LEVERAGING REST WEB SERVICES AND THEIR SEMANTIC EXTENSIONS FOR
BIOINFORMATIC WORKFLOWS: A CASE STUDY USING GALAXY
by
SUMEDHA GANJOO
(Under the Direction of John A. Miller)

ABSTRACT

The field of bioinformatics involves analysis of large sets of data. This might entail
leveraging of tools scattered over many Web sites. To provide the experimental biologists with a
common platform capable of such analysis, this thesis focuses on extending a bioinformatics
framework with Web service invocation support. Galaxy being substantially popular for its
analysis tools and workflow management capability seemed like an ideal candidate to extend.
This thesis proposes adding REST Web service support to Galaxy in a way that can be easily
extended to SOAP Web services in the future. Also, it introduces an approach to add dynamic
tools to Galaxy. To simplify the process of repetitive analyses on different sets of data, in this
thesis we discuss enabling Web service invocation in the workflow portion of Galaxy. Also this
thesis shows how we can leverage semantic annotations in Web services to improve the user’s
experience when interacting with Web services.

INDEX WORDS: Web services, REST, WADL, WSDL 2.0, SAWADL, Bioinformatics
workflows, Galaxy, Semantic Web services

LEVERAGING REST WEB SERVICES AND THEIR SEMANTIC EXTENSIONS FOR

BIOINFORMATIC WORKFLOWS: A CASE STUDY USING GALAXY

by

SUMEDHA GANJOO

B.Tech., College Of Engineering, Pune, Maharashtra, India

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2010

© 2010
Sumedha Ganjoo

All Rights Reserved

LEVERAGING REST WEB SERVICES AND THEIR SEMANTIC EXTENSIONS FOR

BIOINFORMATIC WORKFLOWS: A CASE STUDY USING GALAXY

by

SUMEDHA GANJOO

Major Professor: John A. Miller

Committee: Krzysztof J. Kochut
Jessica Kissinger

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School
The University of Georgia
August 2010

DEDICATION

To Papa.

ACKNOWLEDGEMENTS

I would like to thank Dr. John Miller, for being an inspiring educator and an encouraging
and supportive advisor over the past two years. | would also like to thank Dr. Jessica Kissinger
for her time and valuable suggestions to improve this thesis. | thank Dr. Krzysztof Kochut for his
time, and all the staff and faculty members of the department of computer science for directly
and indirectly influencing this work.

This work would have not been possible without the pep talks and the suggestions that |
needed from time to time. And for all that and more, | thank my family and friends. Last but

certainly not the least; I thank God for His blessings and guidance.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS. ...ttt ettt e e e e nnba e e e e s entbeeas Y
CHAPTER

1 INTRODUCTION ...ttt ettt e e et a e e e bt e e e e e nnbb e e e e s aneaeeas 1

1.1 INtroduCtion t0 GAIAXYeeiueieiiiiiee it 1

1.2 MIOTIVALION ...ttt ettt et 1

1.3 OULIINE. ..ttt 3

2 BACKGROUNDooiittiiie ittt e et e e e nntb e e e nneae e e e s anees 4

2.1 Introduction to REST WeD ServiCes..........cccooviiiiiiieiiiiiieee e 4

2.2 REIALEA WOTK.......eeiiieieeie e 8

2.3 Technologies LEVEragedccccuveeiieeeiiiie et e saae e 8

3 APPROAGCH. ..t 11

3.1 Galaxy ArChItECTUIEvve i ree e 11

3.2 Maximal Functionality APProach.........ccccceeiiiveiiiie e 13

3.3 Restricted Tool Addition APProach...........ccocvveiiieeiiiee e 14

3.4 Minimal Change APProachcociiieiiii e 15

4 CAPABILITIES ADDED ..ottt 19

4.1 Parameter ENLIY ..oooooi ittt e e e e 19

4.2 UNIVErSAl CHENT ..o 20

4.3 Web Service-specCific CHENt.........cccooviiiiii e 21

Vi

4.4 WOTKFIOW SUPPOIT ...t 24

4.5 SEMANTIC EXIENSIONS ...ttt 24

5 WORKFLOWIS ..ttt e et e e e bbb e e e e nnbaee e e 25

5.1 WOrKFIOWS IN GalaXycveeiiiiiiieiiieiiecee e 25

5.2 Workflow Support in Web Service TOOIS.........cccce voviiiiiiiiiieiice, 26

6 EVALUATION AND EXAMPLE WORKFLOWcoooiiiiiiiiiiiiiiie e 27

7 CONCLUSIONS AND FUTURE WORK ...ttt 30

6.1 CONCIUSIONS ...ttt 30

6.2 FULUIE WOTK ... 30
REFERENGESttt ettt e ettt e e e ettt e e e e e st b e e e e e e nbb e e e e s anbbeaeennnees 33
APPENDICES ... oottt ettt e e ettt e e e ettt e e e e bbbt e e e et b e e e et b a e e anrreeas 37
A INSEAHIALION GUILE ... 37

B USEI’™S GUIAC....ceeiiiiiiiii ettt e s 43

C Developer’™s GUIAEcuuviiiiiiii ittt e e r e e e e e e 51

vii

CHAPTER 1

INTRODUCTION

1.1. Introduction to Galaxy

Galaxy [1, 2] is an Internet based framework which provides an analysis platform for
performing analyses on different types of bioinformatics data obtained from a variety of
bioinformatics databases and resources. Apart from providing various analysis tools it also
provides a workflow component which lets the user save workflows and share them with
colleagues. It is highly popular in the bioinformatics community due to its simple and easy to use
interface and the fact that it allows users to connect to multiple resources.

Scientists can register at, and use, the globally hosted instance of Galaxy at
http://main.g2.bx.psu.edu/, or download and setup a local instance of Galaxy server from
http://bitbucket.org/galaxy/galaxy-central/src. Galaxy is an open-source project funded by NIH,
NSF, Penn State, Emory, and the Pennsylvania Department of Public Health. Further
development of the project can be followed at its wiki: http://bitbucket.org/galaxy/galaxy-

central/wiki/Home.

1.2. Motivation
There are a myriad of Web services available on the Web to aid biologists in processing
and acquiring data. Major service providers for these Web services are EMBL - European

Bioinformatics Institute [3], DNA Data Bank of Japan (DDBJ) [4], Kyoto Encyclopedia of

Genes and Genomes (KEGG) [5] and National Center for Biotechnology Information (NCBI)
[6]. As noted on July 1% 2010, BioCatalogue [7] listed 120 such service providers and 1,695
services (1,638 SOAP Web Services and 57 REST Web Services) hosted by them. EMBL-EBI
itself hosts 11 REST only, 11 SOAP only and 24 REST/SOAP bioinformatics related services.

Currently, Galaxy has no support for using these Web services. We focus on adding
REpresentational State Transfer (REST) [8] Web service capability to Galaxy, so that the users
can easily use the many readymade REST Web services for bioinformatics analysis available on
the Internet. Adding Web service functionality to Galaxy is only a logical extension of Galaxy’s
aim to provide a common framework to biologists [9] and save them the effort required to move
the data around various resources/tools. Currently, mostly all the tools usable through Galaxy are
hosted on the Galaxy server. Galaxy also allows the user to access data from some other specific
Web sites registered with Galaxy. Another way of importing outside data to Galaxy is by
uploading an external file saved locally.

The extensions to Galaxy made in this thesis aim at allowing inclusion of Web services in
Galaxy workflows like other Galaxy tools. This implies that data output from a Web service
could be fed to a Web service or a tool in Galaxy and similarly, a tool’s output could be fed to a
Web service as input, making the interaction far simpler and automated for the user. This saves
the user the need to go to various Web sites individually to perform required analyses. To enable
Web services to be incorporated in workflows in Galaxy, it is required to provide Galaxy with
the flexibility of interacting with any Web service provider in two ways:

i. Accessing Data: Allowing users to access sources beyond those that are currently

registered with a Galaxy server via Galaxy’s interface.

i. Performing Analysis: Allowing users to invoke/use tools remotely rather than requiring

them to be installed and registered on a Galaxy server.

Thus, we work on adding extensions to Galaxy to enable its interaction with various
REST Web services, to enable a bioinformatics framework that can leverage REST Web services

available on the Web.

1.3. Outline

Chapter 2 talks about REST Web services in general followed by an introduction to
technologies essential for understanding the project. It also acknowledges previous work done in
the field of extending Galaxy with Web services. In chapter 3, we give an overview of the
architecture of the Galaxy code base, and discuss various approaches to extend Galaxy. Chapter
4 discusses the capabilities added to Galaxy as a part of this project, followed by chapter 5 in
which an introduction to generic and extended workflows in Galaxy is given. In chapter 6, the
system is evaluated with the help of an example workflow. Chapter 7 gives a summary of the
work and proposes future extensions to it. Appendices A, B and C are the installation, user’s and

developer’s guides, respectively.

CHAPTER 2

BACKGROUND

2.1. Introduction to REST Web Services

Web services [10] enable interoperation between different software applications,
irrespective of frameworks and platforms. According to W3C, a Web service is “a software
system designed to support interoperable machine-to-machine interaction over a network. It has
an interface described in a machine-processable format. Other systems interact with the Web
service in a manner prescribed by its description” [10]. This description can be realized by the
use of an XML document following one of the following specifications: Web Application
Description Language (WADL) [11, 12] or Web Services Description Language (WSDL) [13,
14].

WADL is designed to provide a machine processable protocol description format for use
with HTTP-based Web applications, especially those using XML. Mostly, WADL documents are
used to describe REST [8] Web services and WSDL documents to describe SOAP [15] Web
services. Although WSDL 1.1 [13] does not support the description of REST Web services,
WSDL 2.0 [14] is designed with support for REST Web service description. Our research
focuses on REST Web services described using WADL as well as WSDL 2.0.

REST is a resource-centric Web service design model, with each resource being
represented by a URI (Uniform Resource Identifier) [16]. The basic principles followed by the

REST approach are the following:

I. Use of the HTTP Web Protocol: To create, retrieve, update or delete a resource a
REST Web service always uses one of the HTTP methods: POST, GET, PUT or
DELETE. A REST Web service does not have any other operations apart from
these four.

ii. Statelessness: REST architecture is said to use “stateless” operations because a
request to an operation contains all the information needed to generate a response
independent of the session.

iii. Use of URI: AREST Web service identifies each resource by a URI. To make the
URIs more intuitive, a hierarchical structure is followed while defining them. This
also makes it easier to travel from one resource to other using hyperlinks.

iv. XML message format: REST Web services typically work with XML data formats

for messages to pass request/response payloads.

2.1.1. Web Application Description Language (WADL)

According to W3C WADL is “designed to provide a machine processable description of
HTTP-based Web applications” [11]. A WADL document can be used to describe all the
accessible resources of the resource-centric Web service design model of REST. The only
methods allowed in a WADL document are the HTTP methods GET, PUT, POST or DELETE.
All WADL elements have the XML namespace name: http://wadl.dev.java.net/2009/02. Next is
a brief overview of the basic tags followed by a sample WADL document.

The application element forms the root. It contains zero or more resources, each of which
contains zero or more resource elements. Each resource element can again contain zero or more

resource elements representing the sub-resources. A URI for a resource is generated by

combining the base URI obtained from the resources tag and appending it with the path attribute
of the resource tags in hierarchical order. Once a resource is defined, the method tag is used as a
child element to define the HTTP protocol methods applicable to that resource. Each method has
a request and a response tag describing the input and the output to the method. The request to a
method contains a set of parameters described using the param tag. A parameter can be specified
as a required parameter by setting the attribute required for the param to true. Also a default
attribute of param exists that allows specification of a default value for the parameter. Figure 1

shows an example of a WADL document obtained from EuPathDB [17].

— <application xsi:schemaLlocation="http://wadl dev java.net'2009/02 wadl xsd">
— <resources base="http://eupathdb_org/webservices/">
— <resource path="GeneQuestions">
+ <resource path="GenesByTextSearch xml"></resource>
+ <resource path="GenesBvTextSearch json"></resource>
—<method name="POST" id="genesbyvtextsearch">
<doc title="display_name">Text (product name, notes, etc.)</doc>
+ <doc title="summary"></doc>
+ <doc title="description"></doc>
— <request>
+ <param name="text_search organism" type="xsd:string" required="true"></param>
+ <param name="text_expression" type="xsd:string" required="true"></param>
+ <param name="text_fields" type="xsd:string" required="true"></param=
+ <param name="whole_words" type="xsd:string" required="true"></param>
+ <param name="max_pvalue" type="xsd:string" required="true"></param>
+ <param name="timestamp" type="xsd:string" required="false"></param>
+ <param name="o-fields" type="xsd:string" required="false" default="none"></param>
+ <param name="o-tables" type="xsd:string" required="false" default="none"></param=>
</request>
— <response>
<representation mediaType="text/xml"/>
<representation mediaType="text/json"/>
</response>
</method>
</resource>
</resources>
</application>

Figure 1: Genes by text search WADL from EuPathDB [18]

2.1.2. Web Service Description Language Version 2.0 (WSDL 2.0)

According to W3C, Web Services Description Language “provides a model and an XML
format for describing Web services”. It separates the functionality and the messages from the
concrete details like message format and network protocol [13, 14]. WSDL 2.0 [14], unlike
WSDL 1.1 [13], supports both REST and SOAP Web services.

A WSDL [13, 14] document has several elements, which together are used to specify the
service’s URL, communication mechanisms, operations offered and the structure of the input and
output messages. One of the elements of a WSDL document is the binding element, which is
used to specify the communication mechanism supported by the Web service. As seen in the
beginning of section 2.1, REST services communicate via HTTP, so a service capable of REST
style behavior is declared by specifying the binding type to be HTTP in WSDL 2.0. This can be
done by using the namespace “http://www.w3.org/ns/wsdl/http” as the value of the type attribute
of the binding element. Any service with an endpoint with a HTTP binding is capable of REST

style behavior.

2.1.3. Semantically Annotated Web Application Description Language (SAWADL)

Battle and Benson in their work on semantic extensions to REST [38], proposed ideas to
semantically annotate WADL and introduced SAWADL [38]. One of the features of SAWADL is
that every input parameter can be annotated with a concept from an ontology. This is done by
using the modelReference attribute of the param tag.

The basic additions to a WADL for annotating an input parameter with a concept would
be to the application and the param tag. The application tag in the WADL is changed to specify

the ontology reference and the SAWADL specification location in it, e.g., add the following

attributes with appropriate values: xmlns:Ontologyl=http://www.owl-
ontologies.com/ontologyName.owl and xmins:sawadl=http://www.standards/sawadl/spec/
sawadl# to the application tag. Later in the param tag a reference to the concept can be specified
by using the modelReference attribute, i.e., add sawadl:modelReference="Ontologyl#
ConceptName” to the param tag. The values for the attributes above are merely examples and

should be changed appropriately.

2.2. Related Work

This project apart from providing new approaches, also extends the approach introduced
in Shefali Shastri’s work [19] for extending Galaxy. She added a REST Web services extension
to Galaxy by proposing one generic tool capable of invoking all REST Web services. The
drawback of this tool was that the user was assumed to have all the needed information for

invocation of the Web service like parameter names and values.

2.3. Technologies Leveraged

This section gives a brief introduction to the existing software used by the project. Firstly,
the various parsers used to read the documents describing REST Web services are talked about.
Next is an introduction to JPype [20], followed by a little background knowledge of the OWL

API [21].

2.3.1. Description Document Parsers
We extend Galaxy to provide support for REST Web services described using a WADL,

WSDL 2.0 or SAWADL document*. Thus, to be able to parse these documents we need parsers

*In future, to support WSDL 1.1 and SAWSDL 1.1 and SAWSDL 2.0 standards we can use
WSDL4J, SAWSDLA4J or WodendSAWSDL4J parsers, respectively.
8

for documents built on all three specifications. The WADL parser [22] used is obtained from the
Large Scale Distributed Information Systems (LSDIS) lab, at UGA. This parser takes the
location of a WADL document and reads various components of the document. The SAWADL
parser [22] is also a contribution made by the LSDIS lab, at UGA. The major difference being
that the SAWADL parser also reads the annotations, if any, in the description document.

To parse WSDL 2.0 documents the Apache Woden API [23] is used. The Woden API
consists of Java interfaces to read, write and edit WSDL 2.0 documents. To further study Woden

refer to the user guide available at http://ws.apache.org/woden/userguide.html.

2.3.2. JPYPE

The parsers described above are all implemented in Java. Galaxy tools added by us being
implemented in Python cannot directly invoke these parsers. JPype [20] acts as a middle layer of
interaction between Python and Java. The JPype project is built with an aim of allowing
programs written in Python complete access to Java libraries, by interfacing the Java Virtual
Machine (JVM) and the CPython Virtual Machine. It allows setting up of a JVM from a Python
program, with a specified class path and jar path. For a better understanding of the JPype project
please refer to http://jpype.sourceforge.net/index.html.

Some of the other projects enabling Python Java interaction are Jython [24], JEPP [25]
and JCC [26]. Jython re-implements Python in Java. However, it does not allow access to some
modules in Python’s standard library. JEPP stands for Java Embedded Python. It embeds
CPython in Java. JEPP provides a scripting solution for Java, enabling Java code to run existing

Python scripts. It does not allow Python code to invoke a JVM though. JCC enables calling Java

code from C++/ Python via Java's Native Invocation Interface (JNI). Because of JPype’s easy to

learn nature it is favored over the other available options.

2.3.3. OWLAPI

An Ontology can be defined as a representation of some defined terms and their
relationships with one another. Using these ontologies, documents can be made to have clear
semantics and hence be machine interpretable. OWL (Web Ontology Language) [27] is a
language for describing the terms (also called concepts) and relationships in an ontology.

The OWL API [21] is an open source project providing a Java API for creating and
manipulating OWL Ontologies. To be able to exploit the features of an annotated REST Web
service described using a SAWADL document, we use the OWL API to read and parse the
ontology and access required information from it. From a SAWADL document the concepts that
the input parameters are annotated with can be obtained from the model reference attribute of
each parameter. The OWL API can be used to obtain specific information like the description or
comments attached to that concept from the ontology. The Javadoc for OWL API can be found
at http://owlapi.sourceforge.net/javadoc/index.html and for other documentation please refer

http://owlapi.sourceforge.net/documentation.html.

10

CHAPTER 3

APPROACH

Before describing various approaches to extend Galaxy to support Web service
invocation, it is important to understand the architecture of Galaxy, its key features and
restrictions. This chapter gives a brief overview of the architecture of Galaxy followed by the
various ways of making changes to Galaxy to incorporate support for executing Web services

through Galaxy.

3.1. Galaxy Architecture

The two major sections of our concern from the Galaxy code are named “lib” and “tools”.
The tools section is a placeholder for various existing tools provided in Galaxy. The lib section
consists of all the server side Python code for the implementation of the Galaxy framework.
Thus, to edit or add a feature that is a part of the behavior of Galaxy’s framework: its internal
working and implementation, modules in the lib section would be altered. Whereas any behavior
restricted to a particular tool in Galaxy would require additions or modifications to the tools
section. Figure 2 gives a brief overview of these two sections, focusing on modules that need to
be changed in Galaxy for our Web service extensions.

All Galaxy tools are stored under “tools” under Galaxy’s main directory [34]. Each tool
is conventionally added as a directory containing some XML and Python files. The XML file
describes the tool’s interface and also specifies the Python module that is invoked by the tool.

Apart from tools the other directory that we focus on in Figure 2 is lib. It represents the library

11

containing most of the Python code base required for setting up, running and maintaining of
Galaxy server.
For Galaxy to recognize any tool, the tool _conf.xml file needs to be updated with the

location of the tool [34]. This file is present directly under the main Galaxy directory.

galaxy server-side |:| —= Folder KEY
architecture

. 1=

‘ = » 8« —= Other folders

1 £ 1 = » —> Other folders and files
tool _conf.xm lib tools = = 8 —= Other files
I I I l
galaxy galaxy_utils tool 1 tool 2

] l I l
[[[[[l | ' '

config.py||__init_.py||app.py || tools tooll.xml | | tooll.py tool2.xml | | tool2.py

I __init__.py

Figure 2: Galaxy’s architecture

Based on the amount of modifications made to Galaxy’s implementation, we define three
approaches to extend Galaxy to provide Web service support. These approaches are also distinct
in the nature of changes and extensions they allow to be made to Galaxy. These approaches
showcase various levels of freedom varying from allowing modifying the main Galaxy source
code itself to extending Galaxy only by adding tools to the framework.

Galaxy, being an open source project, the former approach of modifying the source code
itself seems more natural. It also provides the most flexibility and scope for extension. However,
these extensions are much more difficult to maintain across new releases of Galaxy. The latter

approach allows extensions only by adding tools, in our case a universal Web service client, to

12

Galaxy. The downside of this approach is that the client’s interface is restricted by the definition
of a tool’s behavior in Galaxy. The upside is that no maintenance issues arise in this approach.
We propose an intermediate third approach that apart from adding tools allows minimal
changes to Galaxy’s source code. This final approach seems best suited for the purpose of
providing Web service support to Galaxy.
We develop REST Web service extensions into Galaxy following both the “Restricted
Tool Addition” approach as well as the “Minimal Change” approach. The three approaches for

extending Galaxy are discussed next.

3.2. Maximal Functionality Approach

The Maximal Functionality approach implies making changes to the code base of Galaxy
to incorporate the behavior of handling Web services through the Galaxy interface. The
extensions to Galaxy to support semantic Web services, by Rui Wang [28], demonstrate the
ability to add Web services directly to the core of Galaxy.

This approach requires extensive development. Apart from the tools that need to be
added, it adds around two thousand lines of code scattered over nine existing packages and two
newly added packages. In order to provide more capabilities and an improved user interface
significant changes to the Galaxy code base are required; some of these changes are described
below [28]:

1. Defining a new type of tool for handling Web services.
2. Adding the ability to dynamically add tools of this newly added type. Galaxy has a

module called “runner” that dictates the behavior of the tool at run time. By default

13

Galaxy tools are all static in nature. A new “runner” is defined and invoked for tools
handling Web services to add dynamic behavior.

3. Changing the interface (module tool_menu.mako) so that it refreshes automatically and
displays the newly added tools.

4. Adding the ability to invoke Web services from Galaxy tools. Depending on the Web
service the inputs to this tool vary and the tool has to act as a specific Web service client.
Though the above approach provides more flexibility and an improved user experience,

the main drawback is that it is difficult to maintain across different versions of Galaxy. Unless
the Galaxy developer team adopts the changes and incorporates them in the main instance of
Galaxy, installing these extensions into a newer Galaxy version is quite challenging. Even if
support for these extensions is provided in the main instance of Galaxy, inclusion of new features

will require changing the code base again.

3.3. Restricted Tool Addition Approach

The Restricted Tool Addition approach allows extending Galaxy only by adding tools.
No changes are made to the main Python code base. This approach is the easiest to implement as
it requires knowledge only of writing tools in Galaxy and does not require the developer to
understand in detail the implementation of the framework. In this approach, we extend the
Universal REST client [19] added to Galaxy as a tool. The extended Galaxy architecture is

shown in Figure 3 below.

14

. — KEY
galax}hgig\ ter*:lde E —= Newly added folder
arcaitectur

| Ijﬁ Newly added file
tool_conf.xml lib tools ‘
| nsm
galaxy galaxy_utils RESTClient
LI I mee
I I
| = — l ! = ' '
: GenerateMethod] e InvokeWeb
" . . > Stepl: Get Web Gtep2: Get Step3: Get P EA. lib
config.py||__init__.py||lapp.py|| tools o s Infécmation e arameter Servicepy i
| & q peration ormation.py 3 . : P
: - ?;nni‘“ LR information.xm] g:jr‘na{nelers O T
] I I I]
WSDL 2.0
init__.py SAWADL : :
—mi_py WADLParser| p Woden jars
arser P
arser

Figure 3: Architectural changes by Restricted Tool Addition approach.

The REST client tool shown in Figure 3 represents a Universal REST Client. It is called
S0 because given adequate information about any REST Web service like its description
document it acts as a client capable of invoking that Web service. A major advantage of this
approach is that it requires minimum maintenance effort across versions of Galaxy. Galaxy is
built such that tools can be plugged into any version of Galaxy easily, by just modifying the
tool_conf.xml and adding the tool specific code and XML files in the tool directory.

The main drawback of this approach is that the behavior of the tool added is restricted by
Galaxy’s definition of a tool. As Galaxy did not support interaction with Web services originally,
the Universal REST client added as a tool is limited in nature. It is harder to learn to use and

does not have a very user-friendly interface.

3.4. Minimal Change Approach
The Minimal Change approach allows making minimal changes to the Galaxy code base

apart from allowing addition of tools to Galaxy. It differs from the Maximal Functionality

15

approach in the extent of changes it allows to be made to the Python code base. Unlike the
Maximal Functionality approach, the only feature support that is added to the core code-base
directly is the ability to reload the toolbox without having to restart the server. As can be seen in
Figure 4, this requires only changing two Python modules (Appendix C), i.e., lib/galaxy/app.py
and lib/galaxy/tools/__init__.py from the core Python code base of Galaxy. These changes
enable adding tools to Galaxy dynamically by adding the capability to reload the toolbox in

Galaxy without having to restart the server.

galaxy server-side I:l —= Chasged Folder KEY
architecture
I :lﬁ Changed File
tool_conf.xml lib tools
| anm
galaxy galaxy_utils WebService
N Tool

I [l [[| |

GetWeb: | |PassWeb | | oivrmods, | | PassMethod | | generate ||editTool |[get
config.py init__.py|| 5, y|| tools Service ServiceURL Information
J|—T—F) || app-p) URLxml | [.py xml oy

o il lient: Workil
Client.py ||Config.py ||Methods i cllents c;:n:sow

pY

amm |
init__py I I : I [el y N ; 2
s | sawapr [[YSPL20 ‘ client_0|fclient_1iclient_1 | client _Ojfclient 1 {iclient_1

[WADLParser Woden Jars xml xml Py xml xml Py

Parser =
OWL-
e

API

Parser

Figure 4: Architectural changes by Minimal Change approach.

Apart from the changes made to the code base, this approach needs the addition of a tool
for registering Web services with Galaxy. For every registered Web service a Web service client
is added as a tool to Galaxy. This Web service client can then be used to invoke the Web service
with specific parameter values. A flow diagram of the design of the Minimal Change approach is

shown in Figure 5. Unlike the Restricted Tool Addition approach where a universal client was

16

added, here we add Web service-specific clients as tools to Galaxy. Thus, following this

approach allows for a better user experience as discussed and shown in chapter 6.

User Galaxy interface P Ve—
Input REST url involk . .
’ tooll - takes REST Web iokeston s L\\".-SDL
1 service description document 2 &
as input | _—~~"| sAwWADL
et |

method information

n

tool2 : lets user choose the - "3

Choose method method to register .
1 —-invokestool
.‘-5““‘*%
\"9 ‘generates a client to
invoke the Web service
refresh interface reloads ’L &
7 toolbox adds the client to
8 toolbox
7

input parameter
values or
specify source invo}(es tl.le Web
of input Web service client: T SeavIce with the

) 7] takes parameters as invokestool o| specified parameters

input from useror a 10

previous step in the /

workflow

displ:]_v?the output
e previous

fro
@X&) service

11

Figure 5: Design of Web service extensions using Minimal Change approach.

Another advantage of this approach is it allows for extending the Web service support in
the future without having to make any changes to the main code base. Also it is easy to maintain
across newer Galaxy versions as the modifications to the source code are minor and easy to

integrate.

17

Our Web service addition tool does not add generic tools to Galaxy, but only tools that
act as Web service clients. The code that runs on executing these added tools invokes the Web
service which is on a third party system and hence cannot harm the Galaxy server hosting the
tool. This ensures there is no breaching of security. Also the working of the tool can further be
easily modified to add access control, allowing only users with certain privileges to add tools

dynamically.

18

CHAPTER 4

CAPABILITIES ADDED

This chapter discusses the various features added for the Web service extensions made to
Galaxy. As discussed before, the main purpose of the project is to enable scientists to easily
access Web services via Galaxy.

Below we discuss the capabilities provided by our Universal REST client as well as the
Web service-specific clients. The Universal REST client is added using the Restricted Tool
Addition approach, whereas the Web service-specific clients are added using the Minimal
Change approach. As the Minimal Change approach is more flexible some of the features
discussed below are limited to the Web service-specific clients, whereas some like parameter
entry and semantic support, are inbuilt in both the Universal as well as the Web service-specific

clients.

4.1. Parameter Entry

To make the process of Web service invocation through Galaxy easier for the users, the
Web service clients parse the description document for a REST Web service, i.e., a WSDL 2.0,
WADL or SAWADL document to obtain the input parameter information. The user sees this
information and specifies parameter values for selectable options.

In the universal client approach the user can choose to display additional information

corresponding to each parameter’s name. This additional information consists of the parameter’s

19

data type, default value and if it is required or not. The only problem being here that as the
Universal REST client is added using the Restricted Tool Addition approach it is a static tool,
and requires the user to iterate through the parameter entry process to enter each parameter value.

Whereas, Web service clients added as tools using the Minimal Change approach are
dynamic in nature. To enable ease of parameter entry without looping, we built the clients such
that each Web service input parameter is read from the specified WADL/ WSDL 2.0/ SAWADL
and displayed as a tool input parameter. A sophisticated and easily comprehensible interface is
provided. Instead of having to display additional information about each parameter as an option
on the tool form, additional information, like the type, is displayed as a tip in the help section.
This works in accordance with Galaxy’s style of using the help section in their tools and makes

the clients easier to use. Figure 6 shows how parameter information is used to simplify the use of

Analyze Data Workflow Data Libraries Help User
doals genesbytextsearch = | History
Refresh — T
AN ab sarvicatonl Select text_search_organism: Displays a drop-down or a text-entry o)
Web Service Tools | Entamoeba dispar depending on the parameter type, with Unnamed history
= igenesbytextsearch Client for see tip below the default value I e0 e
et e, | entr tst_oxpressons =
/parser/SAWADLParser = \membrane \ 59: Step 2 on data 5§
/euPathWADL see tip below :
/GenesByTextSearch.sawadl| 58:Step1
Bytext h Client f Select text_fields:
= genesbytextsearch Client for (I57: Step 3
method: genesbytextsearch , | Gene product |
Web service: see tip below E L . £
: Step ¥
http://eupathdb.org/eupathdb 56:Step 2 on data 5
/webservices/GeneQuestions =1 Select whole_words: T —
/GenesByTextSearch.wadl [no 2] s Ifsi Step1
= genesbysimilarity Client for see tip below I 54: Step 3
method: genesbysimilarity ,
- Enter max_pvalue:
Web service: I 53: Step 1
http://eupathdb.org/eupathdb ‘>30 ‘ 53:Step1
/webservices/GeneQuestions see tip.below I
/GenesBySimilarity.wadl et Dalow 52: Step 3
Web Service Workflow Tools Display Additional Paramatars: . . - | 51: Step 2
Dateie Wab seivices tool |no (¢ {\ . . Displays information about the ==
T Displays optional parameters parameter like its type, description 5
Lumina tool [Execute | from ontology i [) 50: Sten 3
Get Data ‘ ‘ & I T
Send Data SEERAaD L
ENCODE Tools (0 TIP: About text_search_organism: type is xsd:string, description from ontology is "Organism \dentxﬂer"] I AR
Lift-Over o TIP: About text_expression: type is xsd:string, description from ontology is "This term can be used for any free-form comments and
Text Manipulation & annGatonss = I 47: Step 2 on data 4¢

Figure 6: Leveraging parameter information from SAWADL in a Web service-specific client

20

4.2. Universal Client

The Universal REST client [19] has been added as a tool to Galaxy. It is capable of
invoking any REST Web service given a URL locating a document describing the REST Web
service. This description document could be following any of the following specifications:
WADL, WSDL 2.0 or SAWADL. As it is built using the Restricted Tool Addition approach the
Universal client is added as an independent tool to Galaxy, and does not require any additions to
Galaxy’s source code. Figure 7 gives an overview of the interface of all the steps of the REST

client.

i Tools » /

Step 1 : WADL information
Step 3 : Param information

WADL Source:
The previous step was:

|9: Step 2 : WS infor.. on data 8 ¢ |

| http://eupathdb.org/webservices/Genel ¢ \

Choose Input Parameter 0:

Verify the output selected in the previous step was:

Regional Variation
Multiple regression
Multivariate Analysis
Evolution
Metagenomic analyses
FASTA manipulation

| User will enter the WADL url 2]

B
ST

Enter the WADL location:
|http://eupathdb.org/eupathdb/webservice]

[Execute |

NGS: and manipulation
NGS: Mapping
NGS: SAM Tools
NGS: Peak Calling
Rg Data
\ Rg Simulate
Rg Visualise
Rg Model Data
REST client for SAWADL
REST client for WSDL
REST client for WADL

| text_search_organism ¢ |

Input the URL of the WADL of the REST webservice to be called. ¢
Enter Parameter value: [GenesByMolecularWeight.wadl , http://eupathdb.org/eupathdb/w

|Entamoeba"disj|

Execute this step and go to Step 2 : WS Information

) / Step 2 : WS information

The previous step was:
|8: Step 1 : WADL information < |

Parameter type is:

| xsd:string ¢ | \

Parameter default value is:

| None/ ¢ |

Whether Parameter is Required or not?: Verify the WADL selected is the one chosen:

| hitp://eupathdb.org/eupathdb/websery ¢ |

;Eaise 2

» Step 1 : WADL information

(m Step 2 : WS information

Step 3 : Param information)

Input Parameters Select the method you want to invoke:

| genesbytextsearch ¢ |

| Add new Input Parameters \
L

: REST client1 Select the output format you want:
‘ﬂ‘ SOAP cllent ® http://eupathdb.org/webservices
Format convertors for Web /GeneQuestions/GenesByTextSearch.xm|
services (0] http://egpathdb‘org/webservices)
Workflows i \\ /GeneQuestions/GenesByTextSearch.json
% |
| Execute A

Figure 7: Three steps for using the Universal REST client

4.3. Web Service-Specific Client
Using the Minimal Change approach we add the Web Service Addition tool to Galaxy,

capable of dynamically registering Web service-specific clients as individual tools. This requires

21

parsing the given description document, creating a tool specific for invocation of the chosen Web
service operation and refreshing Galaxy’s toolbox without having to restart the server. To enable
dynamic addition of tools via the Galaxy GUI, we not only added a new Web Service Addition

tool, but also modified the Galaxy’s source code to add the toolbox refresh capability to Galaxy.

4.3.1. Refresh Capability

To enable adding tools dynamically to Galaxy, we incorporated in Galaxy the ability to
refresh and reload the toolbox without having to restart the server. This required additions to the
Galaxy source code to add the reloading of toolbox feature. This feature is provided as a part of
the Web service registration tool. Currently, it is not a password protected functionality and

anyone who has access to the tool can refresh and reload the toolbox through the GUI.

4.3.2. Web Service Addition Tool

To enable addition of REST clients dynamically via the Galaxy GUI, a Web service
addition tool is provided. It lets the user register a Web service client as a tool through the GUI.
Like the Universal REST client it works with REST Web services described using any of the
WADL, WSDL 2.0 or SAWADL documents. It asks for the user to choose one of the operations
specified in the description document and generates a client, tailored to that Web service
operation, as a tool in Galaxy. An overview of the interface of the tool is shown in Figure 8. A

detailed guide on the use of this tool can be found in Appendix B.

22

Step 1

Enter the Description document location:

[http://eupathdb.org/webservices/GeneQuJ
see tip below

\jg(ecutﬁ'\

€ TIP: Enter the url (of the REST Web service) description document of type WADL, WSDL 2.0, or SAWADL in the above box.

EXAMPLE: http://eupathdb.org/webservices/GeneQuestions/GenesByMolecularWeight.wadl,

http://eupathdb.org/eupathdb/webservices/GeneQuestions/GenesByTextSearch.wadl

\ Tools

Refresh
Add Web service tool

= Step 1 :Enter information
All the Web services come with a description document like WADL or WSDL document. Galaxy can read this information to create the tool. about tool

NOTE: Step 1 and Step 2 merely add this tool to Galaxy. After completing Step 2, to use the tool go to the Tools section on left and find
the tool under Web Service Tools and Web Service Workflow Tools.

For further assistance find samples of WADL, WSDL 2.0 and SAWADL below.

WADL : http://www.ebi.ac.uk/QuickGO/clients/QuickGO.wadl eb Service Tools
eb Service Workflow Tools

Step 2
a. The previous step was:
—— ENCODE Tools
|1: step 1/¢ |
Lift-Over
see tip below
Text Manipulation
b. Verify the tool chosen Is: Filter and Sort
| http://eupathdb.org/webservices/Genei ¢ | Join, Subtract and Group
see tip below Convert Formats
c. Select the function of the tool you would like to use: Extract Features
® genesbymolecularweight Fetch Sequences
see tip below Fetch Alignments
d. Further refine the tool function. Select an option based on your previous experience with the tool: Get Genomic Scores

@ http://eupathdb.org/webservices
/GeneQuestions/GenesByMolecularWeight.xml

U http://eupathdb.org/webservices
/GeneQuestions/GenesByMolecularWeight.json
see tip below

: Executef!

X

NOTE: After this step, your tool will be registered at two places. Choose the tool depending on the usage. |

Go to Tools on the left side of this screen. |

If you want to use the tool once use the tool under Web service tool.

Figure 8: Add Web service tool overview

4.3.3. Dynamically Generated Web Service-specific Clients

Though the Universal REST client lets the user invoke any REST Web service provided
its description document, it is not tailored to be specifically used for that Web service and hence
does not have an easy to use interface. Using the Minimal Change approach we can add Web
service-specific REST clients to Galaxy as individual tools. These tools are much easier to
understand and use. These clients can be added as tools in Galaxy dynamically through the GUI.
These tools take as input the values of the mandatory parameters for the invocation of the Web

service. Optionally, they can also take the rest of the parameters as input.

23

4.4. Workflow Support

Galaxy is popular for its easy-to-use workflow management system. The tools in Galaxy
can be incorporated in workflows which can be run on large sets of data, avoiding repetitive
analytical steps to be performed by the user. Also, Galaxy allows the users to share workflows
and histories with one another. Thus, it is important to make the Web service clients pluggable in
Galaxy workflows. To enable this we add special clients as tools to Galaxy which let the user
choose output from a previous step in the workflow as an input to a parameter. An in-detail

discussion of Web service support in Galaxy workflows can be found in the Chapter 5.

4.5. Semantic Extensions

To help the scientists understand the meaning of the Web service parameters we provide
support for REST services described using SAWADL. SAWADL allows for the input
parameters to be annotated with concepts from an ontology. If a SAWADL document is used for
describing the REST Web service, with each input parameter apart from its type and default
value the client also displays the comment, if any specified in the ontology, about the concept
annotating the parameter.

Also semantics are being leveraged for Web service discovery. A Web service discovery
tool integrated in Galaxy will help users find the Web services which they can then register into

Galaxy. Web service discovery support in Galaxy is discussed more in detail in section 7.2.1.

24

CHAPTER 5

WORKFLOWS

A workflow can be thought of as a series of computational steps executed one after
another. The field of bioinformatics is a major ground for the application of workflows, as here
step-by-step analysis of huge amounts of data is required, repetitively. Currently there exist a
number of Workflow Management Systems to help the biologists in creating and executing
workflows. Galaxy is one such Workflow Management System that works with tools installed on
Galaxy’s server. Some other Workflow Management Systems are BioExtract [29, 30], Taverna
[31], Kepler [32]. This chapter gives a brief overview of the workflows in Galaxy followed by

ways to incorporate Web services in them.

5.1. Workflows in Galaxy

Galaxy supports the creation and execution of workflows. It provides humerous tools for
analysis of large sets of data, for example tools to manipulate multiple alignments, compare
genomic annotations, compute length of and filter FASTA sequences [33]. As each step of
analysis is recorded in Galaxy’s history, scientists can reproduce an experiment as a workflow
from a saved history. Also Galaxy allows scientists to share their histories.

Two ways of generating workflows in Galaxy are either from scratch or from the history.
To create a workflow from scratch, the user can pick and drop tools from Galaxy’s toolbox on to

the Galaxy’s workflow canvas. These tools can then be connected by the user directing the

25

output of one into the input of another. A second way of creating workflows is from history. The
user can generate workflows from history by merely a click, and save the desired analyses as a

separate workflow.

5.2. Workflow Support in Web Service Tools

It is essential to make the Web service clients pluggable in Galaxy workflows. A user can
then form a workflow with multiple Web services or with a combination of Web services and
Galaxy tools.

Each Galaxy tool asks for some input values from the user before executing. The nature
of these inputs determines the tool’s capability to take part in workflows. If the inputs are
directly to be entered by the user or chosen from a set of constant values, then on the workflow
canvas the tool would not have an input slot and the output of no other tool would be able to be
fed to the input of this tool. If on the other hand, the tool is written in a way that allows the user
to choose the output of a previous step as an input while executing, the tool would show an input
slot on the workflow canvas and another tool’s output could be fed to this tool’s input (see
Appendix C).

To make the Web service clients easily pluggable in the Galaxy workflows they should
be built to accept outputs from previous steps as input parameters, and not just user entered
values. Thus, in the Minimal Change approach we add two types of tools to Galaxy. One that can
take input from a previous step and are workflow compatible; and a second for independent
invocation of Web services through Galaxy or for use as a first step in a workflow. The use of
the workflow compatible clients in Galaxy is further explained with the help of an example in

chapter 6.

26

CHAPTER 6

EVALUATION AND EXAMPLE WORKFLOW

To evaluate the extensions made to Galaxy we tested the Universal REST clients as well
as the Web service-specific clients with various REST Web services provided by EBI [3] and
EuPathDB [17]. Both EBI and EuPathDB host a wide ranging collection of Web services. For
testing with EuPathDB services we used the WADL documents available on their Web site, but
for EBI services we created the WADL documents from the documentation provided on their
Web site [17].

With the help of an example workflow, we show the significance and use of adding the
REST Web service extensions to Galaxy. Galaxy being a highly popular bioinformatics analysis
framework seemed like an ideal candidate for extension. Not only does it have an easily
learnable interface, many biologists are already familiar with the working of Galaxy’s tools and
workflow component, making it easier for them to learn our extensions. It provides various
analysis tools as well as workflow management capability. Moreover, Galaxy has not only made
its source code available publically, but also hosts community space to encourage developers to
build and share tools at http://usegalaxy.org/community.

The Web service-specific clients added provide an improved user experience over the
Universal REST client, as the interface of the Universal REST client is limited to the features of
a static tool in Galaxy. Apart from using information from the description documents of the Web

services, the system also utilizes the information from the semantic annotations of their

27

parameters. Overall it provides a usable and efficient way of combining Web services and other
bioinformatics analysis tools in workflows.

One drawback of the system is that it requires the users to know the location of the
description documents for the various Web services, and assumes that the service providers
provide good documentation of Web services. To eliminate this drawback a Web service
discovery tool needs to be integrated into Galaxy, capable of suggesting useful Web services.
Though lately, REST Web services are gaining popularity, SOAP is still the more established
and used standard. Thus, the system needs be extended for use with SOAP Web services as well.

An example workflow built in Galaxy, using the operations provided by the EBI REST
Web services is shown in Figure 9. This workflow demonstrates the ability to use Galaxy to
perform BLAST with a given sequence and compare the alignment regions of highly similar
sequences using ClustalW. The Web services used are WU-BLAST [35], dbfetch [36] and
ClustalWw2 [37]. The WADL documents for these Web services were created by us using the
information provided on the EBI Web site. The first method used is run WU-BLAST. Two of the
important input parameters of this method are the query sequence and the database to be
searched. Other parameters are specified as well. This method returns an identifier for the job
submitted to EBI. This job identifier is then fed to the getlds method that takes as input the job
identifier and returns an array of result entry 1Ds of the hits in the BLAST response output. Next
a tool that is already a part of Galaxy is used to convert the array to a comma delimited string,
which is then fed to the fetchBatch method of dbfetch at EBI. This method fetches a set of
entries in a defined format and style from a specified database. Next these entries serve as input
for the runClustalWw2 method, from ClustalW2 service at EBI, which submits a ClustalW2 job

and returns its identifier. This identifier is given to the poll method of the Clustalw2 Web

28

service which waits for the job to finish and then gets the specified type of result data generated

from the ClustalW job. The output of the poll method is converted into string format using a

Galaxy tool byte2string.

Tooks Workfiow Canvas |

arrayletring K
Choose (B inpet step

2 utpul (Cabular)

petlds B
Chipose the shen from
whidh Lo get the
perameter jobld

fetchBatch i
Chiooe the sbep from
mfch [0 gex The
seguenoe [D9

output (tabukyr

runWUBLAST H

output (babular]

Optiens ~

runclustalwl H

Chose the step from
which b gt the 5
parameter i

eastpul (abular

pall X
(hocesa the shep from
wihich o get the job

6 o

dutput Nabular

bytelsting
Choose the inpat Sep

? Output (rabeslar)

F

Tool: renWUBLAST

program Searce

User will enter the param va
Skt program ¥

blastp
emall Source

User will enter the param va

Entur small ¥

sequence Source
User will enter the param va

Enter sequente ¥

datatase Source

User willl enber the param va
Select database ¥

uniprotkh
Dizplay Aaditional Paramebers

PR T T
| -

Figure 9: A workflow in Galaxy; with tools 1, 2, 4, 5, 6 representing Web services at EBI and
tools 3 and 7 representing hypothetical Galaxy tools.

29

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This chapter presents the conclusion drawn from this work and discusses some future
work.

7.1. Conclusion

This thesis demonstrates a new way of extending Galaxy to support Web service
functionality by introducing the Minimal Change approach, apart from extending the Restricted
Tool Addition approach used by Shefali Shastri in her work [19].

We saw, that tools added via the Restricted Tool Addition approach are easy to maintain
across versions of Galaxy, but lack a user-friendly interface, whereas tools added via the
Minimal Change approach require changing the code base, but are much easier to use. The pros
and cons of both the approaches and technicalities of their implementation were also discussed.

By incorporating support for semantically annotated REST Web services in Galaxy, we
provide a skeleton of an expandable semantic Workflow Management System. In section 7.2 we

propose some ideas to leverage the semantic extensions added to Galaxy.

7.2. Future Work

The work done can be extended in a number of ways. Below are some suggestions to

further enhance the experience of biologists when connecting Galaxy to outside Web services.

30

Implementing these suggestions would require enhancing the current tools as well as adding new

tools to Galaxy.

7.2.1 Service Suggestion and Discovery

The current extensions to Galaxy support semantic annotations by allowing addition of
Web services described using SAWADL. Presently the semantic information is used only to
generate tips about the input parameters. A natural extension of this provision would be using
semantics to further enhance the user experience by incorporating service suggestion and
discovery features. This would require addition of new tools for Web service suggestion and
discovery. These tools would search for and suggest suitable Web services for an operation with
a set of annotated input and output parameters.

Guidelines for a suggested interface of this tool in Galaxy have already been laid. It is
called Lumina based on the original independent tool for Web service discovery provided by

LSDIS lab at UGA [22].

7.2.2 Data Mediation

Another way to leverage the support for semantics in Web service tools is by adding data
mediation functionality to Galaxy. A valuable contribution to the Web service tools would be the
use of data mediation techniques to convert output of a tool into compatible input of another.
These extensions would eliminate the need of any manual intervention for format conversion,

making it much easier for the users to create workflows involving Web services.

31

7.2.3 Dynamic SOAP Clients

Though, support for SOAP Web services was added to Galaxy by Rui Wang [28] using
the Maximal Functionality approach but, as discussed in section 3.2, these extensions cannot be
easily integrated in newer versions of Galaxy. Using the Minimal Change approach we have
presently added tools that enable only REST Web service support in Galaxy. However, the
modular implementation of the Web service addition tool makes it extensible for SOAP Web
services. The major difference being that instead of parsing a description document for REST
Web service (WADL, WSDL 2.0 or SAWADL) it will require parsing a document describing a
SOAP Web service (WSDL 1.1 or WSLD 2.0) to get the operation and parameter information.
This information can then be used in the same way as in the current Web service addition tool to

add SOAP Web service-specific clients as tools to Galaxy.

7.2.4 Delete Registered Services from GUI

The Minimal Change approach enables dynamic addition of tools via a GUI, a feature
that is not inherent in Galaxy originally. Following this approach we can provide features to
further enhance user experience like deleting Web service tools via the GUI. A user at some
point might want to delete some of the previously added tools. Currently this requires editing the
tool_conf.xml and restarting the server.

The refresh capability added to Galaxy in this project can be leveraged to provide support
for dynamic tool deletion from the GUI. This requires development of a mechanism to map the
tool name to its id, as Galaxy identifies the tools by their ids, but only the tool names are visible
to the users. Issues concerning concurrent access and possible security breaches also need to be

considered thoroughly.

32

10.

REFERENCES
Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko

A, Taylor J. "Galaxy: a web-based genome analysis tool for experimentalists”. Current
Protocols in Molecular Biology. 2010 Jan; Chapter 19: Unit 19.10.1-21.

Blankenberg D, Taylor J, Schenk I, He J, Zhang Y, Ghent M, Veeraraghavan N, Albert I,
Miller W, Makova K, Hardison RC, Nekrutenko A. "A framework for collaborative
analysis of ENCODE data: Making large-scale analyses biologist-friendly”. Genome
Research. 2007 Jun; 17(6):960-4.

European Bioinformatics Institute 2010, an outstation of the European Molecular Biology
Laboratory; information retrieved from http://www.ebi.ac.uk/.

DNA Data Bank of Japan; information retrieved from http://www.ddbj.nig.ac.jp/.

Kyoto Encyclopedia of Genes and Genomes, Kanehisa Laboratories; information
retrieved from http://www.genome.jp/kegg/.

National Center for Biotechnology Information, U.S. National Library of Medicine;
information retrieved from http://www.ncbi.nlm.nih.gov/.

Rodriguez-Tome, “The BioCatalog”, Bioinformatics, 14, pp. 469-470, 1998.

Fielding, Roy Thomas, “Architectural Styles and the Design of Network-based Software
Architectures.”, Doctoral dissertation, University of California, Irvine, 2000.

Galaxy PSU; information retrieved from http://galaxy.psu.edu/.

Web Services Architecture, W3C Working Group Note, D. Booth, H. Haas, F. McCabe,
E. Newcomer, M. Champion, C. Ferris, D. Orchard, 11 February 2004; available at

http://www.w3.org/TR/ws-arch/.

33

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Web Application Description Language, W3C Member Submission, Marc Hadley - Sun

Microsystems, Inc, 31 August 2009; available at http://www.w3.org/ Submission/wadl/.
M. J. Hadley. Web Application Description Language (WADL). Technical report, Sun
Microsystems, November 2006; available at https://wadl.dev.java.net/.

Web Services Description Language (WSDL) 1.1, W3C, E. Christensen, F. Curbera, G.
Meredith, and S. Weerawarana. 15 March 2002; available at
http://www.w3.0rg/TR/2001/NOTE-wsdl-20010315.

Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language, W3C,
R. Chinnici, J-J. Moreau, A. Ryman, S. Weerawarana, 26 June 2007; available at
http://www.w3.0rg/TR/2007/REC-wsdI20-20070626

SOAP Version 1.2 Part 1: Messaging Framework (Second Edition), W3C, M. Gudgin, et
al., 24 June 2003, revised 27 April 2007; available at http://www.w3.0rg/TR/2007/REC-
soapl2-part1-20070427/.

T. Berners-Lee, R. Fielding, L. Masinter. “Uniform Resource Identifiers (URI): Generic
Syntax”. IETF RFC 2396, August 1998.

ApiDB: integrated resources for the apicomplexan bioinformatics resource center. 2007
Jan;35(NAR Database issue):D427-30. Aurrecoechea C, et al.

ApiDB (EuPathDB). GenesByTextSearch Web service; available at http://eupathdb.org/
eupathdb/webservices/GeneQuestions/GenesByTextSearch.wadl.

Shefali Shastri. "Use of Semantics in Designing and Executing Scientific Workflows: A
Case Study Using Galaxy". Masters Thesis (M.S. in CS Degree) December 20009,
University Of Georgia.

Steve Menard. JPype homepage: http://jpype.sourceforge.net/.

34

21.

22.

23.

24,

25.

26.

217.

28.

29.

30.

Sean Bechhofer, Phillip Lord, Raphael Volz. “Cooking the Semantic Web with the OWL
API”. 2nd International Semantic Web Conference, ISWC, Sanibel Island, Florida,
October 2003. OWL API project homepage: http://owlapi.sourceforge.net/.

METEOR-S: Semantic Web Services and Processes, LSDIS and the University of
Georgia; information retrieved from http://Isdis.cs.uga.edu/projects/meteor-s/.

Apache Woden: A WSDL 2.0 parser and validator. Woden homepage:
http://ws.apache.org/woden/.

Jython project, homepage: http://www.jython.org/.

Mike Johnson, JEPP project, developed at Trinity Capital, homepage:
http://jepp.sourceforge.net/.

Andi Vajda, JCC project, homepage: http://pypi.python.org/pypi/JCC.

OWL Web Ontology Language Overview, W3C, Deborah L. McGuinness, Frank van
Harmelen, 10 February 2004; available at http://www.w3.org/TR/owl-features/.

Wang, R., D. Brewer, S. Shastri, S. Swayampakula, J. Miller, E. Kraemer and J.
Kissinger. “Adapting the Galaxy Bioinformatics Tool to Support Semantic Web Service
Composition”. IEEE SWF 2009, IEEE ICWS 2009.

Lushbough, C., M. Bergman, C. Lawrence, D. Jennewein and V. Brendel. (2008).
“BioExtract Server - An Integrated Workflow-enabling System to Access and Analyze
Heterogeneous, Distributed Biomolecular Data”. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 99 (1).

BioExtract workflows; information retrieved from http://bioextract.org/help/about

Workflows.html.

35

31.

32.

33.

34.

35.

36.

37.

38.

Oinn, T., M. Addis, J. Ferris, D. Marvin, M. Senger, T. Carver, M. Greenwood, K.
Glover, M. Pocock, A. Wipat and P. Li. (2004). “Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics”, 20 (7), 3045-3054.

Ludascher, B., I. Altintas, C. Berkley, D. Higgins, E. Jaegar, M. Jones, E. Lee, J. Tao and
Y. Zhao. (2006). “Scientific workflow management and the Kepler system.
CONCURRENCY AND COMPUTATION™, 18 (10), 1039-1065.

Galaxy public site; information retrieved from http://main.g2.bx.psu.edu/.

Galaxy Add Tool Tutorial; information retrieved from http://bitbucket.org/galaxy/galaxy-
central/wiki/AddToolTutorial.

European Bioinformatics Institute. (2009). WU-BLAST Web service; information
retrieved from http://www.ebi.ac.uk/Tools/webservices/services/sss/wu_blast_rest.
European Bioinformatics Institute. (2009). dbfetch Web service; information retrieved
http://lwww.ebi.ac.uk/Tools/webservices/services/dbfetch_rest.

European Bioinformatics Institute. (2009). ClustalW2 Web service; information retrieved
from http://www.ebi.ac.uk/Tools/webservices/services/msa/clustalw2_rest.

R. Battle and E. Benson, “Bridging the semantic Web and Web 2.0 with Representational

State Transfer (REST),” Web Semantics, vol. 6, 2008, pp. 61-69.

36

APPENDIX A

INSTALLATION GUIDE

This guide assumes that Galaxy is installed on the user’s system. If not, before going further
with the installation of Galaxy REST Web service extensions download and install a local instance of
Galaxy from http://bitbucket.org/galaxy/galaxy-dist/.

Prerequisites
i. JPYPE: Download and install JPYPE 0.5.4 from http://sourceforge.net/projects/jpype/files/.
ii. Python 2.6 : If not installed already, download and install Python 2.6 from
http://www.python.org/download/. The extensions require Python 2.6 to be the default

Python used by your Linux system.

iii. JRE: Download the appropriate Java for your system from the site :
http://www.java.com/en/download/manual.jsp.

Once downloaded and installed, set the environment variable JAVA_HOME to point to the

location of the installed version of Java, i.e., the directory containing bin and lib directories.

Say, you installed JRE6 under /usr/java/ on your Linux machine. Use command

export JAVA_HOME=/usr/java/JRE6

Set GALAXY_HOME:
If, your source code is at location /user/galaxy/. Set an environment variable
GALAXY_HOME to point to the location of the main Galaxy folder using the following command:

export GALAXY_HOME = /user/galaxy/

37

Universal REST client

Currently the support for the WADL, WSDL 2.0 and the SAWADL description documents

are provided in separate REST clients that can be added as independent tools. In the future they will

be provided as one REST client with support for all three specifications.

Download the tools:

All the universal clients can be found at http://cs.uga.edu/~guttula/ Galaxy/universalclients/.
Depending on your requirement download the tars for REST clients supporting SAWADL,
WADL, and WSDL 2.0 from the following links:

REST client for WADL - http://cs.uga.edu/~guttula/Galaxy/universalclients/WADL/.

REST client for SAWADL - http://cs.uga.edu/~guttula/Galaxy/universalclients/ SAWADL/.
REST client for WSDL - http://cs.uga.edu/~guttula/Galaxy/universalclients/WSDL/.

Unzip RESTclient:

Unzip the tars in the tools folder under the main Galaxy folder. This can be done as follows:
unzip ~/Downloads/ tarname —d GALAXY_HOME/tools/

This step should result in the tool folder to be present at GALAXY_HOME/tools/. So if you
are installing all three clients you should have the tools at
GALAXY_HOME/tools/WADLRESTClient/
GALAXY_HOME/toolssSAWADLRESTClient/
GALAXY_HOME/tools/WSDLRESTClient/

Modify tool_conf.xml:

Next step is to modify the tool_conf.xml file located at GALAXY_HOME. Add a section for
each REST Web Service extension. This can be done for all three clients in the same way as
shown below for the WADL client. Add the following lines after the last section tag is

closed, but inside the tool tag in the GALAXY_HOME /tool_conf.xml.

38

<section name="REST client for WADL" id="rClient">

<tool file=" WADLRESTClient /WADLRESTclientl.xml" />
<tool file=" WADLRESTClient /WADLRESTclient2.xml" />
<tool file=" WADLRESTClient /WADLRESTclient3.xml" />

</section>

The installation for the universal clients is complete. When the user starts the server three
new tools named REST client for WADL, REST client for SAWADL and REST client for WSDL

should be visible in the left tool panel as shown in Figure 10.

Analyze Data Workflow Data Libraries Help User

Tools | History 'Q

Get Genomic Scores s Hello world! It's running... '7
=

Operate on Genomic Intervals To customize this page edit static/welcone. htmil o

Statistics Unnamed history

Graph /Display Data 16: Step 2 : WS
16:Step 2 : WS

Reglonal Variation WWFSMD? Information on data 15

Multiple regression
grow noodly appendages.

Multivariate Analysis e ¥ 15: Step 1 : SAWADL
Evolution o e — information
Metagenomic analyses r— m * 13 Step 2 : WS
i D
EASTA manipulation - — information on data 12
NGS: QC and manipulation — —
NGS: Mapping = 12: Step 1: wADL
NGS: SAM Tools G - dom v Qrers. X ,| | Information
NGS: Peak Calling = I B RaTresh T a0l Bine
Rg Data =
Rg Simulate [B: Step 2 on data 7
Rg Visualise usegalaxy.org
Rg Model Data) I 7} Step 1
REST client for SAWADL 3 [6 Step2.on data s)
: Step

REST client for WSDL This project is supported in part by NSF, NHGRI, and the Huck Institutes of the Life Sciences. = ———
REST client for WADL l 5:Step1 ¢

k I 3: Refresh Tool Box 4

Izzste 2 on data 1 4

Workflows] I 1:Stepl 4

Figure 10: Galaxy toolbox with all the REST clients

39

REST Web service addition tool

Download the tool:

The REST Web service registration tool tar can be downloaded from
http://cs.uga.edu/~guttula/Galaxy/WebServiceTool/.

Unzip the tool:

Unzip the tar in the tools folder under the main Galaxy folder. This can be done as follows:
unzip ~/Downloads/ tarname —d GALAXY_HOME/tools/

This step should result in the “WebServiceTool” folder to be present under
GALAXY_HOME/ools/.

Modify Galaxy source code:

Two modules of Galaxy’s source code need to be edited. Lines highlighted in bold italics are
the code added to Galaxy’s existing code.

a. lib/galaxy/tools/__init__.py

The Class Tool contains an execute method; edit it by making changes highlighted in
italics, as shown in Table 1.

Table 1

def execute(self, trans, incoming={}, set_output_hid=True):

Execute the tool using parameter values in “incoming". This just dispatches to the
"ToolAction™ instance specified by ‘self.tool action’. In general this will create a "Job" that

when run will build the tool's outputs, e.g. "DefaultToolAction.

if self.id =='REFRESH_ID":

self.app.refreshToolBox()
return self.tool_action.execute(self,trans,incoming=incoming,set_output_hid=set_output_
hid)

40

b. lib/galaxy/app.py
Add a new method called refreshToolBox to Class UniverseApplication in app.py.
The method to be added is shown in Table 2, in italics:

Table 2

def refreshToolBox(self):

self.toolbox = tools.ToolBox(self.config.tool config, self.config.tool path, self)

Modify tool_conf.xml:
Next step is to modify the tool_conf.xml file located at GALAXY_HOME. Add a section for
the Web Service registration tool as shown below.
<section name = "Add Web service tool" id="RegisterWebServices">
<tool file = "WebServiceTool/WebServiceTooll.xml"/>
<tool file = "WebServiceTool/WebServiceTool2.xml"/>
</section>
Additional sections need to be added as placeholders for the clients that will be added using
the above tool as follows:
<section name = "Web Service Tools" id="WebServices">
</section>
<section name = "Web Service Workflow Tools™ id="WebServiceWorkflow">
</section>
NOTE: The above two sections should be added exactly as shown above, without any

changes.

41

The installation for the dynamic Web service addition tool is complete. When the user starts
the server three new sections named Add Web service tool, Web Service Tools and Web Service

Workflow Tools should be visible in the left tool panel as shown in Figure 11.

[@] Galaxy [x] services:dbfetch_re... € | [©] http://eup...ight.wadl € | [http://eup...ritywadl € | (0] Blast-Clustalw wor... € | [6] http://eu...ence.wadl € | [6] (Untitled) (%]
Analyze Data Workflow Data Libraries Help User

Tools ‘ History o
' It —

Raftash B Hello world! It's running... e

'Add Web service tool To customize this page edit static/welcome. html ou

el oL Unnamed history

Web Service Tools [N

Web Service Workflow Tools 16: Step 2 : WS <

Lumina tool WWFSMD? Information on data 157

Get Data grow noodly appendages... [
:Step1:
Send Data S—— =i 15: Step 1 : SAWADL <«
Information
ENCODE Tools =

[
i

Lift-Over . - - " 13: Step2 : WS <
Text Manipulation - . | information on data 12
Filter and Sort it 7 : |
Join, Subtract and Group g e i | ﬁw g
Convert Formats il | —

Extract Features b—— % I 9: Refresh Tool Box <

Fetch Sequences

Fetch Alignments 1 I 8: Step 2 on data 7 <

Get Genomic Scores usegalaxY'org 7 Step %
Operate on Genomic Intervals Seade L =

Statistics I 6: Step 2 on data 5 <

Graph/Display Data This project is supported in part by NSF, NHGRI, and the Huck Institutes of the Life Sciences.

Regional Varlation 5:Step 1 9
Muitiple regression I

pElniot L 3: Refresh Tool Box <
Multivariate Analysis e

Evolution I 2: Step 2 on data 1 <

Metagenomic analyses

EASTA manipulation [~] I 1:Step1 9
Done [

Figure 11: Galaxy toolbox with dynamic Web service extensions

42

APPENDIX B

USER’S GUIDE

This guide assumes that the user has installed the Galaxy REST Web Service extensions on
their system. For installation instructions check the Installation Guide in Appendix A. This
document is intended to be a step by step guide through the functionality of the Galaxy REST Web

Service clients added.

Universal Clients

Executing a REST Web service through the Universal REST client in Galaxy is a three step
process. On clicking the REST client link in the Tools menu three steps can be seen. These steps
have to be executed in order for the client to function properly. Figure 12 displays a screenshot of the
Galaxy interface for “Step 1: WADL information”. The tools added have been circled in red on the

left tool panel.

43

& Applications Places system 44 Sl [F) 81 [s OO0 sumedha [gff [, Thumay20,12:19
@ ‘Galaxy “MozillalFirerox 288
Fle Edit View History Delicious Bookmarks Iols Help

< v C > i Bl B [ntppiocainest:sosos MG B @)

| [&] Galaxy | + v

T,Galaxy Analyze Data = Workflow Data Libraries Help User

Tools History Options ~
................... — Step 1 : WADL information

Operate on Genomic Intervals .
Statistics Enter the WADL location:

Graph /Display Data [http ://eupathdb. org/webservices/GeneQun]

Unnamed history

3:Step 1 : WADL ®f R

Regional Variation @ Inf i
Multiple regression xecutey| armain
Multivariate Anil!sls

E— Input the URL of the WADL of the REST webservice to be called. e.g. http://eupathdb.org/webservices/GeneQuestions

- folecular! ad| , http://eupathdb.org/eupathdb/webservices/GeneQuest ByTextSearch.wadl

Metagenomic analyses

FASTA manipulation |_| | Execute this step and go to Step 2 : WS Information
NGS: QC and manipulation
NGS: Mapping

NGS: SAM Tools

NGS: Peak Calling

Rg Data

Rg Simulate

= Step 1 : WADL information
= Step 2 : WS information

SOAP client

Format convertors for Web
services =

Done w #
| ™ ganjoo@ganjoo:~/Des... || @) Galaxy - Moxzilla Firefox | 2 @

Figure 12: Step 1 of WADL REST client

Steps to follow:

I. Click on the first link “Step 1: WADL information” and enter the URL for the WADL,
WSDL 2.0 or SAWADL document describing the REST Web service. Execute this step.

ii. Now move onto Step 2 by clicking on the second link “Step 2: WS Information”. Here you
can see the result set generated by executing Step 1 selected as the first input. The # sign
before a label indicates that the field is just for user’s information, and the user is not required
to make any changes to it. Step 2 lets you choose the functionality offered by the Web service
that you want to invoke and the resource you want to execute the functionality on. Once all
the selections are made execute this step and go to Step 3. Figure 13 displays the interface of

Step 2 of REST client in Galaxy.

44

"," Applications Places System 4§ = @ O 81 °F m ‘o - - | .. m Sumedha |§| ‘b dﬂ E:u Thu May 20, 12:24
@ ‘Galaxy - Mozilla Firefox. DEE
File Edit View Higtory Delicious Bookmarks Tools Help

< v 2> E B [[httpiiocalhost:8080/ ~| [~ @)
| @) Galaxy |+ v

Analyze Data =~ Workflow

Data Libraries

Tools History Options ~
................... =l Step 2 : WS information
Operate on Genomic Intervals e
The previous step was:
i o e 3 . WA Il eatian | A Unnamed history
Graph /Display Data | 3: Step 1 : WADL information ¢ | ;
3:Step 1 : WADL @R
Regional Variation Verify the WADL selected Is the one chosen: e
Multiple regressi 5 - . —
ultlple regression | http://eupathdb.org/webservices/Genel & |
Multivariate Analysis
Evolution Select the method you want to invoke:
Metagenomic analyses | genesbymolecularweight % |
FASTA manipulation L
NGS: QC and manipulation Select the output format you want:
NGS: Mappin: @ http:/feupathdb.org/webservices
NGS: Mapping
/Genequest MolecularWeight.xm|
NGS: SAM Tools o] http:/feupathdb.org/webservices
NGS: Peak Callin /GeneQuestions/GenesByMolecularWeight.json
Rg Data —
Rg Simulate ‘@'ﬁ_‘
Rg Visualise
Rg Model Data L # ¢ For Your Information Only
REST client The first box is just for user's informatien. It just displays the previous step that was executed and the user should not make any
® Step 1 : WADL information selections here.
SteZWSmfnrmat\on The second box requires user to select the method he/she wants to invoke from the given WADL e.g.
genesbytextsearch genesbymolecularweight.
= Step 3 : Param information
REST clientl Next, the user should select the output he/she wants to work with. e.g. http://eupathdb.org/eupathdb/webservices/GeneQuestion:
- [GenesByTextSearch.xml, http://eupathdb.org/eupathdb/webservices/GeneQuest TextSearch.json.
SOAP client
Format convertors for Web After Executing this step, the user should go to Step 3 : Param Information
services -
Done B =] &
| ™ ganjec@ganjoo:~/Des... || (@) Galaxy - Mozlla Firefox || M ganjco@ganjoe:~/gala... | > @

Figure 13: Step 2 of WADL REST client

Now click on “Step 3: Param Information” to enter the parameter information.
Information about the 0™ inputs parameter is displayed automatically. The following
fields for Parameter O are displayed:

Choose Input Parameter O: This drop-down list displays the names of all parameters that
the Web service allows the user to specify. Select a parameter you wish to enter a value
for from this drop-down list.

Enter Parameter value: This is a text-box for the actual parameter value to be entered
into. Enter the input value corresponding to the parameter selected above.

Note: White spaces should be replaced with ** in the parameter value.

Apart from the above fields, additional information is displayed about the parameter to

help users in entering appropriate values.

45

Parameter Type is: This is to display the data type corresponding to the parameter
selected. User does not have to make any selections here. This is provided merely for
user’s information.

Parameter Default Value is: This is to display the default value of the selected
parameter. If no default value for the parameter is provided in the description document,
it displays “None” as the default value of the parameter.

#Whether Parameter is Required or not? : This either shows “true” or “false”, the default
being false. It displays “true” if the parameter selected is mandatory for invoking the
Web service.

The user can specify more parameters by clicking on the “Add new Input Parameters”
button. It would display all the fields described above for each of the parameter selected.
The above process can be repeated for all the input parameters of the Web service. Figure
14 shows Step 3 of the REST client.

Next, click on Execute to invoke the selected method of the REST Web service. The

output from the Web service is displayed.

46

Applications Places system 44 Sl g O A81°F 5]

-

Sumedha

@ gl [, humay 20,1225

Fle Edit View History Delicious Bookmarks Tools Help

< e
(o] Galaxy
~. Galaxy

28 (@] nttprocanost:soe0r

+

ata Workflow DataLibraries Help User

Tools

Operate on Genomic Intervals
Statistics

Graph/Display Data

Regional Variation

Multiple regression
Multivariate Analysis
Evolution

Metagenomic analyses
FASTA manipulation L
NGS: QC and manipulation
NGS: Mapping

NGS: SAM Tools

NGS: Peak Calling

Rg Data

Rg Simulate

Rg Visualise

Rg Model Data L
REST client

= Step1 : WADL information
= Step 2 : WS information

= Step 3 : Param information
REST clientl

SOAP client

Format convertors for Web
services —

Done

Step 3 : Param information

The previous step was:

4: Step 2 : WS infor.. on data 3/ ¢
Verify the output selected In the previous step was:
[http://eupathdb.org/webservices/Genel &]

Choose Input Parameter 0:
min_molecular_weight <

Enter Parameter value:

Parameter type is:

Parameter default value is:

her Parameter Is Required or not?:

Input Parameters

Add new Input Parameters L3

: For Your Information Only

History

V5]
Unnamed history

@R

4:Step2: WS
Information on data 3

@R

3:Step 1: WADL
Information

il

M ganjoo@ganjoo:~/Des...][@ Galaxy - Mozlla Firefox " L]

Figure 14: Step 3 of WADL REST client

47

Web Service-Specific Clients

add the Web Service Addition tool to Galaxy but also make changes in two modules of Galaxy’s

source code. This guide assumes that the user has the Web Service Addition tool installed and

The dynamic tool addition approach for invoking Web services requires users to not only

running on Galaxy before proceeding with this guide (Appendix A).

To use the Web service addition tool to register a REST Web service in Galaxy follow

the instructions below:

Go to Tools on the left sidebar of the Galaxy screen and find “Step 1: Enter information

about tool” under Add Web service tool. Enter the URL locating a WADL, WSDL 2.0 or
SAWADL description document for the REST Web service you want to register, see

Figure 15. Click on Execute and wait for the step to complete execution before going to

“Step 2: Verify Settings”.

Sumedha

‘; Applications Places System 4% - @ O 75 °F T iR - -!-

N ail B

Tue Jun 29, 19:23

@ ‘Galaxy MozIlla Firafox

SEE

Fle Edit View History Delicicus Bockmarks Tools Help

> i B B [E]nupmocanestsozo

< » v C

elED

“ﬁl

| (8] Galaxy |+

)ata Workflow

Data Libraries Help User

Tools
= Step 1
Refresh =

Enter the Description document location:
[http://eupathdb.org/webservices/Genequl

Add Web service tool

= Step 1 :Enter information
about tool

see tip below

n Step 2 :Verify Settings ‘ﬁl
xecuty

Web Service Tools B

\Web Service Workflow Tools |1} | @ Trp: Enter the url (of the REST Web service) description document of type WADL, WSDL 2.0, or SAWADL in the above box.

Lumina tool

Get Data EXAMPLE: http://eupathab.org/webservices/GeneQuest MolecularWeight wadl

Send Data http://eupathdb.org/eupathdb, ices/GeneQuesti ByTextSearch.wadl

ENCODE Tools

Lift-Over NOTE: Step 1 and Step 2 merely add this tool to Galaxy. After completing Step 2, to use the tool go to the Tools section on left and find

| the tool under Web Service Tools and Web Service Workflow Tools.
Text Manipulation

Filter and Sort

Join, Subtract and Group
Convert Formats

Extract Features

For further assistance find samples of WADL, WSDL 2.0 and SAWADL below.
WADL : http://www.ebi.ac.uk/QuickGOjclients/QuickGO.wadl

Fetch Sequences WsDL 2.0 :
Fetch Alignments SAWADL :

Get Genomic Scores

Operate on Genomic Intervals
Statistics

Graph/Display Data

Regional Variation

Multiple regression

All the Web services come with a description document like WADL or WSDL document. Galaxy can read this information to create the tool.

History Options

(18] &
Unnamed history

v

-

@ Your history is empty. Click 'Get
Data' on the left pane to start

Multivariate Analysis =
Done =} #
| & workflowclients - File B... | M ganjeo@ganjoo:~/Des... | @) Galaxy - Mozilla Firefox || (% client_10.xml {~/Deskt... | > @

Figure 15: Step 1 of Add Web service tool

48

il. Instep 2, fields “a” and “b” are for your information only. No changes are to be made to
them. Fields “c” and “d” let you refine the tool settings. Choose the functionality you
want to invoke and the resource you want to invoke it on. See an example usage in Figure

16. After executing step 2, go to “Step 3: Refresh Galaxy”.

Workflow Data Librarles Help User
Tools Histo Options +
— | | step2 ry pt
Refresh — ~ =
Add Web service tool a. The previous step was: V] U =
u d hist

= Step 1 :Enter information |1:Step1 2] nnamed history

‘EDDUt ‘“’D‘ see tip below p— Py
R b. Verify the tool chosen Is:
Web Service Tools | http://eupathdb.org/webservices/Genel |
Web Service Workflow Tools see tip below
Lumina tool

c. Select the function of the tool you would like to use:

Get Data ®
® genesbymolecularweight
Send Data see tip below
ENCODE Tool:
Wm d. Further refine the tool function. Select an option based on your previous experience with the tool:
Lift-Over

@ http:/feupathdb.org/webservices
/GeneQuestions/GenesByMolecularWeight.xml
O http://eupathdb.org/webservices

Text Manipulation
Filter and Sort

Join, Subtract and Group /GeneQuestions/GenesByMolecularWeight. json
Convert Formats see tip below
Extract Features ‘ml
Fetch Sequences —k-

Fetch Alignments

NOTE: After this step, your tool will be registered at two places. Choose the tocl depending on the usage.
Get Genomic Scores

Operate on Genomic Intervals Go to Tools en the left side of this screen.
Statistics If you want to use the tool once use the tool under Web service tool.

Graph /Display Data

If you want to use the tool in a workfiow use the tool under Web Service Workfiow tool.
Regional Variation

Multiple regression @ T1P: a. For your information only. The previous step that was executed is displayed. No action required.
Multivariate Analysis 10 TIP: b. Displays the Web service tool chosen in Step 1. No action required
Evolution 1

@ T1P: . Some tools have more than one function. It is important to select the appropriate function.
Metagenomic analyses One or more functions may be displayed here.

FASTA manipulation

NGS: QC and manipulation 1 TIP: d. Different tools have different options to refine the tool. This could be a choice of formats
e OF resources you want to search. Make selection based on your prior experience with the tool.
NGS: Mapping
NGS: SAM Tools Step 1 and Step 2 merely add this tool to Galaxy. after completing Step 2, to use the tool go to the Tools on the left of this screen and find the
NGS: Peak Callin tool under Web Service Tool and Web Service Workflow Tool.

NGS: Peak Calling

Rg Data
Rg Simulate

a

Figure 16: Step 2 of Add Web service tool

iii. Step 3 does not require any input from you and merely requires you to execute it to

refresh Galaxy’s toolbox.

Step 1 and 2 add the tool to Galaxy and Step 3 refreshes Galaxy to load the newly added

tool. The tool added should now be visible under “Web Service Tools” and “Web Service

Workflow Tools”. If not visible, click on the Galaxy icon on the top left of the screen.

49

For one-time invocation of a Web service use the tool added under “Web Service Tools”,
for use in workflows go to the tool added under “Web Service Workflow Tools”. Next we
explain the working of the tool added under “Web Service Tools” with the help of an example.
The REST Web service in the example is “genesbytextsearch” from EuPathDB, a WADL for
which can be found at http://eupathdb.org/eupathdb/webservices/GeneQuestions/
GenesByTextSearch.wadl.

On clicking on genesbytextsearch under Web Service Tools you will see an interface to
enter parameter values as shown in Figure 17. Only required parameters are displayed, with an
option to display the rest. Depending on the parameter either a drop-down or a text box is
available to let the user specify its value. At the bottom tool tips providing information like data
type about each parameter exist. On executing this tool the genesbytextsearch service is invoked

and the output is displayed.

"; Applications Places System 44 Sl @ O 72 °F m ‘g - -- Sumedha @I_El L‘Sﬂ E} Frijul 2. 06:48
@ 'Galaxy - Mozil|a Firefox HEE

Ele Edit View History Delicious Bookmarks Tools Help

{ v = ij E @ @| http://localhost:8080/ vl [-‘]v \]

M Gmail - Inbox - sumedha.coe... € | (9] Galaxy o+ ~
- Workflow Data Libraries Help
Tools | genesbytextsearch E] History Options ~
Refresh = - .
T Select text_search_organism: (V1] &=
Web Service Tools | Entamoeba dispar ¢ Unnamed history
= igenesbyt extsearchi Client for see tip below A I 60: Step 3 @0 R |5
E:;T:&?;’?j;ﬁeé;e:]’:g . Enter text_expression: “
5par:et;;ta.i\qvl\:l’ﬁDLParsar || [membrane] |59 Step2onaatass ® 7%
euPal see tip below .
/GenesByTextSearch.sawadl ISB' Step 1 ® 7%
Select text_fields:
» genesbytextsearch Client for = 57: Step 3 @ %
method: genesbytextsearch , | Gene product ° -
Web service: see tip below = I q
H p @
http://eupathdb.org/eupathdb . 56: Step 2 on data 55 g%
/webservices/GeneQuestions = Select whole_words:
/GenesByTextSearch.wadl | [no 2] - IM ® R
= genesbysimilarity Client for see tip below I 54: Step 3 ® %
method: genesbysimilarity ,
e Enter max_pvalue:
Web service: |53' Step 1 ® iR
http://eupathdb.org/eupathdb l,30 e
webservices/GeneQuestions
;Eenesaysm'(\lamty?waﬂl see tip below |52: Step 3 ® /R
Display Additional Parameters:
Web Service Workflow Tools - I 51: Step 2 @ JR
Delete Web services tool [no |
Lumina tool [Execute | | Isu: Step 3 @0 %
Get Data
Send Data |49: Step 1 @ § 8%
TIP: About text_search_organism: type is xsd:string, description from ontology is "Organism identifier”
ENCODE Tools o - -9 w o ? ¥ s |4a: Step 3 ® R
Lift-Over € TIP: About text_expression: type s xsd:string, description frem ontology Is "This term can be used for any free-form comments and
Text Manipulation annotations.” = |47: Step2 ondatad6 @ § % [
http://localhost:8080/tool_runner?tool_id=client_61 " f‘
| S [ganjeo@ganjoo:~/Des... | @) Galaxy - Mozilla Firefox || [Downloads - File Brow... | Bl @

Figure 17: genesbytextsearch [18] Web service-specific client in Galaxy

50

APPENDIX C

DEVELOPER’S GUIDE

This developer’s guide provides a brief overview of the work done to implement the
REST clients to support WADL, WSDL and SAWADL parsing. It is intended to aid developers
in understanding how the clients work with the larger aim of demonstrating how to further
enhance the Web service support and REST clients in Galaxy. It is assumed that the developer
has set up an instance of the Galaxy server and the Galaxy REST Web service extensions as
instructed in the Installation Guide. For further information a tutorial on adding tools to Galaxy

can be found at http://bitbucket.org/galaxy/galaxy-central/wiki/AddToolTutorial

Universal REST clients

If you have followed the instructions in the Installation Guide the environment variable
GALAXY_HOME of your system would point to the location of the main Galaxy folder. The
REST Web service extensions to Galaxy are added as tools to Galaxy. The various universal
clients added as tools to Galaxy now should be found at:
GALAXY_HOME/tools/WADLRESTClient/
GALAXY_HOME/toolssSAWADLRESTClient/

GALAXY_HOME/tools/WSDLRESTClient/

51

Hence, the source code for an added universal client, say WADL client can be found at

GALAXY_HOME/tools/ WADLRESTClient. This represents the root folder for the tool. For

each universal client under its root folder following files and folders can be found:

eXtended Markup Language (XML) files: Each XML file is used to describe the interface
for one step in the REST client. Every step is treated as a separate tool here. In our case
all REST clients have been implemented in three steps and thus, would have three XML
files. To learn about various tags used in Galaxy tool XML files refer to
http://bitbucket.org/galaxy/galaxy-central/wiki/ToolConfigSyntax.

Python (.py) files: The REST clients have been implemented so that each tool(step)
invokes Python code implemented in a separate Python (.py) file. Thus, we have three
Python files per client. The function and implementation of each is discussed later.

lib folder: Apart from the .py and .xml files, the REST client may contain a folder named
lib. This folder contains all jars and Java classes required by the clients for WADL,
WSDL 2.0 or SAWADL parsing.

Three universal REST clients are added: WADL REST client, WSDL 2.0 REST client,

SAWADL REST client. Below is a comparison of the three clients and some more details about

each.
Table 3: Comparison of WADL, WSDL and SAWADL REST clients

WADL REST client WSDL REST client SAWADL REST client
Description WADL WSDL 2.0 SAWADL
Language
Location GALAXY_HOME/tools/ | GALAXY_HOME/tools/ GALAXY_HOME/tools/

WADLrestClient/ WSDLrestClient/ SAWADLrestClient/
XML files 3 XML files: 3 XML files: 3 XML files:

1.WADLrestClientl.xml 1.WSDL2restClientl.xml [1.SAWADLrestClientl.xml
2.WADLrestClient2.xml [2.WSDL2restClient2.xml 2.SAWADLrestClient2.xml

52

3.WADLrestClient3.xml [3.WSDL2restClient3.xml 3.SAWADLrestClient3.xml

.py files 3 Python files: 3 Python files: 3 Python files:
1.WADLrestClientl.py 1.WSDL2restClientl.py [1.SAWADLrestClientl.py
2.WADLrestClient2.py 2.WSDLZ2restClient2.py 2.SAWADLrestClient2.py
3.WADLrestClient3.py 3.WSDL2restClient3.py 3.SAWADLrestClient3.py
Java classes/LSDIS WADL Parser Apache Woden Parser LSDIS SAWADL Parser,
jars in lib OWL-API

These REST Clients are universal clients that can invoke any REST Web service given a
description document for that Web service. All REST clients follow a three step process to
invoke any Web service. The Python modules and XML files for the WADL REST client is

described below.

WADL REST client
Note: All the Python modules in this client use WADL Parser made available by LSDIS
lab, UGA to parse the WADL file and obtain the required information at each step. The WADL

Parser is written in Java and is invoked from Python using JPype.

WADLrestClient1.xml

This XML file generates the interface in Galaxy for the first step of WADL REST client.
It generates a tool which lets the user either input the URL of the WADL describing the REST
Web service. This tool invokes WADLrestClientl.py, described below, on executing. Figure 18

shows the WADL restClientl.xml with an explanation of the various tags used.

53

<tool id="WADLTooll" name="Step 1">
<description>Step 1 of WADL REST client. Lets the user input the WADL url
and generates the method names on execution.
</description>

<command interpreter="python™>
#if Ssource.WADL_source="user" ¥WADLRESTclientl.py Ssource.url Soutput
#else ¥WADLRESTclientl.py Ssource.cachedUrl Soutput
#end if
</command>

Invokes WADLRESTclientl.py with the
——REST Web service url and the

output file as arguments

<inputs>
<conditional name="source">

<param name="WADL_source" type="select" label="WADL Source">
<option value="cached" selected="true">
WADL name will be taken from previous step
</option>
<option value="user">
User will enter the WADL url
</option>
</param>

Displays a drop-down list with two

3 options "WADL name will be taken
from previous step' and "User will
enter the WADL url"

<when value="user'">
<param format="text" size = "60" name = "url" type="text"
label="Enter the WADL location"/>

</when>

If the user has chosen to enter the
y url in the above displayed drop-down
“then a text-box is displayed for letting
the user type the url of the WADL.

<when value="cached">

<param name = "cachedUrl" type="data"

label="Choose the step from which to get the WADL location"/>
</when>

Otherwise, let the user choose

—— the step from which WADL url

is to be generated.

</conditional>
</inputs>

<outputs>
<data format="tabular" name="output" />

</outputs>

<help>
Input the URL of the WADL of the REST webservice to be called.e.g.
http://eupathdb.org/webservices/GeneQuestions/GenesByMolecularWeight.wadl ,
http://eupathdb.org/eupathdb/webservices/GeneQuestions/GenesByTextSearch.wadl

Execute this step and go to Step 2
</help>

Displays a section at the bottom of
the tool for a better understanding
about the working and usage of the
tool.

</tool>

Figure 18: Parts of WADLRESTClient1.xml

WADLrestClientl.py

This module is the first step in the WADL REST client. Depending on the client this tool

WADLrestClient2.xml

takes the URL of the file describing the Web service i.e, the WADL file as input. It parses the
WADL file to get the methods provided by the REST Web service. It then writes a local file

containing the operations of the Web service and the resources that support each operation.

This XML file generates the interface in Galaxy for the second step of WADL REST

54

client. It generates a tool which lets the user select the resource format and the method to invoke

from the previously specified REST Web service. The user is also supposed to verify that the
first select box shows the previous step to be Step 1 and the WADL selected is the one specified
in the previous step. This tool invokes WADLrestClient2.py, described below, on executing.
Figure 19 shows a part of WADLrestClient2.xml with an explanation of some of the important
tags used.

<tool id="WADLToo0l2" name="Step 2 ">
<description>
This tool is the Step 2 in WADL REST client. It lets the user choose the method and resource
and then generates appropriate parameter information on execution

</description>
<command interpreter="python">
WADLRESTclient2.py
Surl
Swadl
Swebservice
SresourceUrl param "url" is of type "data", ie
Soutput it displays the
</command> dataset that should be referred
<inputs> to generate the values for
<param name = "url" type="data" label="# The previous step was"/>) "select" params with data_ref as
<param name ="wadl" type ="select" data_ref="url" label ="Verify the WADL selected is the one chosen"> '"url"
<options from_dataset="url">
<column name="name" index ="0"/>
<column name="value" index ="0"/>
=filter type="unique_value" name="unique" column="0"/>
</options>
Sfparam> gets the method names from the
<param name = webservice" type ="select" data_ref="url" Iabel ="Select the method you want to invoke"= d ified i Nrd"
3 R ataset specified in param "url",
<options from_dataset="url">

<column name="name" index ="1"/>

<column name="value" index ="1"/>

=filter type="unique_value" name="uniquel" column="1"/>
</options>
/param>

and lets the user choose one

<param name ='"resourceUrl" display = "radio" type ="select" data_ref=""url" label ="Select the output format you want">
<options from_dataset="url">

<column name="name" index ="2"/>

<column name="value" index ="2"/>

=filter type="param_value' ref="webservice" name="resourceUri" column="1"/>
=filter type="unique_value" name="uniquel" column="2"/>

</options>

</param>
</inputs> A
<outputs> gets the output formats

<data format="tabular" name="output" /> (resources) from the dataset
</outputs> specified in param "url" and
<help> lets the user choose one

: For Your Information Only

The first box is just for user's information. It just displays the previous step that was executed and the user should not make any selections here.

The second box requires user to select the method he/she wants to invoke from the given WADL e.g. g bytextsearch,

bymolecularweight.

Figure 19: Parts of WADLRESTClient2.xml

WADLrestClient2.py

This module is the second step in the WADL REST client. It takes the WADL location,

the method and the resource selected by the user as input. It parses the WADL to obtain the

55

parameter information about the method selected. It then writes a local file containing all the
parameters, with information about their data type, default behavior and if they are required or

not.

WADLrestClient3.xml

This XML file generates the interface in Galaxy for the third step of WADL REST client.
It generates a tool which lets the user choose the parameters and enter their values. Also help is
provided by displaying the parameter type, default value and if the parameter is required or not.
Again the user is also supposed to verify that the first select box shows the previous step to be
Step 2 and the WADL selected is the one specified in the previous step.

On executing this tool invokes WADLrestClient3.py. Figure 20 shows a part of

WADLrestClient3.xml with an explanation of some significant tags used.

56

<inputs>
<param name = "params" type='data" label="# The previous step was'/> ;
............ 1 lines omitted

P displays a button that on

| <repeat name = "series" title= "Input Parameters''> I—}‘clicking adds params under
aram name = paramiName' type = select data_ref= params label= Gose Input Parameter name "repeat" tag

<options from_dataset="params"'>
<column name="name" index="0"/>

)a drop-down with a list of
<column name="value" index="0"/> all parameter names
</options>
"

text-box to enter parameter

<param name = "paramValues" format="text" type="text" value="0" label ="Enter Parameter value'/>
<param name ="paramType" type ="select” data_ref="params" label ="# Parameter type is"> value

<options from_dataset="params''>
<column name="name" index="1"/>
<column name="value" index="1"/>

displays the data type of the
\jparameter chosen in

=filter type="param_value" ref="paramName" name="paramTypeFilter" column="0"/> M B
</options>
L</param>
<param name ="paramDefaultVal" type ="select" data_ref="params" label ="# Parameter default value is"> displays the default value, if
<options from_dataset="params"'> ﬁ_ziven in WADL, of the

<column name="name" index="2"/>
<column name="value" index="2"/>
=filter type="param_value" ref="paramName" name="paramDefaultFilter" column="0"/>
</options>
</param>
<param name = paramKequired™ fype ="select” data_ref="params" [abel ="% Whether Parameter is Kequired or not?" =
<options from_dataset=""params'>
<column name="name" index="3"/>
<column name="value" index="3"/>
=filter type="param_value'" ref="paramName" name="paramReqFilter" column="0"/>
</options>
</param>
</repeat>

parameter chosen in
"paramName"

displays if the parameter
chosen in "paramName" is
required or not, if specified

in WADL

Figure 20: Parts of WADLRESTClient3.xml

WADLrestClient3.py

This module is the third step in the WADL REST client. In every parameter value passed
to this module a white space character is replaced by a double quote (**) character. In this
module this ** is replaced back by white space. Also it gets rid of any trailing or preceding white
spaces in the parameter values. Then it takes the parameter names and value pairs and creates a
dictionary of the type {parameter name: parameter value}. After URL encoding the dictionary,
the REST Web service is invoked by passing the resource URL and the parameter dictionary to
the urllib.urlopen method. The results obtained from invoking the service are written to a local

file.

57

WSDL REST client

WSDL REST Client is similar to WADL REST Client in its behavior and file structure.
The main difference in the two clients is that it invokes a REST Web service described using a
WSDL 2.0 document, instead of a WADL document. The Apache Woden parser is used to parse
the WSDL 2.0 document. In WADLrestClient1.py given the WADL URL all methods defined in
it were written to the output file, whereas here in WSDLrestClient1.py only services with HTTP
binding are written to the output file. Figure 21 shows an example of a part of a WSDL 2.0

document describing a service with a HTTP binding.

<wsdlbinding name=__" OrderHTTPBinding

tvp @_ wWWw.w3 .org-"ns.-"ws@D
interface=""tns:Booklnterface">

<wsdl:documentation>
</wsdl:documentation>
<wsdloperation ref="tns:makeOrder " whttpmethod="GET"/>
</wsdlbinding>
<wsdlservice name=" Order" interface="tnsBook Interface">

<wsdl:documentation>
The book order service.
</wsdl:documentation=>

address="http:’ - brary/orders/ "
</wsdl-endpoint>

</wsdlservice>

Figure 21: Example of HTTP binding in WSDL 2.0

58

SAWADL REST client

SAWADL REST client has the same file organization and naming conventions as the
WADL REST client. Instead of using a WADL for describing the REST Web service, this client
deals with semantically annotated services that are described using a SAWADL document.

The first two steps work exactly the same way as the WADL client’s, the only difference
being that the parser used here is the SAWADL Parser from the LSDIS lab, UGA, instead of the
WADL Parser. In Step 3, like the WADL REST client Step 3 the parameter names are displayed
in a drop-down list. The main difference in implementation is the introduction of the “Help”
feature, which requires user to select the “Display Help” option from the “Help” drop-down list
to show additional information about each parameter. The additional information also contains
information obtained from the annotation of the parameter. In SAWADLrestClient2.py for each
parameter the model reference attribute is checked in SAWADL. If the parameter is annotated
with a valid concept from an ontology, it reads the ontology and gets the “comment”, if any,
about the concept from the ontology. OWL-API is used for parsing of ontology and accessing the

comment attribute value of the concepts.

59

Web Service-specific clients

Galaxy does not support dynamic addition of tools by itself. To enable addition of Web

service clients as tools dynamically via the GUI, we follow an approach that requires minimal

changing of Galaxy source code and addition of an external tool.

The source code is changed to support reloading of the toolbox without restarting the

server, enabling refreshing of the “Tools” section in the left side panel of Galaxy GUI. This

requires changing two modules of the Galaxy source code.

lib/galaxy/app.py: app.py module defines a class named UniverseApplication. We add a
new method to this class called refreshToolBox. This method creates a new instance of
Toolbox given a tool_conf.xml file and its path and assigns it to the instance variable
toolbox of the current instance of UniverseApplication.

lib/galaxy/tools/__init__.py: One of the classes defined in this module is Tool. It
represents a tool that can be embedded in Galaxy. The method named execute defined in
the Tool class gets executed whenever a tool is executed through the GUI. We embed
code in this method to invoke refreshToolBox method on the instance of

UniverseApplication class whenever the tool with id REFRESH_ID is executed.

A summary of the changes to Galaxy source code is shown in Figure 22. These changes

incorporate the ability to refresh Galaxy toolbox without having to restart the server. We

leverage this feature to add the ability to add dynamic Web service clients as tools via GUI.

60

self.job_queue = self.job manager.job_gqueue

self.job_stop queue = self.job manager.job_stop_ gqueue

Start the cloud manager

self.cloud manager = cloud.CloudManager(self)

Track Store

self.track store = store.TrackStoreManager(self.config.track_ store_path)

def shutdown(self): Toos y —
self.job_manager.shutdown() UniverseApplication

if self.heartbeat: Class in app.py
self.heartbeat.shutdown()

IR

added by sumedha ganjoo,sganjoofuga.edu, line 86-90
def refreshToolBox(self):

self.toolbox = tools.ToolBox(self.config.tool config, self.config.tool path, self)

3322222320
def execute(self, trans, incoming={}, set_output hid=True):
Exect incoming . This Jjust

ute the tool using parameter values in
dispatches to the "Tool ified by
1 eate a Job that

DefaultToolAction .

FEEEEREEREENS Tool Class in
#add code to verify if user has administrative privileges __imit__.py
#added by '.“~dff ganjoo, sganjoofuga.edu: line 1104 to 1109 - to refresh toolbox
if self.id == 'REFRESH_ID':

self.app.refreshToolBox()
FREFFRERERES

return self.tool action.execute(self, trans, incoming=incoming, set_output hid=set output_hid

def params_to_strings(self, params, app):
return params_to_strings(self.inputs, params, app)

Figure 22: Changes to Galaxy source code

The Web Service Addition Tool has three steps. The first is described using
WebServiceTooll.xml. On executing step 1 WebServiceTooll.xml invokes
WebServiceTooll.py passing it the description document URL entered by the user.
WebServiceTooll.py checks whether the document is of type WADL, WSDL or SAWADL.
Depending on the document type it calls the method of class Document from getMethods.py.
This method parses the description document and outputs the method information from it. This
information is interpreted by the WebServiceTool2.xml enabling step 2 of the tool to let user

make selections to refine the tool functionality to be added. On executing step 2

61

WebServiceTool2.py is invoked which initializes an instance of ClientGenerator class from
generateClient.py and an instance of ClientGeneratorl class from generateClientl.py.
ClientGenerator and ClientGeneratorl classes define methods to create clients for WADL,
WSDL 2.0 and SAWADL, called wadIClient(), wsdIClient() and sawadIClient() respectively.
These methods in ClientGenerator parse the description document and create a client, in XML,
specific to the Web service method specified. This client invokes a specific REST Web service
with the values given for the required parameters. It can also optionally take values for other
parameters as input. Each input parameter of the Web service is either represented as a text-box
or a drop-down list. If the parameter has a list of options specified for the values it can assume, it
is represented with a drop-down list otherwise as a text-box. The default value is also read and
displayed in both the cases. This tool is added in the folder named clients and is displayed under
Web Service Tools in the GUI.

The methods of ClientGeneratorl also add a Web service-specific client, but under the
folder named workflowclients. These clients are displayed under Web Service Workflow Tools
in the GUI. The only difference being that this client can take the input for each parameter from
a previous file as well as from the user. Thus, this client can be used as a part of workflows in
Galaxy. After both the clients are generated, WebServiceTool2.py invokes edit_tool conf.py to
add to the tool _conf.xml file the location of the newly generated clients at appropriate places.
This enables Galaxy to recognize the newly added clients as Galaxy tools. The last step, Step 3,
reloads the toolbox, enabling Galaxy to identify the newly added tools without having to restart
the server. Figure 23 describes the working of the Web Service Addition Tool with the help of a

diagram.

62

lets the user enter the url
of the description document
(WADL/WSDL 2.0/SAWADL))

checks whether the description
document is a WADL, WSDL or
SAWADL, calls correspnding
method from getMethods.py

K
'
'
'

'

'
'
'
'
N

parses WADL, WSDL 2.0 or
SAWADL to get the method
information, writes it for the
WebServiceTool2.xml to read

WebServiceTool 1.xml

WebServiceTool 1.py

WebServiceTool2.xml |—>

WebServiceTool2.py

T
K
'
'
'

'

lets the user refine tool
options like method
selection

depending on the description
document being WADL, WSDL 2.0
or SAWADL invokes appropriate
method of generateClient.py and
generateClient1.py.

ﬁ.‘ getMethods.py |

adds Web specdific dient
as a tool under Web
Service Workflow Tools

s edits tool_conf.xml to
2 add newly added Web
Service Workflow Tool

edit_tool_conf.py |

/‘ generateClient.py '———%1
' \“| generateClient1.py l—}-l

B
'
'
'
1

adds Web specific dient
as a tool under Web
Service Tools

edit_tool_confl.py |

edits tool_conf.xml to
add newly added Web
Service Tool

Figure 23: Interaction of added files for Web service addition and invocation

63

