to the PES for the isoelectronic linear HCN→HNC isomerization.17 Unlike HCN / 

HNC, when polarization functions were included in the basis set, a local minimum for bent BOH 

was discovered at ∠BOH = 125o lying 4.1 kcal mol-1 lower in energy than linear BOH. As such, 

BOH is an unusual violator of the Walsh-Mulliken qualitative molecular orbital (MO) rules for 

14-electron systems.18-23  

 In 1986, the first gas phase detection of monomeric HBO by Hirota’s group using the 

discharge modulation technique renewed interest in the electronic structure of HBO.24-26 Infrared 
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and microwave spectroscopy confirmed a linear HBO structure and provided gas-phase 

vibrational frequencies and rotational spectra. These experimental studies were followed by 

theoretical papers analyzing linear and bent ground states using correlated methods such as 

Møller-Plesset perturbation theory,27-29 coupled cluster,30 and quadratic configuration 

interaction.31-33 These studies predicted the energy difference of the two isomers to be in a range 

of 44 – 51 kcal mol-1 and an HBO→BOH isomerization reaction barrier height range of 71 – 80 

kcal mol-1.  

In 1995, Gole and Michels31 provided isomerization PESs for the ground states and 

lowest 3A′ state of HBO and BOH using quadratic configuration interaction with single and 

double excitations and a perturbative triples correction [QCISD(T)]. They speculated that if 

crystalline BOH could be created, it might be able to release considerable energy upon controlled 

photochemical activation to excited electronic states and subsequent radiative relaxation to 

ground state HBO. At the ∠BOH angle of 53.0o, near where the first 3A′ isomerization transition 

state (TS) is expected to be found, the ground state BOH PES is still fairly shallow. If this system 

is promoted from ground state BOH to a vibrationally excited level of the first 3A′ state with a 

photon energy of ~3.7 eV, BOH may be able to undergo facile cyclic interconversion. If BOH is 

in fact a possible high energy-density material (HEDM),34-37 the hypothesis of Gole and Michels 

would be novel.  

The 1999 study by Boldyrev and Simons32 focused on the HBO and BOH cations and not 

only reported the X% 1Σ+ HBO→ X% 2Π HBO+ adiabatic ionization energy of 13.2 eV to be far 

higher than that of BOH (9.6 eV), but also that BOH+ had a linear ground state ( X% 2Σ+) rather 

different from X% 2Π HBO+
. These differences originate from the large energy gap of the 

π-HOMO / π-LUMO of HBO versus the small σ-HOMO / σ-LUMO energy gap of BOH. 
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A recent (2004) theoretical study conducted by Peng et al.38 recognized the need to use 

multireference methods to appropriately ascertain the wave functions of HBO / BOH excited 

electronic states. Energy points on the isomerization PESs were obtained for the first two HBO / 

BOH triplet states using second-order multireference Brillouin-Wigner perturbation theory 

(MRBWPT2) and the cc-pVTZ basis sets. Peng reported a ground state isomer energy difference 

(54.4 kcal mol-1) that was 4 kcal mol-1 higher than those of previous coupled-cluster studies.30  

Though the singlet-triplet excitations investigated in references 31 and 38 are of a spin-

forbidden nature, if enough intensity borrowing is available from nearby singlet excited states, 

the singlet-triplet electronic transition would possess appreciable oscillator strength39 and the 

mechanism proposed by Gole and Michels could be possible. While a singlet-singlet BOH 

electronic transition would have a large oscillator strength, its lifetime would be orders of 

magnitude shorter than that of a singlet-triplet transition. In this situation, the BOH molecule 

would likely fluoresce back to its ground state before isomerization towards a strongly 

exothermic reaction pathway could occur. Although Gole and Michels outline explicit recipes for 

synthesizing and characterizing BOH,31 that research has not yet been experimentally realized.  

 To our knowledge, there are no published reports detailing the isomerization PESs of the 

HBO and BOH singlet excited electronic states. A more accurate theoretical prediction of 

excitation energies would validate the possibility of intensity borrowing between the BOH A%  

1A′ / 3A′ states for the proposed HEDM pathway. Our task in this research is to examine some 

low-lying singlet and triplet excited states of HBO and BOH using excited state coupled cluster 

techniques.  
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ELECTRONIC STRUCTURE CONSIDERATIONS 

 

The electronic configuration of X% 1Σ+ HBO is qualitatively described as 

2 2 2 4 1[core]3 4 5 1         Xσ σ σ π +Σ% , HBO. 

The symbol [core] pertains to the occupied 1s-like oxygen and boron orbitals. The ground 

electronic configuration of the linear BOH molecule is expressed, noting that the 1π orbital is 

lower in energy than the 5σ orbital; 

2 2 4 2 1[core]3 4 1 5        Xσ σ π σ +Σ% , BOH. 

For the bent ground state of BOH, the occupied 1π orbital of linear BOH splits into the 5a′ and 

1a′′ MOs.40 The 5a′ orbital is more stabilized than the 1a′′ orbital, a result opposite to the 

prediction from Walsh diagrams.18 The bent electronic configuration is expressed as 

[core](3a′)2(4a′)2(5a′)2(1a′′)2(6a′)2   X%  1A′. 

 For linear HBO and BOH, the manifold of singly excited electronic states arises from the 

following types of electronic excitation,  

a) promotion of a 1π electron to one of the antibonding 2π orbitals. Six excited electronic 

states can be derived from these single excitations,   

 2 2 2 3 1 1 1 3 3 3[core]3 4 5 1 2     ,  , , , ,σ σ σ π π − + − +∆ Σ Σ ∆ Σ Σ , 

 b) promotion of a 5σ electron to one of the antibonding 2π orbitals. Two excited 

electronic states can be derived from these excitations,   

  

2 2 4 1 3[core]3 4 5 1 2     ,σ σ σ π π Π Π , 

c) promotion of a 1π electron to the 6σ antibonding MO, whereupon there are two 

excited electronic states, 
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2 2 2 3 1 3[core]3 4 5 1 6     ,σ σ σ π σ Π Π , 

d) promotion of a 5σ electron to the 6σ MO, with the following two excited electronic 

states, 

 

2 2 4 1 3[core]3 4 5 1 6     ,σ σ σ π σ + +Σ Σ . 

Thus, there are thirteen unique linear electronic states relevant to this study, including the ground 

electronic state. 

 The electronic configuration for the 1∆ state from 1π→2π excitation in real MO notation 

requires four Slater determinants. In C2v point group symmetry notation, where the linear 

molecule is in the Cartesian z-axis, its A1 and A2 components are, in the simplest picture,  

2 2 2 2 2

2 2

[core]3 4 5  [(1 (1))(2 (2))1 (1 (1))(2 (2))1

                             (1 (1))(2 (2))1 (1 (1))(2 (2))1 ]
x x y x x y

y y x y y x

σ σ σ π α π β π π β π α π

π α π β π π β π α π

× −

− +
     1∆ (1A1), and 

2 2 2 2 2

2 2

[core]3 4 5  [(1 (1))(2 (2))1 (1 (1))(2 (2))1

                             (1 (1))(2 (2))1 (1 (1))(2 (2))1 ]
x y y x y y

y x x y x x

σ σ σ π α π β π π β π α π

π α π β π π β π α π

× −

+ −
    1∆ (1A2). 

The 1Σ−
 excited state requires four Slater determinants for a proper description and is written in 

terms of real orbitals as  

 
2 2 2 2 2

2 2

[core]3 4 5  [(1 (1))(2 (2))1 (1 (1))(2 (2))1

                             (1 (1))(2 (2))1 (1 (1))(2 (2))1 ]
x y y x y y

y x x y x x

σ σ σ π α π β π π β π α π

π α π β π π β π α π

× −

− +
   1Σ− (1A2). 

The open-shell 1Σ+ wave function derived from a 1π→2π excitation is qualitatively described as  

2 2 2 2 2

2 2

[core]3 4 5  [(1 (1))(2 (2))1 (1 (1))(2 (2))1

                             (1 (1))(2 (2))1 (1 (1))(2 (2))1 ]
x x y x x y

y y x y y x

σ σ σ π α π β π π β π α π

π α π β π π β π α π

× −

+ −
     1Σ+ (1A1). 

The two degenerate components of the 3∆ state are written as 

2 2 2 2 2[core]3 4 5  [(1 (1))(2 (2))1  (1 (1))(2 (2))1 ]x x y y y xσ σ σ π α π α π π α π α π× −      3∆ (3A1), and 
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2 2 2 2 2[core]3 4 5  [(1 (1))(2 (2))1  (1 (1))(2 (2))1 ]x y y y x xσ σ σ π α π α π π α π α π× +     3∆ (3A2). 

 The 3Σ−  wave function is  

 2 2 2 2 2[core]3 4 5  [(1 (1))(2 (2))1  (1 (1))(2 (2))1 ]x y y y x xσ σ σ π α π α π π α π α π× −    3Σ− (3A2). 

Lastly, the 3Σ+ wave function from 1π→2π single excitation is 

2 2 2 2 2[core]3 4 5  [(1 (1))(2 (2))1  (1 (1))(2 (2))1 ]x x y y y xσ σ σ π α π α π π α π α π× +     3Σ+ (3A1). 

From the 5σ→2π single excitation, the 1B1 component of the following 1Π electronic state wave 

function can be described as  

2 2 4[core]3 4 1  [(5 (1))(2 (2)) (5 (1))(2 (2))]x xσ σ π σα π β σβ π α× −     1Π (1B1), 

and its triplet 3B1 counterpart is 

2 2 4[core]3 4 1 (5 (1))(2 (2))xσ σ π σα π α     3Π (3B1). 

Arising from the 1π→6σ single excitation, the 1B1 component of the 1Π electronic state 

wave function can be described as  

2 2 2 2 2[core]3 4 5  [(1 (1))(6 (2))1 (1 (1))(6 (2))1 ]x y x yσ σ σ π α σβ π π β σα π× −   1Π (1B1) 

with the corresponding triplet 3B1 wave function,  

2 2 2 2[core]3 4 5 (1 (1))1 (6 (2))x yσ σ σ π α π σα   3Π (3B1). 

Finally, the wave functions of the two excited states owing to the 5σ→6σ single excitation are 

written as 

2 2 4[core]3 4 1  [(5 (1))(6 (2)) (5 (1))(6 (2))]σ σ π σα σβ σβ σα× −      1Σ+ (1A1) and 

2 2 4[core]3 4 1 (5 (1))(6 (2))σ σ π σα σα      3Σ+ (3A1). 

When the HBO and BOH linear isomers are bent, differences in their electronic structure 

create separate correspondence between their MOs of C2v and Cs point group symmetry. 
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Translation of the C∞v / C2v MOs of HBO and BOH into Cs symmetry is shown in Table 3.1 and 

the wave functions of possible bent singly excited electronic states are listed in Appendix Table 

B.1.  

 

THEORETICAL METHODS 

 

For single reference methods, the zeroth-order description of X%  1Σ+ HBO and X%  1Σ+ BOH was 

obtained using restricted Hartree-Fock (RHF) wave functions. The zeroth-order description of 

triplet states for coupled cluster references was obtained with unrestricted HF (UHF) wave 

functions. Ground state dynamical correlation was accounted for using coupled cluster 

methods41,42 with single and double excitations (CCSD),43 single, double, and perturbative partial 

triple excitations, [CCSD(T)],44,45 single, double, and iterative partial triple excitations (CC3),46 

and full triple excitations (CCSDT).47,48 For excited electronic states, we have made use of the 

equation-of-motion CCSD (EOM-CCSD)49,50 method as well as the CC3 model, which includes 

connected triple excitations. Although CC3 excitation energies are usually viewed from a linear-

response perspective,51 we will use the EOM designation for both CCSD and CC3 excited states 

for the sake of simplicity.  

 The correlation consistent polarized valence quadruple-zeta (cc-pVQZ) basis sets 

developed by Dunning and coworkers were used in this study.52,53 Unless otherwise noted, in all 

correlated procedures the core 1s-like orbitals of oxygen and boron were frozen. Closed-shell 

and excited singlet state CC/EOM-CC computations were carried out using ACES II.54 The 

open-shell triplet CC3, EOM-CCSD, and EOM-CC3 methods were employed in conjunction 
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with the PSI 3.2 package.55 The open-shell implementation of CC3 and EOM-CC3 methods 

incorporated in PSI 3.2 were recently developed described in Reference 56. 

 Structural optimizations and vibrational analyses were carried out at each level of theory 

using finite-differences of energies. For X% 1Σ+ HBO and X% 1A′ BOH, fundamental vibrational 

frequencies were also determined at the CCSD(T) level of theory (with all electrons correlated 

due to program requirements) using second-order vibrational perturbation theory with cubic and 

semi-diagonal quartic force constants computed via finite-differences of analytic second 

derivatives using the method described by Stanton, Lepreore, and Gauss.56 

Explicitly for linear HBO, the stationary points of the following electronic states were 

investigated: the X% 1Σ+ ground state, the A% 1Σ−   state, the 1A1 component of B% 1∆, the a% 3Σ+  state, 

and the 3A2 component of b% 3∆, which all arise from the 1π→2π excitation. For BOH, the 

electronic states included were the X% 1Σ+ ground state, the a% 3Σ+ and A% 1Σ+ states from the 

5σ→6σ excitation, and the b% 3Π and B% 1Π states from the 5σ→2π  excitation. Tables 3.1 and B.1 

detail wave functions for the bent counterparts of electronic states under investigation and the 

state ordering of the bent states will be discussed below. The minima of the highest-lying HBO 

and BOH excited states characterized are 5.8 eV and 3.2 eV below the ionization potential,32 

respectively. It is not likely that Rydberg excited states exist within these manifolds of electronic 

states. 
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RESULTS AND DISCUSSION 

LINEAR GROUND STATE OF HBO 

 

Total energies, equilibrium geometries, and physical properties of the linear singlet ground 

electronic states of HBO and BOH are reported in Table 3.2. The equilibrium bond lengths 

of X% 1Σ+  HBO have been experimentally determined by gas phase microwave spectroscopy to be 

re(HB) = 1.1667 ± 0.0004 Å and re(BO) = 1.2007 ± 0.0001 Å.25,26 Coupled cluster methods 

including triple excitations [CC3, CCSD(T), and CCSDT] reproduce the equilibrium geometry. 

The CCSD(T) re(BO) of 1.2019 Å is only 0.0012 Å longer than the gas phase re(BO). With the 

boron and oxygen 1s electrons correlated, the CCSD(T) geometries may represent a Pauling 

point for this electronic state. However, the CC3 and CCSDT methods perform admirably, and 

we prefer levels of theory with core electrons frozen for the study of excited electronic states.   

The CCSDT dipole moment of linear HBO has a magnitude of 2.70 Debye, with 

direction +HBO−. The large dipole moment implies a highly polar molecule. The harmonic ω1(σ) 

BH stretching frequencies obtained using the CCSD(T), CC3, and CCSDT methods are 2899, 

2885, and 2890 cm-1, respectively. In the analysis performed by the Hirota group,26 the observed 

fundamental ν2(π) and ν3(σ) frequencies were used as harmonic frequencies in order to estimate 

the harmonic ω1(σ) BH stretching frequency, which may explain their rather low ω1(σ) value of 

2821 cm-1. Using the all-electron CCSD(T) anharmonic correction, the fundamental ν1(σ) 

frequency is shifted to 2810 cm-1, in fair agreement with the more reasonable estimated value of 

2849 ± 10 cm-1 given by Lory and Porter12 in their IR matrix-isolation experiments. The 

CCSD(T) fundamental ν2(π) bending frequency of 759 cm-1 and the ν3(σ) BO stretching 

frequency of 1831 cm-1 (computed with all electrons correlated, as noted above) are correct to 
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within 5 cm-1 of the respective gas phase fundamental frequencies. However, the inclusion of 

anharmonicity is seen to raise the bending frequency, a highly unusual effect.   

Relative to the full CCSDT result, the triples contribution of the CC3 method to the X% 1Σ+ 

HBO and X% 1Σ+ BOH total energies are usually overestimated by ~1 kcal mol-1. However, CC3 

geometries compare very favorably with the experimental and full CCSDT bond lengths, 

particularly in light of the computational savings offered.57  

 

LINEAR GROUND STATE OF BOH 

 

Table 3.2 shows energetic and geometric data for linear X% 1Σ+ BOH. The CCSDT geometry of 

X% 1Σ+ BOH is re(BO) = 1.2791 Å and re(OH) = 0.9493 Å. The BO distance of X%  1Σ+ BOH is 

longer than that of X%  1Σ+ HBO because of a lessening of π-overlap, and hence a weakening of 

the multiple bond character. This rather long BO bond is also an indicator of the preference 

towards a bent BOH minimum.  

The CCSDT dipole moment of X% 1Σ+ BOH is larger than that of X% 1Σ+ HBO and of the 

opposite sign, −BOH+, with a magnitude of 3.69 D. The O-H ω1(σ) stretching frequency from the 

CC3 and CCSDT methods is 4009 and 4018 cm-1 respectively, and the B-O stretching frequency 

ω3(σ) is 1464 and 1473 cm-1, respectively. Due to the elongated BO bond length, the ω3(σ) 

frequency of X% 1Σ+ BOH is lower by approximately 360 cm-1 than the BO stretch of HBO. The 

bending frequency of X% 1Σ+ BOH is imaginary, signifying a bent equilibrium geometry for BOH. 

The imaginary CC3 and CCSDT ω2(π) harmonic frequencies are 485i and 487i cm-1. 
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The overestimation of the triple excitation contribution to the total energy using the CC3 

method is largely cancelled when considering relative energies. With all electrons correlated, the 

CCSD(T) energy separation between the linear ground states is predicted to be 49.2 kcal mol-1. 

There is little effect due to core-correlation on the harmonic zero-point vibrational energy 

(ZPVE), and the ZPVE-corrected energy difference between the HBO and BOH linear ground 

states is predicted to be 48.9 kcal mol-1 with CC3, and 48.3 kcal mol-1 with CCSDT. Extension 

of the basis set to cc-pV5Z (at the CC3 cc-pVQZ geometries) increases the separation by just 0.1 

kcal mol-1. We are confident that the true energy difference between the linear isomers is near 48 

and 49 kcal mol-1.  

 

BENT BOH GROUND STATE 

 

The bent X% 1A′ BOH equilibrium geometry of the ground state in Table 3.3 has been discussed 

in a number of theoretical papers.30,31,38,40 CCSDT bond lengths for the bent BOH X% 1A′ state 

increase (compared to the linear structure) due to destabilization of the π-bonding. The CCSDT 

re(BO) prediction is 1.3051 Å, re(OH) is 0.9617 Å, and ∠BOH is 121.4o. Harmonic vibrational 

frequencies are similar to the BOH linear structure and are predicted to be ω1(a′) = 3855 cm-1 

and ω2(a′) = 1402 cm-1, while the ω3(a′) BOH angle bed is predicted to be 619 cm-1. The 

theoretical rovibrational study of HBO / BOH performed by Ha and Makarewicz29 in 1999 

sampled the PES of the X% 1A′ BOH state and presented evidence that the harmonic 

approximation will fail due to large amplitude motion of the hydrogen nucleus around the BO 

bond. Indeed the anharmonic correction to the vibrational frequencies shift the values of the O-H 

stretching and BOH-angle bending significantly, as the all-electron CCSD(T) level of theory 
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predicts the fundamental ν1(a′) to be 3679 cm-1, ν2(a′) to be 1399 cm-1, and the bending ν3(a′) to 

be 563 cm-1. The CCSD(T) ν2(a′) and ν3(a′) fundamental vibrational frequencies obtained in our 

study are larger than the MP2 fundamental vibrational frequencies (of Ha and Makarewicz) by 

37 and 57 cm-1, respectively.29 Hopefully the rovibrational parameters fit by Ha and Makarewicz 

and our improved fundamental vibrational frequencies will assist in the spectroscopic 

identification of the BOH ground state. 

At the CCSDT level of theory, the X% 1A′ BOH minimum is predicted to be lower in 

energy than the linear stationary point by 3.7 kcal mol-1. With the harmonic ZPVE correction, the 

energy difference between the X% 1Σ+ HBO and X% 1A′ BOH ground states is 45.2 kcal mol-1. The 

CCSDT and CC3 methods are again in good agreement for the geometry and energetics, whereas 

the differences in quantities between CCSDT and CCSD shown in Table 3.3 are somewhat 

larger. It seems evident that the CC3 method is more reliable than CCSD for the HBO / BOH 

system, and it is expected that such accuracy can be translated to the EOM-CC3 predictions for 

the excited electronic states. 

 

LINEAR HBO SINGLET EXCITED STATES 

  

Total energies and physical properties of the linear excited states are presented in Table 3.4. The 

two lowest-lying linear singlet excited states of HBO are the A% 1Σ− and B% 1∆ states, formed from 

1π→2π excitations. As the two states possess the same dominant electronic configuration with 

different configuration state functions, their relative energies and geometries are similar. For 

both states, the 1π→2π excitation greatly increases the B-O bond distance relative to the ground 

state. At the EOM-CC3 level, the A% 1Σ− B-O bond distance is predicted to be 1.4219 Å, and for 
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the B% 1∆ state re(BO) to be 1.4276 Å, implying a weak BO bond for both states. Higher in 

energy, the B% 1∆ state has the weaker and slightly longer BO bond. Since electrons involved in 

the π→π* excitation of these two states are localized on the boron and oxygen atoms, the EOM-

CC3 HB bond distances of the first two singlet excited states remain within 0.003 Å of the X% 1Σ+ 

HBO  value of re(HB). Compared to the EOM-CC3 bond length, the EOM-CCSD method 

provides a reasonable re(HB) for the HBO singlet excited states, but underestimates re(BO) by 

nearly 0.03 Å. 

 The EOM-CCSD dipole moment of the A% 1Σ− state is 0.84 D while the dipole moment of 

the B% 1∆ state is 0.94 D. Charge localization on the boron atom (compared to the X% 1Σ+ ground 

state) reduces the magnitude of the A% 1Σ− and B% 1∆ dipole moments by a factor of three but 

retains the +HBO− dipole direction. As the HB bond distance for these two states is in a range 

similar to the ground state, the EOM-CC3 HB stretching (ω1) frequency has a similar value; 

2882 cm-1 for the A% 1Σ−
 state and 2880 cm-1 for the B% 1∆ state. Inclusion of triple excitations 

with the EOM-CC3 wave function reduces the value of ω3(σ) by more than 100 cm-1 compared 

to the EOM-CCSD method, with ω3(σ) = 1095 cm-1 for A% 1Σ− and 1072 cm-1 for B% 1∆. This 

trend generally continues among the investigated linear triplet excited states of HBO, as the 

triple excitations are crucial in the properly describing the weak BO π-bonding. Both excited 

electronic states have imaginary bending frequencies, 974i and 954i cm-1, indicating respective 

bent equilibrium geometries.  
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LINEAR BOH SINGLET EXCITED STATES 

  

Energies, geometries and physical properties of BOH linear excited states are presented in Table 

3.5. Preliminary computations of higher-lying 1∆ and 1Σ− BOH states along with conclusions 

from the study of the BOH+ cation32 imply that the BOH π→π* excitation is unfavorable and 

leads to some dissociated excited electronic states. The A% 1Σ+ BOH state comes from the 5σ 

non-bonding B atom lone pair being excited to the 6σ weakly OH antibonding MO, which 

tightens the BO bonding [re(BO) = 1.2002 Å] and creates a weaker OH bond [re(OH) = 1.4451 

Å]. The EOM-CCSD method performs less well for this excited state, with geometries differing 

from EOM-CC3 by 0.01 – 0.03 Å. The highly ionic A% 1Σ+ excited state contains significant 

contribution from both single and double 5σ→6σ substitutions to the reference wave function, 

and EOM-CCSD fails to adequately describe this multireference character.  

The dipole moment of the A% 1Σ+ state of BOH is 1.465 D at the EOM-CCSD level of 

theory. Unlike other BOH excited states, the A% 1Σ+ BOH state has a dipole moment direction of 

+BOH−. Single and double 5σ→6σ excitations appear to shift enough charge density to change 

the direction of the dipole moment. The EOM-CC3 method yields an imaginary bending ω2(π) 

frequency of 480i cm-1, which implies a bent equilibrium geometry. 

The B% 1Π state of BOH mainly involves single excitations from the reference coupled 

cluster wave function, and thus EOM-CCSD and EOM-CC3 geometries agree more closely. The 

geometry and two harmonic vibrational stretching frequencies of the B% 1Π state are very similar 

to those of BOH X% 1Σ+ ground state. While still large, the EOM-CCSD dipole moment of 2.79 D 

is smaller in magnitude than that of the BOH X% 1Σ+ state. The 5σ→2π excitation shifts charge 
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density from the non-bonding B-atom lone pair to the π-antibonding MOs centered on the boron 

and oxygen atoms. Therefore, negative charge remains localized on the B and O atoms, and the 

dipole direction is the same as that for the X%  1Σ+ state, namely −BOH+. The harmonic bending 

vibrational frequencies for this state show a case (d) Renner-Teller splitting.58 The a′ mode ω2(π) 

has an imaginary frequency of 1443i cm-1 and the a′′ mode has an imaginary frequency of 640i 

cm-1. Both the 1A′ and 1A′′ components resulting from the linear B% 1Π state should have 

nonlinear equilibrium geometries with the 1A′ stationary point being lower in energy. 

 

LINEAR HBO TRIPLET EXCITED STATES 

 

Geometric parameters of the two HBO linear triplet excited states are shown in Table 3.6. Since 

1π→2π excitation enhances BO antibonding and extends re(BO) by approximately 0.2 Å, the 

geometries of the two linear triplet HBO excited states resemble their singlet counterparts with 

the same electron configuration. The dipole moments of these two states point in the same 

direction as the corresponding HBO singlet states, but with smaller magnitudes. The a% 3Σ+ and 

b% 3∆ harmonic vibrational stretching frequencies are similar, both with respect to each other and 

to the isoconfigurational linear A% 1Σ− and B% 1∆ states of HBO. At the EOM-CC3 level of theory, 

both linear triplet states have imaginary ω2(π) harmonic frequencies. The a% 3Σ+ ω2(π) bending 

frequency is 907i cm-1 and the b% 3∆ value of ω2(π) is 993i cm-1, implying bent equilibrium 

geometries for both states. 
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LINEAR BOH TRIPLET EXCITED STATES 

 

Since the BOH A% 1Σ+ electronic state arising from the σ→σ* excitation is lower-lying than 

the B% 1Π state, it is expected that the triplet state arising from the σ→σ* HOMO-LUMO 

excitation will be the lowest-lying excited electronic state of BOH. This excited electronic state 

does exist; however it dissociates at all levels of theory to the same asymptote (BO X 2Σ+ 

radical59,60 + 2S H atom) as the BOH ground state. Its bent counterpart, the a% 3A′ BOH electronic 

state, also dissociates to BO X 2Σ+ radical + 2S H atom. Contrary  to the proposed state-ordering 

of Gole and Michels,31 consideration of this unbound (dissociative) excited electronic state 

allows us to label the first bound, linear triplet excited state of BOH as b% 3Π, arising from the 

5σ→2π excitation. 

Geometries, dipole moments, and vibrational harmonic frequencies for the b% 3Π state are 

presented in Table 3.5. This electronic state is well described by a single-reference coupled 

cluster wave function, and higher accuracy is expected with the CC3 method compared to 

previous studies. Much like the B% 1Π state, the b% 3Π state qualitatively resembles the BOH 

ground state with a slightly extended re(BO) of 1.3142 Å and an re(OH) of 0.9417 Å. Contrary to 

the discussion of Peng,38 the first two bent triplet states of BOH connect to the same linear BOH 

b% 3Π state. The linear 3B1 / 3B2 components of this 3Π state should give identical total energies 

and geometries when the BOH bond angle is constrained to 180o. We suspect use of two different 

active spaces to describe the b% 3A′ and c% 3A′′ electronic states by Peng leads to a qualitatively 

incorrect PES near BOH linearity, providing non-degenerate total energies.  
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The dipole moment of b% 3Π state has the same sign as the BOH ground state with a value 

of 2.08 D. Harmonic vibrational frequencies for the BOH b% 3Π state are similar to those of the 

BOH B% 1Π state. Bending frequencies are both imaginary and again show class (d) Renner-Teller 

splitting, with the a′ ω2(π) component having the larger imaginary frequency. The CC3 

frequencies are a′ ω2(π) = 1122i cm-1 and a′′ ω2(π) = 523i cm-1. The two bent electronic states 

should be minima, with the 3A′ stationary point being lower in energy than the 3A′′ state, akin to 

the BOH B% 1Π electronic state. 

It has been shown that spin contamination affects the quality of open-shell UHF coupled 

cluster wave functions61 and that the situation can be exacerbated when investigating open-shell 

excited states.62 Szalay and Gauss surveyed a number of systems and found that “well-behaved” 

reference coupled cluster wave functions led to nearly uncontaminated 2Ŝ  values for excited 

states.62 However, to our knowledge the expected lessening of spin contamination with UHF 

EOM-CC3 (vis a vis UHF EOM-CCSD) has not yet been examined. In this investigation, almost 

all EOM-CC3 triplet excited state wave functions are computed using the closed-shell ground 

state as a “false-UHF” reference. Therefore the triplet states characterized with this method are 

exactly spin-adapted and should present no spin contamination. The exceptions to this are the 

b% 3Π BOH electronic state and the corresponding bent b% 3A′ and c% 3A′′ BOH excited states. For 

these excited states, our reference 2Ŝ  values of the UHF HBO/BOH linear and bent triplet 

states are never greater than 2.01, close to the optimal S(S + 1) value of 2.00. Therefore, spin 

contamination does not appear to be a concern in this study. 
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BENT HBO EXCITED STATES 

 

Optimized geometries and harmonic vibrational frequencies for the four bent HBO excited 

electronic states ( a% 3A′, b% 3A′′, A% 1A′′, and B% 1A′) are reported in Table 3.6. The geometries of 

the investigated singlet and triplet HBO bent excited states are similar, since they arise from the 

bending of isoconfigurational excited electronic states. The EOM-CC3 re(HB) of all four states 

range from 1.202 – 1.217 Å, which represents a slight elongation from the associated linear 

states. The a% 3A′ state is predicted to have the shortest BO bond, re = 1.356 Å, which is also the 

case for the corresponding HBO a% 3Σ+ linear structure. Akin to the linear singlet and triplet 

excited electronic state structures, the EOM-CC3 re(BO) values for the bent excited states are 

0.012 – 0.030 Å longer than those obtained with EOM-CCSD. With a tighter BO bond and a 

weaker HB bond, the a% 3A′ state has the smallest ∠HBO of 108.8o.  

All harmonic vibrational frequencies for the a% 3A′, b% 3A′′, A% 1A′′, and B% 1A′  excited 

states are real, validating the bent structures as minima, and most harmonic vibrational 

frequencies resemble the values of their linear counterparts. As the B% 1∆ state is higher in energy 

and possesses a smaller imaginary ω2(π) frequency than the A% 1Σ− state, the HBO A% 1A′′ state is 

formed from the 1A′′ resolution of the A% 1Σ− state and B% 1A′ from the 1A′ component of the B% 1∆ 

state. The a% 3A′ state occurs from the 3A′ resolution of the a% 3Σ+ state and the b% 3A′′ state from 

the 3A′′ component of the b% 3∆ state.  
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BENT BOH EXCITED STATES 

 

Equilibrium geometries and harmonic vibrational frequencies for the characterized bent BOH 

excited electronic states (b% 3A′, c% 3A′′, A% 1A′, B% 1A′, and C% 1A′′)  are presented in Table 3.7. 

The A% 1A′ state has different geometric parameters than the other characterized BOH excited 

states, with an EOM-CC3 re(BO) of 1.243 Å and an re(OH) of 1.571 Å, suggesting a very loose 

OH bond. The inclusion of partial triple excitations into the EOM-CC wave function affects the 

geometry and relative energy of the BOH A% 1A′ state more so than other excited electronic states 

of HBO and BOH. As will be discussed below, the ground state BOH total energy rises sharply 

upon re(OH) elongation, and it is expected that at the A% 1A′ optimized geometry the ground state 

wave function contains multireference character as well, justifying the benefits of the EOM-CC3 

method. An analysis of the MOs and the similarities between the BOH A% 1Σ+ and A% 1A′ bond 

distances provide a convincing argument that the A% 1A′ state is derived from the 1A′ resolution of 

the A% 1Σ+ state rather than the 1A′ component of the B% 1Π state.  

As noted, upon bending either of the BOH B% 1Π state or the b% 3Π state, Renner-Teller 

splitting necessarily forms non-degenerate electronic states. Since the ω2(π) a′ component of the 

BOH B% 1Π state has a larger imaginary frequency than the a′′ component, the B% 1A′ state 

connected to the B% 1Π state lies energetically between the bent A% 1A′ state and the C% 1A′′ state. 

The bond lengths and harmonic vibrational frequencies of all investigated BOH bent excited 

electronic states generally resemble their linear counterparts. The b% 3A′, c% 3A′′, A% 1A′, B% 1A′, and 

C% 1A′′ excited electronic states of BOH each have three real harmonic vibrational frequencies, 

and thus each is a genuine minimum. 
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Figure 3.1 schematically depicts adiabatic transition energies relative to the linear 

HBO X% 1Σ+ ground state, and all investigated excited electronic states show bent minima and a 

likely isomerization TS (to BOH) at a ∠BOH of 40 – 80o. The same qualitative “double-well” 

phenomenon as Gole and Michels31 and Peng38 is observed for the PES of the two lowest-lying 

triplet states. The electronic structure of the system changes dramatically in the region of the 

isomerization transition states, from preferential HBO π→π* character to BOH σ→π* or σ→σ* 

character. As a consequence, the excited state isomerization PESs could connect different linear 

electronic states. 

 

ADIABATIC AND VERTICAL TRANSITION ENERGIES OF EXCITED STATES 

 

Adiabatic transition energies of the stationary points are displayed in the last column of Tables 

3.3 – 3.7 and pictorially in Figure 3.1. For HBO, the energetic EOM-CC3 Te ordering for minima 

found in this research is in kcal mol-1, 0 ( X% 1Σ+) < 115 ( a% 3A′) < 132 (b% 3A′′) < 139 

( A% 1A′′) < 151 ( B% 1A′) and the BOH energetic ranking is 0 ( X% 1A′)  < 70 (b% 3A′) < 86 ( c% 3A′′) < 

102 ( A% 1A′) <  128 ( B% 1A′) < 141 (C% 1A′′). As expected, the smaller and highly geometry-

dependent HOMO-LUMO gap of X% 1A′ BOH brings about a denser cluster of BOH excited 

electronic states. Our adiabatic energies are in excellent agreement for those of the 

b% 3A′ electronic state investigated by Gole and Michels31. However, while our HBO Te’s agree 

with those of the Peng study38, our BOH adiabatic transition energies are often 13 – 15 kcal mol-1 

larger. We suspect that their use of different active spaces for the 3A′ and 3A′′ states may create 

an artificial lowering of the 3A′′ PES total energy. It is also likely that the MR-BWPT2 method 
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does not recover enough dynamical correlation in the near-equilibrium region of the BOH 

X% 1A′ ground state. 

 The CC3 b% 3A′ ← X% 1A′ adiabatic Te for BOH is 3.04 eV; in agreement with the 

theoretical prediction of 2.99 eV by Gole and Michels31, while the CC3 BOH c% 3A′′ ← X% 1A′ 

adiabatic excitation energy is 3.71 eV. The vertical b% 3A′ ← X% 1A′ transition energy is 3.10 eV 

with the CC3 method, and the c% 3A′′ ← X% 1A′ vertical excitation energy is 3.81 eV, which is 

much larger than the prediction of ~3.05 eV by Peng.38  

Because of the large geometric perturbation of the OH bond length at the 

BOH A% 1A′ excited state minimum (compared to that of the X% 1A′ BOH ground state), the singlet 

vertical excitation energies require careful analysis and are represented pictorially in Figure 3.2. 

In the PES region of A% 1A′ geometric equilibrium (with the OH bond significantly elongated), 

the ground state is much higher in energy, with an EOM-CCSD X% 1A′ − A% 1A′ excitation energy 

of only 1.90 eV. Note that the ground state energy required for such an r(OH) elongation is 

approximately 3.06 eV. Figure 3.2 indicates that the BOH ground state, the B% 1A′ state, and the  

C% 1A′′ state all travel significantly “uphill” along the stretched OH bond coordinate. 

The X% 1A′ BOH equilibrium geometry resembles the geometries of the B% 1A′  and 

C% 1A′′ excited electronic states more than that of the A% 1A′ state. Hence the B% 1A′ state has a 

lower EOM-CCSD vertical excitation energy (5.64 eV) than the A% 1A′ state (7.12 eV). Due to the 

large shift in relative state energies along the potential energy curve for re(OH) stretching,  both 

conical intersections63-65 and avoided crossings occur. Along this stretching coordinate, there will 

be A% 1A′ /  C% 1A′′ and B% 1A′ / C% 1A′′ conical intersections, as well as an A% 1A′ / B% 1A′ avoided 
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crossing. The mapping of PESs and such conical intersections may lend well to theoretical 

elaboration, but is outside the scope of this investigation. 

Gole and Michels infer that for excitation intensity borrowing to be possible, the energy 

difference between the first excited singlet and lowest triplet BOH states at the X% 1A′ BOH 

equilibrium geometry should be similar to the isoelectronic A 1Π / a 3Π boron monofluoride 

vertical excitation energy difference of 2.73 eV.31 The computed CC3 / EOM-CC3 vertical 

energy difference between the b% 3A′← X% 1A′ / B% 1A′← X% 1A′ electronic transitions is 2.78 eV. 

Our agreement with previous theoretical work and empirical observation sustains the possibility 

of singlet-triplet excited state intensity borrowing. 

To function as a HEDM material, electronic excitation to a vibrationally excited triplet 

BOH state will be necessary to allow possible isomerization via the TS barriers in Figure 1. 

However, dissociative HBO electronic states from the π→σ* excitation and unbound BOH 

electronic states from the π→π* or π→σ* excitations may lie near the surface of highly 

vibrationally excited low-lying triplet states. Quanta absorbed into BOH stretching modes may 

break apart the molecule if the bent b% 3A′ and c% 3A′′ PESs approach dissociative pathways.  

 

CONCLUSIONS 

 

The X%  1Σ+ HBO ground state global minimum, the X% 1A′ BOH ground state, and the linear 

X% 1Σ+  BOH transition state have been studied using ab initio methods with the cc-pVQZ basis 

sets. Stationary points for the HBO A% 1Σ−, B% 1∆, a% 3Σ+, and b% 3∆ excited states as well as the 

BOH A% 1Σ+, B% 1Π, and b% 3Π excited states and their bent counterparts have been characterized 

with new implementations of excited state coupled cluster theory (CC3). Harmonic vibrational 
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frequency analyses of the linear and bent excited states indicate that all excited electronic states 

characterized here have bent minima.  

This study provides the first consistent set of predictions for the singlet excited electronic 

states of HBO and BOH. The energy ordering of the located, bound minima are X% 1Σ+ < a% 3A′ < 

b% 3A′′ < A% 1A′′ < B% 1A′ for HBO and X% 1A′ < b% 3A′ < c% 3A′′ < A% 1A′ < B% 1A′ < C% 1A′′ for 

BOH. The a% 3A′ HBO and b% 3A′ BOH states are both ~115 kcal mol-1 (5.0 eV) higher in energy 

than X% 1Σ+ HBO. The lowest excited singlet states are A% 1A′′ for HBO, with a predicted Te of 

139 kcal mol-1 (6.01 eV) and A% 1A′ for BOH, with a Te value of 148 kcal mol-1 (6.40 eV). The 

HBO π→π* excitation from the ground electronic state causes lengthening of the BO bond and 

lessening of the dipole moment magnitude, while the BOH σ→σ* excitation severely lengthens 

the OH bond and causes a change in the direction of the dipole moment. On the other hand, the 

BOH σ→π* excitation slightly elongates the BO bond and decreases the dipole moment.  

The EOM-CC3 method is found to be more accurate than the EOM-CCSD method, 

especially for the two BOH excited states ( a% 3A′ and A% 1A′) arising from the σ→σ* excitation. 

The EOM-CC methods provide both closed- and open-shell excited electronic state total 

energies, geometric properties, and harmonic vibrational frequencies in a nearly “black box” 

manner. Singlet-triplet vertical and adiabatic transition energies are predicted at an accuracy that 

exceeds previous theoretical studies. Assuming the challenge of synthesizing and storing BOH in 

sufficient amounts is met, traversing the excited state isomerization PES of BOH to HBO may be 

treacherous due to dissociative excited electronic states along the proposed reaction pathway. 

Obviously much more theoretical and experimental work must be carried out to test the viability 

of BOH as a high energy-density material. 
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Table 3.1: Valence molecular orbital (MO) ordering of HBO and BOH in C2v and Cs point group 

symmetries. Note that in-plane bending is considered to occur in the yz-plane. MO energy 

increases downwards.  

HBO C2v HBO Cs BOH C2v BOH Cs 
3σ 3a′ 3σ 3a′ 
4σ 4a′ 4σ 4a′ 
5σ 5a′ 1πx 1a′′ 

1πx (HOMO) 1a′′ (HOMO) 1πy 5a′ 
1πy (HOMO) 6a′ (HOMO) 5σ (HOMO) 6a′ (HOMO)
2πx (LUMO) 2a′′ (LUMO) 6σ (LUMO) 7a′ (LUMO)
2πy (LUMO) 7a′ (LUMO) 2πx 2a′′ 

6σ 8a′ 2πy 8a′ 
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Table 3.2: Total energies and physical properties for the linear HBO and BOH ground electronic 

states.a 
Level of Theory  Energy re(H-B) re(B-O) µe

b  ω1(σ) ω2(π) ω3(σ) 
X%   1Σ+ HBO          
cc-pVQZ RHF  −100.212875 1.1643 1.1788 3.210  2994 863 2009 
cc-pVQZ CCSD  −100.567370 1.1680 1.1983 2.799  2905 778 1882 
cc-pVQZ CC3  −100.585344 1.1692 1.2075   2885 753 1810 
cc-pVQZ CCSDT  −100.583483 1.1690 1.2048 2.703  2890 759 1838 

cc-pVQZ CCSD(T)c 
 
−100.641033 1.1663 1.2019 2.690 { ω = 2899 

ν = 2810
ω = 749 
ν = 759  

ω = 1847
ν = 1831

6-311++G(2df,2pd) QCISD(T)d    1.169 1.208   2894 780 1825 
cc-pVTZ MR-BWPT2e   1.1590 1.2093      
TZ2P(f,d) CCSD(T)f   1.1694 1.2064 2.692  2888 766 1831 
Experimentg   1.1667 1.2007   2821h ν=754 ν=1826
Experimenti       ν = 2849   
          
          
  Energy re(B-O) re(O-H) µe

b  ω1(σ) ω2(π) ω3(σ) 
X%  1Σ+ BOH          
cc-pVQZ RHF  −100.143860 1.2598 0.9319 3.872  4301 529i 1572 
cc-pVQZ CCSD  −100.492240 1.2751 0.9462 3.687  4070 497i 1493 
cc-pVQZ CC3  −100.507434 1.2804 0.9498   4009 485i 1464 
cc-pVQZ CCSDT  −100.506530 1.2791 0.9493 3.687  4018 487i 1473 
cc-pVQZ CCSD(T)  −100.562678 1.2748 0.9480 3.723     
6-311++G(2df,2pd) QCISD(T)d    1.309 0.9630   
cc-pVTZ MR-BWPT2e   1.2680 0.9493   
TZ2P(f,d) CCSD(T)f   1.2814 0.9508 3.660     
aEnergies are in hartrees, bond distances in Å, dipole moments in D, and harmonic vibrational 

frequencies in cm-1. 
bThe directions of the dipole moments are +HBO− and –BOH+, respectively. 
cThe second set of CCSD(T) vibrational frequencies are fundamental frequencies computed via 

finite-differences of analytic second derivatives. Due to program requirements in the analytic 

gradient code, all electrons were correlated when obtaining CCSD(T) data.  
dReference 32. 
eReference 38. 
fReference 30. 
gReferences 24 and 26. 

hFrom reference 26, ν2(π) and ν3(σ) are observed fundamental frequencies, while the ω1(σ) is an 

estimated harmonic frequency. 
iReference 12 is an Ar-matrix isolation experiment, and the fundamental frequency is estimated 

to have error bars of 10 cm-1.
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Table 3.3: Total energies and geometric parameters of bent X%  1A′ BOH.a 

BOH X% 1Α′  Energy re(B-O) re(O-H) ∠BOH  ω1(a′) ω2(a′) ω3(a′) ∆Eb 

cc-pVQZ RHF  −100.150111 1.2854 0.9436 123.51  4127 1501 683 −3.92 
cc-pVQZ CCSD   −100.498312 1.3018 0.9587 121.42  3901 1417 636 −3.81 
cc-pVQZ CC3  −100.513218 1.3061 0.9621 121.45  3849 1396 615 −3.63 
cc-pVQZ CCSDT  −100.512394 1.3051 0.9617 121.36  3855 1402 619 −3.68 

cc-pVQZ CCSD(T)c  
−100.568182 1.3003 0.9601 121.84 { ω = 3864 

ν =3679 
ω = 1418
ν = 1399 

ω = 613 
ν = 563 −3.45 

TZ2P[f,d] CCSD(T)d   1.3068 0.9635 121.45  3852 1397 607 −3.51 
6-311++G(2df,2pd) QCISD(T)e   1.309 0.963 121.1  3870 1393 616  
cc-pVTZ MR-BWPT2f   1.2946 0.9597 123.96     −0.99 
aug-cc-pVTZ MP2g   1.298 0.962 124.2  ν = 3680 1436  ν = 506 −3.0 
 
aEnergies are in hartrees, bond distances in Å, harmonic vibrational frequencies in cm-1, and energy differences in kcal mol-1. 
bEnergy differences are relative to the optimized linear structure of X% 1Σ+ BOH.  
cThe second set of CCSD(T) vibrational frequencies are fundamental frequencies computed via finite-differences of analytic second 

derivatives. Due to program requirements in the analytic gradient code, all electrons were correlated when obtaining CCSD(T) data.  
dReference 30. 
eReference 32. 
fReference 38. 
gReference 29. 
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Table 3.4: Total energies and physical properties for linear HBO excited electronic states.a 

Level of Theory  Energy re(H-B) re(B-O) µe ω1(σ) ω2(π) ω3(σ) ∆Ec 

HBO A% 1Σ−          
cc-pVQZ EOM-CCSD  −100.302082 1.1623 1.3945 0.842 2916 938i 1222 166.5 (7.22) 
cc-pVQZ EOM-CC3  −100.326390 1.1655 1.4219  2882 974i 1095 162.5 (7.05) 
          
HBO B% 1∆          
cc-pVQZ EOM-CCSD  −100.298394 1.1625 1.3976 0.941 2915 909i 1210 168.8 (7.32) 
cc-pVQZ EOM-CC3  −100.323321 1.1657 1.4276  2880 954i 1072 164.4 (7.13) 
          
HBO a%  3Σ+    
cc-pVQZ EOM-CCSD  −100.342747 1.1642 1.3767 0.468 2888 900i 1300 141.0 (6.11) 
cc-pVQZ EOM-CC3  −100.360915 1.1674 1.3937 2857 907i 1208 140.8 (6.11) 
6-311+G(d,p) QCISDb    1.1682 1.3945     145.0 (6.29)c 

cc-pVTZ MRBWPT2d   1.1495 1.3885     144.0 (6.25) 

HBO b%  3∆          
cc-pVQZ EOM-CCSD  −100.319317 1.1624 1.3841 0.671 2913 974i 1267 155.7 (6.75) 
cc-pVQZ EOM-CC3  −100.340569 1.1658 1.4055  2877 993i 1160 153.6 (6.66) 
cc-pVTZ MRBWPT2d   1.1564 1.4046     155.2 (6.73) 

 
aEnergies are in hartrees, bond distances in Å, dipole moments in D, harmonic vibrational 

frequencies in cm-1, and transition energies in kcal mol-1 (eV, in parentheses) relative to the X% 1Σ+ 

HBO minimum. 
bReference 31. 
cRelative energies from Reference 31 are obtained with 6-311+G(d,p) QCISD(T) single points at 

the 6-311+G(d,p) QCISD optimized geometry. 
dReference 38. 
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Table 3.5: Total energies and physical properties for linear BOH excited electronic states.a Note 

that the a% 3Σ+ BOH excited electronic state dissociates to BO X 2Σ+ radical and a 2S H atom, and 

is not presented in the Table.  
Level of Theory  Energy re(B-O) re(O-H) µe

b ω1(σ) ω2(π) ω3(σ) ∆Ec 

 BOH A% 1Σ+         
cc-pVQZ EOM-CCSD −100.301881 1.1896 1.4151 1.465 2360 523i 1820 123.3 (5.35)
cc-pVQZ EOM-CC3 −100.337488 1.2002 1.4451  2684 480i 1802 110.3 (4.78)
         
 BOH B% 1Π         

cc-pVQZ EOM-CCSD  −100.257256 1.2893 0.9419 2.787 4143 1324i  
(647i)d 1484 151.3 (6.56)

cc-pVQZ EOM-CC3 −100.274430 1.2948 0.9453  4089 1443i  
(640i) 1459 149.8 (6.50)

         
 BOHb% 3Π         

cc-pVQZ CCSD −100.356655 1.3098 0.9388 2.077 4195 1121i 
(528i) 1451 88.9 (3.85) 

cc-pVQZ CC3 −100.369583 1.3142 0.9417  4149 1122i 
(523i) 1430 90.1 (3.91) 

6-311+G(d,p) QCISDe  1.3214 0.9454     90.1 (3.91)f 

cc-pVTZ MRBWPT2g 
 1.3009 / 

1.3079 
0.9428 / 
0.9369

    76.7 (3.33) / 
73.3 (3.18) 

 

aEnergies are in hartrees, bond distances in Å, dipole moments in D, harmonic vibrational 

frequencies in cm-1, and energy differences in kcal mol-1 (eV).  
bThe dipole direction of the A% 1Σ+ state is +BOH−, whereas the dipole direction of the B% 1Π and 

b% 3Π states is –BOH+. 
cEnergy differences are relative to the optimized X%  1A′ BOH structure.  
dDue to the Renner-Teller splitting, the a′ and a′′ components of the ω2(π) harmonic vibrational 

frequency are non-degenerate. The a′′ component is listed in parentheses. 
eReference 31. 
fRelative energies from Reference 31 are obtained with 6-311+G(d,p) QCISD(T) single points at 

the 6-311+G(d,p) QCISD optimized geometry. 
gReference 38.
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Table 3.6: Total energies and physical properties of bent HBO excited electronic states.a 

  Energy re(H-B) re(B-O) ∠HBO ω1(a′) ω2(a′) ω3(a′) ∆E 

HBO A% 1Α′′          
cc-pVQZ EOM-CCSD  −100.336308 1.1999 1.3864 125.33 2555 991 1274 145.0 (6.29) 
cc-pVQZ EOM-CC3  −100.364432 1.2043 1.4160 123.15    138.6 (6.01) 
          
HBO B% 1Α′          
cc-pVQZ EOM-CCSD  −100.314316 1.1993 1.3818 130.92 2541 840 1290 158.8 (6.89) 
cc-pVQZ EOM-CC3  −100.344300 1.2063 1.4111 126.75    151.3 (6.56) 
          
HBO a% 3Α′          
cc-pVQZ EOM-CCSD  −100.383485 1.2110 1.3439 109.82 2439 754 1352 115.4 (5.00) 
cc-pVQZ EOM-CC3  −100.402666 1.2171 1.3556 108.79    114.6 (4.97) 
6-311+G(d,p) QCISDb   1.2129 1.3609 110.94 2457 769 1306 113.9 (4.94)c 

cc-pVTZ MRBWPT2d   1.2124 1.3475 109.1    110.7 (4.80) 
          
HBO b% 3Α′′          
cc-pVQZ EOM-CCSD  −100.350892 1.1977 1.3838 124.83 2580 982 1273 135.8 (5.89) 
cc-pVQZ EOM-CC3  −100.375607 1.2019 1.4100 122.94    131.6 (5.71) 
cc-pVTZ MRBWPT2d   1.1797 1.3914 120.1    125.9 (5.46) 
aEnergies are in hartrees, bond distances in Å, bond angles in degrees, harmonic vibrational frequencies in cm-1, and relative energies 

in kcal mol-1 (eV, in parentheses) relative to the linear X% 1Σ+ HBO ground state. 
bReference 31. 
c Relative energies from Reference 31 were obtained with the 6-311+G(d,p) QCISD(T) // QCISD 6-311+G(d,p) level of theory. 
dReference 38.
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Table 3.7: Total energies and physical properties of bent BOH excited electronic states.a Note that the a% 3Α′ excited state dissociates to 

BO X 2Σ+ radical and a 2S H atom and is not presented in the Table.  
  Energy re(B-O) re(O-H) ∠BOH ω1(a′) ω2(a′) ω3(a′) ∆E 
BOH A% 1Α′          
cc-pVQZ EOM-CCSD  −100.316612 1.2278 1.5311 115.18 2156 558 1498 114.0 (4.94) 
cc-pVQZ EOM-CC3  −100.350887 1.2423 1.5711 114.82    101.9 (4.42) 
          
BOH B% 1Α′          
cc-pVQZ EOM-CCSD  −100.293121 1.3455 0.9690 113.71 3475 989 1308 128.8 (5.58) 
cc-pVQZ EOM-CC3  −100.310081 1.3490 0.9766 114.16    127.5 (5.53) 
          
BOH C% 1Α′′          
cc-pVQZ EOM-CCSD  −100.271645 1.3739 0.9616 112.01 3866 825 1155 142.2 (6.17) 
cc-pVQZ EOM-CC3  −100.288666 1.3811 0.9657 111.45    140.9 (6.11) 
          
BOH b% 3Α′           
cc-pVQZ CCSD  −100.388092 1.3402 0.9603 113.98 3792 1081 1363 69.2 (3.00) 
cc-pVQZ CC3  −100.401354 1.3457 0.9641 113.55 3730 1064 1338 70.2 (3.04) 
6-311+G(d,p) QCISDb   1.3506 0.9640 112.49 3794 1094 1328 68.8 (2.99)c 

cc-pVTZ MRBWPT2d   1.3409 0.9641 113.05    58.2 (2.52) 
          
BOH c% 3Α′′          
cc-pVQZ CCSD  −100.364030 1.3585 0.9530 120.10 3982 699 1298 84.3 (3.65) 
cc-pVQZ CC3  −100.376887 1.3633 0.9563 119.76 3935 686 1278 85.5 (3.71) 
cc-pVTZ MRBWPT2d   1.3406 0.9514 125.38    70.4 (3.05) 
aEnergies are in hartrees, bond distances in Å, bond angles in degrees, harmonic vibrational frequencies in cm-1, and adiabatic 

transition energies in kcal mol-1 (eV, in parentheses) relative to the bent X%  1A′ BOH ground state. 
bReference 31. 
cRelative energies from Reference 31 were obtained with the 6-311+G(d,p) QCISD(T) // QCISD 6-311+G(d,p) level of theory. 
dReference 38.
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Figure 3.1: Schematic of the HBO and BOH ground and excited electronic state transition energies (in 

eV). Adiabatic transition energies at the cc-pVQZ CC3 / EOM-CC3 level of theory are reported relative 

to the CC3 X% 1Σ+ HBO minimum. Isomeric CCSDT ground state energies are reported in italics relative to 

the CCSDT X% 1Σ+ HBO global minimum. In parentheses, CCSD / EOM-CCSD adiabatic energies are 

reported relative to the CCSD X% 1Σ+ HBO minimum. As indicated by the question marks, the positions of 

the transition states are less well-known, but sketched here from the work of references 31 and 38.  
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Figure 3.2: Vertical excitation energies at the cc-pVQZ CCSD / EOM-CCSD level of theory of 

singlet BOH excited states (in eV) at a) the equilibrium geometry of the X%  1A′ BOH ground 

electronic state; and b) the equilibrium geometry of the A%  1A′ BOH excited electronic state. The 

arrow connecting the two columns shows the difference of the X%  1A′ ground state energy at its 

equilibrium geometry (a) and at the A%  1A′ equilibrium geometry (b) with an elongated OH bond.  

 



1N. J. DeYonker, Y. Yamaguchi, H. F. Schaefer, and K. A. Peterson. To be submitted to 
Chemical Physics Letters. 
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THE CURIOUS ACTIVE SPACE OF BORON HYDROXIDE (BOH)1 
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ABSTRACT 

 

Equilibrium structures and physical properties of the X% 1Σ+ linear HBO ground state, linear 

BOH X% 1Σ+ transition state and bent X% 1Α′ BOH ground state are investigated using complete 

active space self-consistent field (CASSCF), and internally-contracted multireference or second-

order configuration interaction with single and double substitutions (MRCISD / SOCISD). Using 

the full-valence active space with SOCISD gives X% 1Σ+ HBO bond lengths of re(HB) = 1.166 Å 

and re(BO) = 1.207 Å, which compare favorably with experimental values of re(HB) = 1.167 Å 

and re(BO) = 1.201 Å. However, the full-valence SOCISD BOH X% 1Α′ ΟΗ bond length deviates 

from the previous best coupled cluster geometries by 0.08 Å and the ∠BOH is ~36o smaller. The 

electron-deficient nature of the BO bond causes an unphysical distortion of the full-valence 

complete active space, creating a false destabilization of the oxygen 2s-like molecular orbital 

(MO). Adding or deleting MOs from the reference active space lowers the total energy of both 

the HBO and BOH ground states and improves their geometries. However, active space 

manipulation creates a non-systematic approach to multireference investigations. A more 

straightforward method of obtaining a physically reasonable description of the active space is to 

use single reference CISD natural orbitals (CINOs) in the CASSCF reference set instead of 

optimizing the full-valence MOs. At the SOCISD + CINO level of theory, the BOH 

X% 1Α′ ΟΗ bond distance is 0.9621 Å and the ∠BOH is 120.3o. With the improved MOs, the 

relative energy of the HBO / BOH ground states is 46 – 47 kcal mol-1. 
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INTRODUCTION 

 

HBO and its isomer boron hydroxide (BOH) have been frequent targets of experimental and 

theoretical characterization.1-18 In 1979 Zyubina, Charkin, and Gurvich analyzed the potential 

energy surface (PES) of the isomerization from HBO to BOH and found a local minimum for 

bent BOH at ∠BOH = 125o, lying approximately 4 kcal mol-1 lower in energy than linear BOH.19 

This revealed BOH to be an unusual violator of the Walsh-Mulliken qualitative MO rules for 14-

electron systems.20-25 The first gas phase detections of monomeric HBO by Hirota’s group10,26,27 

using the discharge modulation technique have provided gas-phase vibrational frequencies and 

rotational spectra, but BOH has not yet been experimentally isolated. Bent BOH  has also been 

found to have unusual quasilinear behavior and can easily tunnel through its linear energy 

barrier.9 Large anharmonicity of the BOH fundamental vibrational frequencies has perhaps 

hindered spectroscopic characterization. 

In 1995, Gole and Michels16 provided isomerization PESs for the ground and first excited 

triplet states of HBO and BOH at the QCISD(T) level of theory and speculated that crystalline 

BOH could function as a possible high energy-density material (HEDM).28 A recent theoretical 

study conducted by Peng et al.29 was the first application of a multireference method on excited 

electronic states of HBO and BOH, mapping isomerization PESs for two triplet states using 

second-order multireference Brillouin-Wigner perturbation theory (MRBWPT2). Most recently, 

a study in our laboratory characterized the HBO / BOH ground states, as well as four linear 

excited transition states and the respective bent excited state minima of each isomer with coupled 

cluster and equation-of-motion coupled cluster theory (EOM-CC).30 It has been found that the 
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characterization of HBO and BOH with multireference methods requires special attention, even 

for the ground state. 

 

ELECTRONIC STRUCTURE CONSIDERATIONS 

  

The electronic configuration of X% 1Σ+ HBO is described in zeroth-order as 

2 2 2 4 1[core]3 4 5 1         Xσ σ σ π +Σ% , HBO. 

The symbol [core] pertains to the occupied 1s-like oxygen and boron orbitals. The ground 

electronic configuration of the linear BOH molecule is similar to HBO, with the exception of the 

1π orbital having a lower energy than the 5σ orbital; 

2 2 4 2 1[core]3 4 1 5        Xσ σ π σ +Σ% , BOH. 

For bent X% 1A′ BOH, the Hartree-Fock electronic configuration is expressed as 

[core](3a′)2(4a′)2(5a′)2(1a′′)2(6a′)2   X%  1A′. 

The occupied 1π orbital of linear BOH splits into the 5a′ and 1a′′ MOs when the molecule is 

bent. The 5a′ orbital is more stabilized than the 1a′′ orbital, which is contrary to the qualitative 

description of the Walsh diagrams.20 

   

THEORETICAL METHODS AND STRUCTURE OF CASSCF WAVE FUNCTIONS 

 

The zeroth-order description of X%  1Σ+ HBO and X%  1Σ+ BOH was obtained using the restricted 

Hartree-Fock (RHF) wave function. To obtain a multireference description of the reference wave 

function, the complete active space self-consistent field (CASSCF)31-33 technique was employed. 

The correlation consistent polarized valence quadruple-zeta (cc-pVQZ) basis sets developed by 
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Dunning and coworkers were used in this study.34,35 All computations were carried out with 

MOLPRO 2002.6.36 All internally-contracted multireference configuration interaction with 

single and double substitutions (MRCISD)37 computations included all CASSCF reference 

configurations with a CI coefficient greater than 0.001, while all second-order configuration 

interaction (SOCISD)37-40 computations used all CASSCF reference configurations. The number 

of configuration state functions (CSFs) used as references are listed in Tables 4.1, 4.2, and 4.4. In 

the smallest MRCISD computation, there are approximately a million variation CI parameters, 

internally contracted to nearly 400 000. The largest SOCISD computation involves 

approximately 14 million variational parameters, internally contracted to 2.2 million. 

The “full-valence” active space can be considered the most “black box” type of active 

space. It is defined as the combination of valence occupied and unoccupied MOs from the 

component atoms of the system. In the case of HBO and BOH, these would be the 1s AO of 

hydrogen and the 2s / 2p AOs of boron and oxygen. In the molecules, this combination would 

result in an 10e- / 9 MO active space. In Abelian C2v point group symmetry, these MOs are 

described as the 3a1 – 7a1 orbitals, and the 1-2 b1 / b2 orbitals. In Cs point group symmetry, the 

full-valence active space includes the 3a′ – 9a′ and the 1 - 2a′′ MOs.  

The 1995 study by Peterson41 of BO+
 has cast suspicion on the straightforwardness of 

constructing a CASSCF reference wave function for boron-containing molecules. In that study, 

the ground state BO+ MO with the highest energy in the active space (6a1) had almost solely 

oxygen 2s character instead of valence 2pz anti-bonding character. State-averaging of excited 

electronic states fixed the unbalanced active space, but greatly affected the quality of properties 

and transition energies. The problem was finally alleviated by adding small weighting of the a 

3Π state to computations involving the X 1Σ+ ground state, and vice versa. For BOH, a similar 



 110

problem occurs where the 3a1 MO is destabilized, creating a falsely correlating unoccupied 2s-

like oxygen lone pair instead of a 2pz anti-bonding MO.  

Common disadvantages of the CASSCF method, such as an overemphasis of antibonding 

or false localization of orbitals, are usually eliminated when including dynamical correlation 

effects via MRCI or complete active space plus second-order perturbation theory (CASPT2) 

methods. An unusually contrasting effect is evident with BOH. Geometries and HBO / BOH 

isomeric energy differences are in fortuitous agreement with previous results at the CASSCF 

level of theory. However, as the BOH active space is actually quite distorted, utilizing these 

“optimized” CASSCF natural orbitals (NOs) in an MRCISD or SOCISD computation fails 

completely. The electronic structure of the HBO / BOH isomeric pair is expected to be well-

described by single reference theory, and indeed all leading ground state CI coefficients are 

greater than 0.95. Therefore it is expected that single reference methods such as coupled cluster 

should match the accuracy of MRCI / SOCI wave functions that recover both nondynamical 

correlation and a fair amount of dynamical correlation. It is indeed surprising that SOCISD 

performs so poorly for BOH, and two possible remedies have been devised in this investigation 

in order to fix the “broken” full-valence active space. 

 The first approach is the most simple; adjusting the active space size. However, this 

technique highlights the most frequent complaints about multireference methodology. Variation 

of the active space size is regarded as an unsystematic way to improve the wave function, and 

increasing the active space size does not necessarily increase the amount of correlation energy 

recovered. Modification of the active space can often involve parameterization, and often 

requires multi-step computations in order to validate the appropriate nature of the optimized 

CASSCF NOs. Indeed many of the CASSCF-“dressing” procedures are difficult to reproduce.42 
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In this study, four different active spaces were tested. The full-valence 10e- / 9 MO active 

space is designated as “5220a” in molecular C2v symmetry or “72a” in Cs symmetry. An 8e- / 8 

MO “4220” or “62” active space is obtained by freezing the 2s-like oxygen lone-pair (the 3a1 or 

3a′ MO). Holding the 2s-like O lone pair frozen, but including the 8a1 or 10a′ MO is designated 

“5220b” or “72b”. Lastly, the active space including both the 2s-like oxygen MO and the 8a1 / 

10a′ MO gives a 10e- / 9 MO active space designated “6220” or “82”. 

The second tactic is based on the unrestricted natural orbital CAS (UNO-CAS) method of 

Bofill and Pulay,43 and some recent papers have focused attention towards the use of natural 

orbitals (NOs)44,45 from a dynamically correlated single reference computation as a way to 

smooth out problems in a full-valence CAS.42,46,47 Instead of optimizing the MOs within the 

CASSCF procedure, the MOs are taken from a single-reference configuration interaction with 

singles and doubles (CISD) computation, and the active space CI coefficients are optimized. This 

procedure has been historically called the CASCI method.43  

 

RESULTS AND DISCUSSION 

VARIATION OF ACTIVE SPACE IN CASSCF 

 

The equilibrium bond lengths of X% 1Σ+  HBO have been determined by gas phase microwave 

spectroscopy to be re(HB) = 1.1667 Å and re(BO) = 1.2007 Å.10,27 Total electronic energies and 

equilibrium geometries of the singlet ground electronic states of HBO and BOH at the CASSCF 

and CASCI level of theories are reported in Table 4.1. Except for the “5220b” X% 1Σ+  HBO 

geometries, with a shorter re(HB) of 1.1790 Å, the CASSCF re(HB) values are between 1.185 

and 1.186 Å. All four re(BO) values are between 1.205 and 1.210 Å, approximately the same 
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deviation from experiment as previous studies employing frozen-core dynamically correlated 

wave functions. Compared to X% 1Σ+ HBO, the CASSCF bond distances of linear and bent BOH 

minima compare quite well to those obtained at the coupled cluster level of theory (CCSDT), 

usually within the maximum deviation of 0.011 Å. The ∠BOH of the X% 1A′ BOH ground state 

shows the largest difference compared to CCSDT. Except for the full-valence active space, 

within 0.7o of the CCSDT bond angle, the error in bond angle among the nonstandard active 

spaces is between 1.9 and 6.5o. The CASCI wave functions provide HBO / BOH bond lengths 

within a moderately acceptable accuracy for the linear isomers. However, the CASCI ∠BOH of 

the bent ground state is ~23o smaller than the CCSDT bond angle. Table 4.2 shows the ground 

state NO occupation numbers for the various active spaces employed. For X% 1Σ+ HBO and the 

X% 1Σ+ BOH linear transition state, all four active spaces have extremely similar NO occupation 

numbers. For the X% 1A′ BOH ground state, the “72a” full-valence active space shows a curious 

lack of 7a′ occupation compared to the other active spaces, foreshadowing problems when 

correlated wave functions are computed with this set of MOs.  

 

VARIATION OF ACTIVE SPACE IN CORRELATED METHODS 

 

Total energies and bond distances are presented in Table 4.3 for the linear ground state isomers 

at the CISD, MRCISD, and SOCISD levels of theory. Intuitively, the total energy would 

decrease and the accuracy of geometric parameters would systematically increase as the active 

space size and the number of CSFs selected to be dynamically correlated increases. For X% 1Σ+ 

HBO and X% 1Σ+ BOH, this pattern holds, except that the total energy of the full-valence “5220a” 

active space is inexplicably the highest. The effect of the lowest occupied MO having 2s oxygen 
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character clearly manifests itself with the X% 1Σ+ BOH electronic state, as the MRCISD / 

SOCISD total energies are higher than that obtained using single reference CISD. Such a 

phenomenon is theoretically impossible unless the reference MOs are very flawed in their 

description of the bonding / antibonding characteristics of the system under investigation. The 

geometries with this active space are quite different, most noticeably the re(OH) of the X% 1Σ+ 

BOH state being more than 0.05 Å longer than the re(OH) predicted by all other levels of theory.  

The flawed active space shows an even more pronounced effect in its description of the 

X% 1A′ BOH ground state geometries. The re(OH) predicted using the “5220a” full-valence active 

space is more than 0.08 Å longer that obtained with the other active spaces and at the CCSDT 

level of theory. The ∠BOH is grossly underestimated by more than 35o, an unacceptable 

difference than that obtained using any other ab initio method. With the full-valence active 

space, the SOCISD ground state HBO / BOH energy difference is 62.0 kcal mol-1, almost 13 kcal 

mol-1 higher than the isomeric energy difference found in most other theoretical studies.15-17,30 

On the contrary, comparing the X% 1Σ+ HBO “6220” active space with the X% 1A′ BOH “82” active 

space gives a 46.2 kcal mol-1 isomeric energy difference, in excellent agreement with the 

CCSDT energy difference of 45.8 kcal mol-1. 

 

USE OF NATURAL ORBITALS 

 

The use of natural orbitals from a dynamically correlated wave function in subsequent MRCI 

computations could serve as a possible starting point towards a more “black box” approach to 

multireference methods. If the molecular system is of single-reference character, but presents an 

obtusely constructed active space, the use of configuration interaction or coupled cluster NOs 
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may avoid the unphysical distortion of the MO description. Indeed in the case of HBO and BOH, 

the use of CISD NOs (or CINOs) serves to vastly improve the accuracy of the MRCISD / 

SOCISD wave functions. The only bond length that differs more than 0.002 Å from the CCSDT 

geometry is the HBO re(HB), which is 0.01 Å shorter. The SOCISD total energies are now lower 

than the CISD energies, and the X% 1A′ BOH bond angle is only 1.02o shorter than that obtained 

with CCSDT. The SOCISD + CINO X% 1Σ+ HBO – X% 1A′ BOH isomeric energy difference is 47.1 

kcal mol-1, larger than the CCSDT and the “6220” / “82” SOCISD active space energy 

differences. In good agreement with the CCSDT level of theory, the BOH barrier to linearity is 

3.8 kcal mol-1. 

  

CONCLUSIONS 

 

Minima of the X%  1Σ+ HBO and X% 1A′ BOH ground states ab initio methods were determined 

with multireference methods and correlation-consistent quadruple-zeta basis sets. Using the full-

valence MOs of the HBO / BOH system in the multireference active space, considered the 

simplest description of the active space, gives extraordinarily poor results. By adjusting the size 

of the active space or using NOs from an initial CISD computation, serious deficiencies in the 

CASSCF reference wave function are eradicated. It is recommended that a dynamically 

correlated set of NOs should be used as a starting point for studies involving a CASSCF wave 

function, even in a molecular system where application of high-level ab initio techniques would 

assumedly be straightforward. In the case of BOH, a correctly described active space is integral 

for the success of multireference methods.  
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 Used as a reference wave function for excited state investigations, an unbalanced active 

space that gives unusual ground state properties might then have deleterious effects on the 

accuracy of excited electronic state properties. As a result, in order for an extension of the 

multireference methods to consider an accurate treatment of HBO / BOH excited states, it is 

imperative that the ground state is properly described.  
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Table 4.1: Total CASSCF energies (in Hartrees) and equilibrium geometries (in Å) for the X% 1Σ+ 

HBO ground state, the linear X% 1Σ+ BOH transition state, and the X%  1A′ BOH ground state. 

X%   1Σ+ HBO active 
space CSFs Energy re(H-B) re(B-O)  

RHF   −100.212875 1.1643 1.1788  
CASSCF 4220 492 −100.342941 1.1854 1.2083  
 5220a 1436 −100.346108 1.1851 1.2095  
 5220b 1436 −100.350028 1.1790 1.2082  
 6220 5180 −100.377318 1.1855 1.2057  
CASCI 5220a 1436 −100.347356 1.1584 1.2044  
cc-pVQZ CCSDTa   −100.583483 1.1690 1.2048  
Experimentb     1.1667 1.2007  

X%  1Σ+ BOH active 
space CSFs Energy re(B-O) re(O-H)  

RHF   −100.143860 1.2592 0.9319
CASSCF 4220 492 −100.274312 1.2792 0.9509  
 5220a 1436 −100.275643 1.2791 0.9513  
 5220b 1436 −100.283070 1.2788 0.9508  
 6220 5180 −100.285198 1.2772 0.9520  
CASCI 5220a 1436 −100.247004 1.2769 0.9542  
CCSDTa   −100.506530 1.2791 0.9493  

BOH X% 1Α′ active 
space CSFs Energy re(B-O) re(O-H) ∠ BOH 

RHF   −100.150111 1.2854 0.9436 123.51
CASSCF 62 924 −100.260479 1.3169 0.9676 114.94 
 72a 2744 −100.281661 1.3070 0.9631 122.03 
 72b 2744 −100.269481 1.3144 0.9683 114.91 
 82 9996 −100.301635 1.3148 0.9646 119.44 
CASCI 72a 2744 −100.246889 1.3100 0.9971 97.98 
cc-pVQZ CCSDTa  −100.512394 1.3051 0.9617 121.36 
aReference 30. 
bReferences 26 and 10. 
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Table 4.2: CASSCF natural orbital occupation numbers of highest occupied and lowest occupied 

MOs for the X% 1Σ+ HBO ground state, the linear X% 1Σ+ BOH transition state and the X%  1A′ BOH 

ground state.  

X% 1Σ+ HBO (4220) (5220a) (5220b) (6220) CASCI 
3a1 2.000 1.998 2.000 1.988 1.996 
4a1  1.982 1.983 1.980 1.982 1.992 
5a1  1.978 1.978 1.975 1.977 1.978 
6a1  0.027 0.027 0.027 0.026 0.023 
7a1  0.014 0.013 0.013 0.014 0.009 
8a1 0.000 0.000 0.006 0.012 0.000 
      
1b1 / 1b2 1.958 1.958 1.958 1.961 1.958 
2b1 / 2 b2 0.042 0.043 0.042 0.039 0.043 
       
      

X% 1Σ+ BOH (4220) (5220a) (5220b) (6220) CASCI 
3a1 2.000 2.000 2.000 1.990 1.991 
4a1  1.987 1.987 1.986 1.982 1.980 
5a1  1.981 1.980 1.978 1.978 1.972 
6a1  0.019 0.019 0.020 0.021 0.018 
7a1  0.014 0.014 0.014 0.019 0.016 
8a1 0.000 0.000 0.004 0.011 0.000 
      
1b1 / 1b2 1.976 1.976 1.975 1.975 1.976 
2b1 / 2b2 0.023 0.024 0.024 0.024 0.035 
      
      

X% 1Α′  BOH (62) (72a) (72b) (82) CASCI 
3a′ 2.000 2.000 2.000 1.988 1.995 
4a′  1.982 1.988 1.982 1.979 1.981 
5a′  1.978 1.980 1.977 1.976 1.973 
6a′  1.923 1.977 1.916 1.925 1.956 
7a′  0.078 0.022 0.071 0.078 0.045 
8a′  0.021 0.020 0.022 0.021 0.024 
9a′  0.018 0.014 0.020 0.018 0.019 
10a′  0.000 0.000 0.011 0.013 0.000 
      
1a′′  1.976 1.975 1.976 1.975 1.974 
2a′′  0.024 0.024 0.024 0.025 0.034 
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Table 4.3: Total energies (in Hartrees) and equilibrium geometries (in Å) for the X% 1Σ+ HBO 

ground state and the linear X% 1Σ+ BOH transition state using dynamically correlated 

multireference methods. 

X%   1Σ+ HBO active 
space 

reference 
CSFs Energy re(H-B) re(B-O)

CISD  1 −100.544752 1.1640 1.1929
MRCISD 4220 216 −100.571129 1.1697 1.2047
 5220a 307 −100.570832 1.1656 1.2065
 5220b 353 −100.572022 1.1690 1.2047
 6220 663 −100.574151 1.1691 1.2042
SOCISD 4220 331 −100.571163 1.1695 1.2047
 5220a 1436 −100.570880 1.1657 1.2065
 5220b 1436 −100.572064 1.1690 1.2047
 6220 5180 −100.574251 1.1695 1.2044
SOCISD + CINO  1436 −100.571993 1.1599 1.2050
cc-pVQZ CCSDTa   −100.583483 1.1690 1.2048
Experimentb     1.1667 1.2007

X%  1Σ+ BOH active 
space 

reference 
CSFs Energy re(B-O) re(O-H)

CISD  1 −100.468243 1.2687 0.9423
MRCISD 4220 157 −100.490394 1.2769 0.9487
 5220a 200 −100.465775 1.2876 1.0025
 5220b 269 −100.491737 1.2772 0.9490
 6220 694 −100.492202 1.2767 0.9490
SOCISD 4220 331 −100.490429 1.2768 0.9486
 5220a 1436 −100.465805 1.2875 1.0025
 5220b 1436 −100.491817 1.2769 0.9489
 6220 5180 −100.492296 1.2767 0.9491
SOCISD + CINO  1436 −100.490922 1.2773 0.9489
cc-pVQZ CCSDTa   −100.506530 1.2791 0.9493
aReference 30. 
bReferences 26 and 10. 



 122

 Table 4.4: Total energies (in Hartrees) and equilibrium geometries (in Å) of the X%  1A′ BOH 

electronic state. 

BOH X% 1Α′ active 
space 

Reference 
CSFs Energy re(B-O) re(O-H) ang(BOH) 

CISD  1 −100.473920 1.2945 0.9543 122.32 
MRCISD 62 253 −100.496406 1.3041 0.9619 120.03 
 72a 250 −100.472071 1.3028 1.0440 84.95 
 72b 351 −100.498143 1.3046 0.9617 120.23 
 82 891 −100.500599 1.3048 0.9619 120.90 
SOCISD 62 924 −100.496446 1.3041 0.9619 120.01 
 72a 2744 −100.472123 1.3027 1.0440 84.96 
 72b 2744 −100.498362 1.3033 0.9620 120.31 
 82 9996 −100.500689 1.3049 0.9671 120.78 
SOCISD + CINO  2744 −100.496998 1.3046 0.9621 120.34 
cc-pVQZ CCSDTa  −100.512394 1.3051 0.9617 121.36 
aReference 30. 



 

 

CHAPTER 5 

CONCLUDING REMARKS 
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Clearly the characterization of small transition-metal complexes and excited electronic 

states represent areas of small-molecule ab initio chemistry that have been largely 

unexplored with highly-accurate levels of theory. The reasons for this are evident as well; 

treatment of such systems with sufficient accuracy requires developmental algorithms 

and techniques, while interpretation and compilation of results necessitates considerable 

rigor and patience. Conclusions about the electronic structure of both molecular systems 

discussed in this dissertation are based on little or no experimental evidence for 

comparison. These studies represent the surprising fragility of ab initio methods in 

dealing with the electron correlation problem.  

However, future research prospects are quite exciting. As the treatment of 

electron correlation will undoubtedly continue to improve, both FeNC / FeCN and HBO / 

BOH could become systems subject to continual revisitation for both experimental and 

theoretical chemists. For FeNC and FeCN, accounting for higher excitation levels than 

are currently possible for coupled cluster and multireference configuration interaction 

methods is necessary. Improved basis sets, treatment of spin-orbit coupling, and a refined 

treatment of relativistic effects could also have a significant effect on the relative energies 

of the 4∆ and 6∆ electronic states. Other low-lying electronic states should be present as 

well, and numerous electronic transitions in the IR and near-UV spectral regions might be 

eventually characterized. Or it is possible that FeNC and FeCN will further elude an 

improved theoretical treatment or experimental isolation, generating the same magnitude 

of controversy as iron hydride (FeH). 

The wealth of experimental knowledge on HBO and BOH has been unelaborated 

upon for more than a decade. The electronic structure of this isomeric pair is remarkably 
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challenging for its rather miniscule size. Adiabatic transition energies of both ground 

states to singlet and triplet excited states determined in this research could assist in the 

identification of BOH. A forthcoming study of the potential energy surfaces of HBO / 

BOH excited states will aid in the viability of BOH as a high energy-density material.  

In the 1980’s, the research groups of Prof. Nicholas Handy and Prof. Henry 

Schaefer took technology into their own hands, running larger and larger computations 

on smaller and smaller machines. As a testament to the explosive growth of 

computational chemistry on microcomputers, rudimentary CCSD(T) code on a 1.3 GHz 

Pentium M laptop processor, written with my meager three years of experience in the 

field of theoretical chemistry, runs fourteen times faster than the CADPAC SCF code on 

an IBM PC XT for DZ water. My SCF code is more than 8500 times faster than the 

CADPAC microcomputer software benchmarks from 1985. However, writing code is 

only a small step in understanding electronic structure theory. These difficult applications 

of the software and methods have personally become a rewarding “no-nonsense path to 

progress”. The development of coupled cluster, multireference, and excited state methods 

continue unabated, but remarks and investigations on the limitations and propriety of 

widely-used ab initio techniques should never be ignored for the sake of constant 

theoretical development.  
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Table A.1. CASSCF reference coefficients in the natural orbital representation for low-

lying electronic states of FeNC and FeCN using the cc-pVQZ/aug-cc-pVQZ basis set. 

Doubly-occupied core orbitals excluded from the active space are signified as  

[core] = 1σ22σ23σ21π44σ25σ26σ27σ22π48σ29σ2 

 
FeCN: 
Ψ (4∆) = 0.642 Φ1

 [core 3π410σ211σ24πx4πy 2 2
2

x -y(1δ ) 1δxy]  

− 0.452 Φ2 [core 3π410σ212σ24πx4πy 2 2
2

x -y(1δ ) 1δxy]  

− 0.419 Φ3
 [core 3π410σ211σ12σ 4 π x 4πy 2 2

2
x -y(1δ ) 1δxy]  

− 0.296 Φ4
 [core 3π410σ211σ12σ 4πx 4 π y 2 2

2
x -y(1δ ) 1δxy ]  

− 0.233 Φ5
 [core 3π410σ211σ12σ 4πx 4πy 2 2

2
x -y(1δ ) 1 δ xy] 

Ψ (4Π) = 0.654 Φ1
 [core 3π410σ211σ24πx

24πy 22 yx
1δ

−
1δxy]  

− 0.443 Φ2
 [core 3π410σ212σ24πx

24πy 22 yx
1δ

−
1δxy]  

− 0.362 Φ3
 [core 3π410σ211σ12σ4πx

24πy 22 yx
1δ

−
1 δ xy]  

− 0.280 Φ4
 [core 3π410σ211σ12σ 4πx

2 4 π y 22 yx
1δ

−
1δxy] 

− 0.233 Φ5
 [core 3π410σ211σ12σ 4πx

2 4πy 22 yx
δ1

−
1δxy]  

+ 0.209 Φ6
 [core 3π410σ211σ12σ 4πx

24πy 22 yx
1δ

−
1δxy] 

Ψ (6∆) = 0.966 Φ1 [core 3π410σ211σ 4πx4πy 2 2
2

x -y(1δ ) 1δxy 12σ] 

− 0.122 Φ2 [core 3πy
210σ211σ 4πx4πy 2 2

2
x -y(1δ ) 1δxy 12σ5πx

2]  

− 0.122 Φ3 [core 3πx
210σ211σ 4πx4πy 2 2

2
x -y(1δ ) 1δxy 12σ5πy

2] 

Ψ (6Π) = 0.966 Φ1 [core 3π410σ211σ 4πx
2 4πy 2 2

2
x -y(1δ ) 12σ] 

− 0.122Φ2 [core 3πx
210σ211σ 4πx

2 4πy 2 2
2

x -y(1δ ) 12σ5πy
2]  

− 0.121Φ3 [core 3πy
210σ211σ 4πx

2 4πy 2 2
2

x -y(1δ ) 12σ5πx
2] 

  
FeNC: 
Ψ (4∆) = 0.645 Φ1

 [core 3π410σ211σ24πx 4πy 2 2
2

x -y(1δ ) 1δxy ]  

− 0.457 Φ2
 [core 3π410σ212σ24πx 4πy 2 2

2
x -y(1δ ) 1δxy ]  

+ 0.423 Φ3
 [core 3π410σ211σ 12σ 4 π x 4πy 2 2

2
x -y(1δ ) 1δxy ]  

+ 0.299 Φ4
 [core 3π410σ211σ 12σ 4πx 4 π y 2 2

2
x -y(1δ ) 1δxy ]  
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+ 0.233 Φ5
 [core 3π410σ211σ 12σ 4πx 4πy 2 2

2
x -y(1δ ) 1 δ xy] 

Ψ (4Π) = 0.656 Φ1
 [core 3π410σ211σ24πx

2 4πy 22 yx
1δ

−
1δxy]  

− 0.450 Φ2
 core 3π410σ212σ24πx

24πy 22 yx
1δ

−
1δxy]  

+ 0.307 Φ3
 [core 3π410σ211σ12σ4πx

24πy 22 yx
1δ

−
1 δ xy]  

+ 0.306 Φ4
 [core 3π410σ211σ 12σ 4πx

24 π y 22 yx
1δ

−
1δxy] 

− 0.210 Φ5
 [core 3π410σ211σ12σ 4πx

2 4πy 22 yx
δ1

−
1δxy]  

− 0.210 Φ6
 [core 3π410σ211σ12σ 4πx

24πy 22 yx
1δ

−
1δxy ] 

Ψ (6∆) = 0.973 Φ1 [core 3π410σ211σ 4πx 4πy 2 2
2

x -y(1δ ) 1δxy 12σ]  

− 0.104 Φ2 [core 3πy
210σ211σ 4πx 4πy 2 2

2
x -y(1δ ) 1δxy 12σ 5πx

2]  

− 0.104 Φ3 [core 3πx
210σ211σ 4πx 4πy 2 2

2
x -y(1δ ) 1δxy 12σ 5πy

2] 

Ψ (6Π) = 0.973 Φ1 [core 3π410σ211σ 4πx
2 4πy 2 2

2
x -y(1δ ) 12σ]  

− 0.105Φ2 [core 3πx
210σ211σ 4πx

2 4πy 2 2
2

x -y(1δ ) 12σ 5πy
2]  

− 0.105Φ3 [core 3πy
210σ211σ 4πx

2 4πy 2 2
2

x -y(1δ ) 12σ 5πx
2] 
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Table A.1: Total energies and physical properties for FeNC/FeCN at correlated levels of 

theory not listed in Tables 2.4 and 2.5.a 

    FeNC     FeCN   
   Energy   r(Fe-N)  r(N-C)  Energy   r(Fe-C)  r(C-N) 

Wachters/DZP CISD             
4Σ− −1355.020647 1.9115 1.1810 −1355.030164 1.9600 1.1720 
4∆  −1355.036728 1.8938 1.1815 −1355.040433 1.9857 1.1699 
4Π −1355.032847 1.9230 1.1813 −1355.038880 1.9925 1.1712 
6Π −1355.073122 1.9698 1.1844 −1355.072366 2.0773 1.1715 
6∆ −1355.085306 1.9561 1.1849 −1355.081616 2.0819 1.1709 

Roos ANO CISD             
4Σ− −1355.184052 1.9155 1.1709 −1355.194592 1.9557 1.1588 
4∆  −1355.198230 1.9045 1.1716 −1355.203351 1.9867 1.1569 
4Π −1355.196393 1.9286 1.1711 −1355.203257 1.9899 1.1580 
6Π −1355.227585 1.9695 1.1738 −1355.226968 2.0702 1.1584 
6∆ −1355.239358 1.9539 1.1744 −1355.235681 2.0742 1.1579 

Nasa ANO CISD             
4Σ− −1355.261919 1.9165 1.1616 −1355.263823 1.9528 1.1499 
4∆  −1355.266196 1.8977 1.1626 −1355.271851 1.9835 1.1480 
4Π −1355.264706 1.9204 1.1619 −1355.272129 1.9857 1.1491 
6Π −1355.294071 1.9613 1.1646 −1355.294066 2.0658 1.1492 
6∆ −1355.305640 1.9460 1.1653 −1355.302520 2.0699 1.1488 

cc-pVTZ / aug-cc-PVTZ CISD             
4Σ− −1355.232349 1.9130 1.1649 −1355.241506 1.9603 1.1531 
4∆  −1355.236366 1.8955 1.1658 −1355.241437 1.9788 1.1513 
4Π −1355.234809 1.9175 1.1652 −1355.241682 1.9805  1.1524 
6Π −1355.265201 1.9543 1.1679 −1355.264385 2.0541 1.1524 
6∆ −1355.276798 1.9407 1.1686 −1355.272899 2.0597 1.1520 

Wachters/DZP CASSCF             
4∆  −1354.835682 1.9603 1.1945 −1354.843824 2.0795 1.1849 
4Π −     −1354.835755 2.0704 1.1851 
6Π −1354.852850 2.0031 1.1946 −1354.861646 2.1129 1.1858 
6∆ −1354.865599 1.9867 1.1965 −1354.872599 2.1104 1.1853 

Roos ANO CASSCF             
4∆  −1354.891652 1.9634 1.1864 −1354.898878 2.0780 1.1749 
4Π −1354.881149 1.9720 1.1861 −1354.890573 2.0700 1.1747 
6Π −1354.908466 2.0081 1.1863 −1354.916337 2.1121 1.1758 
6∆ −1354.921090 1.9905 1.1866 −1354.927124 2.1094 1.1754 

Nasa ANO CASSCF             
4∆  −1354.897246 1.9607 1.1824 −1354.904163 2.0772 1.1706 
4Π −1354.886554 1.9700 1.1820 −1354.895896 2.0699 1.1707 
6Π −1354.913825 2.0061 1.1821 −1354.921481 2.1123 1.1713 
6∆ −1354.926581 1.9882 1.1825 −1354.932361 2.1091 1.1710 

cc-pVTZ  / aug-cc-PVTZ CASSCF             
4∆  −1354.891524 1.9599 1.1837 −1354.898333 2.0753 1.1717 
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4Π −1354.880796 1.9692 1.1833 −1354.890036 2.0681 1.1719 
6Π −1354.908135 2.0056 1.1835 −1354.915714 2.1110 1.1725 
6∆ −1354.920952 1.9877 1.1838 −1354.926686 2.1080 1.1722 

Wachters/DZP MRCISD+Q             
4∆  −1355.110672 1.8977 1.1993 −1355.112724 1.9980 1.1897 
4Π −     −1355.108297 1.9747 1.1889 
6Π −1355.120295 1.9652 1.1998 −1355.123429 2.0638 1.1900 
6∆ −1355.132168 1.9528 1.2001 −1355.132581 2.0713 1.1896 

Wachters/DZP CCSD             
4Σ− −1355.070745 1.9004 1.1908 −1355.082602 1.9433 1.1836 
4∆  −1355.102251 1.9137 1.1927 −1355.102838 2.0100 1.1810 
4Π −1355.077193 1.9222 1.1913 −1355.095703 1.9848 1.1817 
6Π −1355.107673 1.9647 1.1929 −1355.109328 2.0674 1.1819 
6∆ −1355.119610 1.9517 1.1933 −1355.118201 2.0736 1.1814 

Roos ANO CCSD             
4Σ− −1355.248645 1.9003 1.1819 −1355.261881 1.9333 1.1709 
4∆  −1355.272404 1.8947 1.1835 −1355.275604 1.9781 1.1688 
4Π −1355.262098 1.9031 1.1826 −1355.270545 1.9601 1.1698 
6Π −1355.276865 1.9656 1.1837 −1355.278486 2.0600 1.1697 
6∆ −1355.288377 1.9496 1.1843 −1355.286807 2.0652 1.1693 

Nasa ANO CCSD             
4Σ− −1355.323358 1.8907 1.1172 −1355.337436 1.9272 1.1616 
4∆  −1355.345465 1.8832 1.1739 −1355.349719 1.9701 1.1594 
4Π −1355.335933 1.8934 1.1729 −1355.345433 1.9542 1.1605 
6Π −1355.349092 1.9548 1.1742 −1355.351492 2.0536 1.1601 
6∆ −1355.360445 1.9398 1.1749 −1355.359560 2.0593 1.1597 

cc-pVTZ  / aug-cc-pVTZ CCSD             
4Σ− −1355.291310 1.1887 1.1758 −1355.304657 1.9211 1.1653 
4∆  −1355.313477 1.8827 1.1773 −1355.316723 1.9656 1.1629 
4Π −1355.303876 1.8902 1.1764 −1355.312437 1.9477 1.1640 
6Π −1355.317625 1.9455 1.1776 −1355.319000 2.0382 1.1635 
6∆ −1355.328901 1.9327 1.1783 −1355.327020 2.0459 1.1631 

Wachters/DZP CCSD(T)             
4∆  −     −1355.116961 1.9620 1.1882 
4Π −1355.095681 1.9200 1.1980 −1355.108441 1.8987  1.1905 
6Π −1355.122719 1.9623 1.1995 −1355.125075 2.0632 1.1886 
6∆ −1355.134674 1.9497 1.1998 −1355.133765 2.0702 1.1880 

Roos ANO CCSD(T)             
4∆  −1355.297506 1.8707 1.1906 −1355.303923 1.9551 1.1770 
4Π −1355.288311 1.8842 1.1900 −1355.299345 1.9380 1.1782 
6Π −1355.298547 1.9620 1.1915 −1355.300845 2.0539 1.1776 
6∆ −1355.309968 1.9466 1.1921 −1355.308984 2.0599 1.1772 
 
 

Nasa ANO CCSD(T)             
4∆  −1355.377431 1.8620  1.1813  −1355.384489 1.9494  1.1677 
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4Π −1355.368760 1.8751  1.1807  −1355.380408 1.9314  1.1682 
6Π  −1355.375675 1.9508  1.1819  −1355.379042 2.0462  1.1682 
6∆  −1355.386949 1.9359  1.1827  −1355.386923 2.0528 1.1678 

cc-pVTZ / aug-cc-PVTZ CCSD(T)             
4∆  −1355.342368 1.8597 1.1846 −1355.348646 1.9435 1.1713  
4Π −1355.333820 1.8713  1.1840  −1355.344824 1.9247  1.1726  
6Π −1355.342544 1.9413  1.1854  −1355.344759 2.0305  1.1716  
6∆ −1355.353645 1.9290  1.1861  −1355.352502 2.0393  1.1712  

Wachters/DZP CCSDT-1b          
4∆ −1355.120680  1.8785  1.2001  −1355.123223  1.9640  1.1883  
6∆  −1355.136337 1.9485  1.2017  −1355.134610  2.0700 1.1887  

Roos ANO CCSDT-1b          
4∆  −1355.302946 1.8709  1.1931  −1355.307791  1.9550  1.1776  
6∆  −1355.311883 1.9454  1.1940  −1355.310420  2.0594 1.1781  

Wachters/DZP CCSDT-3             
4∆  −1355.11996 1.8941 1.1990 −1355.121639 1.9885 1.1872 
4Π −1355.109760 1.9017 1.1992 −1355.115754 1.9586 1.1882 
6Π −1355.122644 1.9618 1.1999 −1355.124160 2.0635 1.1881 
6∆ −1355.134458 1.9490 1.2003 −1355.132807 2.0705 1.1875 

Roos ANO CCSDT-3             
4∆  −1355.300539 1.8818 1.1916 −1355.304761 1.9630 1.1762 
4Π −1355.290982 1.8836 1.1911 −1355.300104 1.9388 1.1773 
6Π −1355.297878 1.9613 1.1917 −1355.299772 2.0540 1.1771 
6∆ −1355.309330 1.9458 1.1924 −1355.307904 2.0601 1.1767 

Nasa ANO CCSDT-3             
4∆  −1355.379731 1.8695 1.1822 −1355.385201 1.9545 1.1672 
4Π −1355.370733 1.8724 1.1816 −1355.381151 1.9310 1.1684 
6Π −1355.375129 1.9501 1.1823 −1355.378142 2.0462 1.1678 
6∆ −1355.386433 1.9352 1.1832 −1355.386014 2.0523 1.1675 

aEnergies are in hartrees, bond distances in Å. 
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Table B.1. Electron configurations of HBO / BOH singlet and triplet excited states in 

linear and bent geometries. Note that in-plane bending is considered to occur in the yz- 

plane. The Cs wave functions are written using the C2v – Cs MO correspondence from 

Table I. Only the open-shell portions of the wave functions are written. 

 
C∞v (C2v) electronic 

state 
HBO / BOH C∞v wave 

function 
HBO Cs wave function BOH Cs wave function 

1π32π    
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a a a
a a a
α α

α α+
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3Σ−→3A2→3A′′ 
2

2

(1 (1))(2 (2))1

 (1 (1))(2 (2))1
x y y

y x x

π α π α π

π α π α π−

2

2

(1 '' (1))(7 ' (2))(6 ')
(6 ' (1))(2 '' (2))(1 '')
a a a
a a a
α α

α α−
 

2

2

(1 '' (1))(8 ' (2))(5 ')
(5 ' (1))(2 '' (2))(1 '')
a a a
a a a
α α

α α−

3Σ+→3A1→3A′ 
2

2

(1 (1))(2 (2))1

(1 (1))(2 (2))1
x x y

y y x

π α π α π

π α π α π+

2

2

(1 '' (1))(2 '' (2))(6 ')
(6 ' (1))(7 ' (2))(1 '')
a a a
a a a
α α

α α+
 

2

2

(1 '' (1))(2 '' (2))(5 ')
(5 ' (1))(8 ' (2))(1 '')
a a a
a a a
α α

α α+
 

5σ2π    

1Π→1B1→1A′′ 
(5 (1))(2 (2))

(5 (1))(2 (2))
x

x

σα π β
σβ π α−

 
(5 ' (1))(2 '' (2))

(5 ' (1))(2 '' (2))
a a
a a
α β
β α−

 
(6 ' (1))(2 '' (2))

(6 ' (1))(2 '' (2))
a a
a a
α β
β α−

 

1Π→1B2→1A′ 
(5 (1))(2 (2))

(5 (1))(2 (2))
y

y

σα π β

σβ π α−
 

(5 ' (1))(7 ' (2))
(5 ' (1))(7 ' (2))
a a
a a
α β
β α−

 
(6 ' (1))(8 ' (2))

(6 ' (1))(8 ' (2))
a a
a a
α β
β α−

 

3Π→3B1→3A′′ (5 (1))(2 (2))xσα π α  (5 ' (1))(2 '' (2))a aα α  (6 ' (1))(2 '' (2))a aα α  

3Π→3B2→3A′ (5 (1))(2 (2))yσα π α  (5 ' (1))(7 ' (2))a aα α  (6 ' (1))(8 ' (2))a aα α  

1π36σ    

1Π→1B1→1A′′ 
2

2

(1 (1))(6 (2))1

(1 (1))(6 (2))1
x y

x y

π α σβ π

π β σα π−

2

2

(1 '' (1))(8 ' (2))(6 ')
(1 '' (1))(8 ' (2))(6 ')
a a a
a a a
α β

β α−

2

2

(1 '' (1))(7 ' (2))(5 ')
(1 '' (1))(7 ' (2))(5 ')
a a a
a a a
α β

β α−
 

1Π→1B2→1A′ 
2

2

(1 (1))(6 (2))1

(1 (1))(6 (2))1
y x

y x

π α σβ π

π β σα π−

2

2

(6 ' (1))(8 ' (2))(1 '')
(6 ' (1))(8 ' (2))(1 '')
a a a
a a a
α β

β α−

2

2

(5 ' (1))(7 ' (2))(1 '')
(5 ' (1))(7 ' (2))(1 '')
a a a
a a a
α β

β α−

3Π→3B1→3A′′ 2(1 (1))(6 (2))1x yπ α σα π  2(1 '' (1))(8 ' (2))(6 ')a a aα α 2(1 '' (1))(7 ' (2))(5 ')a a aα α

3Π→3B2→3A′ 2(1 (1))(6 (2))1y xπ α σα π  2(6 ' (1))(8 ' (2))(1 '')a a aα α  2(5 ' (1))(7 ' (2))(1 '')a a aα α
5σ6σ    

1Σ+→1A1→1A′ 
(5 (1))(6 (2))

(5 (1))(6 (2))
σα σβ
σβ σα−  

(5 ' (1))(8 ' (2))
(5 ' (1))(8 ' (2))
a a
a a
α β
β α−

 
(6 ' (1))(7 ' (2))

(6 ' (1))(7 ' (2))
a a
a a
α β
β α−

 

3Σ+→3A1→3A′ (5 (1))(6 (2))σα σα  (5 ' (1))(8 ' (2))a aα α  (6 ' (1))(7 ' (2))a aα α  

 
 
 
 
 


