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Abstract

Correspondence determination between different objects plays a pivotal role in

a wide range of applications in the field of computer vision and computer graph-

ics. In this dissertation, we address some key problems in computer vision and

computer graphics that are dependent on accurate correspondence determination

between the underlying objects under consideration. Following a general intro-

duction to the correspondence problem in Chapter 1, in Chapter 2, we introduce

a pairwise geodesic distance-based global shape representation for 3D shapes and

employ the spectrum of this representation to address correspondence determi-

nation between isometric 3D shape pairs, self-symmetry detection and detection

of stable regions within 3D shapes. A surface differential-oriented global shape

representation is introduced in Chapter 3 and the spectrum of this representa-

tion is further employed for symmetry detection and correspondence determination



between isometric 3D shapes. Furthermore, a novel criterion is introduced to mea-

sure the compatibility of the representation spectrum in the context of deformation

transfer.

In Chapter 4, we present a comparative study of the performance of the shape

representations introduced in Chapters 2 and 3 in the presence of noise. We also

introduce a novel shape representation spectrum based surface point feature. In

addition, in chapter 4 we employ the spectrum of the proposed shape representa-

tion to address deformation transfer between a source and a target shape.

In Chapter 5, we address non-rigid structure from motion, a very important

problem in computer vision, that estimates 3D information from a 2D image se-

quence. To address this problem we impose a constraint on the distribution of the

2D correspondences between consecutive frames of the temporal image sequence.

Finally, we conclude in Chapter 6 by giving an outline of some possible direction

towards future extensions of the works presented.

All the problems and applications of computer vision and computer graphics

considered in this dissertation, are influenced by accurate correspondence deter-

mination between the different objects under consideration. The results of the

proposed framework in each chapter are compared to those from other relevant

state-of-the-art schemes. It is shown that the proposed schemes perform compet-

itively when compared with their state-of-the-art counterparts.

Index words: Computer Vision, Computer Graphics, Shape analysis,
Symmetry detection, Correspondence problem, Non-Rigid
Structure from Motion
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Chapter 1

Introduction and Literature Review

Establishing meaningful correspondence between analyzable objects is central to

many applications within the fields of computer vision and graphics. The corre-

spondence problem had been well studied in the context of image analysis, shape

analysis, statistical modeling of objects, and even within some pure mathematical

disciplines such as Algebraic Topology and Algebraic Geometry. The principle

underlying correspondence models varies depending on the application objectives.

The objects analyzed by a correspondence problem formulation vary depending

on the context of the underlying application area. For instance, 3D shapes are

examples objects analyzed by a correspondence problem formulation in computer

graphics applications whereas in context of computer vision the objects are images

or image streams. This dissertation is a study of the correspondence problem in

the context of applications in the fields of computer graphics and computer vision.

The correspondence problem in computer graphics applications deals primarily

1



with points on a 3D shape, or a region map between 3D shapes. This disserta-

tion proposes novel shape representations or shape descriptors that address the

correspondence problem by formulating a spectral structure for the 3D shapes un-

der consideration. Furthermore, the study also explores associated applications of

the correspondence problem using the proposed representations. In addition, the

shape representation is exploited to represent correspondence between 2D images

to address Non-Rigid Structure from Motion (NRSfM), a central problem in the

field of computer vision.

Sampled features are quintessential in establishing meaningful correspondence

between objects. The concept of a feature is very general and varies widely across

applications. However, in the context of correspondence determination between

shapes, features may refer to specific structures imposed upon the shape such as

local geometry sampled at specific points, whereas in image-oriented applications,

features could indicate low-level pixel cues, or higher-level edges and orientation

information. In most of the related applications in computer graphics and vision

a higher level mathematical structure, namely, a shape descriptor is widely used

to represent and process the accumulated object features in a meaningful way so

that an optimized correspondence is achieved.

In this chapter a brief introduction to shape descriptors is provided along with

a survey of the most salient applications of correspondence determination that are

supported by these shape descriptors. Since shape descriptors primarily influence

many applications in computer graphics, the focus of the survey will be confined

within the scope of computer graphics. This chapter is concluded with a brief

2



survey of the NRSfM problem in computer vision citing the most prominent works

in the field, especially those that have influenced the present optimization struc-

ture for NRSfM, and are supported by the shape representations proposed in this

dissertation.

1.1 Shape Descriptors and Applications

In the context of computer graphics the objects of interest, i.e., 3D shapes, are

represented as 3D point clouds or triangulated meshes that are assumed to provide

explicit low-level geometric information. However, low-level information alone is

not discriminating enough for a wide range of shapes varying in size, geometry,

and critical topological detail. Therefore it is infeasible to use low-level geometric

information explicitly to represent a 3D shape within a general parameterized

space. However, shape descriptors can be employed for the purpose of categorizing

surface regions of 3D shapes to facilitate different applications in 3D shape analysis.

One desirable property of a shape descriptor is the ability to capture cap-

ture the unique properties of the underlying 3D shape surface while providing

robustness or invariance to undesirable local geometric perturbations. The fea-

ture information that is unique to the localized surface region, are represented by

the shape descriptor over the 3D shape can be used to establish correspondence

between surface regions of different shapes. There exist several variations of the

correspondence model in the literature Van Kaick et al. [2011a] that differ widely

from each other, both in regard to the underlying principle and types of shape

3



descriptors used. Particularly in context of a 3D shape a useful shape descriptor

should capture the local geometric changes over the global shape faithfully such

that it can be used to recognize the corresponding surface region between shapes

even after it has undergone considerable local geometric changes under noise. It

should represent faithfully the given local geometry of the 3D shape and be robust

to noise and sampling errors. The other sources of error a robust descriptor should

consider are geometric noise caused by changes in mesh topology, mesh connec-

tivity noise, and global topology noise (imposed on the mesh by creation of loops

and tunnels, Heider et al. [2011a] ). The existing surface descriptors in the liter-

ature can be categorized into different classes based on the manner in which they

construct and evaluate a local neighborhood around a sample point (i.e., whether

they consider local surface data or global surface data). Note that the term surface

data is dependent on the choice of distance metric defined between surface vertex

pairs over the shape.

Shape descriptors play a fundamental role in addressing the correspondence

problem in shape analysis. In Figure 1.1, the gradual development in the models

used to establish correspondence is depicted. Methods to establish correspondence

between rigid shapes are relatively well explored and benefit from mathematically

well defined objective functions. The deformations the objects in this category can

undergo are affine in nature and thus have a pure geometric formulation. Corre-

spondence between shapes, that might not be rigid but isometric to each other can

also be addressed by solving purely a geometric optimization problem. Therefore,

recent research on the above shape categories focuses on improving efficiency and
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Figure 1.1: Evolving shape correspondence models. Van Kaick et al. [2011a]

accuracy of correspondence determination and/or focuses on a difficult subprob-

lem such as partial shape matching. Establishing correspondence between shapes

belonging to the same category but differing significantly in geometry, topology,

and structure, however, remains a challenge. The optimization criteria used in es-

tablishing correspondence between these shapes cannot depend simply upon pure

geometric features, thus shifting the definition of the correspondence determina-

tion problem towards hypothesis-oriented approaches. These approaches utilize a

combination of higher- and lower-level information to address semantic aspects of

a 3D shape based on the presence of heterogeneous surface segments, geometric

and topological characterization of the surface, and ontology modules designed

specifically for a certain genre of shapes. A lot of emphasis is laid upon utiliz-

ing prior learned information for establishing meaningful correspondence. This is
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reflected in the recent increased attention towards learning-based models such as

Kalogerakis et al. [2010]; Van Kaick et al. [2011b] for determining correspondence.

In this section, following a brief discussion on some of the applications of corre-

spondence problem we briefly highlight the different categories of shape descriptors

that vary in their underlying principle. The description of these applications also

indicate the close relation between the application goal and the desirable prop-

erties of the adopted shape descriptor. The principles governing the properties

of the shape descriptors used for each of the following applications are derived

from spectral analysis of the shape descriptor. The motivation behind this brief

survey is to demonstrate the effectiveness of spectrum based shape descriptors in

correspondence related applications.

1.1.1 Applications of Correspondence Problem

The following applications are connected in terms of the principles of the under-

lying shape descriptors used. All of the cited applications rely, to varying degrees,

on the spectral analysis of the underlying shape descriptors.

Shape registration

From an initial set of scans of a 3D object from arbitrary positions, a registration

process matches corresponding regions across the scans (Van Kaick et al. [2011a]).

The final target 3D object is reconstructed using the alignment between the corre-

sponding regions. Shape registration has two different categories; in rigid registra-

tion (Rusinkiewicz and Levoy [2001]), shapes do not change during the scanning
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process whereas in case of non-rigid registration (Anguelov et al. [2005]; Jain et al.

[2007]; Brown and Rusinkiewicz [2007]; Chang and Zwicker [2008]; Huang et al.

[2008]), the 3D shapes are free to deform between successive surface scans.

Shape interpolation/morphing

In shape interpolation or shape morphing, one shape is gradually transformed into

another. The transformation has to be gradual between successive interpolated

shapes, i.e. the shape transformation procedure should have a sense of continu-

ity imposed upon interpolated shapes to create a visually pleasing aspect(Alexa

[2002]). The correspondence model can address sparse or dense point correspon-

dence between source and target shapes(Kraevoy and Sheffer [2004]). However,

the correspondence between reference and target shape should retain a semantic

equivalence between different parts of the shapes.

Symmetry detection

Detecting symmetries within a 3D shape can further be very effectively used for

various mesh editing applications within a geometry processing pipeline such as

registration, segmentation, compression and modeling (Golovinskiy et al. [2009]).

Detecting symmetry within a shape is equivalent to finding correspondence be-

tween elements of the same shape. Computationally, this task is to determine a

set of non-mutative transformations that, when applied over the shape, do not

modify its geometry. The transformations used for symmetry detection methods

can be extrinsic (Mitra et al. [2006]; Podolak et al. [2006]), intrinsic (Xu et al.
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[2009]; Kim et al. [2010]), or may utilize spectral embeddings(Ovsjanikov et al.

[2008]; Lipman et al. [2010a]).

Information transfer

Attributes or features of a shape, if efficiently reused, can reduce the computa-

tional overhead for many graphics pipeline operations such as continuous model-

ing of shapes widely used in animation industry. To facilitate attribute reusability,

information transfer is becoming a common task across various graphics pipelines.

The information may refer to the deformation (Sumner et al. [2005]), style(Xu

et al. [2010]), or the texture(Dinh et al. [2005]) defined on the source shape. The

usefulness of a robust correspondence model is evident for this class of tasks since

the attribute on the source mesh can only be transferred to target mesh through a

well defined set of point or region correspondences between the source and target

shapes.

Recognition and retrieval

Scene understanding and object recognition from range images is a central prob-

lem in computer vision (Forsyth and Ponce [2003]). Spectral model based shape

correspondence can be effectively used for this task. Based on a combination of

dominant basis shapes derived from the spectral analysis of a query shape one can

recognize the existence and location of the query shape embedded within a given

3D scene. For determining the confidence level of the recognition task a certain

measure of correspondence quality between the query shape and retrieved shape
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model is necessary. This principle is generally used for retrieving a shape within

a scene as well (Funkhouser and Shilane [2006]).

Time varying surface reconstruction

Surface reconstruction pipeline refers to the task of reconstructing a 3D surface

from a temporally related scans of a rigid or non-rigid 3D model. For a non-

rigid model the surface can deform between successive scans following a free-form

transformation. The final task is to combine the scans into a 3D surface model.

A robust correspondence model is central to this family of tasks since since the

points based correspondence across scans needed to be finally mapped to the re-

constructed 3D surface. Some of relevant works in this field are due to Mitra

et al. [2007]; Wand et al. [2007]; Sharf et al. [2008]; Pekelny and Gotsman [2008];

Li et al. [2009]; Chang and Zwicker [2009]; Tevs et al. [2009]; Zheng et al. [2010].

Change detection

Correspondence determination can be applied to track changes in a shape (e.g.,

displacements or growth) over time. For example, tracking organ deformation to

infer the nature of a disease is particularly useful in diagnostic medicine. One

relevant medical application is to track the changes in the number and density of

moles on a patient’s skin for the purpose of cancer prediction (Mirzaalian et al.

[2009]). Change detection can also be used in remote sensing, where tracing varia-

tion in city layout with land usage is useful for efficient city planing(Leclerc et al.

[2000]).
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Statistical shape modeling

Shape recognition and shape retrieval under different degrees of variability in form,

size and appearance are important tasks in anatomical studies where the target

shapes are human organs or bones. A statistical 3D model with a measurable

degree of deformation for different regions is suitable for tasks such as retrieval of

objects within a image. Formation of a 3D statistical model is typically done by

optimizing the correspondence between different shapes having a common struc-

ture (Davies et al. [2008]; Hasler et al. [2009]; Ward and Hamarneh [2007]).

1.2 Shape Descriptors

A shape descriptor may be local or global depending on the the features it com-

putes over the shape. In this section, a brief survey of the some prominent shape

descriptors from each family is provided. It is to be emphasized that these de-

scriptors are useful in the context of correspondence based computer graphics

applications as mentioned in Section. 1.1.

Local shape descriptors can be categorized into different classes based on

their approach towards the encoding of the underlying local surface geometry. One

prominent category is ring-based descriptors that typically employ a paramet-

rically controlled surface metric based on geometric object such as blowing bubbles

(Mortara et al. [2004]) or geodesic diameter (Pottmann et al. [2009a]). Some

variants within this class use surface normal vectors as local surface features com-

puted at discrete points on the surface mesh (Gatzke et al. [2005]; Stein and

10



Medioni [1992]; Ong and Seghouane [2011a]). These descriptors typically employ

an external frame of reference over the mesh Yamany and Farag [1999]; Chua and

Jarvis [1997]; Yamany and Farag [2002] or auxiliary geometric parameter such as

local surface curvature Gatzke et al. [2005]; Ong and Seghouane [2011b] to com-

pute the local surface feature. Expanding descriptors, on the other hand fit a

hypothesis-based parametric model where the sampled feature values are consid-

ered as parameters. These descriptors commonly employ features such as geodesic

distance (Mortara et al. [2004]; Cipriano et al. [2009]), volume or surface area

(Connolly [1986]; Pottmann et al. [2009b]) to characterize a local surface region.

Some variants of Expanding Descriptors use measures such as mesh smoothing (Li

and Guskov [2005]) or mesh saliency (Lee et al. [2005]) to sample local surface fea-

tures. Iterative operator-based descriptors capture local geometric changes

within a surface region by manipulating the entire mesh using strategies such as

smoothing (Li and Guskov [2005]), estimation of local diffusion geometry (Bron-

stein et al. [2010]) over the mesh surface, or diffusion based variation (Rustamov

[2007]) within the surface mesh.

A global shape representation is important to effectively characterize the

global shape and determine the correspondence between shapes. However, typi-

cally a global shape representation represents a global shape by collectively repre-

senting local sampled features. A variation in this trend, i.e., surface descriptors

based on the eigenspectrum of the Laplace-Beltrami operator, have gained popu-

larity in the context of the correspondence problem due their natural robustness

to noise and their flexibility in dealing with surface perturbations. Some well

11



known surface descriptors from this class employ a Laplace-Beltrami operator-

guided spectral process that samples geometry by computing the distance between

surface points using a distance metric. Variants within this class of descriptors em-

ploy a mesh connectivity based surface metric along the geodesic curves on the 3D

surface mesh (Rustamov [2007]) or diffusion geometry (Bronstein et al. [2010]) over

the surface to measure the point-to-point length along a specific path on the surface

mesh. Smeets et al. [2012] present a geodesic distance-based global shape repre-

sentation that demonstrates robustness to nearly isometric deformations. Surface

point signature based shape descriptors based on the heat kernel signature (HKS)

due to Sun et al. [2009]; Bronstein and Kokkinos [2010]; Boscaini et al. [2016]

employ the heat diffusion model in conjunction with the eigenspectrum of the

Laplace-Beltrami operator to characterize the global shape. The other well known

variant of point signature based shape descriptor is wave kernel signature (WKS)

proposed by Aubry et al. [2011] that employs the principles of quantum mechan-

ics, in conjunction with the Laplace-Beltrami eigenspectrum to characterize the

3D shape.

1.3 Correspondence for Non-Rigid Structure from Motion

Non-Rigid Structure from Motion (NRSfM hereof) refers to the problem of recover-

ing 3D shape information from 2D image streams, typically a video sequence. The

state-of-the-art approaches for such a problem depend upon accurate point-based

correspondence determination between consecutive image frames. Seminal work
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in this field by Bregler et al. [2000] determines correspondence across the video

frames by factorizing the accumulated data into camera pose and 3D shape space

to achieve final reconstruction of 3D shapes. Single value decomposition (SVD)

based factorization methods (Akhter et al. [2009a]; Yan and Pollefeys [2008]; Bar-

toli et al. [2008]) for NRSfM have gained much attention due to the simplicity and

robustness of the underlying assumption that temporally related object data can-

not deform arbitrarily. Specialized variants of these methods have been proposed

to recover shape data for articulated objects such as the human model (Tresadern

and Reid [2005]; Paladini et al. [2009]). To address 3D shape recovery in the

presence of deformation with high variance, particular attention has been given

to introduce statistical(Torresani et al. [2008]), shape basis (Xiao et al. [2006]),

and 3D affine priors (Del Bue [2008]) that could be combined with the factoriza-

tion method as well. In this dissertation we explore a novel correspondence based

factorization method, in conjunction with motion constraints imposed upon the

deformable object, to enhance the accuracy of the final 3D shape reconstruction.
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2.1 Abstract

In this chapter, a local geometry-inclusive global representation of 3D shapes based

on the shortest quasi-geodesic paths between all possible pairs of points on the

shape manifold is proposed. In the proposed representation, the normal curvature

values along the quasi-geodesic paths are shown preserve the local shape geometry.

The eigenspectrum of the proposed global representation is exploited to character-

ize the shape self-symmetry. The commutative property of the shape descriptor

spectrum is exploited to address region-based correspondence determination be-

tween isometric 3D shapes without requiring prior correspondence maps and to

extract stable regions between 3D shapes that differ from one another by a high

degree of isometry transformation. eigenspectrum-based characterization metrics

are proposed to quantify the performance of the proposed 3D shape descriptor for

correspondence determination and self-symmetry detection in comparison to its

relevant state-of-the-art counterparts. The proposed shape descriptor spectrum

and the optimization criterion based on spectral commutativity are observed to

yield competitive performance compared to relevant state-of-the-art methods.

2.2 Introduction

In the field of shape analysis, the computation of an optimal global description of

a 3D shape is critically dependent upon the underlying application. Applications

based on shape similarity computation typically rely on a suitably formulated

global metric to characterize shape similarity. On the other hand, local shape
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geometry is important for applications where it is essential to establish point-to-

point correspondence between candidate shapes. Based on the objective(s) of the

application and nature or modality of the underlying shape data/information (i.e.,

geometric, topological, etc.), 3D shape analysis applications can be broadly catego-

rized as purely geometric, semantic or knowledge-driven Van Kaick et al. [2011a].

However, a large number of 3D shape analysis applications that belong to these

categories or lie within their intersections are compelled to address a fundamental

problem, i.e., that of determining accurate correspondence between the 3D shapes

under consideration. Typical examples of such applications include rigid and non-

rigid shape registration (Chang and Zwicker [2008]; Gelfand et al. [2005]), shape

morphing (Kraevoy and Sheffer [2004]), self-symmetry detection (Gal and Cohen-

Or [2006]), shape deformation transfer (Sumner and Popović [2004]), 3D surface

reconstruction (Pekelny and Gotsman [2008]), shape-based object recognition and

retrieval (Jain and Zhang [2007]), to name a few. In each of the aforementioned

applications, shape descriptors play a critical role in determining the required 3D

shape correspondence. Depending on the nature of the application, 3D shape de-

scriptors could be purely geometric and used to capture the local 3D geometry of

the shapes whereas others may incorporate prior knowledge about the global 3D

shape. Ideally, a 3D shape descriptor should demonstrate robustness to topolog-

ical noise while simultaneously capturing the underlying invariant shape features

that are useful in computing the correspondence between 3D shapes.

In this chapter, we address an important problem, i.e., that of determining

correspondence between isometric 3D shapes (i.e., 3D shapes that have undergone
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isometry deformation or transformation with respect to each other) without re-

quiring any prior knowledge about the underlying shapes. To this end, we propose

a 3D shape descriptor based on estimation of the approximate geodesic distance

between all point pairs on the 3D shape manifold. The proposed representation is

used to address the computation of 3D self-symmetry, determination of correspon-

dence between isometric 3D shapes and detection of the most stable parts of the

3D shape under varying degrees of isometry (i.e, non-rigid pose) transformation

between shapes. Since the geodesics over a 3D shape manifold are defined as sur-

face curves of constant normal curvature, they are observed to naturally encode

the local surface geometry along the curve. On a discrete triangulated 3D surface

mesh, the discrete approximation to a geodesic is characterized by an optimal bal-

ance of the distribution of angles on either side of the discrete geodesic computed

over the local neighborhood of each mesh point on the geodesic as depicted in Fig-

ure 2.2. This balance of the local angular distribution is observed to encode the

local geometry of the triangulated mesh along the discrete geodesic. The afore-

mentioned approximation to a geodesic computed over a discrete 3D triangulated

mesh is referred to as a quasi-geodesic cf. Mart́ınez et al. [2005]. The proposed

global shape descriptor represents the 3D shape by computing the quasi-geodesic

paths between all point pairs on the discrete 3D triangulated surface mesh.

The all-point-pairs geodesic matrix representation of 3D shapes displays a sym-

metrical pattern as shown in Figure 2.1. We employ the eigenspectrum of this rep-

resentation to detect self-symmetry within a shape. Furthermore, we investigate

the commutative property of the eigenvectors of the shape descriptor spectrum,
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which are shown to be approximately orthogonal to each other, for discrete settings

such as the triangulated mesh-based representations of 3D shapes. Approximate

orthogonality refers to the fact that for two distinct eigenvectors of the shape

descriptor spectrum φi and φj (where i 6= j), |〈φi, φj〉| < ε where 〈·, ·〉 denotes

the scalar inner product of the vector arguments and ε ≈ 0. It should be noted

that the eigenspectrum of the proposed representation is distinct from the well

known Laplace-Beltrami eigenspectrum that has been used extensively in several

3D shape analysis and 3D shape synthesis applications. In our case, we exploit

the commutative property of the shape descriptor eigenspectrum to establish the

correspondence between isometric 3D shapes. It should also be emphasized that,

unlike many related approaches (Kovnatsky et al. [2013]; Ovsjanikov et al. [2012]),

the proposed optimization criterion used to establish the correspondence between

isometric 3D shapes does not exploit nor require prior user-specified correspon-

dence maps between the 3D shapes.

We use the proposed correspondence optimization scheme to test the hypothe-

sis that the presence of implicit isometry between 3D shapes can be characterized

using a global quasi-geodesic-based shape representation that encodes local shape

geometry. Furthermore, we also contend that the proposed representation can

be exploited to address problems such as self-symmetry detection and charac-

terization, correspondence determination and stable part or region detection un-

der isometry deformation without resorting to prior knowledge of correspondence

maps. To the best of our knowledge, the problem of correspondence determina-

tion in the absence of prior knowledge had not been addressed in the research
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literature. In some of our experiments, we obtain poor results for correspondence

determination as a consequence of not requiring any prior knowledge in the face of

high variability in the isometry transformations. However, our experiments show

that the proposed correspondence determination technique is able to detect stable

corresponding parts or regions between shapes, i.e., corresponding parts or regions

that have undergone the least degree of isometry deformation (Section 2.6).

The remainder of the chapter is organized as follows. In Section 2.3, we present

a brief survey of the most relevant works on 3D shape description that can be ef-

fectively used to address 3D shape correspondence determination with an added

emphasis on related work on coupled quasi-harmonic bases by Kovnatsky et al.

[2013]. Section 2.4 describes the specific contributions of our work. The mathe-

matical model on which the proposed technique is based is detailed in Section 2.5.

In Section 2.6, we present the experimental results for 3D self-symmetry detection

and characterization, 3D correspondence determination between isometric shapes,

and stable 3D part or region detection. We conclude the chapter in Section 2.7

with an outline of directions for future work.

2.3 Related Work and Background

The proposed global shape descriptor is based on the computation of quasi-geodesics

between all pairs of points over the discrete triangulated 3D surface mesh that

can encode the local geometry at discrete points over the surface mesh as well.

The eigenspectrum of the descriptor is exploited to address shape self-symmetry
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Figure 2.1: Global representation of 3D shapes using quasi-geodesics computed
over a discrete triangulated 3D surface mesh. The 3D shape models shown are
(a) Victoria (b) Dog (c) Cat (d) Michael and (e) Horse. The all-point-pairs quasi-
geodesic matrix representation of the 3D shapes is observed to be approximately
symmetric and the resulting eigenspectrum is observed to preserve self-symmetry
over the discrete triangulated 3D mesh-based representation of the 3D shapes.

and correspondence determination between isometric shapes. In this section, we

first present a brief survey of relevant local shape representation schemes and

spectrum-based shape correspondence models (Heider et al. [2011b]; Van Kaick

et al. [2011a]). We also discuss relevant work on coupled quasi-harmonic bases

proposed by Kovnatsky et al. [2013], which exploits the commutativity of the iso-

metric shape eigenspectrum to establish correspondence between approximately

isometric shapes.
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2.3.1 Local shape descriptors

The different classes of local shape descriptors can be categorized based on their

approach towards sampling of the underlying local surface geometry. Ring-based

descriptors are typically based on local sampling of a predefined metric over the

discrete 3D surface mesh, however, they differ in their strategies for evaluation

of the metric. Some of the prominent descriptors belonging to this class employ

blowing bubbles (Mortara et al. [2004]; Pottmann et al. [2009a]) centered around

a sample surface point, whereas others use the geodesic diameter to sample the

surface metric in a local neighborhood (Pottmann et al. [2009a]). These descrip-

tors explicitly control the radius parameter of the bubbles or discs which in turn

determines the size of the sample surface region.

Some ring-based descriptors (Gatzke et al. [2005]) use the local surface normal

vectors computed at discrete points on the surface mesh to capture the local surface

features. Geodesic fan descriptors sample a local surface metric based on the

values of the local surface curvature or the outward surface normal vector within

regions of varying radii defined over the 3D surface mesh (Gatzke et al. [2005];

Ong and Seghouane [2011b]). Splash descriptors employ values of the surface

normal vector as the primary metric for local surface characterization (Stein and

Medioni [1992]) whereas point descriptors (Yamany and Farag [1999]; Chua and

Jarvis [1997]; Yamany and Farag [2002]) encode the local geometric features on

the surface mesh defined by the relative local surface normal at a sample point

with respect to a superimposed plane or line segment at the sample points. One of

the more prominent examples from this category of shape descriptors is the point
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descriptor proposed by Kokkinos et al. [2012] where feature points are represented

by local geometric and photometric fields.

Expanding descriptors fit a hypothesis-based model to a surface region in

order to characterize it. Important shape descriptors from this category typically

employ a parametric model involving features such as geodesic distance (Cipriano

et al. [2009]; Mortara et al. [2004]), volume and/or surface area (Connolly [1986];

Pottmann et al. [2009b]). Some variants of this descriptor use a mesh smoothing

(Li and Guskov [2005]) or mesh saliency computation (Lee et al. [2005]) procedure

that is employed over a specific region on the 3D surface mesh.

Iterative operator-based descriptors capture the geometric changes within

a shape by manipulating the entire mesh surface. As a manipulation strategy they

employ techniques such as smoothing (Li and Guskov [2005]) or estimation of local

diffusion geometry (Bronstein et al. [2010]) over the mesh surface. The well known

Laplace-Beltrami operator proposed by Rustamov [2007] is typically employed to

compute the diffusion-based shape descriptors within this class.

2.3.2 Global shape representation

In most situations, knowledge of local surface geometry alone is insufficient to

characterize the entire shape. Consequently, a global shape representation based

upon local surface features is necessary to effectively address the correspondence

problem, which is fundamental to many computer vision and computer graphics

applications. In recent times, surface descriptors based on the eigenspectrum

of the Laplace-Beltrami operator have gained popularity in the context of the
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correspondence problem. Some well known examples of surface descriptors from

this class are based on the formulation of a diffusion process. The diffusion process

is guided by the Laplace-Beltrami operator (Rustamov [2007]) that samples a

surface metric, such as the mesh connectivity, along the geodesic curves on the 3D

surface mesh. In related work, Bronstein et al. [2010] used diffusion geometry to

measure the point-to-point length along a specific path on the surface mesh using

a random walk model.

Surface descriptors based on the heat kernel signature (HKS) proposed by Sun

et al. [2009]; Bronstein and Kokkinos [2010] employ the heat diffusion model in

conjunction with the eigenspectrum of the Laplace-Beltrami operator to character-

ize global shape. In an anisotropic variation, due to Boscaini et al. [2016] use the

eigenspectrum of a directional version of the Laplace-Beltrami operator for shape

representation. The wave kernel signature (WKS) (Aubry et al. [2011]) is another

popular category of shape descriptors based on the Laplace-Beltrami eigenspec-

trum, that employs the principles of quantum mechanics instead of heat diffusion

to characterize the shape. Smeets et al. [2012] address the global representation

of shape by computing the geodesic distances between sample points on the 3D

surface mesh resulting in a shape representation scheme that is shown to achieve

robustness against nearly isometric deformations. The level set-based deformable

shape model proposed by Lucas et al. [2013], is a variant of the diffusion-based

shape descriptor, has been successfully employed in various applications such as

surface segmentation, surface registration and object tracking.
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2.3.3 Joint diagonalization of the commutative eigenspectrum

Point- or region-specific correspondence between isometric shapes can be addressed

by exploiting the commutative property of the shape spectrum representation.

In this section we briefly describe the technique by laying emphasis on relevant

work on coupled quasi-harmonic bases (Kovnatsky et al. [2013]) that employs

the commutative property of the isometric (or near isometric) shape spectrum to

address the problem of correspondence determination between isometric shapes.

Commutative eigenspectrum

Formally, the commutative property implies that given two unitary (i.e., Hermitian

or orthogonal) operators ΦX and ΦY defined over an isometric pair of shapes X and

Y , one can determine a joint diagonalizer Ψ that diagonalizes both ΨTΦXΨ and

ΨTΦY Ψ (Cois Cardoso [1995]). The joint diagonalizer Ψ represents the common

eigenbases between the isometric shape spectra ΦX and ΦY . Shapes represented

as discrete triangulated meshes need not be exactly isometric to each other due to

discretization error. Therefore, in the discrete case, the corresponding shape spec-

tra would be approximately commutative. In this chapter, the term approximately

commutative is used in the following sense: The spectra ΦX and ΦY of the triangu-

lated shapes X and Y are approximately commutative if ||ΦXΦY − ΦY ΦX ||F ≈ 0

where ||Λ||F represents the Frobenius norm of matrix Λ.

A detailed treatment of the common eigenbases for approximately commutative

spectral operators can be found in related work proposed by Cois Cardoso [1995];

Yeredor [2002]. Some recent important works by Kovnatsky et al. [2015, 2013]
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employ the commutative principle to formulate a least-squares optimization crite-

rion which is then used to extract a common spectral bases to address the problem

of correspondence determination between isometric shapes. In the following sub-

section, we specifically describe the coupled quasi-harmonic bases formulated by

Kovnatsky et al. [2013].

Coupled quasi-harmonic bases

The coupled quasi-harmonic bases address the problem of correspondence determi-

nation between two approximately isometric 3D shapes X and Y by determining

the common bases that exist within their respective eigenspectra. The proposed

optimization criterion determines bases Φ̂X and Φ̂Y that jointly diagonalize the

Laplacians ∆X and ∆Y defined over the approximately isometric 3D shapes X and

Y respectively. The common eigenbases Φ̂X and Φ̂Y are extracted via minimization

of the optimization criterion in eqn. (2.1).

argmin
Φ̂X ,Φ̂X

{
off(Φ̂T

XWXΦ̂X) + off(Φ̂T
YWY Φ̂Y )+

||F T Φ̂X −GT Φ̂Y ||2F
}

such that Φ̂T
XDXΦ̂X = I and Φ̂T

YDY Φ̂Y = I

(2.1)

In eqn. (2.1), off(A) =
∑

1≤i 6=j≤n |a2
ij| for an n × n matrix A with elements aij.

Matrices W and D are components of the discrete cotangent Laplacians ∆X and

∆Y of the discrete surface meshes X and Y respectively such that ∆X = W−1
X DX
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and ∆Y = W−1
Y DY . The cotangent discretization scheme for the mesh-based

Laplacian proposed by Meyer et al. [2003] is used to compute the values of ∆X

and ∆Y . The third term in the optimization criterion (eqn. (2.1)) represents

the coarse correspondence between the 3D shapes X and Y provided that prior

knowledge of the point-wise mapping between the shapes X and Y is stored in

matrices F and G.

In this chapter, we employ the principle of common eigenbases between shape

spectrum corresponding to isometric shapes to establish region wise correspon-

dence. However, in contrast to the coupled quasi-harmonic bases (Kovnatsky

et al. [2013]) described is eqn. (2.1), the optimization criterion proposed in the

chapter does not require any prior knowledge of the correspondence between the

shapes under consideration. We further elaborate upon the optimization scheme

for correspondence determination in Section 2.5.2.

2.4 Contributions of the work

In this chapter, we propose a global shape representation Dg(X) for a 3D manifold

X that incorporates local surface geometry. The proposed representation is based

on the computation of the shortest quasi-geodesic distances between all point pairs

on the shape manifold. The proposed shape representation is shown to preserve

the local surface geometry at each point on the 3D surface mesh. Furthermore, we

effectively exploit the eigenspectrum of the proposed shape representation in the

following applications:
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(1) Self-symmetry characterization: We address the problem of self-symmetry char-

acterization by exploiting the eigenspectrum of the proposed global shape descrip-

tor Dg(X).

(2) Correspondence determination: We determine the region-wise correspondence

between isometric 3D shapes without requiring the user to determine and specify

a priori the point-wise mapping between the two 3D shapes.

(3) Isometry deformation characterization: We exploit the results of the region-

wise correspondence to characterize and quantify the extent of isometry deforma-

tion between the 3D shapes.

(4) Stable part or region detection: We exploit the commutative property of the

eigenfunctions of Dg(X) to extract pose-invariant stable parts or surface regions

within non-rigid 3D shapes under high degree of isometry transformation.

2.5 Local Geometry Inclusive Shape Operator

In the proposed scheme, a discrete 3D shape manifold X is characterized by an

operator Dg(X), that is computed by determining the quasi-geodesics over the dis-

crete manifold X. It is known that along a geodesic over a continuous manifold,

only the normal component of the local curvature is dominant when compared

to the tangential component. A discrete 3D shape manifold X, in the form of

a triangulated 3D surface mesh, can be represented by a C2 differentiable func-

tion f : R3 → R as X = {f(x1), f(x2), ..., f(xn)} where n denotes the num-

ber of vertices xi, 1 ≤ i ≤ n of X Azencot et al. [2014]; Martinez Esturo et al.
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[2014]. The quasi-geodesic computed for a discrete path xi  xj minimizes the dis-

tance measure d(f(xi), f(xj)) between the vertices xi and xj of X. The proposed

shape representation Dg(X) records all such quasi-geodesics, computed between

all vertex-pairs or point-pairs over the surface mesh X. Furthermore, the matrix

representation of Dg(X) reveals an implicit symmetrical form, as is evident for the

example 3D shapes shown in Fig. 2.1.

For discrete meshes, the computation of geodesics is enabled by stable schemes

proposed by Mart́ınez et al. [2005]. The local geometry along a quasi-geodesic

over a discrete mesh is preserved as follows: Fig. 2.2 depicts two scenarios where

a probable quasi-geodesic (marked in red) crosses a neighborhood of triangular

meshes. In either case, one can measure the discrete geodesic curvature at a point

P as follows:

κg(P ) =
2π

θ
(
θ

2
− θr) (2.2)

In eqn. (2.2), θ denotes the sum of all angles incident at point P where the geodesic

crosses the surface mesh. In both cases, depicted in Figs. 2.2(a) and 2.2(b), the

quasi-geodesics generate angular distributions θl and θr such that θl =
∑

i βi and

θr =
∑

i αi. Since the normal curvature is dominant along the quasi-geodesics,

we can compute an optimum balance between θl and θr that minimizes the dis-

crete geodesic curvature κg, which is the tangential curvature component along

the quasi-geodesic. This optimal balance between angular distributions along the

quasi-geodesic approximately encodes the local angular distribution and hence,

the local geometry at surface point P as depicted in Figs. 2.2(a) and 2.2(b).
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The spectral decomposition of the symmetric shape operator Dg(X) results in

the eigenspectrum ΦX for shape X as follows:

Dg(X)ΦX = ∆XΦX (2.3)

where ∆X = diag(γ1, γ2, ..., γn) denotes the diagonal matrix of eigenvalues γi, 1 ≤

i ≤ n and ΦX = {Φ1
X ,Φ

2
X , ...,Φ

n
X} denotes the eigenvectors Φi

X , 1 ≤ i ≤ n of shape

X with n surface vertices.

Figure 2.2: The right and left angular distributions θl and θr generated by a
geodesic at point P on the surface mesh. The angular measures θl and θr encode
the local geometry on a discrete surface mesh.

2.5.1 Self-symmetry characterization

We characterize self-symmetric regions over shape X as follows. Two regions

X1, X2 ⊂ X are possible candidates for being symmetric regions if for some upper
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bound ε:

∣∣∣∣∣
k0∑
k=1

Φk
X(p)−

k0∑
k=1

Φk
X(q)

∣∣∣∣∣
2

≤ ε ∀p ∈ X1, ∀q ∈ X2 (2.4)

where | · |2 denotes the L2 norm. Using spectral analysis one can find a tight

bound on ε such that ε ≤
∑

p,q∈X1, r,s∈X2
|d(p, q)− d(r, s)|2 for a C2 distance metric

d (Dunford and Schwartz [1963]). Parameter ε depends upon the variance of

geodesic error computed over the entire shape manifold X. Therefore, for shape

manifold X, ε is a measure of the degree of isometry deformation of X vis-a-vis

the baseline shape. We report the bounds on ε computed for different meshes in

the Experimental Results section (Section 2.6). For characterizing self-symmetry

we restrict ourselves to the lower-order eigenvectors characterized by k0 ≤ 20.

Furthermore, the above characterization can be also used to jointly analyze the

correspondence between two candidate isometric shapes X and Y (Section 2.5.2).

2.5.2 Correspondence determination between isometric shapes

Determining the compatibility between the eigenbases of various shapes plays a

critical role in applications dealing with analysis of multiple 3D shapes; in par-

ticular, determining the correspondence between 3D shapes. In related work,

Ovsjanikov et al. [2012] represent the correspondence between two shapes by a

parametric map between their functional spaces. However, functional map-based

methods typically rely on user-specified prior knowledge of the mapping between

the shapes for optimization of the correspondence criterion (Nguyen et al. [2011];
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Ovsjanikov et al. [2012]). In contrast, the proposed approach does not assume any

user-specified prior mapping between the shapes under consideration.

For correspondence determination between two isometric shapes X and Y we

exploit the fact that the eigen decomposition of symmetric shape operators Dg(X)

and Dg(Y ) leads to approximately commutative eigenspectra ΦX and ΦY . The

characterization “approximately commutative” is on account of the discretization

or triangulation of the surface meshes describing the shapes and follows the formal

definition given in Section 2.3.3. We couple ΦX and ΦY by the commutative terms

ΦT
X∆Y ΦY and ΦT

Y ∆XΦX to solve the following optimization problem:

Φ̄X , Φ̄Y = argmin
φx,φy

{
|φTx∆Y φy|F + |φTy ∆Xφx|F

}
(2.5)

where φx ⊂ ΦX , φy ⊂ ΦY and | · |F denotes the Frobenius norm. It should be

emphasized that eqn. (2.5) does not require that a priori correspondence maps

be provided. The optimized maps Φ̄X and Φ̄Y over shapes X and Y encode the

correspondence between them. From the optimized maps Φ̄X and Φ̄Y , the relative

correspondence error between shapes X and Y is given by CX,Y =
∑k0

k=1 |Φ̄k
X −

Φ̄k
Y |2. To compute CX,Y we consider the lower-order eigenvectors by setting k0 ≤

20.

2.5.3 Stable 3D surface region or part detection

Relaxing the criterion for correspondence determination by not requiring a user-

specified prior mapping between the shapes could result in poor correspondence
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between shapes that differ significantly from each other via isometry transforma-

tion. However, the optimization criterion for correspondence determination can

also be used to identify common stable surface regions or parts within the shapes.

These stable surface regions or parts are deemed to be the ones that have under-

gone the least amount of isometry deformation as a result of pose variation. We

present the following criterion to identify the stable regions SX,Y between shapes

X and Y as follows:

SX,Y =
⋃
p

|Φ̄X(p)− Φ̄Y (p)|2 ≤ ε (2.6)

where region p represents a corresponding region in both shapes X and Y identified

by the correspondence optimization criterion in eqn. (2.5). The parameter ε is

computed as mentioned in Section 2.5.1. The stable part detection is quantified

using the following criterion: S̄X,Y =
∑

p∈SX,Y
|Φ̄X(p)− Φ̄Y (p)|2.

2.6 Experimental Results

For our experiments we have chosen the TOSCA dataset consisting of ten non-rigid

shape categories, i.e., Cat, Dog, Wolf, two Human Males, Victoria, Gorilla, Horse,

Centaur and Seahorse (Ovsjanikov et al. [2009]). Within each shape category,

the individual shapes represent different transformations such as isometry, isome-

try coupled with topology change, different mesh triangulations of the same shape

etc. In this work, we consider shapes that are isometric to one another, i.e., shapes

that differ via an isometry transformation. Examples of some shapes that differ
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from one another via isometry transformations are shown in Fig. 2.3. Experimental

results are presented for six different shape categories for each of the applications

formally described in Sections 2.5.1, 2.5.2 and 2.5.3 using visual representations of

the results followed by the corresponding numerical evaluations. We have experi-

mented with coarse meshes that are reduced by more than 87% of their original size

or resolution. The results of the proposed shape representation are compared with

those from relevant state-of-the-art shape representation schemes. The compara-

ble performance achieved by the proposed local geometry-inclusive global shape

representation scheme without requiring any prior knowledge of point-to-point or

region-wise correspondences validates the central hypothesis underlying the pro-

posed scheme, namely that the implicit isometry within candidate shapes can be

exploited for correspondence determination without requiring that the knowledge

of coarse correspondence be provided a priori.

2.6.1 Results of 3D self symmetry detection

Fig. 2.4 depicts the self-symmetry maps obtained for the various shapes using

eqn. (2.4). The maps in Fig. 2.4 correspond to the second eigenvector Φ2
X obtained

from the spectral decomposition of the global operator Dg(X) for each shape using

eqn. (2.3). Table 2.1 presents the self-symmetry characterization measure, denoted

by the upper bound ε in eqn. (2.4), for each shape category. This characteriza-

tion measure represents the average degree of isometry transformation within a

shape category vis-a-vis the baseline shape. Note that the shape category Michael

represents one of the two Human Male shape categories in the TOSCA dataset.
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Table 2.1: Self-symmetry characterization measure for different shape categories
in the TOSCA dataset. The average degree of isometry transformation within the
category Horse is observed to be at least 30% higher than the other categories.

Category ε Category ε

Victoria 0.528 Dog 0.462

Cat 0.282 Michael 0.566

Horse 0.815 Centaur 0.203

2.6.2 Results of 3D correspondence between isometric shapes

Since the lower-order eigenvectors represent global shape geometry more accu-

rately, we consider the first 20 eigenvectors to compute the global region-based

correspondence between the isometric shapes. Fig. 2.5 shows the results of cor-

respondence determination between the isometric Human Male shapes obtained

via the optimization criterion described in eqn. (2.5). The correspondence maps

between the shapes are shown to be consistent across the different order eigenvec-

tors.

Table 2.2: Average relative error CX,Y in 3D correspondence determination be-
tween isometric shapes.

Category Average CX,Y Category Average CX,Y
Victoria 0.069 Dog 0.0624

Cat 0.06 Michael 0.057

Horse 0.0559 Centaur 0.052

The relative correspondence error for these maps can be characterized by the
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measure CX,Y defined in Section 2.5.2. Table 2.2 lists this measure for isomet-

ric shapes from different TOSCA shape categories. Lower CX,Y values denote a

higher degree of correspondence accuracy achieved via the optimization described

in eqn. (2.5). We emphasize here, that the correspondence accuracy is achieved

without requiring any user-specified prior mapping between the shapes.

2.6.3 Results of 3D stable region or part detection

Shapes from different categories display varying degrees of isometry transforma-

tions between them. As a result, the accuracy of global correspondence deteriorates

for shapes that exhibit a very high degree of isometry deformation. This is ex-

pected since the proposed scheme does not assume any prior mapping information

that could potentially improve the correspondence. However, using the criterion

outlined in eqn. (2.6) we can identify the stable corresponding surface regions or

parts within the shapes that are least transformed by isometry. The detected sta-

ble regions or parts for the Centaur shape category are depicted in Fig. 2.6. For

various poses of the Centaur shape model, the more dynamic regions such as the

tail and the lower legs exhibit low correspondence accuracy and hence are rejected

by the criterion described in eqn. (2.6). However, regions that are least affected

by the isometry deformation are detected as stable regions. These stable regions

exhibit high correspondence accuracy and are depicted in Fig. 2.6. We quantify

the correspondence accuracy for the detected stable regions using the measure

S̄X,Y described in Section 2.5.3. However, in our experiments, we observed a high

positive correlation between the measures CX,Y and S̄X,Y . Hence we contend that
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the results in Table 2.2 hold for measure S̄X,Y as well.

Table 2.3 compares the performance of the proposed representation scheme

with the performance of other state-of-the-art representation schemes (Kim et al.

[2011]; Sahillioglu and Yemez [2011]). The methods proposed by Kim et al.

[2011]; Sahillioglu and Yemez [2011] were further combined with the functional

map technique by Ovsjanikov et al. [2012] in order to improve their correspondence

accuracy via functional map-based local refinement. The results of performance

comparison for these combined approaches with the proposed representation are

also presented in Table 2.3. The numerical values presented in Table 2.3 denote the

highest percentage correspondence accuracy achieved by the various representation

schemes along with the corresponding average geodesic error. The performance

of the proposed representation scheme is observed to compare very well with the

performance of the other state-of-the-art representation schemes. These results

underscore the central hypothesis underlying the proposed shape representation,

namely that competitive performance in self-symmetry detection and characteriza-

tion, and correspondence map determination between isometric 3D shapes can be

achieved by the proposed representation scheme without requiring prior knowledge

of coarse correspondence mapping between the shapes unlike other state-of-the-art

correspondence determination techniques Kim et al. [2011]; Sahillioglu and Yemez

[2011].
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Table 2.3: Comparison between the proposed scheme and other state-of-the-art
schemes proposed by Kim et al. [2011], Sahillioglu and Yemez [2011] and their
combinations with functional map by Ovsjanikov et al. [2012].

Methods Geodesic
Error

% Corre-
spondence

Kim et al. [2011] 0.11 ∼ 95

Ovsjanikov et al. [2012] and
Kim et al. [2011]

0.06 ∼ 95

Sahillioglu and Yemez [2011] 0.25 ∼ 90

Ovsjanikov et al. [2012]
and Sahillioglu and Yemez
[2011]

0.2 ∼ 90

Proposed Scheme 0.15 ∼ 94

2.7 Conclusions and Future Work

In this chapter we proposed a global shape representation scheme using quasi-

geodesics computed over the entire discrete shape manifold. The eigenspectral

decomposition of this representation is used effectively to identify self-symmetric

regions on the discrete shape manifold. By exploiting the commutative property

of the eigenbases of the proposed representation, we successfully demonstrated its

use in correspondence determination between isometric shapes. We also proposed

characterization metrics for self-symmetry identification and correspondence de-

termination. Furthermore, stable surface regions within 3D shapes were identified

for shape pairs that differed from each other by a high degree of isometry defor-

mation. The results of correspondence determination obtained via the proposed
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representation scheme were compared with those from relevant state-of-the-art

representation schemes.

A key contribution of this work is the fact that no prior knowledge, in the

form of user-specified mappings, was used for correspondence determination and

self-symmetry detection. As an extension of the current scheme, we intend to

explore and combine functional maps (Ovsjanikov et al. [2012]) with the proposed

representation that may prove critical in exploring the group structure within

isometric shapes. Furthermore, we intend to use this combined scheme to address

correspondence determination between near-isometric shapes (Kovnatsky et al.

[2013]).
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Figure 2.3: Examples of isometry transformation for the shape categories Human
Male and Centaur in the TOSCA dataset.
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Figure 2.4: Self-symmetry detection for five different TOSCA shape categories
using the spectrum of the global representation Dg(X) for the shape X. Each
map corresponds to the second eigenvector Φ2

X of the shape operator spectrum.

Figure 2.5: Pairwise consistency between corresponding eigenmaps of the Human
Male shapes. For correspondence estimation, the optimization criterion described
in eqn. (2.5) is used. Lower-order eigenvectors are considered for correspondence
estimation since they effectively capture the global shape geometry.
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Figure 2.6: Stable region detection using the criterion outlined in eqn. (2.6). Stable
surface regions are detected between isometric shapes where the correspondence
accuracy is observed to deteriorate due to a high degree of isometry transformation
between the shapes. Unstable regions are ones that exhibit a higher degree of
isometry transformation between them, for example, parts of the lower legs, the
tail, etc.
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3.1 Abstract

In this chapter, a surface principal curvature preserving local geometry aware

global shape representation for 3D shapes is proposed. The shape representation

computes the shortest quasi-geodesic path between all possible pairs of points on

the shape manifold that enforces minimal variation of geodesic curvature along the

path. The normal component of the principal curvature along the quasi-geodesic

paths is dominant and shown to preserve the local shape geometry. The eigen-

spectrum of the proposed representation is exploited to characterize self-symmetry.

The commutative property between shape spectra is exploited to compute region-

based correspondence between isometric 3D shapes without requiring an initial

correspondence map to be specified a priori. The results of the region-based cor-

respondence are extended to characterize the compatibility of the commutative

eigen-spectrum in order to address the problem of shape deformation transfer.

eigenspectrum based characterization metrics are proposed to quantify the per-

formance of the proposed 3D shape descriptor for self-symmetry detection and

correspondence determination. The proposed shape descriptor spectrum-based

optimization criterion is observed to yield competitive performance compared to

relevant state-of-the-art correspondence determination techniques.

3.2 Introduction

In Computer Graphics, the study of surface geometry-aware global 3D shape de-

scriptors is critical to enable various 3D shape analysis applications. A desirable
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quality of a 3D shape descriptor is its ability to discriminate between local regions

of a 3D shape, an essential requirement for applications that entail determination

of point-wise correspondence between 3D shapes. Ideally, a 3D shape descriptor

should demonstrate robustness to local topological noise while effectively capturing

the underlying stable shape features that are essential for correspondence deter-

mination between 3D shapes. Based on the modality of the underlying shape data

(i.e., geometric, topological, etc.) and objective(s) of the application, 3D shape

analysis applications can be broadly categorized as purely geometric, semantic or

knowledge-driven (Van Kaick et al. [2011a]). Several 3D shape analysis applica-

tions drawn from the aforementioned categories typically entail solving a funda-

mental problem, i.e., one of determining accurate correspondence between the 3D

shapes under consideration. Examples of these applications include rigid and non-

rigid shape registration (Chang and Zwicker [2008]; Gelfand et al. [2005]), shape

morphing (Kraevoy and Sheffer [2004]), self-symmetry detection (Gal and Cohen-

Or [2006]), shape deformation transfer (Sumner and Popović [2004]), 3D surface

reconstruction (Pekelny and Gotsman [2008]), and shape-based object recogni-

tion and retrieval (Jain and Zhang [2007]) among others. The success of these

applications is critically dependent on the shape descriptors used for 3D shape

correspondence determination. Several of these applications, however, are also

dependent upon prior specification of an initial shape correspondence.

In this chapter, we propose a global 3D shape descriptor based on estimation

of the approximate geodesic distance between all point pairs on a triangulated

mesh-based 3D shape manifold. The 3D shape descriptor represents all the ver-
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tices on the 3D shape manifold by their differential coordinates. This allows the

geodesics over a 3D shape manifold to be defined as surface curves along which

the normal component of the principal curvature is dominant. This property of

the geodesics is used to encode the local surface geometry along the curve. The

proposed 3D shape descriptor is shown to effectively address the computation of

3D self-symmetry within a shape. The eigenspectrum of the 3D shape descriptor

is exploited to address a very important problem, i.e., correspondence determina-

tion between isometric 3D shapes (i.e., 3D shapes that are related via an isomet-

ric transformation) without requiring any prior knowledge about the underlying

shapes. Furthermore, the compatibility of the shape descriptor eigenspectra is

formally characterized to generate continuous deformations of a given shape to

enable applications such as 3D shape deformation transfer.

On a triangulated 3D surface mesh, the discrete approximation to a geodesic

is characterized by an optimal balance of angular distributions over the surface on

the either side of the geodesic. These angular distributions are computed in a local

neighborhood of each mesh point on the geodesic as depicted in Fig. 3.2 (b) and

(c). The balance of the local angular distribution is observed to encode the local

geometry of the triangulated mesh along the discrete geodesic. The approximation

to a geodesic computed over a discrete 3D triangulated mesh is referred to as a

quasi-geodesic (Mart́ınez et al. [2005]). The proposed shape descriptor represents

the global 3D shape by computing the quasi-geodesic path between all point pairs

on the discrete 3D triangulated surface mesh, along which the normal component

of the principal curvature is dominant.
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We use the eigenspectrum of the global quasi-geodesic-based shape descriptor

that encodes that local shape geometry to characterize self-symmetry within a

shape and to establish correspondence between isometric deformations of a shape

without resorting to any a priori knowledge of the correspondence maps. The

all-point-pairs geodesic matrix representation of 3D shapes displays a symmetrical

pattern as shown in Fig. 3.1. We employ the eigenspectrum of the symmetrical

pattern to detect self-symmetry within a shape. To determine the correspondence

between isometric shapes, we exploit the commutative property of the eigenvectors

corresponding to the shape descriptor eigenspectrum (Cois Cardoso [1995]). The

commutative property is shown to demonstrate the approximate orthogonality be-

tween different isometric deformations of a discrete triangulated mesh-based 3D

shape. Approximate orthogonality refers to the fact that for two distinct eigenvec-

tors φi and ψj chosen from separate shape descriptor eigenspectra, |〈φi, ψj〉| < ε

where 〈·, ·〉 denotes the scalar inner product of the vector arguments and ε ≈ 0.

It should be noted that the eigenspectrum of the proposed descriptor is dis-

tinct from the well known Laplace-Beltrami eigenspectrum that has been used

extensively in several 3D shape analysis and shape synthesis applications. In our

case, we exploit the commutative property of the shape descriptor eigenspectrum

to establish the correspondence between isometric 3D shapes. It should also be

emphasized that, unlike many related approaches by Kovnatsky et al. [2013];

Ovsjanikov et al. [2012], the optimization criterion proposed to establish corre-

spondence between isometric 3D shapes does not exploit nor require user-specified

initial correspondence maps between the 3D shapes. Furthermore, we extend the
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correspondence maps detected between isometric shapes to the other isometric

deformations of the baseline shapes, with an objective to characterize the compat-

ibility of the correspondence maps to generate smooth deformations of the baseline

shapes to enable 3D shape deformation transfer. To the best of our knowledge,

the problem of correspondence determination in the absence of prior knowledge of

any point-wise mapping between the shapes had not been studied extensively in

the research literature.

The remainder of the chapter is organized as follows. In Section 3.3, we present

a brief survey of the most relevant works on 3D shape description with an empha-

sis on the commutative property of isometric shape eigenspectra employed in the

proposed correspondence determination scheme. Section 3.4 describes the spe-

cific contributions of our work. The mathematical formulation of the proposed

shape descriptor and the associated applications are detailed in Section 3.5. In

Section 3.6, we present experimental results for 3D self-symmetry detection and

characterization, 3D correspondence determination between isometric shapes, and

the analysis of compatibility of the commutative eigenspectra used to generate a

continuous deformation of a given shape. We conclude the chapter in Section 3.7

with an outline for future work.

3.3 Background and Related Work

The proposed global shape descriptor is based on the computation of quasi-geodesics

between all pairs of points over the discrete triangulated 3D surface mesh where
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Figure 3.1: Global representation of 3D shapes using quasi-geodesics computed
over a discrete triangulated 3D surface mesh. The 3D shape models shown are
(a) Victoria (b) Cat (c) Dog (d) David and (e) Wolf. The all-point-pairs quasi-
geodesic matrix representation of the 3D shapes is observed to be approximately
symmetric and the resulting eigenspectrum is observed to preserve self-symmetry
over the discrete triangulated 3D mesh-based representation of the 3D shapes.

each mesh vertex is represented by its neighborhood-based surface differential. The

proposed shape descriptor effectively encodes the local geometry at discrete points

over the surface mesh. The eigenspectrum of the descriptor is exploited to address

shape self-symmetry, correspondence determination between isometric shapes and

the formulation of a metric to characterize generation of smooth deformations of a

baseline shape. In this section, we first present a brief survey of some relevant local

and global shape descriptors, spectrum-based shape correspondence models and

deformation transfer models (Van Kaick et al. [2011a]; Heider et al. [2011b]). We

also discuss the principle underlying the commutative property between isometric

shape eigenspectra and related work by Kovnatsky et al. [2013] that exploits this
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principle to determine the correspondence between quasi-isometric shapes.

3.3.1 Local shape descriptors

The different classes of local shape descriptors can be categorized based on their

approach towards the encoding of the underlying local surface geometry. Ring-

based descriptors typically sample a local surface metric using a parametrically

controlled local neighborhood based on blowing bubbles (Mortara et al. [2004]) or

geodesic diameter (Pottmann et al. [2009a]). Some ring-based descriptors use the

local surface normal vectors as surface features computed at discrete points on the

surface mesh (Gatzke et al. [2005]; Stein and Medioni [1992]; Ong and Seghouane

[2011a]), relative to a superimposed frame of reference over the mesh (Yamany and

Farag [1999]; Chua and Jarvis [1997]; Yamany and Farag [2002]) or in combination

with local surface curvature (Gatzke et al. [2005]; Ong and Seghouane [2011b]).

Expanding descriptors fit a hypothesis-based parametric model based on fea-

tures such as geodesic distance (Mortara et al. [2004]; Cipriano et al. [2009]),

volume or surface area (Connolly [1986]; Pottmann et al. [2009b]) to characterize

a surface region. Some variants of this descriptor use mesh smoothing (Li and

Guskov [2005]) or mesh saliency (Lee et al. [2005]) applied over the surface mesh.

Iterative operator-based descriptors capture the geometric changes within a

shape by manipulating the entire mesh surface by employing strategies such as

smoothing (Li and Guskov [2005]), estimation of local diffusion geometry (Bron-

stein et al. [2010]) over the mesh surface, or diffusion based variation (Rustamov

[2007]) within the surface mesh.
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3.3.2 Global shape representation

A global shape representation based upon local surface features is important to ef-

fectively characterize the global shape and determine the correspondence between

shapes, a fundamental problem in many computer vision and computer graph-

ics applications. Surface descriptors based on the eigenspectrum of the Laplace-

Beltrami operator have gained recent popularity in the context of the correspon-

dence problem. Some well known surface descriptors from this class employ a

Laplace-Beltrami operator-guided diffusion process that samples a surface metric

based on mesh connectivity along the geodesic curves on the 3D surface mesh

(Rustamov [2007]) and diffusion geometry (Bronstein et al. [2010]) to measure the

point-to-point length along a specific path on the surface mesh.

Surface descriptors based on the heat kernel signature (HKS) by Sun et al.

[2009]; Bronstein and Kokkinos [2010]; Boscaini et al. [2016] employ the heat dif-

fusion model in conjunction with the eigenspectrum of the Laplace-Beltrami op-

erator to characterize the global shape. The wave kernel signature (WKS) (Aubry

et al. [2011]) employs the principles of quantum mechanics, instead of heat diffu-

sion, in conjunction with the Laplace-Beltrami eigenspectrum to characterize the

3D shape. Smeets et al. [2012] present a geodesic distance-based global shape

representation that demonstrates robustness to nearly isometric deformations.

3.3.3 Deformation transfer models

Deformation transfer between shapes (Lévy [2006]; Sumner et al. [2005]) is an im-

portant application in computer graphics that employs global shape descriptors.
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The principles of deformation transfer have been employed in many applications

such as machine learning-based human motion modeling (Pons-Moll et al. [2015])

and sensor-based surface reconstruction (Zollhöfer et al. [2014]) to name a few.

However, to the best of our knowledge, modeling large-scale deformations using

spectral techniques without employing any prior knowledge of correspondence be-

tween the shapes has not been explored in detail. In this chapter, we propose

a metric for characterization of commutative eigenspectra that can quantify the

compatibility of the spectra in order to generate smooth deformations of a baseline

shape to enable shape deformation transfer.

3.3.4 Commutative eigenspectrum for correspondence between shapes

Point- or region-based correspondence determination between isometric shapes

can be addressed by exploiting the commutative property of the shape descriptor

eigenspectrum. In this section we briefly describe the principle underlying the

commutative eigenspectra between isometric shapes (Cois Cardoso [1995]).

Commutative eigenspectrum

Formally, the commutative property implies that given two unitary (i.e., orthogo-

nal) operators ΦX and ΦY defined over an isometric pair of shapes X and Y , one

can determine a joint diagonalizer Ψ that diagonalizes both ΨTΦXΨ and ΨTΦY Ψ

(Cois Cardoso [1995]). The joint diagonalizer Ψ represents the common eigen-

bases between the isometric shape eigenspectra ΦX and ΦY . Shapes represented

as discrete triangulated meshes need not be exactly isometric to each other due
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to discretization error. Therefore, in the discrete case, the corresponding shape

eigenspectra would be approximately commutative. In this chapter, the term “ap-

proximately commutative” is used in the following sense: The eigenspectra ΦX

and ΦY of the triangulated shapes X and Y are approximately commutative if

||ΦXΦY − ΦY ΦX ||F ≈ 0 where ||Λ||F represents the Frobenius norm of matrix Λ.

A detailed treatment of the common eigenbases for approximately commutative

spectral operators can be found in frameworks proposed by Cois Cardoso [1995];

Yeredor [2002]. Some recent works (Kovnatsky et al. [2013, 2015]) employ the

commutative principle to formulate a least-squares joint optimization criterion, to

extract a common spectral bases that can address correspondence determination

between isometric shapes. These applications, however, use prior knowledge of

the correspondence to regularize the joint optimization criterion and employ the

cotangent discretization scheme for the mesh-based Laplacian (Meyer et al. [2003])

to represent the shape operators.

In this chapter, we employ the principle of common eigenbases between com-

mutative eigenspectra corresponding to isometric shapes to determine region-wise

correspondence. However, in contrast to existing works by Kovnatsky et al. [2013],

the proposed method employs a novel optimization criterion that does not use any

prior knowledge of the correspondence between the shapes under consideration.

We elaborate upon the optimization scheme for correspondence determination in

Section 3.5.2.
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3.4 Contributions in the Chapter

(1) Self-symmetry characterization: We address the problem of self-symmetry de-

tection and characterization by exploiting the eigenspectrum of the proposed global

shape descriptor.

(2) Correspondence determination: We determine region-wise correspondence be-

tween isometric 3D shapes without requiring the user to specify a priori an initial

point-wise mapping between the two 3D shapes.

(3) Isometry deformation characterization: We exploit the results of the region-

wise correspondence to formally characterize the extent of isometry deformation

between the 3D shapes.

(4) Compatibility characterization for smooth deformation generation: We extend

the commutative property of the eigenfunctions between baseline shapes to char-

acterize the compatibility of the commutative eigenspectrum in order to address

generation of smooth deformations of the baseline shapes.

3.5 Proposed Shape Operator and Applications

The proposed shape representation for a discrete 3D shape manifold X is denoted

by the operator Dg(X), that is computed by determining the quasi-geodesics be-

tween all vertex pairs on the discrete manifold X. For the shape representation, we

first transform each vertex by its local neighborhood based surface differential so

that the ith vertex of shape manifold X is represented by δxi = xi− 1
N

∑
yj∈N(xi)

yj

i.e. the differential coordinate where N(xi) is the neighborhood of size N for vertex
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xi and each yj ∈ N(xi) is a neighboring vertex of xi. Subsequently, a C2 function

f : R3 → R (Azencot et al. [2014]; Martinez Esturo et al. [2014]) is associated with

each vertex xi, (1 ≤ i ≤ n) of shape X comprising of n vertices. Consequently,

a discrete, triangulated, 3D shape manifold X is represented by the vertices such

that X = {f(δx1), f(δx2), ..., f(δxn)} where δxi denotes the surface differential co-

ordinates for the ith vertex of X. The differential transformation ensures that each

vertex location also defines the normal to the surface at the vertex as shown in

Fig. 3.2 (a). Along a geodesic over a continuous manifold, only the normal compo-

nent of the principle curvature is dominant compared to it’s tangential component.

The quasi-geodesic computed for a discrete path xi  xj minimizes the geodesic

distance measure d(f(δxi), f(δxj)) between vertices xi and xj of X. It should

be emphasized that since each vertex xi is represented by the surface differential

coordinates the distance d(f(δxi), f(δxj)) represents a path xi  xj that goes

through a geometrically “flat” region over the surface with minimal variation in

local geometry between neighboring points on the path. The proposed shape rep-

resentation Dg(X) records all such quasi-geodesic distances, computed between all

vertex-pairs over the surface mesh X. The matrix representation of Dg(X) reveals

an implicit symmetrical form, as is evident for the example 3D shapes shown in

Fig. 3.1.

For discrete meshes, the computation of geodesics is possible using the stable

schemes proposed by Mart́ınez et al. [2005]. The local geometry along a quasi-

geodesic over a discrete mesh is preserved as follows. Fig. 3.2 (b) and (c) depicts

two scenarios where a probable quasi-geodesic (marked in red) crosses a point P
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within a neighborhood of triangular mesh facets. In either case, one can measure

the discrete geodesic curvature at a point P as follows:

κg(P ) =
2π

θ
(
θ

2
− θr) (3.1)

In eqn. (3.1), θ denotes the sum of all angles formed by the neighborhood of

point P . In both the cases, as depicted in Fig. 3.2 (b) and (c), the quasi-geodesics

generate angular distributions θl and θr such that θl =
∑

i βi and θr =
∑

i αi. Since

the normal curvature is dominant along the quasi-geodesics, we can compute an

optimum balance between θl and θr that minimizes the discrete geodesic curvature

κg, which is the tangential component of the curvature along the quasi-geodesic.

This optimal balance between angular distributions along a quasi-geodesic encodes

the local angular distribution and hence, the local geometry at surface point P .

To test the robustness of the proposed correspondence scheme we experimented

with coarse triangulated meshes. For a coarse mesh the variance between neigh-

borhood surface normals increases significantly. Such a variation is visually repre-

sented in Fig. 3.3 where variation in surface normals are presented for two coarse

meshes where vertices are reduced by 75.02% and 87.05% respectively from the

original mesh. Table 3.1 presents the degree of coarseness in terms of normal

variances computed for the entire mesh across different shape category. Therefore,

to ensure the accurate computation of surface normals at each point of a coarse

mesh we considered an additional error correcting scheme explained with an ex-

ample in Fig. 3.2 (d). Fig. 3.2 (d) depicts a vertex p on the shape manifold with a

neighborhood consisting of three vertices q, r and s. As a result, vertex p is shared
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Table 3.1: Surface normal variances due to reduction in number of vertices for
different shape category.

Shape Category Variance in normals with
Original Mesh 75% reduction 87 % reduction

David 0.4399 0.8355 1.7191
Dog 0.5201 1.0624 1.7974
Cat 0.506 0.9432 1.827

Centaur 1.3003 2.0632 3.8868

between three planes defined by disks D1, D2 and D3 with their corresponding

normals N̄1, N̄2 and N̄3, respectively. Normals N̄1, N̄2 and N̄3 can be computed

from the vertices p, q, r and s. The accuracy of the computed normal direction at

a surface point may be severely affected due to the choice of a coarse triangulated

mesh. Therefore, the error correcting scheme ensures that the resulting normal

N̄R is constrained to lie within the solid angle region shown in red in Fig. 3.2 (d)

that is bounded by normals N̄1, N̄2 and N̄3.

The spectral decomposition of the symmetric shape representation Dg(X) re-

sults in the eigenspectrum ΦX for shape X such that,

Dg(X)ΦX = ∆XΦX (3.2)

where ∆X = diag(γ1, γ2, ..., γn) denotes the diagonal matrix of eigenvalues γi, 1 ≤

i ≤ n and ΦX = {Φ1
X ,Φ

2
X , ...,Φ

n
X} denotes the eigenvectors Φi

X , 1 ≤ i ≤ n of shape

X with n surface vertices ordered by the corresponding eigenvalues.
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Figure 3.2: The proposed shape descriptor represents each vertex of the mesh by
the discrete differential coordinates. (a) The resulting coordinate axis aligns with
the normal on the surface at the vertex. Vertices yj’s belong to the neighborhood
ring N(xi) of vertex xi. (b) and (c) depicts two possible crossings of a geodesic at
a point P on the surface. The balance between left and right angular distributions
θl =

∑
i βi and θr =

∑
i αi generated by a geodesic at point P on the surface mesh

encode the local geometry of the discrete surface mesh at P . For coarse meshes,
an additional scheme depicted in (d) is considered to ensure the accuracy of the
surface normal computation. This scheme ensures that the resultant normal N̄R

is constrained to lie within the region in red defined by the disc normals N̄1, N̄2

and N̄3.

3.5.1 Self-symmetry characterization

We propose the following metric to characterize self-symmetric regions within a

shape X. Two regions X1, X2 ⊂ X are possible symmetric regions within X if for

some upper bound ε:

∣∣∣∣∣
k0∑
k=1

Φk
X(p)−

k0∑
k=1

Φk
X(q)

∣∣∣∣∣
2

≤ ε ∀p ∈ X1, ∀q ∈ X2 (3.3)
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Figure 3.3: Gradual increase in variance of vertex normal due to reduction in
vertices from (a) 100% to (b) 75.02% and (c) 87.05%. (d) Due to reduction by more
than 87% even in geometrically “flat” region such as human torso the neighborhood
vertex normals change direction with high degree.

where | · |2 denotes the L2 norm. Using spectral analysis one can find a tight

bound on ε such that ε ≤
∑

p,q∈X1, r,s∈X2
|d(p, q)− d(r, s)|2 for a C2 distance met-

ric d (Dunford and Schwartz [1963]). This upper bound on ε is a measure of

dissimilarity between regions X1 and X2 in terms of the geodesic distances com-

puted between points within the regions. Since the geodesic distances capture the

local geometry over the surface, this upper bound, therefore, captures the geomet-

ric dissimilarity between regions X1 and X2 as well. The parameter ε, aggregated

over the entire mesh, indicates the variance of geodesic error computed over the

entire shape manifold X. Consequently, ε is a measure of the degree of isome-
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try deformation of X vis-a-vis the baseline shape. We report the bounds on ε

computed for different meshes in the Experimental Results section (Section 3.6).

Since the eigenvectors are ordered (in descending order of their eigenvalues) and

lower-order eigenvectors (with larger eigenvalues) are known to effectively capture

global shape features, we restrict ourselves to the lower-order eigenvectors such

that k0 ≤ 20 for characterizing self-symmetry. Furthermore, the above characteri-

zation can also be used to jointly analyze the region-wise correspondence between

two isometric shapes (Section 3.5.2).

3.5.2 Correspondence determination between isometric shapes

Determining the compatibility between the eigenbases of isometric shape spectra

plays a critical role in applications that entail analysis of multiple 3D shapes;

in particular, correspondence determination between 3D shapes. In related work,

Ovsjanikov et al. [2012] represent the correspondence between two isometric shapes

by a parametric map between functional spaces corresponding to the shapes. How-

ever, functional map-based methods typically rely on a set of point-wise correspon-

dence maps between shapes provided a priori for optimization of the correspon-

dence criterion (Ovsjanikov et al. [2012]; Nguyen et al. [2011]). In contrast, the

proposed approach does not assume knowledge of any prior correspondence map-

ping between the shapes under consideration.

For correspondence determination between two isometric shapes X and Y we

exploit the fact that the eigen decomposition of symmetric shape operators Dg(X)

and Dg(Y ) leads to approximately commutative eigenspectra ΦX and ΦY respec-
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tively. The characterization “approximately commutative” is on account of the

triangulated discretization of the surface meshes describing the shapes and follows

the formal definition given in Section 3.3.4.

We couple ΦX and ΦY by the commutative terms ΦT
X∆Y ΦY and ΦT

Y ∆XΦX to

solve the following optimization problem:

Φ̄X , Φ̄Y = argmin
φx,φy

{
|φTx∆Y φy|F + |φTy ∆Xφx|F

}
(3.4)

where φx ⊂ ΦX , φy ⊂ ΦY ; ∆X ,∆Y are diagonal matrices of eigenvalues (eqn. (3.2))

corresponding to shapes X and Y , respectively and | · |F denotes the Frobenius

norm. The optimization in eqn. (3.4) considers all pairs of subsets of eigenvectors

{1, . . . , k0} from the eigenspectra of shapes X and Y . It should be noted that

eqn. (3.4) does not require that a priori correspondence maps be specified. The

optimized maps Φ̄X and Φ̄Y over shapes X and Y encode the corresponding re-

gions between them where corresponding regions are denoted by the same color

(generated using a standard colormap library).

From the optimized maps Φ̄X and Φ̄Y , the relative correspondence error be-

tween shapes X and Y is given by metric CX,Y =
∑k0

k=1 |Φ̄k
X − Φ̄k

Y |2. To compute

CX,Y we consider the lower-order eigenvectors by setting k0 ≤ 20. It is to be noted

that CX,Y essentially represents the geometric difference due to isometric trans-

formations between corresponding regions of shapes X and Y as captured by the

spectrum of the shape representations. Thus, CX,Y is a measure of the degree of

isometric deformation between shapes X and Y .
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3.5.3 Compatibility of the commutative spectrum for deformation

transfer

The proposed global shape descriptor is designed to encode the local surface ge-

ometry that can be used to establish correspondence between isometric deforma-

tions of a shape following commutative optimization as explained in Section 3.5.2.

Based on this property of the descriptor, we hypothesize that the commutative

spectra can be successfully utilized to generate all continuous deformations of a

shape X from initial correspondence between two isometric deformations of X.

The experimental setup for testing the hypothesis is explained in Fig. 3.4. The

experiment first computes the commutative eigenspectra Φ̄1, Φ̄2 of two baseline

isometric deformations S1 and S2 of a shape category following the optimization

in eqn. (3.4). The optimized eigenspectra are then mapped on a set S, consisting

of other isometric deformations S3, S4, ... etc. of the baseline shape.

We propose the following metric that evaluates the correspondence established

by the commutative eigenspectra Φ̄1, Φ̄2 between all shape pairs {Si, Sj} from set

S:

D(S) =
1

|S|
∑

Si,Sj∈S
i 6=j

CSi,Sj
(3.5)

where |S| is the size of the set S and CSi,Sj
is the correspondence error between

shapes Si and Sj as described in Section 3.5.2. This quantitative characterization
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D(S) (eqn. (3.5)) is suggestive of whether the commutative shape descriptor spec-

trum of the baseline shapes can address correspondence between baseline shapes

and other isometric deformations of the shape category. This characterization can

be useful to effectively address the problem of deformation transfer (Sumner and

Popović [2004]; Lévy [2006]; Sumner et al. [2005]).

3.6 Experimental Results

For our experiments we have chosen the TOSCA dataset consisting of eleven non-

rigid shape categories, i.e., Cat, Dog, Wolf, two Human Males, Victoria, Gorilla,

Horse, Centaur, Lioness and Seahorse (Ovsjanikov et al. [2009]). Within each

shape category, the individual shapes represent different transformations of the

baseline shape such as isometry, isometry coupled with topology change and dif-

ferent mesh triangulations, among others, of the baseline shape. In this work,

we consider shapes that differ via an isometry transformation. Some examples of

isometry transformations of shapes are shown in Fig. 3.5. Experimental results of

each of the applications are formally described in Sections 3.6.1, 3.6.2 and 3.6.3

using visual validation of the results followed by the corresponding numerical eval-

uations. We have experimented with coarse meshes that are reduced by more

than 87% of their original size or resolution. The results of the proposed shape

representation are compared with those from relevant state-of-the-art shape repre-

sentation schemes. The compatibility of the commutative eigenspectra to address

deformation transfer is visually validated in Section 3.6.3.
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3.6.1 3D self symmetry detection

Fig. 3.6 presents the self-symmetry maps obtained for different shape categories

using eqn. (3.3). The maps in Fig. 3.6 correspond to the second eigenvector Φ2
X

obtained from the spectral decomposition of the global operator Dg(X) for each

shape. Table 3.2 presents the self-symmetry characterization measure, denoted by

the upper bound ε in eqn. (3.3), for each shape category. This characterization

measure represents the deformation between symmetric regions within a shape that

the characterization criteria would be able to address as explained in Section 3.5.1.

Table 3.2: Self-symmetry characterization measure for different shape categories
in the TOSCA dataset. The average degree of isometry transformation within the
category Seahorse is observed to be at least 19% higher than the other categories.

Category ε Category ε

Lioness 0.0506 Dog 0.0486

Wolf 0.0485 Michael 0.0486

Seahorse 0.0603 Centaur 0.0485

3.6.2 3D correspondence determination

Since the lower-order eigenvectors represent global shape geometry more accu-

rately, we consider the first 20 eigenvectors to compute the global region-based

correspondence between the isometric shapes. Fig. 3.7 shows the results of corre-

spondence determination between the isometric Human Male shapes obtained via

the optimization criterion described in eqn. (3.4). Except for a small region at

lower left leg, correspondence maps between the shapes are shown to be consistent
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across eigenvectors of different order. It is to be noted that the eigenmaps for a

single shape across different order of eigenvectors are very similar to each other as

well. In Fig. 3.7, eigenvectors up to order 9 are shown to demonstrate this con-

sistency both within a shape and between shapes. We also present the result of

the commutative correspondence optimization over point cloud data as presented

in Fig. 3.8. This provides experimental validation of the fact that the proposed

descriptor spectrum effectively captures a global invariance within a shape that is

robust to isometric transformations.

Table 3.3: Comparison of average relative correspondence error CX,Y between
framework proposed by Das and Bhandarkar [2017] and the proposed method
Das and Bhandarkar [2018] for correspondence determination between isometric
shapes across different shape categories.

Category Average CX,Y for framework by
Das and Bhandarkar [2017]

Average CX,Y for

present approach by Das and
Bhandarkar [2018]

Victoria 0.069 0.045

Dog 0.0624 0.0474

Cat 0.06 0.0522

Michael 0.057 0.0363

Horse 0.0559 0.0179

Centaur 0.052 0.0261

The relative correspondence error for these maps can be characterized by the

measure CX,Y defined in Section 3.5.2. Table 3.3 lists this measure for isometric

shapes from different shape categories. Lower CX,Y values denote a higher degree

of correspondence accuracy achieved via the optimization described in eqn. (3.4).

We compare our method with recent work Das and Bhandarkar [2017] where the
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shape representation is based upon geodesics between mesh vertices described

using a Cartesian coordinate system. The proposed method shows significant

improvement since the differential representation of the shape vertices capture

the local geometry and topology variations more effectively. We emphasize here,

that the correspondence accuracy is achieved without requiring any prior mapping

between the shapes.

3.6.3 Deformation transfer compatibility characterization

Following the experimental setup described in Fig. 3.4 we tested the compatibility

of commutative eigenspectra to address deformation transfer on various shape cat-

egories. One such experiment on the Human model is described in Fig. 3.9. The

experiment first computes the commutative eigenspectra following the optimiza-

tion in eqn. (3.4) on baseline shapes S1 and S2 as shown in Fig. 3.9. Subsequently,

the optimized eigenspectra are mapped over different isometric deformations of

shapes S1 and S2. The visual similarity of the maps suggest that the optimized

eigenspectra can be effectively used to generate smooth deformations of baseline

shapes and thus can be effectively employed for deformation transfer for the shape

category (Lévy [2006]).

The quantitative characterization of this compatibility can be computed using

eqn. (3.5). We observed that this metric for different shape categories followed

closely the characterization metric depicted in Table 3.3 and was hence not tabu-

lated in this section to avoid redundancy. Table 3.4 compares the performance of

the proposed representation scheme with the performance of other state-of-the-art
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representation schemes (Das and Bhandarkar [2017]; Kim et al. [2011]; Sahillioglu

and Yemez [2011]). Methods proposed by Kim et al. [2011]; Sahillioglu and Yemez

[2011] were further combined with the functional map technique by Ovsjanikov

et al. [2012] in order to improve their correspondence accuracy via functional

map-based local refinement. The results of correspondence for these combined

approaches are also presented in Table 3.4. The numerical values presented in

Table 3.4 denote the highest percentage correspondence accuracy achieved by the

various representation schemes along with the corresponding average geodesic er-

ror. The performance of the proposed representation scheme is observed to com-

pare very well with the performance of the other state-of-the-art representation

schemes. These results underscore the central hypothesis underlying the proposed

shape representation, namely that competitive performance in self-symmetry de-

tection and characterization, and correspondence map determination between iso-

metric 3D shapes can be achieved by the proposed shape representation without

requiring prior knowledge of correspondence mapping between the shapes in con-

trast to other state-of-the-art correspondence determination techniques (Kim et al.

[2011]; Sahillioglu and Yemez [2011]).

3.7 Conclusions and Future Work

In this chapter we proposed a global shape representation scheme using quasi-

geodesics computed over the entire discrete shape manifold where each vertex of the

manifold is represented by its neighborhood-based surface differential coordinates.
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Table 3.4: Comparison between the proposed scheme and other state-of-the-art
schemes by Das and Bhandarkar [2017], Kim et al. [2011] and Sahillioglu and
Yemez [2011]. Correspondence results from methods proposed by Kim et al.
[2011], Sahillioglu and Yemez [2011] combined with functional maps(Ovsjanikov
et al. [2012]) are also compared.

Methods Geodesic Error % Correspondence

Kim et al. [2011] 0.11 ∼ 95

Ovsjanikov et al. [2012] and
Kim et al. [2011]

0.06 ∼ 95

Sahillioglu and Yemez [2011] 0.25 ∼ 90

Ovsjanikov et al. [2012]
and Sahillioglu and Yemez
[2011]

0.2 ∼ 90

Das and Bhandarkar [2017] 0.15 ∼ 94

Proposed Scheme 0.27 ∼ 94.55

The spectral decomposition of this representation is used to identify self-symmetric

regions of the shape. By exploiting the commutative property of the eigenbases of

the proposed representation, we successfully computed region-wise correspondence

between isometric shapes and compared the results to those from state-of-the-

art correspondence models. Furthermore, we investigated the effectiveness of the

commutative eigenspectra to address smooth deformation transfer between 3D

shapes. We also proposed formal metrics for characterization of self-symmetry

identification and correspondence determination.

A key contribution of this work is the fact that no prior mappings between

shapes was exploited for correspondence and self-symmetry determination. As

an extension of the current scheme, we intend to apply the shape representation

67



model, combined with functional maps (Ovsjanikov et al. [2012]) to address appli-

cations such as deformation transfer between isometric shapes in absence of any

prior knowledge, and for correspondence determination between near-isometric

shapes (Kovnatsky et al. [2013]).
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Figure 3.4: Characterization of compatibility of a commutative eigenspectrum to
address continuous deformation of baseline shapes.
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Figure 3.5: Examples of isometry transformation for the shape categories Human
Male and Centaur from the TOSCA dataset.

Figure 3.6: Self-symmetry detection for five different shape categories using the
spectrum of the global representation Dg(X) for the shape X. Each map corre-
sponds to the second eigenvector Φ2

X of the shape operator spectrum.
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Figure 3.7: Pairwise consistency between corresponding eigenmaps on the isomet-
ric deformations of the Human Male shapes. For correspondence estimation, the
optimization criterion described in eqn. (3.4) is used. Lower-order eigenvectors are
considered for correspondence estimation since they effectively capture the global
shape geometry. Maps across different order of eigen vectors on the same shape
also demonstrate high degree of consistency.
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Figure 3.8: Pairwise correspondence for point cloud data representing isometric
transformation pairs (a), (b) and (c) for human shapes

Figure 3.9: Experimental setup to characterize the effectiveness of commutative
eigenspectrum for generating smooth deformations of a baseline shape. The results
for Human models are shown.
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Chapter 4

Comparison Between Shape Descriptor

Performance, Analysis and Applications

Somenath Das1, Dr. Suchendra M. Bhandarkar

1First Author. To be submitted to ACM Transactions of Graphics (TOG)
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4.1 Abstract

In this chapter, we present an experimental analysis to justify the construction of

the commutative optimization terms in eqn. (2.5) and eqn. (3.4) that have been

successfully employed to establish correspondence between isometric shape pairs.

Furthermore, we present a qualitative and quantitative performance comparison

between shape representations described in Chapter 2 and Chapter 3 under dif-

ferent noise condition imposed upon the shape data. Some of the noise conditions

considered for the comparison are Gaussian Noise, Poisson noise, shot noise, holes

and micro-holes. A comparison between feature descriptors resulting from the

proposed shape representations and the other well known feature descriptors is

also presented. It was shown that the shape representation based feature descrip-

tor performs comparably with the state-of-the-art descriptors. We also apply the

shape representation in Chapter 3 to address deformation transfer between shape

and conclude the chapter with a qualitative result of the deformation transfer

application.

4.2 Symbols Used

The shape representations presented in Chapter 2 and Chapter 3 are funda-

mentally different despite the similarity of being represented by pairwise geodesics

between all pairs of points on the surface. This fundamental difference is due to

the fact that in Chapter 2 the shape representation represented the mesh consid-

ered vertices by their Cartesian locations. However, for the shape representation
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Table 4.1: Symbols to represent shape operators in Chapters 2 and 3

Geodesic distance based surface opera-
tor in Chapter 2

Sg

Geodesic based surface representation
in Chapter 3 with vertices transformed
to surface differential

Sδg

in Chapter 3, the vertices are transformed into their surface differential coordi-

nates as described in Fig. 3.2 (a). For the sake of comparison we will adopt two

different symbols to represent these shape representation as defined in Table 4.1.

The reminder of the chapter is described as follows. In Section 4.3 some

experimental validation using simple graphs is presented to justify the construc-

tion behind the commutative optimization terms eqn. (2.5) and eqn. (3.4). We

extend these experiments in Section 4.4 to present the capability of the shape

representations to capture graph topological features such as spectral diameter

and algebraic connectivity. The performance of the representations Sg and Sδg un-

der various noise conditions are compared in Section 4.5. Based on the geodesic

fields created by spectrum of Sg and Sδg we present a point-wise shape feature in

Section 4.6 and compare the performance of the shape feature with other relevant

shape features using different performance metric. We conclude this chapter with

relevant result for Sδg applied for shape deformation transfer.
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4.3 Effect of Isometric Rigid Transformation and Vertex Or-

dering on Simple Graph Spectrum

In this section we explore the relations between the spectra of two isomorphic

graphs. These graphs are represented as square distance matrices. The distance

metric chosen is the L2 norm between vertices of the graph. We explore the re-

lations between the eigenspectra under two different experimental settings. First,

the order of the vertices for these isomorphic graphs are changed. In the second

experiment the isomorphic graphs are allowed to undergo affine transformations

between them, resulting in different spectra. Subsequently, we study the relations

between eigenspectra of isomorphic shapes resulting from these different settings.

The result of the experiment shows that a subset of eigenvectors for both shapes

shows orthogonality between them. From this observation we propose an opti-

mization criteria to find an optimal set of eigenvectors that can be utilized for

correspondence between shapes.

4.3.1 Eigenspectrum Orthogonality under Vertex Ordering

Computational models in computer graphics represent 3D shapes using an ordered

list of vertices along with their 3D coordinates that compose the shapes. Based on

the ordering of the vertices different different shape representations are computed.

Although the appearance of the shapes remains same irrespective of the order

of the vertices, the computable shape representations depend on the choices of

vertex ordering. For instance let us consider a shape representation where a shape
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with n vertices is represented by an n×n square matrix D where the element Dij

represents the L2 distance between vertices with labels xi and xj within the shape.

To illustrate, let us consider a simple square with the vertex labels x1, x2, x3 and

x4 such that x1 = (1, 1), x2 = (2, 1), x3 = (2, 2), x4 = (1, 2) as shown in Fig. 4.1(a).

The corresponding shape representation is computed as shown by a 4× 4 matrix

Dl in eqn. (4.1). If the labels of the vertices are changed as shown in Fig. 4.1(b)

then the same shape would be represented by a different 4×4 matrix Dr as shown

in eqn. (4.1).

Figure 4.1: Two simple isometric graphs with varying vertex order

Both the matrices shown in eqn. (4.1) are symmetric matrices. Therefore,

any pair of eigenvectors obtained from the eigen decomposition of these matrices

would be orthogonal. This orthogonality property can be asserted between some

eigenvectors of Dl and Dr as well i.e. there should exist one eigenvector vli of Dl

and another eigenvector vrj of Dr such that 〈vli · vrj 〉 = 0. However, this property

may not hold between all pairs of eigenvectors of Dl and Dr . The objective of

the experiment in the section is to report the pairs of eigenvectors from Dl and

Dr those are orthogonal to each other.
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Dl =



0 1
√

2 1

1 0 1
√

2
√

2 1 0 1

1
√

2 1 0


; Dr =



0
√

2 1 1
√

2 0 1 1

1 1 0
√

2

1 1
√

2 0


(4.1)

The eigenspectra of Dl and Dr are shown by the 4 × 4 eigenvector arrays E l

and E l in eqn. 4.2 where each column vector of these matrices represents an

eigenvector.

E l =



0.5 0.6996 0.1026 −0.5

−0.5 −0.1026 0.6996 −0.5

0.5 −0.6996 −0.1026 −0.5

−0.5 0.1026 −0.6996 −0.5


; Er =



−0.5 0.7051 −0.0528 0.5

−0.5 −0.7051 0.0528 0.5

0.5 −0.0528 −0.7051 0.5

0.5 0.0528 0.7051 0.5


(4.2)

We report the result of orthogonality tests between the eigenvectors in eqn.

(4.3) where vli and vri are column vectors of E l and Er respectively.
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〈vl1 · vr1〉 ≈ 0

〈vl1 · vr2〉 ≈ 0

〈vl2 · vr4〉 ≈ 0

〈vl1 · vr2〉 = 0.6523

〈vl1 · vr3〉 = −0.7579
...

(4.3)

From this result we can conclude that for a pair of isometric graphs (shapes),

that vary in vertex order, there exist sets of eigenvectors within the spectrum of

each shape such that elements of these sets are orthogonal to each other. These

eigenvectors are essential for establishing correspondence between the isometric

shapes.

4.3.2 Eigenspectrum Orthogonality under Isometric Transforma-

tion

For the second experiment we illustrate the setting in Fig. 4.2 where Fig. 4.2(b)

represents an isometric rigid transformation (anticlockwise rotation of π
4
) of the

shape in Fig. 4.2(a). The vertices of the square in Fig. 4.2(a) have the same

coordinates as of the square in Fig. 4.1(a). However, the transformed shape in

Fig. 4.2(b) has coordinates x1 = (1, 1), x2 = (1 + 1√
2
, 1− 1√

2
), x3 = (1 +

√
2, 1), x4 =

(1 + 1√
2
, 1 + 1√

2
).

The shape representations for the shapes in Fig. 4.2 following the definitions
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Figure 4.2: Two simple isometric graphs with simple rigid transformations

given in Section 4.3.1, are further decomposed into eigenspectrum described by E l

and Er in eqn. (4.4).

E l =



0.5 0.7061 0.0382 −0.5

−0.5 0.0382 −0.7061 −0.5

0.5 −0.7061 −0.0382 −0.5

−0.5 −0.0382 0.7061 −0.5


; Er =



0.5 0.0805 0.7025 −0.5

−0.5 0.7025 −0.0805 −0.5

0.5 −0.0805 −0.7025 −0.5

−0.5 −0.7025 0.0805 −0.5


(4.4)

Subsequently, we report the existence of eigenvectors within E l and Er that

are orthogonal to each other in eqn. (4.5).
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...

〈vl1 · vr1〉 ≈ 0

〈vl1 · vr2〉 ≈ 0

〈vl2 · vr4〉 ≈ 0

〈vl1 · vr2〉 = 0.6523

〈vl1 · vr3〉 = −0.7579

...

(4.5)

4.3.3 Common Bases for 3D shapes

The results described in Sections 4.3.1 and 4.3.2 suggest the existence of common

bases for pairs of simple shapes those undergo isometric deformation. The results,

however, are shown for simple shapes and rigid transformations.

We can, however, extend the results for more complicated shapes under iso-

metric deformation as shown in Fig. 4.3 where two deformable poses of human

model are shown. These shapes are also isometric to each other. However, the

isometric deformation is non-rigid in nature. One strategy to handle the non-rigid

isometric deformation is to adopt an appropriate distance metric, such as geodesic

distance, to compute the distance between pairs of vertices on the shape.

Let us assume the shape representations as defined in Section 4.3.1 are com-

puted using the geodesic distance measure between n vertices on the shapes and

are represented by n × n matrices DX , DY for shape X he subsequent eigen de-
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Figure 4.3: Human shape under non-rigid isometric transformations

composition of DX and DY are ΦX and ΦY , respectively.

Therefore, we can expect eigenvectors φX
i ∈ ΦX and φY

j ∈ ΦY to exist for

shapes X and Y such that 〈φX
i · φY

j 〉 ≈ 0.

Φ̄X , Φ̄Y = argmin
φx,φy

{
|φXT

i ∆Y φ
Y
j |F + |φY T

i ∆Xφ
X
j |F
}

(4.6)

Following this observation we construct an optimization term in eqn. (4.6)

to optimally search for two sets Φ̄X ⊂ ΦX and Φ̄Y ⊂ ΦY such that any pair

of eigenvectors φX
i (∈ Φ̄X ) and φY

i (∈ Φ̄Y ) would be orthogonal to each other.

Matrices ∆X and ∆Y in eqn. (4.6) represents the diagonal eigenvalue matrices

for shapes X and Y respectively. The optimization term of eqn. (4.6) use the

Frobenius norm |A|F for matrix A. We emphasize here that existence of such

pairs within the spectrum of isometric shape pairs has already been demonstrated
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in Sections 4.3.1 and 4.3.2.

4.4 Topological Invariance between Isometric Graphs with

Relaxed Vertex Ordering

We inspect in this section the capability of the shape representation Sδg to capture

graph topological features. For shapes available in the popular shape databases

each vertex and faces of one triangulated shape from are represented with unique

index. Different shape application pipelines use these indices for the application

specific optimization purpose. However, it is desirable that if there exist any

topologically invariant feature that can be computationally found it should not

be dependent upon the database specific representation such as vertex index, face

index etc. We, therefore, specifically apply the spectrum of Sg and Sδg to explore

whether the representation can capture topological features such as spectral radius

and algebraic connectivity between graphs representing isometric deformation of

shapes.

We first present the proof of the concept using the following experiment with

simple graphs followed by the result of the same experiment over the shape cate-

gories available in TOSCA dataset Ovsjanikov et al. [2009].

For the simple experiment we choose two isometrically transformed unit squares

with different order of vertices as presented in Fig. 4.4. Due to the relaxation in the

order of the vertices there is no particular correspondence between the vertices with

the same labels between graphs Fig. 4.4(a) and 4.4(b). Now we represent these
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graphs by the pairwise eucliadean distance representation individually following

the construction of the shape representation in Chapters 2 and 3 so that the

individual graphs are represented by the matrices B1 and B2 in eq. 4.7. It is to

be noted that for these simple graphs the geodesic distances between non-adjacent

vertices is simply the length of shortest sequence of edges connecting them.

Figure 4.4: Simple isometric graph pairs with topological redistribution of vertices

B1 =



0 1 1 2

1 0
√

2 1

1
√

2 0 1

2 1 1 0


; B2 =



0 1 2 1

1 0 1
√

2

2 1 0 1

1
√

2 1 0


(4.7)

We further decompose the two representations B1 and B2 using eigenspec-

trum to compare the topological features such as spectral radius and algebraic

connectivity which are the largest and second largest absolute values of the spec-

trum respectively. These topological features from the spectrum of B1 and B2 are

represented in Table 4.2. The equal topological features indicates that the under-
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lying shape representation can capture these topological graph invariant features

through spectral decomposition.

Table 4.2: Topological features from the simple graph spectra of B1 and B2

Spectral Radius Algebraic Connectivity

B1 B2 B1 B2

3.7824 2 3.7824 2

Table 4.3: Topological features for different shape categories from TOSCA dataset.
Mean and variance measures are also presented since the meshes considered are
discrete and coarse in terms of number of vertices. Parameter values are up to a
scale consistent for one shape category.

Shape Categories Spectral Radius Algebraic Connectivity
Value µ σ Value µ σ

Human
Model 1 3.54

3.584 0.275
1.1696

1.1608 0.547Model 2 3.6419 1.1785
Model 3 3.5695 1.1343

Dog
Model 1 3.1502

3.203 0.871
1.0581

1.19 0.232Model 2 3.3112 1.3543
Model 3 3.1487 1.1465

Horse
Model 1 6.5158

6.5409 0.522
2.3605

2.4056 0.84Model 2 6.4846 2.3452
Model 3 6.6224 2.5111

Lioness
Model 1 4.2859

4.232 0.064
1.7332

1.651 0.836Model 2 4.2699 1.667
Model 3 4.1393 1.5525

Finally, in this section we represent in Table 4.3 the computed spectral radius

and algebraic connectivity features for some of the shape categories from TOSCA

dataset. The closeness of both the spectral radius and algebraic connectivity fea-
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ture values within one category is reflected by the small variances around the mean

values of the feature across different categories. The relatively high variance in the

algebraic connectivity parameter could be due to the fact that for the experiment

we have considered meshes reduced to more than 87% in terms of number of ver-

tices than its original size. The overall results presented in Table 4.3 emphasize

the ability of the proposed geodesic supported shape description scheme to capture

graph topological features those remain close under isometric deformation.

4.5 Visual and Quantitative Comparison for Shape Opera-

tor Noise Performance

In this section we present a detail analysis of the performance of both shape

representations Sg and Sδg presented in Chapters 2 and 3 respectively under

different noise conditions. Table 4.4 presents in brief the settings for each of the

experiment we have considered. The shape correspondence error criterion CX,Y =∑k0
k=1 |Φ̄k

X − Φ̄k
Y |2 between shapes X and Y with k0 low order eigenvectors Φ̄k

X ,

described in Section 3.5.2 is adopted to quantitatively compare the performance

of the operators.

For the noise experiments different scenarios, such as Gaussian noise, Poission

noise, shot noise along with holes and micro-holes are considered. A few samples

of the noisy meshes we have considered for the experiments are shown in Fig. 4.5.

In the following subsections we report the results of each experiment.
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Figure 4.5: Sample noisy meshes used for noise performance evaluation of the
shape representation in Chapters 2 and 3. Mesh corrupted with (a) Gaussian
noise of zero mean (µ = 0) and variance (σ) = 1.6 added to the mesh vertices, (b)
Poisson noise with λ = 5, (c) shot noise added to 20 randomly selected vertices.
Apart from noise, holes and micro holes are also added to the mesh. Two meshes
with (d) five holes and (e) five micro holes are shown.
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Table 4.4: Description of noise experiments are given in terms of noise power
parameter t

Noise Transformation Description of Noise Power in terms of parameter t.
Each transformation repeats for t = 1, 2, 3, 4, 5

Gaussian Noise Noise applied over mesh vertex with mean(µ) and
variance(σ) controlled as µ = 0, σ = 1 + 0.2t

Poisson Noise Noise applied over mesh vertex with Poisson distribution
parameter t

Shot Noise High variance in vertex location applied for arbitrarily
chose 3t vertices.

Holes Holes of at least one ring width are created around ar-
bitrarily chosen t vertices.

Micro holes At least one face wide micro holes are crated at arbi-
trarily chosen t locations.

4.5.1 Gaussian Noise Response

We have considered Gaussian noise 1

(1+0.2t) 2√2π
exp

− x2

2(1+0.2t)2 with mean µ = 0 and

parametric variance σ = 1 + 0.2t for each of the triangulated meshes for the

experiment. Furthermore, the noise power has been altered by varying the pa-

rameter t = 1, 2, 3, 4, 5. For this experiment we have compared the performance

of shape representations Sg and Sδg and represented the result visually in Fig. 4.6

and Fig. 4.7 respectively. The visual comparison reveals an overall consistency in

correspondence determination performance for both the operator under varying

degrees of noise power. We may also observe slight degradation in performance for

Sg in Fig. 4.6(c) where a small portion of the left leg shows less correspondence
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depicted by dissimilar color map.

Figure 4.6: Correspondence between isometric human shapes corrupted with ad-
ditive Gaussian noise for geodesic oriented operator Sg in Chapter 2. The mean
of the noise distribution is 0 while the variance is varied gradually from 1.2, 1.4,
1.6, 1.8 to 2 for shapes (a), (b), (c), (d) and (e) respectively.

The quantitative comparison of correspondence performance is presented in

Table 4.5. It can be observed from Table 4.5 that the performance is comparable

between both the shape representations across different degrees of noise power

level. This observation is repeated for the Poisson and shot noise experiment

as well. Therefore, for both, Poisson noise and shot noise experiments we have

represented only the performance of representation Sδg in Sections 4.5.2 and 4.5.3.

89



Figure 4.7: Correspondence between isometric human shapes corrupted with ad-
ditive Gaussian noise for geodesic and differential coordinate supported shape op-
erator Sδg in Chapter 3. The mean of the noise distribution is 0 while the variance
is varied gradually from 1.2, 1.4, 1.6, 1.8 to 2 for shapes (a), (b), (c), (d) and (e)
respectively.

4.5.2 Poisson Noise Response

To parametrically control the noise level at each vertices of the mesh we have

considered the Poisson distribution P (x) = exp−t t
x

x !
with mean parameter t vary-

ing from t = 1, 2, 3, 4, 5. In this section we present the visual and quantitative
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Table 4.5: Correspondence performance comparison between Sg and Sδg under
Gaussian noise.

Shape Representation Noise level t
t = 1 t = 2 t = 3 t = 4 t = 5

Sg 0.8254 0.8165 0.8129 0.8206 0.8125
Sδg 0.8489 0.8242 0.8414 0.8427 0.8374

performance evaluation for Sδg in Fig. 4.8 and Table 4.6 respectively.

Figure 4.8: Correspondence between isometric human shapes added with Poisson
noise with parameter t = (a) 1, (b) 2, (c) 3, (d) 4 and (e) 5. This response is
only due to the differential operator presented in Chapter 3. The correspondence
shows consistency for (a), (b), (c) and (d) whereas (e) shows a case for t = 1 where
visual correspondence consistency is less than the other cases.
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Table 4.6: Correspondence performance for Sδg under Poisson noise.

Shape Representation Noise level t
t = 1 t = 2 t = 3 t = 4 t = 5

Sg 0.806 0.8317 0.8182 0.8106 0.8224

Table 4.7: Correspondence performance for Sδg under shot noise.

Shape Representation Noise level t
t = 1 t = 2 t = 3 t = 4 t = 5

Sδg 0.8159 0.8156 0.8164 0.8129 0.8265

The performance evaluation criterion is observed consistent across varying de-

gree of noise in Table 4.6. However, we show a correspondence failure case in

Fig. 4.8(e) for mean parameter t = 1 for this particular isometric human pair.

4.5.3 Shot Noise Response

Shot noise for 3D meshes is represented by sudden significant changes in locations

of the mesh surface vertices. In this experiment with shot noise we parametrically

control the maximum change in 3D location of randomly chosen vertices on the

surface mesh with 5t distance units for parameter t = 1, 2, 3, 4, 5. Under the high

variance of location the correspondence performance is mostly consistent across

varying degrees of noise power as shown in Fig. 4.9 except for a small region

around the head in Fig. 4.9(b) and (c).
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Figure 4.9: Correspondence between isometric shapes under shot noise. The cor-
respondence response is for the differential operator presented in Chapter 3. The
maximum amplitude deviation for the randomly selected surface points added with
shot noise are (a) 15, (b) 20, (c) 25 and (d) 5 distance units.

The quantitative performance evaluation criterion in Table 4.7 reflects the con-

sistency shown in Fig. 4.9 as well.
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Table 4.8: Correspondence performance comparison between Sg and Sδg with t
holes created on the surface mesh.

Shape Representation Noise level t
t = 1 t = 2 t = 3 t = 4 t = 5

Sg 0.8199 0.826 0.8258 0.8213 0.824
Sδg 0.8140 0.8123 0.8184 0.8156 0.8226

4.5.4 Noise Response with Holes in the mesh

For this experiment we have considered meshes with varying degrees of surface

area. The variation of the mesh surface area is due to different number of punctured

holes on the surface. In this experiment we refer the number of holes as the

degree of noise. The meshes with holes were created using Meshlab v1.3.2. The

average relative variation in the surface area between original mesh and meshes

with varying number of holes ranges between 1.6415% to 4.72%.

We have observed that for experiments with holes on the surface, the per-

formance of Sδg deteriorates in comparison to representation Sg. In Fig. 4.10 we

represent the performance for Sδg where we can observe that for the surface area of

the meshes with less geometric variation the correspondence is consistent. How-

ever, for the extreme part of the surface such as hands and legs the correspondence

detection performs poorly. In comparison to the correspondence performance of

Sδg in Fig. 4.11 we present the correspondence maps obtained for Sg that is more

consistent in comparison to Fig. 4.10 across varying number of holes on the surface.

The correspondence evaluation criterion for both the shape representation is
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Figure 4.10: Correspondence between isometric human shapes with varying num-
ber of holes on the surface. The correspondence maps are for the differential shape
operator Sδg in Chapter 3. Correspondence maps are for shapes with (a) 1, (b) 2,
(c) 3, (d) 4 and (e) 5 holes. The response are inconsistent across varying number
of holes though maps (c) and (e) shows higher consistency than the rest of the
cases.

presented in Table 4.8.

4.5.5 Noise Response with Micro-Holes in the mesh

Similar to the experimental setup described in Section 4.5.4 we have considered

meshes with micro-holes with relative change in surface area from the original mesh
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Figure 4.11: Correspondence between isometric human shapes with varying num-
ber of holes on the surface. The correspondence maps are for the differential
shape operator Sg in Chapter 2. Correspondence maps are for shapes with (a) 1,
(b) 2, (c) 3, (d) 4 and (e) 5 holes. The correspondence maps show better visual
consistency in comparison to Fig. 4.10

ranging from 0.07% to 1.3954%. The performance of correspondence detection for

both the operator Sg and Sδg are presented in Fig. 4.13 and Fig. 4.12 respectively.

Both the figures show correspondence consistency though for representation Sg

the performance deteriorates marginally. This marginal difference can be verified

visually from Fig. 4.13 where portion of the left hand was not properly detected

by representation Sg whereas in Fig. 4.12 the correspondence consistency is much
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prominent.

Figure 4.12: Correspondence between isometric human shapes with varying num-
bers of micro holes. The number of micro holes are (a) 1, (b) 2, (c) 3, (d) 4 and
(e) 5 respectively. This response is due to differential surface operator in Chapter
3.

Table 4.9 represents these observations quantitatively where the correspon-

dence error is consistent for both the representations whereas for Sδg the corre-

spondence error is marginally less.
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Figure 4.13: Correspondence between isometric human shapes added with with
(a) 1, (b) 2 (c) 3, (d) 4 and (e) 5 micro holes, respectively. This correspondence
response is generated from the spectrum of geodesic supported operator in Chapter
2. Visually the maps are far more consistent in comparison to the maps of Fig. 4.12

4.6 Geodesic Field based surface features and relevant per-

formance comparison

In this section we propose a shape feature point descriptor based on the geodesic

distance field due to surface differential based shape representation Sδg . Geodesic

fields created around one central surface point (highlighted in red) are shown in

Fig. 4.14 for different isometric transformations of human shape. It is to be noted
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Table 4.9: Correspondence performance comparison between Sg and Sδg with t
micro holes created on the surface mesh.

Shape Representation Noise level t
t = 1 t = 2 t = 3 t = 4 t = 5

Sg 0.8179 0.8179 0.8179 0.8179 0.8179
Sδg 0.8104 0.8104 0.8104 0.8104 0.8104

that the shape operator Sδg represents together all such possible geodesic fields

over a surface mesh. As previously mentioned in Section 3.5 we further spectrally

decompose this composite geodesic field presented by Sδg over shape X following

eigen decomposition given in eqn. (4.8).

Sδg(X)ΦX = ∆XΦX (4.8)

Figure 4.14: Geodesic fields for vertex point marked in red is shown for different
isometric transformations (a), (b) and (c) of human model.

Based on the spectral decomposition in eqn. (4.8) we propose the feature
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descriptor for a surface point p on shape X as given in eqn. (4.9). The fea-

ture descriptor represents a biharmonic density estimate as defined proposed in

Mukhopadhyay and Bhandarkar [2017] influenced by biharmonic distance estimate

by Lipman et al. [2010b]. However, in the proposed feature descriptor the spec-

tra used to compute the feature value at surface point p is due to the surface

representation Sδg as mentioned in eqn. (4.8).

Sδg(p) =

k0∑
k=0

|Φk
X |

2

Λk
X

2 (4.9)

where Φk
X is the kth eigen vector from the spectrum of Sδg applied over shape

X and Λk
X is the corresponding kth eigenvector from the spectrum. We have

restricted to lower order k0 = 20 eigenvectors. The lower order vectors tend to

characterize global shapes more accurately. Therefore, this constraint over lower

order vector should give us top feature points well distributed over the shape that

represents collectively the global surface geometry of the shape. We refer to this

shape point feature as Differential Surface based Biharmonic Density Estimate

Signature (DSBDE).

4.6.1 Repeatability Comparison

We have considered TOSCA and SHREC 2011 databases for shape feature compar-

ison with other well known shape features such as HKS ([Ovsjanikov et al., 2010])

and WKS (Aubry et al. [2011]) under different noise and geometry conditions.
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Figure 4.15: Top feature detected by biharmonic density based feature descriptor
described in eqn. (4.9) for different shape category. The top detected points tend
to concentrate around a region with high local variation in Geometry.

For the comparison repeatability measure was considered. Repeatability of fea-

ture point detection is the percentage of detected feature points on the test shape

those lie within a ball of radius of 1% of the surface area around the corresponding

points on the baseline shape of the category.

Some top feature points detected by this feature descriptor is shown in Fig. 4.15.

These top feature points are found concentrated around regions with high variation

in local geometry. We further compare the performance of the proposed shape

representations Sg and Sδg with other state-of-the-art shape feature descriptors such

as Heat kernel signature (Ovsjanikov et al. [2010]), Wave kernel signature (Aubry

et al. [2011]) etc. For performance comparison experiments we have considered

different criterion such as performance evaluation under noise conditions that we
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Table 4.10: Repeatability Comparison for detected shape features with HKS (Ovs-
janikov et al. [2010]) and WKS (Aubry et al. [2011])

Transform Type Shape Features Noise Power

Isometric Geometry
HKS 100 100 100 100 100
WKS 100 100 100 100 100

DSBDE 100 100 100 100 100

Gaussian Noise
HKS 100 95.19 93.16 89.37 85.77
WKS 100 98.31 92.64 87.57 84.90

DSBDE 100 99.69 98.74 98.29 95.25

Poisson Noise
HKS - - - - -
WKS - - - - -

DSBDE 100 99.46 99.04 98.52 97.37

Shot Noise
HKS 100 95.30 90.03 82.10 74.38
WKS 100 97.64 94.55 91.32 87.30

DSBDE 100 99.98 99.95 98.26 96.98

Holes Noise
HKS 80.54 79 75.25 72.1 69.99
WKS 88.50 82.65 78.62 72.82 71.40

DSBDE 92.977 91.56 90.36 89.81 86.49

Micro-holes Noise
HKS 100 100 99.45 97.58 97.12
WKS 100 100 99.32 96.91 96.03

DSBDE 100 100 100 100 100
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presented in Section 4.5.

4.7 Application of Shape Representation for Deformation

Transfer between Isometric Shapes

4.7.1 Introduction and Problem Statement

In computer graphics and animation industry deformation transfer refers to an

application of fundamental importance that is primarily applied over shape meshes

to produce their varying deformations. Formally, given two shape meshes S and Se

of some given character the deformation transfer model computes and transfers the

deformation variation between them to a target mesh T to generate a deformation

Te that qualitatively resembles to that of mesh Se. A few examples of sample

deformation transfers is shown in Fig. 4.18 where different expressions of source

mesh is transferred to the target mesh to produce the matching expressions for the

target mesh. One of the most influential paper in this field by Sumner et al. [2005]

addresses the problem using an affine transformation minimization framework.

This approach attempts to minimize variance of the affine transformation of each

face on the deformed mesh in comparison to it’s neighborhood. This principle is

shown visually in Fig. 4.16(a) where the affine transformation Ti and displacement

di applied over a triangular face i takes the vertex v of the face to a new deformed

vertex position ṽ = Tiv+di. By minimizing the position variation of ṽ with respect

to its neighbors the optimization approach minimize the surface reconstruction
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error of the deformed mesh. For efficiency improvement and ease of computation

Sumner et al. [2005] adds auxiliary vertices x and x̃ to faces i and ĩ respectively

to guide the transformation. This modification helps redefine the optimization

process to be applied over surface vertices rather than on faces.

Figure 4.16: Deformation schemes by Sumner et al. [2005] that encodes affine
deformation between face i and ĩ. To facilitate optimization each triangular face
was added with an additional vertex x and x̃ as shown in figure (a). The shape
representation due to Sδg in Chapter 3 due to it’s construction naturally encodes
the surface differential at each vertex as shown in (b) and no further addition of
vertex per face (as opposed to Sumner et al. [2005]) is required.

One implicit advantage the proposed deformation transfer method has over

framework proposed by Sumner et al. [2005] is that the surface is defined by the

surface differential as shown in Fig. 4.16 (b). Due to this representation vertex

coordinates aligns with the normal direction at the vertex and therefore the sur-

face representation naturally lends itself to the deformation transfer optimization

without the requirement of an additional mechanism of auxiliary vertices added

to the faces as shown in Fig. 4.16(a).
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4.7.2 Model

In this section we explain the deformation transfer pipeline using the model de-

scribed in Fig. 4.17. The framework first (A) computes the deformation between

source mesh reference and source mesh final deformation using the optimization

criteria given in eqn. (4.10).

Ṽ = argmin
ṽs1 ,ṽs2 ,...,ṽsN

N∑
i=1

||Ssi − S̄si ||F (4.10)

where sis are sample vertices chosen over source mesh S and source expression

S̄. The deformation is represented by Ṽ that essentially represents the deformation

in terms of affine transformations present at sample vertices ṽs1 , ṽs2 , ..., ṽsN .

Finally, through the given N correspondences (shown by B in Fig. 4.17) be-

tween source shape S and target shape T we transfer the deformation represented

by Ṽ to the target shape following a surface registration process (C) by minimizing

optimization term in eqn. (4.11). The final deformed target shape is represented

by block D in Fig. 4.17.

minṽt1 ,ṽt2 ,...,ṽtN

N∑
i=1

||S̄si − Tti ||F (4.11)
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Figure 4.17: A Deformation Transfer Pipeline

4.7.3 Qualitative Results

The model is applied over different facial expressions provided in dataset pop

[2004]. The average vertices and faces on the face meshes are 29299 and 58836

respectively.

The qualitative results for some facial expressions such as surprise, laugh, cry

and sad faces are shown in Fig. 4.18. The results verify the effectiveness of the

shape representation Sδg for deformation transfer.
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Figure 4.18: Final deformation transfer between (a) source reference to (b) target
reference across (c) surprise (d) laugh (e) cry and (f) sad faces.
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5.1 Abstract

Non-Rigid Structure from Motion (NRSfM) is one open ended problem for re-

searchers in the computer vision community that seeks to perceive a movement

of a non-rigid moving object from a video sequence like humans do. Vision com-

munity refers to wide ranges of movement as non-rigid. They may be movement

of a human being, wild horse, running dog etc. or simply folding of a paper etc.

Researchers from different schools of thought tries to implement their perception

of the non-rigid motion capture problem through a set of hypothesis. In this

chapter, we propose a novel optimization term for NRSfM that imposes motion

constraint over non-rigid deformation across frames. The proposed optimization

jointly solves for 3D shape and camera pose sub-space using Singular Value De-

composition (SVD) based factorization method, combined with motion constraint

model.

5.2 Introduction

A wide range of applications in computer vision critically depends on approxi-

mate estimation of 3D shape from 2D images using motion information. This

problem is more commonly known as Structure from Motion (SfM) or monocu-

lar simultaneous localization and mapping (SLAM). SfM typically aims at jointly

optimizing 3D locations and camera motion trajectories from a set of observation

points over temporally related image stream. Many stable schemes such as fac-

torization applied over monocular image streams (Tomasi and Kanade [1992]) use
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camera orthographic constrains for an optimized solutions. Modern approaches

to SfM aims at 3D shape recovery from multi-view images by minimizing camera

re-projection error for multiple images, a technique commonly known as bundle

adjustment. Some prominent works in this direction are by Wilson and Snavely

[2014]; Crandall et al. [2011]. However, the scope of applicability of SfM lies mainly

within the domain of rigid shapes going through affine or linear transformations

between images and therefore, cannot address non-rigid shape deformations that

is more commonplace in human experience.

Non-Rigid structure from motion (NRSfM) refers to the problem of extracting

3D non-rigid deformation from the 2D image sequences. Well studied standard

solutions for structure from motion (SfM) are not suitable for NRSfM setting since

the temporally varying target points across the image sequences are allowed de-

form in pose and motion. This flexibility in deformation makes NRSfM an ill-posed

problem due to many existing ambiguities. These ambiguities can occur due to

linear transformations such as rotation or reflection over non-rigid deformation

may result in non-unique correspondence between frames. Similarly, non-rigid de-

formation may not give a fixed shape basis that can be applied for all deformations

across frames to extrapolate final 3D shape. Due to these natural ambiguities ad-

ditional constraints are necessary to solve the problem within a well-posed problem

setting where constraint set is at least same as large as the unknowns.

Amongst other solutions for NRSfM a large variety implements camera ortho-

graphic projection oriented approaches, otherwise popular in SfM settings, com-

bined with additional constraints. One of the earlier practical solution in NRSfM
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(Torresani et al. [2008]) effectively used orthography based factorization method

due to Tomasi and Kanade [1992] combined with a lower rank basis shape as-

sumption. Likewise many state-of-the-art solutions to NRSfM enforce spatial or

temporal constraints viz. shape prior by Tao et al. [2012]; Tao and Matuszewski

[2013], trajectory priors (Akhter et al. [2011]; Gotardo and Martinez [2011a]) etc.

for optimizing a practical solution for NRSfM.

In this work we combine camera orthographic projection based factorization

combined with temporally related spectral shape priors to impose a motion and

local shape constraint over the 2D shape correspondences across frames. Fac-

torization based approach impose a low-rank shape constraint for each frame to

extrapolate 3D shape across frames following the seminal work in NRSfM by Bre-

gler et al. [2000]. In addition we exploit the possible orthogonality between shape

basis across frames that function as a motion (and shape) constraint over the image

streams. Our motivation behind his framework is the observation that temporally

deforming shape cannot deform arbitrarily. However, in comparison to some re-

lated approaches by Bartoli et al. [2008]; Del Bue [2008]; Akhter et al. [2009a]

the present method can address large deformations due to the flexibility of the

spectral structure imposed upon the final optimization.

The rest of the chapter is arranged as follows. In Section. 5.3 we cite the most

prominent work in this field with a motivation to provide a brief taxonomy of the

literature. Section. 5.4 the present approach is elaborated followed by the result

on standard dataset in Section. 5.5. We conclude this chapter in Section. 5.6 with

the possible extension of this work.
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5.3 Related Work

The state-of-the-art approaches for NRSfM problem typically impose prior con-

straints over the feature point distribution across image frames. These constraints

can be viewed as different types of deformable models adopted for the final 3D re-

construction. The seminal work in this field was by Bregler et al. [2000] where cor-

respondence across the video frames were factorized further into camera pose and

3D shape subspace to aid final reconstruction of 3D shape. This work was an anal-

ogous implementation of the factorization technique for SfM proposed by Tomasi

and Kanade [1992]. Due to the inherent simplicity for implementation and robust-

ness to noise, factorization methods, supported by singular value decomposition

(SVD) (Akhter et al. [2009a]; Yan and Pollefeys [2008]; Bartoli et al. [2008]) have

gained much attention. The underlying assumption exploited by this class of

methods is that temporally related object deformation cannot be arbitrary across

consecutive frames. Specialization of these methods have been proposed to re-

cover shape data for articulated objects such as human model (Tresadern and

Reid [2005]; Paladini et al. [2009]).

To facilitate shape recovery from non-rigid deformation under high spatial

variance factorization based approach has been combined further with statisti-

cal(Torresani et al. [2008]), shape basis (Xiao et al. [2006]), 3D affine (Del Bue

[2008]) priors. However, factorization based low rank shape basis model typi-

cally constraints the spatial variation of shape disregarding the temporal variation

across frames. Solution due to Akhter et al. [2009b] tackled this limitation by

discrete cosine transform (DCT) bases to represent the temporal variation sub-
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space. In a related work Gotardo and Martinez [2011a] adopted a DCT based

subspace model for camera pose to model the temporal variation. This approach

was further extended by representing the shape space with radial basis functions to

address more diverse deformations(Gotardo and Martinez [2011b]). Low frequency

variation for the feature point trajectories across frames was modeled using DCT

basis by Valmadre and Lucey [2012] to formulate a cost function that penalizes

trajectory variation response to high pass filters. More recent advancement in

the prior based approaches for NRSfM is proposed by Simon et al. [2017] where

a Kronecker-Markov based prior constraining the temporal variation of a feature

point was shown to perform very competitively over all the other state-of-the-art

prior based approaches.

An alternative class of solutions for NRSfM problem employ physical mod-

els and associated constraints to achieve practical solution. A common practice

within approaches of this class is to impose a rigidity constraint over the point

distributions between frames. In this context Varol et al. [2009] apply a segmen-

tation to the distribution and assume affine rigidity for each segmented patch.

This limiting assumption is relaxed in Fayad et al. [2010] where a quadratic

function is used to model each segmented patch. An alternative solution to this

approach is due to Lee et al. [2016] where multiple solutions to 3D reconstruction

from each segmented patch is further filtered by a computing a consensus between

different patches. Apart from segmentation the rigidity constraint can also be

imposed by assuming an underlying triangulation for feature point distributions

across frames(Taylor et al. [2010]; Varol et al. [2009]). A geometric consistency
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can be imposed between successive deformation across frames assuming isometric

deformation where a distance metric over the temporally deformed surface across

frames remain constant. Some important work from this class are proposed by

Chhatkuli et al. [2014]; Parashar et al. [2017] that can address the reconstruc-

tion under missing data by exploiting differential geometry supported constraints

for each segmented patch. Convex optimization based approaches proposed by

Chhatkuli et al. [2017]; Vicente and Agapito [2012] imposes inextensibility on the

patches to minimize a global energy term for shape deformation across frames. An

extensive survey of these methods is given in Hoppe Nesgaard Jensen et al. [2018]

along with a newly proposed benchmark for the NRSfM evaluation.

In the present work we explore a novel factorization method based solution

combined with motion constraints imposed upon the deformable object to en-

hance accuracy of the final 3D shape reconstruction. In principle the proposed

method combines statistical and physical model based assumptions to impose

spatio-temporal constraint on the non-rigid deformation across frames. The pro-

posed method impose triangulation over for 2D feature points and represents the

distribution per frame by a pairwise geodesic distance matrix computed from the

2D data. We further decompose the distance based distribution into an equivalent

spectral components. Finally, we combine the standard factorization (Bregler et al.

[2000]) based statistical optimization term with the inter-frame spectral variation

of the distribution shape priors to form our final optimization. Following prin-

ciple of factorization based approach we assume gradual change in deformation.

Furthermore, we do not assume independence of bases across frames unlike re-
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lated methods by Bartoli et al. [2008]; Brandt et al. [2009]. Therefore, due to the

imposed triangular structure over the point distribution the proposed method as-

sumes local rigidity but at the same time the spectral structure allows for flexibility

of the solution to address higher variability in spatial and temporal domain.

5.4 Solution Model

In this section we discuss the most salient components of the proposed NRSfM

optimization framework. One of these components is the factorization supported

subspace decomposition for the observation matrix. Due to the limitation of fac-

torization to address NRSfM solution we further impose motion constraints over

the 2D point distribution across frames by imposing a spectral structure over the

points per frame.

5.4.1 Factorization for Empirical Subspace Solution

Given a video sequence consisting of F frames we construct a matrix [Wt]2×P for

all frames 1 ≤ t ≤ F with the rows representing P 2D points per frame. In this

optimization framework the 2 × 3 camera model Rt is used for all frames along

with matrix [St]3×P that represents the hypothesized 3D locations for all 2D point

samples per frame. Given this setting the observation matrix W is related to

camera and shape spaces as given in eqn. (5.1).
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W2F×P =



W1

W2

...

WF


= U∆V T = U∆

1
2 ∆

1
2V T =


R1

1 R2
1 · · · R3K

1

...

R1
F R2

F · · · R3K
F





S1

S2

...

S3K


= R2F×3KS3K×P

(5.1)

Equation 5.1 summarizes the principle of factorization widely used for the

NRSfM solution. Observation matrix W comprised of 2D coordinates of P points

across F frames of input image sequence is constructed by accumulating matrices

Wts across frames and as a consequence is of dimension 2F ×P . This observation

matrix is further decomposed using standard singular value decomposition (SVD)

into unitary matrices U and V and diagonally dominant matrix ∆. Since U and

V are unitary matrices their column vectors are orthonormal and therefore, span

a solution subspace that factorizes observation matrix W . Conceptually, since 2D

points observed within matrix W are actually the projections of 3D points through

camera onto image plane, the subspaces spanned by U and V can be viewed to

represent the camera and 3D shape spaces respectively. Subsequently, the solution

for the observation can be represented by the column vectors of U and V acting

as bases for these spaces. The combination of basis vectors are determined by

the scales of diagonal matrix ∆. As shown in eqn. (5.1) the combination for

basis vectors are represented by the terms U∆
1
2 and ∆

1
2V T respectively to denote

solution for camera and shape space.
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For the camera model, we assume camera orthographic projection. In their

seminal work on SfM Tomasi and Kanade [1992] showed that under orthography

W has a rank 3. However, since for NRSfM the allowed deformation is non rigid,

the assumption does not hold. As a consequence the standard assumption is to

consider rank 3K instead of 3 that will give a solution space for camera and shape

parameters with dimension 3K. It is to be emphasized here that the number of

basis shapes spanning the shape subspace is K, however, since each point of the

3D shape space have 3 coordinates, the rank of the final solution matrix is 3K.

This low rank shape space assumption follows from one of the earliest work by

Bregler et al. [2000].

With this assumption of solution space of dimension 3K the subspaces R and

S representing camera and shape spaces respectively will have K bases each. The

weighted decomposition of R is shown in eqn. (5.1) using components Ri
f that

represent ith camera matrix solution for frame f . Subsequently, the solution for

the 3D shape S is represented by Sis i.e. the P dimensional basis vectors with

1 ≤ i ≤ K.

5.4.2 Motion constraint Model

Though factorization method mentioned in Section. 5.4.1 can give solution for

NRSfM under very low variability of deformation it is limiting in most practical

scenarios. The ill-posedness of the NRSfM problem where unknown variable space

is larger than the control parameter space, to achieve a practical solution additional

constraints are necessary. In this work we propose a motion constrained model that
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is visually represented in Fig. 5.1. From the input image sequence we construct

a standard Delaunay triangulation defined over the 2D corresponding points per

frame. Based on the triangulation, the constraint model represents the point

distribution at frame t by the pairwise distance computed between all P 2D feature

points per frame. For a frame t this pairwise distance for all points is represented

by the square matrix Dt of dimension P × P .

Figure 5.1: Model for motion constraint imposed over frame wise points distribu-
tion. The triangulation imposed in block B assumes rigidity constraints. However,
the spectral distance maps shown in block C can be efficiently manipulated in the
final optimization to address high spatial distribution variance caused from various
degree of non-rigid deformation.

This distribution Dt for frame t is further decomposed using standard spec-

trum decomposition shown by eqn. (5.2) to obtain spectrum Ψt per frame. It is

interesting to observe that both temporal distance representation Dt and its spec-

tral equivalence Ψt exhibits symmetry as shown in Fig. 5.2 for different frames of

the walking sequence. Therefore, the eigenvectors of Ψt at frame t can be used for

spectral subspace representation for point distribution at frame t.

DtΨt = ∆tΨt (5.2)
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Figure 5.2: Visualization of distance maps computed for (a) image streams from
walking data in (b) temporal and (c) spectral domain.

This observation is further extended to explore existing orthogonality of basis

vectors across frames. The motivation behind this key observation is the hypoth-
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esis that if there exists ith and jth candidate eigenvectors Ψi
t−1 and Ψj

t between

consecutive frames t−1 and t respectively such that the 〈Ψi
t−1 ·Ψ

j
t〉 = 0 or in other

words they exhibits orthogonality between them then such combination of vectors

span the solution subspace for spatio-temporal deformation across frames. This

deformation is represented by the spatial variability of point distributions across

frames. Some examples of such orthogonal candidates are mentioned in Table 5.1

those were obtained for the shark sequence from nrs [2004] dataset.

Table 5.1: Orthogonal eigenvector Candidates for shark sequence. The orthogonal
candidates are from consecutive frames.

Frame t Frame t− 1 Vector index i
from spectrum

Ψt

Vector index j
from spectrum

Ψt−1

〈Ψi
t ·Ψ

j
t−1〉

18 17

1 5 9.5× 10−5

3 4 4.47× 10−5

4 3 −7.2× 10−5

5 1 −8.6× 10−5

19 18

1 3 −0.16× 10−5

2 4 −9.87× 10−5

3 1 1.69× 10−5

4 2 7.86× 10−5

It is to be emphasized that the orthogonality measures in Table 5.1 are not ex-

actly equal to zero due to the inherent noise within the point distributions, and the

sparse point distribution considered for the experiments. Due to sparsity of the 2D

points the error margin due to deformation between successive frames are higher.

However, this setting also provides an opportunity to test the robustness of the

proposed solution under noise as well. Another source of noise in the experiments
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are due to the Delaunay triangulation that tend to add additional affine projected

points to give the final triangulation a shape close to a convex hull. These points

correspond to the yellow rows (and columns) of the spectral distance maps shown

in Fig. 5.2(c). However, we report that the optimization proposed in this work

can handle effect of such noisy artifacts and shows competitive performance for

3D reconstruction in comparison to the state-of-the-art methods.

Finally, we combine these matrices together to form the final cost function in

eqn. (5.3) that optimizes the final 3D locations of the dynamic 2D points across

the video frames. It is to be noted that we have also imposed the orthonormality

constraint for camera model RtR
T
t = I, I2×2 being the identity matrix in the final

optimization term in eqn. (5.3). This orthonormality constraint removes any affine

Euclidean ambiguity and increase the accuracy of the final 3D reconstruction. The

optimization solves the final reconstruction for a camera and shape subspace of

dimension 3K as mentioned in the context of factorization in eqn. (5.1). We

present the final optimization term in eqn. (5.3) as follows.

argmin
Rt,St,Ψ̄t

F∑
t=1

||Wt −RtSt||2 + γ
F∑
t=2

||[Ψ̄t]− [Ψ̄t−1]||2 + ||Ψ̄tΨ̄
T
t−1 − In||

+α
F∑
t=1

||RtR
T
t − I||2

(5.3)
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p∑
i=1

xj∈N(xi)

||Ψf
t (xi, xj)−Ψf

t−1(xi, xj)|| ≤ ε (5.4)

Constants γ, β and α in eqn. (5.3) are hyper-parameters used to regularize

the final optimization. For the optimization the temporal orthogonality between

consecutive frames is computed using the third component of eqn. (5.3) where

Ψ̄t ⊂ Ψt. The term Ψ̄t is computed by incrementally by adding candidate eigen-

vectors over successive iteration for both frames t and t− 1. Parameter n denotes

this incrementally varying size of Ψ̄t and consequently In denotes identity ma-

trix of order n to facilitate the temporal orthogonality check. In addition to the

temporal orthogonality constraint we simultaneously minimize the norm difference

between candidate spectrum vectors. In optimization 5.3 the term [Ψ̄t] denotes

the combined norm of spectral candidates at frame t.

The optimization in eqn. (5.3) is further subjected to a constraint that, 2D

point distribution in one frame t satisfies the motion constraint mentioned in eqn.

(5.4) where N(xi) is the neighborhood of point xi. The term Ψf
t (xi, xj) computes

the difference of spectral component between points xi and xj at frame t where the

distance between the points was computed using metric f . For our experiments

the function f is a geodesic distance metric applied over the triangulation for

frame t. It is to be noted that if we compute shortest distances between points

considering point cloud data instead using a 2D triangulation then f would simply

be Euclidean metric. Essentially, the constraint in eqn. (5.4) limits the spatial
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deformation variance of corresponding points between consecutive frames using

the spectral measure.

5.5 Results

To evaluate the proposed scheme 5.3 we have used a dataset from nrs [2004] with

known ground truth. The video sequences in the dataset have 240 − 316 frames

per sequences. Our experiments considered walking, shark, face, cardboard, cloth,

dance, and stretch sequences those vary in degrees of deformation expressed in

terms of the temporal 2D correspondences. Some sample input 2D tracks for the

shark sequence is shown in Fig. 5.3 where the corresponding points across different

data sequence are shown to deform dynamically.

Figure 5.3: Sample input 2D track from the shark sequence nrs [2004] used for
the experiments.

We present in Fig. 5.4 the 3D reconstruction results for shark sequence. The

close proximity of the reconstructed result (in red) with the ground truth (in blue)

suggests the effectiveness of the proposed optimization. It is to be emphasized

here that the proposed solution does not consider dense trajectories between cor-
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Figure 5.4: Performance of the proposed model on the shark sequence. 3D mapping
error can be visualized by the discrepancy between ground truth (in blue) and the
model output (in red).

responding points across frames. Furthermore, the motion constraint does not

over constrain the solution space by assuming additional rigidity similar to rele-

vant physical model based solutions.

To compare the performance quantitatively the 3D reconstruction result the

following methods were chosen. These methods are referred to by their acronym

hereafter.

MP: Metric Projection Method (Paladini et al. [2009])
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Table 5.2: 3D mapping error for the shark, face and walking sequence in the CMU
NRSfM database nrs [2004].

Sequence MP PTA CSF KSFM IPCA DM TB Proposed
Walking 0.4144 0.3948 0.1675 0.1029 0.3264 0.0265 0.3381 0.1012
Shark 0.4023 0.4012 0.1755 0.1821 0.1894 0.1318 0.1294 0.1218
Face 0.3988 0.3526 0.2855 0.2841 0.1894 0.1318 0.1294 0.1518

Cardboard 0.4185 0.2894 0.3237 0.2753 0.2445 0.1064 0.2131 0.1013
Cloth 0.3997 0.3526 0.2609 0.1806 0.1909 0.0287 0.2148 0.877
Dance 0.2210 0.2935 0.2684 0.2369 0.3058 0.1676 0.2548 0.1045
Stretch 0.3988 0.1087 0.0709 0.0736 0.1918 0.0687 0.2117 0.0718

PTA: Trajectory space model (Akhter et al. [2011])

CSF: Smooth Trajectory based model (Gotardo and Martinez [2011a])

KSFM: Kernel based NRSfM (Gotardo and Martinez [2011b])

IPCA: Incremental PCA (Tao et al. [2012])

DM: Diffusion prior based NRSfM model (Tao and Matuszewski [2013])

HP: Low rank matrix based factorization based NRSfM (Torresani et al. [2008])

The experiment considers the aforementioned sequences from nrs [2004] dataset.

The performance comparison result is presented in Table 5.2 where the proposed

method is shown to perform competitively well with the other state-of-the-art

methods. Amongst other methods DM, KSFM and TB performs considerably

well whereas the highest reconstruction error was obtained for method MP and

PTA.
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5.6 Conclusions

We proposed a solution to the problem of NRSfM by enforcing a constraint on

the relative motion on the 2D point trajectories in addition to the low rank fac-

torization based Tomasi and Kanade [1992]; Torresani et al. [2008] method. The

proposed method is tested with different motion captured (MoCap) sequences and

the performance in terms of final 3D reconstruction error is compared with rele-

vant the state-of-the-art methods. The method is found to perform comparatively

well.

We propose to extend the result to other available datasets under different

noise condition to test the robustness of the proposed method. Further, we wish to

extend the optimization criteria by utilizing the spectrum of the distance matrices

Dt in addition to other suitable shape and/or trajectory priors to further increase

the robustness of the method.
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Chapter 6

Conclusions and Future Work

In this chapter we cite possible future directions for the frameworks proposed in

each of the previous chapters.

6.1 Future Extension for Shape Representation

The driving motivation behind the shape representations proposed in Chapters 2

and 3 is to explore human ability behind shape recognition. The modality chosen

to establish correspondence between shapes involved spectral techniques due to

their implicit ability of abstraction that is robust to noise. Another technical

advantage of spectral techniques is their compatibility with mathematical and

functional mapping technique (Ovsjanikov et al. [2012]) that can lead to more

general solutions for the shape correspondence problem. In future, we intend to

combine the proposed mechanism with angle preserving conformal maps on shapes

that can preserve the local geometric properties of shapes undergoing isometric
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transformation.

In this dissertation we proposed a global shape representation scheme using

quasi-geodesics computed over the entire discrete shape manifold. The eigen-

spectral decomposition of this representation is used effectively to identify self-

symmetric regions on the discrete shape manifold. By exploiting the commutative

property of the eigenbases of the proposed representation, we successfully demon-

strated its use in correspondence determination between isometric shapes. We

also proposed characterization metrics for self-symmetry identification and corre-

spondence determination. Furthermore, as associated applications of the proposed

representations stable surface regions within 3D shapes were identified for shape

pairs that differed from each other by a high degree of isometry deformation.

The spectrum of the surface differential based shape representation was applied to

address deformation transfer. Based on the spectrum of surface differential based

representation we proposed a novel surface signature that is shown to perform bet-

ter than the otherwise popular Heat Kernel or Wave kernel based signature. The

results of correspondence determination obtained via the proposed representation

scheme were compared with those from relevant state-of-the-art representation

schemes and shown to perform competitively.

A key contribution of this work is the fact that no prior knowledge, in the form

of user-specified mappings, was used for correspondence determination and self-

symmetry detection. As an extension of the current scheme, we intend to explore

and combine functional maps (Ovsjanikov et al. [2012]) based conformal mapping

technique with the proposed representation that may prove critical in exploring
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the group structure within isometric shapes. Furthermore, we intend to use this

combined scheme to address correspondence determination between near-isometric

shapes (Kovnatsky et al. [2013]). We briefly outline these possible extensions for

shape correspondence in Section 6.1.1.

6.1.1 Functional Map based Shape Correspondence

A majority of existing spectral analysis methods for correspondence determination

address the problem by limiting the search for correspondences between a small

set of landmark points and extending the results to a dense set of correspondences

defined on the entire 3D shape as a final post-processing step (Bronstein et al.

[2006]; Huang et al. [2008]; Lipman and Funkhouser [2009]; Kin-Chung Au et al.

[2010]; Ovsjanikov et al. [2010]; Kim et al. [2011]; Tevs et al. [2011]; Sahilliolu

and Yemez [2011]). This strategy has also been justified theoretically, since un-

der general conditions, a small set of landmark correspondences is known to be

sufficient to obtain a unique dense mapping between isometric surfaces (Lipman

and Funkhouser [2009]; Ovsjanikov et al. [2010]). Although this landmark-based

approach reduces the complexity of the search through the solution space it still

relies on representing shape maps as point-to-point correspondences. This makes

it difficult to incorporate global constraints or return meaningful results when

establishing point-to-point correspondences in the presence of coarse similarities

or symmetry ambiguities. An alternative technique, namely functional maps has

been demonstrated to be suitable for establishing correspondence between shapes

in a fundamentally different manner. This technique first maps the spectrum of
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candidate shapes to 2D real Euclidean space and subsequently establishes cor-

respondence by extracting signatures corresponding to the shapes. Thus rather

than establishing correspondence between points on the shapes, it proposes to

compute mappings between functions defined over the shapes. This notion of

correspondence generalizes the standard point-to-point correspondence map since

every point-wise correspondence induces a mapping between function spaces, while

the opposite, in general, is not true. However, this generalized representation is:

(a) flexible, since it allows one to choose a basis for the function space on each

3D shape and consequently represent the mapping as a change of basis matrix

and, (b) well-suited for shape matching, since many natural constraints on the

point-to-point correspondence map become linear constraints under the functional

map formulation. This representation works especially well when combined with

the eigenfunctions of the Laplace-Beltrami operator, since it benefits from the

multi-scale and geometry-aware nature of the eigenfunctions. This representation,

in particular, achieves a state-of-the art results on an isometric shape matching

benchmark which is essentially implemented using a single linear solve procedure.

Functional maps are also suitable for segmentation transfer and joint analysis

of shape collections without requiring one to establish point-to-point correspon-

dences.

The functional map framework processes shapes as follows. First, it translates

each 3D shape into a corresponding scalar function. Subsequently the correspon-

dences between regions belonging to these shapes are represented as maps of func-

tions. This framework addresses the problem of correspondence determination
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between shapes when the deformation between shapes is within an addressable

limit, i.e., shapes with approximate isometry. We briefly mention some of the

mathematical foundation for functional map in Section 6.1.1).

Mathematical foundations of functional maps

In this section the functional map technique is discussed formally. Let M and

N be two shape manifolds and let T : M → N be a bijective (one-to-one and

onto) map between them. T being bijective naturally induces a transformation

on surface points between these manifolds. Surface points are often expressed in

terms of scalar functions over them. Lets consider two such derived scalar functions

f : M → R and g : N → R defined over shapes M and N . Due to the existence

of map T maps f and g would be related such that g = f ◦ T−1. The functional

map TF , represents a mapping between these two derived scalar functions, i.e.,

TF : f → g. Region specific mapping between shapes can be represented by

functional map TF . Functional maps can be further decomposed into spectrum

where the functional space can be represented using eigenvectors {ϕMi } described

over shape manifold M . eqn. (6.1 ) expresses the spectral decomposition.

TF (f) = TF

(∑
i

aiϕ
M
i

)
=
∑
i

aiTF (ϕMi ) (6.1)

TF (φMi ) can further be represented as combination of eigenbases {ϕNi } on the

manifold N as TF (ϕMi ) =
∑

j cijϕ
N
i giving us the final combined representation of
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functional map TF as given in eqn. (6.2).

TF (f) = TF

(∑
i

aiϕ
M
i

)
=
∑
i

aiTF (ϕMi ) =
∑
j

∑
i

aicijφ
N
j (6.2)

Thus, if scalar function f defined for manifold M is represented as vector of

coefficients a = (a0, a1, . . . , ai, . . .) defined over each surface vertex and g = TF (f)

is represented as a vector b = (b0, b1, . . . , bi, . . .) then following the formal descrip-

tion given above, surface point j can be expressed as bj =
∑

i cijai where cij is

independent of any choice of f . Formally, coefficient matrix cij =< TF (ϕMi ), ϕNj >

(where < ., . > denotes the inner product of the vector arguments) would best

describe mapping between manifold M and N in terms of relative weight ma-

trix Cij that represents the relationship between the eigenvectors defined on the

manifolds M and N . Intuitively, it is within these weights that the geometric

deformation-specific correspondence is encoded.

This flexible representation can be further extended for shapes with topologi-

cal deformation where preservation of isometry between deformation may not be

guaranteed. The proposed work on shape correspondence can be combined with

functional maps to cover several important aspects of shape analysis listed as fol-

lows.

1. Independent spectral study of shape operators other than the Laplace-Beltrami

operator with applications to 3D shape analysis. The resulting spectrum can

be decomposed using standard techniques to yield a salient eigenbases for
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shape representation.

2. Combining the principal eigenvectors of functional maps supported shape

spectrum to construct surface features that could define robust shape de-

scriptors on 3D shapes.

3. Study of persistent homology features for robust characterization of shapes

under topological deformation. This study is aimed at tracking and/or esti-

mating a specific region of a shape that has undergone various combinations

of continuous or aberrant topological deformations.

6.1.2 Support of Conformal Mapping Based Techniques

Conformal map refers to mathematical mapping between objects such that a ge-

ometric measure at corresponding points between objects remain within bound

or preferably same. Very often this measure is a geometric angle at correspond-

ing points computed using standard mathematical mathematical techniques such

as level sets. This angle preserving conformal map can be exploited to address

global shape similarity a problem central to many computer graphics related ap-

plications. Following the shape representation presented in this work we intend

to explore whether the representation spectrum can be combined with conformal

map based techniques. Our motivation behind exploring this direction of study

is to add a flexibility to the present framework so that correspondence between

shape that varying from point-to-point to region wise correspondence can be per-

formed using a unified mechanism. Some of the foundational works in the field of
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conformal maps and its applications in vision and graphics were proposed by Gu

et al. [2010]; Zeng et al. [2010].

6.1.3 Discovering Group Structure from Shape

One fundamental problem within computer vision and graphics is to retrieve repet-

itive structures from images and shapes. Examples of repetitive structure could

be motifs within an image, regions with similar textures, pose of a shape mod-

els etc that can be employed for different applications such as discovering skewed

symmetry within images, statistical bilateral structure, human gait analysis etc.

to name a few.

This class of applications need to consider robust feature detection over images

or shapes that remain invariant under topological transformations. Topological

transformations in computer vision and graphics have been addressed using spe-

cialized groups structures such as Lie group (Murray [2017]; Huang et al. [2017]),

symmetry groups(Liu et al. [2010]) etc. However, topological data analysis is a

newly emerging field that aims at extracting features those are topology invariant

from more noisy data such as geometric point cloud data scanned from 3D sensors.

Being topology independent these feature are very robust to noise and can pro-

vide state-of-the-art solution for problems such as correspondence under various

geometry, noise and topology transformation. We intend to combine the spec-

tral framework based correspondence method proposed in this dissertation with

conformal maps mentioned in Section 6.1.2 to extract robust shape features to

produce advanced results in correspondence between shapes under a wide ranges
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of transformation varying in principle and degree.

6.2 Non-Rigid Structure from Motion

For estimation of 3D point information from 2D stream of images we proposed a

solution to the problem of NRSfM in Chapter 5, that finds a solution by enforcing

a constraint on the relative motion on the 2D point trajectories in addition to

the low rank factorization based method (Tomasi and Kanade [1992]; Torresani

et al. [2008]). The proposed method is tested with different motion captured

(MoCap) sequences and the performance in terms of final 3D reconstruction error

is compared with relevant the state-of-the-art methods. The method is found to

perform comparatively well.

In summery this proposed method is not explicitly trained on NRSfM datasets.

Rather the solution fits a spectral model by assuming gradual deformation between

frames that is realistic under practical scenario. However, the spectral decomposi-

tion of the distance maps helps converge the solution using subspace representation

for camera and shape spaces. The spectral parametric control for the final solu-

tion, therefore, does not over constrain the solution space by imposing the hard

rigidity assumption. We intend to explore this flexibility provided be this solution

in future to propose a learning model with state-of-the-art databases along the

lines of Hoppe Nesgaard Jensen et al. [2018]. We initially expect to run into

issues regarding hyper-parameter tuning for the learning model. However, this

apparent disadvantage can simultaneously provide opportunity to explore further
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the robustness of spectral subspace representation for the NRSfM solution space.
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