
David Mitchell Jennings
JXSHELL: a Web-based expert system platform
(Under the direction of Dr. Donald Nute)

The logic programming principles of Expert Systems (ESs) allow for the construction

of an ES engine that both functions correctly from a theoretical point of view and

complies with the generally accepted principles of good Web design. Thus I built

JXSHELL, a Web-based ES architecture, as a platform for multiple ES deployment

over the Web. JXSHELL includes a clear model for ES development that strictly

separates knowledge base logic and interface logic, and JXSHELL-based deployments

involve a minimum of server-side and client-side processor load.

Index words: Expert systems, Logic programming, Web applications, Prolog,

Java, XML, XSL, XSLT

JXSHELL: a Web-based expert system platform

by

David Mitchell Jennings

B.A., St. John’s College, 1993

A Master’s Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science in Artificial Intelligence

Athens, Georgia

2002

c© 2002

David Mitchell Jennings

All Rights Reserved

JXSHELL: a Web-based expert system platform

by

David Mitchell Jennings

Approved:

Major Professor: Dr. Donald Nute

Committee: Charles Cross

Michael Covington

Electronic Version Approved:

Gordhan Patel

Dean of the Graduate School

The University of Georgia

August 2002

Acknolwedgements

If it had been up to me, this thesis would have never been written. I owe a debt of

gratitude to those who encouraged and at times cajoled me to get this thing done: my

mother Barbara Jennings, my sister Nancy Jennings Aburto, and my boss and friend

Rick Hitchcock. My advisor Dr. Don Nute helped me paragraph by paragraph, and

his rare combination of theorectical knowledge and good sense was, and is always,

an inspiration. My other committee members, Dr. Charles Cross and Dr. Michael

Covington, exhibited Job-like patience. And finally Melissa, though she never set

eyes on this work, has helped me more than she knows.

iv

Preface

This paper introduces the JXSHELL expert system architecture. JXSHELL is a

stateless, Web-based architecture that can be used by developers to create expert

systems delivered over the Web to users. Typically, users will use a Web browser,

but the only constraint on JXSHELL clients is that they be able to interpret HTML

and be able to return HTTP compliant GET strings to the server or servers running

a JXSHELL application. JXSHELL applications avoid many potential problems of

other Web-based applications, such as high server overhead, and can leverage many

server technologies, such as load distribution. In addition, JXSHELL allows for a

clean separation of duties between interface development, based on XSLT processing,

and knowledge base development, based on a small subset of the Prolog programming

language.

In this paper, I first discuss the design principles of the JXSHELL architecture

in light of how both expert systems and the Web function. Then I go on to provide

practical guidelines for developing JXSHELL applications.

Tim Berners-Lee, the original designer of the HTTP protocol and one of the

Web’s chief theorists, has famously claimed that the Web is a “semantic Web,” but

that it is not AI (Artificial Intelligence). We hope to show through JXSHELL that

though the Web may not be AI, it is particularly well-suited to hosting development

in the AI subdiscipline of Knowledge Based Systems.

Because expertise is by its nature limited, expert knowledge will generally be

limited in its applicability to real life situations because of the simple fact that

experts are greatly outnumbered by those who may benefit from expertise. Thus

v

vi

expert systems have been developed within the field of Artificial Intelligence as a

way of allowing experts to disseminate the benefit of their judgements to people who

would otherwise not have access to those judgements. Expert systems are computer

programs that generate solutions to problems based on input combined with an

expert’s knowledge. Consultative expert systems are expert systems that generate

user interactions of some sort for eliciting input. Rule-based expert systems are expert

systems that codify expert knowledge as a set of rules. In the following we will

consider consultative, rule-based expert systems specifically, and the term “expert

system” will apply to these, unless stated otherwise.

In a consultative, rule-based expert system, the expert’s knowledge is realized

programmatically as a set of rules that the program processes in such a way that

appropriate questions are asked of the user until a decision is reached. The process

of query and answer mimic the steps by which a naive user approaches an actual

expert to resolve a problem or answer a question. The set of rules that represent

expert knowledge is known as a knowledge base.

Typically, expert knowledge is embodied in a program as follows: an expert, per-

haps together with a knowledge base developer or by using a software tool, generates

a set of rules. An expert system developer incorporates that set of rules into a larger

program. The resulting program processes the rules by establishing which rules, if

any, hold for a given set of conditions that are supplied by a user. Generally, a rule

includes a rule head that represents a complete answer and a set of one or more

conditions, each of which when processed by the program generates a user interac-

tion. The user’s interaction, for example answering “yes” to a yes and no question,

establishes whether the condition in question is satisfied. If it is, then the system

is one step closer to establishing that the given rule holds. If the condition is not

satisfied, then the system will automatically proceed to the next rule in an attempt

to establish whether it holds. The end result is either a satisfied rule resulting in an

vii

expert recommendation, or a “no rules satisfied” state, meaning that no answer can

be returned based on user input. Additionally, expert systems are often set up to

allow users to try to reach multiple recommendations based upon their input, and

sometimes expert systems are designed to give the user the choice of seeing what rule

from beginning to end was satisfied to generate a given answer. (JXSHELL expert

systems can include both of these features.)

The basic procedural constraints on an expert system software is that it

“remember” user input (thus avoiding needlessly repeating an interaction); that

it process rules in some order so that once a rule is established not to hold it is never

revisited (thus avoiding loop conditions); that it generate appropriate interactions;

and that it have some way of reading user input. The basic logical constraint on

an expert system is that program state together with user supplied information

uniquely determine a next user interaction or an end state. (This last constraint

applies to all consultative expert systems.) To understand this latter constraint

more fully, we will consider below expert system interactions as logic programs. To

understand the procedural constraints in the light of Web-based systems, later we

will consider first the added constraints presented by HTTP (the stateless protocol

upon which the Web is built) and then the way in which the JXSHELL architecture

meets them. Finally, we will evaluate JXSHELL in light of its practical advantages

as an Expert System architecture, and we will compare it to similar professional

systems.

Table of Contents

Page

Acknolwedgements . iv

Preface . v

Chapter

1 Logic Programing: a brief overview 1

2 Expert Systems as Logic Programs 12

2.1 A procedural interpretation for expert systems . 12

2.2 Program memory for expert systems 13

2.3 A correctness criterion for expert systems 15

3 Expert System interactions as Web objects 17

3.1 The Web as URI space 17

3.2 Summary . 23

4 The JXSHELL implementation 24

5 A Reference Section for JXSHELL programmers 28

5.1 A JXSHELL knowledge base (KB) reference 28

5.2 Prolog generated XML output 43

5.3 A JXSHELL XML output reference 44

6 JXSHELL evaluation . 62

6.1 JXSHELL advantages 62

viii

ix

6.2 JXSHELL compared to LPA ProWeb and Amzi

KnowledgeWright . 63

Appendix

A The JXSHELL reference implementation 66

B JXSHELL deployment considerations 68

B.1 JXSHELL version numbers 68

B.2 JXSHELL installation and configuration 69

Bibliography . 70

Chapter 1

Logic Programing: a brief overview

We will consider an expert system as a type of logic program. Logic programs, as

described in Hogger [2], are typically computer programs that process a definite

program using a resolution scheme. Definite programs are ones whose clauses are all

definite, meaning that each clause in the program contains exactly one positive literal

(e.g., xkb identify(3)1) and zero or more negative literals (e.g., ¬prop(dorsal crest)).

Thus the following is a definite clause:

xkb identify(7) or ¬prop(dorsal crest) or ¬parm(color,m,4)

as is this:

xkb identify(7)

For our purposes, it is important to point our that a definite clause with zero negative

literals is a fact (condition), as mentioned earlier, while one with more than zero

literals is a rule. The second assertion is proven by the following simple logical

equivalences (here expressed in predicate logic):

(x if (y and z)) iff (x or ¬(y and z))

and

¬(y and z) iff (¬y or ¬z)

1These examples and similar ones throughout this paper are based on the JXSHELL
reference implementation. See Appendix A.

1

2

If x is does not hold, then either y or z (or both) do not hold. Thus our informal

description of expert systems, as consisting of rules and sets of facts, describes a

logic program, provided that expert systems also include a resolution scheme.

Resolution is an inference rule applicable to clausal form logic [2, page 73]. Intu-

itively, resolution is a procedure that can be applied to a set of clauses to derive

another clause. The action of a logic program is to attempt to prove an assertion by

deriving the null clause (conventionally, 2) from a definite program and the negation

of the given assertion: P ∪{¬q} (where P is a definite program and q is the definite

clause that is being derived). The negation of the clause to be derived is known as

a query and is often expressed as

? q

The question mark is “syntactic sugar” for the logical negation symbol ¬. The infer-

ence of q is accomplished by deriving the null clause or 2 from P ∪{¬q}. Intuitively,

we say that we know that given a definite program P , q holds if ¬q and P derives 2.

Or in other words, that the supposition of ¬q and P is inconsistent. This supposition

is guaranteed by the following proof theoretic theorem:

P ` q ⇐⇒ P ∪ {¬q} ` 2

Resolution works by composing a set of resolution steps, each one consisting of

two clauses (or parents) from a set of clauses, the only constraint being where one

parent contains some literal A the other parent contain the negation ¬A of that

literal. Here A and ¬A are known as complements. The next step of the resolution,

or the resolvent, consists of the disjunction of the two parent steps minus a pair

of complements. Hogger [2, page 73] gives as the following simple example of a

resolution step:

3

parents: mother or father or ¬parent

male or ¬father

resolvent: mother or male or ¬parent

The last step in a successful resolution will be of the form:

parents: ¬parent

parent

resolvent: 2

In real-world applications, the typical resolution method is SLD-resolution,

for Selection Linear Definite resolution. The Prolog programming language [3, 1]

includes SLD-resolution as its built-in inference procedure. The Definite in SLD-

resolution simply indicates that programs subject to this procedure are definite.

The Linear indicates that each resolution step uses as one parent the most recent

resolvent (the center clause) and as the other parent (known as the side clause) a

clause containing a complement to some literal in the center clause.

For our purposes the most interesting aspect of SLD-resolution is the S , or the

selection, aspect. The S indicates that SLD-resolution utilizes a fixed selection rule

for deciding which literal in the center clause is resolved upon. Thus for the following

center clause:

¬parent or ¬male

the program uses some selection rule to decide whether to pick as a side clause one

that resolves upon “¬parent” (i.e., contains a “parent” literal) or resolves upon

“¬male” (i.e., contains a “male” literal). Whichever literal is chosen, it will be

according to a consistently applied rule. Now consider the case of an expert system,

in which the definite program P consists of rules of the form:

father(bob) if male(bob) and parent(bob)

As we have seen, this rule is logically equivalent to

4

father(bob) or ¬male(bob) or ¬parent(bob)

Now we apply a simple computation rule, namely leftmost selection. This means that

in the center clause we attempt to resolve upon the leftmost disjunct. We thus begin

with the query

? father(bob)

The resolvent here is

¬male(bob) or ¬parent(bob)

Next we resolve on ¬male(bob), and so on until we reach 2 or some non-resolvable

clause. In the following we assume leftmost selection as our resolution selection rule.

SLD-resolution is commonly understood as a search tree in which each edge sig-

nifies a resolution step, and all nodes other than the root node are resolvents. By

convention these trees are represented with the root node at the top. SLD-resolutions,

or more simple logic program computations, either fail infinitely (i.e., loop), or they

end either with a successful computation or a finitely failed computation, meaning a

step in which the resolvent fails to resolve with any program clause. In tree repre-

sentations we will indicate a successful computation with the null clause symbol, 2,

and we will indicate a finitely failed computation with a special symbol, ■.

The resolution tree represented in 1.1 is built on the query

? father(bob)

with the two rules

father(bob) if male(bob) and parent(bob,mark)

father(bob) if male(bob) and parent(bob)

and as input

5

parent(bob)

male(bob)

■

? ¬parent(bob,mark)

? ¬male(bob) or ¬parent(bob,mark)

2

? ¬parent(bob)

? ¬male(bob) or ¬parent(bob)

�������������

XXXXXXXXXXXXX

? father(bob)

Figure 1.1: An exceedingly simple SLD-resolution tree.

Note that every resolvent is itself subject to a next resolution step, and each

resolution step, whether or not it is from the top level query, is the same type of

computation. Thus every node is modeled as a query (indicated by ?).

Resolution trees are abstract representations of a logic program computation.

However, they can also be understood more programatically as representations of

the actual steps taken during program execution. The program attempts to reach a

successful computation, or 2, by running down branches of the tree going from top

to bottom, and left to right.2 Upon reaching 2, the computation finishes sucessfully.

Upon reaching ■, the computation backtracks to the last branching node and con-

tinues down the first branch (from left to right) not previously tried at that node.

If there are no branches to backtrack to, the computation finitely fails. Typically

2This is true in the case of systems, such as the Prolog programming language [1, pages
10-11], that employ left-to-right, depth-first search. For the sake of simplicity, this is the
type of search assumed throughout this paper.

6

systems will often include forced backtracking, so that upon reaching 2, the user can

force the system to backtrack to find more answers.3

Understood logically, the clauses of a logic program define relations. However,

relations are purely logical. That is, a program understood as an expression of rela-

tions does not in itself imply any specific computation. To understand logic programs

as programs, we interpret a logic program as a type of search. Specifically, the search

is for an answer to a query given some computational state. Furthermore, we must

extend our understanding of SLD-resolution tree processing beyond search order to

the construction of the trees themselves. That is, even in our quasi-procedural rep-

resentation above, we leave obscure the procedure involved in building the trees that

are searched. To understand tree building, we must introduce the notion of a search

rule for a logic program. A search rule defines the behavior of the program’s infer-

ence engine over the program’s clauses and program input when defining the search

tree used for finding answers to queries. Note that an SLD-resolution tree implies

an order for computation, namely left to right, as mentioned. SLD-resolution (with

some given computation rule) gives us a means of generating branches in a search

tree, but the search rule gives us the shape, i.e. the order of computations, for a

search tree.

For instance, assume a leftmost computation rule and the following search rule:

Search Rule: select clauses in the text order shown below.

father(bob) if (male(bob) and parent(bob,mark))

father(bob) if (male(bob) and parent(bob))

parent(bob)

male(bob)

3JXSHELL also includes forced backtracking. Administrators enable forced back-
tracking for particular applications through a configuration setting; see Appendix B.2
for details.

7

The resulting tree will be what we have already encountered, namely 1.1.

However, with the following search rule:

Search Rule: select clauses in the reverse text order shown below.

father(bob) if male(bob) and parent(bob,mark)

father(bob) if male(bob) and parent(bob)

parent(bob)

male(bob)

the resulting tree 1.2 is somewhat different. Note that both trees are correct. The

difference is computational, not logical.

2

? ¬parent(bob)

? ¬male(bob) or ¬parent(bob)

■

? ¬parent(bob,mark)

? ¬male(bob) or ¬parent(bob,mark)

�������������

XXXXXXXXXXXXX

? father(bob)

Figure 1.2: An SLD-resolution tree utilizing an alternative search rule from 1.1

For a more involved set of examples (featuring variable instantiation and different

computation rules), refer to [2, pages 110-112].

We can specify a computation rule by defining the rule by means of a meta-

program interposed between the program interpreter and the object program (here

understood as {P, Q}, where P is a given program and Q is a query [2, pages 105-

108].) Typically, a logic program interpreter will impose its own fixed computation

rule. For our purposes we will always assume the presence of a search computational

meta-program. As it turns out, such a meta-program will prove important in our

8

understading of JXSHELL as an appropriate platform for Web-deployment of expert

systems.

In the context of logic programming we will refer to program state, or simply

state, as anything that the program uses to generate a search tree. As the source

from which resolvents are chosen, the clauses of a program will be part of state. In

some logic programming applications, state is nothing more than the clauses of the

program and user inputs. In these systems, the search rule for generating resolution

trees is to apply some lexical criteria to the set of program clauses. For instance, in

a case where there are two clauses that are equally appropriate as a branching node

at a given level of the tree, a program that uses lexical criteria may choose for the

leftmost node at that level the first clause as it is represented in the program. The

rule would state “for constructing subtrees choose the clauses in this order,” where

“this order” refers to the order in which the clauses are represented in the knowledge

base. Hogger [2, page 110] refers to such systems as relying on a given text order for

clauses.

Given added constraints upon clauses, a meta-program can leverage some given

lexical convention to build resolution trees. Consider the resolution tree already

presented in figure 1.1.

We can consider this tree as implicitly indexed, where each branching node is

assigned some number (beginning with 1), and every node on a level that branches

has an a index one higher than the node immediately to its left. (See figure 1.3.)

In a system using explicit indexing, the indexes are made part of the clauses

themselves, so the tree in 1.3 would be generated from the following rule base:

father(bob)1 if male(bob) and parent(bob,mark)

father(bob)2 if male(bob) and parent(bob)

9

where the original input specifies that the tree be built from the first rule. In the

Prolog programming language, where clauses closely resemble the representation

that we use here, the rule base would appear as follows:

father(bob,1) :- male(bob), parent(bob,mark)

father(bob,2) :- male(bob), parent(bob)

For the meta-program to construct resolution trees it simply needs to start from a

specified rule index to build trees where the clause for a branching node is chosen by

the ordering of rules on their indexes. The lexical ordering of clauses is immaterial.

■

? ¬parent(bob,mark)

? (¬male(bob) or ¬parent(bob,mark))1

2

? ¬parent(bob)

? (¬male(bob) or ¬parent(bob))2

�������������

XXXXXXXXXXXXX

? father(bob)

Figure 1.3: An indexed SLD-resolution tree

Under a system employing rule indexing, we can consider the index as a param-

eter for the tree building meta-program. The inclusion of parameters for the meta-

program is an important aspect of the JXSHELL system in so far as meta-program

parameterization allows for programs that maintain only static state between user

interactions, as explained more fully below.

10

So far, we have only considered logic program computations over programs

without variables. For full generality, logic programming includes allowance for uni-

versally quantified expressions, particularly for rules. Thus instead of relying on the

awkward rule

father(bob) if male(bob) and parent(bob,mark)

a real application would greatly extend the expressiveness of the program, meaning

the domain which is picked out by the rule, by using variables (here denoted in

Prolog-style with capital letters):

father(X) if male(X) and parent(X,Y)

The rule now reads that for every X and every Y, it is the case that X is a father if X is

male and X is the parent of Y. To use a universal quantification in an SLD-resolution

step, it is necessary to apply a unification, denoted θ, to the expression, meaning

that variables are substituted according to a set rule. The details of unification are

beyond the scope of this paper; for our purposes it is sufficient to point out that the

unification employed in logic programming is such that the refutation completeness

of SLD-resolution is preserved. [2, pages 81,97-101] This means that the system will

derive 2 from any set of definite clauses provided that the set is unsatisfiable.

To understand logic programs as computational systems (as opposed to simply

as logics), unifications are divided into two types: ingoing, denoted θin and out-

going, denoted θout. Queries on the program are of the form q1&q2& . . . &q2, where

& denotes logical conjunction. Each conjunct of the query is interpreted proce-

durally as a call to a procedure, so that we read the query as some sequence

< C1, C2, . . . , Cn >, where each Ci is some qj interpreted as a procedure call. The

call to Ci invokes a clause in the programs clause set, here interpreted as a set of

procedures. The general form of procedures is

11

C if B1 & . . . & Bm

here C is a procedure heading and (B1 & . . .& Bm) is a procedure body. The conditions

under which a clause is invoked by a call is that Ci and C unify, and that the program

scheduler determines that the clause invoked has the highest priority among all

other untried clauses. Under this interpretation, ingoing unifications are those that

apply to the clauses body upon a call. That is, θin passes data from the call Ci to

the invoked clause. Outgoing unifications apply to the query by means of the call,

meaning that θout passes data from the clause to the query (upon the call activated

by the query which invokes the given clause).

In the case of a system in which a parameterized meta-program determines pro-

gram execution, calls indirectly invoke clauses. (The indirection of calls is what is

meant by calling the meta-program an interposition between the program and the

interpreter.) A query plus other input parameters will invoke the meta-program

itself, and the meta-program will construct a call that will invoke a program clause.

The invocation process performed by the meta-program is the same as that out-

lined above. However, in the case of rule-indexed systems it is useful to introduce

yet another type of unification, namely that of index unification, or θindex. Like

θin, θindex is an ingoing instantiation, but θindex is restricted in domain (viz. to

integers greater than zero).

Chapter 2

Expert Systems as Logic Programs

2.1 A procedural interpretation for expert systems

Now we are ready for the procedural interpretation of an expert system: the expert

system produces a resolution based upon a set of user inputs. The system generates

a resolution by first finding a rule from the knowledge base using a fixed search rule.

For instance, in an indexed rule system the meta-program finds a rule whose index

matches the index passed by the user as a parameter. The system takes the body

of this rule as its query and resolves against the query using the information passed

by the user. If the rule fails, meaning if there is a user input that fails a condition

in the rule, then the meta-program moves to some “next rule” using a fixed search

rule. For instance, in an indexed system the meta-program moves to the rule with

a next higher index. Upon finding a next rule, the system resolves upon the rule’s

body using the user-supplied inputs. If there is no input to resolve upon for some

step in the resolution, the system generates a request for appropriate input (possibly

including meta-program parameters) and sends the request to the user. If the rule

succeeds, the system returns to the user a conclusion of the successful rule, possibly

along with appropriate meta-program parameters. If the last rule fails, then the

system sends to the user an indication of failure. In all cases, if the system sends

to the user meta-program parameters, those parameters are returned to the system

by the user upon acting upon a system-generated request, and the parameters are

in turn used by the meta-program to correctly continue knowledge base processing.

12

13

Because resolution is understood as the generation and processing of a search tree,

every step in a consultation is in effect the generation and processing of a search

tree based upon user input.

The user inputs that provide the system with items to resolve rule bodies upon

can be partial or can be complete. In the former case, the user provides some definite

clause that is added to a set of definite clauses already supplied by the user and kept

in a local memory store (see 2.2 below). The local memory store is maintained

between user interactions. In the latter case, the user provides the entire set of

definite clauses. This set will grow between user interactions, and the system will

include the current set as part of the request for additional user input. This set of

definite clauses, whether it is passed in full from the user or kept in a local memory

store, is known as the set of knowns for an expert system.

2.2 Program memory for expert systems

We define program memory for expert systems as a (possibly empty) store that must

be kept between user interactions to correctly generate the next tree. (Note that

program memory is not the same as computer memory, though the implementation

of a procedure that involves program memory will entail using computer memory.

Computer memory will be used regardless, because in all cases the program itself,

as well as whatever is needed for resolution, will require some “memory footprint.”)

Program memory may include meta-program tree building parameters and/or the

set of knowns (less the current user input). However, program memory as we define

it does not include the set of definite clauses that make up the original program,

that is the program represented in source code.

We note that it is possible to construct a memory free implementation for expert

systems. In this implementation, the user passes to the program both tree building

14

parameters and the set of knowns. In all cases there is an inverse relationship between

program memory and user input: the more information included in user input, the

less program memory is required. The case that is minimal in regard to program

memory (i.e., program memory is empty) is maximal in regard to user input (i.e.,

user input includes as much information as the meta-program can use to construct

and compute SLD-resolution trees.)

The tree building meta-program can be parameterized in different ways. In the

maximal case (i.e., that in which program memory is empty and user input is max-

imal), there are two different parameterization schemes that suggest themselves

based on our treatment so far. In one scheme the user passes the entire program

(in such and such lexical order) to the meta-program as a parameter, and the search

rule for the system is simply to process the rules in lexical order. The other scheme

uses rule indexing as discussed earlier, and the meta-program uses a supplied index

to correctly generate a search tree. The second scheme entails a further constraint

on ES knowledge bases, namely that they include an explicit index for rules, and

that the meta-program is more complex in that it must use a calculation on the

supplied index to generate a search tree. However, the second scheme gives us a

crucial advantage over the former in that the parameters passed by the user do not

grow with the size of the rule base, but only the number of knowns.

The ES modeled without program memory relies entirely upon meta-program

parameterization for correctly constructing SLD-resolution trees. This means that

there is a functional relationship between user input, understood as a string repre-

senting all necessary parameters, and program state. We can say that the program’s

input string determines program execution. We can also say that any correctness

condition for the program is also a correctness condition for input strings. That is,

we can say what a program should do under some given input string. (Note that how

input strings represent input items, and how those strings are parsed, are system

15

dependent considerations, and as such do not enter into a theorectical understanding

of ESs. Here we also assume finiteness of input strings, something that can be proven

for rule-indexed systems even in the case of infinite rule bases.)

2.3 A correctness criterion for expert systems

The correctness condition for an ES is that given a definite program and an input

string, that string correctly determines an SLD-resolution tree. To understand this,

we need to consider what determination means in this context. Up to now we have

considered each ES interaction as corresponding to a separate resolution tree. How-

ever, we can also consider determination in a different way, namely in terms of the

“original” resolution tree, i.e., that generated without a side clause and with the

lowest rule index. We will do some “hand waving” here, but suffice it to say that

a simple proof will show that every possible generated SLD-resolution tree for the

program will be a sub-tree of this original tree. In other words, every generated tree

will have as its root node a branching node in the original tree. Thus resolution tree

determination can be thought of as determination of some branching node of the

original tree. Every input string points out a branching node of the original tree.

Assuming left-to-right depth first search, we can say what correct determination

is: the branching node (of the original tree) pointed out by the input string will be

such that the input parameters represented by the string would produce a complete

resolution on any branches to the left of the node pointed out. Stated in terms of

rules, no rule will be considered for satisfaction or failure until all previous rules

have either been satisfied or unsatisfied. This condition determines that no answer

will be missed.1 For a memory free, rule-indexed ES, then, the correctness condition

1There is a stronger correctness condition that stipulates that all leftward subtrees will
fail given the current input parameters. However, this condition is too strong because we
want to allow for multiple answer ESs, i.e., those that allow the user to search for more
than one way of reaching an answer given a set of inputs.

16

determines that upon backtracking (i.e., upon jumping to a rightward branch of

the original resolution tree), the system increments the rule index, and that the

system never increments the rule index otherwise. Rule index incrementation can

be forced by the user, but only upon rule satisfaction, and a correctly built ES will

only automatically increment the index upon rule failure. In the case of JXSHELL,

this constraint is realized programmatically.

Given the possibilities for Web-based ES deployment, the principle design deci-

sion for an ES platform is twofold:

1. How much information should be maintained in state between interactions?

2. How much information should be passed to the program from interactions?

JXSHELL follows the “maximal case” in regard to information passed from interac-

tions and the “minimal case” in regard to program memory. This design decision is

made to avoid the necessity of maintaining program memory, as explained in depth

in the next section.

To sum up, JXSHELL ESs are well-formed logic programs. Each resolution step

uses Prolog’s inference mechanism, viz. that of leftmost resolution, depth-first search.

Each search tree subject to this mechanism is generated using a well-defined meta-

program, viz. that of lexical indexing. Provided that the rules of a Prolog ES obey the

given constraints (viz. are lexically indexed and non-recursive), JXSHELL ESs will

act according to the informal constraints discussed earlier. Furthermore, JXSHELL

includes a pre-processor that analyzes given rule-bases for conformance to the spec-

ified constraints, meaning that any ES that runs under JXSHELL will necessarily

be well-formed in our earlier sense.

Chapter 3

Expert System interactions as Web objects

As we have seen, ES platforms can be correct while utilizing either meta-program

parameters or a memory store, and parameterized systems can include rule indexing

or explicit ordering. In the case of parameterized (i.e., memory free) systems, rule

indexing is clearly the better choice due to the greater brevity of call expressions.

However, there is no logical or semantic reason that adjudicates between memory

store and parameterized systems. The design imperative (if there is one) must be,

then, procedural in the sense that some aspect of the context of procedure calls on

the system will decide the issue. It is at this point that it is important to remember

that our investigation concerns Web-based expert systems. The context in which the

ES applications under consideration are invoked is over the Web.

In the following, we describe addressable Web objects, according to the working

notes of Tim Berners-Lee. This investigation shows that principles of good Web

design favor an ES platform that does not maintain program memory between inter-

actions.

3.1 The Web as URI space

The Web is a space whose loci are defined by Universal Resource Indicators, or URIs.

A Web object is whatever can be referenced using a URI. For instance, an HTTP

address such as “http://www.expertsystems.com/index.html” is a URI referencing

an object, typically an HTML document. The HTTP specification delineates how

17

18

the components of an HTTP URI are interepreted; however, the importance of a

URI is its relation to Web objects as a referring expression to a referent. According

to Berners-Lee, this notion gives us a rough and ready definition of the Web: “An

object is ’on the Web’ if it has a URI.” Berners-Lee also calls Web objects “First

Class Objects (FCOs),” a term which in the theory of computing languages refers

to objects which can be referenced or dereferenced in any context like primitive

variables.

3.1.1 The “axioms” of URI space

Berners-Lee has developed a set of axioms on the URI space as part of informal notes

on the Web and related topics. These axioms are not meant to be mathematically

rigorous, but rather they are heuristic in that they illuminate the thinking behind

and the constraints upon Web development. Because the Web is ill-defined, we have

a certain amount of freedom in interpretting what it is. However, the implication

behind our analysis is that the axioms are prescriptive as well as descriptive — that

is, the axioms define the URI space of the future. Following the spirit of Berners-Lee’s

work, we leave unclear just to what extent this treatment is one or the other. We

do show, however, that any URI space that is compliant with Berners-Lee’s axioms

will be a space which includes loci for expert system interactions.

Axioms 0 and 0a: Universality

The axiom of universality is divided into two parts:

1. Axiom 0: Universality 1: Any resource anywhere can be given a URI.

2. Axiom 0a: Universality 2: Any resource of significance should be given a URI.

19

Both illuminate the design and implementation constraints on the Web in regard to

applicability. In terms of design, Axiom 0a specifies that objects delineated in any

resonable definition of URI space will be such that they can be URI referenced. In

terms of implementation, Axiom 0a specifies that the URI scheme must be flexible

enough to allow for reference to many types of objects such as static Web pages,

database tables and rows, and external entities such as books. Axiom 0b stands as

a challenge to site developers to include within their corners of the URI space all

the objects that can go there. Here the descriptor “significance” is necessarily vague.

URI addressing, however, is strictly defined, meaning that site developers’ work is

cut out for them at least regarding the method of referencing.

Axiom 1: Global scope

The axiom of global scope reads:

It doesn’t matter to whom or where you specify that URI, it will have

the same meaning.

There is no concept of “scope” for URIs. That is, there is no context within the

URI space in which a URI will refer to a different object than in any other context.

Note that this does not mean that all expressions for URIs are themselves fully

articulated. For instance, relative URLs are elliptical expressions for full URLs, the

latter being a type of URI. The context of execution determines how the elliptical

URL is expanded, but the expansion, that is, the URI for the object referenced, is

itself context-free.

Axioms 2a and 2b: Sameness/identity

The axiom of sameness/identity is divided into two parts:

1. Axiom 2a: Sameness: A URI will repeatably refer to “the same” thing.

20

2. Axiom 2b: Identity: The significance of identity for a given URI is determined

by the person who owns the URI, who first determined what it points to.

Berners-Lee applies the term idempotence to systems of reference that conform to 2a.

However, the concept of idempotence in the URI space is necessarily fuzzy given the

mutable nature of objects in that space. For a simple example, again consider HTTP

URLs. A URL can point to some given page from time t1 to time t3, but if at some

intermediate point t2 the page referenced is altered, then the objects referenced at

t1 and t3 are different in some sense. Axiom 2b simply states that this “some sense”

is defined by the originator of the URL. Furthermore, a well designed URI space

architecture will provide mechanisms to the URI owner for conveying the conditions

of sameness of identity of objects, e.g. by means of a time stamp.

3.1.2 The GET rule

The concept of idempotence is fuzzy, but fuzzy within well defined bounds. In par-

ticular, we can precisely delimit the relative idempotence preservation of Web based

systems. Specifically, we can define idempotence under revision (IUR) or soft idem-

potence1 as the conformance to Axioms 2 given that there will be a given amount

of revision to all objects within the URI space. That is, if we suppose that all URI

addressed objects change at tn such that tn mod 3 = 0, then soft idempotence man-

dates that at tn+1 and tn+2 a given URI will reference the same object. Here, the

sameness of the objects is itself a difficulty, but one that can be resolved in any par-

ticular instance by means of metadata over the objects of URI space. That is, the

metadata of an object will specify the criteria by which sameness of reference to the

object will or will not be established. This auto-definition mechanism is consistent

with Axiom 2b, and is a current topic of Web architecture research.

1The terminology here is mine, though the discussion does not go beyond what is
implied in Berners-Lee’s notes.

21

Clearly our definition of soft idempotence or IUR is ideal. There is in fact no

mechanism which guarantees a set time step for revisions of objects residing in the

URI space. Also, the definition is fuzzy in that the concept of “revision” is not

defined. However, the definition does allow us to specify when IUR is broken for

any given context, provided that our notion of “context” includes the revision status

of the object. A specific example should provide some clarity: suppose that the

object that we are interested in is a simple text file, and that revision of that file

is understood – intuitively enough – to mean the editing of the file. Now suppose

that the file is edited at t5. The system under which the file is dereferenced preserves

IUR if and only if the page is presented the same at t1,t2,t3, and t4, i.e., the text file

presented to the user is identical byte-for-byte.

The concept of soft idempotence or IUR becomes clearer if we consider Berners-

Lee’s rules for the HTTP GET operation:

1. GET rule 1: In HTTP, GET must not have side effects.

2. GET rule 2: In HTTP, anything which does not have side-effects must use

GET.

GET rule 2 preserves the universality axiom by disallowing POST operations from

accessing first class objects. A POST operation does not generate a URI, so if a POST

operation renders a first class object – i.e., a URI space object – then that operation

is an instance of presenting an object without a reference, thereby betraying Axiom

0. A GET operation, on the other hand, generates a valid URI, as evidenced by what

shows up in the “Location” field of a Web browser in performing such an operation.

But the object rendered must be shown IUR, given that it is a first class object.

Thus GET must be an operation such that future dereferencing is not affected, i.e.

rule GET rule 1 must hold.

22

The GET rules are particularly important in designing systems that interoperate

with HTTP servers to present Web objects. In such situations, the GET query string

is constructed with the specific purpose of giving the system under consideration

parameters by which to uniquely identify an object for presentation via the HTTP

server. The IUR preservation inherent in GET sets a dual constraint on system

design:

1. The system must parse the relevant sections of the GET string in such a way

that IUR is preserved.

2. The GET operation must generate the semantically correct strings.

Here, “relevent sections” refers to everything after the domain specification in the

URI, including everything after the ? in an HTTP URL.

3.1.3 How ES interactions can be Web objects

Assuming that a Web-based ES operates via an HTTP server, we can develop a plan

for presenting ES interactions as Web objects, bearing the GET constraints in mind.

Two points should be considered:

1: ES interactions must be addressible. An ES interaction must be evoked by a

URI. That is, a GET string must be sufficient for correctly producing a computation

in the ES program. As shown earlier (Chapter 2), we can say with some precision

what a correct evocation is, namely one in which a GET string invocation will point

out a node in an SLD-resolution tree in accordance with our ES correctness criteria

2.3. For a GET string to be sufficient as an evocation mechanism, it must as well

represent all of the information necessary for a correct call.

23

2: ES interactions must be IUR. A given GET string must evoke the same

ES interaction at every instance. This condition is satisfied if the system in ques-

tion alters neither its definite program, its meta-program, nor its program memory

between computations.

In light of these considerations, it is clear that a program memory free implemen-

tation is the best choice for Web-based ESs. Such an implementation satisfies the first

condition by relying exclusively upon information passed by a call for construction of

a correct SLD-resolution tree. This implementation satisfies the second condition by

the nature of its design; calls only construct SLD-resolution trees without affecting

the program in other ways.

3.2 Summary

The JXSHELL design is justified by a consideration of the Web. Its memory free

implementation allows ESs hosted by JXSHELL to conform fully with the require-

ments of good Web application design. Some benefits follow naturally from this

design choice, such as the correct operation of the back and refresh buttons on a

browser when running a JXSHELL ES (as detailed in 6.1.3). All that remains is to

show how JXSHELL generates calls over an ES from GET strings, and how it gen-

erates interactions, realized as HTML pages, from ES output. To this point we have

discussed JXSHELL in terms of theory and justification. We have seen how one par-

ticular design choice is preferrable to other candidates. In the following chapters, we

will extend the discussion to show how JXSHELL actually implements this design,

both in its Prolog based “backend” and its XSLT based “frontend.” In answering

the “how” of JXSHELL, after having answered the “why,” we will provide practical

pointers on implementing expert systems as JXSHELL applications.

Chapter 4

The JXSHELL implementation

The JXSHELL architecture is made up of two distinct server-side components: a

Java Servlet front end and the LPA Prolog Intelligence Server (IS) backend. The

servlet is configured to work with an HTTP server that passes CGI compliant input

parameters to it. The parameters are processed on the servlet side, generating a call

to the Intelligence Server. The IS itself is a wrapper for the LPA Prolog inference

engine. The IS backend executes a Prolog program in full, passing a serialized struc-

ture as a return value by means of the IS callback mechanism. On the servlet side,

the serialized structure is parsed and HTML code is generated accordingly. The code

in the form of a Java string is returned to the user via the HTTP server.

Because the JXSHELL specification calls for a memory free inference operation,

there is no need to maintain state between GET evocations. The only requirement is

that the system correctly process GET strings formed according to the CGI specifica-

tion. Therefore, the JXSHELL specification could be implemented using a “straight

forward” CGI architecture that features a JXSHELL executable that loads into

memory, executes, and unloads with every GET evocation. This “one shot” approach

is typical of CGI applications. However, JXSHELL applications, while stateless in

the sense of being program memory free, will receive series of user inputs. JXSHELL

applications are also multi-user in the sense that multiple users can simultaneously

run the same expert system program from the same JXSHELL site.

For this reason the Java Servlet front end is an important component of the

JXSHELL architecture. The servlet lingers in memory between calls just as the

24

25

HTTP server does. This fact allows series of calls to the system while it remains

in memory. While the servlet is running it also maintains a constant IS connection,

meaning that the Prolog backend is likewise maintained in memory between calls.

The backend Prolog programs, i.e., the XSHELL programs hosted on the JXSHELL

platform, do not maintain state between calls, but the system as a whole does.

The servlet container of choice for JXSHELL is the Resin 2.0.0 servlet/HTTP

engine from Cuacho Technology. In addition to supporting the latest servlet speci-

fication (2.3), Resin also supplies a powerful API for XML, DOM, and XSLT pro-

cessing. Also included is a standalone HTTP server. Resin is an integral part of the

JXSHELL distribution.

XML is a language for expressing information in a structured manner.[7] Unlike

HTML, XML does not presuppose any specific interpretation for XML defined struc-

tures. Understood abstractly, XML is the expression of a tree in which there is a

single root node (the top-level XML tag for a document), and where nodes have zero

or more child nodes (which include tags that fall under a given tag, attributes for a

tag, and text). XML has a more strict standard of well-formedness than HTML in

that every XML tag must either have a corresponding end tag or must be a singleton

tag (written as <. . ./>). XML is often used to define other languages, including XSL

and XSLT, which are intended for certain types of tasks. XML parsers are used for

processing XML-based languages, while other tools are used to interpret these lan-

gauges according to some given specification. The XML language definition as well

as the specifications for most XML-based languages are controlled by the World

Wide Web Consortium.

XSLT is a language for transforming XML documents.[9] XSLT allows for the

transformation of XML documents into other XML documents, though more com-

monly it is used for transforming XML documents into HTML documents for ren-

26

dering by a browser. XSLT is a part of the larger XSL language[8], though most

current applications, including JXSHELL, use XSLT exclusively.

The LPA Intelligence Server interface has no support for defining Java data

types within Prolog. As a result, all communication between the Prolog and Java

sides of JXSHELL applications is typed to java.lang.String. Thus structured data

returned from the Prolog side of the interface must of necessity be serialized. For-

tunately the Resin engine’s XSLT API provides us with a ready made mechanism

for cleanly and efficiently producing output from string serialized XML trees. For

this reason the Prolog XSHELL engine generates XML as a string. XML provides

an efficient and easy to understand format for serialized data as compared to a cus-

tomized scheme or a clumsy looping mechanism. The XML tag set used in JXSHELL

is described in 5.3.

The XML output from the Prolog engine is transformed into an HTML string

using XSLT. A predefined XSLT stylesheet generates HTML output based upon a

processing algorithm supplied by Resin’s XSLT API. The abstraction inherent in the

API allows JXSHELL’s processing to remain very simple in the sense that processing

details (including caching) are built into the API instead of the JXSHELL servlet.

JXSHELL output processing is as bug free as the Resin API, and the latter has been

extensively tested in real world, enterprise level applications [11].

An advantage of JXSHELL’s output scheme is that it allows the user to push

decisions regarding output to the output stylesheet. Aside from line returns (which

are coded as “
”) and some URLs, XSHELL output is restricted to string

data and logical output. Everything from style elements to URL’s are formulated

using the stylesheet, meaning that JXSHELL output is as extensible as XML itself.

Standard ES programs include three elements: the interface, the knowledge base,

and the inference engine [6, pages 297–8]. In the JXSHELL architecture, the details of

27

the third element are opaque to developers, while the first and second are developed

according to well defined standards.

JXSHELL knowledge bases are simple sets of rules plus utility predicates that

together define a set of ES interactions. The JXSHELL KB spec is an amended

version of the XSHELL specification outlined in Covington, Nute, and Vellino’s

Prolog Programming in Depth[1, pages 269-311]. The rules and facts in JXSHELL

KBs are written in a “vanilla” Prolog syntax. The next section details the constructs

that make up a JXSHELL KB. Predicates are referenced by name and arity, as

is typical of Prolog references. For specifics on Prolog syntax refer to any basic

textbook, such as the previously mentioned Prolog Programming in Depth [1] or

Sterling and Shapiro’s The Art of Prolog[3].

Chapter 5

A Reference Section for JXSHELL programmers

Sections 5.1 and 5.3 are references for JXSHELL knowledge base programming and

stylesheet programming respectively. Section 5.2 gives an overview of the XML

output from Prolog.

5.1 A JXSHELL knowledge base (KB) reference

This section includes a reference for JXSHELL knowledge bases organized by pred-

icate. Included with examples are all the valid JXSHELL KB predicates and their

arguments. The purpose is both to give a better understanding of how JXSHELL

works and to provide a quick reference for programmers.

5.1.1 xkb intro/1

The one place predicate xkb intro provides a boiler-plate introduction to the ES.

The single argument to xkb intro is a list of quoted atoms where each atom

represents string output separated by a line return. This predicate is optional. If

xkb intro/1 is absent, the ES engine skips directly to rule processing when the ES

is run.

The following example is from the JXSHELL reference implementation:

xkb_intro(

[’’,

’CICHLID: An Expert System for Identifying Dwarf Cichlids’,

28

29

’’,

’The cichlids are a family of tropical fish. Many of’,

’these fish are large and can only be kept in large’,

’aquariums. Others, called ’’dwarf cichlids’’, rarely’,

’exceed 3 inches and can be kept in smaller aquariums.’,

’’,

’This program will help you identify many of the more’,

’familiar species of dwarf cichlid. Identification of’,

’these fish is not always easy, and the program may offer’,

’more than one possible identification. Even then, you’,

’should consult photographs in an authoritative source’,

’such as Staek, AMERIKANISCHE CICHLIDEN I: KLEINE’,

’BUNTBARSCHE (Melle: Tetra Verlag, 1984), or Goldstein,’,

’CICHLIDS OF THE WORLD (Neptune City, New Jersey:’,

’t.f.h. Publications, 1973) for positive identification.’,

’’,

’To use the program, simply describe the fish by’,

’answering the following questions.’]).

5.1.2 xkb identify/2

The two place predicate xkb identify defines the knowledge component of

JXSHELL ESs. Each xkb identify clause is a rule that defines an answer to

a set of user inputs. To best understand how xkb identify works, it is useful to

consider how the inference engine processes xkb identify clauses. First the engine

queries the clause in the standard Prolog manner. A query on a rule results in query

on the clauses in that rule’s body in order. Each clause represents some condition

that must hold for the rule as a whole to hold. At each condition the engine checks

30

to see if the condition is already satisfied or negated according to previous user

input. If it is satisfied, the engine continues on to the next condition, while if it is

negated then the rule fails and the engine backtracks to the next rule (if present).

Once all conditions for some rule are satisfied the rule succeeds, resulting in an

answer being returned to the user. If no rule can succeed given the user input, the

system returns a “no remaining answers” response to the user.

The first argument to xkb identify/2 is an integer that represents the rule

index. The index is used by the inference engine to pick out the correct rule for

processing. Rule indexes must be sequential and must begin with “1,” though the

order of the rules in the file does not matter.

The second argument to xkb identify/2 is a list of atoms that the engine uses

to determine output when a rule is satisfied. See the reference on xkb text/2 and

xkb link/3 to see how this argument is processed.

Eight types of assertions can be modeled as xkb identify conditions: prop,

parm, parmset, and parmrange, as well as their negations.

A prop condition represents a property that does or does not hold for the given

problem. The only parameter for a prop is a keyword. For instance, in the dwarf

cichlid identification ES which is part of the JXSHELL reference implementation,

the condition of having a dorsal streamer is prop(dorsal streamer).1

A parm condition represents a parameter, or a specific trait that is confined to

one of at least two given possibilities. Parameters for parm include a keyword plus an

integer that indicates which choice is intended. In the knowledge base the condition

of having a spear-shaped tail-fin, as opposed to a lyre-shaped or normal tail-fin, is

1For more on the reference implementation, refer to Appendix A. Some of the exam-
ples that follow are not drawn directly from the reference implementation. These are
used for illustration and employ a vocabulary consistent with that found in the reference
implementation.

31

represented as parm(caudal,2) where “2” indicates the choice of “spear-shaped.”

(For more on how parm choices work, see the reference for xkb menu/4 below.)

A parmset condition represents a possible set of choices, so for instance we can

represent the fact that a cichlid can have either a “lyre-shaped” or “normal” tail-

fin. In the KB this condition is represented by a keyword and a set (as a list) of

permissible choices, e.g. parmset(caudal,[1,3]).

Finally, a parmrange condition is similar to a parmset, but it covers a continuous

range of values as opposed to a finite set of discrete values. As an example, a dwarf

cichlid may be between three and five inches long. In the KB this condition may be

expressed as parmrange(length,3,5). Note that this range is end inclusive.

The following is an example of xkb identify from the reference implementation.

Note the presence of different types of conditions in the rule’s body:

xkb_identify(1,[isa,agassizii,nl,fake_hook1,nl]) :-

parm(caudal,m,2),

parm(body_shape,m,1),

parm(lateral_stripe,m,1),

prop(dorsal_streamer),

prop(lateral_stripe_extends_into_tail).

Note that in principle Prolog rule processing is recursive in the sense that a given

condition clause can itself be a head of another rule. However, JXSHELL strictly

limits such clauses to user defined zero arity predicates whose bodies are made up of

zero or more standard clauses or similar zero arity predicates. Furthermore, looping

conditions are illegal. If a rule appears with a condition that breaks these restric-

tions (i.e., that is neither a standard clause or a non-looping zero arity predicate),

the system preprocessor will fail to process the KB. The reason for these added

restrictions is that side affect bearing predicates introduce undefined behavior to

32

the system. For instance, a predicate that sends a string to standard output makes

no sense in the context of JXSHELL processing because JXSHELL does not support

the concept of standard output.

The zero arity predicates are supported simply for convenience. The JXSHELL

preprocessor unfolds these predicates, so in effect they exist only for the developer

and not for the system. Using these predicates can give rules a more compact pre-

sentation withing source files, especially when a set of conditions are repeated across

rules.

Following is the rule above, rewritten with two zero arity predicates that is also

defined:

xkb_identify(1,[isa,agassizii,nl,fake_hook1,nl]) :-

parms,

props.

parms:-

parm(caudal,m,2),

parm(body_shape,m,1),

parm(lateral_stripe,m,1).

props:-

prop(dorsal_streamer),

prop(lateral_stripe_extends_into_tail).

33

5.1.3 xkb question/4

The xkb question/4 predicate contains information used by the system both in

formulating question output (i.e., queries for user-supplied information) as well in

generating rule explanations. The first argument to xkb question is an atom that

the inference engine matches against the argument of a prop (see above) when

processing an xkb identify/2 rule body. When the engine encounters a prop it

first checks to see whether the information required has already been reported by the

user. If not, it finds a matching xkb question clause and uses the second argument

to formulate a question for the user. The second argument to xkb question is a list

of quoted atoms that represent the question that is appropriate to the given prop.

The third and fourth arguments are quoted atoms used in explaining rules; refer to

the section “The JXSHELL explanation facility” below 5.1.8.

The following example is taken from the JXSHELL reference implementation:

xkb_question(dorsal_crest,

[’Are any fin rays at the front of the dorsal fin’,

’clearly extended above the rest of the fin?’],

’Front rays of dorsal fin are extended.’,

’Front rays of dorsal fin are not extended.’).

Failure to supply an xkb question/4 predicate for every distinct prop condition

will result in an error condition passed to the Java interface.

5.1.4 xkb menu/4

xkb menu/4 serves a purpose similar to that of xkb question/4, namely to supply

the inference engine with information necessary for formulating questions and expla-

nations. The first argument to xkb menu is an atom that the inference engine matches

against the first argument of a parm (see above) when processing an xkb identify/2

34

rule body. The second argument is a list composed of quoted atoms that make up the

question that matches the given condition. The question is returned to the user to

elicit appropriate information. The third argument is a list of quoted atoms each of

which indicates a menu item. The JXSHELL interface is responsible for presenting

these items in such a way that the user can select one of them in response to the

question expressed by the second argument. Note that order is important here. The

meaning of a parm condition is based upon the order of the items in the third argu-

ment insofar as the integer argument to parm “picks out” a menu choice according to

its position in the list. As an example, consider the condition parm(caudal,3). The

sense of this condition is only apparent given a corresponding xkb menu predicate:

xkb_menu(caudal,

[’What is the shape of the tail-fin?’],

[’lyre-shaped’,

’spear-shaped’,

’normal, i.e, round or fan-shaped’],

’Tail fin is ’).

So here parm(caudal,3) indicates the condition of having a normal (round or

fan-shaped) tail-fin. The final argument (‘Tail fin is ’ in our example) is part of

the JXSHELL explanation facility; refer to the section “The JXSHELL explanation

facility” below 5.1.8.

Failure to supply an xkb menu/4 predicate for every distinct parm or parmset

condition will result in an error condition.

5.1.5 xkb links/4

xkb links/4 is a utility predicate used to map resources to prop and parm inter-

actions. The first argument to xkb links is an atom indicating type of interaction,

35

viz. prop or parm. The second argument is a keyword (atom) indicating which prop

or parm specifically. The third argument represents a menu choice, because in the

case for resources for parm interactions, these resources will map to choices and not

the the interaction as a whole. In the case of prop type xkb links, the third argu-

ment will be disregarded by the engine. The final argument is a list of length three

containing (in order) a URL for a help file, a target for the same help file, and a

URL for an image. The intention is that for every yes/no question or menu choice

presented to the user, there will be zero or one associated help files and/or images.

The URLs can be relative or absolute, and just how they are realized in the user

interface depends on the output XSLT processing.

The following two examples, one for prop and one for parm, are taken from the

JXSHELL reference implementation:

xkb_links(prop, dorsal_crest, ’’,

[’/xshell.hlp.html’,’10’,’/images/cichlid/xshell1.bmp’]).

xkb_links(parm, caudal, ’lyre-shaped’,

[’/xshell.hlp.html’,’10’,’/images/cichlid/xshell1.bmp’]).

xkb links/4 is optional in the same sense as xkb intro/1.

5.1.6 xkb link/3

Whereas xkb links/4 maps resources to props and parmss, xkb link/3 indirectly

maps resources to rules. The intention is that on satisfying a rule the system should

present the user with resources (e.g., text information, hypertext links, etc.) that

pertain to the solution. For instance, in a catalog system a satisfied rule may make

reference to some item in a Web-accessible catalog. The rule-satisfaction interac-

tion, then, would provide a link to the specified item in the relevent catalog. The

36

first argument to xkb link is an identifier. This identifier is found in the second

argument to xkb identify/2. Upon satisfying a rule, the inference engine processes

the members of the argument in order, attempting to match them against the first

argument of xkb link. There is no restriction against using the same identifiers

across different xkb identify predicates, meaning that the same resources can be

(indirectly) mapped to different rules. The second argument is an atom indicating

type, where the type of the link is either hook, url, or text. The link type infor-

mation is used by the engine to return the correct information to the Java output

processor.

The third argument is a list of (possibly quoted) atoms that defines output

appropriate to the link type. In the case of text links, the list is simple text output

represented as quoted atoms. In the case of url links, the list is made up of two

members, where the first is a quoted atom representing text output, and the second

is a quoted atom represented a URL attached to that output. In the case of hook,

the list is made up of three members, the first being text output, the second being

a user defined resource identifier, and the third being extra information for linking

to the resource. In the text output portions of the third argument to both hook and

url type links, the developer has the option of using a link tag, expressed as <LINK>

and </LINK>, to map links to specific parts of the text as opposed to the text as a

whole.

The hook type xkb link warrants more explanation. In the JXSHELL system a

hook is an abstract binding between text and some resource, where the details of that

binding are a matter for the user interface. Practically speaking, a hook allows the

programmer to link text to a resource in the knowledge base while using the output

stylesheet to specify how the link is implemented. For instance, a programmer may

include the following hook:

37

xkb_link(my_hook,

hook,[’The link is <link>here</link>.’,

’EXAMPLE’,’link.htm’])}

In the output stylesheet, ’EXAMPLE’ maps to a fully qualified url, such as

http://mylinks.org/app. The processor appends that url to link.htm to generate an

HTML hypertext link. The HTML output would look like this:

The link is here.

Defering the implementation of the link allows for greater flexibility in output

without affecting the underlying knowledge base. For instance, the output can be

changed by changing the mapping of ’EXAMPLE’ to http://yourlinks.org/app.

The output can also be easily parameterized, so the specific output becomes context

dependent. For instance, the link may be different depending on whether the user

is using a PC or a hand-held computer. Finally, a hook need not be interpreted as

a hypertext link. The stylesheet can leverage the power of Java to make database

calls, embed images, generate an applet, or do any number of things. Such power and

flexibility would bloat the JXSHELL KB specification. As a general principle, KB

content should be separated from the system’s interface logic [6]. JXSHELL hooks

allow this separation without sacrificing extensibility. Hooks also allow a clean sep-

aration of labor between KB and interface designers.

The following example is taken from the JXSHELL reference implementation:

xkb_link(fake_hook1,hook,

([’Check <LINK>catalog</LINK> to add 101-0001 to your cart.’],

’CATALOG’,’101-0001’)

).

38

5.1.7 xkb text/2

The inference engine uses information in xkb text/2 to generate text output based

upon the second argument to xkb identify/2. The first argument to xkb text is

an atom that matches a member of the second argument to xkb identify, and the

second argument is a (quoted) atom used by the system as text output. Note that

this mapping works just like that of xkb link to map information to rules. In fact,

xkb text is strictly speaking superfluous given that a text type xkb link supports

plain text output. xkb text is kept because of its appearence in the original XSHELL

specification [1, pages 269–288], and because it provides slightly less verbose code.

Note that xkb text(nl,’
’) is a particularly useful clause.

The following example is taken from the JXSHELL reference implementation. It

is an example of using xkb text to define a newline (“nl”) atom:

xkb_text(nl, [’
~M~J’]).

5.1.8 The JXSHELL explanation facility

The JXSHELL system supports user prompted rule explanations. Upon rule satis-

faction, the user can request the explanation of how the given result was obtained.

To provide this information in a human readable fashion, the system reprocesses

the satisfied rule by generating an appropriate text output for each condition of the

satisfied rule. To generate this output in the case of props, the engine uses the third

and fourth arguments of the prop’s corresponding xkb question clause. Argument

three is used in case the prop is not negated, and argument four is used if it is

negated. For instance, given the following xkb question clause:

xkb_question(dorsal_crest,

[’Are any fin rays at the front of the dorsal fin’,

’clearly extended above the rest of the fin?’],

39

’Front rays of dorsal fin are extended.’,

’Front rays of dorsal fin are not extended.’).

the explanation for the rule that includes \+prop(dorsal_crest) will include the

text

Front rays of dorsal fin are not extended.

To generate explanation output in the case of a parm condition, the engine per-

forms a similar analysis using an appropriate xkb menu. It is easy to see how this

processing works given the following examples. With the clause:

xkb_menu(caudal,

[’What is the shape of the tail-fin?’],

[’lyre-shaped’,

’spear-shaped’,

’normal, i.e, round or fan-shaped’],

’Tail fin is ’).

an explanation for a rule containing the condition parm(caudal,2) will include as

part of its output

Tail fin is spear-shaped.

Similarly, an explanation for a rule containing the condition parmset(caudal,[2,3])

will include as part of its output

Tail fin is one of spear-shaped, normal, i.e. round or fan-shaped.

40

5.1.9 Allowable characters within JXSHELL output strings

Various quoted atoms within a JXSHELL knowledge base are intended as output

text in HTML. As such, any tag set allowed within the body element of an HTML

document can appear in JXSHELL output. However, the output is more restrictive

than standard HTML in two respects: singleton tags (such as line breaks) must be

represented as closed tags (e.g.,
); and, any open tag must be matched by a

closed tag within the same output string (e.g., <I>...</I>). Failure to observe either

of these restrictions will result in an error generated by the stylesheet processor.

The meaning of embedded tags/tag sets is complicated by the fact that all output

is processed according to a stylesheet. At the stage of the style sheet tags can be

processed in any manner that the developer pleases, or they can be passed to output

as-is, in which case they are interpreted as simple HTML tags. A general rule of

thumb will be to stick to HTML-style tags used according to their standard meanings

(e.g.,
,, etc.) unless specific allowance is made for customized tags. In

the latter case, an interface designer and a knowledge base designer may agree on

a library of custom tags to use, in which case the output from the KB can be

very expressive while remaining declarative. Note that tags passed as-is through

the stylesheet are not case sensitive, but unless the stylesheet designer makes it

specifically otherwise, other tags will be.

One custom tag must be defined in the interface. The link tag set, written

<LINK> . . . </LINK>, allows for embedded links in hook and url type xkb link

output. To correctly implement hooks and url hyperlinks this tag set must be

defined. Refer to the file main.xsl in the JXSHELL reference implementation for a

sample implementation.

41

5.1.10 A note on environment variables

The above reference does not make mention of the JXSHELL environment variable.

As detailed above, the environment variable allows for segmentation by topic of the

knowledge base space, thus allowing multiple ES’s to be run within a single process.

The environment variable is not, however, part of the JXSHELL KB specification.

The JXSHELL preprocessor adds environment information by rewriting all KB pred-

icates with the environment variable added (as a quoted atom) as the first argument.

Thus, for instance,

xkb_intro([...])

becomes

xkb_intro(’ENV’,[...])}

This rewrite is opaque to the user, and specific settings are included in the JXSHELL

runtime configuration file, not in the KB itself. Such environment hiding on the KB

development end allows for more modular and error-free programming. See B.2 for

details on JXSHELL configuration.

5.1.11 Differences between JXSHELL and XSHELL knowledge bases

It may be useful to consider the differences between the KB specification for

JXSHELL and that of its predecessor XSHELL (as detailed in [1, pages 269–288]).

XSHELL is intended as a console based application run within an active Prolog

environment. The differences between XSHELL and JXSHELL arise primarily out

of the fact that JXSHELL KB’s are rewritten by a preprocessor at runtime and

the fact that output is further processed instead of being sent directly to an output

stream as is the case with XSHELL KB’s.

Differences between the JXSHELL and XSHELL KB specification include:

42

1. XSHELL has no support for markup in output.

2. XSHELL KB’s of necessity include a set of Prolog declarations that load the

system driver and perform other tasks. In JXSHELL, dependency is handled

completely by the preprocessor, so the specification includes no declarations.

3. JXSHELL includes as rule conditions only parms, props, parmranges, and

parmsets, or arity 0 rules of the sort described in 5.1.2. XSHELL conditions

can be any Prolog expression whatsoever.

4. JXSHELL includes two extra predicates: xkb link/3 and xkb links/4.

5.1.12 Negation

Standard Prolog includes negation as failure (NAF)[1, pages 20–22]. Under NAF a

query of the form

\+ query

succeeds if and only if query fails. NAF is part of the closed world assumption of

Prolog’s semantics, by which something that is not known is assumed not to hold.

JXSHELL, on the other hand, includes a semantics by which a query of the form

\+ query

succeeds if and only if query has been determined not to hold. For example, the

condition \+ prop(dorsal streamer) in a JXSHELL rule holds only if the user

has answered “no” when asked whether the fish has a dorsal streamer, not if the

user has not answered the question. The syntax is the same, but the meaning of

negation is distinct. JXSHELL can discard the closed world assumption because as

an ES platform it provides a mechanism for remembering negative information as

well as positive and for resolving failure through recourse to the user.

43

5.2 Prolog generated XML output

To allow flexible interoperability between the Prolog and Java elements of the

JXSHELL architecture, the Prolog output routines are designed to return XML.

This code is processed using the output XSLT stylesheet to generate HTML output.

There is no intermediate processing stage between Prolog processing and XSLT pro-

cessing. To understand how to produce output, it is suffient to understand the XML

returned by the Prolog side.

5.2.1 JXSHELL XML output elements

The purpose of the Prolog generated XML encoding is not to serve as a general

purpose data format but to represent the specific types of information that make up

expert system interactions. The Prolog XML output includes a small set of structures

repeated across all or most transactions. An advantage of using XML is that, as

mentioned, the system can directly process the Prolog generated output to produce

system output without intermediate processing. An advantage of using a small set of

XML structures is that the output stylesheet is manageable because it does not have

to be general purpose and because repeated structures allow for code reuse within

the stylesheet.

Below both singleton tags (e.g.,
) and tag sets (e.g., <MESSAGE> . . .

</MESSAGE>) are refered to by their tag names (e.g., BR and MESSAGE respectively).

5.2.2 Top level tags

Each Prolog generated output string is a fully compliant XML document [7] without

XML declaration tags or attached DTDs. Unlike in HTML, XML documents must

be encompassed by a single tag set. For JXSHELL the top-level tag sets indicate the

type of user interaction. For a complete reference, see 5.3 below.

44

5.2.3 Image and help support

JXSHELL includes support for images and contextual help in the course of con-

sultations. In the case of prop interactions, the information attaches to the entire

interaction. In the case of parm interactions, information attaches to menu items.

The following is an example of two lines of XML code that represent image and help

information:

<HELP value="/xshell.hlp.html#10"/>

<IMAGE value="/images/cichlid/xshell1.bmp"/>

The JXSHELL Prolog output routines generate these lines using information repre-

sented in the xkb links predicate, as described in 5.1.5.

5.3 A JXSHELL XML output reference

The following is a complete reference for all XML elements output by the JXSHELL

inference engine for XSLT processing. The purpose of this reference is to give

stylesheet developers a clear understanding of the documents that a JXSHELL

stylesheet must be able to process.

Each XML element is referenced by name, children nodes, parent nodes, and

attributes. Children nodes are those which can fall under the defined node. In terms

of XML output, that means which tags can fall within the given tag. The following

reference also gives the special marker <text> as an indication of text output (i.e.,

characters that are not interpreted as tags.) Parent nodes are those under which the

defined node can fall. Attributes, which themselves are children nodes, are the name

and value pairs that are associated with a tag and are written:

<tagname name0=value0 name1=value1 . . . >

45

A correctly written stylesheet will fulfill two basic conditions. One, the stylesheet

output will correctly represent the XML input. Two, the stylesheet output will

include some mechanism (generally, a “next” button) for proceeding with the con-

sultation. Furthermore, the “next” step must generate a correct GET string. As a

general rule, GET strings will be of the form:

ENV=environment

&RULE I=rule index

&UNSATFACT TYPE=known type

&UNSATFACT ID=known id

&UNSATFACT VALUE=known value

&TYPE1=known type

&ID1=known id

&VALUE1=known value

...

&TYPEn=known type

&IDn=known id

&VALUEn=known value

Some interactions will not produce GET strings of this form, as explained in the ref-

erence. The ENV is taken straight from the XML, as is the RULE I parameter, except

in the case of rule satisfaction. UNSATFACT TYPE and UNSATFACT ID are taken from

the XML, while UNSATFACT VALUE is taken from the user interaction. “Unsatfacts,”

or “unsatisfied facts,” are clauses with an unspecified value which is specified by the

user interaction. In the case of both “unsatfacts” and knowns, type refers to the type

of clause, namely prop or parm, ID refers to the first argument or arguments of the

clause, and value refers to the value of the clause. In the case of prop’s, the value

is 1 for “yes” and 0 for “no,” while in the case of parm’s, the value is an integer

46

indicating a menu choice, a number, or a letter, in the case of menu parms, numer-

ical parms, or alphabetical parms respectively. The set of knowns is represented by

TYPE1 . . . TYPEn, ID1 . . . IDn, and VALUE1 . . . VALUEn, where {TYPEm, IDm,VALUEm}

represents the m known for every 1≤m≤n.

5.3.1 ERROR

Child Nodes: RULE I, ENV, MESSAGE

Parent Nodes:

Attributes:

An incorrectly written ES knowledge base may result in a runtime error on

the Prolog side. These errors are caught and represented in XML output as ERROR

tags. Because these error conditions point to a problem with the ES itself, it is not

advisable in an error interaction to give the user any options to continue with the

consultation. The children nodes of ERROR should provide the developer with enough

information for trouble-shooting. The content of MESSAGE is the text string that is

returned from the Prolog engine.

5.3.2 YESNO

Child Nodes: RULE I, ENV, MESSAGE, UNSATFACT, KNOWNS, HELP, IMAGE

Parent Nodes:

Attributes:

47

Yes/no interactions correspond to prop conditions. The intention is that a prop

value is one that either holds or does not, so a yes/no interaction queries the user

as to whether some given condition does hold (“yes”) or does not (“no”). Yes/no

interactions can include help information and an associated image. The MESSAGE

child of YESNO includes the question that is passed from the Prolog side to the user.

5.3.3 START

Child Nodes: ENV, MESSAGE

Parent Nodes:

Attributes:

The START tag includes the information found at the beginning of a series of

JXSHELL ES interactions. The MESSAGE tag includes the text string that intro-

duces the user to the expert system. The introduction message may include markup,

particularly hard returns (i.e., HTML
), so the stylesheet developer may do

well to refer to the xkb intro predicate (see 5.1.1) or to capture the XML output

(see 5.3.24) when designing the stylesheet. A start interaction must return to the

JXSHELL system an environment variable, represented as the value of the ENV node

mapped to the name ENV, and the intial rule index 1 mapped to the name RULE I.

5.3.4 EX MULTI

Child Nodes: RULE I, ENV, MESSAGE, UNSATFACT, MENU, KNOWNS

Parent Nodes:

Attributes:

48

An ex multi interaction (for “exclusive multiple choice”) is one in which the user

is given a series of menu items for a given query (represented in MESSAGE). Only one

item can be chosen. An ex multi interaction must return to the JXSHELL system

an environment variable, represented as the value of the ENV node mapped to the

name ENV, and the rule index mapped to the name RULE I.

5.3.5 TXTFLD-A

Child Nodes: RULE I, ENV, MESSAGE, UNSATFACT, KNOWNS, HELP, IMAGE

Parent Nodes:

Attributes:

A txtfld a interaction gives the user the ability to enter alphabetic input. The

standard way of entering input will be by means of an HTML text field input.

Non-alphabetic input will generate undefined behavior on the Prolog side (though

generally the Prolog side will generate an error), so the stylesheet developer should

embed some Javascript code in the output to do user input validation. A txtfld a

interaction must return to the JXSHELL system an environment variable, repre-

sented as the value of the ENV node mapped to the name ENV, and the rule index

mapped to the name RULE I.

5.3.6 TXTFLD-N

Child Nodes: RULE I, ENV, MESSAGE, UNSATFACT, KNOWNS, HELP, IMAGE

Parent Nodes:

Attributes:

49

A txtfld-n interaction is identical to a txtfld-a interaction, but the intended input

is numeric instead of alphabetic. An embedded javascript validator should test user

input accordingly. As with a txtfld a interaction, a txtfld n interaction must return

to the JXSHELL system an environment variable, represented as the value of the

ENV node mapped to the name ENV, and the rule index mapped to the name RULE I.

5.3.7 RULE SATISFACTION

Child Nodes: RULE I, ENV, MESSAGE, KNOWNS, HOOKS

Parent Nodes:

Attributes:

A rule satisfaction interaction gives the user the information mapped to a rule

head. Upon satisfying a rule, which in terms of a consultation means that the user

has reached a solution, the system returns to the user the solution in the form

of the contents of MESSAGE. (Note that the contents of MESSAGE can include a

HOOKED SECTION. This latter may include hyperlinked elements that direct the

user to resources relevent to the solution. See section 5.3.22).

If the relevent functionality is enabled, the user progresses from a rule satisfaction

condition by continuing the consultation or by showing the rule that was satisfied.

See the HOOKS reference (5.3.20) for details.

50

5.3.8 RULE UNSATISFACTION

Child Nodes: ENV, KNOWNS

Parent Nodes:

Attributes:

A rule unsatisfaction interaction should tell the user that there are no (further)

solutions to the query. The user can continue from a rule unsatisfaction by means of

the browser’s back button, but for convenience the stylesheet processor may include

buttons for restarting a consultation or for returning to some start point, or exiting

to some other page.

5.3.9 RULE DISPLAY

Child Nodes: MESSAGE

Parent Nodes:

Attributes:

A rule display interaction shows the rule by which a rule satisfaction condition

had been met. The user can continue from a displayed rule by means of the browsers

back button or by means of buttons supplied by the stylesheet.

51

5.3.10 ENV

Child Nodes:

Parent Nodes: YESNO, START, EX MULTI, TXTFLD-A, TXTFLD-N,

RULE SATISFACTION, RULE UNSATISFACTION

Attributes:

The ENV node includes a string (without spaces) that indicates the system defined

environment variable. Inclusion of the environment variable is an important part of

most interactions.

5.3.11 RULE I

Child Nodes: <text>

Parent Nodes: YESNO, START, EX MULTI, TXTFLD-A, TXTFLD-N,

RULE SATISFACTION, RULE UNSATISFACTION

Attributes:

The RULE I node includes an integer that indicates the current rule index. Inclu-

sion of the rule index is an important part of most interactions.

5.3.12 MESSAGE

Child Nodes: <text>, HOOKED SECTION, BR

Parent Nodes: YESNO, START, EX MULTI, TXTFLD-A, TXTFLD-N,

RULE SATISFACTION, RULE UNSATISFACTION, RULE DISPLAY

Attributes:

52

The MESSAGE node includes information relevent to the current interaction. In

effect the information conveyed by rendering this node conveys information to the

user in the form of text. In addition, a HOOKED SECTION will include text and possibly

hyperlinked resources relevent to a rule satisfaction condition (see 5.3.22).

5.3.13 HELP

Child Nodes:

Parent Nodes: YESNO, CHOICE

Attributes: value

A HELP node includes a file path that gives the user access to a resource relevent

to the current interaction. Generally, the user accesses the help resource through

a hyperlink constructed in the stylesheet. The user interface can include pop-up

windows for displaying help items by means of embedded javascript.

5.3.14 IMAGE

Child Nodes:

Parent Nodes: YESNO, CHOICE

Attributes: value

An IMAGE node includes a file path that gives the user access to an image relevent

to the current interaction. The simplest rendering of images will be as referents

of HTML IMG tags. However, the user interface can include pop-up windows for

displaying image items by means of embedded javascript.

53

5.3.15 MENU

Child Nodes: CHOICE

Parent Nodes: EX MULTI

Attributes:

A MENU node indicates to the processor that menu processing will take place to

generate an ex multi interaction.

5.3.16 CHOICE

Child Nodes: MESSAGE, HELP, IMAGE

Parent Nodes: MENU

Attributes: ID

A CHOICE node carries information relevent to the menu choices that make up an

ex multi interaction. Every choice will include a message, which indicates the choice

to the user, and possibly child HELP and IMAGE nodes. The ID attribute has as its

value an integer that stands as the system’s internal representation of the menu

choice. When a menu item is chosen by the user, the page must return to the system

the integer mapped to ID.

54

5.3.17 KNOWNS

Child Nodes: KNOWN

Parent Nodes: YESNO, START, EX MULTI, TXTFLD-A, TXTFLD-N,

RULE SATISFACTION, RULE UNSATISFACTION

Attributes:

Because JXSHELL does not maintain session states between interactions, and

because state must therefore be passed between interactions in a serialized form,

the Prolog side must return an XML representation of the session state, or what

may be thought of as the set of “knowns” collected during a user session. The set

of knowns is represented in XML as a set of KNOWN elements under a single KNOWNS

element. The hierarchy of elements makes XSLT processing simpler for information

that includes an indefinite number of items. The following is an example of an XML

representation of a set of knowns:

<KNOWNS>

<KNOWN type="parm" id="body_shape,m" value="3">

Body is normal fish shape.</KNOWN>

<KNOWN type="prop" id="dorsal_streamer" value="1">

Rear rays of dorsal fin are extended.</KNOWN>

</KNOWNS>

Note that the representation of the set of knowns is generated entirely by the runtime

engine and is inaccessible to the KB programmer.

55

5.3.18 KNOWN

Child Nodes: <text>

Parent Nodes:

Attributes: type, id, value

In the JXSHELL system a known is a triple consisting of a classification (i.e.,

parm, prop, etc.), an attribute, and a value. In XML output, the items in this triple

are represented by the type, id, and value attributes (respectively) of the KNOWN tag.

In addition, attached to a KNOWN is a “human readable” string. In XSLT processing

of the JXSHELL XML output, the attributes of the KNOWN tag are used to return

to the system usable information, while the attached string is used to represent the

known to the user.

The following two examples of KNOWNs are of the parm and prop types respec-

tively:

<KNOWNS>

<KNOWN type="parm" id="body_shape,m" value="3">

Body is normal fish shape.</KNOWN>

<KNOWN type="prop" id="dorsal_streamer" value="1">

Rear rays of dorsal fin are extended.</KNOWN>

</KNOWNS>

56

5.3.19 UNSATFACT

Child Nodes:

Parent Nodes: YESNO, START, EX MULTI, TXTFLD-A, TXTFLD-N,

RULE SATISFACTION, RULE UNSATISFACTION

Attributes: type, id

In addition to the KNOWNS, the stylesheet must also process UNSATFACT infor-

mation to produce a prop or parm type interaction. The UNSATFACT information

represents the information that will be returned to the systems when a question is

answered (by clicking a menu item, for instance). The term “unsatfact,” short for

“unsatisfied fact,” is used to relate this information to individual “known” items,

also known as “facts.” A fact here is thought of as as information that fulfills or

“unfulfills” a condition, just as the fact that a cichlid that does not have a dorsal

streamer unfulfills the condition prop(dorsal streamer). The fact is a triple of

type (prop), attribute (dorsal streamer), and value (here “false”). An unsatisfied

fact, then, is a fact lacking a defined value parameter. The undetermined value is

subsequently determined by means of a user interaction. When the end user clicks

a menu item (for instance), the action can be thought of as a determination of an

undetermined value, or (in other words), the conversion of an UNSATFACT into a fact

(or known). When JXSHELL runs the top-level Prolog processing query for interac-

tions, it passes the Prolog side a set of knowns, plus the unsatfact information, plus

the user-defined value that together with the unsatfact information is interpreted

by the system as a known. The Prolog side then submits the unsatfact information

plus user supplied value in a tree of known values.

Below is an example of an UNSATFACT in XML:

57

<UNSATFACT type="prop" id="dorsal_crest"/>

This tag is rendered by the stylesheet in the reference implementation as:

<input type="HIDDEN" name="UNSATFACT_TYPE" value="prop">

<input type="HIDDEN" name="UNSATFACT_ID" value="dorsal_crest">

5.3.20 HOOKS

Child Nodes: HOOK

Parent Nodes: RULE SATISFACTION

Attributes:

The HOOKS tag carries no attributes and contains only HOOK tags. The following

is an example of HOOKS:

<HOOKS>

<HOOK type="continue_consult"/>

<HOOK type="show_rule"/>

</HOOKS>

5.3.21 HOOK

Child Nodes:

Parent Nodes: HOOKS

Attributes: type

A HOOK is an XML element that triggers an action on the part of the stylesheet

without conveying any information that is passed on to the user. The presence of

58

HOOKs are set by a runtime parameter in the system configuration file. Because the

Prolog side passes HOOKs, the Java side is able to pass the Prolog output in full

to the stylesheet processor without amending the XML. However, the user defined

knowledge base has no bearing on HOOKs.

In the reference implementation, there are two HOOKs:

<HOOK type="continue_consult"/>

<HOOK type="show_rule"/>

Upon processing the first, the processor passes to output HTML elements that allow

the user to continue a consultation after an answer is reached. Upon processing the

second, the processor passes to output HTML elements that allow the user to inspect

the rule satisfied when an answer is reached.

5.3.22 HOOKED SECTION

Child Nodes: <text>, LINK

Parent Nodes: MESSAGE

Attributes: DOMAIN, TARGET

A HOOKED SECTION, defined by the xkb links/3 predicate, maps user defined

hook keywords to resource keywords that indicate resources that are featured in

the user interaction. To process a hooked section the stylesheet must include cases

that match hooked section keywords and supply a mapping within the hooked sec-

tion code of corresponding resource keywords to actions that can take place within

stylesheet processing. Perhaps the simplest case of hooked section processing would

be that in which a resource keyword triggers the generation of a text string to output

(e.g., “the HOOKED SECTION was hooked!”). However, XSLT processing is open

59

ended, meaning that there are no prescribed restrictions on how XML text can be

processed. In addition, the JXSHELL XSLT processor can harness the power of

Java to perform actions so that, for instance, a hooked section can trigger a remote

database lookup via JDBC, process the return value of the lookup, and return an

appropriate string to output. As an example, within an online catalog system a

hooked section could be used to advise the end user of how many of a given item

are available for purchase.

HOOKED SECTIONs include two attributes, DOMAIN and TARGET. These attributes

convey information to the XSLT stylesheet that allow correct processing. For

instance, a “domain” could included an SQL server name, and a “target” could be

an SQL string.

Below is are two examples of HOOKED SECTIONs in XML:

<HOOKED_SECTION DOMAIN="CATALOG" TARGET="12345">

This is fake xkb_links HOOK with implicit link.

</HOOKED_SECTION>

<HOOKED_SECTION DOMAIN="CATALOG" TARGET="12345">

This is fake <LINK>xkb_links</LINK> HOOK.

</HOOKED_SECTION>

Note the use in the second example of the LINK element.

A note on nomenclature is in order. A HOOK XML element is not defined by

anything in an XSHELL knowledge base, whereas a HOOKED SECTION XML element

is defined by the xkb links predicate, specifically by xkb links that include the

quoted atom ‘HOOK’ as a first argument. The KB ‘HOOK’ corresponds to the

XML HOOKED SECTION, not to the XML HOOK. As long as we concentrate on either

the knowledge base or the stylesheet, there is no threat of confusing HOOKs and

HOOKED SECTIONs. Unfortunately, when both are considered the situation can be

60

confusing. This confusion in nomenclature will be corrected in a future release of

JXSHELL.

5.3.23 LINK

Child Nodes: <text>

Parent Nodes: HOOKED SECTION

Attributes:

The LINK tag indicates where a hyperlink or some other form of linking mecha-

nism should be inserted within a HOOKED SECTION. See the HOOKED SECTION reference

above for details.

5.3.24 A tip for writing stylesheets

JXSHELL expert system development is envisioned as a cooperative process between

stylesheet designers and knowledge base designers. If the KB author wants to include

elements in the output, such as hard returns (
 in HTML) or custom tags, he will

consult with the stylesheet designer so that those elements will be correctly rendered

in HTML output. However, stylesheet authoring can often be aided by inspecting the

“raw” XML document that the stylesheet is meant to process. To make this XML

available, the stylesheet developer can capture the XML output from Prolog. To do

so, include the following tag in the body of each XSLT template tag corresponding

to each XML top level tag:

<xsl:comment>

<xsl:copy-of select=’\’/>

</xsl:comment>

61

This structure renders the entire XML output to HTML, but within an HTML

comment section so that the XML appears only on the output source code but not

on the page as seen in the browser.

5.3.25 The JXSHELL reference implementation

JXSHELL includes a simple reference implementation that illustrates the application

of most of the features described here. The implementation described runs “out of the

box” and includes by default a “toy” tropical fish identification knowledge base. In

addition, alternative knowledge bases are included that test the JXSHELL platform

in several ways. See Appendix A for details regarding the reference implementation.

Chapter 6

JXSHELL evaluation

6.1 JXSHELL advantages

An obvious advantage of the JXSHELL system is that it allows knowledge engineers

to utilize the Web as an application platform. Expert systems give users access to

expert knowledge that would be otherwise unavailable. This principle is extended

further with a Web-based system insofar as the accessibility to expert knowledge is

given to anyone with a Web browser and Internet access.

JXSHELL affords other advantages as well. Below we detail some of the advan-

tages that make JXSHELL a powerful platform for expert system deployment.

6.1.1 Low server side load

Though a client-server system, JXSHELL carries relatively low server side load

because no session state is maintained between calls to the LPA Prolog engine.

State is conveyed entirely by GET strings. This means that the memory footprint

of the program does not increase with an increased number of connections.

6.1.2 “Piggy-backed” servlet functionality

The servlet engine specification [10] allows for a range of useful functions that make

servlets preferable to “once and out” CGI programs. Furthermore, servlet engines

62

63

generally will contain support for advanced server functionality, such as load bal-

ancing, session logging, and URL redirection. These specific functions are available

in the Resin engine that ships as part of JXSHELL.

6.1.3 The Back button

In compliance with Berners-Lee’s axioms of Web design, JXSHELL uses only GET

strings. These operations do not alter the “state of the world” of the Web, meaning

that identical GET strings represent identical GET actions. A nice outcome of

this Web design compliance is that the browser’s back button works correctly in

a JXSHELL session. The user can use the back button to return to previous interac-

tion screens. This means that although a JXSHELL program is a custom application,

it relies on a familiar interface (the Web browser) that works in the familiar way.

6.2 JXSHELL compared to LPA ProWeb and Amzi KnowledgeWright

Logic Programming Associates includes with its developer version of LPA WIN-

Prolog a product called “ProWeb,” which the documentation (see [4]) describes as

“ProWeb = Prolog Logic + Web Control.” ProWeb is a toolkit that allows developers

to use LPA’s WIN-Prolog application as a host environment for Web-based Prolog

programs. Like JXSHELL, ProWeb uses LPA WIN-Prolog as the logic program

interpreter for interactive, browser accessible programs. Also like JXSHELL, ProWeb

is stateless in the sense that it processes a knowledge base from top level predicates

on each user initiated call.

ProWeb developers define the user interface for interactions by means of HTML

template documents containing special ProWeb tags. At runtime the system substi-

tutes these tags with program-defined information. The developer defines tag sub-

stitution by means of a large set of ProWeb predicates present in a the Web-hosted

64

Prolog program. Therefore, in sharp contrast to JXSHELL knowledge bases, ProWeb

knowledge must make provision for the program interface. In this way JXSHELL

development affords a more complete abstraction between the interface and program

logic.

The use of HTML templates allows for easy interface development, but only at

the cost of flexibility as compared to using XSLT stylesheets. JXSHELL stylesheets

will typically be large and complex, but they allow for functionality that goes beyond

anything available in HTML templates. For instance, XSLT includes structures for

looping through XML input. The stylesheet included in the JXSHELL reference

implementation includes iterative processing that allows for the correct placement of

multiple items in columns in output. This feature is described briefly in Appendix A.

Note that this iterative processing works regardless of the size of the XML structure

processed and does not entail adding any control elements to the knowledge base.

An advantage of ProWeb is that it is general purpose. In theory, any Prolog

program can be rewritten with ProWeb output predicates and then Web-hosted.

JXSHELL on the other hand is specifically for rule-based consulatitive ES hosting.

There are many applications, then, for which ProWeb is appropriate but JXSHELL

is not. However, for a large set of applications, namely rule-based consultative expert

systems, JXSHELL is an effective and powerful deployment platform.

Like JXSHELL and unlike LPA ProWeb, Amzi’s KnowledgeWright product is a

platform specifically designed for expert system deployment.[5] Unlike JXSHELL,

KnowledgeWright includes tools for the integration of the platform in a number

of host environments for the development of both stand-alone software and Web-

based applications. The configuration and development tools included with Knowl-

edgeWright go beyond anything available in JXSHELL.

KnowledgeWright gives an applications developer two means of Web deployment.

Under one scenario, the developer authors an interface in a language such as Java

65

(written as an applet) or Visual Basic (written as an ActiveX control), and embeds

the resulting software object in a Web page. Under the other scenario, the devel-

oper connects KnowledgeWright applications to a Web server and serves interaction

screens through a CGI interface (much like JXSHELL).

Though KnowledgeWright is a powerful ES development and deployment tool,

both of these options have disadvantages compared to JXSHELL. In the case of

embedded objects, the application developer must rely on the user to have a browser

capable of supporting object embedding, and the user must wait for the download

of a large binary or byte-encoded object whenever loading an expert system appli-

cation. JXSHELL interactions, on the other hand, are sent to the user as simple

HTML files requiring little bandwidth and no special browser functionality beyond

support for CGI (and possibly Javascript and/or VBScript support). In the case of

KnowledgeWright’s CGI interface, the system relies not on GET operations but on

POST operations, meaning that Berners-Lee’s axiom of universality is not satisfied

by KnowledgeWright-based ESs using the CGI interface. Under neither scenario are

ES interactions addressible Web objects in the sense described in chapter 3.

Appendix A

The JXSHELL reference implementation

JXSHELL includes a reference implementation in two files: a knowledge base

CICHLID.XSH and a stylesheet MAIN.XSL. The knowledge base is for a “toy” animal

identification ES. CICHLID.XSH contains rules for the identication of dwarf cichlids,

a type of tropical fish found in home aquariums. Identification programs, in which

the program helps a user identify some given object based upon that object’s charac-

teristics, are commonly programmed as rule-based ESs. CICHLID.XSH is a modified

version of the ES of the same name found in [1, pages 289–298]. JXSHELL’s

CICHLID.XSH contains most of the features referenced in Section 5.1.

The reference implementation’s stylesheet, MAIN.XSL, contains all the basic struc-

tures necessary for generating correct HTML output for consultations. In addition,

MAIN.XSL contains code for producing a set of knowns summary. This summary, dis-

played just below user input areas for interactions, allows the user to choose specific

items in the from among the current input set. In output the summary appears as

a list of knowns, beside each of which is a checkbox. At any point in a consultation

the user can reset the set of knowns by checking the boxes beside one or more items

and clicking a submit button. This action resets the set of knowns to the given items

and resets the current rule index to 1.

The set of knowns summary is generated by iterating through the KNOWNS node

in the system’s XML output. As an example of the power of XSLT processing, and

of the power of XSLT’s iterative structures specifically, the summary is displayed

66

67

in two columns. Similarly, the menu items for ex multi interactions are displayed in

two columns.

Appendix B

JXSHELL deployment considerations

In addition to providing an explanation of JXSHELL along with background and

justification for its design choices, the current paper is meant as a practical guide to

those who wish to deploy it for real-world applications. To that end we supply some

basic information necessary for anyone who wishes to host a JXSHELL site.

B.1 JXSHELL version numbers

In versioning JXSHELL adheres to the common convention of using a three slot num-

bering system of the form major.minor.revision. The major version number changes

upon major revisions to the JXSHELL core program, including the Java interface

and all Prolog output drivers. The minor version number changes upon changes of

or additions to JXSHELL functionality that do not represent major rewrites. The

revision number changes upon bug fixes or what developers consider minor upgrades

to existing functionality. In addition, changes in the JXSHELL reference implemen-

tation constitute revisions. The decision on version changes rests with the developer

responsible for issuing JXSHELL development licenses (currently, the author). The

current JXSHELL version as of this writing is 1.0.1.

Note that JXSHELL allows for extensive application development on the part of

JXSHELL license holders. This development is in the form of stylesheet and knowl-

edge base authoring. Any additional development on the part of license holders,

including revisions of elements of the reference implementation, do not reflect on

68

69

JXSHELL versioning. However, license holders are not precluded from using a ver-

sion number scheme for their own JXSHELL-based applications.

B.2 JXSHELL installation and configuration

JXSHELL ships as a set of files in an installation directory. These files, refered to

here as “installation files,” contain everything necessary for setting up the JXSHELL

system.

JXSHELL includes a simple installation procedure. As of the current verison, the

process is not completely automated, though it is relatively simple in the case of a

“standard” installation. The standard installation for JXSHELL entails the creation

of two directories, jxshell-1.0.1 and JxshellAppFiles on the root directory of

the “D:” drive of a Windows computer. Alternatively, a similar installation on the

“C:” drive is supported. Other installation options are possible, though these will

involve editing some files. See the file README-INST.txt in the JXSHELL installation

files for details.

JXSHELL configuration is implemented by means of settings in the resin.conf

file. Although this file is a standard part of the Resin server package, it has been

modified for use with JXSHELL. Specifically, the file contains settings that define the

JXSHELL servlet, and it contains settings that are used by the JXSHELL driver

to correctly set up JXSHELL applications. See the file README-CONF.txt in the

JXSHELL installation files for details.

Bibliography

[1] Covington, Michael A., Donald Nute, and André Vellino. Prolog Programming

in Depth. Prentice-Hall. Upper Saddle River, NJ. 1997.

[2] Hogger, Christopher John. Essentials of Logic Programming. Clarendon Press.

Oxford. 1990.

[3] Sterling, Leon, and Ehud Shapiro. The Art of Prolog. MIT Press. Cambridge,

Massachusetts. 1986.

[4] Logic Programming Associates, LLC. ProWeb User Guide. Logic Programming

Associates, Ltd. 31 October 2001.

[5] Amzi, Inc. “KnowledgeWright Overview.”

[6] Stefik, Mark. Introduction to Knowledge Systems. Morgan Kaufmann Pub-

lishers, Inc. San Francisco. 1995.

[7] World Wide Web Consortium. “Extensible Markup Language (XML) 1.0

(Second Edition).” 6 October 2000. <http://www.w3.org/TR/2000/REC-xml-

20001006>.

[8] World Wide Web Consortium. “Extensible Stylesheet Language (XSL) Version

1.0.” 15 October 2001. <http://www.w3.org/TR/xsl>.

[9] World Wide Web Consortium. “XSL Transformations (XSLT) Version 1.0.” 16

November 1999. <http://www.w3.org/TR/xslt>.

70

71

[10] Coward, Danny. ”Java Servlet API Specification Version 2.3.” 17

September 2001. Sun Microsystems, Inc. <http://www.jcp.org/aboutJava/

communityprocess/final/jsr053>

[11] Caucho Technology, Inc. “Resin (tm) Core.” <http://www.caucho.com/

products/resin>

