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ABSTRACT 

 Geospatial technologies including geographic information systems (GIS) and 

Lidar (Light Detection and Ranging) are increasingly being used to provide detailed and 

accurate spatial information for a variety of environmental analyses. One such application 

is site suitability analyses for Solar Photovoltaic Farms (SPVF), broad-scale systems 

designed to provide solar power to the electricity grid. The highly accurate 

representations of ground terrain conditions using digital elevation models (DEMs) 

derived from Lidar are critical for SPVF site suitability. However the expense associated 

with collecting aerial Lidar may not provide sufficient return on the investment for this 

particular analysis. A detailed comparison of Solar Photovoltaic (Solar/PV) site 

suitability analysis results performed with Lidar-derived 1.22-meter DEM vs. USGS 

NED 10-meter DEM will address that question. The results from this comparison will 

potentially inform decision-makers on the need for acquiring Lidar data in a region when 

investigating the siting of a SVPF installation. 
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CHAPTER 1 

INTRODUCTION 

Overview 

A little over 60 years ago, at Bell Laboratories, a new technology was born with the 

creation of the first photovoltaic (PV) solar cell. According to Green (2000), 

“Photovoltaics involve the direct conversion of sunlight into electricity in thin layers of 

materials with properties intermediate between those of metals and insulators.” Since its 

invention, this technology has increased in efficiency in that conversion of light to 

electricity and has become more widespread. 

 

Many factors are driving down the cost of implementing solar/photovoltaic technology 

these days. More and more, governments, corporations and individuals are making the 

investment to tap in to this renewable, practically unlimited resource (Bazilian, et al., 

2013). Even with declining start-up costs, there is significant interest in determining: 1) 

the benefit of these systems in a potential site before making a commitment; and 2) 

selecting a site that is appropriate. This is where solar site suitability analysis using 

geospatial techniques comes in to play.  

 

A solar site suitability analysis is a formal process of defining factors that would impact 

whether a solar installation would be appropriate for a particular location and using those 

factors to make decisions concerning site selection. Depending on the type of installation, 
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there are certain criteria including distance from sufficient electric transmission lines, 

slope and aspect of the site, that, when analyzed together in a meaningful way, can help 

an interested party make the decision on that investment. This type of land-use analysis is 

often driven by spatial data, such as in landscape, urban and environmental planning. 

(Pereira, et al., 1993; Malczewski, 1999; Malczewski, 2004).  

 

Spatial suitability analyses are often structured as a Multi-Criteria Decision Making 

(MCDM) process. MCDMs are, quite literally, the consideration of multiple criteria in 

the decision making process. One of these processes is the Analytic Hierarchy Process 

(AHP) created by Thomas L. Saaty of the University of Pittsburg (Saaty, 1990) With the 

AHP, the investigator simplifies a complex problem into pairwise evaluations of 

weighted criteria against each other. (Saaty, 1990) The criteria, in this case, are all the 

factors being considered that determine the suitability for a SPVF. Some examples of 

these criteria are slope (flat land is more ideal), aspect (southerly directions of sloped 

land are better) and distance from electric transmission infrastructure sufficient to carry 

the electricity produced. 

 

In this study, the result of the decision-making process will be land that is ranked by its 

suitability to contain a solar installation: more specifically, a Solar Photovoltaic Farm 

(SPVF). SPVFs (also known as solar plant, solar ranch or solar power station), are broad-

scale photovoltaic solar installations ranging anywhere from less than 5MW of electricity 

production on less than a hectare to 579 MW in the case of the Solar Star Projects in 

California that cover over 1300 hectares (DiSavino, 2014). These installations are 
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intended to supply power to the electric utility grid, rather than to specific structures or 

facilities. 

   

These SPVFs are made possible by the development and advances in photovoltaic cell 

technology. Advances in understandings about the physics of light and energy blazed the 

path for the creation of the first efficient solar cell in 1954. The technology has been 

evolving and efficiencies have been increasing ever since (Green, 2000; Pearce, 2002, 

Pérez-Higueras, et al., 2011; Bazilian et al., 2013; Liang, et al., 2015). 

 

The processes for determining site suitability for SPVFs have been established. However, 

there is still the question of spatial resolution requirements for the data used as input to 

geospatial suitability models such as MCDMs. Details of the characteristics of the earth’s 

surface that influence the exposure of SPVF panels to sunlight, such as slope and aspect, 

have significant impact on site selection in an area being considered for siting a SPVF. 

Because of this, the spatial resolution of that data is important because data of high 

spatial resolution and small ground area coverage of individual pixels typically are more 

costly to acquire, manage and process. For example, the common spatial representation 

of the earth’s surface is a Digital Elevation Model (DEM). A DEM is:  

 

“The representation of continuous elevation values over a topographic surface by 

a regular array of z-values, referenced to a common datum. DEMs are typically 

used to represent terrain relief.” (Wade, 2006) 
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There are three main ways DEMs are produced: auto-correlated or manually interpreted 

from aerial photography, interpolated from elevations obtained from previous survey data 

or from electronic sensor systems that are either active or passive (Caruso, 1987). Many 

of the older technologies used to generate DEM data have limitations that lead to DEMs 

that have 30-meter to 10-meter resolutions. Newer methods can produce DEMS 5-meters 

and better.  One of the prominent technologies from which high-resolution DEM data is 

produced today is Light Detection and Ranging (Lidar) (Rayberg, et al., 2009).  

 

Lidar uses laser pulses to determine distance from reflective surfaces by measuring the 

travel time of the pulse from emission to return. Fig. 1-1 depicts the Lidar collection 

process:  

 

 

Fig. 1-1: Lidar Collection Example  

(Image source: http://www.sbgmaps.com/lidar_technologies.htm)  
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This image illustrates a scanner mounted on a plane that emits the laser pulses. The 

airborne platform not need be an airplane, as helicopters and unmanned aerial system 

technology are also used to collect Lidar data. A survey device that produces the energy 

that is measured is referred to as an “active” scanning device. The travel-time and 

trajectory of the pulse reflected returns are used to calculate the position the reflector 

represents relative to the GPS coordinates of the plane in its flight path at the time the 

pulse is emitted and received. Raw Lidar data are a collection of X, Y, Z points, often 

referred to as a “point cloud” that represent objects and surfaces that reflected the laser 

pulse. 

 

Lidar can provide an accurate and detailed representation of the surface it encounters. 

Lidar, or Light Detection and Ranging, or Laser Detection and Ranging, is:  

 

“a mature mapping technology in the same company as radar and sonar. Airborne 

lidar mapping systems provides 3D information for the surface of the Earth which 

includes terrain surface models, vegetation characteristics, and man-made 

features. Lidar is an active sensing technology, i.e., it generates its own pulses of 

light and detects the reflections from those pulses (very similar to radar and 

sonar). (Renslow, 2012) 

 

The acquisition of Lidar data from an altitude of 2000 meters can result in a point cloud 

of 1.0 points per square meter and be complied to meet a +/- 1 meter horizontal accuracy 

and a vertical accuracy of +/- 15cm (NOAA\GADNR, 2012). While this level of 
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accuracy and detail are desirable for many types of analyses, there is certain level of 

expense in collecting Lidar data which will be described in more detail later. The 

accuracy that Lidar can provide has found multiple applications across many disciplines 

(Wehr and Lohr, 1999), but is this level of detail worth the monetary investment in 

determining site suitability for SPVFs? Costs of Lidar acquisition are seeing a downward 

trend, but still are significant enough to potentially cause policy makers to ask whether 

the expenditure is necessary.  In 2009, Sanborn Mapping quoted the Virginia Base 

Mapping Project $183/sq, km ($475/sq. mile) for a 1-meter point spacing Lidar survey 

and delivery of a bare-earth DEM for a 518-1295 sq. km. (200-499 sq. mile) area. Fugro 

Earthdata, Inc. estimated in 2011 that would be $135 to $175/sq. km. ($350 to $450/sq. 

mile) for the same information for a 259-1295 sq. km. (100-500 sq. mile) survey area. In 

2013, the state of Michigan received estimates of approximately $58/sq. km ($150/sq. 

mile) for a similar product in a 259-1295 sq. km. (100-500 sq. mile) survey area. Even 

with this downward trend, should the most recent estimates hold that would still represent 

a cost for the 313 sq. km (121 sq. mi) area of this project at more than $18,000. 

 

 Despite these trends, Lidar acquisition remains a significant investment. If Lidar survey 

data are currently not available in an area being evaluated for the solar potential for its 

residents, decision makers may want to know just how much benefit it provides to 

solar/PV potential site surveys for SPVFs. This study will shed light on whether the detail 

and accuracy Lidar can provide is necessary to determine site suitability for SPVFs. 
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Problem Statement 

The development of Solar Photovoltaic Farms (SPVF) is getting less expensive and 

efficiencies of photovoltaic cells are increasing, making this an increasingly viable and 

popular alternative solution to the energy needs of our country (Bazilian, et al, 2013). 

Innovative Solar Systems estimates the cost for installing SPVFs at $1,235,500/hectare 

($500,000/acre) in the United States. Those interested in determining the best placement 

of these installations, maximizing their benefit or determining whether to make the 

investment at all will often perform or contract a solar suitability analysis. Especially 

when covering larger areas, these analyses utilize geospatial, or geographic information 

systems (GIS) data and modeling capabilities (Malczewski, 2004).  

 

The remote sensing technology Lidar (Light Detection and Ranging), is enabling a 

marked increase in the accuracy and detail of some of the data used in land-use suitability 

and a myriad other types of analyses (Wehr and Lohr, 1999). An active Lidar sensor 

emits pulses of light energy that the time that it takes to reflect the energy, and the order 

of the return indicate the position of the reflector on the ground. By order of the return, it 

is meant that the light pulse will reflect off the first thing it encounters, but can also travel 

through non-solid reflectors such as tree canopy. The last return to the sensor, if not from 

a man-made object, is “bare-earth”. An aerial Lidar survey can vary in the post-spacing, 

or the average number of points measured in a given area. This can be as few as one 

every few square meters or 8 or more per square meter. When the post-spacing is around 

one point measured every square meter that is sufficient to generate a reliable 5-meter 

DEM and 2 foot contours from that. Do we always need this 5- meter and better DEM 
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level of detail in order to obtain desired results in determining site-suitability for SVPFs?  

For a typical site suitability study of a SPVF, is the benefit of Lidar enough to justify the 

cost of obtaining it if it is not already available?  

 

Scope 

The purpose of this quantitative study is to perform large-area Solar Photovoltaic Farm 

site survey analyses using DEMs of two different spatial resolutions and statistically 

compare the results in order to determine if the results are statistically similar enough to 

be considered “the same”. The two analyses will utilize the same types of data, but one 

will substitute high-resolution elevation data typical of what can be derived from an 

aerial Lidar survey. More specifically, a 10-meter resolution United States Geological 

Survey (USGS) National Elevation Dataset (NED) DEM that is publically available at no 

cost will be used to derive slope and aspect of the land to inform one analysis, while a 

1.22-meter Lidar-derived DEM, and derived slope data will inform the other. The 10- 

meter DEM is derived from 1:24,000 scale cartographic contours and is the predominant 

source in the NED. The influence of the variables (aspect and slope derived from the 

different resolution DEMs) will be assessed by repeating the process with the aspect and 

slope value having more weight in the decision making process. Other data in the 

analyses, such as road centerlines and hydrology, will remain constant for control. 

 

The analyses is typical of previous MCDM SPVF site suitability surveys performed as 

informed by the literature (Gastli, 2007; Carrion, et al. 2008a; Carrion, et al. 2008b; 

Charabi and Gastli, 2011; Janke, 2010; Sanchez-Lozano, et al., 2013; Uyan, 2013). The 
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specific study that will be emulated is Melvut Uyan’s “GIS-based Solar Farms Site 

Selection Using Analytic Hierarchy Process (AHP) in the Karipinar region, 

Konya/Turkey” (Uyan 2013). Uyan used elevation data derived from the Shuttle Radar 

Topography Mission (SRTM) at a resolution of 30-meters for an analysis that covered 

6035 square kilometers. The criteria used by Uyan were modified slightly in the values of 

the sub-criteria to better suit this project and the addition of the aspect of the land as a 

criteria.   

 

The location of the study is Athens-Clarke County (ACC), located in northeast Georgia 

within the Piedmont Physiographic Province (Fig. 1-2 and Fig. 1-3). The Piedmont is 

typified by mountainous area with hills and plains as well. Athens-Clarke County is more 

of the hill-and-plains-type piedmont geography with an average elevation of 194 meters 

(636 feet) above sea level. The region enjoys 218 days of sun per year, on average. This 

county has many advantages for this study including ready access, reasonable size of 

306.137 sq. km (118.2 sq. miles), and a mix of urban, suburban and rural areas. If one 

were to have visited the USGS website (http://ned.usgs.gov/) and utilized the National 

Map Viewer and Download Platform (http://viewer.nationalmap.gov/viewer/) at the time 

of this study, the highest resolution DEM for Athens-Clarke County, GA is the U.S. 

Geological Survey (USGS) National Elevation Dataset (NED) ⅓ arc-second (10-meter) 

product.  A county-wide aerial Lidar survey was made available to ACC in 2013 at a 

dramatically reduced cost due to NOAA already having a scheduled flight in the area and 

ACC adding terrestrial Lidar and orthophotos to the scope of that work. ACC’s portion of 

http://ned.usgs.gov/
http://viewer.nationalmap.gov/viewer/
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the cost was less than $100,000.  Without the knowledge of the existence of the Lidar 

data, a researcher may question if the resolution of the 10-meter DEM was sufficient. 

 

Fig. 1-2: Location of Athens-Clarke County in Georgia  
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Fig. 1-3: Athens-Clarke County, Georgia  

 

Background 

In the past, there has been a widely-held misconception that solar power is only practical 

in the most sun-drenched of locales (Pearce, 2002). While there is certainly a benefit for 

placing solar arrays in such places, improvements in solar/PV technology has made 

installation of solar infrastructure practical and beneficial in areas previously thought not 

to have abundant solar resource. For example, Germany, has enjoyed 6.2% to 6.9% of its 

national electric power in 2014 produced from solar (Burger, 2014). 

 

There are many types of “solar” power installations. The three main types are 

Photovoltaic (PV) arrays, Concentrated Solar Power (CSP) and Solar Thermal (REF). 

Photovoltaic arrays that use solar/PV cells in a solar panel to directly convert solar energy 

to electricity. Solar power systems concentrate solar energy using mirrors or lenses into a 

heat engine system to generate electricity. Solar thermal systems channel solar heat 

energy for heating, cooling and electricity generating applications. In this study, I will be 

focusing on Solar/PV-type systems in a Solar Farm. 

 

Solar/PV systems rely on the photovoltaic cell to generate electricity. The efficiency of 

this technology has been increasing since it was developed and the relative cost has been 

decreasing (Pérez-Higueras, et al., 2011).  The first solar cell was developed at Bell 

Laboratories in 1954. The efficiency of converting solar energy to electrical energy for 

that cell was 6%. In 2003, Goetzberger et al. (2003) published that the best laboratory 
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efficiency for single crystal silicon as 24.5%. Subsequently, advances in the cell itself and 

configurations to maximize exposure and boost efficiency of the cell have generated 

efficiencies approaching 50% (Liang, et al., 2015). As these efficiencies have been 

increasing, costs have been on the decline. One measure commonly used for PV solar 

arrays is $/Watt. In China, in 2006, one would pay roughly $4.5/Watt. In 2011, that had 

fallen to under $1/Watt (Bazilian, et al., 2013).  In the U.S., the reported pricing for 

SPVFs that were completed in 2013 were around $3.00/Watt. Quotes on pricing in late 

2012 for projects slated to begin installation in 2013 were around $1.92/Watt. In late 

2014, quotes for modelled systems were averaging around $1.80/Watt. In fact, between 

1998 and 2013 the system prices on residential and commercial systems declined 6-7% 

per year and by 12-15% from 2012 to 2013 (Barbose, 2014). 

 

Solar/PV system’s sizes and types range from broad-scale solar farms down through large 

building installations to systems for use by residential home-owners. Each of these 

systems has site selection criteria that define their suitability and have some overlap, but 

the scales and desired criteria of the system are distinct enough to require specific types 

of suitability analysis.  

 

The Solar Farm, also called PV power stations or solar park, is a PV system designed to 

generate direct current (DC) electricity to supply to the electricity grid, after conversion 

to alternating current (AC) electricity. These solar farms can implement solar panels that 

are in a fixed position or also track the sun as it crosses the sky (at greater initial and 

maintenance costs). SPVFs require a significant amount of land (between 1 and 100 
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acres) with some adjacency to power lines sufficient to carry the average of 6.9 

MegaWatts each acre of installation can produce (Ong, et al., 2013). Among other 

criteria, areas with low slope, southerly aspect and low land cover are better suited for 

solar farms. This leads one to think SPVFs should be sited on rural lands along major 

roads which typically have higher-capacity power lines along them. While this is 

generally true, there is also increased interest in solar farms sited in expansive parking 

lots to generate electricity and provide shelter for the vehicles at the same time (Birnie, 

2009). Utilizing municipal capped (decommissioned) landfill, or brownfield, areas is also 

a popular area of exploration (Adelaja, et al., 2010).   

 

Performing the type of large-area analysis required to determine where to site these 

SPVFs is possible through use of spatial analysis. The potential resolution of elevation 

data in these analyses was increased dramatically by the commercial emergence of Lidar 

surveying in the 1990s (Yan, et al., 2014). Lidar first gained widespread public attention 

after the attacks on 9/11 when it was used to map Ground Zero to provide an accurate 

digital model for rescue and recovery operations. Since that time, prices for acquiring 

Lidar have declined and many regions have performed surveys and the USGS has created 

the 3D Elevation Program to provide a clearinghouse for all of this data. (Neal, 2015) 

Before the increased availability of aerial-based Lidar survey data, solar photovoltaic 

deployment optimization surveys used the data that were available: infrastructure and 

land cover/land use information based on aerial photography and elevations from lower-

resolution remotely-sensed data such as the Shuttle Radar Topography Mission V2 

(SRTM V2 – 90-meter), Advanced Spaceborne Thermal Emission and Reflection 
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Radiometer Global Elevation Model (ASTER/GDEM – 30-meter) and the lower 

resolution NED (30-meter). More recently, certain areas enjoy being part of a bi-monthly 

updated 10-meter and 3-meter NED survey.  There is also the USGS 3D Elevation 

Program (3DEP).  3DEP is a national program managed by the USGS to acquire high-

resolution elevation data, including Lidar data. The Lidar data used in this study is in 

3DEP. For areas that do not have access to the 3-meter resolution NED data, there is a 

large span between that and the resolution of the DEM that can be produced from an 

aerial Lidar survey, which, with 1.5-meter post-spacing (distance between Lidar sample 

points) can be 3 meter or better (Heidemann, 2012).  

 

Significance 

The cost of implementing solar/photovoltaic (PV) technology is decreasing and, at the 

same time, the efficiency of photovoltaic technology is improving. With this being the 

case, it logically follows that there may be an increased interest in investment into solar 

technology installations. These installations may be in the form of a Solar Farm, a broad-

scale rooftop array or even residential rooftop panels. Siting of these installations is 

typically informed by spatial data. With aerial Lidar surveys allowing for the broad-scale 

acquisition of very detailed elevation and surface models, decision makers considering 

these solar options may want to know if it is worth investing in a Lidar survey. While this 

may not be practical for individuals curious about their home’s potential, private and 

government entities might be interested to learn about the return on the investment of an 

aerial Lidar survey and its impact on solar site suitability surveys.  
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CHAPTER 2 

REVIEW OF LITERATURE 

Overview 

Before 2008, there was little mention of Lidar data in the literature concerning the 

process of assessing solar/PV site suitability. A real explosion in the use of Lidar in the 

process occurred in the early years of this decade (2010-2015). In fact, in recent years, 

Lidar’s impact on environmental modelling was nothing short of revolutionary (Schwarz, 

2010). Lidar was being used to not only generate accurate base data, such as digital 

elevation models, but also to derive data sets such as detailed infrastructure, capable of 

informing the site suitability analysis process to levels that were previously unobtainable. 

What is missing from the current literature, however, is a focus on quantifying the benefit 

of using Lidar to inform solar/PV site suitability analysis. Since Lidar survey data on a 

large-scale (i.e., fine-scale) is not available in all areas and is typically expensive to 

acquire, the added value of using Lidar data to assess environmental variables for siting 

solar/PV farms should be evaluated.  

 

Solar/PV Technology: 

In this same time period that Lidar technology made advances in environmental 

modeling, the technology of solar photovoltaics changed rapidly, too. Some 

improvements were made to the solar cell itself. An example of this is that the 

efficiencies of multi-junction cells have reached 44.7%. These type of cells are where the 
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solar cell has multiple interfaces with the semiconductor materials in a concentrator 

system.  For comparison, this is an improvement from roughly 16% efficiency when this 

particular cell technology was developed in 1983 (Kasmerski, 2010). 

 

Other developments in solar technology focused on improvements in the photovoltaic 

array.  One of these is Concentrator PhotoVoltaics (CPV), where optical systems 

concentrate solar energy onto the solar cells (Pérez-Higueras, et al., 2011). Another of 

these system improvements is the hybrid PhotoVoltaic/Thermal (PVT) solar collector, 

where cooling systems improve the efficiency and lifespan of the solar cell (Makki, et al., 

2015). Peak efficiencies of PV cells in a thermal system have been measured at 48% and 

represent an important achievement in solar/PV technology (Liang, et al., 2015). The 

trend in efficiencies, through improvements to the cell itself or the array, are upward 

while the costs of the technology is decreasing. An observation known as Swanson’s Law 

states module prices reduce 19% for every doubling of cumulative volume (Swanson, 

2006). 

 

There are the realities and best practices to consider when discussing the installation of 

solar technology in the form of a SPVF. The National Renewable Energy Laboratory 

(NREL) recently published a best practices guide for the operation and maintenance 

guide for solar installations, including SPVFs (Keating, 2015). While SPVFs can be kept 

in good service for decades, there is potential for lost revenue and low energy generation 

with unmanaged issues. Sixteen major Operations and Maintenance (O&M) issues 

include: Perimeter fence damage, ground erosion, transformer leakage, inverter damage, 
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broken conduits, combiner box damage, vegetation overgrowth, cell 

browning/discoloring, panel shading, shorted cells, natural damage (from weather), 

vandalism, defective tracker, racking erosion, unclean panels and animal nuisance. An 

O&M agreement to mitigate these potential issues is strongly encouraged for SPVFs. 

 

As a renewable resource, there is a desire and pressure for SPVF installations to be 

ecologically responsible. In the United States and Europe, many solar farm ecological 

and community best practices have been established in siting SPVFs. Some of these 

published by the United Kingdom’s Solar Trade Association (Solar Trade Association, 

2015) include utilization of environmentally sound sites, minimization of visual impact, 

community engagement in planning, sound ecological site stewardship, local sourcing of 

labor for installation and maintenance, encouraging site use for educational purposes and 

the return of the land to its previous use on end of project life. 

  

Lidar Technology 

The principle of Lidar has its roots in the 1930s when searchlight beams were used to try 

to measure air density profiles for meteorological purposes. When the laser was invented 

in 1960, the technology developed quickly and the first textbook on the subject was 

published in 1976. (Wandinger, 2005). The value of 3-dimensional point cloud data 

acquired by laser scanners mounted on aircraft was quickly realized for creating detailed 

DEMs, 3-D visualizations and terrain assessment for environmental modeling. of Lidar-

derived 3D landscape features also enabled Land Use and Land Cover (LULC) 
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classification data directly from the aerial Lidar data with classification accuracies 

reported in the mid 90% range (Antonarakis, et al., 2008).  

 

MCDMs & Solar-Suitability Studies 

The general principles of land-use suitability analysis, as well as the problems and 

prospects of the technique are covered in great detail by Jacek Malczewski in his article 

“GIS-based land-use suitability analysis: a critical overview." (Malczewski 2006a). The 

process of land-use suitability analysis is, by nature, multi-criteria and is a natural fit for 

MCDM methods (Malczewski, 2006b). Specifically, energy and environmental modeling 

can benefit from these tools (Huang, et al., 1995). 

 

A variety of recognized MCDM methods to obtain solar site suitability were detailed in 

the literature (Charabi and Gastli, 2011; Uyan, 2013), as well as papers on developing 

custom MCDMs for the purpose of determining SPVF site suitability (Joerin, et al., 2001; 

Carrión, et al., 2008). In some research, the MCDM was a combination of established 

MCDM methods that were either performed in detail (Charabi and Gastli, 2011) or 

utilized in the form of an ESRI-developed Spatial Analyst MCDM product (Janke, 2010). 

There were also comparisons of MCDM methods used for solar site suitability analysis 

(Sánchez-Lozano, et al., 2013). Aragonés-Beltrán, et al. (2010) explored using an 

Analytic Network Process to help make decisions on suitable sites for investment after 

the suitability was determined. One particular MCDM encountered with some frequency 

in regards to solar site suitability was Thomas L. Saaty’s (1990) Analytic Hierarchy 

Process (AHP) (Charabi and Gastli, 2011; Uyan, 2013; Sánchez-Lozano, et al., 2013). 
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The prevalence of the use of AHP and other MCDMs in the literature for solar site 

suitability led to the use of the method in this study, in particular, the AHP method 

employed by Melvut Uyan in his study in the Karapinar region, Konya/Turkey (2013).  

 

Remotely sensed data, such as aerial photography, satellite imagery and Lidar, are 

utilized to obtain data, such as road centerlines, slope, aspect, LULC,  appropriate for the 

solar-suitability analysis to be performed (Hammer, et al., 2003). This, combined with 

soundly designed MCDM, can produce an effective result for an analysis by providing 

not just a boolean result of “yes or no”, but facilitates a suitability model that allows 

categorization of  ranked suitability (Carrion, et al. 2008a; Carrion, et al. 2008b; Charabi 

and Gastli, 2010; Janke, 2010; Sanchez-Lozano, et al., 2013; Uyan, 2013).  

 

Criteria for Solar-Suitability Studies 

When discussing suitability studies for solar installations, one must first consider the 

solar resource itself. The solar resource is a measure of the solar energy that reaches areas 

on earth based on solar, geographic and meteorological data (Myers, 2005; Renné, et al., 

2008). This type of data is readily handled in a GIS (Sorenson, 2001). One can easily 

obtain this spatial solar resource data from the National Renewable Energy Lab at a 10-

kilometer resolution. The model used to generate this data includes: 

 

“...hourly radiance images from geostationary weather satellites, daily snow cover 
data, and monthly averages of atmospheric water vapor, trace gases, and the 
amount of aerosols in the atmosphere to calculate the hourly total insolation (sun 
and sky) falling on a horizontal surface.” (Perez, et al., 2002)  
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Those without access to the existing data for solar resource will sometimes develop their 

own methods to obtain resource data in order to perform solar farm suitability analysis 

(Gastli and Charabi, 2010). The solar resource in a smaller project area, such as the one 

in this study, may not vary enough to be significant in determining site suitability within 

the study area, but will certainly inform estimates of potential electrical production of 

sites identified by other criteria (Uyan, 2013). While there is no size minimum for what 

can constitute a SPVF, some companies involved in installation have set minimums of 2-

4 hectares (5-10 acres) for their individual threshold for beginning to profit from 

“economies of scale”. 

 

Two drivers for suitability of a SVPF are the slope and aspect of an area. In order to 

utilize the solar resource, the panels in an array should ideally be located to maximize 

solar exposure. If land is too sloped, the solar panel arrays will potentially cast shadow on 

each other during the day. If an area, even with low slope, has an undesirable aspect, this 

can reduce the efficiency of an array placed on such land. Slope and aspect of the land 

surface is typically derived from a DEM. The importance of slope and aspect to the site 

suitability analysis process is fundamental to the question posed by this research. 

 

There are many other considerations when performing a SPVF site-suitability survey. 

One particular concern is the impact that the installation of a SPVF has on the ecology of 

an area (Stoms, et al., 2013). This study will include typical ecologically sensitive areas 

such as wetlands and riparian zones in the MCDM to inform the analysis. There are also 

aesthetics to consider. One might establish a buffer distance from residential areas where 
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the Not In My BackYard (NIMBY) or Locally Undesirable Land Use (LULU) effects 

may be a factor (Joerin, et al., 2001; Janke, 2010). The proximity to power grid 

infrastructure sufficient to carry the power generated by the SPVF is also a factor. 

 

There are additional cutting-edge uses of Lidar that can inform the SPVF suitability 

analysis. For example, when defining a potential area on which to develop a SPVF, one 

might desire to keep the tree cover on the edges of your site, or perhaps the trees are part 

of a riparian or wetland area that cannot be disturbed. This is where an analysis that 

includes vegetation structure details and light diffusion caused by the tree canopy is 

useful. By combining Lidar and GIS solar resource information, one can model the solar 

potential even of subcanopy. (Bode, et al., 2014). Additionally, one can use Lidar to map 

subcanopy solar potential over the days across the year (Peng, et al., 2014). While the 

inclusion of these newer sort of data in solar site suitability analysis is outside of the 

scope of this study, this level of detail for assessing SPVF site suitability is a further 

indication of the power of Lidar data and the potential complexity of the analysis for site-

suitability. 

 

While Lidar may arguably benefit the analysis for the siting of SVPFs, the expense of 

obtaining the data is often prohibitive.  Either the budget or the scope (or both) of the 

project can be a factor in deciding if LiDAR should be incorporated in SPVF suitability 

analysis. In either case, methods that do not specifically involve data derived from Lidar 

to achieve results have been used. The method developed by Charabi and Gastli (2010) to 

reveal the solar prospects in Oman (119,499 sq. miles) was developed without the benefit 
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of Lidar due to the large area involved. This also was true in a case study in Fujian 

Province (46,873 sq. miles)(Sun, et al., 2013). None of this is explored with the idea of 

attempting to diminish the value of Lidar, in general. Lidar technology is allowing new 

types of research to be performed and has potential for continuing to facilitate similar 

advances in the future.  

 

On reviewing the literature, other comparison studies, in the same spirit of the one being 

proposed, were encountered.  Studies were found comparing the effect on analysis of 

Lidar-derived DEMs to other types of DEMs in a variety of applications, such as: forestry 

(Hummel, et al., 2011), hydrology (Haile and Rientjes, 2005; Murphy, et al., 2008; Yang, 

et al., 2015), soil mapping (Shi, et al, 2012) and geomorphology (Vaze, et al., 2010), to 

name a few. One study by Rayburg, et al., (2009) focused on a direct comparison of 

Lidar-derived DEM to a Differential GPS-derived DEM and a 9” DEM of Australia, 

while another used a Lidar DEM as a control for assessing the accuracy of another DEM 

(Dehvari and Heck, 2012). While there are studies comparing Lidar-derived DEMs to 

other sourced DEMS, there is nothing encountered in the literature that poses the question 

proposed in this study specific to site suitability for SPVFs. This study therefore makes a 

contribution to the SVPF modeling literature by filling that gap. 
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CHAPTER 3 

MATERIALS & METHODOLOGY  

Overview 

Primarily, this study involves the performance of two complete MCDM SPVF Site 

Suitability Analyses similar to those performed by Melvut Uyan in his study in the 

Karapinar region of Turkey (Uyan 2013). Each of these analyses were performed using 

aspect and slope values ultimately derived from DEM sources of 10-meter and 1.22-

meter resolution. Statistical analyses were performed on the source, intermediate and 

final data to determine correlation and deviation from each other due to the resolution 

differences of the source DEMs. Secondarily, to test the influence of AHP weights on the 

analyses, each of these two analyses were repeated with additional “Passes” where the 

importance of the slope and aspect variables are increased in the AHP. 

 

In performing this study, criteria for what defines suitable land for an SPVF were 

determined. Criteria of slope, aspect, distance from residential areas, LULC, distance 

from roads and distance from transmission lines of sufficient capacity were used. 

Although not used by Uyan (2013), aspect was added to the analysis as it has been found 

to be important to the decision making process for solar site suitability (Carrión, et al., 

2008a; Sánchez-Lozano, et al., 2013). Solar resource is not being considered as a factor 

in the AHP, as the range of the value in the study area is 4.55 to 4.6 kWh/sq.m/day. This 

is not surprising, given the relatively small area of the study. While the solar resource 
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data was not be used in the AHP, it was used to generate estimates of electric power 

potential from results of the analysis. Additionally, a report for results obtained using 

1.22-meter DEM vs. the 10-meter DEM data.for three sites identified by the analyses as 

highly suitable for SPVFs was generated in order to compare the utility of Lidar-derived 

terrain characteristics. 

  

Software & Resources 

Analysis and production of GIS data were performed using ESRI ArcGIS Desktop 10.1. 

Klaus D. Goepel’s “Online BPMSG AHP Priority Calculator” was used to develop the 

AHP. Statistics were generated using spatial statistics tools in ArcGIS Desktop, detailed 

when utilized. 

 

Execution Plan 

The execution plan for this project is provided in Fig. 3-1: 
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 Fig. 3-1: Execution Plan for Project 

 

Development of AHP Structure 

In order to utilize AHP in the decision-making process for the generation of the SPVF 

Suitability Maps, the Objectives, Criteria, Sub-criteria and Constraints were established. 

Each of these terms has a special meaning in the process. The Goal is the determination 
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of suitability itself. The Objectives, in this case, are the main factors that determine that 

suitability and are divided into environmental and economic factors which are weighted 

and summed to represent the Goal. The Criteria are the properties of the Objectives that 

are weighted and overlain to determine the Objectives value. The Sub-criteria are the 

properties of the Criteria that are weighted and overlain to determine the Criteria value. 

The constraints are areas of zero suitability and were removed from the final data to 

produce the suitability maps. 

 

In anticipation of the development of the AHP, the relative importance of each Objective, 

Criteria and Sub-criteria to each other were established. This was accomplished by using 

the AHP evaluation scale of 1 to 9 by 1. This means that the scale is a ranking from 1 to 9 

and the scale unit is 1. This is shown in Table 3-1. 

 

Table 3-1: AHP Evaluation Scale  

Numerical Value of Py Definition of Value 
1 Equal importance of i and j 
3 Moderate importance of i over j 
5 Strong importance of i over j 
7 Very Strong importance of i over j 
9 Extreme importance of i over j 

2,4,6,8 Intermediate values 
 

For example, the LULC data was consolidated into categories useful to the AHP process 

and then the relative importance of the different LULC classifications was established, as 

shown in Table 3-2.  
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Table 3-2: EXAMPLE - AHP Comparison for Land Use/Land Cover Criteria 

 Barren Shrubland Herbaceous Forest 
Barren 1 2 3 7 

Shrubland 0.5 1 3 6 
Herbaceous 0.33 0.33 1 5 

Forest 0.143 0.167 0.2 1 
 

In the case of the LULC comparison, this difference in importance can be interpreted as 

whether there are policies or economic factors in effect that encourage or prohibit a 

specific land LULC from being used for a SPVF. The Barren land was considered most 

appropriate for using as a SPVF with a score of 1. The Shrubland was considered to only 

be slightly more suitable than Barren land, with Barren considered a 1 on the 1 to 9 by 1 

scale and Shrubland a 2. Herbaceous land was considered a less important than both 

Barren and Shrubland, but Herbaceous was considered also less important than 

Shrubland. Forested LULC was considered the least suitable by a considerable factor due 

to environmental impact (and expense) of the clearing of a forested area for a SPVF. The 

rest of the Criteria, Objectives and the Goal value were developed in a similar fashion, 

detailed in the Appendix.  

 

In Uyan’s study, there was a mask of areas established to be zero suitability for SVPFs. 

These are referred to as Constraints. The specific constraints he uses include: 500 meters 

from residential areas, 100 meters from roads and, basically, on rivers, lakes, wetlands. 

The buffer from residential areas is to mitigate the NIMBY effect and avoiding potential 

obstruction to residential development. The buffer mask for roads is for aesthetics, as 

well, but siting SVPFs too far from roads can be negative due to an increase in 

construction costs. The buffer for rivers, lakes and wetlands is to protect the ecology of 
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those types of land covers and, in some cases, to respect ordinances formalizing such a 

buffer. In this study, the 100 meter distance from developed areas was established. The 

reduction is due to the relative proportion of developed areas in the Athens-Clarke 

County area make a 500m constraint buffer too restrictive. The 100 meter buffer from 

roads was maintained and the buffer for rivers, lakes and wetlands was established at 50 

meters for lakes, wetlands and minor rivers and streams with a 150 meter buffer for major 

named creeks and rivers. This meets or exceeds recommendations of the U.S. Green 

Building Council and LEED Site Selection standards. These masks were applied using 

ArcGIS after the primary analyses are complete to effectively “zero out” the raster cells 

where an SVPF is not suitable.  

 

With the relative importance for each of the components established on a 1 to 9 by 1 

scale, and the constraints defined, the next step was to use AHP to calculate the weights 

for the analyses.  

 

Calculation of Weights of Components of AHP 

In order to take the comparisons established and generate weights from them, the 

comparisons were arranged in a matrix. Each column in the matrix is then summed. Each 

entry in the matrix is divided by its column sum. The values are averaged across the rows 

to obtain the relative weights (sum of weights =1). Table 3-3 provides an example using 

the pairwise comparisons for the Land Use/Land Cover data used in this study. 
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Table 3-3: LULC Matrix and Weights Example 

Matrix Barren Shrubland Herbaceous Forest   
 Barren 1 2 3 7   
 Shrubland 0.5 1 3 6   
 Herbaceous 0.33 0.33 1 5   
 Forest 0.143 0.167 0.2 1   

      
SUM of 
Weights 

Weights 0.468 0.322 0.161 0.049 1.000 
 

During the calculation of weights, the Consistency Ratio (CR) is calculated to control the 

consistency of the pairwise comparisons. The CR is computed by, first, calculating the 

eigenvector and the maximum eigenvalue (ƛmax) of each matrix of a size n x n (in our 

example 4 x 4) size. The eigenvector of a square matrix is a vector that points in a 

direction which does not change under the associated linear transformation. Next, the 

Consistency Index (CI) is calculated with Equation 3-1: 

 

Equation 3-1: Calculation of the Consistency Index 

CI = (ƛmax – n)/(n – 1) 

 

Finally, the CI value for the matrix is checked against the Random Consistency Index 

(RI) to compute the CR with Equation 3-2: 

 

Equation 3-2: Calculation of the Consistency Ratio 

CR = CI/RI 
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When CR is less than or equal to 0.10, the degree of consistency is satisfactory. If the CR 

is greater than 0.10, the AHP results may not be valid. In our Land Use/Land Cover 

example, the ƛmax is 4.139 and the RI for a 4 x 4 matrix is 0.9. The process yields a CR of 

0.051, or 5.1%. This portion of the AHP is shown to be satisfactory. 

 

The weights and CRs were computed for each of the three passes that were developed to 

test the sensitivity of the weights on the analyses. These results are summarized in Tables 

3-4, 3-5 and 3-6: 
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Table 3-4: AHP Weights and CR Values - Pass 1 

Goal 
Objective - 
CR Wt 

Criteria 
(unit) - CR Wt Sub-criteria Wt 

Determine 
Suitability 
for SPVFs 
in ACC 

Environmental 
Factors - 0.000 0.530 

Distance from 
developed 
areas (m) -
0.040 

0.250 

< 100 0.000 
100 to 500 0.105 
> 500 to 
1000 0.258 
> 1000 0.637 

Land use 
(type) - 0.051 0.750 

Barren 0.468 
Shrubland 0.322 
Herbaceous 0.161 
Forest 0.049 
Wetlands 0.000 
Developed 0.000 
Open Water 0.000 

Economic 
Factors - 0.016 0.470 

Distance from  
transmission 
lines (m) - 
0.063 

0.550 

< 2000 0.657 
2000 to 3000 0.203 
> 3000 to 
4000 0.094 
> 4000 0.046 

Distance from 
roads (m) - 
0.040 

0.250 

< 100 0.000 
100 to 500 0.637 
> 500 to 
1000 0.258 
> 1000 0.105 

Aspect 
(direction) - 
0.049 

0.100 

Flat, S, SW 
or SE 0.636 
East 0.161 
West 0.161 
North, NW, 
NE 0.043 

Slope (%) - 
0.043 0.100 

< 5 0.565 
5 to 8 0.262 
> 8 to 10 0.118 
> 10 to 12 0.055 
> 12 0.000 
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Table 3-5: AHP Weights and CR Values - Pass 2 

Goal 
Objective - 
CR Wt 

Criteria 
(unit) - CR Wt Sub-criteria Wt 

Determine 
Land 
Suitability 
for SPVFs 

Environmental 
Factors - 0.000 0.530 

Distance 
from 
developed 
areas (m) -
0.040 

0.250 

< 100 0.000 
100 to 500 0.105 
> 500 to 1000 0.258 

> 1000 0.637 

Land use 
(type) - 
0.051 

0.750 

Barren 0.468 
Shrubland 0.322 
Herbaceous 0.161 
Forest 0.049 
Wetlands 0.000 
Developed 0.000 
Open Water 0.000 

Economic 
Factors - 0.016 0.470 

Distance 
from high-
capacity 
transmission 
lines (m) - 
0.063 

0.520 

< 2000 0.657 
2000 to 3000 0.203 
> 3000 to 4000 0.094 

> 4000 0.046 

Aspect 
(direction) - 
0.049 

0.200 

Flat, S, SW or 
SE 0.636 
East 0.161 
West 0.161 
North, NW, NE 0.043 

Slope (%) - 
0.043 0.200 

< 5 0.565 
5 to 8 0.262 
> 8 to 10 0.118 
> 10 to 12 0.055 
> 12 0.000 

Distance 
from roads 
(m) - 0.040 

0.080 

< 100 0.000 
100 to 500 0.637 
> 500 to 1000 0.258 
> 1000 0.105 
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Table 3-6: AHP Weights and CR Values - Pass 3 

Goal 
Objective - 
CR Wt 

Criteria 
(unit) - CR Wt Sub-criteria Wt 

Determine 
Land 
Suitability 
for SPVFs 

Environmental 
Factors - 0.000 0.530 

Distance 
from 
developed 
areas (m) -
0.040 

0.250 

< 100 0.000 
100 to 500 0.105 
> 500 to 1000 0.258 

> 1000 0.637 

Land use 
(type) - 
0.051 

0.750 

Barren 0.468 
Shrubland 0.322 
Herbaceous 0.161 
Forest 0.049 
Wetlands 0.000 
Developed 0.000 
Open Water 0.000 

Economic 
Factors - 0.016 0.470 

Aspect 
(direction) - 
0.049 

0.360 

Flat, S, SW or 
SE 0.636 
East 0.161 
West 0.161 
North, NW, NE 0.043 

Slope (%) - 
0.043 0.360 

< 5 0.565 
5 to 8 0.262 
> 8 to 10 0.118 
> 10 to 12 0.055 
> 12 0.000 

Distance 
from high-
capacity 
transmission 
lines (m) - 
0.063 

0.200 

< 2000 0.657 
2000 to 3000 0.203 
> 3000 to 4000 0.094 

> 4000 0.046 

Distance 
from roads 
(m) - 0.040 

0.080 

< 100 0.000 
100 to 500 0.637 
> 500 to 1000 0.258 
> 1000 0.105 

 

Each pass shows the increase in the influence of slope and aspect on the AHP model. At 

Pass1, the total influence of aspect and slope is approximately 10% (20% of the 

Economic Objective which is roughly 50% of the Determination of Land Suitability for 
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SPVFs Goal), at Pass 2, the influence increases to 20 % of the model and at Pass 3 

comprises 36% of the influence on the model.  The CR values for the AHP development 

process was sound in all instances, which gave confidence in the consistency of the 

pairwise comparisons. With the AHP importance and weights for each of the components 

established, the next step was to gather all of the data for the analyses. 

 

Data Acquisition 

The processes of executing the analysis plan was begun by collecting the necessary data 

to create the suitability maps for the project. The data were from a variety of sources, 

indicated in their descriptions, and all data were reprojected, if necessary, to the 

following projection for analysis: 

   

NAD 1983 NSRS2007 StatePlane Georgia West 
FIPS 1002 Ft US 
WKID: 3521 Authority: EPSG 
Projection: Transverse_Mercator 
False_Easting: 2296583.333333333 
False_Northing: 0.0 
Central_Meridian: -84.16666666666667 
Scale_Factor: 0.9999 
Latitude_Of_Origin: 30.0 
Linear Unit: Foot_US (0.3048006096012192) 
 
Geographic Coordinate System: 
GCS_NAD_1983_NSRS2007 
Angular Unit: Degree (0.0174532925199433) 
Prime Meridian: Greenwich (0.0) 
Datum: D_NAD_1983_NSRS2007 
Spheroid: GRS_1980 
Semimajor Axis: 6378137.0 
Semiminor Axis: 6356752.314140356 
Inverse Flattening: 298.257222101 

Fig. 3-2: Project Geographic Projection 
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As the final analysis included estimating the solar potential of highly suitable areas for 

SPVFs, the National Renewable Energy Labs (NREL) Solar Resource Data was 

collected. These data represent the average solar energy exposure for an area in units of 

kWh/sq.m/day at a 10-km resolution. The value range for the data in the study area is 

4.55 - 4.60 kWh/sq.m/day averaged over 1998 to 2009. This is a small range that 

effectively makes this a constant. 

 

A Lidar-derived DEM was obtained for the study area. This 1.22-meter DEM (elevations 

in feet) was among the deliverables of the “2013 Lidar Survey for Athens Clarke County 

– Classified”. This survey was a NOAA/GADNR/EPD developed Lidar point collection 

project for Barrow, Clarke, Madison and Oglethorpe Counties and was executed by 

PhotoScience, Inc. (now Quantum Spatial). The survey collected one point per sq. meter 

point spacing or better which was sufficient to produce the DEM at the resolution 

indicated. The LiDAR data were compiled to meet a 1 meter horizontal accuracy. The 

calibration of the LiDAR sensor itself and the calibration process of the data produced by 

this sensor ensure that this accuracy is met. The vertical accuracy of the data was 15.0 

centimeters RMSE or better. The Lidar points were classified to American Society of 

Photogrammetry and Remote Sensing standards. The DEM data consisted of 211 tiles of 

1,524 meters x 1,524 meters for the ACC area. 

 

For the comparison a USGS NED ⅓ arc second (10-meter) DEM dataset was acquired. 

These data consist of seven DEM tiles: Nicholson_GA, Hull_GA, Statham_GA, 

Athens_west_GA, Athens_east_GA, Crawford_GA, Barnett_shoals_GA. Collected in 
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1998, elevation values were in meters and a z-factor of 3.28084 was applied during the 

re-projection process to convert elevation values to US feet to match the Lidar DEM 

values for analysis.   

 

Another raster dataset acquired for this project was a regional portion of the National 

Land-Cover Dataset (NLCD). These data were derived from 30-meter Landsat Thematic 

Mapper (TM) imagery and have consistent land cover for the entire U.S. classified over a 

range of years using the NLCD Land Cover Classification System, revised in 1999. 

These classifications are indicated in Table 3-7. 
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Table 3-7: Level 2 NLCD Land Cover Classification System 

Water 
11 Open Water 
12 Perennial Ice/Snow 
  
Developed 
21 Low Intensity Residential 
22 High Intensity Residential 
23 
Commercial/Industrial/Transportation 
  
Barren 
31 Bare Rock/Sand/Clay 
32 Quarries/Strip Mines/Gravel Pits 
33 Transitional 
  
Forested Upland  
41 Deciduous Forest 
42 Evergreen Forest 
43 Mixed Forest 
  
Shrubland 
51 Shrubland 
  
Non-natural Woody 
61 Orchards/Vineyards/Other  
  
Herbaceous Upland  
71 Grasslands/Herbaceous 
  
Herbaceous Planted/Cultivated 
81 Pasture/Hay 
82 Row Crops 
83 Small Grains 
84 Fallow 
85 Urban/Recreational Grasses 
  
Wetlands 
91 Woody Wetlands 
92 Emergent Herbaceous Wetlands 
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Vector data acquired included a county outline for clipping and cartographic purposes 

(ACC Planning Department, 2008). In order to develop additional criteria and constraints 

for our analyses the following vector data were acquired: road centerlines for ACC and 

surrounding counties (Georgia Department of Transportation, 2012), hydrology polygons 

(ACC Planning Department, 2008), hydrology arcs (ACC Planning Department, 2008) 

and wetlands (ACC Planning Department, 2008). 

 

Data Processing 

In order to prepare the data for analyses, a variety of geoprocessing tasks were applied. 

These processing tasks were primarily performed using ArcGIS 10.1 and, specifically, 

many of the processes were part of the ArcGIS Spatial Analyst extension. All of the 

processed data were clipped to the ACC boundary for consistency using the raster and 

vector Clip tools. 

 

The Lidar and 10M DEM tiles were mosaicked into a raster mosaic dataset. Each DEM 

dataset was then resampled using the Resample tool. The 1.22-meter Lidar-derived DEM 

was resampled to 5-meter and 10-meter resolution while the 10-meter DEM was 

resampled to 5 and 1.22-meter resolutions. This was done to effectively perform 

statistical comparisons of the source DEM data and to create the 5-meter DEM datasets 

for the analyses; one resampled from the native 1.22-meter data and the other from the 

native 10-meter data.  
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Each of the two 5-meter DEMs produced through resampling was then processed to 

produce slope rasters for the area, in percent slope, and aspect rasters in values of degrees 

of rotation from north (0 to 360) and -1 for flat areas. The aspect values were further 

classified into the four cardinal (N, S, E, W) and four inter-cardinal (NW, NE, SW, SE) 

directions automatically during the generation process. This task was performed using the 

Slope and Aspect tools in Spatial Analyst.  

 

The NLCD raster data were resampled to 5-meter resolution, clipped and then converted 

to vector data, using the Raster to Polygon tool, in order to easily combine some of the 

previously mentioned NLCD classification values to create a relevant dataset for analysis. 

The resulting seven values for the data (and their percentages of the ACC area) were: 

Barren Land (0.52%), Shrubland (0.7%), Herbaceous (15.58%), Forest (39.6%), 

Wetlands (3.64%), Developed (39.1%) and Open Water (0.87%).  At this point, while the 

data were still in vector format, the area representing Developed land cover was exported 

and included in the vector data for processing. The full polygon NLCD data were then 

converted back to a 5-meter resolution raster with the Polygon to Raster tool for inclusion 

in the analyses. This is shown in Fig. 3-3. 
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Fig. 3-3: LULC Processing 

 

The vector data were used to create additional criteria layers for the analyses. The general 

process was to utilize the ArcGIS Buffer and Multi-ring Buffer tool to create polygon 

zones in accordance with the sub-criteria established. The polygonal vector data result 

was then converted to a 5-meter resolution raster with the Polygon to Raster tool and 

Clipped to the ACC boundary for inclusion in the primary analyses. The resulting data of 

the vector conversion of the criteria were the following 5-meter resolution rasters: ACC 

Developed Area Buffers, ACC Roads Buffers, ACC Land Use/Land Cover, ACC Electric 

Transmission Lines Buffers. This general process is shown in Fig. 3-4. 
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Fig. 3-4: Vector Criteria Data Processing 

 

The raster criteria data generated from this analysis then were converted into Suitability 

Index Maps. This was accomplished by using the Reclassify tool to rank the criteria 

raster value ranges into integer values where 1 represented the most suitable sub-criteria, 

2 the next most suitable and etc…. As an example, The ACC Roads raster was 

reclassified as shown in Fig. 3-5. 

 

 

Fig. 3-5: Example of Reclassification of Criteria Suitability Index Raster 
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A Criteria Suitability Index Map was then generated for the constant spatial data in this 

project; Distance from Transmission Lines, Distance from Roads, Land Use/Land Cover 

and Distance from Developed Areas criteria, as shown in Fig. 3-6 

 

 

Fig. 3-6: Criteria Suitability Index Maps - Constants 

 

For the slope and aspect criteria, a map was created for each source DEM original 

resolution that the 5m data was resampled from, as shown in Fig. 3-7: 
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 Fig. 3-7: Criteria Suitability Index Maps for Aspect and Slope 

 

The Criteria Suitability Index Maps provide an opportunity for visual analysis of the 

suitability distribution across the project area and to see how the slope and aspect rasters 

are showing some deviation from each other. 

 

The constraint data represents areas that are not suitable for SPVFs. These constraint 

areas were processed in a similar fashion to the vector criteria data. The constraints 
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typically were either a representation of a feature or a buffer around it so either direct 

export or the Buffer tool was utilized to accomplish their generation. This general process 

is depicted in Fig. 3-8. 

 

 

Fig. 3-8: Vector Constraint Processing 

 

The resulting data of the vector conversion of the criteria were the following 5-meter 

resolution rasters: ACC Major Rivers/Streams Constraint, ACC All Rivers/Streams 

Constraint, ACC Lakes Constraint, ACC Wetlands Constraint, ACC Developed Areas 

Constraint. Their properties are summarized in Table 3-8: 

 

Table 3-8: Properties of Constraint Layers 

Constraint Properties 
ACC Major Rivers/Streams  150-meter buffer 
ACC All Rivers/Streams  50-meter buffer 
ACC Roads 100-meter buffer 
ACC Lakes  Feature area and 50-meter buffer 
ACC Wetlands  Feature area and 50-meter buffer 
ACC Developed Areas  Feature area and 100-meter buffer 
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Once the individual constraint layers were created, they were merged into one constraint 

layer for ease of processing when utilized, as shown in Fig. 3-6: 

 

 

Fig. 3-6: Constraint Areas for Athens-Clarke County 

 

One can readily see that there is a high degree of challenge in identifying suitable areas 

for SVPFs in ACC with 83.3% of the county constrained. That being the case, there is 

still an appreciable amount of area for consideration in the 17.7% remaining, which is 

52.33 sq. km (20.20 sq. miles or 12,930 acres). The constraints were not applied to the 
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suitability model results, i.e., Land Suitability Map (LSM) until all other analysis was 

complete. The process of applying the constraints was to first reclassify the constraint 

raster as 0 for unconstrained and 99 for constrained and use the Raster Calculator tool to 

add that value to the LSM values of 1, 2, 3 or 4. The resulting raster could then be 

reclassified where the values of 1, 2, 3 and 4 would remain and 100, 101, 102 and 103 

would be reassigned the value of 0. This would result in a final raster with the 

constrained areas “zeroed out” for suitability.  

 

In order to find the top most suitable potential sites in ACC, the constrained LSM results 

from the 10-meter and 1.22-meter DEMs were selected for the top ten largest continuous 

areas with “Most” and “Good” suitability for an SPVF (Values 1 and 2) for Pass 1 and 

Pass 3. This was accomplished by converting each of the LSM rasters to polygons by 

using the Raster to Polygon tool. Those polygons were then sub-selected for suitability 

value 1 and 2 and those polygons exported, merged and exploded to create the individual 

continuous polygons. The areas of those polygons were sorted and the ten highest values 

were exported to a new data layer. Those final ten polygons from each of the LSM rasters 

processed represented the largest continuous regions of greater than or equal to “Good” 

suitability. 

 

With the AHP developed and the data acquired and processed, the next step was to 

perform the overlay analyses to create the 5-m resolution rasters representing the 

Environmental Factors, the Economic Factors and then to overlay those to produce the 

LSM for each resolution tested. 
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Overlay Analysis 

The overlay analyses were performed using Spatial Analyst Weighted Overlay tool for 

the creation of the Environmental Factors and Economic Factors rasters and the Weighted 

Sum tool for the combining of the Environmental and Economic Factors rasters into the 

Land Suitability Maps (LSM) for ACC. In order to create the data required to statistically 

compare the differences in models incorporating DEMs of different spatial resolutions, 

the processes were repeated with data from the 1.22-meter resolution DEM or the 10-

meter DEM being the only variable in the process pairs. Fig. 3-7 shows the processes 

performed, 

 

 

Fig. 3-7: Overlay Processes Performed 

 

While achieving the same result is possible using the Raster Calculator tool, the 

Weighted Overlay tool in ArcGIS Spatial Analyst allows the organized combination of 

raster data modified by weights generated from MCDMs such as AHP. The Weighted 

Overlay tool interface allows one to adjust the evaluation scale in order to accommodate 

decimalized weights for the sub-criteria, as shown in Fig. 3-8: 
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Fig. 3-8: Weighted Overlay Tool 

 

It is important to note that the Weighted Overlay tool used in this manner produces a 

resulting raster with values having a larger range (due to the three orders of magnitude 

difference in the scale) but as long as both the Economic and Environmental rasters are 

created in the same manner, their values are scaled correctly relative to each other. Each 

of the Economic (one for each native resolution and pass) and Environmental raster data 

created was also resampled into four equal interval categories (low suitability, moderate 

suitability, good suitability and best suitability) for display purposes and will be shown 

and discussed in the results.  

 

The Weighted Sum tool performs a similar and simpler operation by weighting the values 

of two or more rasters and summing them. This tool was used to combine the 

Environmental and Economic Objectives as shown in Fig. 3-9: 
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Fig. 3-9: Weighted Sum Tool 

 

With the overlay analysis complete, the next step was to compare the data through 

statistical analysis. In order to perform appropriate statistical analyses, the constraint 

layer produced was not applied to the final LSM rasters until after that process was 

complete.  

 

Statistical Analysis 

The statistical approach of comparing the impact of the resolution data on soil mapping 

used by Shi et al. (2012) has been modified to test the correlation and deviation of the 

data generated in this study.  

 

The first goal of the statistical analysis was to obtain the correlation coefficient, 

Normalized Root Mean Square Difference (NRMSD) and Coefficient of Variation of the 

RMSD (CV) of the DEM data in order to ascertain the similarity of the DEMs pre-

processing. For some of the analyses, one cannot directly compare a 10-meter raster to a 

1.22-meter raster and get meaningful results, so the method chosen was to “upsample” 
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the 10-meter DEM to 5-meter and 1.22-meter resolutions and “downsample” the 1.22-

meter DEM to 5-meter and 10-meter resolutions, as discussed earlier.  

 

The correlation coefficients of the DEM comparisons were calculated using Band 

Collection Statistics tool in ArcGIS Spatial Analyst with the ‘Compute covariance and 

correlation matrices’ option checked. The correlation of the data is how similarly the data 

change in relation to each other. This compared all of the six DEM data to each other as 

the process is not reliant on the resolution being matched for accuracy. This was repeated 

for the Economic Factors Objective and for the Land Suitability Map rasters, as well. 

 

The NRMSD and CV were calculated in a more ‘manual’ process and were performed on 

the pairs at the same resolution (i.e., 10-meter NED DEM compared to 10-meter 

resolution from 1.22-meter “downsample”, 1.22-meter resolution from 10-meter 

“upsample” compared to 1.22-meter Lidar-derived DEM and 5-meter resolution from 

1.22-meter “downsample” compared to 5-meter resolution from 10-meter “upsample”). 

The squared difference between the pairs of data were calculated using the Raster 

Calculator tool and inputting an equation (Equation 3-3). 

 

Equation 3-3: Calculating Square Difference 

SQUARE([Raster 1] – [Raster 2]) 

 

The order of Raster 1 and Raster 2 did not matter as the assumption was not made that 

any of the data were “the truth” and the goal was to measure the difference between the 
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pairs. The result was dubbed “Square Difference” for reference. General statistics (Count, 

Range, Mean, Standard Deviation, etc…) were then generated for the Square Difference 

rasters, as well as for the DEM input pairs, by using the Zonal Statistics as Table tool. 

This tool calculates standard raster statistics in a defined zone. In this case, that zone was 

defined by the border of ACC, so effectively the complete data area. The RMSD was 

calculated by taking the square root of the mean of the Square Difference raster and the 

NRMSD was calculated by dividing the RMSD by the Range of the DEM input pairs. 

The CV was calculated by dividing the RMSD by the Standard Deviation of the DEM 

input pairs. Because the Range and Mean values were different between the DEM input 

pairs, the lowest value was chosen to achieve the highest possible value for the 

comparison. 

 

As the inputs for the overlay analysis derived from slope, the 5-meter aspect and slope 

rasters were compared. Aspect and slope data prove challenging in the nature of the data. 

Aspect values are -1 for flat surface and 0 to 360 depending on the angle of the aspect 

plane from north. When comparing the values of the two 5-meter aspect rasters, one must 

normalize the values to avoid having coincident rasters with values of 1 and 359 showing 

a difference of 358 when their true difference from each other is 2. This was 

accomplished but symbolizing the rasters aspect values as classified into 18 equal interval 

classes and then reclassifying the rasters values from 1 to 9 for 0 to 180 and 9 to 1 for 180 

to 360. These are not suitability values, but just values for the purpose of statistical 

analysis. The result of this were that the aspect rasters had values from 1 to 9 where 1 

represented northern aspect and 9 represented southern aspect and comparisons could be 
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made without using the original polar values. The slope was normalized as well, but 

classified by ¼ of the standard deviation of the 10-meter slope raster in 18 classifications 

in order to more successfully perform a data comparison of the densest set of values for 

percent slope for the region.  

 

The statistical evaluation of slope and aspect was repeated using the reclassified data to 

see how the generalization of slope and aspect values into the suitability values affected 

the statistical analysis results.      

   

Next, this process was repeated on the six Economic Objective rasters, one for each 

native resolution for each pass, created by the overlay process. The statistical analysis 

was performed on the “raw” output of the process rather than the reclassified data to 

retain more of the influence of the differences in the original data. 

 

Finally, this process was repeated once again for the six Land Suitability Map rasters for 

each native resolution for each pass. These rasters were then subject to an additional 

analyses in the form of determining the absolute percentage difference between the 

percentages of the four suitability classifications for the project area. 

 

At the conclusion of this project, it is the intent of the researcher to contact the ACC 

Planning Department and University of Georgia Campus Planning to inform them of the 

results of the study and to offer collaboration in developing an ACC SPVF Site 

Suitability Analysis customized to the criteria established by those entities. 
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CHAPTER 4 

RESULTS & DISCUSSION 

Unconstrained SPVF LSMs 

Before discussing the statistical results of the study, it is helpful to see the Land 

Suitability Maps resulting from the process without the constraints applied to visually 

compare them. As mentioned in the methods, in order to test the influence of the weight 

of aspect and slope on the AHP process, three Passes were performed for each source 

resolution, (i.e., Pass 1-10-meter and Pass 1-1.22-meter, Pass 2-10-meter and Pass 2-

1.22-meter, and Pass 3-10-meter and Pass 3-1.22-meter). The two maps in which the 

weights of the aspect and slope are at their lowest, are shown in in Fig. 4-1 and 4-2: 

 

 

Fig. 4-1: LSM – Pass 1 – From 10-meter DEM Data – Unconstrained 



54 

 

Fig. 4-2: LSM – Pass 1 – From 1.22-meter DEM Data – Unconstrained 

 

Pass 2 represents an increase in the weights of both aspect and slope relative to the 

Distance from Transmission Lines and Distance from Roads data input into analysis, as 

shown in Fig. 4-3 and Fig. 4-4: 
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Fig. 4-3: LSM – Pass 2 – From 10-meter DEM Data – Unconstrained 

 

 

Fig. 4-4: LSM – Pass 2 – From 1.22-meter DEM Data – Unconstrained 
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In Pass 3 the weights of both aspect and slope relative to the Distance from Transmission 

Lines and Distance from Roads data are at their highest, as shown in Fig. 4-5 and Fig. 4-

6: 

 

 

Fig. 4-5: LSM – Pass 3 – From 10-meter DEM Data – Unconstrained 

 



57 

 

Fig. 4-6: LSM – Pass 3 – From 1.22-meter DEM Data – Unconstrained 

 

The differences, or lack thereof, both within and between the passes are visually apparent 

as the slope and aspect increase in weight. Having just viewed the resulting Land 

Suitability Maps for SVPFs in ACC from the 10-meter and 1.22-meter native resolutions 

and at the differing weights of the three passes, a discussion of the visual analysis is in 

order.  

 

At the level of Pass 1, it is visually difficult to tell a difference between the 10-meter and 

1.22-meter resolution derived products, shown in Fig. 4-7: 
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Fig. 4-7: Visual Comparison of LSM - Pass 1 - Unconstrained  

 

At the level of Pass 2, it is still difficult to tell a visual difference between the 10-meter 

and 1.22-meter resolution derived products with the increase in weights of our variables 

of aspect and slope from 10% total influence on the suitability to 20%, though the 

noisiness of the data seems to be increasing with that change, as shown in Fig. 4-8: 

  

Fig. 4-8: Visual Comparison of LSM – Pass 2 - Unconstrained  
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At the level of Pass 3, however, with aspect and slope constituting a total of 72% of the 

weight of the Economic Factors Objective and roughly 36% of the total model, one can 

readily observe a difference between the 10-meter and 1.22-meter resolution derived 

products. The areas of suitability are denser in the 10-meter product with a more noisy 

appearance to the 1.22-meter product, as shown in Fig. 4-9: 

 

  

Fig. 4-9: Visual Comparison of LSM - Pass 3 - Unconstrained 

 

Statistical Analysis Results 

As previously mentioned, an important statistic for DEM data is the correlation 

coefficient, or correlation, which conveys whether the data being compared change in a 

similar fashion. The closer the correlation, the more similar the changes in the data. 

 

The correlation of the DEM data, as shown, in Table 4-1, shows that the correlation 

between all of the DEMs and their resampling was very high. 
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Table 4-1: DEM Correlation Matrix 

  
DEM 
10M 

DEM 5M 
(From 
10M) 

DEM 
1.22M 
(From 
10M) 

DEM 
10M 
(From 
1.22M) 

DEM 5M 
(From 
1.22M) 

DEM 
1.22M 

DEM 
10M 1.0000 0.9989 0.9975 0.9868 0.9866 0.9744 
DEM 5M 
(From 
10M) 0.9989 1.0000 0.9985 0.9867 0.9872 0.9752 
DEM 
1.22M 
(From 
10M) 0.9975 0.9985 1.0000 0.9855 0.9859 0.9760 
DEM 
10M 
(From 
1.22M) 0.9868 0.9867 0.9855 1.0000 0.9982 0.9832 
DEM 5M 
(From 
1.22M) 0.9866 0.9872 0.9859 0.9982 1.0000 0.9836 

DEM 
1.22M 0.9744 0.9752 0.9760 0.9832 0.9836 1.0000 

Average Correlation 0.9891     
 

The average correlation of 0.9891 reinforces that claim of similarity among all of the 

DEM data. When one looks specifically at the correlation of the two 5-meter resamples 

from the 1.22-meter and 10-meter source data being 0.9872, the claim can be made that 

the data utilized for comparison in this study were statistically similar as regards to how 

the data varied over the survey area. Next, the RMSD was examined for the DEM data. 

As shown in Table 4-2, The RMSD, normalized RMSD and CV were low and consistent 

for the data being compared. 
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Table 4-2: DEM Statistics and Deviation 

Layer Range Mean 
Standard 
Dev. RMSD NRMSD CV 

DEM 1.22M 478.226 699.436 61.720       
DEM 1.22M 
(From 10M) 351.448 700.408 61.438       
Square 
Difference 154616.000 80.134 2017.471 8.952 1.9% 1.3% 
DEM 10M 351.565 700.374 61.480       
DEM 10M 
(From 1.22M) 476.733 699.433 61.720       
Square 
Difference 154245.400 95.012 2363.115 9.747 2.8% 1.4% 
DEM 5M 
(From 1.22M) 477.470 699.434 61.720       
DEM 5M 
(From 10M) 351.313 700.420 61.437       
Square 
Difference 154055.700 94.140 2354.910 9.703 2.8% 1.4% 

 

The values indicate a low residual variance between the data and the resolution pairs 

indicated. This validates the use of the resampling technique to create resolution-matched 

5-meter data from the 10-meter and 1.22-meter source data for the purpose of performing 

the analysis in this study. 

 

The statistical analysis of the 5-m aspect and slope rasters show a much different result. 

The correlation and deviation of the data was nowhere near the level of the DEMs they 

were derived from. Table 4-3 summarizes this result. 
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Table 4-3: Aspect and Slope Statistics – Reclassed to Integer 

Layer Range Mean 
Standard 
Dev. RMSD NRMSD COV 

Aspect 5M 
(1.22M) 
Reclassed 8.000 5.226 2.577    
Aspect 5M (10M) 
Reclassed 8.000 5.278 2.534    
Square 
Difference 64.000 4.461 8.904 2.112 26.4% 40.0% 
Slope 5M 
(1.22M) 
Reclassed 17.000 6.972 4.370    
Slope 5M (10M) 
Reclassed 17.000 6.038 3.727    
Square 
Difference 289.000 15.442 33.029 3.930 23.1% 65.1% 
Aspect 
Correlation 0.659      
Slope Correlation 0.565      

 

This lower level of correlation and higher error seems to present the potential for 

introducing difference between the paired results at each pass increasing as the influence 

of slope and aspect increase. To truly test this, the statistics on the slope and aspect 

suitability rasters actually input into the overlay analysis were generated. The results are 

presented in Table 4-4:  
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Table 4-4: Aspect and Slope Statistics – Reclassed to Suitability 

Layer Range Mean 
Standard 
Dev. RMSD NRMSD COV 

Aspect 5M 
(1.22M) 
Suitability 3.000 2.385 1.320       
Aspect 5M (10M) 
Suitability 3.000 2.359 1.304       
Square 
Difference 9.000 1.321 2.486 1.149 38.3% 48.7% 
Slope 5M 
(1.22M) 
Suitability 4.000 2.634 1.592       
Slope 5M (10M) 
Suitability 4.000 2.319 1.485       
Square 
Difference 16.000 2.319 4.010 1.523 38.1% 65.7% 
Aspect 
Correlation 0.616      
Slope Correlation 0.533      

 

The results from this analysis show little difference form the other approach to compare 

the slope and aspect values. It appears that slope and aspect will be a source deviation in 

the model and will increase with the increase of the weight of the slope and aspect criteria 

with the passes. The next statistical comparison performed was after the Economic 

Objective rasters were generated with the weighted overlay analyses. In Table 4-5, we 

can see that the story of the correlation of the data changes somewhat. 
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Table 4-5: Economic Objective Correlation Matrix 

  

ECON 
5M 
(1.22M) 
- Pass 1 

ECON 
5M 
(10M) - 
Pass 1 

ECON 
5M 
(1.22M) - 
Pass 2 

ECON 
5M 
(10M) - 
Pass 2 

ECON 
5M 
(1.22M) - 
Pass 3 

ECON 
5M 
(10M) - 
Pass 3 

ECON 5M 
(1.22M) - 
Pass 1 1.0000 0.9461 0.7898 0.6709 0.5565 0.4076 
ECON 5M 
(10M) - 
Pass 1 0.9461 1.0000 0.6720 0.7890 0.4083 0.5561 
ECON 5M 
(1.22M) - 
Pass 2 0.7898 0.6720 1.0000 0.7419 0.8899 0.5658 
ECON 5M 
(10M) - 
Pass 2 0.6709 0.7890 0.7419 1.0000 0.5645 0.8901 
ECON 5M 
(1.22M) - 
Pass 3 0.5565 0.4083 0.8899 0.5645 1.0000 0.5913 
ECON 5M 
(10M) - 
Pass 3 0.4076 0.5561 0.5658 0.8901 0.5913 1.0000 

Average Correlation 0.7244     
 

When comparing the correlation at Pass 1, we see a correlation near the level of the DEM 

data. At Pass 2 and Pass 3, with the weights of the DEM-derived data (aspect and slope) 

increasing, the correlation drops dramatically between the 10-meter and 1.22-meter 

derived data pairs. An interesting result is the fairly high correlation maintained, and even 

increasing, when comparing the same source resolution across adjacent passes (i.e., Econ 

5-M from 10-M Pass 1 to Econ 5-M from 10-M Pass 2, Econ 5-M from 10-M Pass 2 to 

Econ 5-M from 10-M Pass 3, etc…), highlighted in dark gray. 
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When looking at the deviation and variation of the Economic Objective data, a similar 

result is observed. In Table 4-6, the NRMSD and CV increase as the weights increase in 

each pass. 

 

Table 4-6: Economic Objective Statistics and Deviation 

  Range Mean 
Standard 
Dev. RMSD NRMSD CV 

ECON 
5M(1.22M) 
- Pass 1 611.000 481.385 103.207       
ECON 
5M(10M) - 
Pass 1 594.000 485.975 103.099       
Square 
Difference  15376.000 1167.282 1935.394 34.166 5.8% 7.0% 
ECON 
5M(1.22M) 
- Pass 2 600.000 471.770 94.424       
ECON 
5M(10M) - 
Pass 2 592.000 480.934 94.475       
Square 
Difference 53824.000 4688.431 7771.847 68.472 11.6% 14.2% 
ECON 
5M(1.22M) 
- Pass 3 590.000 364.058 135.123       
ECON 
5M(10M) - 
Pass 3 582.000 380.576 135.091       
Square 
Difference 173889.000 15193.160 25181.990 123.261 21.2% 32.4% 

 

This result is an expression of the differences observed in the slope and aspect data. As 

the influence of the slope and aspect on the Economic Objective is 20% at Pass 1, 40% at 

Pass2 and 72% on Pass 3, this is not an unexpected result. The reintroduction of the 

Environmental Objective in attaining the AHP model will mitigate this effect.  
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Finally, statistical analyses were performed on the LSM rasters. With the introduction of 

the Environmental Objective, the impact introduced by the weight increase of aspect and 

slope in the three passes is reduced. The correlation in the data is improved, as shown in 

Table 4-7: 

 

Table 4-7: LSM Correlation Matrix 

  

LSM 5M 
(1.22M) - 
Pass 1 

LSM 5M 
(10M) - 
Pass 1 

LSM 5M 
(1.22M) - 
Pass 2 

LSM 5M 
(10M) - 
Pass 2 

LSM 5M 
(1.22M) - 
Pass 3 

LSM 5M 
(10M) - 
Pass 3 

LSM 5M 
(1.22M) - 
Pass 1 1 0.97113 0.88945 0.82191 0.703 0.61094 
LSM 5M 
(10M) - 
Pass 1 0.97113 1 0.82299 0.88927 0.60999 0.70455 
LSM 5M 
(1.22M) - 
Pass 2 0.88945 0.82299 1 0.84463 0.91544 0.70063 
LSM 5M 
(10M) - 
Pass 2 0.82191 0.88927 0.84463 1 0.69781 0.91651 
LSM 5M 
(1.22M) - 
Pass 3 0.703 0.60999 0.91544 0.69781 1 0.69755 
LSM 5M 
(10M) - 
Pass 3 0.61094 0.70455 0.70063 0.91651 0.69755 1 

Average Correlation 0.8220     
 

The deviation statistics show a similar effect similar for the LSM rasters, as shown in 

Table 4-8: 
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Table 4-8: LSM Statistics and Deviation 

  Range Mean 
Standard 
Dev. RMSD NRMSD CV 

LSM 
5M(1.22M) - 
Pass 1 507.650 255.102 66.316       
LSM 5M(10M) - 
Pass 1 499.660 257.258 66.366       
Square 
Difference  3396.559 257.853 427.529 16.039 3.2% 6.2% 
LSM 
5M(1.22M) - 
Pass 2 502.480 250.583 57.120       
LSM 5M(10M) - 
Pass 2 491.200 254.888 57.331       
Square 
Difference  11889.720 1035.675 1716.801 15.965 3.3% 6.3% 
LSM 
5M(1.22M) - 
Pass 3 497.780 199.958 73.696       
LSM 5M(10M) - 
Pass 3 493.550 207.720 73.951       
Square 
Difference  38412.090 3356.169 5562.701 57.932 11.7% 27.9% 

 

Another statistical analysis performed for the LSM rasters was determining the absolute 

percentage difference between the percentages of the four suitability classifications for 

the project area. The results for Pass 1, Pass 2 and Pass 3 are shown in Table 4-9, 4-10 

and 4-11: 
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Table 4-9: Absolute % Difference of Suitability Area (Sq. km) - Pass 1 

  

LSM Area 
5M(1.22M) 
- Pass 1 

LSM 
Area  
5M(10M) 
- Pass 1 

LSM % 
5M(1.22M) 
- Pass 1 

LSM %  
5M(10M) 
- Pass 1 

Absolute 
Difference 

Best Suitability 6.24 7.25 1.99% 2.31% 0.32% 
Good Suitability 141.43 142.05 45.03% 45.23% 0.21% 
Moderate 
Suitability 160.93 159.46 51.24% 50.78% 0.46% 
Low Suitability 5.49 5.27 1.75% 1.68% 0.07% 

 

Table 4-10: Absolute % Difference of Suitability Area (Sq. km) - Pass 2 

  

LSM Area  
5M(1.22M) 
- Pass 2 

LSM 
Area  
5M(10M) 
- Pass 2 

LSM % 
5M(1.22M) 
- Pass 2 

LSM %  
5M(10M) 
- Pass 2 

Absolute 
Difference 

Best Suitability 5.73 6.85 1.82% 2.18% 0.36% 
Good Suitability 124.98 135.19 39.79% 43.05% 3.26% 
Moderate 
Suitability 177.26 166.37 56.44% 52.98% 3.46% 
Low Suitability 6.12 5.64 1.95% 1.79% 0.15% 

 

Table 4-11: Absolute % Difference of Suitability Area (Sq. km) - Pass 3 

  

LSM Area  
5M(1.22M) 
- Pass 3 

LSM 
Area  
5M(10M) 
- Pass 3 

LSM % 
5M(1.22M) 
- Pass 3 

LSM %  
5M(10M) 
- Pass 3 

Absolute 
Difference 

Best Suitability 4.52 5.74 1.44% 1.83% 0.39% 
Good Suitability 70.01 80.88 22.29% 25.76% 3.47% 
Moderate 
Suitability 167.83 164.99 53.43% 52.54% 0.89% 
Low Suitability 71.74 62.42 22.84% 19.88% 2.96% 
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Constrained SPVF LSMs 

The constraints were applied to the six LSM rasters. These final products represent the 

available area of low to high suitability in ACC for SPVFs. 

 

  

Fig. 4-10: Visual Comparison of LSM – Pass 1 - Constrained  

 

  

Fig. 4-11: Visual Comparison of LSM – Pass 2 - Constrained 
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 Fig. 4-12: Visual Comparison of LSM – Pass 3 - Constrained 

 

There is a high degree of visual similarity between these maps. The high suitability areas 

are consistent, if not exactly the same in size or continuity. That is not saying the results 

are identical, but if one were to visually analyze the extremes of each of these maps, these 

same three example areas of “Most Suitable” would stand out. By performing a visual 

assessment, such areas of high concentration of “Most Suitable”, common to the 10-

meter and 1.22-meter LSMs can be selected as shown in in Fig. 4-13 and Fig. 4-14. 
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Fig. 4-13: Suitable Area Project Overview Map - From 10-M Res. - Pass 1 
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Fig. 4-14: Suitable Area Project Overview Map - From 1.22-M Res. - Pass 3 

 

Project Areas 

With these three project areas visually apparent from the SVPF LSMs, we can take a 

closer look at the areas to see what kind of solar output could be realized from SVPFs 

located there. The current industry estimate for SVPFs capacity (the amount of power 

that can be produced at a given point in time) is 1 Megawatt (MW) for every 2.02 
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Hectares (5 Acres) of SVPF. Then, the Capacity Factor, which is the percentage of the 

capacity that is typically realized over time, must be considered. For SVPFs, this is 20%. 

To determine how much power that an SVPF actually produces over a year (8,760 hours), 

the following formula (Equation 4-1) can be used: 

 

Equation 4-1: Solar Farm Electrical Production Formula 

Capacity (MW) * 8,760 hours/year * Capacity Factor = MWh/yr 

 

In 2013, the average annual electricity consumption for a Georgia residential utility 

customer was 13.056 Megawatt-hours/year (MWh/yr). In 2013, each MWh sold at an 

average of $114.6 /MWh. This information was used to determine how many average 

homes could be powered by SVPFs fully utilizing each Project Area and how much 

money that electricity produced represented in 2013 
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Project Area One is an example of a potential site that is large and continuous (Fig. 4-15). 

 

 

Fig. 4-15: Suitability of Project Area One 

 

In this area, 51 Hectares (126 Acres) are identified as largely Best Suitability for a SVPF. 

Visual analysis of the aerial photography (Fig. 4-16) shows a reasonable agreement 

between ground conditions and the suitability indicated by the model. 
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Fig. 4-16: Aerial of Project Area One   

 

Project Area Two is an example of a potential site that is discontinuous. While these 

suitable areas are separated by constrained areas (as shown in Fig. 4-17), the proximity of 

the three sites to each other could facilitate maintenance of the site. In this area, 47.75 

Hectares (118 Acres) are identified as largely Best Suitability for a SVPF.  
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Fig. 4-17: Suitability of Project Area Two 

 

Fig. 4-18 shows an aerial view of Project Area Two. 
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Fig. 4-18: Aerial of Project Area Two 

 

Project Area Three is another example of a potential site that is large and continuous (Fig. 

4-19). In this area, 40.47 Hectares (100 Acres) are identified as largely Best Suitability 

for a SVPF.  
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Fig. 4-19: Suitability of Project Area Three 

An aerial of the area is shown in in Figure 4-20. 
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Fig. 4-20: Aerial of Project Area Three 

 

The solar electric potential for these three project areas is summarized in Table 4-12. 

 

Table 4-12: Project Area Solar Electric Potential 

  

Highly 
Suitable 
Area 
(Hectares) 

Annual 
Electricity 
Potential 
(Mwh/Yr) 

# of 
Potential 
Residences 
Supplied 

Potential Billing 
at Current Rates 
($)  

Project 
Area 1 51.00 44,234 3,388 $5,069,178 
Project 
Area 2 47.75 41,415 3,172 $4,746,142 
Project 
Area 3 40.47 35,100 2,688 $4,022,542 
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Solar Potential for ACC 

In order to get an idea of using the results from the analysis, polygon data of the top 10 

sites of both the 10-meter and 1.22-meter Pass 1 constrained LSM maps were created. In 

isolating polygons of continuous “Most” and “Good” suitability, one gets an idea of the 

best areas in the county for SPVF development. The results are shown in Fig. 4-21. 

 

 

Fig. 4-21: Top 10 Sites from 10-M and 1.22-M LSM – Pass 1 

 

The areas identified in this way are practically identical. The electric potential and 

economics of these Top 10 areas are shown in Table 4-13: 
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Table 4-13: ACC Top 10 Solar Sites Estimates 

Largest 
Suitable 
Areas 

Area 
(Ha) 

Annual 
Electricity 
Produced 
(MWh/yr) 

No. Avg. 
Residences 
Supplied 

2013 
Cost/MWh 
($) 

Potential 
Annual 
Income ($) 

Installation Cost 
($) 

1 126.54 109752 8406 $114.60 $12,577,525 $156,340,170 
2 103.21 89517 6856 $114.60 $10,258,624 $127,515,955 
3 100.82 87444 6698 $114.60 $10,021,069 $124,563,110 
4 99.87 86620 6634 $114.60 $9,926,643 $123,389,385 
5 91.39 79265 6071 $114.60 $9,083,768 $112,912,345 
6 68.97 59820 4582 $114.60 $6,855,318 $85,212,435 
7 67.22 58302 4466 $114.60 $6,681,375 $83,050,310 
8 66.38 57573 4410 $114.60 $6,597,883 $82,012,490 
9 65.79 57061 4371 $114.60 $6,539,239 $81,283,545 

10 65.58 56879 4357 $114.60 $6,518,366 $81,024,090 
Total 855.77 742232 56850   $85,059,810 $1,057,303,835 

 

These results suggest that by fully utilizing the top 10 sites in ACC at an installation cost 

of roughly one billion dollars would produce enough electrical power for all of the 

51,259 housing units identified in ACC in 2013.  

 

At the level of Pass 3, and just as was shown with the results shown in the map products 

and statistics, the increase in the weight of slope and aspect increases the differences 

between the results, as shown in Fig. 4-22. 
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Fig. 4-22: Top 10 Sites from 10M and 1.22M LSM – Pass 3 

 

While there is still some similarity in the areas identified at Pass 3, the differences are 

readily apparent. Another evidence that increasing the weight of slope and aspect in the 

model causes potential differences between the 10-meter and 1.22-meter results. 

 

Clearly there is potential for huge amounts of clean energy to be produced in ACC, but 

what are the realities of the cost to install, maintain and secure an SPVF installation? 

Also, what are those realities in Georgia? These questions are explored below. 

 

SPVF Installation & Maintenance 

Innovative Solar Systems estimates the cost for installing SPVFs at $1,235,500/hectare 

($500,000/acre) in the United States. If a solar project in ACC were to simply sell back 

the power produced to consumers at the same 2013 $114.60/MWh as the average 

electrical power consumer in GA pays, it would take nearly 12.5 years to pay for the 

installation. This does not include the Operations & Maintenance (O&M) cost over that 
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time, which Scott Madden Management Consultants estimates at $47,000 to 

$60,000/MW-yr (Jacobi, et al., 2010). In the Top 10 sites scenario, these O&M costs 

would increase the time for payoff of the installation to 16.23 to 17.73 years. Many areas 

have incentive programs in place to help with the upfront costs of solar installations at the 

residential and utility-scale level. There are some solar rebate and incentive programs 

active, at this time, in Georgia. One of these is the regional Solar Solutions Incentive 

from the Tennessee Valley Authority will grant $0.04 per kWh for 10 years in addition to 

the Renewable Standard Offer program. The Renewable Standard Offer plan is designed 

to help with small to mid-sized utility scale projects to purchase clean energies at a set 

price. Georgia Power has a Power Buyback Program that pays small to mid-sized utility 

scale projects currently $0.17 per kWh for their electric power. Programs such as these, 

combined with federal incentives, of which there are many programs, help to offset these 

high costs to initiate a solar project. Using the Database of State Incentives for 

Renewables and Efficiency, maintained by North Carolina State University’s NC Clean 

Energy Technology Center, 43 active regulatory policies and incentive programs were 

identified for the ACC area. 
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CHAPTER 5 

CONCLUSIONS 

Expected Results 

When the research on this project began, the initial expectation was that the result of the 

analysis process would be less than 5% different for data from a 10-meter DEM vs. a 

high-resolution product of 1.22-meter resolution. The results of this study show that when 

comparing the products of GIS-based MCDM processes for SPVF Site Suitability with 

geographic data derived from both high (1.22-meter) and low-resolution (10-meter) DEM 

data, the magnitude of the influence of the slope and aspect data determine the degree of 

deviation. The expected result of less than 5% deviation was found for the analysis where 

the total influence of the DEM-derived products was less than 20% of the model. This is 

greater than the total model influence values of DEM-derived data encountered in the 

literature; 10% (Uyan, 2003), 16% (Carrión, et al. 2008a; Sanchez-Lozano, et al., 2013).    

Even with an increasing statistical difference with that increased influence of slope and 

aspect, many areas determined to be Most Suitable in the final product are still visually 

defined. The main impact of high-resolution data and increased weight of the product is a 

“fuzziness” to the appearance of the suitability regions that, depending on the goal of the 

analysis (i.e., first-order, large area identification) may actually be negative. 
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Recommendation for Future Work  

This project and its results have created quite a few questions which suggest future 

research. One of the first is to test at exactly which weight combination the slope and 

aspect value deviations introduced by the 10-meter data vs. the 1.22-meter data causes 

deviation in the LSM that passes a set threshold determined by the researcher to be where 

the two LSMs could not reasonable be considered similar. From this study, the 

determination was that an aspect and slope having a 10% total influence on the LSM 

produced two statistically similar LSM result. This was also the case with the 20% total 

influence. Future research could determine just where between 20% and 36% total 

influence that similarity degrades to the point of rendering the two datasets too dissimilar.  

 

Along the same lines, one could see if this threshold is consistent among various 

geographic regions. While the less-than 20% value may be valid for the piedmont, what 

about mountainous areas? What about coasts? Further research could shed light on this. 

Should it be found that geographic region is not a factor of variation, and the slope and 

aspect should account for less than 20% total influence in a GIS-based MCDM process 

for SPVF site suitability analysis such as this project, it would be feasible to perform a 

nationwide analysis to identify regions of higher concentration of suitability using NED 

USGS 10-meter DEM data. When this sort of “first-pass” analysis is complete, areas that 

seem suitable for further analysis could be scheduled for a closer look. 

 

A potential for future work with AHP weights is simple adjusting the influence of slope 

and aspect relative to each other. The literature suggests that slopes are more important 
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that aspect (Carrión, et al. 2008a; Sanchez-Lozano, et al., 2013), but some industry 

standards suggest otherwise.   

 

Another consideration for future study is comparing the use of a DEM combined with 

LULC data to a Digital Surface Model (DSM) in estimating the shading effect of tree 

cover on a potential solar site. With a Lidar-derived DSM, one has a clear indication of 

canopy structure around a potential site and can reduce the site by the shading that would 

occur during the year. This could perhaps be estimated by using the LULC classification 

of “Forest” and applying a shading factor determined by the type of forest stand the 

LULC indicates. This could be a constraint layer for a future MCDM process. 

 

Another important factor for future studies is best ways to represent appropriate 

electricity infrastructure to support a SPVF installation in an analysis such as this, where 

road centerline data of state highways and larger county roads was used as a proxy for 

high-capacity transmission lines and the assumption of near-by three-phase distribution. 

Utility providers do not typically readily release infrastructure data. In the literature, this 

criteria has a 30 to 40% influence on the total model (Uyan, 2003; Sanchez-Lozano, et 

al., 2013), so finding ways to approximate that important piece of the decision-making 

model for SPVFs is important. 

 

Contribution of Project 

There may very well be a day that nation-wide (and world-wide) coverage with high-

resolution DEM data, or the capability with Unmanned Aircraft Systems (UAS)    
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to quickly and inexpensively obtain elevation data for almost any project scope, will 

render the specific results of this work somewhat obsolete, but the methodology 

established is sound for a variety of circumstances comparing the impact of resolution on 

MCDM-based site suitability surveys, whether they be 10-meter to 1.22-meter or 1-meter 

to .5-meter or beyond.  

 

Summary 

Producing electricity through utility-scale SPVFs is a clean, renewable source of power 

that is reducing in price and increasing in efficiency. When siting a SVPF, there are many 

factors to consider and it is beneficial to use GIS-based MCDM processes to help make 

those decision. When informing this analysis, one will want the best data available, but 

sometimes these data come with a significant price tag. This is the case with procuring 

high-resolution DEM data by Lidar survey. In this study, Land Suitability Maps were 

produced by conducting identical GIS-based MCDM processes informed first by data 

derived from 1.22-meter Lidar DEM data and then by using10-meter USGS NED DEM 

data. This MCDM process was modelled after a study encountered in the literature 

(Uyan, 2013). In this reproduction and comparison, the results were found to be 

statistically similar with a high correlation of 0.971 and a low normalized RMSD of 

3.2%. When these were repeated with the importance of the DEM derived products 

increased, there was a marked decrease in correlation and increase in the deviation 

between them. The conclusion is that there is little statistical difference between the high 

and low-resolution LSM result of an MCDM process such as the AHP used in this study 

when the geographic characteristics criteria of aspect and slope are less than or equal to 



88 

approximately 20% of the total weight of the criteria used. Should the criteria of aspect 

and slope be more that 20% of the total weight of the decision-making process, there will 

certainly be a significant difference between the results one would get with the 

comparison of output from high vs. low-resolution DEM data. That being said, the visual 

difference in utilizing the resulting LSMs, even with the increased weights of the aspect 

and slope inputs, was low and many of the areas of best suitability were able to be 

visually identified in all of the LSMs. While having the high-resolution Lidar-derived 

DEM data to work from is useful, a viable LSM product can be produced from nationally 

available 10-meter NED DEM data as an input in to a SVPF Site Suitability Analysis 

using the AHP MCDM given the right influence of that data on the analysis.  
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APPENDIX. AHP DEVELOPMENT DETAILS 

 

With the Goal as the actual LSM products, the Objectives of the Goal are Environmental 

Factors and Economic Factors of that LSM. The environmental factors that those that are 

enforced by policy or aesthetics and primarily involve the question: “Is it in the public 

interest to place a SPVF at this location?” The economic factors are those that beg the 

question: “Is it financially practical to place an SVPF at this location?” The AHP 

comparison of these two Objectives applied too great a difference between them. With 

this being the case, a weighted, balanced comparison was performed where the same 1 to 

9 by 1 scale was used but the comparison was direct with Environmental Factors scored 

as a 1 and Economic Factors scored a 2. This decision was based on the fact that policy 

restrictions represent a firm line on SVPF placement and, as a large component of the 

Environmental Factors, provide it a greater importance.  

 

The Criteria of the Environmental Objective are Distance from Developed Areas and 

Land Use. In this study, Land Use was given greater importance to reflect the impact 

policy has on placement of SVPFs. The relative importance of each of these criteria are 

presented in Table A-1. 
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Table A-1: AHP Comparison for Environmental Objective  

 Distance From 
Developed Areas Land Use 

Distance From 
Developed Areas 1 0.33 

Land Use 3 1 
 

The Sub-criteria of the Criteria for the Environmental Objective are:  

Distance from Developed Areas – In order to minimize future development impact in the 

area of the SVPF and also mitigate the NIMBY effect, it is preferable to place a SVPF 

away from developed areas. The sub-criteria buffer zones established for this study are: 

less than 100 meters, 100 to 500 meters, 500 to 1000 meters and greater than 1000m. The 

areas less than 100 meters from a developed area are entirely unsuitable and therefore not 

even considered in the weighting process (weight value of 0).  The relative importance of 

each of these sub-criteria are shown in Table A-2. 

 

Table A-2: AHP Comparison for Distance from Developed Area Criteria  

 100 to 500 
meters 

500 to 1000 
meters 

more than 
1000 meters 

100 to 500 meters 1 0.33 0.2 
> 500 to 1000 meters 3 1 0.33 

> 1000 meters 5 3 1 
 

Land Use – Certain land use types are more appropriate for SVPFs than others. The land 

uses being considered are aggregated types explained, in detail, in the section on Data 

Processing and are:  Barren Land, Shrubland, Herbaceous, Forest, Wetlands, Developed 

and Open Water. Some of the land use types in ACC are entirely unsuitable and therefore 
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not even considered in the weighting process (weight value of 0). The relative importance 

of each of the remaining sub-criteria are presented in Table A-3. 

 

Table A-3: AHP Comparison for Land Use/Land Cover Criteria 

 Barren Shrubland Herbaceous Forest 
Barren 1 2 3 7 

Shrubland 0.5 1 3 6 
Herbaceous 0.33 0.33 1 5 

Forest 0.143 0.167 0.2 1 
 

The Criteria of the Economic Objective are Distance from Transmission Lines, Distance 

from Roads, Aspect and Slope. A certain amount of ambiguity in the interpretation of the 

relative importance of these criteria provided an opportunity to test the impact of changes 

in the weights of our DEM-derived data (slope and aspect) within the Economic 

Objective on the similarity of the final land suitability maps generated from the 1.22-

meter data vs. the 10-meter data. This was accomplished by performing an iteration of the 

entire project execution process for three iterations where the aspect and slope 

importance values were changed. Each of these iterations were referred to as “Passes”. In 

each of the passes, the slope and aspect remained of equal importance to each other, but 

changed in relation to the importance of the other criteria in the Economic Objective. For 

Pass 1, the slope and aspect have their lowest ranking of importance. The relative 

importance of each of these criteria are shown in Table A-4. 
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Table A-4: AHP Importance of Economic Objective – Pass 1 

 Distance from 
Transmission 
Lines 

Distance from 
Roads Aspect Slope 

Distance from 
Transmission 

Lines 1 3 5 5 
Distance from 

Roads 0.33 1 3 3 
Aspect 0.2 0.33 1 1 
Slope 0.2 0.33 1 1 

 

For Pass 2, the slope and aspect have increased importance over Distance from Roads, 

but still remain equal to each other. The relative importance of each of these criteria are 

in Table A-5. 

 

Table A-5: AHP Importance of Economic Objective – Pass 2 

 Distance from 
Transmission Lines Aspect Slope 

Distance 
from Roads 

Distance from 
Transmission 

Lines 1 3 3 5 
Aspect 0.33 1 1 3 
Slope 0.33 1 1 3 

Distance from 
Roads 0.2 0.33 0.33 1 

 

For Pass 3, the slope and aspect have increased importance over Distance from 

Transmission Lines and Distance from Roads, but still remain equal to each other. The 

relative importance of each of these criteria are presented in Table A-6. 
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Table A-6: AHP Importance of Economic Objective – Pass 3 

 

Aspect Slope 

Distance from 
Transmission 
Lines 

Distance from 
Roads 

Aspect 1 1 2 4 
Slope 1 1 2 4 

Distance from 
Transmission Lines 0.5 0.5 1 3 

Distance from Roads 0.25 0.25 0.33 1 
 

The Sub-criteria of the Criteria for the Economic Objective are:  

 Distance from Transmission Lines – Of importance to the placement of SVPFs is the 

proximity of a potential sites to electric infrastructure sufficient to transmit the power 

generated. The farther a SVPF is from this infrastructure, the greater the cost of 

installation. The sub-criteria buffer zones established for this study are: less than 2000 

meters, 2000 to 3000 meters, 3000 to 4000 meters and greater than 4000 meters. The 

relative importance of each of these sub-criteria are shown in Table A-7. 

 

Table A-7: AHP Importance of Distance from Transmission Lines 

 Less than 
2000 
meters 

2000 to 
3000 meters 

3000 to 
4000 meters 

More than 
4000 meters 

Less than 
2000 meters 1 5 7 9 

2000 to 3000 
meters 0.2 1 3 5 

> 3000 to 
4000 meters 0.143 0.33 1 3 

> 4000 meters 0.11 0.2 0.33 1 
 

Distance from Roads – While there is concern placing a SVPF too close to the road due 

to aesthetic or security reasons, there is also a concern on placing it too far from roads for 
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construction and maintenance cost reasons. The sub-criteria buffer zones established for 

this study are: less than 100 meters, 100 to 500 meters, 500 to 1000 meters and greater 

than 1000m. The areas less than 100 meters from roads are considered unsuitable and 

therefore not even considered in the weighting process (weight value of 0). The relative 

importance of each of the remaining sub-criteria are presented in Table A-8. 

 

Table A-8: AHP Importance of Distance from Roads 

 
100 to 500 
meters 

500 to 
1000 
meters 

More than 
1000 
meters 

100 to 500 meters 1 3 5 
> 500 to 1000 meters 0.33 1 3 

> 1000 meters 0.2 0.33 1 
 

Aspect – The direction a surface generally faces is important in that flat and southerly 

facing aspects have intrinsically better solar exposure.  The sub-criteria are (bracketed for 

clarity): [Flat, S, SW or SE], [East], [West] and [North, NW, NE]. The relative 

importance of each of these sub-criteria are in Table A-9. 

 

Table A-9: AHP Importance of Aspect 

 Flat, S, SW or SE East West North, NW, NE 
Flat, S, 

SW or SE 1 5 5 9 
East 0.2 1 1 5 

West 0.2 1 1 5 
North, 

NW, NE 0.11 0.2 0.2 1 
 

Slope – Slope is an important factor in the siting of a SPVFs. Many developers of solar 

sites will place a cap of 10% on the slope of a site when considering a solar installation. 
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This varies, though, as methods have been developed to mitigate the negative effects of 

high slope. One such method is simply leveling the site, but that certainly can add to the 

cost of installation and may not be a best practice in developing the site. Low slopes are 

generally highly preferred. The values of the sub-criteria for this study are: less than 5%, 

5 to 8%, 8 to 10%, 10 to 12% and greater than 12%. The areas more than 12% slope are 

considered unsuitable and therefore not even considered in the weighting process (weight 

value of 0). The relative importance of each of the remaining sub-criteria are indicated in 

Table A-10. 

 

Table A-10: AHP Importance of Slope 

 Less than 
5% 5 to 8% 8 to 10% 10 to 12% 

Less than 
5% 1 3 5 7 

5 to 8% 0.33 1 3 5 
> 8 to 10% 0.2 0.33 1 3 

> 10 to 12% 0.143 0.2 0.33 1 
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