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ABSTRACT

This dissertation consists of three parts. In the first part, we continue the study of con-
structing compactly supported orthonormal B-spline multiwavelets recently presented by
T.N.T. Goodman in 2003. We introduce a numerical approximation method to factorize
Laurent polynomial matrices so that his computation method of orthonormal scaling func-
tions can be simplified. We use a new inductive method of constructing corresponding mul-
tiwavelets. Explicit examples of compactly supported orthonormal wavelets using B-spline
functions are included for demonstrating our constructive procedure.

In the second part of the dissertation, we construct multiscaling functions and multi-
wavelets in the biorthogonal setting. That is, we construct a scaling function vector by using
a B-spline function and its biorthogonal dual scaling function vector with some regularity.
And we provide the method for how to get the corresponding multiwavelets by unitary matrix
extension. Examples of compactly supported biorthonormal B-spline wavelets are presented
and their regularities are compared to the regularities of biorthogonal scaling functions con-
structed by Cohen, Daubechies and Feaubeau in 1992.

In the third part, we generalize the method in the univariate case to construct bivariate

biorthogonal multiscaling functions and multiwavelets with specified smoothness by using



the box spline functions. Finally we calculate the regularity for the comparison to the result

from He and Lai in 1998.
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Multiresolution analysis(MRA), Riesz basis, Multiscaling function,
Multiwavelet, Biorthogonality, Unitary matrix extension
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CHAPTER 1

INTRODUCTION

1.1 A BRIEF OVERVIEW OF WAVELETS

The subject of “wavelet analysis” has drawn much attention from both pure mathemati-
cians(in harmonic analysis) and electrical engineers(in signal analysis). A wavelet is a func-
tion whose binary dilations and dyadic translations are enough to represent all the functions
in L?(R). A particularly interesting development is the discovery of the compactly supported
orthonormal wavelet basis. There exists a function ¢ € L?(R) such that the family of func-

tions
bin(@) =22z —k), j ke, (1.1)

constitutes an orthonormal basis for L?(R). The oldest example of such a basis was introduced

by Haar in 1910([24]):

Y(z) =4 -1

0, otherwise.
\
The Haar function is not continuous, and its Fourier transform does not decay rapidly, cor-
responding to bad frequency localization. An orthonormal wavelet basis with time-frequency

properties complementary to the Haar basis is given by Littlewood-Paley:
Y(z) = (mz) ' (sin 272 — sin 7)),

which has an excellent frequency localization, since its Fourier transform is compactly sup-

ported. During the 1980’s, there were several constructions of orthonormal wavelet bases for

1



L*(R) that shared advantages of both the Haar basis and the Littlewood-Payley basis. The
first construction was in 1982 by Stromberg([43]); his wavelets have exponential decay and
C* for arbitrary but finite k. The next example is the Meyer basis([37]) in 1985; which is C*.
In 1987 and 1988, Battle and Lemarié([2], [34]) constructed identical families of orthonormal
wavelet bases with exponentially decaying ¢ € C*(k arbitrary but finite) by very different
methods.

In 1986, Mallat and Meyer([36],[38]) developed the “multiresolution analysis” framework,
which provided a tool for the construction of yet other bases. In 1988, Daubechies([11], [12])
discovered a whole new class of wavelets, which were not only orthogonal (like Meyer’s)
but compactly supported with arbitrary pre-assigned regularity. The construction starts
by solving for the filter coefficients {h,} appearing in the refinement equation or dilation

equation:

$(x) =Y hap(22 —n). (1.2)

A function ¢(z) satisfying the equation (1.2) is called a refinable function. If the integer
translates of ¢(x) form an orthonormal basis of their span, then ¢(x) is called the scaling

function or father wavelet. The wavelet function or mother wavelet corresponding to ¢(x) is

defined by

N

Y(z) =Y (—=1)"hy_nd(2z — n). (1.3)

n=0

Daubechies wavelets turn the theory into a practical tool that can be easily programmed
and used by any scientist with a minimum of mathematical training. Since Daubechies’
seminal construction of compactly supported orthonormal wavelets, there have been many
attempts to construct compactly supported orthonormal wavelets using B-spline functions
due to the fact that B-splines have nice refinement properties and explicit representations.
Three major research works along this direction are worth mentioning. In 1991 and 1992, Chui
and Wang([8], [9]) constructed two kinds of semi-orthonormal B-spline wavelets. One of them

is compactly supported although the orthonormality among the translates is lost. In 1996,



Donovan, Geronimo, Hardin and Massopust([17]) initiated a fractal functional approach
to construct compactly supported orthonormal wavelets from B-spline functions. Examples
of C% and C*' compactly supported B-spline wavelets were constructed. T.N.T. Goodman
proposed another approach which will be explained later.

In many applications, symmetry of the filter coefficients is often desirable. The Haar
wavelet is the only known wavelet that is compactly supported, orthogonal, and symmetric.
In order to get symmetry, the orthogonality condition should be relaxed, allowing nonorthog-
onal wavelet bases. For this reason, the so-called “biorthogonal wavelets” were introduced
by Chui and Wang([9]), and Cohen, Daubechies and Feauveau([10]). A biorthogonal wavelet
consists of two dual Riesz bases v, i, Jj,k, associated with two hierarchies of multiresolution

analysis ladders, satisfying

(0 Vi ) = 6.0 (1.4)

which is called the biorthogonality condition.

One dimensional wavelets can be extended to two or higher dimensional wavelets to
process multi-dimensional signals like images. A trivial way to construct an orthonormal
basis for L?*(R?) is to use the tensor product generated by two one dimensional bases. The
wavelets from this method are called separable wavelets. With this construction, filtering can
be done on “rows” and “columns” in two dimensional array, corresponding to horizontal and
vertical directions in images. Since separable wavelet filters have three favorite directions,
this may cause anomalies in some applications. To get rid of this difficulty, non-separable
wavelets are needed. Non-separable biorthogonal wavelet filters were constructed by He and
Lai(]27], [28]). Other examples of biorthogonal non-separable wavelets are also given in their
papers([25], [26]).

The refinement equation (1.2) can be extended to a vector refinement equation of type

O(x) =Y P,®(2x —n), (1.5)



where ®(x) = (¢1(z), -+, ¢.(x))T is a function vector and P, are r x r coefficient matrices.
Since the study of refinable function vectors was initiated in early 1990’s by Goodman and
Lee([19], [20]), multiscaling functions and multiwavelets have been researched extensively.
Multiwavelets possess some nice features that uniwavelets do not have, that is, symmetry or
antisymmetry and orthogonality can be achieved simultaneously.

Many examples are available in the literature. In [14], Donovan, Geronimo and Hardin
used interwining multiresolution analysis to show the existence of compactly supported
orthonormal B-spline wavelets using multi-wavelet techniques. In [15], the researchers used
orthogonal polynomials to construct compactly supported smooth wavelets; an example of a
C? multiwavelets was given. Furthermore, in [16], the researchers extended the interwining
multiresoluton analysis to the bivariate setting. Examples of compactly supported contin-
uous piecewise linear spline wavelets were given. These approaches have an obvious difficulty
since the number of wavelets is dependent on the size of the support of the scaling function.

Recently, another approach to multi-wavelets was given by Goodman([21]). He showed
how to construct compactly supported scaling functions using B-splines of any degree
and indicated how to construct associated wavelets. One of the advantages of Goodman’s
approach in [21] is that the number of wavelets is always 3 for B-splines of any degree.
Although the construction of orthonormal scaling functions is clearly described, a construc-
tive method of wavelets was given without any supporting examples. This is because the
construction is dependent on the factorization of positive definite matrices. The technique in
Hardin, Hogan and Sun([23]) was used to factorize Laurent polynomial matrices. It requires
a lot of manual computation.

Following the Goodman approach, we worked through his steps and found out that the
computation of orthonormal scaling functions can be simplified by introducing a numerical
approximation method of factorization of Laurent polynomial matrices and a new inductive
method of constructing wavelets is given so that the whole constructive procedure becomes

much simpler([6]). One of the purposes of this dissertation is to describe this new and simple



constructive procedure. In addition, we adopt this method to construct univariate biorthog-
onal multiscaling functions and multiwavelets using B-spline functions. Further we extend to
the bivariate biorthogonal multiscaling functions and multiwavelets using box spline func-
tions. One of the aims is to make these compactly supported B-spline and box spline wavelets
available to wavelet analysts as well as general wavelet practitioners. That is, it is to make

the support of dual functions smaller so that the application process becomes faster.

1.2 OUTLINE AND NOTATIONS

The dissertation is organized as follows. In Chapter 2, we first give basic definitions and
describe a general procedure in the preliminary section. This procedure is similar to the one
given in Goodman([21]). Then we explain how to factorize Laurent polynomial matrices by
using a symbol approximation method similar to Lai([32]). The convergence analysis of the
method in the setting of Laurent polynomial matrices is given by Geronimo and Lai([18]).
This is described in Section 2.2. In Section 2.3, an inductive method for constructing com-
pactly supported B-spline wavelets is introduced. In Section 2.4, we summarize the com-
putational steps and present three examples of compactly supported B-spline wavelets to
illustrate the computation procedure.

In Chapter 3, we first construct two refinable function vectors satisfying the biorthog-
onality condition of Section 3.1. Then we give a decay estimate for Fourier transforms of
refinable functions to get arbitrary pre-assigned regularity in Section 3.2. In Section 3.3, we
show that two refinable function vectors satisty the Riesz basis property. In Section 3.4, we
discuss computation of the associated multiwavelets by unitary marix extension. Chapter
3 ends with some examples of refinable function vectors with pre-assigned smoothness via
B-spline functions.

Chapter 4 is devoted to the construction of bivariate biorthogonal multiscaling functions

and multiwavelets. The method used in Chapter 3 is modified to the bivariate setting. The



support widths of the multiscaling functions constructed by using the box spline functions

are given for the specified smoothness.

The following is the list of notations used in this dissertation.
:= is the sign idicating “equal by definition”.
{z € X : P(z)} := the set of elements in X satisfying the property P(z).
A\B:={a€ A:a¢ B}
N := the set of natural numbers.
Z := the set of integers.
R := the set of real numbers.
C := the set of complex numbers.
Z := the conjugate of complex number z.
[a,b] is a closed interval.
(a,b) is an open interval.
(f,g) := the inner product of f and g in Hilbert space H = L?(R?).
|u|| := the norm of w in Hilbert space H.
O, «r:= the r X r zero matrix.

I,.«:= the r X r identity matrix.

(]]Z) = WNLLIC),, a binomial coefficient.
L, j=k
5j,k =

0, otherwise.

x:= (x1,-- ,x,) forn € N.
AT := the transpose of a matrix A.
A* := the transpose conjugate of a matrix A.

det(A) := the determinant of a matrix A.



CHAPTER 2

CONSTRUCTION OF ORTHONORMAL B-SPLINE MULTIWAVELETS

2.1 PRELIMINARIES

2.1.1 DEFINITIONS AND CONCEPTS

Throughout this dissertation, we will use the following notations for the inner product and

norm for the space L*(R?) :

(f.9) = g f(x)g(x)dx, (2.1)
LI = (f, ) (2.2)

where f,g € L*(R?).
The Fourier transform defined below not only is a very powerful mathematical tool, but

also has very significant physical interpretations in applications

Definition 2.1.1 The Fourier transform of a function f € L?*(R?) is defined by

~

flw):= f(x)e ™ dx, we R (2.3)
R

Many useful properties are available in literature(e.g., [5],[42]). The following result is instru-

mental in extending the notion of Fourier transform to include L?(R?) functions.

Theorem 2.1.2 The Fourier transform f of f € L*(R%) is in L2(RY), and satisfies “Par-

seval’s Identity”:

1712 = 2m)* | £ (2.4)



In many interesting examples the orthonormal wavelet bases can be assocoated with a
multiresolution analysis framework. The concept of multiresolution analysis was introduced

by S. Mallat. We need the following definitions.

Definition 2.1.3 For a fixed integer r > 1, let ¢, -+ , ¢, be compactly supported contin-
uous functions in L?(R%) and ® := (¢y,- -+, ¢,)T. Then ® is called a refinable function vector
if it satisfies a refinement equation:

O(x) = > AP(2x—k), xeR’ (2.5)

keZzd

where each Ay is an r x r real matrix. @ is called an orthonormal function vector if it satisfies

1, ifi=7and k=0,
/]Rd ¢i(x)pj(x — k)dx = (2.6)

0, otherwise

Definition 2.1.4 A refinable function vector ®(x) generates a multiresolution analysis of

L?(RY), if it satisfies the following properties:

(1) The integer translates of the components of ® constitute an orthonormal basis of

Vo C L*(RY), where

Vo :=span{¢;(x — k) : 1 <1 <rkeZ}.

(2) EV; :={f(2x): f € Vp} for j € Z, then

-cVayccVycViCce-
(3) [V, = {0}
JEL

(@) v, = 2.

JEZ

(5) f(x)eV; & f(2x) € Vi1, j € L.

The sequence of subspaces {V;};cz is called a multiresolution approzimation of L?(R?).



Definition 2.1.5 If a refinable function vector ®(x) generates a multiresolution analysis of

L2(R%), then ®(x) is called a multiscaling function vector.

If we have a multiresolution approximation {V;};cz of L?*(R?), we define W; to be the

orthogonal complement of V; in Vj;, that is,
‘/j-i-l = ‘/} D VVj) j € Z.

It follows that

LQ(Rd):@Wj:"‘@W—l@WO@Wl@”‘ .
jez
Corresponding to a muliscaling function vector ®(x), a function vector ¥(x) =
(1(x), - -, s(x))" is called a multiwavelet function vector if {ih(x—k) : 1 <1< s, k € Z%}
forms an orthonormal basis for Wy, so that {27/%)(2x — k) : 1 <1 < s,k € Z% j € Z}

forms an orthonormal basis of L?(IR¢)

The orthonormality of ®(x) can be relaxed: we only need to require that {¢;(x—k) : 1 <

| <1,k € Z%} constitute a Riesz basis, which is defined below.

Definition 2.1.6 {uy}rez is a Riesz basis in a Hilbert space H if it satisfies the following

properties:
(i) {ug}rez is a linearly independent set, i.e.,

chuk:O = ¢, = 0 for all k.

kEZ

(ii) There exist A, B with 0 < A < B < oo such that

Allul® < Y lu,w)* < Bllul?, (2.7)

kEZ

for all v € H.

Another definition of a Riesz basis, which is useful in computational work as follows(see [10],

[12]): {ug}rez is a Riesz basis in a Hilbert space H if and only if
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(i’) The closure of the linear span of {u;} is H, i.e.,

H:{chuk:keZJf,cl,--- ,cn € R}

(ii") There exist A, B with 0 < A < B < oo such that

A e < H chukH < BZ a2, (2.8)

keZ

for all {cx}rez € 2(R).

Definition 2.1.7 A refinable function ®(x) is said to be stable if its integer translates

contitute a Riesz basis for span 2{¢/(x — k) : 1 <1 <rk € Z4}.

The following argument shows how to construct an orthonormal basis from a Riesz basis
of Vo. {(x —k) : 1 <1 <r ke Z} constitutes a Riesz basis if and only if they span Vj,

and for all {¢;x }reze € F*(R),

Ai Z |Clvk‘2 < H i ch,kqﬁl(x — k)H2 < Bi Z |cl7k|2, (2.9)

where A > 0, B < oo are independent of the ¢;x. From Parseval’s identity in Theorem

s |2
(2m) R? '

IR eI

2.1.2(or see [5], [42]) we have

||ZZCZk¢l k)|* =

2

dw

—ikw

CL k€

1
2w

=1 m=

where hy(w) = >y axe™™ and A, (w) = > al(w + 27rj)$m(w +27j), 1 < I,m < r. Note

that Parseval’s theorem([41],[42],[44]) implies that for [,1 <1 <r.

1 2
2 _
¥|Cl,k| = (27‘(‘ d dw.

Cl’ke—zkw

[0,27]¢ K
Letting

H = (hl(W), . ’hT(w))T, A= ()\l,m(w))lgl,mgra
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then the inequality (2.9) is equivalent to
A-H'H<HAH < B-H*H. (2.10)

It follows that A is positive definite. Since A is also Hermitian, A = CC*. A is (27)¢ periodic,

and so is C. Define ®"¥(x) € L*(R%) by

" (w) = C7'D(w). (2.11)
Then
1 ~ = .
/ o (x)Prew(x — k)dx = y / O (w) Prev(w) e R dw
R4 (2m)¢ Jpa

c! Z &\)(w + 27j) &\)(w +27j) (C™H)* e ™ dw

jezd

I
o
N |
=
\

[0,27]@

1 - —1\* —ikw
= Gy OO

= 50,k[r><r-

This implies that ®"** is an orthonormal vector. On the other hand, let V{/**" be the space

spanned by integer translates of all ¢ (x),1 <1 <r. We calim V" = V. Indeed,
F=der(x—k), 1 <1 <r {f" ez € C(R)
Lk

& f=v0"" with (2r)? periodic v € L2([0, 27]%)
& f=pd with (27)%periodic = v C~" € L2([0,27]%) (by ((2.11))

= f = Z Cl,k¢l(x - k), 1 S [ S T, {Cl,k}keZd S 62(1&)
Ik

As described above, a multiresolution analysis consisists of a ladder of spaces {V;};cz and
a special function vector ®(x) € Vj such that (1)-(4) in Definition 2.1.4 are satisfied. The
orthonormal basis condition (1) is possibly relaxed as a Riesz basis. We then try to start
the construction from an appropriate choice of the refinable function vector ®(x): then V4
can be constructed from its integer translates, and from there, all the other {V;};cz can be

generated(see [12] for the details).
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We close this subsection with the following definition, which will be used often throughout

this dissertation.

Definition 2.1.8 A function A : R? — C is a trigonometric polynomial (or Laurent polyno-
mial) if A(w) = > ycq ke ™, where Q is a finite subset of Z¢ and the coefficients ¢i’s are

real.

Without any confusion, we use both A(z) and A(w) interchageably for the same trigometric

polynomial where z = e~ .

2.1.2 B-SPLINES AND THEIR BASIC PROPERTIES

The name, spline function was introduced by Schonberg in 1946. A spline function is a
piecewise polynomial with a certain degree of smoothness. Because of easy computer imple-
mentation and flexibility, B-spline functions are used in many applications such as interpo-
lation, data fitting, numerical solution of ordinary and partial differential equations(finite
element method), and in curve and surface fitting.

The first order (cardinal) B-spline Ny(x) is the characteristic function of the unit interval

0,1), i.e.,

1 for0<x<1,
Ni(x) := (2.12)

0 otherwise.

The m'™ order B-spline for m > 2, N,,(x) is defined recursively by (integer) convolution:
Ny(z) = / Ny 1 (2 — )N, ()t (2.13)
—100
_ / Ny — t)dt
0

Since N, is the m—fold convolution of Ny and Nj(w) = <£>, we see that N,,(w) =

<]/\71(w))m, so that
~ 1—e ™\™ o, [sing\™
Ny (w) = (7) =e "2 <T2) : (2.14)
w b}
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Many properties of N,, can be derived from the definition above. We state several impor-
tant properties in the following theorem. These properties are useful to evaluate functional
values, derivatives and integrals of B-splines. Most properties can be derived easily by induc-
tion, using the definition of N,,. In the theorem, C"(R) denotes the collection of all functions
f such that f, f/,---, f™ are continuous on R, and we denote C(R) := C°(R) for the con-

venience.

Theorem 2.1.9 The m'* order (cardinal) B-spline N,, satisfies the following properties:

1. For every f € C(R),
o 1 1
N, (2)dz = [ - ot z)dTy - dT,,
| r@Np@ie = [ [ g e e

2. For every g € C™(R),

[ ameiateias = S0t (oo

& 0
3. supp Ny, = [0,m].
4. Np(z) >0, for0 <x <m.
5. % v o Np(z—Fk)=1, for all z.

6. The B-splines N,, and N,,_1 are related as follows:

T m—2

7. The B-spline N,, is symmetric with respect to the center of its support, i.e.,

Nm<%+x> _ N, <%—x>,x€R.

8. N,, satisfies the dilation relation

No(z) = é g—m+1 (7:) N (22 — k).
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For a fixed m, let V™ be the space generated by the integer translates of N,,(x) and let

V" = span{ N, (27x — k) : k € Z}.
Then {V;"}jez is a nested sequence of subspaces in L*(R)(sce [5], p.85), i.c., it satisfies
ecVhicwyyrtevit e

This nested sequence of spline subspaces also satisfies following properties(see [12], pp.141-

143)

Vv =LR) and (V" ={0}.

jez jez
Furthermore, it satisfies that for some constants A, B > 0,

~ 2
Ag}jMMw+%m)§B<m,
keZ

which means that {N,,(z — k) : k € Z} is a Riesz basis of V;"([5], p.90). This implies that
for any j € Z, the collection

(212N, (2x — k) : k€ Z}

is also a Riesz basis of V™ with the same Riesz bounds as those of Vi". Therefore, the

B-spline spaces {ij}jez constitute a multiresolution approximation.

2.2  CONSTRUCTION OF ORTHONORMAL SCALING F'UNCTIONS

For a fixed integer » > 1, let ¢, -+, 7, be compactly supported continuous functions in
L*RY) and T := (v, -+, )7,

Let us denote the Grammian matriz associated with I'(x) by G(z) = (Gj(2))ij=1,r

where
Gii(a) = 3 [ (7 - Wyax
keza  R?
is a trigonometric polynomial with z¥ = e~k for all i,j = 1,--- ,r. We note that I'(x) is

orthonormal if and only if its Grammian matrix G is the identity matirx.
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We suppose that I'(x) generates a space S C L?(R?). That is, S comprises of all
linear combinations of shifts of elements of I". Then for any compactly supported functions
1, ,0s in S, there exist finitely many nonzero matrices Cy of size s x r such that

CI)(X) = ((bl(X)’ T 7¢S(X))T = Z CkF(X - k)

kezd
The equation above is represented in terms of the Fourier transform,

d(w) = C(z) T(w)

where C'(z) denotes the s x r matrix of Laurent polynomials, i.e.,

A square matrix C(z) is said to be invertible if det(C(z)) is a monomial of z, e.g.,
az{™ -+ 2" for a scalar o # 0 and my, -+ ,my € Z, where z = (21,22, -+ ,24) € C% It is
clear that if C'(z) is invertible, ® generates the same S. We have the following result from

21].

Lemma 2.2.1 Fiz d = 1. Suppose that T := (y1,- -+ ,7.)T is compactly supported and gen-

erates a space S. Let G(z) = (G;j(2))ij=1,... » Of size r X r associated with I' by

Gij(2) = Z 2" /R%(x) vi(z — k) dx

kEZ
foralli,j7 =1,--- ,r be the Grammian matrix associated with T'. If the Grammian matrix

G(z) is invertible, then there exists a ® which is orthonormal and generates S. The converse

18 also true.

Proof: We first show that the Grammian matrix G(z) associated with I' is positive

semi-definite. For any vector a = (ay, - ,a,)T € C",
S aGya =3 a3 / (@) vz — K)da -
ij=1 ij=1 kez R
= Z 2" / Zai vi(x) Zc‘zj vi(x — k) dx
kezd R =1 j=1

:/Rz_e h(z —0) Z 2 h(x — k) de,

kezd
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where h(z) =>"7_, a;vi(z). It then follows that

(2m+1 Zal i ( Z/ —E)szl_z(x—k dx

i,j=1 l=—m kezd
/ ’ Z 27" h(x — d:c
k=—m
/Zz (x —k szl_z(:c—k)dx
Rk=—m k| >m
m+n m 2
:/ Z R h(r — k)| do
Ly R
m+n M
+ / Z 2R h(z — k) Z K h(x —k)dx
MR e m m<|k|<m+n

where we have assumed that h(x) is supported on [—n,n]. It follows that

r ) 1 m-n m - 9

= -m-n - p_ .
o[ S 5
2 * h(a — k) 2 h(z — k) de
2m+1 J pn, = m<|k|<m-+n

The second term converges to zero as m goes to infinity while the first term is bounded
below. If we take a close look at the second term, then since h(x) is continuous and has the

support [—n, n], we have

2m+1!/m+n “ha—k) Y = Fh(e—k)da]

m<|k|<m-+n
m-+n m+n
_2m+1 /mn h(z— k)| > |h(z — k)| dx
k=m—n+1 k=m+1
m—f—nn m—1 —-m—1
/ ha—k) > |h(:p—k)|dm}
m—n k— m k=—m-n

m—+n
/ Il oo oo

4n® ||n||% — 0 as m — oco.

2m+1

T 2m+1
Since G(z) is symmetric and positive definite, we can find an invertible Laurent polyno-

mial matrix B(z) (cf. [23]) such that G(z) = B(z) B(z)*, where B(z)* denotes the transpose
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and conjugate of B(z). Let

and so ® is orthonormal. Morever, it follows from the definition of ® that ® generates the
same space S as does I'.
On the other hand, it is clear that the Grammian matrix of ® has a determinant 1, when

® is orthonormal. O

Example 2.2.2 Let v1(z) := (1 — |z|)+ and ya(x) := (z(1 — )+ (22 — 1 + a), where a is
a constant to be determined and f, denotes the positive part of f. The determinant of the

Grammian matriz G(z) associated with (y1,72) is

det(G(2)) = T;oo ((66 + 210a%) + (27 — 35a)(= + 1/2)) .

(Any computer algebra system may help with the computation.) We can see that S generated

by v1,v2 has orthonormal generators ¢q, ¢o if a = +£+/27/35.

The above Lemma 2.2.1 reveals a key for constructing orthonormal vector of scaling
functions: find 7, --, 7, which generate a space & such that its Grammian matrix has a
constant determinant.

We now follow the steps in [21] to use B-splines for constructing an orthonormal vector
of scaling functions with » = 3. Let N,, be the normalized B-spline of order m, in terms of

the Fourier transform,

N (w) = (ﬂy (2.15)

Let Vo = span{N,,(x — k), k € Z} be the spline space. Since N,, is a refinable function, for

V1 being spanned by the integer translates of N,,(2z — k), k € Z, we have Vy C V;. Thus,
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letting v1(x) = N, (22) and vo(z) = N, (22 — 1), 71 and 72 generate V;. On the other hand,

by the dilation equation, there exist two finite sequences ag; and agxyq such that

No(2) =Y amyi(z — k) + ) a1 oz — k). (2.16)

k€EZ keZ

The equation (2.15) yields

Ny (20) = %A(z) Non(w), (2.17)

1+ 2

where A(z) =2 ( > . On the other hand, the Fourier transform of equation (2.16) is
% N(2), (2.18)

where

It follows that
A(z) = Ap(2?) + 2 Ay (7). (2.19)
Note that the proof of the following lemma is constructive.

Lemma 2.2.3 There exist two Laurent polynomials By(z) and Bi(z) of degree < m such

that
Ao(2) Bo(2) + Ai(2) Bi(z2) = 1. (2.20)

Proof: Recall

< CE RS
)

Jj=

=: A(2)l(z) + A(—2) l(—=2)
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by using the binomial expansion, where ¢(z) is a polynomial of degree < m — 1. Thus, we

have
1 =(Ao(2%) + 2 A1(22)) (2) + (Ag(2%) — zA1(2%)) (—2)
=Ao(2%) (€(2) + £(=2)) + A1(*) 2 (£(2) — (=2)).
That is, By(2%) = £(z) + £(—=2) while B1(2?) = z (((z) — {(—=2)). O

We now define a new spline function in terms of the Fourier transform by

—~

My (w) = —Bi(2) M1(w) + Bo(2) 72 (w). (2.21)

Recall from (2.18) that

Non(w) = Ag(2) A1 (w) + A1 (2) Fo(w)

It follows that N,, and M,, generate V] since

Ny (w) _ Ao(2)  Au(z)| [ (w) (2.22)
Mu(w)| | =Bi(2) Bo(2)] [Fa(w)

. | Aoz) Auz)|
and the determinant of the matrix is of a constant 1. Furthermore,

—Bi(2) Bo(2)
N (22), Nyp(22 — 1), M,,(22), M,,(2x — 1) generate V.

Define v3(x) = >, oy an M, (22 — k) for some finitely many nonzero coefficients ay. We

will show how to find such a4 so that the Grammian matrix associated with {v1, 79,73},

G(z) = (Z 2" / vi(z) vi(x — k) dx) has a constant determinant. Put
R
1,7=1,2,3

keZ
r(z) = Z o2t
The computation in ([21]) gives
4det G(2*) = D(2)r(2)r(1/2) + D(—=2)r(—2) r(—1/2), (2.23)
where

(a(z?) = 2b(2%)) (a(z)? — 2b(2)?), (2.24)

| —
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with
a(z) =Y / N, (22) N,y (22 — k) de, (2.25)
b(z) = / N, (22) Ny, (22 — 2k — 1) da. (2.26)

Let us closely look at each entry of the Grammian matrix G(z) as follows. First direct
computation gives
Gii(z) = Gaa(z => =z /’71 ) n(r — k) de
kez

Next we have

Gm Z /71 7290— )d

keZ
Then

G21 Z /72 71$— de—Z /71 71$—k’+1)d b()
kEZ kEZ
Also, we have
Gs(z Z /’yg )z —k dx—z ZaJ/M (2x — 2k — j) 7 (x) dx
k€Z k€Z  jeZ
To simplify the above equation, we introduce two Laurent polynomials
Zozjzj and c(z ZZ]/% w(2x — j) dx.
JEL JEZ
Then we can see that
S >t [ M2~k ) n(a)ds
k€eZ jEL
and hence,

G31(2%) = = (r(2) c(z) + r(=2) c(—2)).

| —



Next we compute

Ganle) =30+ [ sale) mlo = k) da

keZ

:Zz2kzaj/RM(2x+2k+l—j)%(w)dff

keZ JEZ

Y A Y g / M2z + 2k — j + 1) da
keZ J€EL R

_1

=2 5 (r(2) c(z) = r(==2) c(—=2))

and

Ganl) =3+ [ sala) (o~ k) da

kEZ

:Zz%Zal-(xj/RM(Qx—i)M(Qx—Qk—j)dx

k€EZ 1,JEL

1
Ly Z&i@j/M(x)M(x—Qk—l—i—j)dx
R

kEZ 1,JEL

=1 (d(z)r(2)r(1/2) + d(—z) r(—=2) r(—l/z))
Note that G;;(z) = Gi(1/2), i,j = 1,2,3, and zZ = 1/z. It follows that

a(z?) b(2?) r(2)c(2) + r(=2)c(—2)
4det(G(22)) = 22 b(22) a(z?) 2 (r(2) e(2) — r(~2) e(~2)) |
r(z)e(2) z7 (T(Z) c(2) d(z)r(z)r(z)
+r(=2)e(—=2) —r(=2)c(=2))  +d(=2)r(—=z)r(-2)
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Using properties of determinant this can be simplified as below:

4det(G(2%))

a(z?) 2b(z2)  r(2)elZ) +r(—2) c(—3)
2 b(22) a(2?) r(3) c(2) — 1(—Z) (~2)
r(2) c(z) r(2) c(z) d(z)r(z) r(z)
tr(—2)e(—2) —r(=2)c(—2)  +d(—2)r(—2)r(=%)
a(2?) 2 b(22) r(3) ¢(Z)
2 b(2?) a(z?) r(2) ¢(Z)
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where

a(z?)  20(z%)  c(-2) a(z?)  zb(2?)  (2)
D3(2) = |2b(2%)  a(2?) —c(=2)|, Da(2) = |2b(z?) a(z?) —c(—2)
c(z) c(z) 0 c(—z) —c(—2z) d(—=2)

It is easy to check that Dy(z) = 0, D3(2) = 0, and D4(z) = D1(—z). We thus obtain (2.23)

for the determinant of G(z2),
4det(G(2?%)) = Dy(2) r(2) r(2) + Di(—2) r(—2) r(—2).

Now it is time to simplify D;(z). A direct computation of D;(z) yields

Dy (z) =d(2) (a(z2)2 — 22 b(zQ)Q) — 2¢(2)e(2) (a(z2) - zb(z2))
=(a(z2) — 2b(2)) - (d(z) (a(2?) + 2b(22)) — 2 c(z)c(z)).

To simplify D;(z) more, let us consider

a(2%) +20(z) =) 2 / (@) (e = j) da + Y 24 / (@) ya(e —j) de

JEL R jEZ R
_! sz / Ny (z) Np(x — j)de =: =E(z)
jez VR
Then a(z?) — 2b(2?) = $ E(—z). The second factor of D;(z) can be written by
11E(z) 2c(z)
4(2) (=) + 2b(=%)) — 2e(z)e(?) = .
2¢(z) d(2)
Since we have
zj / Na( (x+j)d
JEL

the above determinant is the determinant of the Grammian matrix of {N,,, M,,} which is the

same as that of the Grammian matrix of {71, 7}. By the special relation (2.22) of {N,, ]\/4\,1}
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and {zzl, 'IZQ}, the determinant of the Grammian matrix is

a(z)  b(2)
2b(z) a(z)

=a(2)? — 2b(2)%

Thus, D;(z) = 3 (a(2?) — 2b(z%)) (a(2)* — 2b(z)?).
Now we claim that there exists a polynomial p(z) > 0 such that
D(z)p(z) + D(=z) p(—2) = 1. (2.27)

Once we have such a p(z), it follows from the Riesz-Féjer lemma that there exists a
polynomial r(z) such that r(2)r(1/z) = p(z). This r(z) is the polynomial we look for such
that the determinant (2.23) of Grammian matrix G(z) is a nonzero constant.

To prove claim (2.27), we need the following lemma from ([22]).

Lemma 2.2.4 Let p be a polynomal of degree n with all its zeros in [1,00) having a positive
leading coefficient. Then there exists a unique polynomial q with real coefficients of degree

n — 1 such that
p(x)q(z) +p(1 —z)q(l —x) =1.
for xz € [0,1]. Moreover, (—1)"q(x) > 0 for z € (0,1).

Proof: Let x;,i = 1,--- ,7 be the distinct zeroes of polynomial p(z) with multiplicities

myq, - ,m,, respectively. Define a polynomial ¢ of degree n — 1 by requiring that

for j=0,1,--- ,m; —1land ¢=1,---,r. Then the polynomial

r=1—x;

v(z) = p(x) q(x) +p(1 =) g(1 — z)
is of degree 2n — 1 and satsfies

1, ifj=0andi=1,---,r

0, otherwise
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forall j = 0,1,--- ,m; — 1 and ¢« = 1,--- ,r. These 2n interpolatory conditions uniquely
determine a polynomal v(z). Clearly, the constant 1 satisfies the interpolatory conditions
and hence, v(z) = 1.

Next we note that (—1)"p(z) > 0 on (0, 1). Consider w = pq and observe w")(z;) = 0,j =
0,1,---,m;—landi=1,---,r while w?(1 —2;,) =0, =1,--- ,my —landi=1,---,r
and w(l —x;) = 1 for all i = 1,--- 7. Thus v’ is of degree 2n — 2 and has 2n — 2 zeros
by Rolle’s theorem outside (0,1) and hence, w’ is zero free on (0,1). Since w(x;) = 0 and
w(l —21) = 1, we know that w(z) > 0. Thus, (—1)"¢(z) > 0 in (0, 1). This completes the

proof. O

To use the lemma above, we need to examine the zeros of D(z) = 3 (a(2?)—2b(z?)) (a(z)*—

2b(2)?). Let us simplify a(2?) — 2b(z?) a little bit more:

a(z?) — 2b(z ZZQJ/N (22)N,, (22 — 27) dx

JEZ
+) 2 2J+1/N (22) Ny (22 — 25 — 1) da
JEZ
:—ZZ]/N m(x—j)dz
—JjEZ
:_ZZJ/N m(x+j)dx
JEZ
:—Zz]/N (m—j—x)de
JEZL
o1 N me
:—Zsz m—j) J:§Zsz(J)Z
JEZL JEZ

where we have used the symmetric property of B-spline functions, i.e., N,,(z) = N,,(m — ).
It is well-known that Fa,(2) := >,y Nom(j)#’ is an Euler-Frobenius polynomial which is
never zero for z = e~ for any w. The zeros of Es,,(2) are in (—oo, 0) since all coefficients of
E(2) are positive. By the following Lemma 2.2.5, Fs,,(2) can be written in terms of p(z)

with 2 = sin?(w/2) and p(z) has only zeros in [1,4+00). Next we consider a(z)? — 2b(2)%. As
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above,

ZZJ/N (22)Np, (22 — 2j) dx

JEZ
— Z 3 Nop(m + 27) 27
JET
1 [m/2] ' '
=5 (Naw(m) + 2 Nom(m +2j)(=/ +1/27))
=
is a real polynomial in cos(w) which can be converted to a polynomial in terms of x =

sin?(w/2). So is a(z)?. Similarly,

ZZJZ/N (22)Np (22 — 25 — 1)dzx
]EZ JEZ
=5 Z Nop(m +2j +1)27
jez
271/2 [m/2]-1 '
== > Nam(m+2j + 1)+

=—[m/2]
1 —
T 22172 <N2m(m +1)2"2 + Nopy (m — 1)z~
+ Nop (M + 3)23/2 + Ny (m — 3)2_3/2 4. )
1 [m/2]—1 | |
:W Z Nop(m + 25 + 1) (Z(2J+1)/2 + Z—(2y+1)/2)'
§=0
It follows that
[m/2]-1 2
b(z)? = = N. 27 4+ 1) (z2+1)/2 —(2j+1)/2
Z(Z)—Z Z om(m+2j4+1) (2 + 2 )
§=0
~ 1 Z m(m + 2§ + 1) Nop(m + 20 4+ 1) (2" + LI+ | iy 27

is again a real polynomial in cos(w) which can be converted to a polynomial in terms of
r = sin?(w/2) by Lemma 2.2.5 below. The zeros of a(z)? — zb(z)? are contained in the zeros
of a(z) which are located in [1,+00). Therefore, Lemma 2.2.4 implies that a polynomial p(z)

exists such that

D(2)p(2) + D(—2)p(—2) =1
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and p(z) > 0. This completes the proof of our claim.

Lemma 2.2.5 Let

m

c(z) = Z cj?’

—m

be a polynomial which has zeros only in (—oo,0) with real coefficients ¢; and ¢; = c_;. Then

there is a polynomial p of degree m such that
p(z) = c(e™), with = sin*(w/2)
and p(x) has only zeros in [1,00).
Proof: Clearly, ¢(z) can be written as
- 1
c(z )—CO+ZQC] cos(jw) :Zd] <Z+ /Z)
Jj=1 j=0
for some real coefficients dg, - - - , d,,. Then we define
r) =Y d;j(1—2z)
=0

Then we can see that ¢(z) = p(1/2 — (2 + 1/2)/4) = p(sin2(w/2)). If p(x) = 0 with z =

1/2 —(2+1/2)/4 for z € (—00,0), then z + 1/z < —2 implies that z > 1. O
A major step in the computation of orthonormal scaling function vector is to factorize
the Grammian matrix G(z) which will be discussed in the following section. This finishes the

construction steps for compactly supported orthonormal scaling functions based on B-splines.

2.3 RIESZ-FEJER FACTORIZATION OF LAURENT POLYNOMIAL MATRICES

2.3.1 CONSTRUCTIVE RIESZ-FEJER FACTORIZATION

Let M(z) be a matrix of size r x r with Laurent polynomial entries M;;(z) = >, _, mij x2"
for 4,5 = 1,--- ,r. Here m;;, = 0 except for finitely many k. Let M(z)* = M(1/z)" stand
for the transpose and conjugate. Suppose that M(z) is positive semi-definite in the sense

that for any vector x = (x1,---,,)T of size r,

x! M(z)x >0



28

for any z € C with |z| = 1. The well-known Riesz-Féjer factorization of Laurent polynomial

matrices is the following

Theorem 2.3.1 Fizr > 1. Suppose that M(z) is positive semi-definite. Then there exists a

Laurent polynomial matriz N(z) of size r X r such that

Proof: We only consider the case r > 1. For r = 1, see a proof in [12]. First of all, we
use LU decomposition and Riesz-Féjer factorization for » = 1 to find a matrix A(z) of size

r X r with rational Laurent polynomial entries such that

We now use several unitary matrix transform to cancel the poles in the entries of A(z). Let

a be a real number which is a pole of order n in one of entries of A(z) and the pole of highest
1—za

order in A(z). Expand A(z) in terms of . That is,

Z—a

a6 = (E20) (r+ (£22) @uta)).

where R, is the residual matrix of size r x r. Similarly we have

A(z) = (f__z"a)m (Rl/a + (Z:?) Ql/a(z))

Since A(z)*A(z) has no nonzero pole, we conclude that R! Ry/, = 0. Let P be the orthogonal

projection onto the column space of R, satistying PR, = R,, PR/, = 0. It is easy to check

that

E(z):I—PJr(lz_a)P

— za

is a unitary matrix. Then

Be)AG) = (2 ) (R =P + (775 ) Paute) ).

zZ—a 1—za
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That is, the pole at z = a is reduced by one. Next we claim that F(z)A(z) does not increase

the pole at z = 1/a. Indeed,

E(2)A(z) =E(2) ( zoa )m (Rl/a + (1 — m) Ql/a(z)>

1—2a z—a
) (12__Zaa)m (Ruo + PG+ (Z‘_f) (I - P)Qua())

which shows that the pole at z = 1/a remains the same. Next we consider a pole which is
a complex number. Let a be a nonzero complex number which is a pole of order n in one
entry of A(z), where n is the highest order of pole at z = a. It follows that a is also a pole

of order n. As above, we have
Az) = (12__2:) (Ra 4 (12__;1) Qa(z)>
— " 1—
o= (222) (e (2) )

Since A(1/z)"A(z) is a matrix with polynomial entries, we know that R} Ry, = 0. Since

Im(a) # 0, we use the following unitary matrix

E(z):Q1+<Z_a N z—d)Q2+(z—a z—&)QB

l—z2a 1-—za 1—zal-—za

with Q1 + 2Q9 + @3 = I to cancel the pole at z = a and z = 1/a. The proof of E(z) is a
unitary matrix is given in Lemma 2.3.2. Here, ()1, )2, Y3 are scalar matrices which satisfy

the following property:
(Q1+1iMQ2) Ry =0 and (Q3 + iAQ2) Ry/q =0

with A = 2Im(a)/(1 — |a|?) # 0. A constructive method to find Qy, Q> and Q3 is given in the

proof of Lemma 2.3.3. It follows that in the neighborhood of z = a,

zZ—a Z—a+a—a

l—za 1—(z—a)a—|af?
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and hence,

zZ—a 2a

BAE = (L22) {ar+ S5 aun,

Z—a

+ ( z—a> (Ql@a(z) + Q2R + 1

1—za

- (2)2(555) @o)
() s ()0
-(5=29)" wo

for a matrix R(z) with rational polynomial entries which is analytic at z = a. Similar for

QsFa)

— za

z = a. However, in a neighborhood of z = 1/a, we have

z—a z—sts—a 1
1—zdzl—az—z(&—a) _a+0(|1—az\)
and
1 s —a 1 1—-az
E(z)A(z)z{Q1+aQ2+ (1_m) (@2 + —Qs) + O(| —— |>}

(22 (Rt (A22) Quate)

z—a\" 1
= ( ) {(Ql + 5Q2)Rl/a

1—za

1—za

zZa Z—a

+ (f__ - ) (@ + Qo) Rujat ( ) (@1t 5 @)Qua(2)

+ e ka0

() (o ()

for some matrices R(z) and @Q(z) with rational polynomial entries. Here we have used the

fact that

(Q2 + %Q:&) Ry = 0.
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This shows that the pole at z = 1/a is not increased after the multiplication of E(z) to A(z).
Similar for z = 1/a.
We therefore use these transforms to eliminate all the poles in A(z). Let C(z) be the

product of all unitary transforms. Then

with N(z) := C(2)A(z) which has no pole and hence N(z) is the desirable Laurent polyno-

mial matrix. O

Lemma 2.3.2 Let a be a compler number with nonzero imaginary part Im(a). And let

Q1, Qa, Q3 be three scalar matrices such that Q1 + 2Q2 + Q3 = I and (Q1 + iAQ2) (@3 +
iNQ2)T = I, where A = 2Im(a)/(1 — |a|*) # 0. Then

E(z):Q1+<2_a N z—&)Q2+(z—a z—d) 0

l—z2a 1-—za 1—zal-—za

15 a unitary matriz.

Proof: Let
T(z)=(z—a)(z—1/a)(z—a)(z—1/a) (E(z)*E(z) — I)

be a polynomial matrix of degree at most 4. It is clear that T'(z) is equal to zero at z =

a,1/a,a,1/a. That is, T'(z) has four distinct zeros. Note that

T(1)=1—-a)(1-1/a)(1—a) (1 —1/a) (Q1 +2Q2+ Qs)" (Q1 +2Q2 +Q3) — ) = 0.

It follows that polynomial T'(z) of degree 4 has 5 distinct zeros. That is, T'(z) = 0 or E(z)

is a unitary matrix. O

Lemma 2.3.3 Suppose that X\ is a nonzero real number and W is a linear subspace of CV.

Then there exist N X N matrices Q1,Q2, Q3 with real entries such that

(1) Q1 +2Q2 + Q3 =1;
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(2) (Q +iXQ2)w = 0 for all w € W;
(3) (Qz —iAQ2)v =0 for allv € W.

Proof: Without loss of generality, we may assume that W # {0}. Let B be a matrix
whose columns form an orthonormal basis for W+. It follows that the standard £% norm || B||,

of B satisfies || Bl < 1, where || B|| = maxz|,=1 || Bz||2. Thus, the following matrix

I =LB"B

1-X

-1
1+ B'B 1

is invertible. Hence, the following matrix equation

I BB \i i

= B
_ 14X 1=\
1+§\z’BTB [

(X, Y]

has a solution (X,Y). In fact, Y = X and

i S
B-X XB"B =0. 2.28
1+ N Uy (228)
Define
1. = - 1 5 o

We claim that these matrices ()1, (02, 3 satisfy the properties mentioned in Lemma 2.3.3

We only need to prove (2) and (3). It is clear that
(@1 +iXQ)w=XB"w=0, YweW

and

(Q3 — iNQ2)B =B — (1 + %) XB'B + %XBTB
7 7

1 1
A i
by (2.28). It follows that (Q3 —i\Qz) v = 0 for all v € W+ since B contains the orthonormal

basis for W=. 0
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2.3.2 A COMPUTATIONAL METHOD FOR THE MATRIX RIESZ-FEJER FACTORIZATION

Let 71, 72,73 be the three compactly supported functions defined in the previous section.
Since the determinant of the Grammian matrix G(z) associated with T' = (1, v9,73)7 is
a nonzero monomial, it can be factored into G(z) = B(z)B(z)* with invertible polynomial
matrix B(z), where B(z)* stands for the transpose and conjugate of B(z). In this section we
discuss a computational method for the matrix factorization. Although the method ([23]) in
subsection 2.3.1 is constructive, it requires a technique to factor a positive definite Hermitian
matrix into matrices with rational Laurent polynomials, a method to identify the location of
poles, an expansion of the rational entries into a special format, and construction of unitary
matrices to cancel these poles. It is really not an easy task. To simplify the factorization, we
describe a straightforward computational method to do such factorizations.

The basic ideas are as follows. Let A be a bi-infinite matrix with entries A;; = ¢;_;, where
{c;} is a finite sequence. Let x be a bi-infinite sequence. Then y = Az is another bi-infinite

sequence. Formally, the discrete Fourier transform of y can be given by
Y() =) ye = Aw)X(w)
J

with X (w) = Z rre” ™ and A(w) = Z cye” @ This is an identification of the bi-infinite
matrix A and kLaurent polynomial A(alj) If A(w) is symmetric, ie., A(—w) = A(w) and
positive, we know that it can be factored into a polynomial B in e~ such that A(w) =
B(w)B(—w) by Riesz-Féjer factorization. Then the matrix .4 can be factored into a product
of two matrices BB, where B is a lower-trangular bi-infinite matrix. This is indeed the case
as discussed in [32].
For a positive definite Laurent polynomial matrix M (w) of size r x r, we write it as
P
M(w) = Z mye” "k
k=-p
with r x r matrix coefficients my. For simplicity, we assume that m; are matrices with real

entries. Then we can identify M (w) with a bi-infinite block matrix M = [M,;] with

—00<1,j <00
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M;; = m;_j. When M(w) = N(w)N(—w) with N(w) = >F_,nee”™, M = NNT with a
bi-infinite matrix N. The converse is also true.
Our computational method is to compute the Cholesky decomposition of a central section

My = [My],; j<, of the bi-infinite matrix M with £ > 1 being an integer. That is, let
T
[Mijhgi,jge = NN,
with lower triangular matrix N, = [afj]lgmgﬂ. Let

0t
Ny = [aij]r(lifl)ﬂéi,jér@a

L _ 1.0 .
m =), s,
and define Ny(w) =>"7_, nte~*« then Ny(w) converges to N(w) as £ — +oo. (See [18] for
a proof.)
Example 2.3.4

14+1/z 1
is a Hermitian and positive definite matriz. Then M(w) = mo + myz + m_11/z with three
matrices m_y, mg, my of size 2 X 2. Let M be of size of 20 x 20 with mqy on the diagonal
blocks my on the upper diagonal blocks, and m_1 on the sub-diagonal blocks. The remaining

entries are zero. Using computer software MATLAB, we find

2.64575131106459 0
Ne(w) =

0.377964473009  0.9258200997725

0.3779644730092 0.9258200997725
+ z.

0 0

It can be verified by using MAPLE to see that M(w) = Ny(w)No(—w)T + o(1) with o(1) =
1079,

Our main result in this section is the following :
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Theorem 2.3.5 Let M be a bi-infinite matriz associated with a positive definite Hermatian

matriz M(w) and let Ny be the Cholesky factorization of the central section M,. Then the

block entry [aij]r(g,1)+1§i7j§rg converges to mg exponentially fast. Similar for the other block

entries.

We refer the reader to [18] for the detailed proof of convergence and more numerical

examples.

2.4 CONSTRUCTION OF THE ASSOCIATED WAVELETS

For the Grammian matrix G(z) associated with vy, v, 73, let

be the Riesz-Fejér factorization as discussed in the previous section. Letting

®(z) = B(2)"'T(2),

(2.29)

(2.30)

we know that the Grammian matrix of ® is B(z)7'G(z) (B(2)™1)* which is the identity

matrix and hence ® = (¢, ¢, ¢3) is an orthonormal refinable function vector. In this section

we discuss how to compute the associated wavelets. We begin with

Lemma 2.4.1 ® is refinable. That is, letting

there exist matriz coefficients py of size 3 X 6 such that

~

®(z) =Y pp®(x—k) or B(w)=P(z) d(w),

keZ

where P(z) is a matriz mask of size 3 X 6.

Proof: Indeed, since I' is refinable,

I'(2w) = C(2) T(w)

®(z) = V2(1(27), d2(21), $3(2), ¢1(22 — 1), d2(2x — 1), 5(22 — 1)),

(2.31)

(2.32)
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for a matrix mask C(z) of size 3 x 3. If we denote by

D(x) = (11(22),72(22), 73(22), 11(22 — 1), 72(22 — 1), 75(2x — 1))", (2.33)
the dilation relation of I’ can be rewritten in terms of I'. That is, by (2.32),

D(z) = T2z — k)

keZ

= Z cx I'(2x — k) + Z 1 I'(2e —k—1)
ke2Z ke2Z

=> & T(x—k).
keZ

~

In terms of the Fourier transform, I'(z) = C(2)I'(z) with matrix C(z) of size 3 x 6.
By (2.30), ®(z) = >_,cy beI'(z — k) for matrix coefficients by, of size 3 x 3. It follows that
O(22) =) bT2r—k), ®Qr—1)=» hT(Q2w—k-1)
keZ keZ

and

®(x) = bpI(z—k).

~

In terms of the Fourier transform, ®(z) = B(z)T(z). Note that B(z) is invertible because

that both ® and T generates the same space §;. We have

Therefore, we have

which completes the proof. O

Next we have the relation among matrix coefficients pj in (2.31):

ZpipiT = I3xs, (2.34)

iE€EZ



since the dilation equation (2.31) and the orthonormality of ¢;,i = 1,2, 3 implies
I35 :/ ®(z)®(x)" dz
R
N / > pi®(w—i) Y (B(x— ) p] do
R ez JET.

1,JEL

= Z i+ 02i,25l6x6 'p]T

ijEL

=> pip;-

Since ® is of compact support, we may assume that only m + 1 terms pg, p1, - -

nonzero matrix coefficients. Then, we further have

ZpipiT_k =0, fork=1,---,m.
i=k

Indeed, for k =1,---,m we have
0 :/ O(z)®(z — k)T dw
R

_ / S (e —i) - S (@@ — )7y de

1€Z JEZ

=D pi /sz)(g; —i)(®(x — j — k)"dx - p]

Z?]:1

m
T
= E i+ 02i 2512k 66 Dy
ij=1

=> pinl s
i=k

In particular, we have

Pmpy =0

37

©, Pm are

(2.35)

(2.36)

We now use induction on m to show how to construct three compactly supported

orthonormal wavelets 1, 99,93 € S; such that letting

W = span{¢s (- — i), Yo = J), ¥s(- — k), i, j, k € Z},
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W is the orthogonal completement of & in §;. That is, §; = § & W. More precisely, let
U = (31, 109,13)7. (2.31) and the Fourier transform of ¥ give
o(w) =P(2) B(w), T(w)= Q) ®w)

where Q(2) = >, ¢;%" is a Laurent polynomial matrix of size 3 x 6. The orthogonal com-

pletementness and the orthonormality of 11, %9, 13 imply that the matrix

is a unitary matrix. That is, ()(z) is an unitary extension of P(z).

It is trivial when m = 0. Indeed, in this case, P(z) = pp is a scalar matrix. We simply
choose Q(z) to be a scalar matrix which is an orthonormal extension of pg. Assume that for
m

m > 1, when P,,(z) = Zpkzk is an orthonormal matrix of 3 x 6, we can find @,,(z) such

that =
Pn(2)
Qm(2)
m+1
is unitary. We now consider the case of m + 1: P,,.1(z Z pez® satisfying orthonormal
k=0

properties in (3.4) and (3.5). In particular, (3.6) implies that there exists a unitary matrix
Uy of size 6 x 6 such that py Uy = [ngg, 1315] and py,.1 Uy = [ﬁfnﬂ, ngg], where 7} is of size

3 x 3 and the same for pf, . Writing p U, = [ﬁ%, ]’52] with p¢ and p? being of size 3 x 3.

Then

m+1

m+1 Zﬁ%zka Zpkz ]
Let
U1 — é[3><3 O3><3

O3><3 [3><3

Then it follows that
P (2)UoUy = | Y B2, Zﬁ%z’“]
k=0 k=0

M-

[ﬁg+1> ZBJZ;] <

i

0
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That is, ]Bm(z) := P41(2) Up Uy has only m + 1 terms and is unitary. By induction, we can

find an unitary extension Q,,(z) such that

Pm+1(Z)U0U1
is unitary. Clearly,
Pm+i(2) U() U1 Ui“Ué“ _ ~Pm+1(2)

is also unitary. It follows that Qui1(2) := Qm(z) U3 U is an unitary extension of P, ().

This completes the induction procedure. Therefore, we conclude the following :

Theorem 2.4.2 Given refinable orthonormal functions ¢1, ¢o, @3, we can construct three
associated wavelets 1y, V2, V3 such that ;(x—k) is orthogonal to ¢;(x—m) for alli,j =1,2,3
and m € Z, ¥;(x — k)’s are orthonormal among each other for alli = 1,2,3 and k € Z,
and the linear span of V;(x — k),i = 1,2,3 and k € Z forms a subspace of S which is an

orthogonal complement of S in S.

2.5 EXAMPLES

In this section we want to provide a few examples based on the construction method in

the previous sections. Recall that the B-spline function of order m, N,,(z) has the mask

A(2) = Ao(22) + 2A,(2?) = 2 (1 ; Z)m

Thus 71 () = Npp(2x),v2(x) = Nyp(22 — 1). Then we have
Non(w) = Ag(2) A1 (w) + A1(2) Fo(w).

Our computation to find a scaling function vector ®(x) and coreesponding wavelet functon

vector W(x) can be organized in the following four major steps:

Step 1. Computation of M,,(z).
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First we find By(z), By(z) satisfying the equation

as in Lemma 2.2.3. And then we define a new spline function M,,(x) in terms of the Fourier

transform according to (2.21), i.e.,

Step 2. Computation of ~v3(z).
We have to begin with the computation of the determinant of G(z), which is the Gram-

mian matrix of {y1(z),72(x),v3(z)}. The formula of det(G(z)) is obtained as
4det G(2?) = D(2)r(2)r(1/2) + D(=2)r(—2)r(—1/2),

where
D(z) = %(a(zQ) b)) (a(2)? — 2b(2)%).

The formula for a(z) and b(z) are given as follows,

a(z) =Y / N, (22) Ny, (22 — k) doz,

kEeZ

b(z) = / N, (22) Ny, (22 — 2k — 1) d.

kEeZ

Then by Lemma 2.2.4 we find a polynomial p(z) > 0 such that

D(2)p(z) + D(—2)p(—2) = 1.
A straightforward computation (cf. [32]) gives r(z) = > ag2* such that p(z) = r(2)r(1/2),
and so we get v3(z) = > apM,,(2x — k).

Step 3. Computation of ¢1, o, @3.
We need to find the entries for the Grammian matrix G(z) using 71, 72,73. Then by

using the method in section 3.2 we factorize into G(z) = B(z)B(z)* with the help from
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the computer software MAPLE. Therefore we can define the orthonormal scaling vector

® = (¢, P, d3)T in terms of the Fourier transform :

d(w) = B(z) ' T(w).

Step 4. Computation of the associated wavelets 11, 19, V3.

In this step, we follow Lemma 2.4.1 so that we have the dilation relation for ¢, ¢, @3 :

where P(z) = B(z)"'C(z) B(z)™ . Then by induction on m, i.c., steps in the proof of
Theorem 2.4.2 we find the unitary extension Q(z) of P(z). Hence we define 1)y, 15, 13 in the

Fourier transform:

where ¥V = (¢1>¢2>¢3)T-

Following steps as the above, we obtain three orthonormal scaling functions ¢, ¢s, ¢3 and

the corresponding wavelet functions vy, ¥, 13 for m = 2, 3,4 described in next subsections.

2.5.1 m =2 : LINEAR B-SPLINE CASE

Using the linear B-spline function, Step 1 - Step 3 above gives the following three scaling

functions
o1(z) =V/3 Ny(2),

V165 4v/33 (2 + V/5) 4v/33 (2 — V/5)

2 3
¢3(x) = a; No(2z — j) + > B No(dx — 2k)
=0 k=0
where the coefficients os and ;s in ¢3(x) are defined as follows:
V231 (3+42V5) V231 (3+2V5)

“o=" 54 bo = 231

V231 3 V231 (4 —V5) (2 - V5)
ap = ——, 1=

7 231 ’



V231 (3-2V5) _ V231(13+6V/5)
G2 = 154 ’ o= 231 )
V231 (4+V5) (2 V5)
T 231 ’

The first wavelet function associated with the above scaling functions are obtained as
3 3 3
Yi(r) = V261 (20— j) + > BvV2¢2 (20 — k) + Y 1v2 ¢5 (2w — 1)
=0 k=0 1=0
where the coefficients a’s, 5.5 and v;s are defined as follows:

oy = —0.000458857008, By = —0.000732123098, ~o = —0.00439249500,
o = 0.008233854626, 31 = 0.004743860499, v = 0.01293269968,
s = 0.03396060301, B2 = 0.09061226061, vo = 0.5436434207,

as = —0.6093982729, B3 = 0.03009628816, 3 = 0.5679245459.

Similarly, the second wavelet function has the form of
3 3 2
Uo(r) =D aivV261 (20— 5) + > B2 (20 — k) + Y 1vV2¢5 (20 — 1)
=0 k=0 1=0
with the coefficients a’s, 3,5 and ;s defined as follows:

ap = —0.01131064902, Bo = —0.01804655319, 7o = —0.1082733148,
a; = 0.2029613542, B = 0.1169343393, ~v1 = 0.3187860801,
ay = —0.0001241837662, By = 0.8977104423, v = —0.1590117827,

ag = 0.002228387187, B3 = —0.01256974349.

The third wavelet function is given by

Y3(x) = Zaj\/ﬁ(bl (22 —j) + Zﬁk\@@ (2z — k) + Z”ﬂ\/ﬁ% (22 —1)

42



with /s, ;s and 7;s defined as follows:

ap = 0.0009518791574, [y = 0.001518757925,  ~ =
ap = —0.01708077780, [y = —0.009840934872, v, =
ay = 0.007635145592, By = —0.06338384300, v, =
ag = —0.1370071236, (B35 = —0.8697092234, V3 =

0.009112042237,
—0.02682833007,
—0.3802819728,

0.2737702148.
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The graphs for three linear B-spline scaling functions and wavelet functions can be seen

from Fig. 2.1. For the application, the masks associated with scaling functions ¢1, ¢2, ¢3 and

wavelet functions 1, 19, 13 are also provided as

P(z):ijzj and Q(z

J=0

where the matrix coefficients p;-s and q}s are as follows :

Po =

qo

q1 =

0.5303300858

—0.846628498

—0.025088411

0.0

0.0

—0.000275454

—0.000458857

—0.011310649

0.0009518791

0.0339606030

—0.000124183

0.0076351455

0.09401789265

0.06338685030

—0.0400294773

0.0

0.0

—0.408778340

—0.000732123

—0.018046553

0.0015187579

0.0906122606

0.8977104423

—0.063383843

0.5640760745

0.3803000119

0.5303300858

0.2904419884

—0.240163545 0.4501932763

0.0

0.0

0.0473162416

—0.004392495

—0.108273314

0.0091120422

0.5436434207

—0.159011782

—0.380281972

0.0

0.0

0.0049428373

0.0082338546

0.2029613542

—0.017080777

—0.609398272

0.0022283871

—0.137007123

1
)= g7
=0

—0.332383539

—0.224092936

0.2593747642

0.0

0.0

—0.027881239

0.0047438604

0.1169343393

—0.009840934

0.0300962881

—0.012569743

—0.869709223

0.0

0.0

0.5679245459

0.0

0.0

0.7071067810

0.0129326996

0.3187860801

—0.026828330

0.0

0.2737702148
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Figure 2.1. The scaling functions ¢1, ¢, ¢3 in the left column and the

asociated wavelet functions 11,19, %3 in the right column with the linear

B-spline function Na(x) on the top.
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2.5.2 m =3 : QUADRATIC B-SPLINE CASE

Now we use the quadratic B-spline function N3 to obtain the following scaling functions.

The same computation algorithm gives the first scaling function ¢; which has the form of

M-

13
$1(x) =D a;N3(2z — j) + Y BNs(dw — k)
k=4

Jj=0

where s and ;s defined as follows:

op = 1.912780893, B4 = —0.2493006029, B = 0.01320417254,
o; =0, Bs = —0.08310020090, 11 = 0.004401390844,
g = 0.1423331085, Bs = —0.04069437830, 12 = 0.0004398176573,

az = —0.07936182709, Br = —0.01356479276, (13 = 0.0001466058857,
oy = —0.01604382797, B = 0.07955030613,
as = —0.0005827378251, [y = 0.02651676869.

Similarily ¢, is obtained as

5 13

$o(x) =Y a;N3(2x — j) + Y BuNs(4z — k)

=0 k=4
with os and ;s defined as follows:

oy = —1.357081867, By = —4.443679097, (1o = 0.02245652519,
o = 4.031609464, Bs = 1.481226365, B11 = 0.007485508396,
g = 1.039045691, Bs = —0.7253602925, (12 = 0.0007492812684,
s = —0.1062083099, 7 — —0.2417867641, B3 = 0.0002497604227,
ay = —0.02726113500, [g = 0.1136754828,
as = —0.00100088449, [y = 0.03789182756.

Finally the third scaling function has obtained as

5

¢3(x) =Y a;N3(2x — j)+ Y BeNs(4z — k)

J=0
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with ;s and (s defined as follows:

ap = 2.444184403, By = —3.273033858, [ = 0.2682118763,

a1 = —1.614417716, B = —1.091011285, [ = 0.08940395872,

as = —0.3295492918, 3, = —0.5342709824, Bs = 0.005554086345,

a3 = —0.008453078355, 5 = —0.1780903274, [y = 0.001851362115,

g = 0.0006435488021 B, = 1.625509509,  B1o = —0.0005359258598,
as = 0.00002549272240 G5 = 0.5418365024, By, = —0.0001786419532,

P12 = —0.00001837002370.

Using the unitary extension algorithm, we have the wavelet functions associated with the

above scaling functions. The first wavelet function is obtained as
5 5 5
Py (x) = Z a;V2¢, (21 — j) + Z BiV2¢y (20 — k) + Z V263 (20 — 1)
=0 k=0 1=0
where the coefficients o’s, 35 and 7;s are given by:

ap = —0.0003062253733, By = —0.0009007471920, ~o = 0,

ar = 0.01246118727, B, = 0.01113491465, v = 0.001246236311,
as = —0.05420976520, 3> = 0.1380902192, vy = —0.01548641273,
az = —0.2681617806, 5 = —0.5672682747,  ~; = —0.1903506842,

oy = 0, By = —0.5276284620, 4 = —0.4716883893,

a5 = 0.08569854953, B5 = —0.1210110593, v5 = —0.1570470319.

The second wavelet function is

Pa(z) = ZO@'\@% (22 —j) + Zﬁk\@@ (2z — k) + Z’nﬂ% (22 —1)
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with /s, ;s and 7;s defined as follows:

ap =0, Bo = —0.0004330240360, ~y = 0,

ap = 0.005162474047, 3 = 0.004781085640, v1 = 0.0005879009950,
ag = —0.02259767455, [y = 0.05676958760, vo = —0.006599104846,
ag = —0.1085045180, B3 = —0.2322047695, v3 = —0.07833780565,

ay = —0.03976697815, B4 = 0.7119356252, va4 = —0.4966254880,

as = —0.2307637715, (35 = 0.3258511211, v5 = —0.09920870542.

Finally the third wavelet function has the form
5 5 5
Ys(r) = V201 (20— §) + Y BiV202 (20 — k) + > V205 (22 — 1)
=0 k=0 1=0
where a’s, 3.5 and v;s defined as follows:

ap =0, Bo = —0.0001599180187, ~y =0,

ap = 0.001792952322,  B; = 0.001685246499, ~v1 = 0.0002171148813,
ay = —0.007203042950, B2 = 0.02075884756, vo = —0.002320509445,
ag = —0.05758550293, (3 = —0.09736113015, v3 = —0.02872173604,

ay = 0.09983056480, B4 = 0.1948900260, va4 = —0.1888528064,

a5 = 0.2573657082, Bs = —0.3634145170, v5 = 0.8390259756.

The graphs for three quadratic B-spline scaling and wavelet functions can be seen from

Fig. 4.2. And the masks associated with scaling functions ¢1, ¢2, ¢35 and wavelet functions
Y1, ¢, 13 are ) )
P(z)=) p;7 and Q(z) =) ¢;?
§=0 §=0



where the matrix coefficients p;-s and q}s are as follows :

Po

p1

D2

qo

q1

q2

0.3552913428

—0.252072488

—0.891722034

0.0020893579

0.002453825

0.0003609633

0.0000202218

0.0000398405

0.0

—0.000306225

0.0

0.0

—0.054209765

—0.022597674

—0.007203042

0.0

—0.039766978

0.0998305648

0.2516129760

—0.178514647

0.1301621724

—0.045619592

—0.193477010

0.0489391883

0.0023289399

0.0039729864

0.0000993182

—0.000900747

—0.000433024

—0.000159918

0.138090219

0.056769587

0.020758847

—0.527628462

0.7119356252

0.1948900260

—0.0154864127

—0.0065991048

—0.0023205094

0.0 0.8027328340

0.0 0.1793314476

0.0 0.3279007596

—0.158795175

—0.664386546

0.1673889663

0.0079844069

0.0145016142

—0.000700788

0.0 0.0124611872

0.0 0.0051624740

0.0 0.0017929523

—0.471688389

—0.496625488

—0.188852806

0.0146786383

0.0407356939

—0.007003601

—0.000321256

—0.000540177

0.0000116601

—0.268161780

—0.108504518

—0.057585502

0.0856985495

—0.230763771

0.2573657082

—0.050135660 —0.368667639

0.5659003882  0.2615627177

—0.194119464 —0.108795722

—0.034351855

0.0088201391

0.0004210025

0.0007155982

—0.000017589

0.0111349146 0.0012462363

0.0047810856  0.0005879009

0.0016852464 0.0002171148

—0.567268274
—0.232204769

—0.097361130

—0.121011059

0.3258511211

—0.007900767  0.0001620848

—0.043087136

0.0176140477

0.0008752574

0.0014886743

—0.000037064

—0.190350684

—0.078337805

—0.028721736

—0.157047031

—0.099208705

—0.363414517  0.8390259756




Figure 2.2. The scaling functions ¢1, ¢, ¢3 in the left column and the
asociated wavelet functions 1, 12,3 in the right column with the quadratic

B-spline function N3(x) on the top.
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2.5.3 m =4 : CUBIC B-SPLINE CASE

90

Finally, using the cubic B-spline function, N, gives the following scaling functions :

¢1(x) =

]~

16

7=0 k=4

with the coeffcients ;s and ;s defined as follows:

ap = 2.047361858,

a; =0,

g = —0.1624533715,

az = 0.4546458474,

ay = 0.02093253113,

as = —0.01491339515,
ag = —0.0004199338466,

a7 = 0.00006724572218,

By = —0.005761704746,
5 = —0.004609363797,
B = —0.08308449674,
B = —0.06554572464,
Bs = —0.3256052423,
By = —0.2473750490,

Bio = —0.06674323113,

B = —0.003919575091.

a;N3(2z — j) + Z BrN3(4x — k)

Bi2 = 0.008672283344,
B3 = 0.007721741696,
Biy = 0.002164408424,
B15 = 0.0001871784003,

B = 0.00004813776044,

7 16
$a(x) =Y a;N3(2x — j) + Y BeNs(4z — k)
j=0 k=4

with the coeffcients ;s and ;s defined as follows:

o = —1.422340146,

a1 = 3.133241228,

g = —2.155096355,

as = 4.847978891,

ay = 0.1818024290,

a5 = —0.08830568379,
ag = —0.002265414769,

a7 = 0.00009356915410,

B4 = —0.06019396928,
Bs = —0.04815517542,
Bs = —0.8680044995,
B7 = —0.6847725646,
Os = —3.402501408,
By = —2.585046614,

Bro = —0.7091376490,

B11 = —0.05030079621.

Bia = 0.04411863502,
15 = 0.04535506727,

Brs = 0.01271778136,

B15 = 0.001103211630,

P16 = 0.0002837193665,



6 16
$3(x) = a;N5(2x — j) + Y B Ns(dw — k)
j=0 k=0

with the coeffcients s and ;s defined as follows:

ap = 0.3708734612, By = 0.1798049852, By = —2.601033845,
ar = —10.86060055, B, = 0.1438439881,  [Bip = —0.7163380139,
ap = —2.688016817, B = 2.592810177, B = —0.05286364210,
as = 4.905934976, Bs = 2.045479345, (1o = 0.03330331585,
oy = 0.1735299986, By =10.10617927, (i3 = 0.03721538111,
as = —0.07265482128, (5 = 7.675847548, B = 0.01043738398,
ag = —0.001805007946, Bs = 1.290416379,  Bi5 = 0.0009068309569,
Br = —0.5028364074, Bi5 = 0.0002332150039.

Bs = —3.377001408,

The wavelet functions associated with the above scaling functions are :
7 7 7
Pi(r) = V201 (20— j)+ Y BV2ps (20— k) + > V203 (22 — 1)
j=1 k=1 =1
with the coefficients s, 8;s and 7;s defined as follows:

ap = —0.00004781192773, (31 = —0.00004079145383, v =0,
ap = —0.002882971910, B2 = —0.006875470238, v2 = —0.00001486447257,

ag = —0.004353343447, B3 = —0.04195913083, v3 = —0.002398832949,

ay = 0.04073890858, B4 = —0.01984221762, v4 = —0.01495097012,
as = 0.05265946433, s = 0.2872416818, v5 = —0.01011081711,
ag = 0.01280299015, B = 0.2278488512, Y6 = —0.6505816899,

a7 = 0.0006264187940, B7 = —0.0006748493335, 7 = —0.6596687075,



o) =Y V201 (20— §) + Y Bv/262 (20 — k) + > V265 (22— 1)
=0 k=0 1=0

ap = —0.00001443062762, [y = —0.00002854942961,

a; = 0.0005203769086,
as = 0.03214154669,
az = 0.05228295363,
oy = —0.2395777302,
a5 = —0.1788855688,
as = 0.06001241338,

a7 = —0.004491933329,

with the coefficients s, ;s and 7;s defined as follows:

B1 = 0.0003647536138,
B2 = 0.07679563964,
B3 = 0.4723191704,

By = 0.7402831469,

s = 0.03649664622,
Bs = —0.04775755830,

Bz = 0.004839220159,

Yo =0,

v1 = —0.00001002001414,
Y2 = 0.0001355920316,

s = 002678216224,

v4 = 0.1683325379,

v5 = 0.2938945458,

v6 = —0.08421641470,

v7 = —0.007479139119,

Y3(x) = ZO@'\@% (22 —j) + Zﬁk\@@ (2z — k) + Z’nﬂ% (22 —1)

with the coefficients s, 5; s and 7;s defined as follows:

ap = —0.00004205017244, (1 = —0.00003037744814, v =0,

s = —0.002674936735,
az = —0.004184674332,
au = 0.03047580223,
as = 0.03538338810,
ag = —0.02820551623,

a7 = 0.0004966118760,

By = —0.006408569926,
B3 = —0.03921648320,
By = —0.03648961583,
s = 0.1558149332,

Bs = —0.2200752201,

Bz = —0.0005350067050,

v2 = —0.00001130783746,
v = —0.002234727942,
v4 = —0.01397509120,

v5 = —0.01570116072,

Y6 = —0.6831368125,

v7 = 0.6739835824.
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The graphs of the C? cubic spline scaling functions and associated wavelet functions can
be seen from Figure 4.3. And for the applicants, the masks associated with scaling functions

1, P2, 3 and wavelet functions 1, 19, 13 are providded in the following:



3 3
P(z) =) piz/ and Q(z) =) ¢;7’
j=0 Jj=0

where the matrix coefficients p;-s and q}s are as follows :

p2 =

p3 =

qo =

q1 =

0.2676276275

0.8400785659

0.197299666

0.2676276275

0.8400785659

0.197299666

0.0089114979

0.072061128

0.064631440

—0.000063062

—0.000110162

—0.000020402

0.0

—0.000014430

0.0

—0.002882971

0.0321415466

—0.002674936

—0.1323568653

0.02826010795

0.4819353231

—0.1323568653

0.02826010795

0.4819353231

—0.0078765941

—0.0597016449

—0.0527503132

0.00005158167

0.00009114914

0.00001636063

0.0

—0.0000285494

0.0

—0.0068754702

0.07679563964

—0.0064085699

0.0996048260

0.0613682814

—0.241001568

0.0996048260

0.0613682814

—0.241001568

0.0048407190

0.0369156652

0.0326388593

—0.000031102

—0.000049567

0.0

0.0 —0.000047811

0.0 0.0005203769

0.0 —0.000042050

—0.000014864

0.0001355920

—0.000011307

—0.049091354

—0.302428179

—0.230491161

—0.049091354

—0.302428179

—0.230491161

—0.000455648

—0.005030108

—0.004778213

0.0

0.0000171108

0.0

—0.004353343

0.0522829536

—0.004184674

0.0003647536

0.0233274267

0.0867358876

0.0338867101

0.0233274267

0.0867358876

0.0338867101

—0.004245095

0.0560255374

0.0907006419

—0.004245095

0.0560255374

0.0907006419

0.0007018501  —0.00078793952

0.0057868995 —0.00571638390

0.0052121789  —0.00499654634

0.0 0.0

0.0 0.0

0.0 0.0

—0.000040791 0.0

—0.000030377 0.0

—0.041959130

0.4723191704

—0.039216483

—0.00001002001

—0.0023988329

0.02678216224

—0.0022347279
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q2 =

q3

0.0407389085

—0.239577730

0.0304758022

0.0128029901

0.0600124133

—0.028205516

—0.019842217

0.7402831469

—0.036489615

0.2278488512

—0.047757558

—0.220075220

—0.014950970

0.1683325379

—0.013975091

—0.650581689

—0.084216414

—0.683136812

0.0526594643

—0.178885568

0.0353833881

0.0006264187

—0.004491933

0.0004966118

0.2872416818

0.0364966462

0.155814933

—0.000674849

0.0048392201

—0.000535006

o4

0.0101108171

0.2938945458

—0.015701160

—0.6596687075

—0.0074791391

0.6739835824
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Figure 2.3. The scaling functions ¢1, ¢, ¢3 in the left column and the

asociated wavelet functions 1, 19,13 in the right column with the cubic

B-spline function N4(x) on the top.
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CHAPTER 3

CONSTRUCTION OF BIORTHOGONAL B-SPLINE MULTIWAVELETS

Fix integers » > 1 and d > 1. Let ¢, -+, ¢, and 51, e ,& be compactly supported

continuous real-valued functions in R% and let

(I):((bla"' 7¢T>T and&f):((fgla'“ 7(,57')71-

A pair of two scaling function vectors ® and  is said to be biorthogonal if
(®(x), ®(x — k)) = doxlrsr

where 0 stands for the Kronecker delta, and I, is the identity matrix. Similarly, a pair of

two wavelet function vectors ¥ and {Iv/, associated with ® and ® respectively, is said to be

biorthogonal if

(@(x), T (x — K)) = (¥(x), B(x — k)) = Ory.

(U(x),¥(x —k)) = Soxlrxr, k€Z

where O,.«, and I, denote zero and idendtity matrices respectively.

The wavelet function vector ¥ corresponding to a multiscaling function vector ® satisfies

the refinement equation:

U(x) =) Qud(2x k),
kezd
where Qx is a r X r coeflicient matrix.

Fix d = 1. And we take the Fourier transform of ® and ¥, we have

KA

B(26) = POB(E), Pl2) = 3 Y Air,
B26) = QO T, Q) = 5 3 Qs

o6



o7

where P(z) and ()(z) are Laurent polynomial matrices called the matriz symbols of ®(x)
and U(z), respectively. Here we note that P(z) and P({) are interchangeable without any
confusion. Similarly, let P(z) and Q(z) be the matrix symbols of ®(z) and W(z), respec-
tively. Then in terms of the matrix symbols P(z), Q(z), P(z), and Q(z), the biorthogonality

conditions are represented as:

P(2)P*(2) + P(—=2)P*(=2) = Ly, (3.1)
P(2)Q*(2) + P(=2)Q"(=2) = O (3:2)
P(2)Q"(2) + P(=2)Q"(=2) = O (3.3)
Q(2)Q"(2) + Q(=2)Q"(=2) = Ipser. (3.4)

Let N,, be the B-spline function whose Fourier transform is

()

For simplicity, we denote NV,, by N. Then we have the mask of NV,

(1+2)m it
, z=c¢e
2

so that it satisfies the following refinement equation:

N(z) = a;N(2z — j), (3.5)

J

where

A)i= Yayel =2 (1’2”)m (3.6)

Let Vi be the space generated by N(z) in the sense that Vy comprises all finite linear

combinations of integer translates of N(z), and define

Vi ={f(2z): feVp}, for j ==£1,£2,---.



o8

It is well known that {V; : j € Z} constitutes a multiresolution approximation. Suppose
that \7j is a dual space of V}, i.e., {\7j : j € Z} constitutes another multiresolution approx-
imation. In this chapter we want to find two scaling function vectors ® = (1, ¢, ¢3)7,

o= (51, 52, 53)T such that @, d generate S, S respectivly, where
VicSCVoand V; C S C Vo

And also we construct corresponding wevelet function vectors U = (11,19, 3)7, U =
(121,1;2,1;3)? That is, letting 7,7 be the spaces generated by U(z), \Tl(x), respectively, it
turns out that S L 7 and S L 7.

3.1 CONSTRUCTION OF REFINABLE FUNCTION VECTORS & AND o

First we begin with putting
¢1(x) = N(2x), ¢o(x) = N2z —1).
From the refinement equation (3.5),
V)= N N (=)
—ZGQ] 20— 2j) + a1 N(2x — 25 — 1)
= Z as;o1(r—j) + Z agjr1¢2(r — ).
J J

We write A(z) in its polyphase form :

where

Then



and so
JRPS 1 ~ 1 ~
31(26) = SN (E) = 3A0(2)61(6) + 541(:)2(6),
32(26) = ZN(€) = ZAo(2)91(6) + 5 A1(2)a(€)

where

0
Then we have Ay(z)Bo(z) + 2A1(2)B1(z) = 1, since

| = (1;Z>mHm(2) 4 (152)7%%(—2)

= A(2)B(z) + A(—2)B(—=2)

= Ag(2?)By(2%) + 22 A1(2?) B1(2%).
So the matrix
Ao(2)  Ai(z)
—zBi(z) By(z)

Pi(z) =

is of determinant 1.
Now we define M € V] in its Fourier transform

—~ ~

M(€) = =2 Bi(2) 61(€) + Bo(=) 62(9).
Since (¢1, gbg)T generates Vi, hence (N, M)T generates Vi. We put

file) = MQ2x),  fo(z) = M(2z - 1),
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(3.11)

(3.12)

(3.13)



then we can see that (¢1, 2, f1, fg)T generates V5.
We now define
¢s(r) = Y a;M (2 - j),
j=—00
with a Laurent polynomial

1 — ;
R(z) = 5 Z a;2,

j=—00

then ¢3 is a function in V5 whose Fourier transform is

~

So we have
(26) = P(2)(§),
where
[ 140(2) LA(z) 0]
P(z)=| 21A4(z)  #iAi(z) 0

—zR(2)B1(2) R(z)By(z) 0

95(26) = R(2)M(€) = —2R(2)B1(2)$1(€) + R(2)Bo(2)ds(£).
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(3.14)

(3.15)

(3.16)

(3.17)

To construct the dual scaling function vector d = (51, 52, %)T we only need to find the

matrix symbol ﬁ(z) satisfying the first biorthogonality condition (3.1):

P(2)P*(2) + P(=2)P*(=2) = I3y3.

The well known Quillen-Suslin’s Theorem guarantees the existence of such dual matrix

symbol P(z). For convenience we state it below.

Theorem 3.1.1 Suppose that a matriz A of size r x | with r < | with entries over R :=

Clz1,- -, 2zs] s unimodular. Then there exists a unimodular matriz U of size | X | over R

such that

AU = [Irxra 07 e 7O]r><l-
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In Theorem 3.1.1, a matrix A is unimodular if the maximal minors of A generate the unit
ideal i.e., letting det(A,) denote a minor of A of size r X r, there exist polynomials ¢,(z) € R

such that

Z co(z)det(A,) = 1.

Here, we note that we work on the case: r = 3,5 = 1,] = 6 in the theorem above. Then
we can easily check that rank([P(z), P(—z2)]) = 3, or [P(z), P(—z)] is of full rank for all

z € C\ {0}. We express P(z), P(z) in polyphase form as follows:

P(z) = po(2*) + 2p1(2%),  P(2) = po(z%) + 2p1(2%).

Then the equation (3.1) is equivalent to

1

a [3><37

po(2%) Po(2%) + 1 (%) pr(2%) = 5

i.e., the search for P(z) is replaced by the search for po(22), py(22). Since

[P P=2) | = | mo(®) mi(z2) | AG),

Iz Isxs . , . .
where A(z) = is invertible, the full rankness of [P(z), P(—z)] is equiva-

2l3y3 —2zl3x3

lent to the full rankness of [po(2?), pi(2?)]. We claim the following lemma.

Lemma 3.1.2 Let A be the matriz [po(2?), p1(2?)] of size 3x 6. Then, A is of full rank, i.e.,
rank(A) = 3 if and only if A is unimodular in C(z).

Proof: The full rankness implies that there exists one minor of size 3 x 3 whose deter-
minant is not equal to zero. Thus all minors of A have no common zeros. By Hilbert-
Nullstellensatz theorem, the maximal minors generate the unit ideal of C(z).

Conversely, A is unimodular implies that 1 can be generated by all minors of A. Hence

at least one of minors is not zero for every z. This implies that A is of full rank. O

Therefore, applying Theorem 3.1.1 to the polyphase matrix A in Lemma 3.1.2 ensures

the existence of a dual matrix symbol P(z).
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We now write

where X (z), X(z) are 2 x 2 polynomial matrices, Y(z),Y (z) are 1 x 2 polynomial matrices
‘7(2) is a 2 x 1 polynomial matrix, and W(z) is a polynomial. Then the first biorthogonality

condition (1.1) which is restated in the above becomes

X(2)X*(2) + X(—2)X*(—=2) = Ioxs, (3.18)
X(2)Y*(2) + X(—2)Y*(=2) = Oay, (3.19)
X(2)Y*(2) + X(—=2)Y*(=2) = O12, (3.20)
YV (2)Y*(2) +Y(—2)Y*(—2) = 1. (3.21)

Theorem 3.1.3 Define
By(2) ZzZB4(2)

X(z) = » Y(2) = | —A(2) Aolz) |-
2By(2) Bi(2) [ ]

For any 2 x 1 Laurent polynomial matrix V and any Laurent polynomial W, if we take R(z)

such that
R(z)+ R(—z2) =1,

then X (2), X (2),Y (2),Y (2) satisfy the above equations in (3.18) — (3.21).

Proof: The straightforward matrix computation gives

XX*(z) = ,
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Therefore, the equations (3.18) — (3.21) hold. O

We define two refinable function vectors ® and @ by

HP £)50), 56 -[P) 30

j=1

~

where &;(O) = (1,1,0)7,®(0) = (1,1,0)T, which are the right eigenvectors of P(1), P(1),

respectively. We study the regularity of & and ® in next section.

3.2 REGULARITY OF SCALING FUNCTION VECTORS

First we recall the following lemma to ensure the uniform convergence of the above infinite

matrix products(See [3] for a proof).

Lemma 3.2.1 The infinite matrixz product H;’;l P(Q%) converges uniformly on any compact

I, 0O

set to a continuous matriz-valued function if and only if P(0) is similar to , where
0 J

the eigenvalues of J are A1, -+, A with [Agp1|, -+ [N <1 for1 <s<r.

Theorem 3.2.2 Let R(z) = 5. And we take V =1[0,0", W = 0. Then P(1), P(1) have a

simple eigenvalue 1, with all other eigenvalues less than 1.

Proof:
From %Bo(22) = B) +QB(_Z), %Bl(ZZ) = B() ;zB(_Z>, we have
By(1)=B(1)+ B(-1)==, Bi(l)=B(1)—B(-1)= % :
Similarly, Ag(2%) = Al2) +2A(_Z>,A1(22) = Al2) —2:1(—2 gives
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Therefore the matrices

[ LA LA o) [ B(1) 1-B(1) 0]
P)=| 1.4)1) 1-401) 0], PO)=]1-B,(1) Bi(1) 0
| —1-Bi(1) §-Bo(1) 0 | | —A(1) A(1) 0
have cigenvalues < 1. O

By Lemma 3.2.1 and Theorem 3.2.2, we see that the two infinite matrix products

[152, P(5) and [T, ﬁ(%) converge uniformly.

]:1 27

Let A*(z) = B(2), i.e.,

then it satisfies

And we construct N by
N =]]AG), (3.22)
then we have the following lemma.

Lemma 3.2.3 Let m be large enough. Then N(w) is a well defined compactly supported L*
function. Furthermore, for any a > 0, N € C*(R) if m is sufficiently large, that is,

. (x+m+1+%log23
m > 1 .
1+ 5log, 3

Proof: Since }”Z’ = }Cosgl and ’1 Z’ = }sin%’ , we have

- 1(2m—1> <1+z>m_1_k (1—2«)’“
2 2

k=0

= 1(2m—1) g

k=0

g m—1—k

COS =
2

€
sin =
2

IN




Similarly we have

| Hin(e7%)| < C {Ps (sin€)

~ofra (1§ (1))}

By applying Lemmas 7.1.1 ~ 7.1.8 in [12], we have

<C(1+¢)) mtm+ g logy Pri(5)

C(1+ [gl)rhm+a(m-Dloss3,

For the last step in the above we have used that P (3) < 3™~ Indeed,

o (1)-3 DG

BH
S L
VR
S
S
—_
N——
VR
—_
|
|
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(3.23)

(3.24)
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from the easy computations :

—2m -1\ = 2m-1 o (2m - 1
;( 3 ):;(27%—1—/{):;%( 3 )

0
2m—1 ~
2m —1 ~
( mk ) _ (1 + 1)2m71.
k=0

Therefore, if we choose m so that —m +m + 1(m —1)log, 3 < —1, then N € L*(R). By
choosing m even larger, i.e., for « > 0, —m +m + %(ﬁz —1)logy3 < —a — 1, we can make
N € C*(R). Finally, the lemma below borrowed from Deslauriers and Dubuc([12], p.176)

proves that N is compactly supported. 0

Lemma 3.2.4 [fT(¢) = ZgiNl Y€ M with ZnNiNl Yo = 1, then [T}, T(277€) is an entire
function of exponential type. In particular, it is the Fourier transform of a distribution with

support in [Ny, Na).

Define
Gi(z) = 4N(22), Golw) = 4N (2w — 1),

or in the Fourier transform,

5O =28 (5). do-2e8 ().

Since
N(@28) = 2A(2) N(§) = (B2 + 2 Bi(39) N(@),
we have
N(©) = 5 Bo(2) 61(6) + 5 2 Ba(2) 0s6) (3.25)
and so
61(2) = Bo(2),(€) + 2 Bu(2) (&) (3.26)

32(26) = 2Bo(2) 6y (€) + Br(2) n(6) (3.27)
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And we define M (z) and ¢s(z) in the Fourier transform,

M(E) = 3 41(2) 61(6) + 5 Ao(2) (), (3.25)
33(2€) = 2](£) = —A1(2)61(€) + Ao(2)(E). (3.29)

Then we have the following

Theorem 3.2.5 Ifm is sufficiently large, then two scaling function vectors {¢1(z), do(x), p3(x)}

and {51 (x), 52(1:), $3(x)} are compactly supported L? functions with high reqularities.

Proof: From the definitions, we see that ¢, ¢, are just dilations of standard B-spline function
N(z). And ¢y, ¢y are dilations of N () which is an L? function by Lemma 3.2.3. We consider

¢3 and 53. Let us recall

30 =~ SBE)E) + 3B)B()

556 = ~A=5)0(5) + A0~ 5)0a(5).
Then we get

o] < 5 BRG] + [ m512)

553(5)' < ]m(—%)@i@] +an-5)55)

Since B(z) is bounded, B;(§) and By(§) are bounded, that is
|BO(§)|7|BI(§)| SKBa \V/£€ [OaQﬂ-])

where K > 0 is a constant. It follows that

§ ~ &
6151(5)’-

Kp o (2 )'+2KB

o1(2 )’ < Kp

Similarly we can find a constant K4 > 0 such that

[Ao ()], [A1(§)] < Ka, VE € [0, 2],
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since A(z) is bounded. So we have

§
2

§
2

|

Therefore, the proof is done. 0

>'+KA ol o

)’ < 2Ky

o

23(5)’ < Ky

3.3 RIESz BAsisS PROPERTY

In this section we show that two refinable function vectors ® = (¢y, ¢, ¢3)7, d =
(51, 52, 53)T are biorthogonal dual to each other. Since N is a standard B-spline function, it
is already known that {V}, : k € Z} constitutes a multiresolution analysis. Let ‘70 be the space
generated by the integer translates of N, and for k € Z, let Vj, = {f(2/z) : f € Vo}. Then it
remains to show that {Vk : k € Z} constitutes another multiresolution approximation.

First we consider the Riesz Basis property of N. According to Daubechies([12]), the Riesz

basis conditon is equivalent to

2

0<Cy <> |N(E+2rl)| <C< o (3.30)
lez
To prove (3.30), we need the following lemma.
Lemma 3.3.1 For any sufficiently large m,
> IN(E + 2rl)N(€ + ZWZ)’ > > 0. (3.31)

lEZ

Proof: We first recall that

oAl = (M) L () e

m

—ig
1+e }Hm(e_if)‘

2

m

= [COS <

2

|Hm(e 7).

For the last equality above we have used a simple computation,

N € _iE
e '3(e'z +e7'3) e '3 QCOS%

2

1+e %
2
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Since the sum of the inequality (3.31) is 2r—periodic, we show that (3.31) holds for £ €

[—m, 7]. Note that from (3.11), we have

Cien it e (=1 ¢
H~ i€ — zgm m 25
ale™) =e 2 ( I > <cos 2>

|3

—1-k k
(an2§> : (3.32)

Indeed,

2
_ m_y m_q_
_ikm " ism N m—1 26\ o 2§ ’
— o5 [ aos > | . i3 cos” = sin® 2
2 k 2 2
k=0

- oy m_y_k k

4 emigm (z sin g) : e’%m(z’)m 2 (mk ) (sin2 g) (C082 g)

In the above we have assumed that m is an even positive integer. Then, the well known

Bezout’s Theorem([12]) implies the uniqueness of such polynomial, i.e., Hz (e %) is equivalent

—1-k k
(sin2 §> .
2

to (3.32). So we have

e[ () )

Since cos? % > 0, sin® % > 0, we have

S

-2
}Hm(e_lf)‘ > |cos = ,
and hence =,
0o 0o m—2 N
i€ ¢ sin 3
H’H~(e 27 ) 21_[ CO8 7 €
j=1 j=1 2

3 1 ™ L
NON©| =TT |eos 5| - TT|Hmte )
j=1 j=1
m m—2
S sin% sin%
=€ €
2 2
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This completes the proof of Lemma 3.3.1. U

By the same argument in the proof of Lemma 3.3.1, we also have that

S ’ﬁ(g n 27Tl)’2 >0y > 0. (3.33)

LEZ

And from Lemma 3.2.3, we have

3 ‘J’A\“f(g n 27rz))2 < Oy (3.34)

lez
Let Vj be the space generated by N(z), i.e., Vo = span{N(z — j) : j € Z}, then by (3.33),

(3.34), the integer translates of N constitute a Riesz basis of Vy. And for k € Z, letting
Ve = {f(2'z) : f € i},

we can show that U V. is dense in L2(R) and ﬂ Vi = {0}. Thus, N generates a multireso-
kEZ keZ
lution analysis of L?(R).

On the other hand, the matrix
- By(2)
Pi(z) := (3.35)
—3A1(2)  340(2)
has a constant determinant. And since (;51, @)T generates i, (Kf , M )T generates Vi. And it
is easy to check that matrices P;(z) and P(z) satisfy
Py(2)P{(2) + Pi(=2) Py (=2) = 1.
If we put
filz) = 4M(20),  folx) = 4M (22 — 1),
then we can see that (51, 52, ]71, f;)T generates ‘72 which is dual to V5. Putting everything

together, we have the following theorm.

Theorem 3.3.2 Let N(x) be a B-spline function of order m with its mask

A2) = Ag(2?) + 241 () = 2 (1 ! z)m.
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and let

A(z) =

N | —

(Bul)+28:2) = 5 (155) Haah e

be a Laurent polynomial, where

B () () (5

k=0

Define a function N (x) in its Fourier transform

~

N(€) =

i)
=1

and define two function vectors ® = (¢1, da, d3)7, ® = (¢1, ba, d3)T by

~

51(20) = SN(O), 52(26) = §eTSR(E), Gu(26) = 5ME(E),

~ ~ ~ ~ A~

51(26) = 2N(E), 0y(26) = 2e EN(E),  0(26) = 20 (),

| —

where

M(€) = —2B1(2)$1(€) + Bo(2)$2(€),

1 = 1. =
M(E) = —541(2)1(€) + 5 40(2)n(6)
Then for sufficiently large m, N(:c) generates a multiresolution analysis, i.e., {‘7] 1 j €
Z} constitutes a multiresolution approximation. Moreover, two scaling function vectors ®, d

generate S,g respectivly, such that
VicSCVyandV, C S C Va,
where Vj, ‘7] are defined as
Vo =span{N(z — k) : k€ Z}, Vi={f(Zx):f eV} forjel

Vo = span{N(z — k) : k€ Z}, V; ={f(2z): f eV} forjeZ
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3.4 MATRIX EXTENSION FOR WAVELET FUNCTION VECTORS

We are now ready to construct two wavelet function vectors ¥ = (11,1, %3)7, U =
(Qzl,iz,gg)T associated with the dual scaling function vectors ® = (¢1, ¢, ¢3)7, o =
(51, 52, %)T that we have constructed in previous sections. To define wavelet functions W, v
we mainly need to find the matrix symbols Q(z), @(z), associated with the matrix symbols

P(z), P(z). That is, we find matrix blocks Q(z), Q(z) such that

P(z) P(-z) Pz)  Q(2)
= Ixe, (3.36)

Q) Q(=2) | | P(=2) Q'(=2)
which is equivalent to the biorthogonality conditions: (3.1)~(3.4).

We rewrite [P(z), P(—z)] and [P(z), P(—z)] in terms of polyphase form. That is, if we

write

P(2) = po(2?) + 2p1(2%), P(2) = Po(2%) + 2P (22),

Q(2) = qo(2") + 21(2*),  Q(2) = Go(2") + 2@ (*),

then (3.36) is equvalent to

P*(z) O(2) ] = §[6><67 (3.37)

where

P(2) = [po(z*), p1(z*)],  P(2) = [Po(=*), P1(=")],
Q=) = a3, 11D, B(2) = [(=2), @ ().

For the case r > 1, the univariate matrix extension is treated in [33], where r is the
number of rows of the matrices P(z),ﬁ(z) For r = 1, several constructive methods for
bivariate matrix extensions associated with box spline biorthogonal wavelets are available in
literature. For » > 1, the matrix extenasion procedure for the bivariate case is given in an
unpublished manuscript of Chui, He and Lai([7]).

The restriction of the procedure in [7] to univariate case is quite constructive, so we want

to introduce the general method briefly.
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Assume that we need to extend P(z), P(z) of size r x m. The construction proceedes by
induction on r. Without loss of generality, we rewrite P(z) = [p'(z),--- ,p™(z)], where p’(2)
is the j% column of P(z) for 1 < j < m. Similarly, we write P(z) = [p*(2),- - - ,™(2)].

For r = 1, we have
PP (2) 4 ()P (2)" = 1, (3.38)

which is clear from the biorthogonality condition (3.1). Since p'(z),---,p™(z) have no
common zeros in C\ {0}, by using the algorithm in Theorem 2.1 on [35] or Theorem 3.1 on

[7], we can find an m X m invertible matrix U(z) such that

PE) e | U@ =10 0] (3.39)

Then the above becomes

[pl(z) o p™(2) ] = [ 10 --- 0 Lxm U)1, (3.40)
i.e, the first row of (U(2))~' is [p'(2), - -+, p™(2)] . Now we look at
p'(2) 1
D2 (2)* hy(z
wey |’ (: . ( s (3.41)
7 || ) |
where hi(2),- -, hym-1(2) are polynomials. Multiplying both sides of above (3.41) by
[ 1 0 0 ]
L(z) = _h?(z) 1 0 , (3.42)
i —hmfl(Z) 0 1 |
we have
p'(2) 1
| PP 0
L(z) (U(2)) | =1 .| (3.43)
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Put M(2) := L(z) (U(z))~!, then M(z) is invertible and its first row is still [p!(z),- -+, p™(2)] .

So we have

ECH 1
2 2)* 0
A (3.44)
) 0

ie., [p'(2)", -+, p™(2)*]" is the first column of (M(z))~. Let (M(2))* = (M(z))?, then
we have the matrix extension :

M(2) M(2)" = Lnxm- (3.45)

Now we assume that we have obtained a matrix extension for r = [ < m. Consider the
case of 7 = [+1. Suppose that Py (z) and Pp41(2) are polynomial matrices of size (I41) x m

satisfying
Pry1(z) 73111(2) = T4 1)x(1+1)- (3.46)

Denote the first { rows of Py41(2) by P,(2), and similarly the first { rows of P41 (2) by Py(2).

Then we have
Pi(2) P; (2) = L. (3.47)

This is obvious from the equation (3.1). By the induction assumption, we can find two

polynomial matrices Q;(z) and Q;(z) of size (m — 1) x m such that

Pl(Z) _ B
[ Br(2) Gi(2) | = Lo (3.48)
Qi(2)

Now we claim that there exist polynomial matrices Q;1(z) and Q. 1(2) of size (m—I—1)xm

satisfying

Pria(z) ~ ~
| Pra(z) 91(2) | = T (3.49)
Ql+1 (Z)
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First we take a look at

. . [l><l )
P2 | Bi(z) Qe | = , (3.50)
O H(z)
(I4+1)xm
where H(z) = [hi(2), -+, hm_i(2)] with polynomial entries. Note that the matrix P(z) is

of full rank and det([ﬁl*(z), é;‘(z)}) # 0 for all z € C\ {0}. This implies that (m — [)
polynomials hi(z),--+ , hy,_(2) do not have any common zeros in C \ {0}. By using the
algorithm in Theorem 2.1 on [35], we find an invertible polynomial matrix V' (z) of size

(m —1) x (m — 1) such that

H(z)V(z) = [ 10 0 ] : (3.51)
1x(m—I)
- . L O _
Multiplying both sides of (3.49) by on the right , we have
O V(z)
- mXm
Pri1(2) [ Pr(z) Qi (2)V(2) ] = | Iupyxasny O . (3.52)

L (I4+1)xm
Let W(z) = [ﬁl*(z), éz‘(z)V(z)] . We claim that W (z) is invertible, so that (W (z))~! is also
a polynomial matrix. Indeed, by the definition of W (z) we have

N N _ _ I O
We =[P Geve | = | Fe G 0 V()

mxXm
Since [ﬁl*(z), é}*(z)} is an invertible polynomial matrix by the induction assumption(see
(3.48)), and also V/(z) is an invertible polynomial matrix in our construction(see (3.51)),

hence W (z) is invertible in a polynomial ring. Therefore, (3.52) becomes
-1
Proa(2) = | Ipsnpeasny O e VT (3.53)

i.e., Pri1(2) is the first [ + 1 rows of matrix (W (z))™'. So we may put (W(z))™! =
[P (z), Qngl(z)]T. And we note that

- Pz+1(2) - I
(W(2)"Pi(2) = Pl (z2) = : (3.54)

Qi (2)

(I4+1)x1
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Then, by the assumption (3.46),

I 0
—1 5% PlJrl(z) ~ N
(WE) " Pl = | (B e =] 0 (3.55)
Q11(2)
0 G
mx(I+1)
where G(z) = [g1(2), -+, gm_i-1(2)] with polynomial entries. Let
1 0 0
—a (2 1 -+ 0
M(z) = a(2) . (3.56)
| “gmaa(2) 0 e 1 (m—1)x (m—1)
- . I 0
Multiplying both sides of (3.55) by , we get
0 M(z)
Prya(z) ~. Taryx s
O L CES R , (357
Qis1(2) mx (i4+1)

where M'(2) := [On-i—1)x1, G(2), [(m—l—l)x(m—l—l)}(milil)Xm Let N (2) := [Pra(2), Qua(2)]",
where Q1(z) = M'(2)Q),(z). By the same argument as W (z), N(z) is invertible in a

polynomial ring, and so (N(z))~! is a polynomial matrix. Thus we have

- Ty
Pr(z) = W(z)t- | T , (3.58)
@)

mx (I41)

i.c., Pri(z) is the first [ + 1 rows of ((NV(2))71)*. Let N(2)* = (N(2))7!, then we have the
matrix extension

N@)N(2)" = Lnxm, (3.59)

which is equivalent to (3.49).

Summarizing the discussion above, we finally have the following theorem.
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Theorem 3.4.1 Let ® = (¢, 2, d3), ® = (d1, b, d3)7 be two scaling function vectors
defined in Theorem 3.3.2. Let

be matriz extensions of [P(z), P(—2)],[P(2), P(—=2)] by the above construction method.

Define two function vectors W, U in terms of the Fourier Transform by

~

T(26) = Q) B(e).  U(26) = Q=) (&),
Then U = (11,1, 3)T and U = (1;1,152,{/;3)T are wavelet function vectors associated with

® and ® respectively, satisfying (3.1)-(3.4).

3.5 EXAMPLES

We construct two scaling function vectors ® and o by using B-spline functions. Moreover

we consider their regularities of dual scaling functions.

Example 3.5.1 For the Laurent polynomial mask A(z) = 2 (izz) associated with the con-

stant B-spline N(x) = Ni(x) we have
Ao(Z) = 1, Al(Z) = 1,

which satisfy A(z) = Ag(2?) + 2A1(2?). Recall that from (3.10) and (5.11),

1 1/1 e _
B(z) := 5 (Bo(2*) 4+ 2Bi(2%)) = 5 ( ;Z) Hyz(z), m>1
where
M1 o~ —1—k k
2m —1 1+z2 1—2z
H-(2) =
-2 (")) (F)
k=0
Consider m = 3, then we two Laurent polynomials
7 3 7 3
Bo(Z): 1—§Z—|—§Z2, Bl(Z): g—gz
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such that Ay(2)Bo(z) + 2A1(2)B1(2) = 1. Then we have the 3 x 3 matriz symbols P(z) and

ﬁ(z) of ®, P, respectively as follows:

3 3 0
P(z) = 32 32 0|
7 3 .2 1 7 3 .2
3 -2 7 -1 3 .2 7 .—1
gZ —gz —|—1 —gz +8Z 0
P(z) = Syt-I+2 31+ 0|,
-1 -1 0

satisfying the first biorthogonality condition (3.1) P(2)P*(z) + P(—2)P*(—z) = I3y3. So we
obtain refinable functions ¢1, oo, @3 from the matriz symbol P(z) :

1~

Bu(20) = £ Bi(w) + 5 Ba(w),
Bo(20) = 5 21(0) + 5 2 Ba(w),
53(2w): <—1—76z+13—622> C/gl(w)+ (%_1_762‘1“1_3622) 52(00)’

and similarly, the matrix symbol ﬁ(z) yields the dual refinable functions 51,52,53 in the

Fourier transform :

L) e (-2 L) Gale),

Since we have defined ¢1(x) = N1(2z), ¢a(x) = Ni(22 — 1), the scaling funtion vector & =
(1, o, #3)T is obtained as
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61(x) = 61(22) + do(22) = N, (4z) + Ny (dz — 1),
Do) = 01 (20 — 1) + o220 — 1) = Ny (4 — 2) + Ny (4 — 3),
B3(x) = —3 127 — 1)+ 3 61(27 — 2) + 62(20) — £ o2 — 1) + 3 Ba(2 — )

— Ny(dz—1)— gNl(ZLx _9)— gNl(él:c _3)+ g Ny(dz — 4) + g Ny(dz — 5)

Similarily, the definition of ¢(z) = 4N, (2x), ¢o(x) = 4N (2z—1) with a function Ny defined

by the equation (3.22) gives the dual scaling funtion vector ® = (¢1, ¢, ¢3)7, where
Bu(2) = 2 52w +2) — L 52w+ 1)+ 21(2) — 2 a(20 1 2) + L (204 1)
= 3N, (42 +4) — 3N, (4z + 3) — TN, (4z + 2) + 7 Ny (42 + 1) 4+ 8 Ny (4z)
5a(a) = 2120+ 1) = £ 51(20) + 26120 — 1) = 2 Ba20 + 1) + 1 6a(20)
= 3N;(4z+2) — 3N;(4z + 1) — TN (42) + 7 Ny (42 — 1) + 8 Ny (4z — 2)
b3(1) = =201 (22) — 2¢(22) = —8N; (4z) — 8Ny (dx — 1)

By using the matrix extension algorithm we have discussed in section 4, the 3 X 3 matrix

symbols Q(z) and Q(z) of U, U are obtained:

7.2 3.3 _ 7.2 9 .3
g2 32 z+8z 16 %
21 4 _ 9 5 21 4 _ 9 5 _3,_ 1.3, 3 .5
128 128 © 128 © 128 571675 T 187
Q(z) = 0 0 : ,
7.,2_ 3.3 _1,,7.2_3.,3
6% 16~ 52T 164 —§%
21 4 _ 9 5 21 4 _ 9 5 1.3 3 .5
| 128°% T 187 8% ~ 1287 Z— 32t gt
3 3,1 -1 3 -3 1 -1 _ 3 -1
g7 t+1% +2z &1 7 17 2z 52tz
Qz) = 0 0 1 :
3 -3 1 -1 3 .3 41 -1 _3 -1 _
| 517 5 2 3z 1% " t35% +3z 3 2 22_
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which satisfy the biorthogonality conditions (3.2)-(3.4). This gives three wavelet functions
U1, Y9, 3 in the Fourier transform as follows

~ 7 3 21 9 ~
1/}1(2(,()) = <§22 — gZB + @24 — ESZS> (bl(W)
9

7 T SOV 5)’\
+< T3P 67 s Tt W

3 1., 3 5)A
+< 577167 T1g? ) %)

7, 3., 21, 9 5)A
6° " 16° tim® T1sc) e

3 21 9 -
2 3, 4L 4 9 5
16 s T8 187 )‘bz(w)
1 3 3 5\ 7
+H(-m gt ) B

and also dual wavelet functions 1;1, {/;2, ’lZg are defined in the Fourier transform

~ 3 1 = 3 1 =
¥, (2w) = <— @2_3 + 12_1 —1—22) ¢ (w) + <6—42_3 - 12_1 - 22) ¢y(w)
3 =
(557 +2) dae)
1,/;3(2W) = <6342_3 - %3_1 - 3Z> gl(w) + < — 32_3 +12_1 +3Z> EQ(W)

R 64 8
+ (— gzl — 22) 53(w).

Therefore we have a wavelet function vector W = (1, 109,13)T associated with the scaling

function vector ® = (¢q, o, ¢3)T where
7
C2a(20—1) 4+ ; bo(20 — 2) — g bo(20 — 3) + 2—31 Go(20 — 4) — 634 6s(22 — 5)

V() = ¢3(27),
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7 3 21 9
— ¢2(21' — 1) + g ¢2(21’ — 2) — Z ¢2(25L‘ — 3) + 6_4 ¢2(2!L‘ — 4) — 6_4 ¢2(21' — 5)

Stmilarily, we can find the wavelet function vector U = ({/;1,{/;2,1:53)T associated with the

scaling function vector ® = (g1, ¢o, d3)T, which is defined by
I(z) = —g 61(22 +3) + % 61(22 +1) +4 ¢ (22 — 1)
+ g ¢ (22 4 3) — %@(290 +1) —4¢y(20 — 1) + Z $3(22 + 1) +2 ¢3(22 — 1),
a(w) = 2 63(22),
hy(z) = §¢1(2x +3)— iqsl(zx +1)— 6122 — 1)
- —3—32 $o (22 + 3) + i $2(27 + 1) + 6 dp(22 — 1) — Z d3(21 4+ 1) — 4 3(22 — 1).
O

Example 3.5.2 For the Laurent polynomial mask A(z) = 2 (1%)2 associated with the linear

B-spline N(x) = Ny(z) we have

1
Ao(z) = 5 +-z, Ai(z)=1,

DO | =

which satisfy A(z) = Ag(2?) + 2A1(2?). Choose m = 6 on the equations (3.10) and (3.11),
then we two Laurent polynomaials

300 409 . 250 . 63

Bi(s) —o _ 2% A9 o 499 3 4
o(2) 1 Tt et Twm

181 25 75, 49 , 63 ,

By(z) = — _ 22
B =18 " 53% " @ 32 128~

such that Ay(2)Bo(z) + 2A1(2)B1(2) = 1. Then we have the 3 x 3 matriz symbols P(z) and

15(2) of ® and P, respectively as follows:
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f+1s b
iz+i? 1z 0
P(z) = :
— B+ 22+ 1 -840
I —SA+ 8BS BB+ =t O_
_2—22*4—%,2’3—%46%’,2’2 —B S+t -D ]
—3P 2142 — 2+t 0
ﬁ(z): g_i _3—%z_2+%z—1 —%2_4+§—22_3—g—22_2 ’
—%—1—22 —3—2271—}-% 0
- el o

satisfying the first biorthogonality condition (3.1) P(z)P*(z) + P(—2)P*(—z) = I3y3. So we
obtain refinable functions ¢1, ¢o, ¢3 from the matriz symbol P(z):

Bi(20) = (14 72) Bule) + 3 Bl

Baw) = (174 17) Bil) + 32 Ba(w),

177y
- 181 25 75 49 63 .\ ~
9 :<__ 20 o 10 5 4d 4 _5)
b (2) %6° To1° tim” o1 Tt )W
300 409 , 259 63 ,\ ~
122 I o 299 3 I 4)
( 128° T128° T18” Tias” )W)

and the matrix symbol ]S(z) gives dual refinable functions 51, 52, 53 in the Fourier transform

gl(Qw) = (g P %23 46% 272 — %Zl + 2) ;?1(01)
+ <—%2_5+§—32_4—Z—22_3—2—22_2—%%2_1)22(”)7
;2(%)) = (%Z_g — %2_2 + %2_1 — % +22> 21(‘*”)
<—%z4+§—gz3—g—iz2—§—gz1+%>$2(W)7
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~ ~ 1 ., 1\%
$5(2w) = — ¢y (w) + (5 z 0+ 5) ¢a(w)
Since we have defined ¢1(x) = No(2z), ¢o(x) = No(2x — 1), we have the scaling funtion

vector ® = (¢1, ¢a, d3)T, where
61(2) = 5 1(22) + 5 61(20 — 1) + 6o(22)
_ % No(4z) + Ny(dz — 1) + % Ny(dz —2),
62(2) = 5 12— 1)+ 3 6120 —2) + 20— 1)

1 1

181
128

63 309 409

2 6a(or —3) + oy 2w~ 4)

= Ny(dz — 1) — %wa -2) - ?’g N4z — 3) + ;—Z Na(dz —4)
4 % Ny(4z — 5) + Z_ZN2(4x —6) — 26%? Ny(4z —7) — %NQ(@: —8)
T % Ny(dz — 9) + %38 Ny(4z — 10).

Similarily, the definition of ¢1(z) = 4Ny(2x), do(z) = 4Ny(2x — 1) with a function N,
defined by the equation (3.22) gives the dual scaling funtion vector o= (;517 52, @,)T with the
following explicit forms:

~ 63 ~ 259 ~ 409 ~ 309 ~

o1 (z) = 3 ¢1(2x +4) — D ¢1(2x +3) + ED) ¢1(27 +2) — ED ¢1(2z + 1)

~ 63 ~ 49 ~ 75 ~
4 p1(27) — — Po(2 — 9(2 4) — — (2
+ 4 ¢1(22) 64(152( xr+5)+ 16¢2( r+4) 32¢2( z+3)

25 ~ 181 ~

181 ~ ~



63 ~ 63 ~ 49 ~ 259 ~
=1 No(4x +9) + 5 N2(4x +8) + vy N2(49U +7) — Iy Ny(4x + 6)

— %5 Ny(4z +5) + % Ny(4z +4) — 27;5 Ny(4z +3) — % Ny(4z +2)
Fol) = @ 5120 +3) - Q—Qsl(zx +2)+ 4— 52z + 1) — @51(23;)

+4¢ (28 —1) — 6—4 552(2x +4)+ ‘11—6 do(27 + 3) — % 0o (27 + 2)

— ? 52(2x +1)+ 181 52(2:10)

64
63 ~ 63 ~ 49 ~ 259 ~
ST Ny(4x 4+ 7) + = Ny(4z + 6) + T Ny(4z +5) — S Ny(4x + 4)

75 ~ 409 ~ 25 ~ 309 ~

181 ~
% No(dz — 1) + 16 Ny(dz — 2)
G3(1) = =2 01 (27) + ¢o (27 + 1) + ¢o(22) = 4 Ny(4x + 1) — 8 Ny(4) + 4 Ny(4x — 1).
Matriz symbols Q(z), @(z) associated with ¥, U respectively are as follows

15 1
2= @, =) @,
k=0

k=—14
where qx, qr are 3 x 3 real coefficient matrices given by

00 0 0 22 0
=100 1/2 |, q-14 0 0 0},
00 3 0 0 0
0 0 2 g 2 o
a=10 0 0 q-13 0 0 01,
—1/4 — 0 0 0



qs =

qs =

g6 =

qr =

gs =

36099
0 0 O 0 &6 O
0 0 0], g-12= 10 0 0|
181 309 _ 3969
021 512 U 0 t63s1 U
0 281 971 36099 36099
128 64 32768 65536
0 0 0 ) q-11 = 0 0 0
25 281 _ 6257 3960 _ 3969
| T 256 128 512 | 8192 16384
50861 86820 0 46661
32768 16384 32768
0 0 0|, q-10 0 0 0
110215 254087 0 _24003
| 131072 65536 i 8192
7025 70641 175895 46661 46661
8192 16384 16384 16384 32768
0 0 0 q—9 = 0 0
11603 131667 72389 24003 24003
|~ 32768 65536 65536 | 4096 8192
13097 34135 0 _ 362009
4096 16384 32768
0 0 0|, q-8 = 0 0 0
_ 354053 111193 0 88T
|~ 131072 32768 i i 2048
22419 131875 _ 282003 362079 _ 362079 63
8192 16384 8192 16384 32768 512
0 0 0 q-7 = 0 0 0
34005 237165 1822729 6337 _631
16384 32768 65536 | 1024 2048
_ L1307 109081 0 182720
16384 16384 65536
0 0 0|, d—6= | 0O 0 01,
90611 _ 73217 0 282003
| 65536 16384 8192
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15379 47565 6337 1822729 1822729 157
3192 16384 2048 32768 65536 512
qo = 0 0 0 ) q-5 = 0 0 0 )
17139 2705 362079 282003 282003 63
| T 8192 16384 32768 i 4096 8192 128
1953 16317 72389
2048 16384 0 0 65536 0
g0 = 0 0 01, q-4= 1 0 0 01,
35475 30065 ) 0 _ L7895
65536 32768 i 16384
3087 3969 24003 72389 72389 1319
8192 16384 8192 32768 65536 512
qi1 = 0 0 0 ; q-3 = 0 0 0 ;
3059 17829 46661 175895 175895 173
| 16384 32768 32768 | 8192 16384 64
3969 6257
32768 0 0 0 512 0
qi2 = 0 0o 0], g—2=10 0 01,
19341 16317 Yot
| T 131072 65536 0 i 0 64 0
0 0 3969 6257 6257 715
16384 256 512 512
q13 = 0 0 0 ) qg-1 = 0 0 0 )
3087 3969 36099 971 971 281
| 32768 65536 65536 | | 32 64 128 |
0 0 0 0 -3 0
q14 = 0 00 3 do = 0 0 1 3
3969 .
131072 00 i | 0 20
0 0 0 6 —3 1/4
qi15 = 0 0 01, q1 = 0 0 0
3969 o
131072 0 0 i i 4 2 0

And also it is easy to check that Q(z),Q(z) satisfy the equations (3.2)-(3.4) by using any

computation software. U
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We now recall the result about the regularity of Daubechies’s scaling funtions y¢ from
([40]). That is, for Daubechies’s scaling fucntion y¢, 3 < N < 9, values for the largest

exponent «(N) such that

/_oo (1+ \w|)a(N) }N;?\(W)} dw < oo,

[e.9]

are listed in the following:

N 3 4 3 6 7 8 9

a(N) || 1.0831 | 1.6066 | 1.9424 | 2.1637 | 2.4348 | 2.7358 | 3.0432

Table 3.1 Regularity of y¢

Consider N(z) = N;(x), the constant B-spline function. If we choose m = 3 as in Example

3.5.1, from the definition of A*(z) = B(z) we have
B - (H2) mee
Z) = 5 B 3(Z).

Then the definition of N and proof of Lemma 3.2.3 gives

N©)|de = [ T[| At %)) ae
R R
j=1

o] —i = 2

- LRI e
j=1

co [T/ o (w15 )] e
j=1

§040+wnﬁwmg
< 04<1+\§\>a<3> |36(6)] dé < oc.

So we have N € C°, which implies D = (51, ggg, 53)T € C°. By the same argument, we can
make & € O, C? if we chose m = 6,9, respectively. Similarly, for linear spline function,
N (z), we can find m = 6,9 to make ® € C° C* respectively. Finally for Nj(z), we can

easily check that m = 9 makes o e CO.
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By the computation above we can also estimate the size of support of dual functions
which is related to the number of coefficients by Lemma 3.2.4. In particular, for the linear
B-spline function, the numbers of coeffients of dual functions 51,52,53 are 10,10 and 3,
while the dual scaling function 2,65 from Cohen, Daubechies and Feaubeau ([10]) needs 13
coefficients for the same regularity C°. And for C!, the numbers of coefficients of 51, ggg, 53

are 16, 16 and 3 coefficients, respectivley, while the number of coefficients of 2,85 is 19.



CHAPTER 4

CONSTRUCTION OF BIORTHOGONAL BOX-SPLINE MULTIWAVELETS

In this chapter, we extend the results of Chapter 3 to the bivariate setting. That is,

we are going to construct two multiscaling function vectors ®(x) = (¢1(x), -, ¢.(x))7,
D(x) = (¢1(x),- -+, (x))T, by using box spline functions. And also we are interested in
the construction of associated multiwavelet function vectors W(x) = (¢1(x), - ,¥4(x))7,

U(x) = (1(x), -, 0s(x))T, where x = (2,y) € R2 Note that the number of wavelet

functions can not be consistent with the number of the scaling fuctions in bivariate setting,

ie, r=#£s.

4.1 BOX SPLINES AND BASIC PROPERTIES

Box splines can be interpreted as a multivariate extension of univariate B-splines. Because
of their useful geometric interpolation, multivariate box splines have been used for surface
design. Thus multivariate box splines are considerd as important class of refinable functions.

A very comprehensive treatment of box splines and their general theory is given in the
book by de Boor, Hollig and Riemenschneider ([13]) who also give valuable information

on many references. Among a couple of equivalent definitions, we introduce the inductive

definition.
Let us assume that s > d and vy,---,v, are linearly independent vectors in RY. A
d-variate bozx spline Bi(x) = B(x|vi---vs),k = d+ 1,---,s are defined by successive

89
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convolutions([4],[13])

1/ det[vy -+ vy if x € [vy---vg][0,1)¢

0 otherwise,
1
B (x) := / Bi 1(x—tv,)dt, k>d.
0

From the definition it follows that the restricted box spline B(y) := By(x + yv,) is piece-

wise constant in y if v, ¢ span{vy,--- V., -+ vi}. If v, € span{vy, -+ ¥, -+ v},
B(y) is continuous since it can be obtained by convolution from B*(y) = Bs(x +
yVT|V1a U 7‘77“7 e 7V5)a

B(y):/o B*(y—t)dt:/le*(t)dt
:/y B (t) - B*(t — 1) dt

—00

Further, the directional derivative with respect to v, is defined by

Dy, Bs(x) = B'(y)|y=0 = Bi(x) — Bi(x — v,).

S S

Similar to B-splines, we summarize some properties of multivariate box splines By (x). For

more properties and detailed proof, see references(eg.,[4],[13]).
Theorem 4.1.1 Multivariate box splines Bs(x), s > d satisfy the following properties:
1. Jpa Bs(x)dx = 1.

2. For all f € C(R?),

/Rd Bs(X)f(X)dX: f([Vl,"‘ ,Vs]t)dt.

[0,1)®

3. Bs(x) >0, forx € [vy,---,vg][0,1)*.

4' supp BS(X) = [Vla T 7VS][0’ ]‘]s
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5. The Fourier transform of By(x) is

6. For s> d, and f € C*(R?),

/ By(x) Dy, f(x)dx = — Dy,By(x) f(x)dx, 1<j<s.
Rd 0,1)s

7. There exists a finite sequence {cx yeza such that

B,(x)= Y B.(2x—Kk).

k]inZ?

For a fixed s, let V™ be the space generated by the integer translates of B,(x) and let vy

be the space generated by dyadic dilations and intger translations of By(x), i.e., for j € Z,

V7 = span{B,(2/x — k) : k € Z%}.
Then {V;’} ez satisfies following properties(see [13], p.125)

CcViEcCcVicVic.. -,
Uvy=r*®Y), (v ={o}.

JEZL JEZL

It is known that the box spline spaces {Vjs}jez constitute a multiresolution approximation

of L?(R%) in dimensions d = 2, 3(see [39], pp. 133-149).

4.2 (CONSTRUCTION OF BIVARIATE SCALING FUNCTION VECTORS

We fix » = 5. Similarly to univariate case, we take the Fourier transform of & and ¥, then

we have

®(2¢,20) = P(z,w) ®(£,C), P Z

W(26,20) = Q2 w) B(£,€), Q(zw) = isz,szwk,
g,k
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where the polynomial matrices P(z,w) and Q(z,w) are matrix symbols of ®(z,y) and
U(z,y), respectively. Similarly, let P(z,w) and Q(z,w) be the matrix symbols of ®(z,y)
and (Ivf(x,y), respectively. Then in terms of the matrix symbols P(z,w),Q(z,w),]S(z,w),

and @(z, w), the bivariate biorthogonality conditions are represented as:

PP*(z,w) + PP*(—z,w) + PP*(z,—w) + PP*(—2, —w) = Ly, (4.1)
PQ(z,w) + PQ*(—2,w) + PQ*(z, —w) + PQ*(—2, —w) = Oy, (4.2)
PQ*(z,w) + PQ*(—2,w) + PQ*(2, —w) + PQ*(—2, —w) = Oy, (4.3)
QQ"(z,w) + QQ" (=2, w) + QQ* (2, —w) + QQ"(—2,—w) = ey (4.4)

Let Bj . be the bivariate box spline function whose Fourier transform is

_ 1—e €\ (1 —e i\ (1 — e ErON"

For simplicity, we denote Bj,,, by N. Then from the mask of N, we have

l+m m+n l m n
- 1+ 2 14+ w 1+ zw
Alzyw) =) aj,kzjwk:‘l( 2 >( 2 ) ( 2 >

=0 k=0

where z = e and w = e~ so that it satisfies the following refinement equation:

N(z,y) = Z a;xN(2z — j, 2y — k). (4.5)

Let Vj be the space generated by N(z,y), and define
V, ={f(22,27y): f € Vo}, for j € Z.

It is known that the box spline function N generates a multiresolution analysis of L?(IR?)
(See Section 4.1).
Let us begin with putting
¢1($,y):N(21’,2y), ¢2(xay):N(2x_1a2y)v

¢3(l’,y):N(21’,2y—1), ¢4(l’,y):N(25L‘—1,2y—1),



then from the refinement equation (4.5),

N(z,y) = Zaj,kN(Zx —j,2y — k)

gk

= agarN(2x — 25,2y — 2k) + > agj106N (2w — 25 — 1,2y — 2k)

Jik g,k
+ Z agjon+1 N (20 — 27,2y — 2k — 1)
gk
+ Z agji126+1 N (2x — 25 — 1,2y — 2k — 1)
jk
= Z azjotr(x — j,y — k) + Z agjy12kP2( — j,y — k)
J:k gk

+ Z a2j,2k+1<l53(33 —jy—k)+ Z a2j+1,2k+1¢4(33 —J,y — k).
J.k Jik

We write A(z,w) in its polyphase form :
Az, w) = Ag(22, w?) + 2A; (2%, w?) + wAy (22, w?) + zwAz (2%, w?),
where the polyphase terms are expressed as follows:

Ao(2,w?) = i(A(z, w) + A(—2,w) + Az, —w) + A(—2, —w)),

A (2 w?) = 4—12(14(2, w) — A(—z,w) + A(z, —w) — A(—z, —w)),
Ag(22 w?) = ﬁ(A(z, W)+ A(—2,w) — Az, —w) — A(—2, —w)),
Ag(2,0?) = ﬁ(fl(z,w) A=z, w) — A(z, —w) + A(—2, —w))

Then the Fourier transform of box spline function becomes

N(€,¢) = Ao(z,w)d1(£,C) + Ar(z,10)P2(€, )
+ As(2,0)P3(€, €) + Az(2,w)h4(E, €,

and also from the definition of ¢1, ¢9, ¢3, and ¢4, we have

—_

~ -~

512620 = TRE0,  B(26.20) = 12N (EC)

~

Ba(26.20) = TwR(E.0). 3u(26.20) = TN (E Q)

—

W
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(4.6)



Consider a bivariate trigonometric polynomial

Bo(2*, w?) + 2B1 (2%, w?) + wBy (2%, w?) 4+ zwB3(2*, w?))

(5 Z)m (HTw)m (- Zzw)m H(z w)D (o),

=1 o~ F—1—k k
2n —1 14+2z1+w 1—z1—w
H :E - - -~

k=0

L— L—-1-k k
2L —1 1 11—

k=0

—

where

[y

Then we have

AgBy(z,w) + zA1 B1(2,w) + wAyBs(z,w) + zwAs3Bs(z,w) = 1.

<1+zw 1 —zw)2L1
1= n

_ (1 * Z'w)L D(zw) + (1 _22w>L D(—2w)

_ (1 +22w>2“ (1 +22w)mD(Zw) . (1 —sz)%l (1 —sz)mD(_Zw)

Here we note that

1+zw_1+z 1+w+1—z 1—w
2 2 2 2 2

Then it follows that

1+ 2w %_1_ 1+2 1+w+1—z 1—w\ 2!
2 - 2 2 2 2

142z 1+w n 1—2 1—w n
— 7)Y H Y H(—s —
( 2 5 > (Z,?U)—i—( 5 5 > ( Z, w)a

and similarly

1—zw Qﬁ_l_ 1—2 1+w+1+z 1—w -1
2 a 2 2 2 2

1—z 1+w\" 142z 1—w\"
_ Y - ) H(z,—w).
( 2 2 ) ( Z7w>+( 2 2 ) (Z7 w)
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(4.8)

(4.9)

(4.10)
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From the above two equations, we have

() (5 (5 e

() () (52 st
() () (52 oot
() (5 (52 st

=AB(z,w) + AB(—z,w) + AB(z, —w) + AB(—z, —w)

+ o
IS

+

=A0Bo(2*, w?) + 22 A1 By (2%, w?) + w? Ay By (2%, w?) + 22w? A3 Bs(22, w?)

From the application of Theorem 3.1 in [7], we have the following theorm.

Theorem 4.2.1 There exists a set of bivariate trogonometric polynomials G, (2, w) for

1 <5 <3,0<k <3 such that the matriz

Ao(z,w)  Ai(z,w)  As(z,w)  Az(z,w)

leo(z, U}) lel(z, U}) GLQ(Z, U}) leg(z, U})
Pi(z,w) =

szo(z, U}) GQJ(Z, U}) GQQ(Z, U}) G273(Z, U})

Gg}o(Z, w) Gg}l(Z, w) G372(Z, w) G373(Z, w)

has a monomial determinant, i.e., det Py(z,w) = az*w” for some u, v, and a constant o # 0,

and furthermore it satisfies

Pi(z,w)-[ By, 2B, wBy zwBs) =[1 0 0 0]"

Proof: From the expression of A(z,w), it is clear that A(z,w), A(—z,w), A(z,—w),
A(—z,—w) have no commom zeros. So it follows that Ay, Aj, Ay, A3 have no common
zeros. Moreover we have that the first three polyphase terms Ay, A;, As have no common

zeros([25]). By the well-known Hilbert-Nullstellensatz Theorem in ([29], p.292), there exist



96

polynomials pg, p1, p2 such that
poAo + prAr + p2As = 1. (4.11)

We define the polynomial matrix U; as

po(l—43) 0 0 1

Ul pl(l—Ag) 010 ’

pg(l — Ag) 1 0

e}

1 0 0

e}

then the determinant of U; is obviously 1, and we get
[AO Al A2 Ag]UIZ[l A2 Al AO ]

Next we define the polynomial matrix Us; having the determinant 1 by

1 —Ay, —A, —A

0 1 0 0
Uy 5

0 O 1 0

0 O 0 1

and put U := U,U,, then we can easily check that

Since the determinant of U is 1, the definition of inverse function gives

Ay Ay A, As
0 0 1 —po(l—Ay)
0 1 0 —pil—As)

1 0 0 —po(l—A43)

and also it is straightforward to check that

_ B - _ 1 -
[ 2By _ wBy — zwBspa(1 — As3)
wBs 2By — zwBspi (1 — Aj3)
I 2wBs | I By — zwBspo(1 — A3)



For computational efficiency, we denote

hy := wBy — zwBspa(1 — A3),

hy := 2By — zwBsp; (1 — A3),

hg = BQ — Zngpo(]_ — Ag)

Now we take the polynomial matrix

1
—hy
L=
—hy
—hs
then we have
Ay Ay
—hi1Ap —hiA;

LU =
—hoAy  —heA; +1

—th() +1 _hBAl

=)
o O
o O

Ay
—h1Ay +1
—hgoAs
—hsAs

Az
—h1 Az — p2(1 — Az)
—ha Az — pi(1 — Az)
—h3 Az — po(1 — Az)
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(4.12)
(4.13)

(4.14)

Putting P;(z,w) = LU, Pi(z,w) becomes the matrix extension for [Ag, Ay, As, A3]. We

clearly see that det(P;(z,w)) = 1, and furthermore

Pi(z,w)-[ By, 2B, wBy zwBs ) =[1 0 0 0]"

Now we define My, My, M3 € Vi by

My(€,€) = = hiAg(z,w) - 1€, C) — b Ay (z,w) - da(€,C)

— (h Ay — 1)(2,w) - &5\3(6 () — (hlAB +p2(1 — A3))(z,w) : 54(& ¢),

My(£,¢) = — haAo(z,w) - 1(&,C) — (haAr — 1)(z,w) - $(€,C)

— haAg(z,w) - $3(€,C) — (hads + pr(1 — A3)) (2,w) - Ga(€, ),

My(£,¢) = — (haAg — 1)(2,w) - $1(E,C) — haAr(z,w) - $a(€, C)

— haAs(z,w) - d3(€,C) — (hsAs + po(1 — A3)) (2, w) - Bu(&, C).
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Since (¢1, ¢2, ¢3, ¢4)T generates V; and det(P;(z,w)) = 1 by by Theorm 4.2.1, hence
(N, My, M, Mg)T also generates V7. We put

My (z,y) = M;i(2x, 2y), Mo(x,y) = My (2x — 1, 2y),

Mis(z,y) = My (2z,2y — 1), Myy(z,y) = My (2z — 1,2y — 1),
and similarily, put Msy, -+, Moy and Mgy, - -+, M3y, for My and M3, respectively. Then we
can see that (¢1, -, ¢g, Myy, Mia, - - ,M34)T generates V5.

We take M(x,y) = Mi(x,y), and define

¢s5(r,y) =Y ajeM(2z — j, 2y — k), (4.15)

gk

with a bivariate Laurent polynomial,
R ! Tk 4.1
(z,w)—EZaj7kzw, (4.16)
then we have ¢5 in terms of the Fourier transform,

05(26,2¢) = R(z,w) M(£, Q)
= —(Rh1Ag)(2,0) - 41(&,C) — (R Ay) (2, w) - o[£, C)
— (R(lAs = 1)) (2,0) - $3(€,C)

— (R (hAs +pa(1— A3)) ) (2,0) - 64 (€,€), (4.17)

By the recursive use of equation (4.6), we have

~

®(2¢,2¢) = P(z,w) D(€,C),

where the matrix symbol P(z,w) is of the form:

4, 14 14, i4s 0|
1z Ao 12A 124, 1243 0
P(z,w) = LwA, TwA,; TwA, TwAs; 0
izon izwAl izwAg iZIUA:s 0

| —RMhAy —RhA —R(h1As —1) —R(h1As+pa(1 — A3)) 0 |
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To construct the dual scaling function vector P = (;517 52, 53, 54, &)T we only need to

find the matrix symbol ﬁ(z, w) satisfying the first biorthogonality condition (4.1):
PP*(z,w) + PP*(—z,w) + PP*(z, —w) + PP*(—z, —w) = I5ys.

Theorem 3.1.1 in bivariate setting guarantees the existence of such a ﬁ(z, w). We now find

it explicitly. To make our computation easy, we write

X(z,w) O X(z,w) V(zw)
P(z,w) = , Pz,w) =
Y(z,w) 0 Y(z,w) Wi(z,w)
where X (z,w), X (2, w) are 4 x 4 polynomial matrices, Y (z,w), Y (z, w) are 1 x 4 polynomial
matrices, V (2, w) is 4 X 1 a polynomial matrix, and W(z, w) is a polynomial. Then the first

biorthogonality condition (4.1) can be expressed in four matrix equations as follows:

XX*(z,w) + XX*(—z,w) + XX*(z, —w) + XX*(—z, —w) = Lju4, (4.18)
XY*(z,w) + XY*(—z,w) + XY*(z, —w) + XY*(—2z, —w) = Oy, (4.19)
XY*(z,w) + XY*(—z,w) + XY*(z, —w) + XY*(—z, —w) = Oy, (4.20)
YY*(z,w) + YY*(—z,0) + YY*(2, —w) + YY* (=2, —w) = 1. (4.21)

According to the special structure of P(z,w), the process to find its dual P (z,w) depends

on the choice of X(z,w) and Y (z,w) as in the theorem below.

Theorem 4.2.2 Define

Bo(z,w)  ZBo(z,w) wBy(z,w) ZzwBy(z,w)
~ zB1(z,w)  Bi(z,w) zwBi(z,w) wBi(z,w)

X*(z,w) = :
wBy(z,w) ZzZwBs(z,w) Ba(z,w)  ZBs(z,w)
I 2wBs(z,w) wBs(z,w) 2zBs(z,w)  Bs(z,w) |
and ) )
—poAa(1 — A3)(z,w)
~ —p1As(1 — Az)(z,w
o) < piAs(1 = A9z, 0)

((poAo + prA1)(1 — Ag) + As) (2, w)
—Ay(z,w)
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For any 4 x 1 bivariate Laurent polynomial matriz V and any Laurent polynomial W, if we

take R(z,w) such that
R(z,w) + R(—z,w) + R(z, —w) + R(—z,—w) =1,

then X (z,w), X (z,w), Y (z,w),Y (z,w) satisfy the biorthogonality conditions (4.18) ~ (4.21)

which are defined as the above.

Proof: By using (4.10), (4.11), and (4.12) ~ (4.14), we get

i iz iw izw
1 1 1. - 1 -
~ =z = =ZW W
XX (z,w) = 4 41 4 ,
iw i%w i iz
1 1 1 1
| W W y2 g
_ - T _
XY*(z,w) = 0000] . Y X"(z,w) =[0000]

And we have
YY*(z,w) = R(z,w
— R(z,w)As(z,w) (poAo(z,w) + p1Ai(z,w) + pe As(z, w))

) (PoAo(z, w) + p1Ai(z,w) + p2Aa(2, w))

+ R(z,w)As3(z,w)

= R(z,w) — R(z,w)As(z,w) + R(z,w)As(z,w) = R(z,w).
U

This completes the proof.

For the simplicity of computation we take V= Oux1, W = 0. And we define two refinable

function vectors by

Be.) = P(5.5) 3 gg HP2525<T>00>
B(e, )= PSS ® HP S 2)®(0.0)

P(1,1), respectively. Then we
P(35,57) and T2, P55, 57)

21729

where @(0,0) <I>(O 0) are the right eigenvectors of P(1,1),
need to show that two bivariate infinite matrix products, H

are well defined in L?(R?). Moreover we will study their smoothness in next section
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4.3 SMOOTHNESS OF THE SCALING FUNCTION VECTORS

Similarily to one variable case we have the following:
Theorem 4.3.1 Let R(z,w) = 1. And we take V= 0,0,0,0]", W =0. Then P(1,1), 15(1, 1)
have a simple eigenvalue 1, with all other eigenvalues less than 1.

Proof:

From the following polyphase terms of B(z,w),

iBO(zQ, w?) = 2(B(z,w) + B(—2,w) + B2, —w) + B(—z, —w)),

4
231(22, w?) = é(B(z,w) + B(—z,w) + B(z, —w) + B(—=z, —w)),
332(22, w?) = ﬁ(B(z, w) + B(—z,w) + B(z, —w) + B(—z, —w)),
iBg(zQ, w?) = ﬁ(B(z, w) + B(—2w) + B(z, —w) + B(—2, —w)),

we have
By(1,1)=B(1,1)+ B(-1,1)+ B(1,-1) + B(—1,—-1) =

By(1,1)=B(1,1)+ B(—-1,1)+ B(1,-1) + B(—1,-1) =

By(1,1) = B(1,1) + B(-1,1) + B(1,—-1) + B(-1,-1) =

Bs(1,1) = B(1,1) + B(=1,1) + B(1,—-1) + B(—1,-1) =

I N N N e

Similarly, the polyphase terms of A(z,w)

Ao, w?) = i(A(z, w)+ A(—z,w) + Az, —w) + A(—z, —w)),

A (2 w?) = 4_2(A(Z’ w) — A(—z,w) + A(z, —w) — A(—z, —w)),
Ay (2%, w?) = ﬁ(A(z, w) + A(—z,w) — Az, —w) — A(—z, —w)),
Ag(2*, w?) = ﬁ(A(z, w) — A(—z,w) — A(z, —w) + A(—z, —w))
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gives

Ao(1,1) = i(A(l, 1) 4 A(=1,1) + AL, —1) + A(=1, 1)) = 1,

A(1,1) = i(A(l, 1) = A(=1,1) + A(1L,—1) — A(—1,—1)) = 1,
Ay(1,1) = i(A(l, 1)+ A(=1,1) — A(1, —1) — A(—1,—1)) = 1,

Ay(1,1) = i(A(l, 1) — A(=1,1) — A(1, 1) + A(—1,-1)) = 1.

Then by the straightforward computation we see that P(1,1) has eigenvalues

1 1 1 1

and also P(1,1) has eigenvalues
BO(la ]-) + Bl(]-> 1) + B2(1a ]-) + B3(1a ]-) = ]-7 0.

Therefore, our proof of theorem is done. O

By Lemma 3.2.1 in multivariate setting and Theorem 4.3.1, two infinite matrix products
152, P(5,35) and [[32, P(£, %) are well defined.

7=1

Let A*(z,w) = B(z,w), i.e.,

A*(z,w) = (Bo(2*,w?) + 2B1(2*, w?) + wBs(2%, w?) + zwBs(2*, w?))

(1¥>ﬁ_l (HTU})%_W (1 +22w> " H(z,w)D(zw), (4.22)

where H(z,w), D(zw) are the same polynomials as in (4.8),(4.9) respectively, then it clearly

N N

satisfies the equation below,

AA* (2, w) + AA (—z,w) + AA* (2, —w) + AA* (=2, —w) = 1. (4.23)
And we define N by
ﬁ A= 5 g (4.24)
j=1

then we have the following lemma.
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Lemma 4.3.2 Let m,n be large enough. Then ]V(x, y) is a well defined compactly supported

L? function. Moreover, for any o > 0, N € C*(R) if m,n are sufficiently large, that is,

_ a+1—1logy3+max(l,m) _ n—1)log, 3
> 2 g12 ( )’m>”+(”1 ) log, .
1 —35logy3 1 —35logy3
Proof: Recall two simple equations ‘1%‘ = }cosg} and ‘12;2} = }sin%‘.Then we have

H(z,w)| =

R N ]
() |
B ) )
[ ()™ (@09)')
SECHETE)S

where P is the same polynomial (3.23) as in the proof of Lemma 3.2.3. From the inequality

n—l—k

sin = sin —~

COS = COS =
2 2

2 2

IN

N

above we have

1
2

|H(e ™, e )| < {P5 (sin®€) Py (sin®¢) }

fo o o)) s (-

By applying Lemma 7.1.1 ~ Lemma 7.1.8 in [12], we have

1(15)(5) e

Jj=1

< (1 + |§|)—ﬁ+l+%log2 P (3) (1 + |€|)—ﬁ+m+%log2 P (2)
_ L s
< C{L+1eD (L + gy Trmxtmit i lon P

< C{(1+ [e]) (1 [gy T3 osa
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where we have used P5(2) < 3" for the last step in the above.

Now we consider the rest terms. Since

L—1 L—l—k k
2L —1 1+ zw 1—zw
D —
e () (57) (5)
1 o1 _ 1 +CL471< . §+Ck
§ COS —— Sin
k 2 2
<

2§+C>L -k (Sin2ﬂ)k}2
2

A o
ofr (s 5) )
ﬁ <1+zw)~"D(zw)

J=1

we have

S O(]_ + |£+ €|)7m+n+%10g2PL(%)

C(l + |€ + C|)777L+n+%(Lfl)log23 .

For any fixed n, if we choose m large enough i.e.,
- 1
—m+n + i(L_ 1)log,3 <0,

then we have

<C,

ﬁ (1 +22w)m" Dew)

j=1

where C' is a positive constant. And we choose n large enough so that
- I, .
—n + max(l,m) + 3 (n—1)log, 3 < —=,

then N becomes an L? function. If we choose 71 even larger, i.e., for any o, —n+max(l,m)+
5 (n—1)log,3 < —a— 1, then we have N € C°. Finally, we can show that N is compactly

supported from generalization of Lemma 6.2.2 in [12] to bivariate setting. U



Define new functions 51, 52, 53, 54 by dilations and translations of N , e,

1w, y) = 42N (22, 2y), Oa(w,y) = 42N (22 — 1,2y),
;2;3(‘%.7:9) = 42N(Qx7 2y - 1)7 54(1.7 y) = 42]\7(21' - 17 2y - 1)7

or in the Fourier transform,

Since

ﬁf(%, 20) = 4 Az, w) ﬁ(f, )

= (Bo(2*,w%) 4 2B1 (%, 0%) + wBs(2%,w*) + 2w B3 (2, 0°)) ﬁ(g,g),

we have

and also we easily get

$1(26,20) = Bo(2,0) $y(€,C) + 2 Bu(Z,0)

~

)¢3(§ () + zw B3(z,w) ¢4(&, ¢),

~

+ w By(Z, w
$2(26.20) = 2 Bo(2, ) 61 (£, C) + Bu(%, @) €,

)
~

~

)¢3(§ ¢) +w Bs(Z,w) ¢4(¢, €),

+ zw By(Z,w
35(26,20) = w Bol(Z,10) 61 (€, C) + 2w By (2, ) 6 £, )
3

~

~

(§,¢) + 2 B3(2,w) $4(&, C),

~

¢4(25 2¢) = zw By(z, )¢1(f ¢) +w Bi(z,w) ¢9(§, ()
+ZBQ(2’1D) ¢3(£7C)+B3(2’w) ¢4(§a§)

+ By(z,w)

105

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)
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And we define M (x,y) and 55@, y) in the Fourier transform,
M(E,0) =~ (podr(1 = 45)) (2,8) - 1(6,0) — 7 (1 As(1 — 49)) (7.0) - 3£, C)
((poAo + p1 A1) (1 — As) + As) (2, w) ';3(5, ()

~

A2(Z7 U_}) ’ ¢4(€7 C)a (430)

~

_|_

N N N

95(26,20) = AM(£.¢)

~ ~

= — (poAa(1 — A3)) (2, ) - $1(&,¢) — (Pr1A2(1 — A3)) (2,0) - 95(&, ()
+ ((poAo + p1Ar)(1 — As) + As) (2, w) '23(57 ¢)
— Ay(5,) - 04(€,€). (4.31)

Then we have the following theorem:

Theorem 4.3.3 {¢1, do, 3, ¢a, ¢5} and {p1, ¢2, @3, G, @5} are compactly supported L? func-

tions with arbitrary smoothness.

Proof: From the definitions, we know that ¢1, ¢, ¢3, ¢4 are dilations of a box spline function
N(z,y). And also 51, 52, 53, 54 are dilations of N(x, y) which is an L? function by Lemma

4.3.2. So we only consider ¢5 and 55. First we look at ¢5 of the Fourier form in (4.17):

55(6,0) = — (o) E,e8) - 515, 5) = L et e 9) - 5,5,
7 iy = 1) e ) 55,5
— 5 s (1= A9) (75 e6) 35,3,
Then we get
(6.0 < 1| a9 B, D]+ ¢ e i §

1 4 .
+ Z ’(hlAQ — 1) (eﬂ%, 671

£

+ i ’(hlAg + 21— Az)) (72, e7'2) - (3 —>'
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By the definitions of ¢1, ¢, ¢3, and ¢4, we get

i& is
2 2

N

;S
[ 2

$2(6,0) = €7361(6,C), B3(6,0) = e 31(6,0),  da(€,C) = e B30 (£,C).

Since A(z,w) is bounded, all polyphase terms Ay(&, (), A1(&, (), A2(&, () and Az(&, () are

bounded, that is

|AO(€7C)‘7 ‘A1(§7<>|7 |A2(€7C)‘7 ‘A3(§7<>| < KA? V€ € [0727T]7

where K4 > 0 is a constant. And also the polynomials hq(&, (), p2(&, () are bounded. It

follows that

SRS AR

where K > 0 is a constant. The same argument can be applied to 55. 0

4.4 BIORTHOGONALITY AND THE RIESZ BASIS PROPERTY
Let ‘70 be the space generated by N, ie.,
‘70 = Sp&ﬂ{ﬁ(l‘—j,y— k) :jak € Z}

And also, for | € Z we let
Vi={f2'.2%): f € o}
First we prove that the integer translates of N constitute a Riesz basis of \70, and fur-

thermore, N generates a multiresolution analysis of L?(R?). To this end, we first recall the

Riesz basis condition in bivariate setting:

0<01<Z

lez?

2

((§; Q) +2ml)| < Oy < o0. (4.32)

To prove (4.32) we need following lemma. The proof of the following lemma is the extension

of Lemma 3.3.1 to bivariate setting or it is the result of He and Lai(]25]).
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Lemma 4.4.1 For any sufficiently large m and n

D

€72

((§ ¢)+2wl) N ((f Q)+2nl)| > C>0. (4.33)

Proof: From the definitins of A(z,w) and A(z,w), we get

|A(€, ¢) A€, )

14 e 8\ /14 e i\ /14 e—te—iC\™ o L
_ ( +26 > ( +2€ ) ( +62 € > H(e—z§7€—zC)D(e—z§e—zC)

n

n m

= |cos § cos ¢ cos E+¢ ’H(e’ié, e’ic)} }D(e*i(@ré))}
2 2 2

> |cos 3 coS ¢ coS £+¢ ’H(e"f, e”f)}
2 2 2

The last inequality above comes from a simple fact: }D(e_i(§+<))} > 1 for (&,¢) € R?. Indeed,
we have D(e "¢*+9)) = P (y) by putting y = ke;ﬂ, where P (y) is a polynomial in (3.23).
Then it is known that P (y) is an increasing function on [0, 1] in [12] and P (0) = 1.

Since the sum of the inequality (4.33) is 2m-periodic, we know that (4.33) holds for
(€:¢) € [-m ) x [~ . Since [N (,0)] = [N(~€.~0)
(&,¢) € [—m, ] x [0, 7]. Note that

(2t & oL e )
e = |5 () (g eng) T (FomganS) |

k=0
First, consider (4.33) on (¢,¢) € [—,0] x [0,7]. Since cos §, cos §, —sin $ s , sin$ > 0 on this

, it is enough to consider (4.33) for

interval, we have

. A C n—1
’H(e"f,e_zg)} > |cos 2 cos =
2 2
The simple fact that S22 > 2 2 on [—7, 5] implies
L -1
—= =
H’H(e 27 e 21 > H cosﬁ CO8 o7
j=1
CE ¢ n—1
_|sing sing
€ ¢
2 2




109

Thus we have, for (§,() € [—m,0] x [0, 7],

'N@,oﬁ(a c)'

- £ ¢ " I e e
2 ][ |eos 55| |eos g7 9i+1 H)H(e e )
j=1 j=1
- (sin%)n (sm%)n (sin%)m (2>2n_2
2 In+m—2
> (—) >0
m
Now consider (4.33) on (£,¢) € [0, 7] x [0, 71]. Note that |H(1,1)| =1 and H(e %, e %) is

entire. Then, there exists 6 > 0 such that for (&,¢) € [0,6] x [0,6], |H(e™*,e™)| > 5. And

by Mean Value Theorem in bivariate setting, we get
[H(e™*,e7) = 1] < C(I¢] + 1<)

or equivalently

[H(e™, e < 1= C(¢] +[¢])-

On the other hand, there exists ko € Z such that C (|5| + |&]) < 2 for j > k. Since

1—x26*2“f0r0§x§%,wehave

s 3 <
Tl a5 .5)
j=1

H’H iz ,e ZA2J H ’H iz e 22%)
j=ko

N 5 SRl
5) H(l 2ko+J)

J=1

v
AN

v

N | —

v

I
S~ N 7 N 7N
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Therefore for (¢,¢) € [0,4] x [0, 9],

] (€, ON ] (;)m( >k0-61>0.

Finally, for the proof of (4.33) on (&, () € [0, 7] X [0, 7], we consider the following term in

the summation of (4.33):

'JV(f,c—zw) N(&, ¢ —2m)].

From 0 < ¢ <7 and d < ( <, we easily get

R el P S, A S s o Sk L AP
=2 S 2 — T2 2 =T

0<

DO [y

<

(R

bln T

and then, from the property of the function

i ~ i i m i
sin § 2\" |sin<E sin g sin £H¢27 sin &
£ 2 ; ) ¢—2m 2 T 8 ) £+C*2ﬂ' Z T 5 .
2 2 2 2
Since cos 2ﬁr1 , COS 42] +1,8in 5 £ —sin 42] + > 0 for 7 > 1, hence

) i € j6=2m

H(e "2, e "2 )

& 2m-1 ¢ C—2n\""Fy e c—2m\*
= £ ]{] COS 2j+1 COS 2j+1 — S1n 2j+1 S11 2j+1

> |cos 71 cos 71

Therefore it follows that for (&, () € [0, 7] x [d, 7],

'ﬁ@,c —2m)N(£.C — 2n)

0 n n m 00
§ (—2m {+(—2m IS
21_[ CO8 5| |60 Toprr | |COS T H’H(e 2 e )
Jj=1 J=1
>ﬁ cos —— " cosc_i27T ' cosw " cos S cosc_%r "
= 2j+1 9j+1 9j+1 9j+1 9j+1
=1
N T T A v g . (—on P
_|sing | |sin S5 sin > sin 5 sin *5
| € ¢—2m E+¢—2r ¢ C—on
2 2 2 2 2
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Similarly (4.33) holds for (£, () € [0, 7] x [0, 7]. This completes the proof of Lemma 4.4.1.

By the same argument in the proof of Lemma 4.4.1, we can prove that

2.

€72

2

N, ) + 27| > Cy > 0. (4.34)

And Lemma 4.3.2 implies

2

N, ) + 27| < G, (4.35)

2.

€72

By (4.34) and (4.35), {N(z — j,y — k) : j,k € Z} constitutes a Riesz basis for V;. Thus, we
conclude that N (x,y) generates a multiresolution analysis of L?(R?) by the following lemma

by Jia and Shen([31]).

Lemma 4.4.2 Let ® be a compactly supported refinable function vector. If ® € (L*(R?))",

then
UV = L2@®) and ()V; = {0},
jez JET

where for each j € Z, V; is the space generated by the integer translates of ®(27x, 27y).

Consider a bivariate Laurent polynomial matrix which is of the form:

1 - x o
ZBO(Zaw> Gl,O G2,0 Gg,o

~ izBl(z,w) 5T1 631 égl
Pl (z,w) =

1 Y % %
jwBa(z,w) G, G, Gi,

1 Y Y Y
prwBs(z,w) Gig Gis Gig

where ém, 1 <5 <3,0<k<3 are defined as follows:

Cho = _ZPOAQ(l = As), Giy = _ZplAz(l — A3),
o= 7 (Podo +pA) (1= Ay) + 43), Gl =— A,
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Gio = —1poi(1 - Ay), Gz = 7 (poddo + p2An)(1 — Ag) + As)
Gy = A1l — Ay), Gy = —2 A

Gio= (A +paAa) (1= A3) + Ay). Gy = —Spido(1— Ay),

Gy = —ypaAofl — As), Gy = —2aa

Now we define Ml, Mg, ]\Ajg € ‘71 in the Fourier transform,

—

M(£.C) = Gro(zw) 3y(6.0) + G (2,w) 3y(£, )

+C~;’12(z,w)g3(£,f)+é13( )g (& ¢)

:_i(poAQ(l—Ag))( ) - (&, o——<p1A2<1—A3>>< ) - 6u(&,C)

+ i((pOAO A1 — Ag) + A3) (2.10) - (€. C)

1 o
2 Ay(z,w) - ¢4(§ ¢),

Ma(€,0) = Cao(z, ) 61(€,C) + G (2, 1) (€, O)

+ Gaa(z,w) 453(57 ¢) + Gos(z,w) 24(57 ()
1

= A~ 4)(E D) - 51(6.0)
n i (podo + poAa) (1 — Ag) + As) (2,) - (€, C)

— ipw‘h(l — A3)(z,w) '23(& ¢)—
(€, €) = Gz w) (€, €) + G (2,w) 3y £,C)
+ Gaa(z,w) Gs(€, ) + Gaal(z,w) (€, C)

- i (prAs + p2As) (1 — A) + As) (2,0) - 64(£,€)

— AL~ 43)(2,0) - GulE,C)
401 = Az @) - (€. 0) — —A0(5 ) - 64(8,0),

4
From the above definitions, clearly we know M1 = M. And it is easy to check that

Pi(z,w) = 1 [Pi(z,w)]™*. Since Pi(z,w) has a constant determinant by Theorm 4.2.1, the
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matrix ﬁl(z w) also has a constant determinant. Since <¢1 02, O3, <;54> generates ‘71, hence
<N Ml, Mg, Mg) generates 171 And it is easy to check that matrices P;(z,w) and ﬁl(z, w)
satisfy

PP} (z,w) + PP} (—z,w) + PP} (z,~w) + PP} (~z,—w) = 1.

We put
Ml(xay) :Ml(QxaQy)v MZ(x’y) :M1(2$—1,2y),

]\A]w(%y) :M1(2$,21U—1)7 M4(xay) :Ml(Qx_172y_1)a
and by the same way, define ]\%1, e ,MM and ]/—\\4_/31, e ,]\%4, for ]/—\\4_/2 and ]/—\2/3, respectively.

~ -~ _ \T -
Then we can see that (gbl, cee g, My, Mg, - - - ,M34> generates V5. Summarizing the dis-

cussion above gives the following theorem.

Theorem 4.4.3 Let N(z,y) be the bivariate boz spline function of order (I,m,n), and let

Z*(z,w) be a Laurent polynomial of the form

;ﬁ@ﬂwzzg(lgz)ﬁl(igﬂjﬁ’“(1t;w)ﬁ’vn%u»D@w»

where H(z,w), D(zw) are defined as follows
F1—z1—w\"
2 2 ’

n—1 ~ n—1—
2n —1 14+2z1+w
new =3 () (5

—1 L—-1—-k k
2L — 1 1 1-—
Dlew) = ( k )( +22w) ( QZw) Rl
0

Define a function ]\7(3:, y) by

i\

h

b
Il

= ¢ ¢
) =114

Jj=1

and deﬁne two function vectors & = <¢17 ¢27 ¢37 ¢47 ¢5)T7 Ei) = ((Zla 527 (537 547 (55)T i terms Of

the Fourier transform

51(26,2¢) = ~N(€.,), 31(26.2¢) = AN(£,0),

=~ =
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52(26,20) = 1N (E, ), 52(26,20) = 4eEN (€, ),
53(26,20) = 1R E,0), 5a(26,20) = 4N (€, 0),
51(2€,20) = 3¢ N (€, Q) 04(26,2) = 4e 4N (€,0),
55(2¢,20) = ;M (26,20), 55(2¢,20) = 1M (6, €),

with
M(€,¢) = — hiAg(z,w) - $1(€,C) — I A (z,w) - §a(€,C)

— (h Ay = 1)(2,w) - 83(570 - (hlAB +po(1 — Ag))(z,w) : 54(5707

1

M(E0) == (pora(1l = 4g)) (2,8) - 1(6,0) — 7 (rAs(1 = A9)) (7.8) - 56, C)

~

47 (oo + pr A1 = Ag) + A (2,) - 62(6,C) — 1 Ao(2,10) - Gu(6,).

where p;’s and h;’s, j = 1,2,3 satisfy (4.11)-(4.14). Then, for sufficiently large m and 7,

~

N(z,y) generates a multiresolution analysis of L*(R?). And further, two function vectors

CD,EIVJ generate S,g respectivly, with
VicSCVsandVy €S C
where for j € Z, V}, \7j are defined as
Vo=span{N(z — Ly — k) : Lk € Z}, V;={f(2z,2y): f € Vi},

Vo = span{N(z — Ly —k): L,k € Z}, V; = {f(20x,27y): f € V}.

4.5 MATRIX EXTENSION FOR WAVELET FUNCTION VECTORS

We have constructed a class of compactly supported multiscaling functions. Now we need

to construct multiwavelet function vectors W = (11, -+ ,115)7, U = ({/;1, e ,{/;15)T associ-
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respectively. To construct wavelet functions W, Cff, we need to find matrix symbols Q(z, w),
Q(z,w), associated with matrix symbols P(z, w) and P(z,w), where these four matrix sym-
bols satisfy (4.1)-(4.4). Similarly to the univariate case in Chapter 3, it turns out to be a
matrix extension problem.

In general, we write P(z) = [P(w + 7k), k € {0,1}9] to be a block matrix of size r x 722
with trogonometric polynomials as its entries. In the same way, P(z) = [P(w + 7k), k €

{0,1}9. Then we need to find the block matrices Q(z) and O(z) of size r(2¢ — 1) x r2¢ such
that

[ﬁ*(z) @*(z) = Lygdxyod. (4.36)

For r > 1 and d = 1, the matrix extension problem was treated in [33]. For r =1 and d > 1,
several extension methods related to box spline biorthogonal wavelets are available in the
literature, e.g., in [30] and [25]. The case of r > 1 and d > 1, can be found in an unpublished
manuscript [7].

As usual, once we find Q(z) and Q(z), we define ¥ and W in terms of the Fourier transform

by
w

W) = o

)8(5), (W) = A5 (%)

Therefore we have the following theorem:

Theorem 4.5.1 Let = (¢17¢27¢35 ¢47¢5)T7 5 = (515 5275& 54a 55)T be two Scaling func—
tion vectors defined in Theorem 4.4.3. Let

[ P2) | | PGw) P(-zw) P(z—w) P(-z-w)
| Q@) | [ QGEw) Q-zw) Qk-w) Q(-z-w) |
@) | [ Plew) Pz Ple—w) Ploz-u) ]
Oz) | | Qzw) Ql=zw) Qlz—w) Q-2 -w)

- - - - 20x20
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be matriz extensions of P(z),P(z), which are obtained by the method above, where z =
(z,w) = (7%, e7®). Define two function vectors U, U in terms of the Fourier Transform by

~

B(2€,20) = Qw, ) B(w, ¢), (2w, 2C) = Olw, ) Bw, ).

Then ¥ = (q, -+ ,1¢15)T and U = (51, e ,515)T are wavelet function vectors associated

with ® and ® respectively, satisfying (4.1)-(4.4).

Remark 4.5.2 In the above construction, we are on r = 5 and d = 2. The algorithm from
[7] is based on induction on r = 5, which is the number of rows in the matrix P(z) of size

5 x 20. Even this algorithm is quite constructive, it is not the easy work in bivariate setting.

4.6 REGULARITY

Similar to the univariate case, we compute the required numbers for n,m to give
51, 52, 53, 54, 55 some smoothness .
Consider N(x,y) = By 11(x,y), the box spline function of order (1,1, 1). We choose n = 3

in the definition of A*(z) = B(z), then we have

(o) = i (14;)2 <1+2w)2 <1+22w)m—1H(z’w)D(Zw)’

where

-0 (525 0555

2
k=0

e - Ati—k k
2 1 1—

D(zw) = (9+ m) ( +zw) ( zw) .
— k 2 2
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The definition of N implies

i € i €

Av(ef 27 e ")

2

N o] =]

1

<
Il

2
‘ £ s

(€5, &)

o] i -5
H 14+e 27 1+4e 27
, 2 2

=1

o]
J=1

It follows from Table 3.1 that

LI

<

& ;< m—1
14¢e 27e "2

2

D(e_i%e_i%).

i<

1+e_i% 1+e_i§ ’ £ _
: ‘H(e a7 e e

2 2

dedc

SC/Rﬁ

2
Jj=1

2 1
{Pg (sin2 %) -Ps (sin2 %)] dédg

<C [ 1D 139O - (15 I 149(0) | deig

1+ e*ii 1+ eii%
2 2

—c [arlen 1ad©1de- [ @16 1301 dc

< [ @ieh® 1d©lde - [ 1+ 1) |50l < oc.
R R

By Lemma 4.3.2, we choose m such that m > (1+ 2log,3)/(1 — $log,3) = 20.0942, this

implies

Thus, the choice of n = 3, m = 21 is needed for N e ", it follows that d = (51, e ,55)T €
C°. By the same argument, we can make ® € C' or C? with the appropriate choice of n and

m. For a given box spline function, required numbers of n and m for some regularity are

listed in the table below:

N = B o o o
co o C?
(1,1,1) |Ra=3m=21|n=6m=44 |7 =9,m =66
(2,2,1) |7=6,m=44 |7 =9,m=066
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Table 4.1 Regularity of d

This can be compared to the result by He and Lai([25]):

Bl,m,n él,m,n él,m,n El,m,n

" ct C?
(L1,1)|[7=3m=25|n=6m=47 |n=9,m="71
(2,2,1) | R=6,m=47 |7 =9,m =Tl

Table 4.2 Regularity of él,m,n
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