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Abstract

Multidimensional item response theory (MIRT) models or mixture IRT (MixIRT) models

are available for the multidimensional data analyses. The difference of these two IRT models

is a type of characteristics used to capture multidimensionality of data. Multidimension-

ality is explained based on the characteristics of items in MIRT models, while MixIRT

models explain multidimensionality as the characteristics of a group of examinees. Some-

times, however, the results of the MIRT or MixIRT models might not be enough to under-

stand multidimensionality of data because it is the results of interaction between examinees

and items. The purpose of this study is to propose a multidimensional and mixture random

item model (MMixRIM) as an alternative IRT model for multidimensional data analyses.

This proposed model is a combination of MIRT model, MixIRT model, and the random

item model, and can provide information about both examinees and items to understand

multidimensionality of data. One empirical study and one simulation study were conducted

to compare the performances of the multidimensional two-parameter logistic (M2PL) model,

two-parameter MixIRT (Mix2PL), and two-dimensional MMixRIM (2DMMixRIM) for the

multidimensional data analysis. Results of the empirical study indicated that 2DMMixRIM

detected some items that measure different latent trait between latent classes, whereas these



items measure the same latent traits based on the analysis by using the M2PL model. Fur-

ther, results of the simulation study suggested that the Mix2PL model and 2DMMixRIM

showed better performances than the M2PL model for the correct model selections based on

AIC, BIC, CAIC, AICC, and ABIC. On the other hand, recovery of item parameters and

class memberships estimated by the M2PL and Mix2PL models were better than MMixRIM.

Index words: Multidimensionality, multidimensional item response theory, mixture

item response theory, random item model
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Chapter 1

INTRODUCTION

In this chapter, the purpose of this study is outlined with a brief review of early research on

estimating the effects of multidimensionality on unidimensional IRT models. In addition, a

short discussion is presented about current models applied to analyze multidimensional data.

1.1 Statement of the Problem

Unidimensionality is one of the fundamental assumptions in item response theory (IRT; Lord,

1980; Lord & Novick, 1968). An important advantage of unidimensional IRT models is that

these models have relatively simple mathematical functions for describing the relationship

between persons’ characteristics and features of items. In actual educational or psycholog-

ical measurement situations, however, unidimensionality (i.e., a single person parameter) is

a strong assumption (Reckase, 2009). For example, in reality, students can use more than a

single ability, such as geometry and algebra, to solve a particular mathematics item; addi-

tionally, some items are specifically developed to measure abilities in both geometry and

algebra.

A number of studies have investigated the effects of violations of unidimensionality on

parameter estimation and have concluded that parameter estimation was somewhat robust

to violation of the unidimensionality assumption. Reckase (1979) applied the one- and three-

parameter unidimensional IRT models to analyze five sets of empirical multidimensional data

and five sets of simulation data. One simulation data set was simulated to be unidimensional

data, one set was simulated as two-factor data with a dominant first factor, and three data
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sets were estimated to have nine factors with different degrees of dependence between factors.

Reckase found that the ability estimates of one-parameter and three-parameter IRT models

were different when factors were independent, whereas both models estimated the first prin-

cipal component when factors were largely dependent. In particular, when the first factor

explained at least 20 percent of the variance, the unidimensional IRT model was acceptable

for multidimensional data.

Drasgow and Parsons (1983) conducted a simulation study to examine the effects of mul-

tidimensionality on the estimations of item and person parameters in the IRT calibration pro-

gram LOGIST (Wood, Wingersky, & Lord, 1976). This was accomplished by generating five

sets of item responses based on five different degrees of correlations between a general factor

and common factors. Drasgow and Parsons used the root mean squared differences (RMSDs)

for evaluating estimated item parameters and correlations between estimated ability param-

eters and factor scores as criteria for evaluation of parameter estimation. The results of that

research showed that the RMSDs for item discrimination and item difficulty increased as the

strength of the general factor decreased. Further, the correlations between estimated ability

parameters and factor scores decreased as the correlation between the general factor and the

common factors weakened. As in Reckase (1979), Drasgow and Parsons also concluded that

a unidimensional model was inappropriate when there was no sufficiently dominant factor.

Dorans and Kingston (1985) examined the effects of violation of unidimensionality on

the parameter estimates of items used for equating GRE verbal data. The GRE verbal

test consisted of reading comprehension items and discrete verbal items. These two parts

of the test measured two highly correlated but distinct abilities, verbal ability and reading

comprehension. Dorans and Kingston compared three sets of estimated ability and item

parameters. One set of parameters was estimated using only the reading comprehension

items, and the second set of estimated parameters was obtained from the discrete verbal

items on the test. The last set of estimated parameters was calibrated using both the reading

comprehension items and the discrete verbal items. The equated scales were compared to
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detect the effects of the violation of unidimensionality on the equating. The conclusion of

this research was that, although the results indicated the effect of multidimensionality on

the estimated item discriminations and equating, the effects appeared to be insignificant.

Harrison (1986) extended Drasgow and Parsons’ (1983) research to more complicated

simulation conditions: variations in test length, number of common factors, the distribution

of item loadings on common factors, and correlations between the general factor and common

factors. The RMSDs for the item parameter estimates from the computer program LOGIST

(Wood, Wingersky, & Lord, 1976), which uses joint maximum likelihood estimation, were

used as a criterion for evaluating the effect of multidimensionality. Harrison used RMSDs for

ability parameter estimates as well. Harrison concluded that the LOGIST parameter esti-

mates were robust to violations of unidimensionality and suggested increasing the number of

test items for each factor, increasing the number of common factors, and having an approx-

imately equal number of items for each common factor in order to improve estimation.

Kirisci, Hsu, and Yu (2001) investigated the sensitivity of computer programs, BILOG

(Mislevy & Bock, 1990), MULTILOG (Thissen, 1991), and XCALIBRE (Assessment Systems

Corporation, 1996), to the violation of unidimensionality and normality. These programs use

marginal maximum likelihood to estimate model parameters. The effects of multidimension-

ality were found to depend on not only the correlation between dimensions, but also the

estimation program. According to the results from this study, the estimated item and ability

parameters from BILOG had the smallest root mean squared error (RMSE), but the esti-

mated item difficulties from MULTILOG and the estimated item and ability parameters

from XCALIBRE were more consistent between replications.

These studies provided evidence of some degree of robustness to violations of unidimen-

sionality; however, these studies generally were limited in that a dominant factor existed in

the simulated data. The latent structure used in Dorans and Kingston (1985), for example,

was distinct but had highly correlated dimensions. Harrison (1986) used both moderately

and highly correlated latent structures (the range of the correlation between the general
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factor and common factors was .65 to .80 for the moderately correlated structure and .80

to .95 for the highly correlated structure). Kirisci et al. (2001) suggested the use of multidi-

mensional IRT models (MIRT) if the dimensions were weakly correlated (less than .4). This

leaves open the question of whether or not a dominant common factor may be required for

accurate parameter estimation of multidimensional data with unidimensional IRT models.

It is possible that the estimated parameters may be biased due to the misspecification of

a model when unidimensional IRT models are applied to multidimensional data. In such a

case, the estimated parameters from unidimensional IRT models for multidimensional data

would not accurately reflect the features of the data (Batley & Boss, 1993).

Reckase (2009) notes two types of multidimensionality: content-based multidimension-

ality and sample based multidimensionality. In many cases, researchers develop an assess-

ment based on a substantive theory. For example, a science assessment contains items to

measure multiple concepts, such as osmosis, filtration, and diffusion. In this case, MIRT

models could be used. MIRT models are mathematical functions used for describing a rela-

tionship between a person’s location in a multidimensional coordinate space and a probability

of a correct response. This relationship is mediated by a set of item parameters (Reckase,

2009). The set of item parameters represents the features of the test items and can be inter-

preted based on the theory of multiple concepts in the test. In this case, MIRT models would

provide information about item characteristics related to a multidimensional structure.

The second type of multidimensionality involves sample-specific characteristics rather

than a feature of the test (Reckase, 1990, 2009). Reckase (1990) classified the usage of the

term dimensionality in psychological and educational tests into two categories: psycholog-

ical dimensionality and statistical dimensionality. The psychological dimensionality is the

number of hypothesized constructs of a test. Thus, this is equivalent to the content-based

multidimensionality described above. The statistical dimensionality is the required minimum

number of mathematical variables to summarize an item response matrix. That is, the statis-

tical dimensionality is a property of a data matrix, not of the test or the examinee population.
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To be specific, it is possible the item response data will not meet the assumption of uni-

dimensionality, even though the test was designed to measure a single ability because of

the variability due to the particular sample of examinees. A variation of examinees may be

caused, for example, by differences in examinees’ backgrounds, differences in use of problem

solving strategies, or difference in stages of cognitive development. For this case, mixture IRT

(MixIRT; Mislevy & Verhelst, 1990; Rost, 1990) models might be more useful for modeling

multidimensionality.

MixIRT models are extensions of traditional IRT models. MixIRT models allow for a

heterogeneous population, which consists of unobserved subpopulations (Rost, 1990). Each

subpopulation is latent in the data, so it is referred to as a latent class. Each latent class is

characterized by a unique set of item parameters. Thus, multidimensionality can be under-

stood based on information about the characteristics of a group of examinees in MixIRT

models.

As mentioned above, multidimensionality also may be a sample-specific property. There

are various possible factors that cause the multidimensionality. For instance, differences in

teaching methods or differences in anxiety level of examinees may cause multidimensionality

in the data (Nandakumar, 1993). Item information from MIRT models or examinee infor-

mation from MixIRT models might not be sufficient to fully explain the multidimensional

structure. The combination of a MIRT model and a MixIRT model can provide simultaneous

information not only about items but also about persons (e.g., Choi & Wilson, 2015).

Both MIRT models and MixIRT models can be used as exploratory models. For example,

McKinley and Way (1992) applied the multidimensional three-parameter logistic model

(M3PL) to discover the best fitting model for the four sets of responses data to the 146

TOEFL items. Mislevy and Verhelst (1990) used a MixIRT model to describe differences in

solution strategies used by examinees taking a physics test. When MIRT or MixIRT models

are used for an exploratory purpose, researchers might face difficulties in defining latent

traits from MIRT models or latent classes from MixIRT models.
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Several explanatory IRT models have been developed to improve the interpretation of

results from exploratory analyses. The linear logistic test model (LLTM) is an explanatory

IRT model, which can incorporate item properties to explain the difference of item difficulties

across items (Wilson & De Boeck, 2004). For example, Kubinger (2009) provided some

applications of LLTM to estimate the item position effect, the speededness effect, and the

effect of item response format. Random item IRT models (RIMs; De Boeck, 2008) also have

been found to be more useful for explanatory analyses than traditional IRT models. This is

because RIMs treat both persons and items as random, while traditional IRT models treat

items as fixed and persons as random (De Boeck, 2008). Random item parameters are also

sometimes more realistic than fixed item parameters, because the effect of item properties

might differ across persons. In addition, these item properties might not perfectly explain the

differences of item parameters in LLTM (Cho, Gilbert, & Goodwin, 2015; Choi & Wilson,

2015; Jeon, Draney, & Wilson, 2015).

Recently, a number of studies have focused on incorporating RIMs to MIRT, MixIRT,

or multidimensional mixture IRT (MMixIRT) models. Frederickx, Tuerlinckx, De Bock, and

Magis (2010) introduced a random item mixture model for use in selection of a set of anchor

items for detecting differential item functioning (DIF). In that study, items were treated as

random. That is, items were treated as being randomly selected from a universe of items. De

Jong and Steenkamp (2010) described a finite mixture multilevel multidimensional ordinal

IRT model to assess measurement invariance across nations in a large scale cross-cultural

study. Instead of treating items as fixed within each subpopulation, as in traditional mixture

models, that model allowed item parameters to be assumed to have random distribution

within each subpopulation.

An explanatory multidimensional multilevel random item response model was proposed

by Cho, Gilbert, and Goodwin (2015). This model incorporated a multilevel structure for

the explanatory MIRT model to allow random item parameters at both item and item group

levels. Jeon, Draney, and Wilson (2015) proposed a general model as a combination of a linear
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logistic latent test model with an error term, a multidimensional Rasch model, and a saltus

model. Choi and Wilson (2015) extended the random weights linear logistic test model to

mixture modeling framework to identify latent classes that have different multidimensional

structures.

As described above, a number of studies introduced alternative approaches that extended

models to the random item framework. Few studies, however, considered an extension to

multidimensional mixture IRT models with random person and item parameters. Such an

extension could produce a model that might be more realistic and informative about multi-

dimensionality in item response data. Choi and Wilson’s (2015) proposed model, a mixture

generalization of the random weights linear logistic model, cannot be strictly considered as

a random item model because the random coefficients vary across persons within an item.

Thus, a mixture generalization of the random weights linear logistic model can be consid-

ered as a within items multidimensional mixture model. The model proposed by Jeon et al.

(2015), a general saltus LLTM-R, is a special case of an extension of the multidimensional

random-item mixture IRT model. The saltus model assumes that items within the same sub-

group of items have the same amount of differences of item difficulties between latent classes.

1.2 Purpose of the Study

In this study, an alternative model that combines the MIRT and the MixIRT model and

treats both persons and items as random (MMixRIM) is proposed for multidimensional data

analyses. The motivation for developing the MMixRIM is to provide useful information about

the structures of the multidimensionality that otherwise might not be evident in the usual

MIRT or MixIRT models. As described below, the MMixRIM provides information about

both persons and items to explain multidimensionality. The purpose of this study is (1) to

explore the performance of the MMixRIM for analysis of multidimensional item responses

data, and (2) to investigate the effects of a multidimensional structure on the estimation of
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model parameters. This model will be compared with the performance of both MIRT models

and MixIRT model under several conditions of dimensional structures.
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Chapter 2

THEORETICAL FRAMEWORK

This chapter begins with a discussion about the definition of the dimensionality of data. In

the following sections, several relevant models, MIRT models, MixIRT models, and RIMs,

are reviewed. A brief history, main features, and methodological issues for each model are

described. Additionally, the multidimensional mixture IRT model with random person and

random item parameters is described.

2.1 Dimensionality

The dimensionality of data, either unidimensionality or multidimensionality, is an essential

and commonly used term in psychological and educational measurement models. Never-

theless, the definition of dimensionality is varied, somewhat abstract and non-operational

(Hambleton & Rouvinelli, 1986). For example, one common definition of dimensionality is

the grouping of items on a test, such as “dimensions should exist when items on a test can be

grouped into homogeneous bundles” (Walker, Azen, & Schmitt, 2006, p. 722). Li, Jiao, and

Lissitz (2012) defined dimensionality as “the number of latent traits test developers would

like to extract from the test” (p. 3). In these examples, the dimensionality is considered as a

characteristic of a test and mainly based on some hypothesized psychological constructs. In

addition, Svetina and Levy (2014) defined dimensionality according to the modeling frame-

work. The dimensionality is the number of factors that “account for student performance

on a particular measure within a factor analytical framework [and] the number of latent
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variables is necessary to achieve local independence and monotonicity within an IRT frame-

work” (Svetina & Levy, 2014, p. 37). This definition of dimensionality is mainly based on

statistical characteristics of the data matrix.

As such, there are various definitions of dimensionality, and the dimensionality commonly

used is referred to as the characteristics of the test, such as a bundle of items which mea-

sures the same latent trait. As pointed out in several studies (Reckase, 1990, 2009; Svetina

& Levy, 2014; Walker, Azen, & Schmitt, 2006), however, this is a much simpler way of

defining dimensionality, because the dimensionality is caused by the interaction of items

and a sample of examinees. Furthermore, the ignored examinees’ characteristics may result

in fewer dimensions in the data and misinterpretations. Accordingly, a more technical and

realistic definition of dimensionality should be considered in multidimensional research.

Lord and Novick (1968) indicate that the complete latent space should have the same

conditional distribution of item scores for fixed latent traits for the population. Consequently,

the complete latent space includes not only psychological “important” latent traits that

affect examinees’ responses to the items, but also latent traits referred to as an “error of

measurement.” The dimensionality is the number of all latent traits of the complete latent

space.

The common factor model is traditionally used to define the dimensionality of a test.

The set of items is unidimensional if and only if one common factor model fits the data. The

common factor model, however, requires a strong assumption, known as local independence,

that items are entirely statistically independent, when the common factors are partialled out

as in the equation below:

P (UN = 1|Θ = θ) =
N∏
i=1

P (Ui|Θ = θ), (2.1)

where P (UN = 1|Θ = θ) is the conditional distribution, UN is random test responses for

a randomly selected examinee, Θ is a vector of the latent trait, θ is a particular value of

Θ, Ui is a randomly selected examinee’s response to i-th item, and N is the test length.
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McDonald (1981) suggested the definition of dimensionality with the weak assumption that

the conditional pair-wise covariances are zero, and nothing higher than the second order joint

moments is considered. This can be expressed as the following equation:

P (Ui, Uj|Θ = θ) = P (Ui|Θ = θ)P (Uj|Θ = θ). (2.2)

Unlike traditional dimensionality that counts all latent traits, Stout (1987, 1990) also

suggested a more relaxed definition of dimensionality called ‘essential dimensionality,’ with

a weaker condition of local independence, namely ‘essential independence.’ The ‘essential

dimensionality’ is the number of dominant latent traits required to satisfy the ‘essential

independence.’ The ‘essential independence’ can be expressed as below:

∑
1≤i̸=j≤N

cov(Ui, Uj|Θ = θ) ≈ 0,whenN → ∞. (2.3)

That is, the ‘essential independence’ is the condition that the average of conditional covari-

ances given any particular θ is close to zero as the test length N increases. On the contrary,

the traditional local dependence requires the condition that covariances for all pairs of items

for all θ must be zero.

As described above, dimensionality is the result of interaction between persons and

items. There are many possible factors that affect dimensionality. Moreover, the complete

latent space indicated by Lord and Novick (1968) may be too strong in real educational or

psychological measurement situations. Therefore, the definition of dimensionality based on

statistical characteristics of the data matrix, that is statistical dimensionality as defined by

Reckase (1990), with a weak assumption of local independence was adopted in this study. In

the following, four different measurement models that can be applied to multidimensional

data analysis are described in detail.

11



2.2 Multidimensional item response theory models

Two statistical methodologies can be considered as bases of MIRT. The one methodology is a

factor analysis (FA), and the other is IRT (Reckase, 1997a, 2009). MIRT can be considered as

a special case of FA in the perspective of the trying to define unobserved or latent traits and

scales by using a data matrix of responses to items. Although both FA and MIRT share many

similarities, the goal of each methodology differs. FA mainly focuses on the identifying the

structure of latent traits (i.e., factors) in a multidimensional space to reflect similarity among

the observed responses (Mulaik, 2010). Unlike FA’s main goal of a parsimonious explanation

of the data matrix, MIRT focuses on characteristics of items, such as item difficulty to model

the interactions between examinees and items (Reckase, 1997b, 2009).

McDonald (1967, 1997) demonstrated that the normal ogive model (Lord, 1952) is approx-

imately equivalent to the nonlinear common factor model; additionally he extended the uni-

dimensional normal ogive model to the multidimensional normal ogive model, called the

NOHARM (Normal-Ogive Harmonic Analysis Robust Method) model (Normal-Ogive Har-

monic Analysis Robust Method), by defining as following:

P (Ui = 1|θ) = N{βi0 + βi1θ1 + βi2θ2 + · · ·+ βikθk}, (2.4)

where Ui is a randomly selected examinee’s binary response, which is coded as 0 for incorrect

response and as 1 for correct response, to i-th item as before, P (Ui = 1|θ) is a conditional

probability of correct response, βi0 is the intercept of i-th item, βik is factor loading of i-th

item on k-th factor, θ is latent trait with k components (i.e., the number of dimensions is k),

it is assumed that θ is k-variate normally distributed with zero means and unity variances.

N{t} is the cumulative normal distribution function and is defined as below:

N{t} =
1√
2π

∫
−∞

exp

(
−z2

2

)
dz. (2.5)
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The other foundational methodology of MIRT is IRT. MIRT can be considered as a

multidimensional extension of IRT to model the relation between examinees’ responses and

a set of items of a test with relaxed assumption that allows multidimensional latent traits

measured by a test. Rasch (1961) mentioned about the possibility of application of his model

to a higher dimension (i.e., multidimensionality), and Samejima (1974) also proposed the

two-parameter normal ogive model in the multidimensional latent space for the continuous

responses. McKinley and Reckase (1982) investigated Rasch’s (1961) generalized Rasch model

and concluded that the reduced vector and product term model was the most capable model

in realistic multidimensional data. Later, they proposed the multidimensional two-parameter

logistic (M2PL) model which is given as

P (Ui = 1|θ1, θ2, . . . , θk, ai1, ai2, . . . , aik, di)

=
exp(ai1θ1 + ai2θ2 + · · ·+ aikθk + di)

1 + exp(ai1θ1 + ai2θ2 + · · ·+ aikθk + di)
,

(2.6)

where Ui is the same as defined above, θ1, θ2, . . . , θk represent k latent traits, ai1, ai2, . . . , aik

are item discrimination parameters of i-th item for k latent traits, and di is a intercept

parameter of i-th item. This equation also can be simply expressed by using a 1×k vector

of latent traits,Θ, and a 1×k vector of item discrimination parameters, ai, as following:

P (Ui = 1|Θ,ai, di) =
exp(ai

′
Θ+ di)

1 + exp(ai
′Θ+ di)

, (2.7)

In Equation 2.6, ai1, ai2, . . . , aik are equal to item discrimination parameters in a two-

parameter logistic IRT model; however, di is not equivalent to item difficulty parameter in a

usual IRT model. Instead, the negative of di divided by item slope parameter (− d
ak
) for each

dimension means the relative item difficulty. For instance, suppose that (1) two-dimensional

data is used, (2) estimated item slope parameters of a specific item for two dimensions are

a1 = 1.2 and a2 = 0.3, and (3) the estimated item intercept parameter of the item is d = 1.0.

The probability of a correct item response is .5 when 1.2θ1+0.3θ2+1.0 = 0, and this can be

represented by a linear line as shown in Figure 2.1. If θ1 is zero, the probability of a correct
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Figure 2.1: Line represented .5 probability of correct response for item with a1 = 1.2, a2 = 0.3,
and d = 1.0.

response of this item is .5 when a2θ2 + d equals zero. That is, 0.3θ2 + 1.0 = 0. Thus, the

probability of a correct item response is .5 when θ1 = 0 and θ2 = − d
a2

= −1.0
0.3

∼= −3.33, and

θ2 = − d
a2

is a relative item difficulty related to the second dimension. Similarly, θ1 = − d
a1

=

−1.0
1.2

∼= −.83 has a .5 probability of a correct response of this item when θ2 is zero. These two

relative item difficulties of this item are intercepts of two axes in Figure 2.1. For the same

interpretation as the item difficulty in a regular IRT model, the distance from the origin to

the line that represents a .5 probability of correct responses is used. The distance is called

MDIFF, and it can be calculated with the following equation:

MDIFF = − di√∑k
v=1 a

2
iv

, (2.8)

where the denominator (
√∑k

v=1 a
2
iv) is called MDISC.

In the M2PL model, the probability of a correct response is affected by a weighted

linear function of latent traits (i.e., a′
iΘ), and this reflects a compensatory relationship. In a
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compensatory model, a lack of a specific ability can be compensated for by other abilities. For

example, if several cognitive strategies are required to solve a mathematics item, one highly

developed strategy (or ability, e.g., making a table) may be able to compensate for a less well-

developed strategy ability (e.g., drawing). In contrast, in some situations, a compensatory

relationship might not be possible. For example, the lack of mathematics ability typically

cannot be compensated for by a high reading ability for solving a mathematics test item.

In this case, a non-compensatory model may be more appropriate. Sympson’s (1978) model

andWhitely’s (1981) multicomponent latent trait model (MLTM) can be considered partially

compensatory models. The MLTM is given by the following equation:

P (Ui = 1|θ1, θ2, . . . , θk) =
k∏

v=1

exp(θv − biv)

1 + exp(θv − biv)
, (2.9)

where Ui is a dichotomous response to i-th item (0 or 1), θ1, θ2, · · · , θk are k latent traits,

and bi1, bi2, . . . , bik are the component-specific difficulty parameters of i-th item. In MLTM,

the probability of correct response is a product of probability of being successful on one

component (i.e., latent trait) of the item.

The decision of whether to use a compensatory model or a partially compensatory model

would depend on a researcher’s hypothesis about the test and the item(s) in question.

Partially compensatory models may be more appropriate than compensatory models in

some cases; however, partially compensatory models require a large enough variability in

difficulty to accurately estimate the component-specific difficulty parameters (Bolt & Lall,

2003). For this reason, this study focused on only compensatory models.

2.3 Mixture item response theory models

Basically, the traditional IRT models require three assumptions, which are (1) unidimen-

sionality, (2) local independence, and (3) monotonicity, to guarantee the accurate estimation
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of parameters. Realistically, however, these assumptions may not always hold. For instance,

the relationship between the ability and the item differs for different groups of examinees

for several reasons, such as differential use of cognitive strategies, cultural background, or

educational experiences. Thus, the item responses may depend not only on ability but also

on other latent traits. In these cases, the unidimensional assumption might be violated, and

alternative IRT models may be required.

MixIRT models are combination models of the latent class analysis (LCA) and IRT

models. As the name implies, LCA considers latent categorical variables. In LCA, the pop-

ulation consists of unobserved subpopulations, also called latent classes, that is, a hetero-

geneous population. Additionally, the probability of individual responses is a function of

the probability of membership in each latent class, and the probabilities of each observed

response is conditional on latent class membership (Collins & Lanza, 2010).

Although the LCA is flexible with respect to a homogeneous population assumption,

there is another strong requirement that all examinees in the same latent class must have

the same response probabilities. In other words, all examinees’ abilities are equal within a

latent class. Rost (1990) described a mixture Rasch model which combines the LCA and

Rasch models.

Based on features of the LCA and IRT models, the main features of the MixIRT model are

that the population is heterogeneous and that it allows different sets of item parameters for

each subpopulation or latent class, while the IRT model holds only one set of item parameters

for an entire population. Thus, examinees can be characterized by not only a latent ability

but also different item parameters between latent classes (Cohen & Bolt, 2005). The mixture

Rasch model (MRM; Rost, 1990) is defined as follows:

P (uij = 1) =
G∑

g=1

πg × P (uij = 1|g, θjg) =
G∑

g=1

πg

1 + exp(−θjg + big)
, (2.10)

where uij is the response to the i-th item of the j-th examinee who belongs to latent class g;

θjg is the latent ability of the j-th examinee within in latent class g; πg is the probability of
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membership in latent class g with the constraint that

∑G

g=1 πg = 1, big is the item difficulty

of i-th item in latent class g, and P (uij = 1|g, θj) indicates the conditional probability of a

correct response to the i-th item given an ability θjg and latent class membership g.

In MixIRT modeling, interpreting and defining the qualitative differences between latent

classes may be difficult because of their exploratory nature. Furthermore, a large sample

size is required to get accurate estimate results (Smit, Kelderman, & van der Flier, 1999).

Because latent classes are permitted to hold different sets of item parameters in MixIRT

models, larger numbers of parameters than those present in a traditional IRT model will

need to be estimated. For example, 10 item difficulties are estimated when the Rasch model

is applied to the analysis of a test with 10 dichotomous items, while the number of item

parameters is doubled, when the two-class MRM is used for the same test data (i.e., 10 item

parameters for each latent class). In addition, the number of estimated item parameters

increases as the number of latent classes increases. For these issues in MixIRT models, some

additional information would be helpful to improve the interpretation of the results and the

accuracy of parameter estimations.

Mislevy and Verhelst (1990) extended the linear logistic test model (LLTM; Fischer,

1973) to the mixture model. In the LLTM, information about the characteristics of items

based on the substantive theory is used to model the relationship between an examinee’s

ability and items as the following equation:

P (ui = 1|θj, b′i) =
exp(θj − b′i)

1 + exp(θj − b′i)
, (2.11)

Equation 2.11 is exactly equal to the Rasch model, but differs in that item difficulty, b′i,

is a linear combination of item characteristics and is defined as follows:

b′i =

Q∑
q=1

wiqbq, (2.12)

where wiq(q = 1, . . . , Q) indicates the exhibition of the q-th item characteristics of the i-th

item characteristics. That is, this can be considered as an element of a Q-matrix, which is a

17



matrix that indicates which attributes are measured by each item by coding 0 or 1, and bq

indicates the contribution of the q-th item characteristics to item difficulty. Thus, LLTM is

an explanatory IRT model. Similar to MRM, the marginal probability of the correct response

of the j-th examinee to the i-th item in the mixture LLTM model is given by

P (uij = 1) =
G∑

g=1

πg × P (uij = 1|g, θjg) =
G∑

g=1

πg

1 + exp(−θjg +
∑Q

q=1wiqbqg)
, (2.13)

where bqg are class-specific item characteristics coefficients. By adding auxiliary variables

about item characteristics, the features of the latent classes would be more easily inter-

preted. In addition to this, the estimation of parameters can improve by using a more par-

simonious model that includes certain constraints based on pre-hypotheses concerning item

characteristics.

Smit et al. (1999, 2000) incorporated collateral information in the MRM and the mixed

Birnbaum model to reduce the standard error of parameter estimation and improve latent

class classification. Item responses, uj, were assumed to be associated with the latent traits,

thetaj and the latent class, gj, and the dichotomous collateral variable to be associated with

the latent class variable. From these assumptions, the joint probability can be expressed as

follows:

Puj ,gj ,yj ,θj = Puj |gj ,yj ,θjPθj |gj ,yjPgj ,yj = Puj |gj ,θjPθjPgj ,yj , (2.14)

where uj is a vector of item responses for the j-th examinee, gj is a latent class membership

for the j-th, yj is a binary group indicator for the j-th examinee, and θj is a latent trait for

the the j-th examinee.

Dai (2013) included the manifest group indicator, such as a gender, in MRM as dichoto-

mous predictor. In his model, the probability of membership in latent class g, πg, is modeled

as a logistic regression model with the a group indicator in the following equation:

Logit(πjg) = β0g + β1gyj, (2.15)
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where πjg is a j-th examinee’s probability of belonging to latent class g, β0g and β1g are

regression coefficients, and yj is a binary group indicator for the j-th examinee.

Based on the previous studies, incorporating auxiliary variables, whether they are asso-

ciated with persons or items is helpful for improving parameter estimation, latent class

classification, and interpretation of qualitative differences between latent classes in MixIRT

models. One issue related to auxiliary variables might arise in that auxiliary variables may

have either fixed effects or random effects. For example, one can assume the effect of persons

is the same for all persons. Similarly, one can assume that the effect of items is the same for

all items. In such a case, the effect of persons or items can be treated as a fixed effect. On

the other hand, all persons (or items) within a group might not have the same differences

to persons (or items) in other groups. In this case, the effect of an auxiliary variable can

be treated as a random effect. Moreover, the effect of the person property may differ over

items or the effect of item property may differ over persons. This would be considered a

person-by-item property. This type of property is considered in DIF analyses. The following

section focuses on random item models, and the issue of incorporating auxiliary variables.

2.4 Random item models

In general, estimation of IRT models has treated items as fixed and persons as random

samples from the population. This type of model can be called a ’random person and fixed

item model’. In this model, person parameters (i.e., ability) are commonly integrated out

by being considered a random component, and then, the item parameters are estimated

independently. After the estimation of the item parameters, the ability parameters are esti-

mated based on the estimated item parameters in the previous step. In many educational

and psychological measurement situations, however, the main interest is the measurement

of persons’ latent traits and items are selected from item banks to measure specific latent
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traits. Thus, it is more appropriate to consider items as random, such as a person treated as

a random component.

De Boeck (2008) investigated, “why items may be considered random some of the time?”

The first reason is that, as was described above, the items are from some pre-existing item

pool. When this is considered an item population, then items are considered as randomly

sampled from this item population. The second reason concerns the measurement uncer-

tainty about the parameters. In Bayesian estimation, measurement uncertainty is quantified

by using a probability distribution of unknown parameters. A prior distribution with an

unknown variance can reduce this uncertainty.

In addition to these two theoretical reasons, a more practical reason is that IRT models

commonly estimate item parameters and an ability distribution using the marginal maximum

likelihood method, although the educational or psychological measurement has been inter-

ested in the estimation of a person’s latent trait. Moreover, the generalization over persons

is available based on the estimated ability distribution, but the generalization over items

is unavailable with the estimated fixed item parameters. Thus, treating items as random

components provides a possibility for the generalization over items.

The second reason is about explanation of item parameters. When item parameters are

estimated as fixed components, it is assumed that item parameters are constants with no

variation. However, an item parameter with a possible variation is both theoretically and

logically preferable to a fixed item parameter. This can be accomplished by treating an item

parameter as random across persons. Janssen, Schepers, and Peres’ (2004) random effect

LLTM (LLTM-R) and Rijmen and De Boeck’s (2002) random weights LLTM (RWLLTM)

are applications of random item models for this issue. Janssen et al. (2004) added random

item variation to the LLTM. The item parameters in that model are random across items

within the item group. Rijmen and De Boeck (2002) allowed interactions between item

parameters and persons, so that item parameters are random across persons.
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The third issue is with respect to DIF analysis. A group of items assumed to be non-

DIF items is needed to serve as an anchor for detection of DIF, and the results of DIF

analysis depend on the quality of anchor items. In this case, the random item approach may

be an alternative to the fixed item approach. Frederickx et al. (2010) applied random item

modeling to the mixture model for detecting DIF. Most studies used MixIRT models to

classify examinees into latent classes, whereas Frederickx et al. (2010) used a mixture model

to classify items, and the groups of examinees are manifest. To be specific, Frederickx et

al. (2010) assumed that the item difficulties were random effects with a two-class normal

mixture distribution. One class referred to the DIF class and the other class to the non-DIF

class. In this way, the items of the non-DIF class can be used as anchor items.

Fox (2010) added more practical advantages of random item modeling. The number of

parameters in a random item IRT (RIM) model is smaller than the number of parameters in

a regular IRT model, because the RIM will estimate only two distributions, for the ability

and the item, respectively. Additionally, it is possible to handle a hierarchical item structure,

such as testlet items or item clusters, in a RIM.

Van den Noortgate, De Boeck, and Meulders (2003) treated both persons and items as

random in an IRT model and called it a cross-classification multilevel logistic model. They

reformulated the Rasch model to a hierarchical two-level logistic model. The hierarchical two-

level logistic model treats item responses as repeated measurements nested within persons

as shown in Figure 2.2. This model is equivalent to the general IRT model with a fixed item

and random person.

Unlike a general IRT model, however, a cross-classification two-level logistic model treats

item responses as repeated measurements nested within both persons and items as shown in

Figure 2.3. This model is an IRT model with random items and persons. The first level of

the cross-classification two-level logistic model is given by

Logit(pij) = β0j + β1j, (2.16)
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Figure 2.2: Data structure for hierarchical two-level logistic model with random person
effects. Adapted from “Cross-classification multilevel logistic models in psychometrics,” by
W. Van den Noortgate, P. De Boeck, and M. Meulders, 2003, Journal of Educational and
Behavioral Statistics, 28, p. 370. Copyright 2003 by the American Educational Research
Association.

where pij is a probability of the correct response of the j-th examinee to the i-th item, β0j is

equivalent to the j-th examinee’s ability, and β1j is the item easiness of the i-th item. The

second level of this model can be expressed with the following equations:

β0j = u0j, (2.17)

β1j = γ0 + u1i, (2.18)

where u0j is the random effect of person j, and u1j is the random effect of item i. These

two random components are assumed to follow normal distributions with zero means. That

is, u0j ∼ N(0, σ2
u0
) with u1i ∼ N(0, σ2

u1
). γ0 is the mean logit and can be regarded as the

mean of item easiness of the item pool. Some auxiliary variables associated with either items

or persons can be added as covariates at the second level to improve the explanation of

variations in item or ability parameters.

Similar to the cross-classification two-level logistic model in Van den Noortgate et al.

(2003), the random item Rasch model can be written as follows:

Logit(pij) = θj − βi, (2.19)
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Figure 2.3: Data structure for cross-classified two-level model. Adapted from “Cross-
classification multilevel logistic models in psychometrics”, by W. Van den Noortgate, P.
De Boeck, and M. Meulders, 2003, Journal of Educational and Behavioral Statistics, 28, p.
370. Copyright 2003 by the American Educational Research Association.

where θj is the j-th person’s ability with θj ∼ N(0, σ2
θ) and βi is the item difficulty of the i-th

with βi ∼ N(µβ, σ
2
β). The difference between the random item Rasch model and a general

Rasch model is that the item difficulty has a subscript i to characterize the random sample

from the item pool.

Wang (2011) used an extension of MixIRT combined with random item modeling, called

the mixture cross-classified item response model (cc-MMixIRTM) to study test speediness.

Persons and items were treated as random components, so that covariates related to persons

and items could be incorporated in the model. The cc-MMixIRTM with covariates can be

expressed in the multilevel framework. The level-1 model is given as

Logit(pij) = θjg + βig. (2.20)

Equation 2.20 is equivalent to the conditional probability of a correct response to the

i-th item given an ability θj and latent class membership g in Equation 2.10. The random

components related to persons and items are specified in the level-2 model as follows:
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θjg ∼ N(µθjg , σ
2
1), (2.21)

µθjg = γ0g +
X∑

x=1

γxXj, (2.22)

βig ∼ N(µβig
, σ2

2), (2.23)

µβig
= λ0g +

Y∑
y=1

λyYi. (2.24)

The person and item covariates of the j-th person and the i-th item are Xj and Yi,

respectively, γ0g is the mean of ability of persons within the latent class g when the effect

of person covariate is zero, and λ0gis the mean of item parameters for the latent class g

when the effect of item covariate is zero. Wang (2011) showed that cc-MMixIRT with person

and item covariates had smaller bias and RMSE of the estimated item parameters for the

non-speed group compared to the unconditional model.

A multidimensional extension of the RIM was applied to analyze multilevel structure data

by Cho et al. (2013). Similar to a cross-classification two-level logistic model, the first level

was an item response level. The second level was the persons level. Additionally, item-groups

were added as the third level in the multidimensional multilevel random item response model

(MMRIRM) to handle the dependency of items within the same item group (as illustrated

in Figure 2.4). The explanatory MMRIRM with person covariates, item covariates, as well

as person by item covariates was applied to analyze three dimensional reading data. Cho et

al. (2013) concluded that the additional covariates did not improve the estimation of item

and person parameters, because of the multidimensional residual for the persons and items.

Instead, the effect of covariates depended on the set of covariates.

As described in the previous sections, some studies have incorporated several approaches

in IRT models, such as application of random item modeling to the MixIRT model, MIRT

models, or multidimensional extensions of MixIRT models. Although these applications have

shown improvement in estimating parameters and understanding results and data, there
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Figure 2.4: Data structure for multidimensional three-level random item response model.

has been little application for understanding of the multidimensionality of the data. Each

framework provides specific information based on the statistical features of the approach for

multidimensional analysis. In the following section, a multidimensional mixture random item

model (MMixRIM), which is combined the MIRT, the MixIRT, and the RIM, is described

in detail.

2.5 Multidimensional mixture random item models

The motivation behind proposing a multidimensional mixture random item model (MMixRIM)

for multidimensional data analysis is to provide information associated with persons and

items and to improve understanding of multidimensionality of the data. A little study pro-

posed multidimensional mixture random item model. Jeon et al. (2015) developed a general

Saltus LLTM-R model and provide an application of this model to a cognitive assessment
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of deductive reasoning in children. A general Saltus LLTM-R model is a combination of a

random effect LLTM, a between items MIRT, and a Saltus model, and is defined as follows:

P (ui(k)j = 1|θjk) =
G∑

gk=1

πgk × P (ui(k)j = 1|gk, θjkg)

=
G∑

gk=1

πgk

1 + exp(−θjkg +
∑Q

q=0 xiqbq − εi −
∑H

h=1 τkghwih)
,

(2.25)

where πgk is the probability of membership in latent class gk in dimension k; θjkg is the

latent ability in dimension k of the j-th examinee in latent class g. xiq indicates the q-th

item property of the i-th item; bq is the effect of the q-th item property; εi is a random

error and follows N(0, σ2). These three terms came from a random effect LLTM. The last

two terms, τkgh and wih, reflect a Saltus model, which is a special MRM model to define

qualitative differences between latent classes by an effect of item groups called a shift or

saltus parameter. τkgh is the shift parameter for the effect of item group h for latent class g

in dimension k; and wih indicates item group of the i-th item. Jeon et al. (2015) compared

the results of the mixture LLTM, unidimensional salute LLTM-R, and two-dimension saltus

LLTM-R using the data from the test of deductive reasoning, and concluded that their

proposed model can be useful to analyze when an educational or psychological test is well

designed based on substantive theory.

In this dissertation, multidimensionality refers to statistical dimensionality, which is a

characteristic of the data matrix; it is not theoretical dimensionality, which is a characteristic

of the test based on theoretical assumptions. Because of the sample-specific characteristics of

dimensionality, several factors should be considered for multidimensional data analysis. The

main features of the MMixRIM proposed in this section are (1) compensatory nature, (2)

between items and within items multidimensionality, (3) mixture distribution of population,

and (4) crossed random variation.

The first feature is a compensatory nature. As described previously, there are two possible

multidimensional data situations based on how latent traits interact to response to test items
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(De Ayala, 2009). One possible situation is a compensatory situation, the other is a non-

compensatory situation. In a compensatory situation, higher latent traits are assumed to

compensate for relatively lower latent traits. On the other hand, some higher latent traits

cannot compensate for other lower latent traits. In the MMixRIM, multidimensional latent

traits are defined as a weighted linear function, reflecting compensatory multidimensionality.

The second feature is related to the structure of latent dimensions. There are two types of

multidimensional data: one is between-items multidimensionality, the other is within-items

multidimensionality (Adams, Wilson, & Wang, 1997). The between-items multidimension-

ality means that a test consists of subsets of items that measure one latent trait; within-items

multidimensionality means that each item in a test measures several latent traits. These two

types of multidimensionality are shown in Figure 2.5. For instance, Item 2 in the case of

a between-items multidimensionality measures only Dimension 1, while the Item 2 in the

case of a within items multidimensionality measures both Dimension 1 and Dimension 2.

The between items multidimensionality has a simple structure, and two types of simple

structures are considered. One type is exact simple structure and the other is approximately

simple structure. For exact simple structure, only one item discrimination for each item is

nonzero and the rest of the item discriminations should be zero. On the other hand, for

approximately simple structure, all item discriminations for items can be nonzero, and one

item discriminations is dominantly large number, and the rest of item discriminations are

relatively small numbers. For example, the item discriminations of Item 1 in Figure 2.5 (a)

should be (a11, a12, a13 )=(1, 0, 0) in the case of exact simple structure. The item discrimi-

nations of the same item might be (a11, a12, a13)=(1.8, .3, .1) in the case of approximately

simple structure. Although exact simple structure is very clear to illustrate between-items

multidimensionality, it is unusual in practical situation. This study focuses on both the

between-items and within-items multidimensionality with approximately simple structure to

reflect a more realistic structure of multidimensionality.
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Figure 2.5: Two types of multidimensionality. Adapted from “The multidimensional random
coefficients multinomial logit model”, by R. J. Adams, M. Wilson, and W. -C, Wang, 1997,
Applied Psychological Measurement, 21, p. 9. Copyright 1997 by the Sage Publications.

The third feature of the MMixRIM is that it assumes a mixture distribution of the

population as multidimensionality could be caused by latent subpopulations. For example,

students in different achievement levels would use different abilities to solve the same item,

even though the item was developed to measure one ability. Therefore, the responses of stu-

dents in different achievement levels would be shown to better fit in the multidimensional

model than in the unidimensional model. By assuming the mixture distribution of popula-

tion, the information associated with a person’s latent traits can be provided to understand

multidimensional data.

The crossed random variation is the fourth feature of the MMixRIM. As described in the

previous section, there are several benefits of random item modeling, although treating items
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as random in IRT is uncommon. In this study, the person as well as the item is treated as

random, that is, the variation of the data is combined with the random item variation and

random person variation. The several models explained in this chapter and the MMixRIM

are compared based on the features in Table 2.1.

Table 2.1: Overview of Model Characteristics

Models Population Item Ability Dimension

LCA Mixture F F U

IRT Homo F R U

M2PL (McKenley & Reckase, 1983) Homo F R M

Random item IRT (De Boeck, 2008) Homo R R U

LLTM (Fischer, 1973) Homo F R U

LLTM-R (Janssen et al., 2004) Homo R R U

RWLLTM (Rijmen & De Boeck, 2002) Homo F R M

MRM (Rost, 1990) Mixture F R U

MixLLTM (Mislevy & Verhelst,1990) Mixture F R U

MixRWLLTM (Choi & Wilson, 2015) Mixture F R M

cc-MMixIRTM (Wang, 2011) Mixture R R U

general saltus LLTM-R (Jeon et al., 2015) Mixture R R M

MMixRIM Mixture R R M

Note.Homo = Homogeneous; F = Fixed; R = Random; U = Unidimensional; M =
Multidimensional.

To specify a MMixRIM, first, the M2PL is extended into the MixIRT context as follows:

P (uij = 1) =
G∑

g=1

πg × P (uij = 1|θjg,aig, dig, g), (2.26)

where P (uij=1|θjg,aig, dig, g) is a conditional probability of the j-th examinee within latent

class g giving a correct response to the the i-th item, and the πg is the probability of
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membership in latent class g. P (uij=1|θjg,aig, dig, g) is equivalent to M2PL, described in

Equation 2.7 in the previous section, and the only difference is that item parameters and

person parameters are subscripted to indicate the latent class as shown in the following

equation:

P (uij = 1|θjg,aig, dig, g) =
exp(aig

′
θjg + dig)

1 + exp(aig
′θjg + dig)

, (2.27)

where θjg is a vector of ability with K dimensions, θjg = θj1g,θj2g, . . . ,θjKg)
′, aig is a

vector of item discriminations for latent class g,aig = (ai1g, . . . , aiKg)
′, and dig is an intercept

parameter for latent class g.

Next, Equation 2.26 is extended into the random item context by regarding both items

and persons treated as random. To be specific, a vector of ability follows a multivariate normal

distribution; a vector of item discriminations also follows a multivariate normal distribution;

and an intercept parameter follows a normal distribution as follows:

θjg ∼ MVN



µθ1g

...

µθka

 ,Σθg

 , (2.28)

aikg ∼ N
(
µaikg , σ

2
aikg

)
, (2.29)

dig ∼ N
(
µdg , σ

2
dg

)
. (2.30)

To overcome the difficulties in defining the qualitative differences between latent classes

and in interpreting multidimensional latent traits, the external factors are incorporated.

As explained in the previous section, one motivation of random item modeling is that this

framework more easily and realistically incorporates covariates than does fixed item mod-

eling. External item factors, Yiy, is added to explain the intercept parameter, dig, the external

person factors, Xjx, is incorporated to explain the probability of latent class membership,

πg, and these external factors are treated as fixed effects as follows:
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µdg = d0g +
Y∑

y=1

dygYiy, (2.31)

logit(πjg) = λ0g +
X∑

x=1

λxgXix. (2.32)

Thus, d0g is the mean of class specific intercept parameters for the latent class g when

the values of all external item factors are zero, and dyg are the class-specific effects of item

factor. Similarly, λ0g is the class-specific intercept when the values of all external person

factors are zero, and λxg is the effect of the external person factors on the probability of the

j-th examinee’s membership in the latent class g.
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Chapter 3

METHODS

The purposes of the study were (1) to investigate the utility of MMixRIM, for providing

information related to persons and items in the context of multidimensionality in item

response data; and (2) to compare the performance of MMixRIM with the performance of

MIRT and MixIRT models in the context of different multidimensional structures. In this

chapter, details related to the model specification and estimation of MixRIM are described.

3.1 Model specification and estimation

MMixRIM is a multidimensional extension of the MixIRT model with crossed random varia-

tion (i.e., random persons and random items). There are several computer programs for esti-

mating MIRT models or MixIRT models, including TESTFACT (Bock, Schilling, Muraki,

Wilson, & Wood, 2003) for MIRT and WinMIRA (von Davier, 2001) for MixIRT. There are

limits, however, to estimating IRT models with crossed random based on maximum likeli-

hood estimation (MLE) because of the difficulty of MLE in integrals of a highly dimensional

distribution. Moreover, the measurement uncertainty that derives from the nature of random

items can easily handle prior distribution with unknown parameters (i.e., mean and variance

of a prior distribution) in the Bayesian approach.

In this study, Bayesian estimation using a Markov chain Monte Carlo (MCMC) algorithm

is implemented in the OpenBUGS computer software (Spiegelhalter, Thomas, Best, & Lunn,

2007). Drawing statistically consistent samples from a distribution is necessary to effectively

create a simulation. Even such a simple function cannot be integrated without numerical
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methods, while integrals or summations are vital for calculating the expectation or expected

values of distributions. An MCMC algorithm provides an answer to the difficult problem of

simulation from a highly dimensional distribution (Gamerman & Lopes, 2006). The basic

concept of an MCMC algorithm is that a large number of samples are obtained from a

stationary distribution, which yields the desired posterior distribution of interest.

In Bayesian estimation, prior distributions for parameters need to be specified. Although

there is flexibility in prior distribution of parameters, this study follows prior distributions

that are commonly used. For a MMixRIM, the prior distributions of parameters include the

latent class membership, g; the probability of latent class membership, πg; the multidimen-

sional abilities in a latent class g, θjg; the slope parameter of an item i on a dimension k in

a latent class g, aikg; the intercept parameter of item of an item i in a latent class g, dig, and

latent class-specific means and variances for these parameters as follows:

g ∼ Multinomial (1, (π1, . . . , πG)) , (g = 1, . . . , G) , (3.1)

(π1, . . . , πG) ∼ Dirichlet (.5, . . . , .5) , (3.2)

θjg ∼ MVN



µθ1g

...

µθka

 ,Σθg

 , (j = 1, . . . , N, k = 1, . . . , K, g = 1, . . . , G) , (3.3)

aijk ∼ N
(
µakg , σ

2
akg

)
and aijk > 0, (i = 1, · · · , n, k = 1, · · · , K, g = 1, · · · , G) , (3.4)

aijk =

 1 if i = k

0 if i ̸= k
, (i = 1, . . . , K, k = 1, . . . , K, g = 1, . . . , G) , (3.5)

µakg ∼ N (0, 1) and µakg > 0, (k = 1, . . . , K, g = i, . . . , G) , (3.6)

σ2
akg

∼ Inverse− Gamma (1, 1) , (g = i, . . . , G) , (3.7)

dig ∼ N
(
µdg , σ

2
dg

)
, (i = 1, . . . , N, g = i, . . . , G) , (3.8)

dig = 0, (i = 1, . . . , K, g = 1, . . . , G) , (3.9)

µdg ∼ N (0, 1) , (g = i, . . . , G) , (3.10)
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σ2
dg ∼ Gamma (1, 1) , (g = i, . . . , G) . (3.11)

A noninformative prior, Equation 3.2, is specified for the probability of latent class mem-

bership (e.g., Choi & Wilson, 2015; Li, Cohen, Kim, & Cho, 2009). Because of the metric

indeterminacy problem in IRT, it is necessary to fix a specific metric in order to be able to

compare latent classes (Choi, 2014). Choi (2014) found item anchoring to be more effective

than either person centering or item centering in MixIRT models. In this study, for the metric

indeterminacy, the mean of ability parameters in Equation 3.3 were fixed at zero for each

dimension and latent class, and the variance and covariance matrix sets as identify matrix.

As shown in Equation 3.4, the item discriminations are generally expected to be positive

values. According to Béguin and Glas (2001), a normal distribution with zero mean for item

discriminations led to better performance than when the mean of the prior distribution was

larger than zero. For the simulation study, normal hyper priors for the item discriminations

were assumed with means of zero as shown in Equation 3.6.

Equations 3.5 and 3.9 are the constraints used to solve the rotational indeterminacy

problem. Two types of approaches are used for the rotational indeterminacy problem. One

approach is that that aik is zero when i = 1, . . . , K − 1, and k = i+1, . . . , K. This approach

is used in NOHARM (Fraser, 1988) and BMIRT (Yao, 2003). The other approach suggested

by Béguin and Glas (2001) is that aik is fixed to one if i = k. In addition to this constraint,

aik is fixed to zero if i . . . k, and di is also fixed to zero when i = 1, . . . , K. In this study, the

later approach was applied to solve the rotational indeterminacy problem as in Béguin and

Glas (2001) and Kang (2006), because this approach results in the positivity of the item

slope parameters.

3.2 Monitoring convergence

An MCMC algorithm is convenient and flexible for fitting complicated statistical models,

however, it is difficult to answer the question, at “what point is it reasonable to believe that
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the samples are truly representative of the underlying stationary distribution of the Markov

chain?” (Cowles & Carlin, 1996, p. 883). Sahlin (2011) has noted that an MCMC algorithm is

commonly initiated at a random point, when uninformative prior distributions of parameters

are applied. This starting point might or might not be located far from the high density

region of the posterior distribution. Consequently, the sample values at the beginning of the

simulation might not be close to the true distribution. These invalid samples at the beginning

of the simulation are not a big problem, because these initial parts of the chain, which are

known as the burn-in period, can be discarded. Determining the numbers of iterations for

the burn-in and post-burn-in period, however, is critical so as to minimize the effects of the

burn-in period on the samples from the converged part of the chain.

A number of methods for checking convergence have been proposed, such as Brooks,

Gelman, and Rubin’s (1992) method, Heidelberger and Welch’s (1983) method, Raftery-

Lewis’ (1992) method, and Geweke’s (1992) method. Brooks, Gelman, and Rubin’s (1992)

method is for monitoring convergence of multiple chains, and other three methods are appro-

priate to monitor convergence of a single chain. These methods are available in the R package

CODA (Plummer, Best, Cowles, & Vines, 2006). Heidelberger and Welch’s (1983) conver-

gence diagnostic is one popular method. This method assesses the stationary of a single

chain. The first step is to assess the stationarity of the initial check-point, the first 10% of a

chain. If it passes the stationarity test, the whole chain is applied for the second step. If it

fails the stationarity test, this initial check-point is discarded and an additional 10% of the

chain is tested until it passes. The procedure is continued until the 10% of chain passes the

stationarity test or more than 50% of the chain has been discarded. In the second step, the

confidence interval of for the mean of each estimated parameter is generated and tested to

determine whether this confidence interval meets a specific accuracy criterion. This step is

called the halfwidth test.

In addition to these methods, graphical methods are also a simple way to check con-

vergence of a chain. OpenBUGS provides several kinds of plots for diagnostic convergence,
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such as trace plots and autocorrelations. A trace plot is a time series plot that shows the

horizontal pattern of sampled parameters across all iterations to be monitored. A stable

pattern in the trace plot implies convergence of a chain. A plot of autocorrelations between

sampled parameters is another graphical method for checking convergence. High autocor-

relations imply a slow convergence, and vice versa. Therefore, if autocorrelations approach

zero, the chain can be considered as converged.

A third approach is to examine the Monte Carlo (MC) error for each parameter. When

the MC error is less than about 5% of the standard deviation for parameters drawn during

the post-burn-in period, the chain is considered to have converged for the parameter. In

this study, the percentage of the items that pass Heidelberger and Welch’s stationarity test

for each replication was used to monitor convergence of the chain. Additionally, the MC

error-standard deviation ratio was monitored as a check on convergence.

3.3 Model comparison

Determining the number of dimensions in MIRT models or determining the number of latent

classes in MixIRT models is an important step to develop valid and accurate interpretation.

For the model comparison of nested models, such as MIRT models (e.g., 1-dimensional M2PL

model and 2-dimensional M2PL model), the likelihood ratio test is commonly used. For the

model comparison of non-nested models, such as MixIRT models, (e.g., 2-class Mix2PL model

and 3-class Mix2PL model), information criteria can be used. In this study, information

criteria are used to determine the number of dimensions or latent classes.

Akaike’s (1974) information criterion (AIC) and Bayesian information criterion (BIC;

Schwarz, 1978) are the most popular information criteria for model selection with IRT

models. As summarized by Cohen and Cho (2015), these information criteria were com-

monly used in several studies for IRT model selection. Both AIC and BIC ban be calculated

based on the penalized log-likelihood value by a function of the sample size and the number
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of parameters. The model with the lowest value of AIC or BIC is considered the appropriate

model. AIC and BIC are computed with the following equations:

AIC = −2 logL+ 2d, (3.12)

BIC = −2 logL+ d× ln(N), (3.13)

where L is the maximum value of the likelihood function, d is the number of estimated

parameters, and N is the sample size.

As noted previously, this simulation study implemented MCMC algorithm instead of

MME. The deviance based on MME, −2× logL, in equations for AIC and BIC is replaced

by the posterior mean of the deviance, d(ξ), (Congdon, 2003) where the ξ are estimated

parameters. Therefore, AIC and BIC in MCMC algorithm are computed as d(ξ) + 2d, and

d(ξ) + d× ln(N), respectively (Li et al., 2009).

Although AIC and BIC are generally used as criteria for model selection, sometimes, the

results based on these information criteria do not agree with each other. Several studies (e.g.,

Bolt & Johnson, 2009; Dziak, Coffman, Lanza, & Li, 2012; Li et al., 2009) have shown than

AIC tends to select a more complex model, whereas BIC tends to select a simpler model.

When the sample size is small, there is a tendency to reduce standard error caused by a

relatively large number of estimates compared to a sample size. Consequently, under-fitting

would be a more common error for the small sample size. On the other hand, as the model

with enough parameters to explain the relationship between variables is preferred, over-

fitting is a more likely error, when the sample size is large enough. Therefore, AIC seems

better with a small sample size, while BIC seems better with large sample size. That is, the

performance of information criteria depends on the sample size and the nature of a model

(Dziak et al., 2012).

There are some extended versions of information criterion by different penalty function.

Bozdogan (1987) modified AIC by adding the sample size to the penalty function for more

consistent performance of AIC, and called it consistency AIC (CAIC). For a small sample size
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related to the number of model parameters, a small sample AIC (AICc; Sugiura, 1978) and

an adjusted BIC (ABIC; Sclove, 1987) are suggested. CAIC, AICc, and ABIC are computed

with the equations below, respectively:

CAIC = −2logL+ d× (ln(N) + 1), (3.14)

AICc = −2 logL+ 2d+
2d(d+ 1)

N − d− 1

= AIC +
2d(d+ 1)

N − d− 1
,

(3.15)

ABIC = −2 logL+ d× ln

(
N + 2

24

)
. (3.16)

CAIC, AICc, and ABIC are also computed based on the maximum value of the likeli-

hood function, the number of estimated parameters, and the sample size as AIC and BIC.

Therefore, computing these indices and applying these for the model comparisons would be

easier than using other indices, such as the deviance information criterions (DIC; Spiegel-

halter, Best, Carlin, and van der Linde, 2002). Moreover, several types of IRT models are

compared in the simulation study, and some models have a relatively larger number of model

parameters compared to the sample size than other models. Consequently, in addition to AIC

and BIC, additional three information criteria adjusted to the small sample size (i.e., CAIC,

AICc, and ABIC) are used for the model comparisons to explore the effect of the relative

number of model parameters to the sample size in the simulation study.
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Chapter 4

EMPIRICAL STUDY

One empirical data set was analyzed to illustrate the issue with the analyses of multi-

dimensional item response data. Test data from a fractions computation test designed

to assess middle school mathematics teachers’ understandings of rational numbers were

used (Bradshaw, Izsák, Templin & Jacobson, 2014). The data set contained 982 middle

school mathematics teachers’ responses to 27 items. The test measured four attributes: Ref-

erent Units, Partitioning and Iterating, Appropriateness, and Multiplicative Comparison.

The test contained a total of 27 items consisting of two multiple choice items with three

options, 11 multiple choice items with four options, three multiple choice items with five

options, two multiple choice items with six options, and nine short answer items. All items

were scored dichotomously, that is, zero for an incorrect answer and one for a correct answer.

4.1 Dimensionality assessment

The first step of the empirical study was a dimensionality assessment. In this study,

exploratory approaches were applied. First, a principal component analysis (PCA) was

conducted as implemented in the SAS computer software, version 9.4. The plots of eigen-

values and the proportions of explained variances are presented in Figure 4.1. The right

panel in Figure 4.1 is the plot of eigenvalues against the factor number. It shows that the

eigenvalues of the first eight factors were all greater than one. The left panel in Figure 4.1

is the proportion of explained variance by factors and shows that the explained variance by

the first factor was less than 20%. According to Reckase (1979), a data set can be considered
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Figure 4.1: Plots for eigenvalues and proportions of explained variances of PCA

unidimensional data, when the first factor explained at least 20% of the variance. Therefore,

these plots imply that the data were not unidimensional.

Additionally, exploratory factor analysis (EFA) was conducted using the computer soft-

ware Mplus (Muthén & Muthén, 1998-2012). Also, a dimensionality analysis was conducted

using the Dimensionality Evaluation to Enumerate Contributing Traits (DETECT) index

implemented in the computer software DIMPACK (Stout, 2006). Table 4.1 shows model

goodness of fit statistics of the EFA with one to five factors. In general, the model has a

good fit when the Root Mean Square Error of Approximation (RMSEA) is smaller than .05,

the Tucker-Lewis Index (TLI) is larger than .90, and the Comparative Fit Index (CFI) is

larger than .95.

Table 4.1: Model Goodness of Fit Statistics for the EFA Models

Fit statistics 1-Factor 2-Factor 3-Factor 4-Factor 5-Factor

CFI .88 .93 .96 .98 .99

TLI .87 .92 .95 .97 .98

RMSEA .06 .04 .04 .03 .02

Decreased RMSEA(%) - .22 .19 .29 .12
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Based on these fit statistics, the EFA models with more than two factors displayed a

good fit. The estimation of the EFA model with six factors did not converge, so it is not

reported here. Tate (2003) used the proportion of the decreased RMSEA as a criterion for

determining the number of factors for an EFA. When the amount of decrease in RMSEA

from adding one factor is larger than 10%, the additional factor is considered to provide

a better model. Based on Tate’s (2003) rule, the EFA model with five factors was most

appropriate for the empirical data. The result from DIMPACK (Stout, 2006) indicated the

number of dimensions to maximize the DETECT index was five. To sum up, the results from

both analyses showed 5-factors for the data, although the factor structures were not exactly

the same. The Q-matrix, which is a matrix that indicates which attributes are measured by

each item by coding zero or one, and factor structures are presented in Table 4.2.

According to the results from DIMPACK, 12 items were clustered on the first dimension.

Most items loading on the first dimension measured Partitioning and Iterating (PI) and

Referent Units (RU) attributes. Most items belonged to either the second or the third

dimension that measured RU and MC attributes. Items belonging to the fourth dimension

were not cleanly classified as belonging to a particular type of attribute, and items clustered

into the fifth dimension measured the APP attribute. Similarly, most items mainly measured

the first dimension based on the results of the EFA, and these items measure the RU and

PI attributes. Most items in the second dimension measured the Appropriateness (APP)

attribute, and most items in the third dimension measured the Multiplicative Comparison

(MC) attribute. Most items in the fifth dimension measure the PI. A specific pattern of

structure with regard to a type of item was not displayed.

4.2 Comparisons of IRT models

Although the empirical data were determined to be multidimensional, the number and struc-

ture of the dimensions was not clearly indicated. To figure out the structure of the dimensions
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for the empirical data, an exploratory MixIRT model analysis and MIRT model analysis were

conducted. For the exploratory MixIRT model analysis, MRM with one to six classes were

compared. Alexeev, Templin, and Cohen (2011) observed that the over-extraction of latent

classes could occur when a mixture Rasch model was applied to data generated to fit a two-

parameter IRT model. It is possible that a misspecified model might cause over-extracted

latent classes in a MixIRT analysis. Mix2PL models with one to five classes were also com-

pared to avoid the incorrect selection of a particular model.

The MixIRT models were estimated using a MCMC algorithm as implemented in the

OpenBUGS software. For model selection, three information criteria, AIC, BIC, and CAIC,

were used. These are summarized in Table 4.3.

Based on the information criteria, a five-class model was the best fitting model among

the six MRM models. Among the Mix2PL models, a four-class model was the best fitting

model based on AIC, but a three-class model was the best fitting model based on BIC and

CAIC. The number of latent classes for the best fitting model decreased as the number

of parameters increased. This result agreed with the finding in Alexeev et al. (2011). The

estimated item difficulty parameters of the 5C-MRM are summarized in Table 4.4.

Latent class sizes for the 5C-MRM were 2%, 18%, 11%, 29%, and 40% for Class 1 to

Class 5, respectively. Class 1 and Class 2 did not have obvious patterns of estimated item

difficulty parameters. For Class 3, three items (i.e., Q8, Q9, and Q11) had relatively high

item difficulties. These items measured the APP attribute. For Class 4, item difficulties of

Q13, Q14, and Q15 were significantly higher than other classes. These items measured the

MC attribute. For Class 5, three items (i.e., Q20, Q21, and Q22) had lower item difficulties;

these items measured the PI attribute. Based on these patterns of item difficulties, the

characteristics for latent classes are that (1) Class 1 and Class 2 are the average levels, and

these classes might be over-extracted; (2) Class 3 lacks in the APP attribute; (3) Class 4

lacks in the MC attribute; and (4) Class 5 is strong in the PI attribute.
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Table 4.3: Information Criterion Indices for Exploratory Analysis of Empirical Data

Model NC NPAR logL Deviance AIC BIC CAIC

1CMRM 1 27 −14, 320 28,640 28,694 28,826.02 28,853.02

2CMRM 2 56 −13, 760 27,520 27,632 27,905.82 27,961.82

3CMRM 3 85 −13, 360 26,720 26,890 27,305.62 27,390.62

4CMRM 4 114 −13, 270 26,540 26,768 27,325.41 27,439.41

5CMRM 5 143 −13, 110 26,220 26,506 27,205.21 27,348.21

6CMRM 6 172 −13, 350 26,700 27,044 27,885.01 28,057.01

1CMix2PL 1 54 −14, 010 28,020 28,128 28,392.04 28,446.04

2CMix2PL 2 110 −13, 460 26,920 27,140 27,677.86 27,787.86

3CMix2PL 3 166 −13, 160 26,320 26,652 27,463.67 27,629.67

4CMix2PL 4 222 −13, 060 26,120 26,564 27,649.49 27,871.49

5CMix2PL 5 278 −13, 070 26,140 26,696 28,055.31 28,333.31

2DM2PL 1 80 −13, 430 26,860 27,070 27411.17 27,491.17

2C2DMMixRIM 2 175 −12, 850 25700 26,050 26,905.68 27,080.68

Note.NC = Number of latent classes; NPAR = Number of estimated parameters; The smallest
model information criterion index is bold.
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Table 4.4: Estimated Item Difficulty Parameters of the 5C-MRM

Item Class 1 Class 2 Class 3 Class 4 Class 5

Q1 −0.60 0.12 −0.03 0.09 0.28

Q2 −0.45 −2.26 −2.20 −1.99 −1.47

Q3 0.11 1.18 0.86 0.39 1.01

Q4 −0.10 0.41 −0.28 0.50 1.67

Q5 1.39 0.74 0.49 0.64 1.33

Q6 0.82 2.23 2.16 1.88 2.55

Q7 −0.19 0.29 −1.60 −0.45 0.80

Q8 0.07 −1.90 0.84 −2.17 −1.78

Q9 0.89 −1.96 0.58 −2.59 −1.16

Q10 −0.35 −1.15 −1.50 −1.65 −0.79

Q11 0.26 −0.55 0.61 −0.76 −0.36

Q12 −0.75 0.78 −0.78 0.62 1.44

Q13 −1.78 −3.38 −0.26 0.41 −2.86

Q14 −0.79 −0.61 1.68 3.10 −0.45

Q15 0.01 −0.28 1.84 3.11 0.17

Q16 0.41 −0.12 −0.19 −0.24 0.74

Q17 0.10 0.30 −0.49 0.26 0.85

Q18 0.62 0.01 −1.01 −0.31 0.65

Q19 0.87 1.39 1.43 1.11 1.75

Q20 0.33 1.42 1.01 0.38 −1.01

Q21 −0.47 1.00 −0.76 −1.04 −2.60

Q22 −0.37 0.75 −0.68 −1.10 −2.84

Q23 −0.74 −0.17 −1.40 0.41 0.79

Q24 −0.30 1.13 1.07 0.67 0.69

Q25 −0.64 −0.12 −0.21 −0.34 −0.17

Q26 −0.93 0.92 −0.18 0.63 0.97

Q27 −1.08 0.07 0.20 −0.14 −0.45
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Although the attributes measured by the assessment were used to define the character-

istics of each latent class, the attributes might not provide enough information to figure out

the qualitative differences between latent classes. The items showed significant differences

between latent classes that can be more clearly categorized into three item groups. The Q8,

Q9, Q10, and Q11 are the first group, Q13, Q14, and Q15 are the second group, and Q20,

Q21, and Q22 are the third group. Some of these items measure more than one attribute. For

example, Q14 measured both RU and MC attributes. Therefore, the categorization based on

the 5C-MRM might not be appropriate for understanding the structure of dimensions of the

empirical data.

The estimated item parameters from the 3CMix2PL are summarized in Table 4.5 and

Figure 4.2. The class sizes for the three latent classes were 24%, 37%, and 39%, respectively.

Overall, the estimated item discriminations are within a general range, except two items (i.e.,

Q7 and Q23) for Class 2, and there is no specific pattern to characterize the latent classes. As

for the estimated item difficulties, only six items (i.e., Q13, Q14, Q15, Q20, Q21, and Q22)

have obviously different item difficulties between the latent classes. The item difficulties of

Q13, Q14, and Q15 for Class 2 are significantly higher than other classes. Q20, Q21, and

Q22 have higher item difficulties for Class 1. Additionally, these items were overlapped with

items that showed significant differences between latent classes based on 5C-MRM.

For an exploratory MIRT model analysis, M2PL models with two to six dimensions

were compared. These models were estimated using the MCMC algorithm as implemented

in the OpenBUGS software. Although AIC, BIC, and CAIC of the M2PL models gradu-

ally decreased with each additional dimension, the M2PL models with more than three-

dimensions showed problems with convergence. Thus, the estimated item parameters of the

2D-M2PL are reported in Table 4.6. In this table, the angle indicates which dimension is

mainly measured by each item. This value is the angle from the axis of the first dimen-

sion. Therefore, an item mainly measures the first dimension, when the angle is almost zero,

and an item mainly measures the second dimension when the angle is closest to 90◦. In

46



Table 4.5: Estimated Item Parameters of the 3C-Mix2PL

Item
Item discrimination Item difficulty

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Q1 1.18 0.81 1.19 0.15 −0.11 0.18

Q2 0.78 0.91 0.71 −2.28 −2.61 −2.26

Q3 1.22 1.07 0.81 1.11 0.07 1.01

Q4 0.59 0.52 0.61 1.02 1.08 2.15

Q5 0.66 0.74 0.91 1.50 0.79 1.29

Q6 1.43 1.57 1.03 1.86 0.92 2.47

Q7 1.58 0.16 0.75 0.28 0.19 0.94

Q8 0.88 1.72 1.74 −1.76 −1.83 −1.29

Q9 0.44 1.37 0.84 −2.24 −2.08 −1.73

Q10 0.57 0.62 0.53 −1.32 −2.24 −1.87

Q11 0.70 0.94 0.69 −0.44 −0.77 −0.78

Q12 0.80 0.35 0.61 1.05 1.73 1.89

Q13 2.10 0.49 2.12 2.50 0.78 −1.47

Q14 0.89 1.56 1.58 −0.85 1.95 −0.29

Q15 0.72 2.09 1.23 −0.40 1.98 0.14

Q16 0.56 0.73 0.63 0.32 −0.31 0.82

Q17 1.46 0.56 1.37 0.28 0.36 0.76

Q18 0.42 0.34 0.32 0.76 0.38 0.68

Q19 0.76 0.77 0.97 2.02 1.48 1.64

Q20 2.00 1.55 1.03 0.76 −0.05 −1.22

Q21 1.55 1.25 1.39 0.37 −1.12 −2.46

Q22 1.53 1.29 1.72 0.31 −1.19 −2.34

Q23 1.09 0.28 1.06 −0.08 1.25 0.82

Q24 1.00 1.04 1.04 1.05 0.48 0.52

Q25 1.03 0.87 1.07 −0.06 −0.57 −0.32

Q26 1.41 0.50 1.22 0.93 1.14 0.79

Q27 1.43 1.22 1.17 −0.08 −0.52 −0.48
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Figure 4.2: Plots for item parameters for each latent class of 3CMix2PL.

Figure 4.3, for example, items in Group A mainly measured Dimension 1, items in Group B

mainly measured Dimension 2, and items in Group C measure both Dimensions 1 and 2.

As shown in Table 4.6, angles of most of items were smaller than 30◦. Only four items

among the 27 items had angles, which were larger than 30◦. This means that all items in

the test mainly measured the first dimension. The results from the three models (i.e., the

5C-MRM, 3C-Mix2PL, and 2D-M2PL) were inconsistent with each other, and thus were not

sufficient to understand the dimensionality of the empirical data. An alternative model, which
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can provide information with respect to persons and items, was applied to analyze the data.

This was a two-class and two-dimensional MMixRIM which was estimated in OpenBUGS

software.

Table 4.6: Estimated Item Parameters of the 2D-M2PL

Item a1 a2 d MDISC MDIFF Angle (◦)

Q1 1.03 0.00 −0.49 1.03 −0.48 0.00

Q2 0.72 −0.03 1.41 0.72 1.96 2.45

Q3 0.91 0.29 −1.15 0.95 −1.20 17.85

Q4 0.39 −0.18 −1.08 0.43 −2.53 24.71

Q5 0.69 −0.07 −1.23 0.70 −1.76 5.57

Q6 0.97 0.17 −2.64 0.99 −2.67 9.74

Q7 0.39 0.07 −0.37 0.39 −0.95 10.24

Q8 1.40 −0.04 1.38 1.40 0.99 1.79

Q9 0.72 0.07 1.06 0.72 1.47 5.27

Q10 0.52 0.03 0.75 0.52 1.46 2.90

Q11 0.91 0.08 0.08 0.91 0.09 5.09

Q12 0.34 −0.13 −1.01 0.36 −2.77 20.76

Q13 2.51 −1.55 1.53 2.95 0.52 31.68

Q14 2.45 −1.32 −0.90 2.79 −0.32 28.36

Q15 2.04 −1.24 −1.36 2.38 −0.57 31.40

Q16 0.57 −0.11 −0.50 0.58 −0.87 10.87

Q17 0.86 −0.13 −0.76 0.87 −0.88 8.55

Q18 0.36 −0.02 −0.39 0.36 −1.06 2.85

Q19 0.74 −0.06 −1.71 0.74 −2.30 4.61

Q20 2.00 0.67 −0.48 2.11 −0.23 18.41

Q21 2.17 1.49 0.97 2.63 0.37 34.43

Q22 2.21 1.40 1.09 2.61 0.42 32.45

Q23 0.59 −0.23 −0.54 0.63 −0.85 21.26

Q24 1.14 0.11 −1.13 1.14 −0.98 5.28

Q25 1.07 0.00 −0.12 1.07 −0.11 0.26

Q26 0.86 0.08 −1.08 0.86 −1.25 5.18

Q27 1.46 0.14 −0.13 1.47 −0.09 5.44

Note. MDIFF = Multidimensional item difficulty; MDISC = Multidimensional item
discrimination

The estimated item parameters of the 2C2D-MMixRIM are reported in Table 4.7.

Because the item slope of the first item on the second dimension was fixed at zero for the
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Figure 4.3: Three item groups located in two-dimension space.

rotational indeterminacy problem, the angles of the first item for both classes were zero.

Whereas the angles of most items were close to the first dimension, the angles of some items

significantly differed between latent classes. Q7, Q13, Q14, Q15, and Q23 were very close

to the second dimension, that is, the angles of these items were close to 90◦, for Class 1,

and these items were close to the first dimension for Class 2. On the other hand, Q21 and

Q22 were close to the first dimension for Class 1, but these items were close to the second

dimension for Class 2. The class sizes were 50% for the two latent classes, and the AIC

and BIC of the 2C2D-MMixRIM was the lowest, as reported in Table 4.3. The locations

of items in the two-dimension space based on two different models (i.e., the 2D-M2PL and

2C2D-MMixRIM) are compared in Figure 4.4. As described previously, most of the items

are located near the axis of the first dimension, while some of the items are located near the

axis of the second dimension.
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Figure 4.4: Plots of items located in two-dimension space.

4.3 Summary and conclusions

In this chapter, results are reported for the empirical data analyses. In advance of the IRT

analyses, the dimensionality of the empirical data was assessed. Three approaches were

applied for the dimensionality assessment: the PCA, EFA, and DETECT. The results of

these methods indicated the multidimensionality of the empirical data, although the number

of dimensions and the structure were not consistent.

First, the MixIRT models were used to explore the structure of the dimensions of the

empirical data. Six MRM models with one to six latent classes and five Mix2PL models

with one to five latent classes were compared. The information criteria, AIC and BIC, were

used to select the best fitting model. AIC, BIC, and CAIC selected the 5C-MRM among

the six MRM models as the best model. Among the five Mix2PL models, AIC selected the

4C-Mix2PL, and BIC and CAIC selected the 3C-Mix2PL as the best model. Overall, the 5C-
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MRM had the smallest AIC, BIC, and CAIC, however, the first latent class of the 5C-MRM

seemed like an over-extracted class, because the class size was very small, about 2%, and

the estimated item difficulties did not have a specific feature. The results of the 3C-Mix2PL

revealed that the characteristics of latent classes mostly depended on the testlet structure.

Three groups of testlet items (Q8 though Q11, Q13 through Q15, and Q20 through A22)

caused the main differences between the latent classes.

For further information in terms of items to understand the structure of dimensions,

an exploratory MIRT model analysis was conducted. Five M2PL models with two to six

dimensions were estimated in OpenBUGS software, but the MIRT models with more than

three dimensions had convergence problems. Based on the results of the 2D-M2PL, most

items tended to measure the first dimensions. It was difficult to figure out the structure of

dimensions by using the results of the 2D-M2PL. Additionally, this result was not consistent

with the results of the MixIRT models.

Finally, the MMixRIM with two latent classes and two dimensions was used to attain

information in terms of persons as well as items. According to the results, seven items

had significantly different angles between latent classes. This result indicates that these

seven items measure different latent traits for each latent class, and these items overlapped

with items which displayed large differences on estimated item parameters between latent

classes. It also reflects the fact that the dimensionality is characteristically associated with

both persons and items. In conclusion, the MMixRIM can simultaneously provide informa-

tion associated with person and item, and this information would be more easily interpreted.
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Chapter 5

SIMULATION STUDY

The simulation study was conducted to explore how several types of structures of multidi-

mensionality affect the estimation of model parameter. In this chapter, the design, simulation

conditions, and procedures of data generation for the simulation study are described in detail.

5.1 Design of the simulation study

The simulation study focused on how different types of multidimensionality can affect the

estimated parameters of different multidimensional extensions of the IRT model. Therefore,

without loss of generality, factors that are not associated with the dimension structures

were fixed to avoid over complicating the design of the simulation study. There are various

suggestions about sample size and test length in IRT models, but a large sample size is

generally recommended for the accurate and precise estimation of the parameters. As the

complexity of a model increases, the sample size and test length should increase to produce

enough information for an accurate estimation.

De la Torre and Hong (2010) compared the effects of test lengths, sample sizes, and

correlations between dimensions on the estimation of item and person parameters in the

two-dimension higher-order IRT model. Based on De la Torre and Hong’s (2010) result, only

test length had an obvious effect on the estimation of the item parameters. Both sample

size and correlations clearly showed effects on the estimation of the person parameters. In

particular, the average root mean square errors (RMSEs) of estimated item parameters were

smaller when the sample size was 1,000 and the test length was 20 than when the sample
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size was 500 and the test length was 10 or 20. Kose and Demirtasli (2012) reported that

increasing sample size and test length had no effect under the unidimensional IRT models,

whereas those effects were clear under the MIRT models. Both item and ability estimated

parameters under the conditions with a larger sample size and longer test length (the sample

size was 1,500 and the test length was 24) had smaller root mean square errors and higher

reliabilities for the two-dimension IRT model. In the current study, the sample size was fixed

as 1,000 and the test length was fixed as 30 for the stable estimation of parameters.

Two groups of factors were used to manipulate different structures of multidimension-

ality. One group of factors is associated with the distribution of ability. The other group of

factors is associated with the structures of multidimensionality. The maximum number of

dimensions and the maximum number of latent classes were fixed as two for the simplest

multidimensional and mixture contexts, respectively. Four distributions of ability were con-

sidered in the simulation study. The first distribution was a normal distribution, that is, a

unidimensional data set. The second distribution followed a bivariate normal distribution in

which the population is assumed to be homogeneous (i.e., a one class and two dimensions).

The third distribution of ability was for the assumption of the heterogeneous population with

two latent classes (i.e., two classes). The distribution of ability for each latent class followed

a normal distribution. The last distribution of ability simulated a heterogeneous population

with two latent classes and two dimensions. The distribution of ability for each latent class

followed a bivariate normal distribution. Additionally, two combinations of class size were

used for the third and fourth distributions: one is equal size (i.e., 50% and 50%), and the

other is a dominant latent class (i.e., 30% and 70%).

Two more factors were used to manipulate dimensional structures: type of multidi-

mensionality and correlation between dimensions. Two types of multidimensionality were

simulated: between-items multidimensionality with an approximately simple structure and

within-items multidimensionality. There were two item clusters for the between-items mul-

tidimensionality. The first item cluster contained 20 items that predominantly measured
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the first dimension. The second item cluster contained 10 items that measured mainly the

second dimension. For the within-items multidimensionality, there were three item clusters.

The first 10 items had larger item slope parameters for the first dimension than for the

second dimension. The next 10 items had the reverse pattern. The last 10 items had roughly

equal item slope parameters for both dimensions. As in Bolt and Lall (2003), three levels of

correlations between dimensions were applied: (1) independent dimensions (i.e., ρθ1θ2 =.0);

(2) a weak correlation (i.e., ρθ1θ2 =.3); and (3) a strong correlation (i.e., ρθ1θ2 = .6).

In summary, four of the simulation factors (i.e., distributions of ability, latent class size,

type of dimensionality, and correlations between dimensions) were manipulated to make

different multidimensional structures. The other two factors, i.e., sample size and test length,

were held constant. A total of 15 combinations were compared in the simulation study, and

with 100 replications for each combination. One of the 15 condition was a unidimensional and

homogenous population, another six conditions were multidimensional and homogeneous.

Two additional conditions were unidimensional and heterogeneous populations, and the last

six conditions were multidimensional and heterogeneous populations. These 15 combinations

of simulation conditions are summarized in Table 5.1.

5.2 Data simulation procedures

The code for distribution of ability is indicated in the left column of Table 5.1. Four generating

models were used according to four different distributions of ability. Specifically, a 2PL

IRT model, a two-dimension M2PL (2DM2PL) model, a two-class and 2PL mixture IRT

(2CMix2PL) model, and a two-dimension and two-class MMixRIM (2D2C-MMixRIM) were

all applied for ability distribution conditions 1C1D, 1C2D, 2C, and 2C2D, respectively. The

item parameters were modified from Reckase (2009). Item parameters for ability distribution

condition 1C2D were selected from Reckase’s (2009, p. 204) Table 7.
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Table 5.1: Combinations of Simulation Conditions

Distribution of ability Latent class size Type of multidimensionality Correlation

1 1C1D - - .0

2 1C2D - Between-items .0

3 1C2D - Between-items .3

4 1C2D - Between-items .6

5 1C2D - Within-items .0

6 1C2D - Within-items .3

7 1C2D - Within-items .6

8 2C1D 50% & 50% - .0

9 2C1D 30% & 70% - .0

10 2C2D 50% & 50% Within-items .0

11 2C2D 50% & 50% Within-items .3

12 2C2D 50% & 50% Within-items .6

13 2C2D 30% & 70% Within-items .0

14 2C2D 30% & 70% Within-items .3

15 2C2D 30% & 70% Within-items .6

Note. 1C1D = One-class and one-dimension; 1C2D = One-class and two-dimension; 2C =
Two-class; 2C2D = Two-class and two-dimension.
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For condition 1C1D, MDISC (
√
a2i1 + a2i2) in the case of 1C2D with between items mul-

tidimensionality were used as the item discriminations. For the item difficulty, the intercept

parameter (di) was divided by MDISC, because the logistic function of M2PL model is defined

as ai1θ1+ ai2θ2+ di, while the logistic function of 2PL model is defined as ai(θ+ bi). That is,

the intercept parameter in M2PL model is equivalent to the multiplication of item discrim-

ination and item difficulty in 2PL model. The item parameters for conditions 1C1C, 1C2D

with between-items multidimensionality, and 1C2D with within-items multidimensionality

are reported in Table 5.2.

For condition 2C1D, the item parameters for 1C1D were modified. Similar to Choi (2014)

and Li et al. (2009), two types of knowledge were assumed, and two latent classes were

assumed to perform differently according to the type of knowledge. Suppose that Class 1

performs better at the first type of knowledge, and Class 2 performs better at the other type of

knowledge. Additionally, the first 10 items (i.e., Q1 to Q10) have the same item parameters

for both latent classes, that is, these items act as anchor items. The next 10 items (i.e.,

Q11 to Q20) measure the first type of knowledge, and the last 10 items (i.e., Q21 to Q30)

measure the second type of knowledge. For a good performance, the item discriminations are

generated by adding .5 to the item discriminations for condition 1C1D. Similarly, the item

difficulties for a good performance class were generated by subtracting 1.5 from the item

difficulties for condition 1C1D, and the item difficulties for a poor performance class were

generated by adding 1.5. The item parameters for condition 2C1D are presented in Table 5.3

and Figure 5.1.

The item parameters for 2C2D were modified based on the item parameters for 1C2D

with within-items multidimensionality to reflect different multidimensional patterns between

classes. To be specific, for Class 1, which is a group of students who are good at the first

trait (θ1), items that measure the first trait (i.e., Q1 through Q20) had large slopes for

the first dimension, smaller slopes for the second dimension, and larger intercepts than

those parameters for Class 2. Additionally, items that measure the second trait (i.e., Q21

58



Table 5.2: Generating Item Parameters for 1C1D and 1C2D

Item
1C1D (Between-items) 1C2D (Within-items) 1C2D

a b a1 a2 d a1 a2 d

Q1 0.97 0.94 0.97 0.00 0.91 0.97 0.00 0.91

Q2 1.05 −0.21 1.02 0.25 −0.22 1.02 0.25 −0.22

Q3 0.96 −0.50 0.93 0.24 −0.48 0.93 0.24 −0.48

Q4 0.97 −1.14 0.94 0.21 −1.10 0.94 0.21 −1.10

Q5 0.86 0.48 0.84 0.20 0.42 0.84 0.20 0.42

Q6 0.97 −0.60 0.97 0.05 −0.58 0.97 0.05 −0.58

Q7 1.01 −0.88 1.01 0.06 −0.88 1.01 0.06 −0.88

Q8 1.03 1.12 1.01 0.17 1.15 1.01 0.17 1.15

Q9 1.15 1.01 1.14 0.15 1.16 1.14 0.15 1.16

Q10 0.96 −0.40 0.95 0.14 −0.38 0.95 0.14 −0.38

Q11 1.00 0.13 0.98 0.18 0.13 0.85 0.66 −0.52

Q12 0.87 −0.57 0.84 0.20 −0.49 0.76 0.74 0.30

Q13 1.11 0.41 1.08 0.26 0.46 0.73 0.81 −0.62

Q14 0.83 −1.53 0.81 0.15 −1.26 0.60 0.68 −0.45

Q15 1.04 0.10 1.03 0.10 0.10 0.74 0.70 −0.92

Q16 1.09 −0.08 1.09 0.07 −0.09 0.73 0.72 −0.48

Q17 1.07 0.75 1.05 0.22 0.80 0.71 0.55 −0.75

Q18 1.05 −0.04 1.04 0.19 −0.04 0.62 0.68 0.78

Q19 1.00 0.07 0.97 0.23 0.07 0.77 0.80 0.02

Q20 1.07 0.58 1.05 0.16 0.62 0.70 0.69 0.11

Q21 0.90 0.30 0.14 0.89 0.27 0.14 0.89 0.27

Q22 1.06 1.17 0.04 1.06 1.23 0.04 1.06 1.23

Q23 1.05 −0.09 0.02 1.05 −0.09 0.02 1.05 −0.09

Q24 1.18 −0.20 0.02 1.18 −0.24 0.02 1.18 −0.24

Q25 1.03 0.82 0.03 1.03 0.85 0.03 1.03 0.85

Q26 0.93 −0.83 0.08 0.93 −0.78 0.08 0.93 −0.78

Q27 1.03 −0.83 0.21 1.01 −0.86 0.21 1.01 −0.86

Q28 0.90 0.03 0.22 0.87 0.02 0.22 0.87 0.02

Q29 0.99 −0.23 0.20 0.97 −0.23 0.20 0.97 −0.23

Q30 0.99 −0.12 0.03 0.99 −0.12 0.03 0.99 −0.12

Note. a = Item discrimination; b = Item difficulty; a1 = Slope parameter on the first
dimension; a2 = Slope parameter on the second dimension; d = Intercept parameter.
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Table 5.3: Generating Item Parameters for 2C1D

Item
Class 1 Class 2

Item
Class 1 Class 2

a b a b a b a b

Q1 0.97 0.94 0.97 0.94 Q16 1.59 −1.08 1.09 0.92

Q2 1.05 −0.21 1.05 −0.21 Q17 1.57 −0.25 1.07 1.75

Q3 0.96 −0.50 0.96 −0.50 Q18 1.55 −1.04 1.05 0.96

Q4 0.97 −1.14 0.97 −1.14 Q19 1.50 −0.93 1.00 1.07

Q5 0.86 0.48 0.86 0.48 Q20 1.57 −0.42 1.07 1.58

Q6 0.97 −0.60 0.97 −0.60 Q21 0.90 1.30 1.40 −0.07

Q7 1.01 −0.88 1.01 −0.88 Q22 1.06 2.17 1.56 0.17

Q8 1.03 1.12 1.03 1.12 Q23 1.05 0.91 1.55 −1.09

Q9 1.15 1.01 1.15 1.01 Q24 1.18 0.80 1.68 −1.20

Q10 0.96 −0.40 0.96 −0.40 Q25 1.03 1.82 1.53 −0.18

Q11 1.50 −0.87 1.00 1.13 Q26 0.93 0.17 1.43 −1.83

Q12 1.37 −1.57 0.87 0.44 Q27 1.03 0.17 1.53 −1.83

Q13 1.61 −0.59 1.11 1.41 Q28 0.90 1.03 1.40 −0.97

Q14 1.33 −2.53 0.83 −0.53 Q29 0.99 0.77 1.49 −1.23

Q15 1.54 −0.91 1.04 1.10 Q30 0.99 0.88 1.49 −1.12

Note. a = Item discrimination; b = Item difficulty.
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Figure 5.1: Item parameter patterns for two latent classes for 2C1D.

through Q30) had smaller slopes for both dimensions and intercepts than those for Class 2.

The opposite pattern was applied to Class 2. That is, Q1 through Q10 had smaller slopes

for both dimensions and intercepts than Class 1, and Q11 through Q30 had smaller slope

for the first dimension and larger slopes for the second than Class 1. These patterns were

formed by adding or subtracting .5 from the item parameters for 1C2D with within-item

multidimensionality in the same way used to modify item parameters for 1D2C. The item

parameters for 2C2D are presented in Table 5.4 and Figure 5.2.
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Table 5.4: Generating Item Parameters for 2C2D

Item
Class 1 Class 2

a1 a2 d a1 a2 d

Q1 1.47 0.00 1.41 0.47 0.00 0.41

Q2 1.52 0.25 0.28 0.52 0.25 −0.72

Q3 1.43 0.24 0.02 0.43 0.24 −0.98

Q4 1.44 0.21 −0.60 0.44 0.21 −1.60

Q5 1.34 0.20 0.92 0.34 0.20 −0.08

Q6 1.47 0.05 −0.08 0.47 0.05 −1.08

Q7 1.51 0.06 −0.38 0.51 0.06 −1.38

Q8 1.51 0.17 1.65 0.51 0.17 0.65

Q9 1.64 0.15 1.66 0.64 0.15 0.66

Q10 1.45 0.14 0.12 0.45 0.14 −0.88

Q11 1.35 0.16 −0.02 0.35 1.16 −0.02

Q12 1.26 0.24 0.80 0.26 1.24 0.80

Q13 1.23 0.31 −0.12 0.23 1.31 −0.12

Q14 1.10 0.18 0.05 0.10 1.18 0.05

Q15 1.24 0.20 −0.42 0.24 1.20 −0.42

Q16 1.22 0.22 0.02 0.22 1.22 0.02

Q17 1.21 0.05 −0.25 0.21 1.05 −0.25

Q18 1.12 0.18 1.28 0.12 1.18 1.28

Q19 1.27 0.30 0.52 0.27 1.30 0.52

Q20 1.19 0.19 0.61 0.19 1.19 0.61

Q21 0.14 0.39 −0.23 0.14 1.39 0.77

Q22 0.04 0.56 0.73 0.04 1.56 1.73

Q23 0.02 0.55 −0.59 0.02 1.55 0.41

Q24 0.02 0.68 −0.74 0.02 1.68 0.26

Q25 0.02 0.53 0.35 0.02 1.53 1.35

Q26 0.08 0.43 −1.28 0.08 1.43 −0.28

Q27 0.21 0.51 −1.36 0.21 1.51 −0.36

Q28 0.22 0.37 −0.48 0.22 1.37 0.52

Q29 0.20 0.47 −0.73 0.20 1.47 0.27

Q30 0.03 0.49 −0.62 0.03 1.49 0.38

Note. a1 = Slope parameter on the first dimension; a2 = Slope parameter on the second
dimension; d = Intercept parameter.
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The ability parameters for 1C1D were randomly sampled from a standard normal distri-

bution, θ ∼ N(0, 1). For 2C1D, the ability parameters for both classes were randomly sam-

pled from a standard normal distribution, θg ∼ N(0, 1), respectively, similar to the ability

parameters for 1C1D. The ability parameters for 1C2D with different levels of correlation

between dimensions were simulated by applying the procedure described by Oshima, Raju,

and Flowers (1997). For the two independent dimensions condition, the ability parameters

(θ1 and θ2) were randomly sampled from a bivariate normal distribution with means of 0

and a unit covariance matrix. For the correlated dimensions, the ability parameters were

simulated by weighted linear transformation with weights. The weights were the elements of

L
′
when the correlation matrix, R, is decomposed as R = LL

′
. For instance, the correlation

matrix is R =

1 .6

.6 1

, and the weights are the elements of L
′
=

1 .6

0 .8

. Then, new
correlated ability parameters were generated as follows:

L
′ ×

θ1
θ2

 =

new θ1

new θ2

 , (5.1)

where θ1 and θ2 are independent abilities which are generated for 1C2D.

A total of 15 sets of generated data were analyzed using nine MMixRIM models with

combinations of one to four dimensions and one to four latent classes. The maximum num-

bers of dimensions and latent classes of the generated data were both two. Models with

four dimensions or four latent classes were applied to detect the effects of structures of

dimensionality on the estimation of model parameters. This was done because more complex

models generally tend to fit better than simpler models. A MMixRIM with one class and

one dimension is equivalent to the 2PL with a random persons and random items model

(Rijmen & De Boeck, 2005). A MMixRIM with one class and two dimensions is equal to

the two-dimensional M2PL with a random persons and random items model. Likewise,

a MMixRIM with two classes and one dimension corresponds to the two-class Mix2PL

with a random persons and random items model. Therefore, the nine IRT models applied
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in this simulation study were 2PL model, two- to four-dimensional M2PL models, two-to

four-class Mix2PL models, two-dimensional and two-class MMixRIM, and two-dimensional

and three-class MMixRIM. All IRT models applied in the simulation study treated both

persons and items as random. Thus, 2PL, M2PL, and Mix2PL models mean extensions of a

random item model hereafter.

5.3 Recovery analysis

A recovery analysis was conducted to estimate the quality of estimated parameters under

different structures of multidimensionality. For the recovery analysis, the estimated item

parameters and the generated item parameters were compared using three indices: (1) BIAS,

(2) root mean square error (RMSE), and (3) Pearson correlations. These three indices were

computed with the following equations:

BIAS(β̂) = E(β̂)− β, (5.2)

RMSE(β̂) =

√
E((β̂ − β)

2
), (5.3)

Corr(β̂, β) =
Cov(β̂, β)

σβ̂σβ

, (5.4)

where β̂ is an estimator for a parameter β and E(·) is the expected value. BIAS and RMSE

indicate the accuracy of estimation, and smaller BIAS and RMSE values indicate more

accurate estimation.

Unlike BIAS and RMSE, the Pearson correlation can be used to compare parameters

in different metrics. In this case, it was used to provide information about the relationship

between generated and estimated parameters. The BIAS and RMSE for the estimated item

parameters of models without latent class (i.e., aik and di) were computed across replications
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and items. The BIAS and RMSE for the estimate item parameters of models with latent

classes (i.e., aig, aikg, big, and dig) were computed across replication, latent classes, and

items. BIAS, RMSE, and the mean of correlations for each over 100 replications are reported

for each conditions.

5.4 Linking of scales for recovery analyses

Before computing BIAS and RMSE, estimated and generated parameters should be placed

on the same scale. The estimated parameters for each replication, however, were on their own

scale. Therefore, the estimated parameters needed to be transformed onto a common scale.

In this study, the common scale was the scale of the generating parameters. A classical and

simple method is a linear equating. A linear equating assumes a linear relationship between

scores on the different scales. This linear relationship is determined by the transformation

coefficients (Hambleton, Swaminathan, & Rogers, 1991).

For the unidimensional IRT model, the mean and sigma method was used to determine

the transformation coefficients. As the name suggests, the transformation coefficients of the

mean and sigma method can be obtained from the means and standard deviations of item

parameters on the base scale and the target scale. In this case, the base scale means the scale

of the generating item parameters, and the target scale means the scale of the estimated item

parameters for each replication. The transformation coefficients (i.e., α and β) are defined

as follows:

α =
SbB

SbT

, (5.5)

β = b̄B − αb̄T , (5.6)

where SbT represents the standard deviation of the item difficulty parameters on the target

scale, SbB represents the standard deviation of the item difficulty parameters on the base
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scale, b̄T represents the mean of the item difficulty parameters on the target scale, and b̄B

is the mean of the item difficulty parameters on the base scale. By using these transforma-

tion coefficients, the estimated item parameters are transformed onto the same scale of the

generated item parameters as below:

ãi =
ai
α
, (5.7)

b̃i = β + αbi, (5.8)

where ai and bi are the estimated item discrimination and difficulty of item i, and ãi and b̃i

represent transformed parameters of these estimates.

Similar to the unidimensional IRT model, the estimated parameters from the MIRT

models are also required to transform onto the same coordinate system of the generated

parameters. For the multidimensional IRT model, three types of indeterminacy are in (1)

placement of the origin, (2) selection of units of measurement along axes, and (3) orientation

of the axes (De Ayala, 2009; Reckase, 2009). That is, the origin, scale, and orientation of

each coordinate axis should be adjusted to get comparable item parameters for the multidi-

mensional linking. In this simulation study, the same procedure of multidimensional linking

described by Reckase (2009) was conducted as follows:

ã = aM
′
, (5.9)

d̃ = d− aM
′
s
′
, (5.10)

where a is a n × k matrix of the estimated slope parameters, d is a n × 1 vector of the

estimated intercept parameters, and d̃ and ã are sets of transformed item parameters onto

the same coordinate system of the generated parameters. M is a k× k matrix to use for the

nonorthogonal rotation of the coordinate system, and s is a 1× k matrix to use for the shift

origin of coordinate axes. These two matrixes, (i.e., M and s), are calculated as follows:
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M−1 =
((

θθθT − θ̄̄θ̄θT
)′ (

θθθT − θ̄̄θ̄θT
))−1(

θθθT − θ̄̄θ̄θT
)′(

θθθB − θ̄̄θ̄θB
)′

(5.11)

s = θ̄̄θ̄θB − θ̄̄θ̄θTM
−1, (5.12)

where θθθT is a N × k matrix of the estimated ability parameters of N examinees on the

k-dimensional space, θθθB is a N × k matrix of the generated ability parameters, and θ̄̄θ̄θT and

θ̄̄θ̄θB are the mean vectors of the estimated and generated ability parameters, respectively.

The results of the simulation study are described in the following chapter.
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Figure 5.2: Item parameter patterns for two latent classes for 2C2D.
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Chapter 6

RESULTS

The results of the simulation study, including monitoring convergence, model comparison,

and recovery analyses, are presented in this chapter. The main purpose of this simulation

study was to explore the performance of MMixRIM for analysis of the multidimensional

data. In addition, the effect of different multidimensional structures on the estimation of

model parameters was examined. As described in the previous chapter, the data sets were

generated based on the 15 combinations depending on the four different kinds of ability

distribution, which are 1) unidimensional distribution, 2) two-dimensional distribution, 3)

mixture distribution consisting of two latent classes, and 4) two-dimensional and mixture

distribution consisting of two latent classes. For the two-dimensional ability distribution,

two types of dimension structure (the between-items multidimensionality and within-items

multidimensionality) and three levels of correlations between dimensions (ρ =.0, .3, and .6)

were manipulated. For the mixture distribution with two classes, the combinations of latent

class sizes (equal size of latent classes, 50% & 50% and a dominant class, 30% & 70%)

were manipulated. For convenience, the 15 conditions names represent the combinations of

simulation conditions as summarized in Table 6.1.

For example, D1 represents the condition of the unidimensional ability distribution, and

D2BR0 represents the combination of the two-dimensional ability distribution (2D), the

between-items multidimensionality (B), and two independent dimensions (R0). Similarly,

D1C2E represents the condition of the mixture ability distribution with two latent classes

(D1C2) and the sizes of latent class are equal (E). D2C2R3D indicates the combinations of

the two-dimensional and mixture ability distribution (D2C2), weakly correlated dimensions
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Table 6.1: Names of Simulation Conditions

Name ND NC Type of multidimensionality Correlation Latent class size

D1 1 1 - - -

D2BR0 2 1 Between-items .0 -

D2BR3 2 1 Between-items .3 -

D2BR6 2 1 Between-items .6 -

D2WR0 2 1 Within-items .0 -

D2WR3 2 1 Within-items .3 -

D2WR6 2 1 Within-items .6 -

D1C2E 1 2 - - 50/50

D1C2D 1 2 - - 30/70

D2C2R0E 2 2 Within-items .0 50/50

D2C2R3E 2 2 Within-items .3 50/50

D2C2R6E 2 2 Within-items .6 50/50

D2C2R0D 2 2 Within-items .0 30/70

D2C2R3D 2 2 Within-items .3 30/70

D2C2R6D 2 2 Within-items .6 30/70

Note.ND=Number of dimensions; NC=Number of latent classes.
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(R3), and a dominant latent class (D).

6.1 Monitoring Convergence

For estimation with the MCMC algorithm, the chain should be converged to get accurate

parameter estimates. As described in Chapter 3, several methods were suggested for moni-

toring convergence of the chain. In this study, a single chain with 10,000 iterations for the

burn-in period and 10,000 iterations for the post-burn-in period were used. The convergence

of all estimated item parameters was tested by using Heidelberger and Welch (1983) index.

This index provides a convergence diagnostic for a single long chain.

For the unidimensional data condition (i.e., D1), the number of estimated item param-

eters was 60, which includes the 30 item discriminations and 30 item difficulties. For the

two-dimensional structure conditions, (i.e., D2BR0, D2BR3, D2BR6, D2WR0, D2WR3, and

D2WR6), the number of estimated item parameters was 84; this includes 56 (= 28 items

× 2 dimensions) item slope parameters and 28 item intercept parameters because the six

item parameters of the two items were fixed for the model identification. For the two latent

classes conditions (i.e., D1C25 and D1C23), 120 item parameters were estimated. That is,

30 item discriminations and 30 item difficulties for each latent class were estimated. For the

two-dimensional and two-class conditions, (i.e., D2C2R0E, D2C2R3E, D2C2R6E, D2C2R0D,

D2C2R3D, and D2C2R6D), a total of 168 item parameters were estimated. Specifically, 56

item slopes and 28 item intercept parameters were estimated for each latent class. Tables B.1

and B.2 indicate the percentages of the passed item parameters based on Heidelberger and

Welch’s approach for each condition and replication.

For the unidimensional data condition, the item parameters were estimated by a 2PL

model. As summarized in Table B.1, for the unidimensional condition, the percentages of

the passed item parameters were higher than .9 in the 90 replications, and the average of

percentages of passed item parameters over 100 replications was .96. That is, the chains
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of most replications converged based on Heidelberger and Welch’s convergence diagnostics.

The Mix2PL model was applied to estimate the item parameters for the two-class condi-

tions. The percentages of passed item parameters of D1C2D were relatively smaller than

those of D1C2E. The averages of percentages of passed item parameters over all replications

for D1C2D and D1C2E were .84 and .94, respectively. For the two-dimensional conditions,

an M2PL model was applied to estimate the item parameters. Most replications for the con-

dition of two independent dimensions (i.e., D2WR0 and D2BR0) achieved almost perfect

convergence. The average of the percentages of passed item parameters was .99 for both

conditions. The conditions of weakly (or strongly) correlated dimensions were also mostly

converged. For these conditions, the average percentages of passed parameters were higher

than .96. A MMixRIM was applied to estimate item parameters for the two-dimensional and

two-class conditions. Similar to the other conditions, most replications showed converged

chains, except for three replications. For these three replications, the percentages were smaller

than .50. One replication was in condition D2C2R0D, another replication was in condition

D2C2R3D, and the third replication was in D2C2R3E. The averages of percentages of passed

item parameters for the two-dimensional and two-class conditions were between .95 and .98.

To sum up, the convergence for each condition was good enough, although it was not percept

based on Heidelberger and Welch’s convergence diagnostics.

In addition to Heidelberger and Welch convergence diagnostics, the ratio of MC error

to the standard deviation of item parameter estimates from the post-burn-in iterations was

used for monitoring convergence of the chain. The percentages of item parameters that the

MC error is less then 5% of the standard deviation are summarized in Tables B.3 and B.4.

For the unidimensional condition, all replications except one had perfectly converged

chains based on the ratio of MC error to the standard deviation. Unlike the results of

Heidelberger and Welch convergence diagnostics in Tables B.1 and B.2, all replications

for the two-class conditions with a dominant latent class (i.e., D1C2D) failed to converge.

The ratios of MC error to the standard deviations of most items were larger than 5%. For the
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Figure 6.1: Percentages of passed item parameters based on Heidelberger and Welch’s con-
vergence diagnostics and the ratio of MC error to standard deviation.

D1C2E, the MC errors of all estimated item difficulties for Class 2 were larger than 5% of the

standard deviation in every replication. Thus, the percentages of items for which the ratio of

MC error to the standard deviation was less than 5% were 75% (30 item parameters among

120 item parameters) for all conditions. The MC errors of all estimated item parameters

for the two-dimensional data with independent dimensions (i.e., D2BR0 and D2WR0) were

smaller than 5% of the standard deviation in all replications. For the two-dimensional and

two-class conditions, the chains mostly converged based on the ratios of MC error to the

standard deviation, except for some replications.

Overall, the replications, except for some conditions, had good convergence. The averages

of percentages of passed items based on Heidelberger and Welch’s way and the ratio of MC

error to standard deviation are compared in Figure 6.1. For the unidimensional conditions,

the percentages of passed items parameters based on Heidelberger and Welch convergence

diagnostics were slightly smaller than these percentages based on the ratio of MC error to

the standard deviation. For the two-class conditions, the item parameters more easily passed
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the convergence test when the Heidelberger and Welch index was used than when the ratio

of MC error to the standard deviation was used. For the two-dimensional conditions, the

results of monitoring convergence were similar for Heidelberger and Welch method and the

ratio of MC error to the standard deviation, except when the correlation between dimensions

was .6. For the two-dimensional and two-class conditions, the percentages of the passed item

parameters based on Heidelberger and Welch’s approach were larger than those based on

the ratio of MC error to the standard deviation.

6.2 Model Comparison

The data sets for this simulation study were generated based on the 15 different conditions

described above to have different dimensional structures. Four types of IRT models, 2PL,

M2PL, Mix2PL, and MMixRIMmodels, were applied to these generated data sets to compare

the performance of each model for the multidimensional data sets with a different dimensional

structure.

In the first part of this section, the percentages of correct model selections based on

the five different information criterion indices (i.e., AIC, BIC, CAIC, AICc, and ABIC) are

summarized. The correct model selection means that each index suggests the true model,

which is a model used to generate data sets for each condition, as the best-fitting model

among several candidate models. The true model for the unidimensional condition (i.e.,

D1) was the 2PL model, and the true model for two-dimensional conditions (i.e., D2BR0,

D2BR3, D2BR6, D2WR0, D2WR3, and D2WR6) was the two-dimensional M2PL model.

The Mix2PL with two classes model was the true model for the two latent classes conditions

(i.e., D1C25 and D1C23), and the two-dimensional and two-class MMixRIM was the true

model for the two-dimensional and two latent classes conditions (i.e., D2C2R0E, D2C2R3E,

D2C2R6E, D2C2R0D, D2C2R3D, and D2C2R6D). To calculate the percentage of correct

model selections, the IRT models within the same type of the true model were compared.
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For example, the comparison of one- to four-class Mix2PL models was done to determine

the percentage of correct model selections for condition D1C2E. This was not possible for

the other five IRT models (i.e., two- to four-dimensional M2P models, two-dimensional and

two-class MMixRIM and two-dimensional and 3-class MMixRIM). In the second part of this

section, the results of the comparison of IRT models within a different type from the true

model are presented. For instance, for D1C2E, the results of comparisons between two- to

four-dimensional M2PL models based on information criterion indices are described in the

second section of this chapter.

6.2.1 Correct model selections

The percentages of correct model selections based on five different information criterion

indices (i.e., AIC, BIC, CAIC, AICc, and ABIC) are summarized in Table 6.2 and Fig-

ures 6.2 to 6.4. As summarized in Table 6.2 and Figure 6.2, the percentages of correct

model selections based on AIC differed depending on a type of the true mode. For the

unidimensional condition (i.e., D1), AIC detected the true model, which is 2PL model, as

the best-fitting model in 78 replications among 100 replications. For the two-dimensional

conditions (i.e., D2B2R0E, D2B2R3E, D2B2R6E, D2B2R0D, D2B2R3D, and D2B2R6D),

however, AIC failed to detect the true model. No replication was observed for correct model

selection. The percentages of correct model selections based on AIC were very high for the

two latent classes conditions (i.e., D1C25 and D1C23). The percentages of correct model

selections for these two conditions were 98% and 97%, respectively. Similarly, AIC per-

formed well for the two-dimensional and two-class conditions (i.e., D2C2R0E, D2C2R3E,

D2C2R6E, D2C2R0D, D2C2D3D, and D2C2R6D). When the sizes of two classes were equal

(i.e., D2C2R0E, D2C2R0E, and D2C2R6E), the percentages of correct model selections

based on AIC were 88%, 93%, and 91%, respectively. When the size of one class was larger

than another class (i.e., D2C2R0D, D2C2R3D, D2C2R6D), the percentages of correct model

selections were 84%, 88% and 87%, respectively.
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Table 6.2: Percentage of Correct Model Selection

True model Structure Correlation Latent class size AIC BIC CAIC AICc ABIC

2PL .78 .91 .91 .00 .00

2DM2PL

Between-items

.0 .00 .09 .02 .00 .00

.3 .00 .09 .00 .00 .00

.6 .00 .21 .00 .00 .00

Within-items

.0 .00 .18 .04 .00 .00

.3 .00 .23 .06 .00 .00

.6 .00 .27 .10 .00 .00

2CMix2PL
50% & 50% .98 1.00 1.00 .88 .89

30% & 70% .97 1.00 .99 .88 .89

2D2CMMixRIM Within-items

.0 50% & 50% .88 .01 .04 .93 .96

.3 50% & 50% .93 .01 .07 .97 .96

.6 50% & 50% .91 .01 .15 .95 .95

.0 30% & 70% .84 .00 .01 .88 .89

.3 30% & 70% .88 .00 .02 .90 .89

.6 30% & 70% .87 .01 .09 .93 .94

2PL .78 .91 .91 .00 .00

2dM2PL .00 .18 .05 .00 .00

Mix2PL2c .98 1.00 1.00 .88 .89

2dMMixRIM2c .89 .07 .06 .93 .93

Between-items .00 .13 .03 .00 .00

Within-items .59 .08 .06 .62 .00

.0 .43 .30 .27 .67 .69

.3 .45 .08 .04 .47 .69

.6 .45 .13 .01 .47 .72

50% & 50% .93 .26 .32 .93 .94

30% & 70% .89 .26 .28 .90 .90

Note. 2DM2PL = Two-dimensional M2PL; 2CMix2PL = Two-class Mix2PL; 2D2CMMixRIM
= Two-dimensional and two-class MMixRIM.
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Figure 6.2: Percentages of correct model selection based on AIC.

Table 6.2 and Figure 6.3 show the percentages of correct model selections based in BIC.

BIC detected the correct model 91% of the replications for condition D1. For the two-

dimensional conditions, however, BIC did not work well to detect the true model among

one- to four-dimensional M2PL models regardless of the type of dimensionality structure

and the correlation between dimensions. BIC tended to suggest the three-dimensional M2PL

model as the best-fitting model, instead of the correct two-dimensional M2PL model. For

the two-class conditions, BIC perfectly detected the true model. Unlike AIC, however, BIC

could not detect the true model for the two-dimensional and two-class conditions regardless

of the correlation between dimensions and the size of latent classes.

Table 6.2 and Figure 6.4 showed the percentages of correct model selection based on

CAIC, and the patterns of model selections were similar to those based on BIC. Only the uni-

dimensional condition (i.e., D1) and two-class conditions (i.e., D1C2E and D1C2D) observed

high percentages of correct model detection based on CAIC. The percentages of correct model

selection for D1, D1C2E, and D1C2D were 91%, 100%, and 99%, respectively. The percent-
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Figure 6.3: Percentages of correct model selection based on BIC.

ages of true model detections were below 10% for the two-dimensional conditions regardless

of the type of multidimensional structure and the correlation between dimensions. For the

two-dimensional and two-class conditions, although the percentages based on CAIC were

slightly higher than the percentages based on BIC, these percentages were still very low, less

than 15%.

The results of correct model selections based on AICc and ABIC were consistent as can

be seen in Figures 6.5 and 6.6. These two information criteria failed to detect the true model

for both the unidimensional condition (i.e., D1) and the two-dimensional conditions (i.e.,

D2BR0, D2BR3, D2BR6, D2WR0, D2WR3, and D2WR6). The percentages of correct detec-

tions for these conditions were zero. On the other hand, AICc and ABIC performed well for

the two-class conditions and the two-dimensional and two-class conditions. For the two-class

conditions (i.e., D1C2E and D1C2D), the percentages based on AICc and ABIC were 88%

and 89%, respectively. For the two-dimensional and two-class conditions, the percentages of

correct model selections based on AICc and ABIC were above 90% when the sizes of latent
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Figure 6.4: Percentages of correct model selection based on CAIC.

classes were equal (i.e., D2C2R0E, D2C2R3E, and D2C2R6E). For the two-dimensional and

one dominant latent class conditions (i.e., D2C2R0D, D2C2R3D, and D2C2R6D), percent-

ages of correct model selection based on these two information criterion indices were between

88% and 94%.

In summary, the five information criterion indices performed differently depending on

the type of true IRT models. All indices performed very well regardless of the size of latent

classes for the Mix2PL model, while their performance for M2PL model was poor. For M2PL

model, BIC and CAIC tended to suggest the three-dimensional M2PL model, whereas AIC,

AICc and ABIC tended to select the four-dimensional M2PL model. For the MMixRIM,

AIC, AICc and ABIC seems to perform better than BIC and CAIC. For these conditions,

BIC and CAIC tended to suggest two-dimensional and one-class MMixRIM rather than

two-dimensional and two-class MMixRIM.

As described in the Methods chapter, the performance of information criteria depended

on the sample size relative to the number of model parameters. Moreover, AIC tended to
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Figure 6.5: Percentages of correct model selection based on AICc.

Figure 6.6: Percentages of correct model selection based on ABIC

perform better for a small sample size. BIC, on the other hand, was better for a large sample

size (Dziak et al., 2012). In this study, the sample size and the number of items were fixed
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at 1,000 and 30, respectively, but the number of model parameters differed based on the

type of model. For example, the number of parameter for the 2PL model is 64 (30 item

discriminations, 30 item difficulties, one mean and variance of item difficulty, and one mean

and variance of item discriminations). For the two-dimensional M2PL model, the number

of model parameters is 90, consisting of 28 item slopes for the first dimension, 28 item

slopes for the second dimension, 28 intercepts, three means and three variances of item

parameter distributions (i.e., 28 × 3 + 3 + 3 = 90). The number of model parameters for

the two-dimensional and two-class MMixRIM is twice of the number of parameters for the

two-dimensional M2PL model, that is 180, which is 90 model parameters per each latent

class. For the two-class Mix2PL model, the number of parameters is 130, containing 30 item

discriminations, 30 item difficulties, two means and variances of the distribution of item

parameters for each class, one mixing proportion, and one mean of ability distribution (i.e.,

2 × (30 + 30 + 4) + 1 + 1 = 130). Therefore, the relative sample size for each model

differed, although the sample size and the number of items were fixed. According to the

results of model selections, AIC and sample adjusted information criteria (i.e., AICc and

ABIC) performed much better than BIC and CAIC to detect the true model for MMixRIM,

which is the more complex model than M2PL and Mix2PL models. For the simpler model

(i.e., 2PL), BIC and CAIC performed better than AIC, and AICc and ABIC showed poor

performance to detect the true model. Consequently, the different results of model selections

by each information criterion indices might be results from the different ratio of sample size

to the number of model parameters.

6.2.2 Model comparisons within the different type of IRT models from the

true model

In addition to IRT models within the same type to the true model, other types of IRT models

were applied to explore how the dimensional structure appears in different IRT models. The

results of comparisons between IRT models within the different type from the true model are
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summarized in this section. For the data sets of the two-dimensional conditions (i.e., D2BR0,

D2BR3, D2BR6, D2WR0, D2WR3, and D2WR6), the results of the comparison between

Mix2PL models and the comparison between MMixRIMs are summarized in Tables 6.3

and 6.4, respectively. The numbers in these tables indicate the number of replications that

have been selected as the best-fitting model over 100 replications.

As shown in Table 6.3, all five information criterion indices mainly suggested the two-class

Mix2PL as the best-fitting model, when Mix2PL models were applied to the two-dimensional

data sets, regardless of the type of multidimensionality and the degree of correlation between

dimensions. Table 6.4 presents the results of model comparisons when two-dimensional

MMixRIMs were applied to the two-dimensional data sets. All information criterion indices

mostly suggested the two-dimensional and one-class MMIxRIM, which is equivalent to the

M2PL model. Compared with other indices, AIC suggested M2PL model as the best-fitting

model in fewer replications.

In addition to Mix2PL models, M2PL models and MMixRIMs were also applied to the

data sets of two-class conditions. The results of the comparison of M2PL models and the

comparison of MMixRIMs are summarized in Tables 6.5 and 6.6, respectively. When M2PL

models were applied to the data sets of the two-class conditions, the suggestions by each index

were not consistent. AIC, AICc, and ABIC selected the four-dimensional M2PL model as the

best-fitting model in most replications regardless of the size of latent classes. BIC, however,

selected the two- or three-dimensional M2PL model as the best-fitting model about half the

time, respectively. The two-dimensional M2PL model was selected in 51 and 57 replications

for D1C2E and D1C2D, respectively. The next most suggested model based on BIC was the

three-dimensional M2PL model. The three-dimensional M2PL model was selected in the 43

and 39 replications for D1C2E and D1C2D, respectively. CAIC selected three-dimensional

M2PL model in about 50% of replications (47 replications for D1C2E and 52 replications for

D1C2D).

82



Table 6.3: Results of Comparisons between Mix2PL Models for Two-dimensional Conditions

Condition Model AIC BIC CAIC AICc ABIC

D2BR0

2PL 0 0 0 0 0

2CMix2PL 93 100 100 97 98

3CMix2PL 3 0 0 3 2

4CMix2PL 4 0 0 0 0

D2BR3

2PL 0 0 0 0 0

2CMix2PL 100 100 100 100 100

3CMix2PL 0 0 0 0 0

4CMix2PL 0 0 0 0 0

D2BR6

2PL 0 2 1 0 0

2CMix2PL 98 98 99 99 99

3CMix2PL 2 0 0 1 1

4CMix2PL 0 0 0 0 0

D2WR0

2PL 0 0 0 0 0

2CMix2PL 97 99 99 99 99

3CMix2PL 2 1 1 1 1

4CMix2PL 1 0 0 0 0

D2WR3

2PL 0 0 0 0 0

2CMix2PL 100 100 100 100 100

3CMix2PL 0 0 0 0 0

4CMix2PL 0 0 0 0 0

D2WR3

2PL 1 12 11 2 5

2CMix2PL 89 88 89 94 93

3CMix2PL 9 0 0 4 2

4CMix2Pl 1 0 0 0 0

Note. 2CMix2PL = Two-class Mix2PL; 3CMix2PL = Three-class Mix2PL; 4CMix2PL =
Four-class Mix2PL. The largest number is bold.
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Table 6.4: Results of Comparisons between MMixRIMs for Two-dimensional Conditions

Condition Model AIC BIC CAIC AICc ABIC

D2BR0

M2PL 85 99 98 88 91

2D2CMMixRIM 10 1 2 9 7

2D3CMMixRIM 5 0 0 3 2

D2BR3

M2PL 86 100 100 89 93

2D2CMMixRIM 7 0 0 6 5

2D3CMMixRIM 7 0 0 5 2

D2BR6

M2PL 81 100 100 88 93

2D2CMMixRIM 7 0 0 6 4

2D3CMMixRIM 12 0 0 6 3

D2WR0

M2PL 85 98 98 94 95

2D2CMMixRIM 9 2 2 5 4

2D3CMMixRIM 6 0 0 1 1

D2WR3

M2PL 79 100 96 88 92

2D2CMMixRIM 9 0 4 7 5

2D3CMMixRIM 12 0 0 5 3

D2WR6

M2PL 74 98 97 84 89

2D2CMMixRIM 15 2 3 14 10

2D3CMMixRIM 11 0 0 2 1

Note. 2D2CMMixRIM = Two-dimensional and two-class MMixRIM; 2D3CMMixRIM =
Two-dimensional and three-class MMixRIM. The largest number is bold.
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Table 6.5: Results of Comparisons between M2PL Models for Two-class Conditions

Condition Model AIC BIC CAIC AICc ABIC

D1C2E

M2PL 0 0 0 0 0

2DM2PL 0 51 24 0 1

3DM2PL 4 43 47 7 17

4DM2PL 96 6 29 93 82

D1C2D

M2PL 0 0 0 0 0

2DM2PL 0 57 25 0 0

3DM2PL 1 39 52 4 12

4DM2PL 99 4 23 96 88

Note. 2DM2PL = Two-dimensional M2PL; 3DM2PL = Three-dimensional M2PL; 4DM2PL =
Four-dimensional M2PL. The largest number is bold.

As summarized in Table 6.6, the different patterns of model selections were observed

depending on information criterion indices. AIC and AICc largely suggested the two-

dimensional and two-class MMixRIM as the best-fitting, while BIC and CAIC selected

two-dimensional and one-class MMixRIM in most replications. The model mostly sug-

gested based on ABIC was the two-dimensional and one-class MMixRIM (about 55%); the

two-dimensional and two-class MMixRIM was second most (about 40%).

For the two-dimensional and two-class conditions, M2PL and Mix2PL models were addi-

tionally applied. The results of the comparisons of M2PL and Mix2PL models are presented

in Tables 6.7 and 6.8, respectively. As observed in other model comparisons, AIC and AICc

tended to select the more complex model than other indices. These indices selected the four-

dimensional M2PL model in more than half of replications regardless of the type of multidi-

mensionality and the correlation between dimensions. The percentages of the selection of the

four-dimensional M2PL model based on AIC were between 74% and 92%. The percentages
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Table 6.6: Results of Comparisons between MMixRIMs for Two-class Conditions

Condition Model AIC BIC CAIC AICc ABIC

D1C2E

M2PL 9 98 97 19 43

2D2CMMixRIM 73 2 3 76 54

2D3CMMixRIM 18 0 0 5 3

D1C2D

M2PL 2 100 99 8 40

2D2CMMixRIM 85 0 1 86 55

2D3CMMixRIM 13 0 0 6 5

Note. 2D2CMMixRIM = Two-dimensional and two-class MMixRIM; 2D3CMMixRIM =
Two-dimensional and three-class MMixRIM. The largest number is bold.

of the selection of the four-dimensional M2PL model based on AICc were slightly smaller

than those based on AIC, ranging between 56% and 83%. On the other hand, BIC tended to

suggest the two- or three-dimensional M2PL models as the best-fitting model. For D2C2R0E,

D2C2R0D, D2C2R3D, and D2C2R6D, the three-dimensional M2PL was mostly suggested

as the best-fitting model based on BIC. For D2C2R3E and D2C2E6E, the two-dimensional

M2PL was favored by BIC. CAIC mainly suggested the three-dimensional M2PL model for

all conditions. The percentages of the selection of the three-dimensional M2PL model were

between 62% and 89%. ABIC preferred the four-dimensional M2PL model as the best-fitting

model for D2C2R0E, D2C2R0D, D2C2R3D, and D2C2R6D. For D2C2R3E and D2C2R6E,

the three-dimensional M2PL model was mostly selected.

Overall, when the M2PL models were applied to the data sets of the two-dimensional

and two-class condition, more than three-dimensional M2PL models were selected as the

best-fitting model, except for the D2C2R3E and D2C2R6E conditions. That is, the mul-

tidimensionality caused by the two-dimensional traits and the heterogeneous population
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observed as additional dimensions when the heterogeneous population were not considered

in the model.

Table 6.8 presents the numbers of replications that have been selected as the best-fitting

model when Mix2PL models were applied to the data sets of the two-dimensional and

two-class conditions. All five information criterion indices dominantly suggested two-class

Mix2PL model as the best-fitting model for all conditions. The percentages of the selection

of two-class Mix2PL model based on AIC were slightly lower than those based on other

indices for all conditions. Consequently, additional classes were not observed for the data

sets two-dimensional and two-class conditions, although the applied model (i.e., Mix2PL

model) did not consider multidimensional traits within a latent class.

Based on these results, the two-class Mix2PL model might be appropriate to analyze the

data sets of the two-dimensional and two-class conditions. For further understanding about

the performances of Mix2PL model and MMixRIM, these two models were compared based

on the five information criterion indices, in particular for the two-class conditions (i.e., D1C2E

and D1C2D) and the two-dimensional and two-class conditions (i.2., D2C2R0E, D2C2R3E,

D2C2R6E, D2C2R0D, D2C2R3D, and D2C2R6D). The results of model comparisons are

presented in Table 6.9.

According to Table 6.9, the model selections were consistent based on all information

criterion indices, except for BIC. Selection of the two-class Mix2PL model was mostly better

than for the two-dimensional and two-class MMixRIM for the two-class condition data sets.

On the other hand, the two-dimensional and two-class MMixRIM model was better than the

two-class Mix2PL model for the data sets of the two-dimensional and two-class conditions.

Unlike other indices, BIC suggested the two-dimensional and two-class MMixRIM in fewer

replications of the data sets for the two-dimensional and two-class conditions, particu-

larly in D2C2R6D. Although the two-class Mix2PL model could perform well for the data

sets of the two-dimensional and two-class, two-dimensional and two-class MMixRIM would
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Table 6.7: Results of Comparisons between M2PL models for Two-dimensional and Two-class
Conditions

Condition Model AIC BIC CAIC AICc ABIC

D2C2R0E

2PL 0 0 0 0 0

2DM2PL 0 44 23 0 0

3DM2PL 16 55 73 35 53

4DM2PL 84 1 4 65 47

D2C2R3E

2PL 0 0 0 0 0

2DM2PL 0 59 34 0 0

3DM2PL 26 39 62 38 62

4DM2PL 74 2 4 62 38

D2C2R6E

2PL 0 0 0 0 0

2DM2PL 0 56 36 0 1

3DM2PL 24 44 64 44 66

4DM2PL 76 0 0 56 33

D2C2R0D

2PL 0 0 0 0 0

2DM2PL 0 21 7 0 0

3DM2PL 8 77 85 17 31

4DM2PL 92 2 8 83 69

D2C2R3D

2PL 0 0 0 0 0

2DM2PL 0 27 7 0 0

3DM2PL 12 73 89 26 38

4DM2PL 88 0 4 74 62

D2C2R6D

2PL 0 0 0 0 0

2DM2PL 0 30 13 0 1

3DM2PL 11 68 83 30 45

4DM2PL 89 2 4 70 55

Note. 2DM2PL = Two-dimensional M2PL; 3DM2PL = Three-dimensional M2PL; 4DM2PL =
Four-dimensional M2PL. The largest number is bold.
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Table 6.8: Results of Comparisons between Mix2PL Models for Two-dimensional and Two-
class Conditions

Condition Model AIC BIC CAIC AICc ABIC

D2C2R0E

2PL 0 0 0 0 2

2CMix2PL 61 100 99 73 85

3CMix2PL 35 0 1 27 15

4CMix2PL 4 0 0 0 0

D2C2R3E

2PL 0 0 0 0 2

2CMix2PL 80 100 100 93 97

3CMix2PL 16 0 1 7 3

4CMix2PL 4 0 0 0 0

D2C2R6E

2PL 0 0 0 0 2

2CMix2PL 92 100 100 96 98

3CMix2PL 6 0 1 3 1

4CMix2Pl 2 0 0 1 0

D2C2R0D

2PL 0 0 0 0 2

2CMix2PL 71 99 99 82 87

3CMix2PL 23 1 1 18 13

4CMix2PM 6 0 0 0 0

D2C2R3D

2PL 0 0 0 0 2

2CMix2PL 82 98 98 89 93

3CMix2PL 17 2 2 11 7

4CMix2PL 4 0 0 0 0

D2C2R6D

2PL 0 0 0 0 2

2CMix2PL 94 99 99 97 99

3CMix2PL 6 1 1 3 1

4CMix2PL 2 0 0 1 0

Note. 2CMix2PL = Two-class Mix2PL; 3CMix2PL = Three-class Mix2PL; 4CMix2PL =
Four-class Mix2PL. The largest number is bold.
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be more appropriate for these data sets based on the model comparisons of these two models.

6.3 Recovery analysis

The recovery analyses of model parameters were conducted to assess the performance of the

MMixRIM model compared with the performance of the M2PL and Mix2PL models. For

the recovery of item parameters, BIAS, root mean square error (RMSE), and correlations

between the true item parameters and the estimated item parameters were used. For the het-

erogeneous population conditions (i.e., D1C2E, D1C2D, D2C2R0E, D2C2R3E, D2C2R6E,

D2C2R0D, D2C2R3D, and D2C2R6D), the recovery of class memberships was evaluated by

using the percentage of cases assigned to the same latent classes to its generated latent class

membership. Before the recovery analysis, label switching was monitored for the heteroge-

neous population conditions for MixIRT models applied to these conditions. In a MixIRT

model, classes are latent, not manifest, and it is possible that the meaning of each latent class

may differ in each replication. That is, the characteristics of Class 1 in the first replication

might be observed as the characteristics of Class 2 in the second replication. This situation is

called label switching. In this simulation study, label switching was monitored by comparing

the true item parameters and the estimated item parameters, and corrected when observed.

After correcting label switching, the estimated parameters were transformed to the scale of

the true parameters as explained in the previous chapter.

6.3.1 Recovery analysis of item parameters

BIAS and RMSE were close to zero and correlations were close to one. The means and

standard deviations for BIAS, RMSE, and correlations between the true (i.e., generating)

item parameters and estimated item parameters over the 100 replications are reported in

Tables 6.10 to 6.12 and Figures 6.7 to 6.9.
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Table 6.10: Results of Recovery Analyses for Item Discrimination(a)/ Slopes Estimates for
the First Dimension(a1)

Model Condition
BIAS RMSE Correlation

Mean (SD) Mean (SD) Mean (SD)

2PL D1 0.000 (0.000) 0.067 (0.009) 0.630 (0.096)

Mix2PL
D1C2E 0.000 (0.000) 0.138 (0.014) 0.850 (0.031)

D1C2D 0.000 (0.000) 0.147 (0.016) 0.830 (0.031)

M2PL

D2BR0 0.011 (0.018) 0.093 (0.013) 0.977 (0.006)

D2BR3 0.002 (0.020) 0.110 (0.021) 0.968 (0.018)

D2BR6 −0.002 (0.027) 0.164 (0.027) 0.933 (0.036)

D2WR0 0.011 (0.019) 0.099 (0.021) 0.966 (0.022)

D2WR3 0.004 (0.022) 0.115 (0.015) 0.956 (0.012)

D2WR6 −0.001 (0.031) 0.182 (0.023) 0.902 (0.028)

MMixRIM

D2C2R0E 0.032 (0.038) 0.208 (0.026) 0.815 (0.044)

D2C2R3E 0.017 (0.048) 0.241 (0.039) 0.809 (0.042)

D2C2R6E 0.001 (0.077) 0.389 (0.085) 0.780 (0.050)

D2C2R0D 0.035 (0.041) 0.241 (0.032) 0.824 (0.039)

D2C2R3D 0.021 (0.072) 0.294 (0.119) 0.806 (0.042)

D2C2R6D −0.003 (0.087) 0.424 (0.090) 0.759 (0.048)

Note.When RMSE is larger than .3 or correlation is less than .8, the value is bold.
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As reported in Table 6.10, BIASs for item discriminations of the unidimensional (i.e., D1)

and the two-class conditions (i.e., D1C2E and D1C2D) were all zero. For estimated slopes for

the first dimension by M2PL models for two-dimensional conditions (i.e., D2BR0, D2BR3,

D2BR6, D2WR0, D2WR3, and D2WR6), BIASs were between 0.00 and 0.01, and decreased

as correlations between dimensions increased. The last six rows in Table 6.10 present the

recovery statistics for two-dimensional and two-class conditions (i.e., D2C2R0E, D2C3R3E,

D2C2R6E, D2C2R0D, D2C2D3D, and D2C2R6D). BIASs for slopes were slightly larger

than BIASs for other conditions. These values were all close to zero, ranging between 0.00

and 0.04. Additionally, RMSE for item discriminations (a) of D1 was about 0.07, those for

D1C2E and D1C2D were about 0.14 and 0.15, respectively. For the slope estimates (a1) of

the two-dimensional conditions, RMSEs ranged between 0.09 and 0.18, and these RMSEs

increased as the correlation increased contrary to BIASs. For the two-dimensional and two-

class condition, RMSEs for the slopes were larger than other conditions, ranging between 0.21

and 0.42. Similar to RMSEs for two-dimensional conditions, these RMSEs increased as the

correlation increased. The correlations were mostly larger than .8, except for some conditions.

On the other hand, the correlation between true and estimated item discriminations was 0.63

for D1. It is important to note that this low correlation occurred for the very small variance

of item discriminations. The variances for true and estimated item discriminations were only

0.01. It is likely that the low correlation for item discriminations did not necessarily mean

poor estimation by the 2PL model. For the two-dimensional and two-class conditions, the

range of correlations for slopes for the first dimension were between 0.76 and 0.82. These

relatively lower correlations also might be caused by the smaller variances of parameters as

observed in the unidimensional condition. For the two-dimensional and two-class conditions,

Class 1 was assumed to be a group of students who did not learn about the latent trait

measured on the second dimension, and Class 2 was assumed as a group of students who did

not learn about the latent trait on the first dimension. Consequently, the slope parameters

of items that measure the latent trait on the second dimension were close to zero with a
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small variation for Class 1. On the other hand, for Class 2, the slope parameters of items

that measure the latent trait on the first dimension were close to zero (see Figure 5.2).

Table 6.11: Results of Recovery Analyses for Slopes Estimates for the Second Dimension(a2)

Model Condition
BIAS RMSE Correlation

Mean (SD) Mean (SD) Mean (SD)

2PL D1 - - - - - -

Mix2PL
D1C2E - - - - - -

D1C2D - - - - - -

M2PL

D2BR0 0.012 (0.019) 0.092 (0.013) 0.976 (0.007)

D2BR3 −0.002 (0.020) 0.114 (0.022) 0.961 (0.025)

D2BR6 −0.009 (0.028) 0.176 (0.029) 0.915 (0.042)

D2WR0 0.009 (0.018) 0.095 (0.022) 0.966 (0.028)

D2WR3 −0.001 (0.019) 0.111 (0.014) 0.956 (0.013)

D2WR6 −0.006 (0.028) 0.180 (0.021) 0.897 (0.031)

MMixRIM

D2C2R0E 0.025 (0.037) 0.205 (0.026) 0.814 (0.048)

D2C2R3E 0.011 (0.051) 0.240 (0.042) 0.812 (0.046)

D2C2R6E 0.007 (0.078) 0.392 (0.089) 0.782 (0.048)

D2C2R0D 0.046 (0.053) 0.230 (0.068) 0.774 (0.055)

D2C2R3D 0.020 (0.081) 0.285 (0.159) 0.775 (0.054)

D2C2R6D 0.018 (0.096) 0.414 (0.127) 0.755 (0.053)

Note.When RMSE is larger than .3 or correlation is less than .8, the value is bold.

Table 6.11 presents the recovery statistics for the slope estimates for the second dimen-

sions. Thus, the unidimensional condition and the two-class conditions were not available

to calculate the recovery statistics. All BIASs and RMSEs were very close to those for

the slope estimates for the first dimensions in Table 6.10. Again, BIASs decreased, while
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RMSEs increased as the correlation between dimensions increased for all conditions. BIASs

and RMSEs for the two-dimensional and two-class conditions were slightly larger than those

for the two-dimensional conditions. All correlations between true and estimated slopes for

the second dimension were larger than .9 for the two-dimensional conditions. For the two-

dimensional and two-class conditions, however, the correlations were between 0.76 and 0.81.

As explained above, these relatively weaker correlations for these conditions might relate to

the small variances of slope parameters.

As can be seen from Table 6.12, BIASs for the item difficulties of D1, D1C2E, and D1C2D

were all zero. RMSE for the item difficulties of D1 was 0.08, and this was the smallest among

the 15 conditions. For D1C2E and D1C2D, RMSEs were about 0.14 and 0.14, respectively.

For the two-dimensional conditions, BIASs for intercepts were all negative value, ranging

between -0.03 and -0.04. This means that the intercept parameters were underestimated

by M2PL model regardless of the multidimensional structure and the degree of correla-

tions between dimensions. Similar to BIASs, the multidimensional structure or correlations

between dimensions did not affect RMSEs for the intercepts. Most RMSEs for intercepts

were similarly close to 0.16. For the two-dimensional and two-class conditions, each recovery

statistics for the intercepts did not vary across the six conditions. BIASs for intercepts were

very close to zero, ranging between -0.01 and 0.00. RMSEs ranged between 0.24 and 0.28,

and the correlations between the true and estimated item difficulties or intercepts for the all

conditions were between 0.94 and 0.95.

BIASs, RMSEs, and correlations for item parameters are compared in Figures 6.7 to 6.9,

respectively. Based on BIASs in Figure 6.7, the estimated intercept parameters by M2PL

model tended to underestimate, while estimated slop parameters by MMixRIM tended to

overestimate when dimensions were independent. According to RMSEs in Figure 6.8, the

accuracy of estimation decreased as the complexity of the model increased. In particular,

RMSEs for slope parameters increased as the correlation between dimensions decreased.

As shown in Figure 6.9, the correlations for item difficulties and intercept parameters were
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Table 6.12: Results Recovery Analyses for Item Difficulties(b)/ Intercepts(d)

Model Condition
BIAS RMSE Correlation

Mean (SD) Mean (SD) Mean (SD)

2PL D1 0.000 (0.000) 0.080 (0.012) 0.993 (0.000)

Mix2PL
D1C2E 0.000 (0.000) 0.125 (0.014) 0.993 (0.002)

D1C2D 0.000 (0.000) 0.137 (0.040) 0.991 (0.010)

M2PL

D2BR0 −0.036 (0.015) 0.162 (0.007) 0.972 (0.003)

D2BR3 −0.036 (0.016) 0.163 (0.007) 0.972 (0.003)

D2BR6 −0.036 (0.019) 0.163 (0.008) 0.972 (0.004)

D2WR0 −0.035 (0.014) 0.162 (0.006) 0.972 (0.002)

D2WR3 −0.034 (0.014) 0.162 (0.007) 0.972 (0.003)

D2WR6 −0.034 (0.014) 0.162 (0.007) 0.972 (0.003)

MMixRIM

D2C2R0E 0.001 (0.018) 0.240 (0.013) 0.956 (0.004)

D2C2R3E −0.003 (0.017) 0.238 (0.014) 0.956 (0.005)

D2C2R6E −0.007 (0.018) 0.236 (0.014) 0.956 (0.005)

D2C2R0D 0.004 (0.033) 0.284 (0.043) 0.943 (0.011)

D2C2R3D −0.002 (0.045) 0.283 (0.068) 0.941 (0.031)

D2C2R6D −0.007 (0.032) 0.268 (0.032) 0.946 (0.011)
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Figure 6.7: BIASs for item parameter estimates.

Figure 6.8: RMSEs for item parameter estimates.

similar across all conditions, but a more complicated model made a weaker correlation

for slope parameters, except for D1, D1C2E and D1C2D. The relatively weak correlations

for these three conditions results from the small variances of parameters rather than the
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Figure 6.9: Correlations for item parameter estimates.

accuracy of estimation.

6.3.2 Recovery analysis of memberships

The recovery analysis of the latent class memberships was conducted for the heteroge-

nous population conditions, and the results are presented in Table 6.13 and Figure 6.10.

Table 6.13 reported the average percentages of correct detection of the class membership

over 100 replications for each condition. For the two-class conditions, most cases were

assigned to their true class by Mix2PL model, regardless of the size of latent classes. On

average, the percentage of the correct detectiong of class membership was 98% for both

D1C2E and D1C2D. The average percentages of the correct detection of class membership

for the two-dimensional and two-class conditions were lower than the two-class conditions.

Particularly, the percentages of correct detections differed depending on the size of latent

classes. About 75% of cases were correctly assigned to their true class when the sizes of

classes were equal (i.e., D2C2R0E, D2C2R3E, and D2C2R6E), and about 80% of cases were
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correctly assigned to the true class when the size of one class was larger than another class

(i.e., D2C2R0D, D2C2R3D, and D2C2R6D).

Table 6.13: Percentage of Correct Detect Class Membership

Model Condition Mean (SD)

Mix2PL
D1C2E .978 (.005)

D1C2D .982 (.005)

MMixRIM

D2C2R0E .743 (.014)

D2C2R3E .746 (.015)

D2C2R6E .752 (.014)

D2C2R0D .801 (.013)

D2C2R3D .803 (.014)

D2C2R6D .806 (.014)

6.3.3 Effects of data structures on the estimation of model parameters

To examine the effect of different dimensional structure on the estimation of model parame-

ters, a two-level linear model analysis was conducted because the 100 replications were nested

within each condition. Moreover, the the variability of recovery statistics within each condi-

tion might be smaller than the variability of those between the conditions. BIASs, RMSEs,

and Pearson correlations used as dependent variables in each two-level linear model. The type

of distributions of ability, the type of multidimensionality, the size of latent class, and the

correlation between dimensions were used as independent variables. In this simulation study,

the 15 simulation conditions were based on different combinations of simulation factors. That

is, the 15 conditions were basically based on the four different distributions of ability (i.e.,

unidimensional, two-dimensional, mixture with two latent classes, and two-dimensional and
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Figure 6.10: Percentages of correct eetection of class membership.

two-class), and the other three factors depended on the type of distributions of ability. For

example, the size of latent class was applied to manipulate the two-class conditions (i.e.,

D1C2E versus D1C2D) and the two-dimensional and two-class conditions (i.e., D2C2R0E,

D2C2R3E, and D2C2R6E versus D2C2R0D, D2C2R3D, and D2C2R6D), while the type

of multidimensionality was applied only for the two-dimensional conditions (i.e., D2BR0,

D2BR3, and D2BR6 versus D2WR0, D2WR3, and D2WR6). Accordingly, the type of dis-

tributions of ability was available to all replications, but type of multidimensionality, latent

class sizes and correlation between dimensions were not available for some conditions. For

these reasons, the type of distributions of ability was used as a level-1 independent variable,

and other three simulation factors (i.e., latent class size, type of multidimensionality, and

correlation between dimensions) were used as level-2 independent variables to explain dif-

ferences between type of distributions of ability. The two-level structure of the relationship

between factors is represented in Figure 6.11.

Variable Recording. Unlikely RMSEs and correlations, the possible range of BIAS is

between a negative infinite to a positive infinite. Thus, for the easy interpretation, the abso-
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Figure 6.11: Two-level structure of simulation factors.

lute values of BIASs were used as a dependent variable. Since all independent variables are

categorical variables, these variables were recoded by using dummy coding. Three dummy

variables were used for the type of distributions of ability, and each dummy variable repre-

sents the two-dimensional (2D), two-class (2C), and two-dimensional and two-class (2D2C)

conditions, respectively. Thus, the unidimensional condition was set as a reference group.

One dummy variable (SIZE) was used for the latent class size because this had two cate-

gories. The case of equal size classes was recoded as zero, and the case of one dominant class

was recoded as one so that the case of equal size classes can be a reference group. Similarly,

the case of the between-items multidimensionality was recoded as zero, and the case of the

within-items multidimensionality was recoded as one. Two dummy variables (CORR3 and

CORR6) were generated for the correlation between dimensions. A total of 7 dummy vari-

ables (i.e., 2D, 2C, 2D2C, SIZE, STRUC, CORR3, and CORR6) were used as independent

in each two-level linear model. The two-level linear model can be formulated as follows:
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Yij =β0j + β1j × 2Dij + β2j × 2Cij + β3j × 2D2Cij + eij, (6.1)

β0j = γ00 + uj, (6.2)

β1j = γ10 + γ11 × STRUCj + γ12 × CORR3j + γ13 × CORR6j, (6.3)

β2j = γ20 + γ21 × SIZEj, (6.4)

β3j = γ30 + γ31 × SIZEj + γ32 × CORR3j + γ33 × CORR6j, (6.5)

where Yij indicates the recovery statistics for the ith replication of the j th condition, β0j is

a random intercept, β1j, β2j , and β3j are fixed slopes, eij indicates the level-1 residuals, and

uj is the level-2 residuals. Equation 6.2 is the equation for the random intercept, and Equa-

tions 6.2 to 6.5 are equations for the fixed slopes. In Equation 6.2, γ00 indicates the mean of a

reference group, which means the mean of recovery statistics of the unidimensional condition

(i.d., D1). In Equation 6.3, γ10 indicates the effect of the two-dimensional conditions, which

means the average difference of recovery statistics of the two-dimensional conditions from

those of the unidimensional condition. γ11 is the coefficient for the interaction between 2D

and STRUC, which means the difference of the effect of the two-dimensional conditions by

the type of multidimensionality. Similarly, γ12 and γ13 represent the coefficients of interac-

tions between 2D and CORR3 and between 2D and CORR6, respectively. As mentioned

above, SIZE was not included in Equation 6.3 because the latent class size was not available

for the two-dimensional conditions. In Equation 6.4, γ20 represents the average difference of

the recovery statistics of the two-class conditions from those of the unidimensional condition,

and γ21 indicates the coefficient of the interaction between 2C and SIZE. In Equation 6.5,

γ30 means the average difference of recovery statistics of the two-dimensional and two-class

conditions from those of the unidimensional condition, and γ31, γ32, and γ33 indicate the

coefficients of interactions between 2D2C and SIZE, CORR3, and CORR6, respectively.

Assumption Test. For the correct inferences of the results from the multilevel linear

model, a number of assumptions should be satisfied. First assumption is the linear depen-
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dence of dependent variable on the independent variables. Another assumption is the

homoscedastic normal distributions for the residuals (Sniger & Bosker, 2012). As reported

in the previous section, correlations for the item difficulty (or intercept) estimates were very

close to one in all simulation conditions. Also, the average percentages of correct detect

class membership of 100 replications for each condition were not have a linear relationship

with simulation conditions. Consequently, these two recovery statistics were not included

to the multilevel linear model analyses. The homoscedastic normal distributions for the

level-1 residuals was tested by using a normal probability plot of standardized residuals

called a P-P plot and a scatter plot of the standardized residuals against the predicted

values. Since raw BIASs, RMSEs, and correlations were violated the homoscedastic normal

distribution assumption, these values were transformed. The natural logarithm transforma-

tion was applied to transform BIASs and RMSEs because these had a positive skewness

(Howell, 2007). For correlations, the Fisher’s logarithmic transformation was used because

correlations also positively skewed, between .7 and 1.0 (Blommers & Forsyth, 1977). That

is, log(|BIAS|), log(RMSE), and zr were used in the two-level linear model analyses.

Figures 6.12 to 6.14 are plots for testing the homoscedastic normal distribution of the level-1

residuals.

Figure 6.12 contains the plots for the assumption test of the item discriminations (a)/

slopes for the first dimension (a1). Similarly, Figure 6.13 and Figure 6.14 are for the assump-

tion test of the slops for the second dimension (a2) and the item difficulties (b)/ intercepts(d),

respectively. In Figure 6.12 and Figure 6.13, the two plots on the left-side are plots for BIASs,

other two plots on the middle are for RMSEs, and another two plots are for the correlations.

Because the correlations for the item difficulties and intercepts were not included to the

two-level linear model analyses, the two plots on the left-side in Figure 6.14 are for BIASs,

and another two-plots on the right-side in Figure 6.14 are for RMSEs.

The scatter plots were used to test the homogeneous variance of the level-1 residual by

comparing the standardized residuals and the predicted values. The P-P plots indicates the
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Figure 6.12: Scatter plots and P-P plots of standardized level-1 residuals of recovery statistics
for item discrimination(a)/slopes for the first dimension(a1).

normality of the level-1 residuals. As the pairs of the observed and expected probability of

the standardized residual are close to the diagonal line, as the distribution of the level-1

residuals is close to normal. According to Figures 6.12 to 6.14, the the level-1 residuals were

moderately homoscedastic normal.

Effects of Dimension Structure on Estimation of Item Discriminations and

Slopes for the First Dimension. Table 6.14 presents the results of the two-level linear

model analyses for the recovery statistics of the item discriminations (a)/ slopes for the first

dimension (a1). As explained previous, the reference group is the unidimensional condition.

Accordingly, the intercept means the average recovery statistics of the unidimensional condi-
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Figure 6.13: Scatter plots and P-P plots of standardized level-1 residuals of recovery statistics
for slopes for the second dimension(a2).

tion, and the fixed effects can be interpreted as the differences of the average recovery statis-

tics of each condition from the the unidimensional condition. For example, the coefficient 2D

indicates the difference between the average recovery statistics of the two-dimensional con-

dition from the unidimensional condition. That is, the effect of the two-dimensional ability

distribution on the estimation of the model parameters. Similarly, the coefficient of the inter-

action between the two-dimensional and two-class condition and the the latent class size (i.e.,

2D2C×SIZE) indicates the difference of average recovery statistics when the sizes of latent

classes were equal from those when there was a dominant class within six the two-dimensional
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Figure 6.14: Scatter lots and P-P plots of standardized level-1 residuals of recovery statistics
for item difficulty(b)/intercept(d).

and two-class conditions. That is, the effect of latent class size on the estimation of model

parameter for the two-dimensional and two-class conditions.

According to Table 6.14, BIASs of the two-dimensional conditions and of the two-

dimensional and two-class conditions were significantly larger than those of the unidimen-

sional condition (Estimate for 2D = 31.67, p < .001 and Estimate for 2D2C = 32.48,

p < .001), but BIASs of the two-class conditions were significantly smaller than those of the

unidimensional condition (Estimate of 2C = -0.32, p < .05). The effect of the type of multidi-

mensionality on BIASs of the two-dimensional conditions was not significant. Also, there was
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Table 6.14: Results of Two-level Linear Model Analyses for Item Discriminations(a) and Slopes
for the First Dimension(a1)

log(|BIAS|) log(RMSE) zr

Estimate SE Estimate SE Estimate SE

Fixed effects

Intercept −36.043 *** 0.104 −2.718*** 0.042 0.756*** 0.077

2D 31.672*** 0.138 0.335*** 0.056 1.496*** 0.102

2C −0.324* 0.147 0.731*** 0.060 0.509*** 0.109

2D2C 32.481*** 0.132 1.145*** 0.055 0.418*** 0.099

2D × STRUC −0.134 0.104 0.050 0.042 −0.174* 0.077

2D × CORR3 −0.103 0.104 0.166*** 0.042 −0.161* 0.077

2D × CORR6 0.276 0.116 0.617*** 0.045 −0.645*** 0.086

2C × SIZE 0.023 0.147 0.062 0.060 −0.065 0.109

2D2C × SIZE 0.200* 0.085 0.137*** 0.035 −0.014 0.063

2D2C × CORR3 0.053 0.104 0.155*** 0.042 −0.037 0.077

2D2C × CORR6 0.359*** 0.104 0.582*** 0.042 −0.136 0.077

Random effects

Intercept 0.000 0.000 0.002 0.001 0.006 0.000

Level-1 1.083*** 0.040 0.024*** 0.001 0.019*** 0.000

Note. * p < .05; ** p < .01; *** p < .001. Reference group of 2D, 2C and 2D2C: Unidimensional
ability; Reference group of STRUC: Between-items multidimensionality; Reference group of
SIZE: Equal size two classes; and Reference group of CORR3 and CORR6: Independent
dimensions.
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no significant effect of the correlation between dimensions on BIASs of the two-dimensional

conditions. The effect of latent class size on BIASs of the two-class conditions also was not

statistically significant, while it had a significant influence on BIASs of the two-dimensional

and two-class conditions (Estimate of 2D2C × SIZE = 0.20, p < .05). Additionally, BIASs

of the two-dimensional and two-class conditions with highly correlated dimensions (Estimate

of 2D2C × CORR6 = 0.36, p < .001) were significantly larger than those with independent

dimensions. For the random effects, the variance of intercept became zero after adding

independent variables, whereas this differed significantly in the unconditional model.

Similar to BIASs, the effects of three distributions of abilities on RMSEs were significant

(Estimate of 2D = 0.34, p < .001; Estimate of 2C = 0.73, p < .001; and Estimate of 2D2C

= 1.14, p < .001), but the direction of the effect of 2C was opposite. That is, RMSEs of

the unidimensional condition were significantly smaller than RMSEs of other distributions of

abilities. RMSEs of the two-dimensional conditions significantly increased as the correlations

between dimensions increased (Estimate of 2D × CORR3 = 0.17, p < .001 and Estimate of

2D×CORR6 = 0.62, p < .001). RMSEs of the two-dimensional and two-class conditions also

increased as the correlations between dimensions increased (Estimate of 2D2C ×CORR3 =

0.16, p < .001 and Estimate of 2D2C×CORR6 = 0.58, p < .001). Moreover, RMSEs of two-

dimensional and two-class conditions with one dominant class (Estimate of 2D2C × SIZE

= 0.14, p < .001) were were significantly larger than those with equal size classes.

Three different types of distributions had significantly positive effects on the correlations

(Estimate of 2D = 1.50, p < .001; Estimate of 2C = 0.51, p < .001; and Estimate of 2D2C

= 0.42, p < .001). The correlations for the two-dimensional data sets with the within-items

multidimensionality were significantly lower than those for the two-dimensional data sets

with the between items multidimensionality (Estimate of 2D × STRUC = -0.17, p < .05).

Moreover the correlations for the two-dimensional data sets with independent dimensions

were significantly larger than those for the two-dimensional data sets with weakly or strongly

correlated dimensions (Estimate of 2D × CORR3 = -0.16, p < .05 and Estimate of 2D ×
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CORR6 = -0.65, p < .001). There was no significant effect of other simulation factors on the

correlations for the two-class data sets and the two-dimensional and two-class data sets.

Effects of Dimension Structure on Estimation of Slopes for the Second Dimen-

sion. Table 6.15 presents the results of the two-level linear model analyses for the slope

parameters of the second dimension(a2). Because only the two-dimensional and the two-

dimensional and two-class conditions had the slopes of the second dimension, the main effect

of 2C and the interactions between 2C and other possible independent variables were not

included to the model. Therefore, the intercept in these models means the average recovery

statistics of the between-items multidimensionality with two independent dimensions (i.e.,

D2BR0). BIASs of the two-dimensional and two-class conditions were significantly larger

than BIASs of D2BR0 (Estimate of 2D2C = 0.79, p < .001). There was no significant effect

of the multidimensional type on BIASs of two-dimensional conditions, but the BIASs of the

conditions with highly correlated two dimensions were significantly larger than those with

independent two dimensions (Estimate of 2D × CORR6 = 0.30, p < .001). Also, for the

two-dimensional and two-class conditions, BIASs of the conditions with highly correlated

dimensions were significantly larger than those with two independent dimensions (Estimate

of 2D2C ×CORR6 = 0.49, p < .001). Additionally, the effect of a dominant class on BIASs

of the two-dimensional and two-class conditions was significant (Estimate of 2D2C ×SIZE

= 0.38, p < .001).

For RMSEs, all fixed effects, except for STRUC, were significant at the alpha level .05.

RMSEs of D2BR0 was significantly smaller than RMSEs of the two-dimensional and two-class

conditions (Estimate of 2D2C = 0.80, p < .001). RMSEs of the two-dimensional conditions

increased as the correlation between dimensions increased (Estimate of 2D×CORR3 = 0.19,

p < .001 and 2D×CORR6 = 0.66, p < .001). Similarly, RMSEs of the two-dimensional and

two-class conditions increased as the correlation between dimensions increased (Estimate of

2D2C×CORR3 = 0.16, p < .001 and 2D2C×CORR6 = 0.61, p < .001). Moreover, RMSEs

of the two-dimensional and two-class conditions with a dominant class were significantly

109



larger than those with equal size classes (Estimate of 2D2C ×SIZE = 0.08, p < .001). The

correlations of D2BR0 were significantly larger than the correlations of the two-dimensional

and two-class conditions (Estimate of 2D2C = -1.06, p < .001). Similar to the slopes for

the first dimension, the type of multidimensionality and the levels of correlation between

dimensions had significant influence on the correlations for the two-dimensional data sets

(Estimate of STRUC = -0.11, p < .01; stimate of 2D × CORR3 = -0.20, p < .001; and

stimate of 2D × CORR6 = -0.68, p < .001). For the two-dimensional and two-class data

sets, the correlations for the two-dimensional and two-class data sets with one dominant class

were significantly lower than those with equal sizes of classes (Estimate of 2D2C ×SIZE =

-0.09, p < .01).

Effects of Dimension Structure on Estimation of Item Difficulties and Inter-

cepts. As can be seen in Table 6.16, BIASs of the unidimensional condition were significantly

smaller than those of the two-dimensional conditions (Estimate of 2D = 33.34, p < .001)

and of the two-dimensional and two-class conditions (Estimate of 2D2C = 32.12, p < .001).

Only a dominant class had a significant effect on BIASs of the two-dimensional and two-

class conditions (Estimate of 2D2C × SIZE =0.65, p < .001), and other simulation factors

did not affect to BIASs. RMSEs of the unidimensional condition were smaller than those

of other distributions of ability (Estimate of 2D = 0.71, p < .001; Estimate of 2C = 0.44,

p < .001; and Estimate of 2D2C = 1.11, p < .001). The effects of the dominant class on both

RMSEs of the two-class conditions (Estimate of 2C × SIZE = 0.08, p < .001) and of the

two-dimensional and two-class conditions(Estimate of 2D2C×SIZE = 0.15, p < .001) were

significant. RMSEs of the two-dimensional and two-class with highly correlated dimensions

were smaller than those with two independent dimensions (Estimate of 2D2C × CORR6 =

-0.04, p < .05).
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Table 6.15: Results of Two-level Linear Model Analyses for Slopes for the Second
Dimension(a2)

log(|BIAS|) log(RMSE) zr

Estimate SE Estimate SE Estimate SE

Fixed effects

Intercept −4.537*** 0.100 −2.389*** 0.019 2.209*** 0.036

2D2C 0.785*** 0.134 0.802*** 0.026 −1.064*** 0.050

STRUC 0.006 0.115 0.006 0.024 −0.114** 0.042

2D × CORR3 −0.020 0.115 0.191*** 0.021 −0.196*** 0.042

2D × CORR6 0.302* 0.129 0.655*** 0.024 −0.677*** 0.017

2D2C × SIZE 0.382*** 0.094 0.077*** 0.018 −0.092** 0.034

2D2C × CORR3 0.001 0.115 0.160*** 0.021 −0.003 0.041

2D2C × CORR6 0.492*** 0.115 0.608*** 0.021 −0.069 0.015

Random effects

Intercept 0.000 0.000 0.000 0.000 0.002 0.000

Level-1 1.322*** 0.054 0.040*** 0.000 0.022*** 0.000

Note. * p < .05; ** p < .01; *** p < .001. Reference group of 2D2D: Two-dimensional abilities;
Reference group of STRUC: Between-items multidimensionality; Reference group of
SIZE: Equal size two classes; and Reference group of CORR3 and CORR6: Independent
dimensions.
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Table 6.16: Results of Two-level Linear Model Analyses for Item Difficulties(b) and Inter-
cepts(d)

log(|BIAS|) log(RMSE)

Estimate SE Estimate SE

Fixed effects

Intercept −36.789 *** 0.095 −2.532*** 0.011

2D 33.335*** 0.125 0.712*** 0.014

2C 0.174 0.134 0.444*** 0.015

2D2C 32.124*** 0.122 1.108*** 0.014

2D × STRUC −0.026 0.095 −0.004 0.011

2D × CORR3 0.007 0.095 0.001 0.011

2D × CORR6 −0.065 0.106 −0.001 0.011

2C × SIZE 0.074 0.134 0.080*** 0.015

2D2C × SIZE 0.645*** 0.077 0.146*** 0.009

2D2C × CORR3 0.030 0.095 −0.010 0.011

2D2C × CORR6 −0.060 0.095 −0.035* 0.011

Random effects

Intercept 0.000 0.000 0.000 0.000

Level-1 0.894*** 0.033 0.010*** 0.000

Note. * p < .05; ** p < .01; *** p < .001. Reference group of 2D, 2C and 2D2C:
Unidimensional ability; Reference group of STRUC: Between-items multidimensionality;
Reference group of SIZE: Equal size two classes; and Reference group of CORR3 and
CORR6: Independent dimensions.
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Chapter 7

DISCUSSION

The main purpose of this study was to propose a multidimensional mixture random item

model (MMixRIM) as an alternative model for analysis of multidimensional. When a MIRT

model is applied to multidimensional data, the multidimensionality of data can be observed

as a characteristics of an assessment. On the other hand, the multidimensionality can be

understood based on a characteristics of a group of examinees in MixIRT model. For some

multidimensional data, however, the characteristics of an assessment or a group of examinees

might not be enough to explain the dimensional structure. It is possible that an assessment

might have been developed to measure two latent traits but some groups of examinees did

not have a chance to learn one of latent traits measured. This could have happened for

several reasons such as because of different course schedules between schools or teachers. For

the data set collected from this situation, MMixRIM would be better because this model

can provide information based on characteristics of both person and assessment.

An empirical multidimensional data set from a test designed to measure middle school

teachers’ understanding about computation of fractions was analyzed using M2PL, MRM,

Mix2PL, MMixRIM models. The results from MIRT, MRM, and Mix2PL models were incon-

sistent because these IRT models capture the multidimensionality of data as the characteris-

tics of either persons or items. For some data, however, the multidimensionality might result

from the variabilities of both persons and items. Therefore, each type of IRT model might

not be enough to figure out the multidimensionality of this empirical data sets. Moreover, the

MMixRIM detected that some items measured different traits between latent classes, while

these items measured the trait on the same dimension based on the M2PL model. The results
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of the empirical study suggested some problems that needed to be studied for MIRT and

MixIRT models used for analyzing multidimensional data. These results were used to moti-

vate the present study and the development of a MMixRIM for analysis of multidimensional

data.

7.1 Summary of Simulation Study

In the simulation study, the performances of the MMixRIM were compared to those of

M2PL and Mix2PL models under several types of dimensional structures. Four different

ability distributions, two types of multidimensionality, three levels of correlation between

dimensions, and two different sizes of latent classes were manipulate. There was a total of

15 conditions. Each condition was replicated 100 times. Exploratory M2PL models, Mix2PL

models, and two-dimensional MMixRIMs analyses were applied to understand how different

dimensional structures were represented in the results for each IRT model. All generated

data sets were analyzed by nine different IRT models: 2PL model; two- to four-dimensional

M2PL (i.e., 2DM2PL, 3DM2PL, and 4DM2PL models) models; two-to four-class Mix2PL

(i.e., 2CMix2PL, 3CMix2PL, and 4CMix2PL models) models; and two- to three-class two-

dimensional MMixRIMs (i.e., 2D2CMMixRIM and 2D3CMMixRIM). To determine the best-

fitting model for the exploratory model analyses, five kinds of model information criterion

indices (AIC, BIC, CAIC, AICc, and ABIC) were applied.

The exploratory M2PL model analysis was conducted to the unidimensional data sets,

and all model information criterion indices failed to detect the true model (i.e., 2PL model).

AIC, CAIC, AICc, and ABIC mostly suggested 4DM2PL model, and BIC mostly suggested

3DM2PL model as the best-fitting model. The results of the exploratory M2PL model anal-

ysis for the two-dimensional data sets showed that all model information criterion indices

also failed to detect the true model regardless of the type of multidimensionality and the level

of correlation between dimensions. These indices tended to suggest 3DM2PL model instead

of 2DM2PL model, which is the true model for these data sets. When the exploratory M2PL
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model analysis was conducted for the two-class data sets, AIC, AICc, and ABIC mostly

suggested 4DM2PL model as the best-fitting model, BIC mainly suggested 2DM2PL model,

and CAIC preferred 3DM2PL model. Except by BIC, M2PL model with a larger number

of dimensions than the number of latent classes was favored by model information criterion

indices. Similarly, the results of the exploratory M2PL model analysis for the two-dimensional

and two-class data sets were that 4DM2PL model was mostly favored by AIC and AICc. BIC

and CAIC suggested either 2DM2PL or 3DM2PL model. ABIC tended to suggest 3DM2PL

model when the sizes of latent classes were equal, while it suggested mainly 4DM2PL model

when the size of one class was larger than another.

The results of the exploratory Mix2PL model analysis for the unidimensional data sets

showed that AIC, BIC and CAIC successfully detected the true model as the best-fitting

model in most replications, but that AICc and ABIC failed to detect the true model. When

the exploratory Mix2PL model analysis was applied to the two-dimensional data sets, the

suggestions by five model information criterion indices were consistent. In most replications,

the 2CMix2PL model was selected as the best-fitting model regardless of the type of multidi-

mensionality and level of correlation between dimensions. Furthermore, when the exploratory

Mix2PL model analysis was applied to the two-class data sets, the five indices successfully

detected the true model, the 2CMix2PL model. According to the results of the exploratory

Mix2PL model analysis for the two-dimensional and two-class data sets, the 2CMix2PL

model was also suggested most often as the best-fitting model.

Based on the results of the exploratory MMixRIM analyses for the two-dimensional

data sets, the two-dimensional MMixRIM succussed to detect the true model regardless of

the type of multidimensionality and the level of correlation between dimensions. All model

information criterion indices suggested 2D1CMMixRIM, which is equivalent to M2PL model

and the true model for the two dimensional data sets, as the best-fitting model in the most

replications. The results of the exploratory MMixRIM analysis for the two-class data sets

differed depending on the model information criterion index. AIC, AICc, and ABIC generally
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suggested 2D2CMMixRIM as the best fitting model, while BIC and CIAC mostly selected

2D1CMMixRIM. These patterns were observed regardless of the size of latent class. The same

pattern was observed in the exploratory MMixRIM analysis for the two-class data sets were

shown in the exploratory MMixRIM analyses for the two-dimensional and two-class data

sets. AIC, AICC, and ABIC successfully detect 2D2CMMixRIM, which is the true model for

these data sets, as the best-fitting model, whereas BIC and ABIC failed to detect the true

model regardless of the latent class size and the levels of the correlation between dimensions.

Unlike expectation, the Mix2PL model did not need additional classes for the two-

dimensional and two-class data sets, even though this model did not assume a multidi-

mensional ability distribution within latent classes. For comparison of the 2D2CMMixRIM

and 2CMix2PL models, however, the information criterion indices for the 2D2CMMixRIMs

were much smaller than those for the 2CMix2PL models for the two-dimensional and two-

class data sets. On the other hand, information criterion indices for the 2CMix2PL model for

the two-class data sets were smaller than those of 2D2CMMixRIM. That is, 2CMix2PL was

more appropriate for the two-class data sets, and the 2D2CMMixRIM was more appropriate

for the two-dimensional and two-class data sets, in spite of the results of the exploratory

Mix2PL model analyses that suggested the 2CMix2PL model was the best-fitting model for

both the two-class data sets and the two-dimensional and two-class data sets.

Recovery of the estimated item parameters was monitored by calculating BIAS, RMSE,

and correlation between the true and estimated parameters. For the item discriminations or

the first dimensions slopes, BIASs were very close to zero across all conditions, but RMSEs

differed depending on the conditions. Average of RMSEs for the unidimensional data sets

was the smallest, and averages of RMSEs for the two-dimensional and two-class data sets

were larger than other conditions. The level of correlation between dimensions had a negative

influence on RMSEs for the slope estimated by M2PL models and MMixRIMs. Correlations

for the two-dimensional data sets were almost one, and those for the two-class data sets and

for the two-dimensional and two-class data sets were moderate. For the unidimensional data
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sets, however, the correlations were relatively lower than other conditions. That is because of

the very small variance of item discriminations, not due to poor estimation. RMSEs, BIASs,

and correlations for the second dimension slopes were similar to those for the first dimension

slopes. According to BIASs, RMSEs, and correlations, item difficulties and intercepts were

recovered well for all conditions.

Recovery of the class memberships was also checked by calculating the percentages of cor-

rect detections of class memberships for the two-class data sets and for the two-dimensional

and two-class data sets. Class memberships for the two-class data sets were almost perfect

compared to their true membership. For the two-dimensional and two-class data sets, how-

ever, the percentages of correct detect class memberships were slightly lower than those for

the two-class data sets.

The effects of different dimensional structures on the estimation of model parameters

were examined by the two-level linear model analyses. Recovery statistics for the estimated

item parameters of the unidimensional data sets were significantly smaller than those of

other data sets. The type of multidimensionality had a significant effect on the correlations

for the slopes, but not on BIASs and RMSEs. The degree of correlation between dimensions

appeared to be related to recovery of some statistics. In particular, a highly correlated

dimensions had a significantly negative effect on BIASs and RMSEs for the slopes of the

two-dimensional and two-class data sets, except for the absolute values of BIASs for the

intercepts. A dominant latent class also had a significantly negative effect on the recovery

statistics for the item difficulties of the two-class data sets and for the intercepts of the

two-dimensional and two-class data sets.

7.2 Conclusion

Based on the finings from the simulation study, four main conclusions were drawn. First,

the performances of Mix2PL model and MMixRIM were better than those of M2PL model

for the multidimensional data analysis considered in this study. According to the results of
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the exploratory M2PL model analyses, more than a three dimensional M2PL model was

mostly suggested as the best fitting model for all data sets, even for the unidimensional

data sets. As expected, however, 2D1CMMixRIM was mainly suggested as the best-fitting

model based on the results of the exploratory MMixRIM analyes for the two-dimensional

data sets. The results of the exploratory MMixRIM analyses for the two-dimensional and

two class data sets also suggested that 2D2CMMixRIM was appropriate for these data sets.

According to the results of the exploratory Mix2PL model analyses for the two-dimensional

data sets and for the two-dimensional and two-class data sets, 2CMix2PL model was favored

by five model information criterion indices regardless of conditions. These results might be

supported by the relationship between a between-items multidimensional IRT models and a

mixture Rasch model proved by Rijmen and De Boeck (2005). Rijmen and De Boeck (2005)

have demonstrated that the between items multidimensional IRT models is equivalent to a

mixture Rasch model. Additionally, the results from the exploratory Mix2PL analyses for

the two-dimensional and two-class data sets might be an evidence of the robustness to the

weak multidimensionality of Mix2PL model. In the simulation study, the two-dimensional

and two-class data sets were generated based on the assumption that Class 1 represented the

group of examinees who did not learn the latent trait on the second dimension, and Class 2

represented the group of examinees who did not learn the latent trait on the first dimensions.

Accordingly, the multidimensionality within each latent class became weak, and this weak

multidimensionality within each latent class did not require additional latent classes in the

Mix2PL model.

Second, the recovery statistics of the estimated slopes were larger than those of intercepts

of M2PL models and MMixRIMs. Additionally, the recovery statistics of intercepts increased

as the correlations between dimensions increased. These results were consistent with Bolt

and Lall (2003). A plausible explanation for these patterns is that the model identification

for rotational indeterminacy affected the estimation of slope parameters. In this study, the

independent dimensions were assumed to hold for all data sets, even though some data
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sets were generated based on the correlated dimensions. Although the estimated parameters

transformed to the scale of the true parameters before the recovery analyses, the bias of the

estimate slopes could not correct perfectly.

Third, the estimation of model parameters tended to be less accurate as the number

of parameters increased. Additionally, the percentages of correct detections of class mem-

berships in simpler model (i.e., Mix2PL model) were also larger than in more complicated

models (i.e., MMixRIM). It might be due to the sample size relative to the number of model

parameters. MMixRIM has a relatively smaller sample size than other models because this

model has a larger number of model parameters than others. Accordingly, the sample size

might not be sufficient to get stable estimation of parameters for the MMixRIM.

Finally, the five information criterion indices used in the simulation study performed

differently depending on the type of IRT model. AIC, AICc, and ABIC detected well the

true model for the exploratory Mix2PL model and MMixRIM analyses, but BIC and CAIC

performed well only for the exploratory Mix2PL model analysis. For the exploratory M2PL

model analysis, all indices failed to detect the true model. The different performances of these

indices could be due to the differences in penalties applied for each information criterion

index. As can be seen in Figure 7.1, the penalty of AIC, AICc, and ABIC were close each

other. BIC and CAIC have similar penalties but these are much larger than those of AIC,

AICc, and ABIC. Additionally, the difference in penalty functions between M2PL models

was smaller than those between Mix2PL models or MMixRIMs. That is, the effect of penalty

function on model selection might differ depending on the combinations of the kinds of the

model information criterion index and the type of IRT models. Consequently, it would be

helpful to consider the various types of indices for the model comparisons when several types

of IRT models are considered, like this simulation study.
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Figure 7.1: Penalty terms of five information criterion indices

7.3 Limitations and Future Research

The main advantage of the random item model is that it is available to include not only

person covariates but also item covariates. In this study, covariates were not included in the

models although the proposed model was an extension of a random item model. It would

be useful to explore the effect of covariates on explaining the multidimensionality and the

characteristics of latent classes by including covariates to the MMixRIM.

To avoid complicating simulation conditions, the sample size and the test length were

fixed. Although the sample size and test length (i.e., 1,000 examinees and 30 items) used in

this simulation study are commonly used in the simulation study for the multidimensional

data analyses (e.g., Béguin & Glas, 2001; Bolt & Lall, 2003), these might not have been

large enough for the MMixRIM. It is possible that the relatively larger recovery statistics

of MMixRIM than those of other models were caused by relatively smaller sample size

than other models when the number of model parameters were considered. Moreover, it

could affect the performance of information criterion indices. Therefore, further study with
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a larger sample size and a longer test length would be useful to more accurately explore the

performance of MMixRIM for multidimensional data analysis.

In addition to the relative sample size, the way of counting the number of estimated

parameters or the type of likelihood values might make an impact on the performance

of information criterion indices. For example, Yao and Schwarz (2006) counted both item

parameters and ability parameters as the number of parameters for calculating AIC, while

ability parameters were not be counted as the number of parameters in this study. Mean-

while, only parameters of item distributions (i.e., means and variances) were counted in

some studies with the random item model (e.g., Cho, Gilbert, & Goodwin, 2013). It might

be valuable to examine the effects of these differences on the model selection.

Finally, only two-dimensional conditions were considered in the simulation study, but

sometimes an assessment could be designed to measure more than three traits. Additionally,

the situation assumed for the simulation study yielded weak multidimensionality within each

latent class. The application of MMixRIM to the data sets with a strong multidimensionality

within each latent class might improve the performance of the MMixRIM.
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Appendix A

OpenBugs Code Used for Two-dimensional and Two-class MMixRIM

## 2-dimensional & 2-class MMixRIM

## NI=30 items, NE=1000 examinees

## r2: responses

## d2: intercept parameter

## a2.1: slope parameter for the first dimension

## a2.2: slope parameter for the second dimension

## gmem: class membership

## theta2: two-dimensional ability parameters

model{

for (j in 1:NE) {

for (k in 1:NI) {

r2[j,k]<-resp[j,k]

}}

## 2 class model

for ( j in 1:NE){

for (k in 1:NI){

r2[j,k]~dbern(p2[j,k])

logit(p2[j,k])<-a2.1[gmem2[j],k]*theta2[j,1]+a2.2[gmem2[j],k]*theta2[j,2]

+d2[gmem2[j],k]
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l2[j,k]<-log(p2[j,k])*r2[j,k]+log(1-p2[j,k])*(1-r2[j,k])

}}

# Priors for thetas

for (j in 1:NE){

theta2[j,1:2]~dmnorm(mut2[1:2],taut2[1:2,1:2])

gmem2[j]~dcat(pi2[1:2])

}

pi2[1:2]~ddirch(alpha2[])

alpha2[1]<-.5

alpha2[2]<-.5

# Priors for a and d

for(g in 1:2){

a2.1[g,1]<-1

a2.2[g,1]<-0

d2[g,1]<-0

for(k in 2:20){

a2.1[g,k]~dnorm(mua2.1[g],taua2.1[g])I(0,)

a2.2[g,k]~dnorm(mua2.2[g],taua2.2[g])I(0,)

d2[g,k]~dnorm(mud2[g],taud2[g])

}

a2.1[g,21]<-0

a2.2[g,21]<-1

d2[g,21]<-0
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for(k in 22:30){

a2.1[g,k]~dnorm(mua2.1[g],taua2.1[g])I(0,)

a2.2[g,k]~dnorm(mua2.2[g],taua2.2[g])I(0,)

d2[g,k]~dnorm(mud2[g],taud2[g])

}}

# Hyper prior for theta

mut2[1]<-0

mut2[2]<-0

taut2[1,1]<-1

taut2[1,2]<-0

taut2[2,1]<-0

taut2[2,2]<-1

#Hyper prior for a and d

for(g in 1:2){

mua2.1[g]~dnorm(0,.5)I(0,)

mua2.2[g]~dnorm(0,.5)I(0,)

mud2[g]~dnorm(0,.5)

taua2.1[g]~dgamma(1,1)

taua2.2[g]~dgamma(1,1)

taud2[g]~dgamma(1,1)

vara2.1[g]<-1/taua2.1[g]

vara2.2[g]<-1/taua2.2[g]
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vard2[g]<-1/taud2[g]

}

# calculate loglikelihood

loglik2<-sum(l2[1:NE, 1:NI])

}
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Appendix B

Monitoring Convergence based on Heidelberger and Welch’s (1983)

Convergence Diagnostics and MC error-standard deviation ratio

Table B.1: Percentage of Passed Item Parameters of M2PL and Mix2PL Models Based

Heidelberger and Welch’s (1983) Convergence Diagnostics

Replication D1 D1C2D D1C2E D2BR0 D2BR3 D2BR6 D2WR0 D2WR3 D2WR6

1 1.00 .98 1.00 .99 1.00 1.00 .99 .99 1.00

2 1.00 .91 1.00 1.00 .99 .86 .99 1.00 1.00

3 .88 .98 .73 .99 .98 1.00 1.00 1.00 .98

4 .98 .73 1.00 .99 .96 1.00 1.00 1.00 1.00

5 .95 .91 .96 .98 .96 .99 1.00 1.00 .92

6 .95 .65 .73 .99 1.00 1.00 .98 .85 .92

7 .98 .99 1.00 1.00 1.00 .96 .95 1.00 .98

8 .98 .77 1.00 1.00 .98 .99 .95 .99 .96

9 .93 .75 1.00 .99 1.00 .98 1.00 1.00 .88

10 1.00 .83 .98 .99 .98 1.00 .99 1.00 .98

11 1.00 .85 1.00 1.00 .99 1.00 1.00 1.00 1.00

12 1.00 .78 .82 .99 1.00 .98 1.00 .98 .95

13 .98 .73 .99 1.00 .96 1.00 .87 .99 1.00

14 .97 .72 .90 .99 .83 .99 .99 .98 .98

15 .93 .88 .99 1.00 1.00 1.00 .94 .94 1.00

16 .97 .95 .91 .98 .99 .73 1.00 1.00 1.00

17 .90 .75 .97 .98 1.00 .99 1.00 1.00 .98

Continued on next page
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Table B.1 – continued from previous page

Replication D1 D1C2D D1C2E D2BR0 D2BR3 D2BR6 D2WR0 D2WR3 D2WR6

18 .98 .95 .98 .99 1.00 .89 .99 .99 1.00

19 .88 .97 .78 .99 1.00 .96 .98 1.00 .99

20 1.00 .74 .94 .99 .99 1.00 .99 .99 .88

21 1.00 .77 1.00 1.00 .99 .98 1.00 .96 .99

22 1.00 .81 1.00 1.00 1.00 .86 1.00 1.00 .99

23 .92 .72 1.00 .99 1.00 .96 1.00 .98 1.00

24 .97 .81 .97 .96 1.00 .99 1.00 .98 .95

25 .95 .73 .75 .99 .96 .99 1.00 .99 .79

26 .95 .88 .73 .96 .98 .98 .86 .86 1.00

27 .63 .70 .98 1.00 1.00 .99 1.00 1.00 .99

28 1.00 .69 1.00 1.00 .95 .99 .99 .98 .99

29 .92 .70 .99 1.00 .98 1.00 1.00 1.00 1.00

30 .98 .92 .96 1.00 1.00 1.00 1.00 .99 .99

31 1.00 .81 .79 1.00 1.00 .99 1.00 .99 1.00

32 .95 .98 .88 1.00 1.00 1.00 .96 .98 .98

33 1.00 .88 .99 1.00 1.00 1.00 1.00 1.00 .80

34 .95 .75 .74 1.00 1.00 1.00 .99 .71 1.00

35 .97 .98 .99 .94 .98 .94 1.00 .98 .98

36 .92 .83 .94 1.00 1.00 .90 1.00 1.00 1.00

37 .98 .98 .99 .99 .98 1.00 .98 .99 .99

38 .98 1.00 .75 .98 .69 .99 1.00 .99 1.00

39 1.00 .81 1.00 1.00 .99 1.00 .99 .99 1.00

40 .87 .89 .98 .98 .99 1.00 1.00 .95 .94

41 .98 .80 1.00 1.00 .93 .93 1.00 1.00 .94

42 1.00 .99 .99 1.00 1.00 .96 1.00 .99 .98

43 .78 .81 1.00 1.00 1.00 .74 1.00 .93 1.00

Continued on next page
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Table B.1 – continued from previous page

Replication D1 D1C2D D1C2E D2BR0 D2BR3 D2BR6 D2WR0 D2WR3 D2WR6

44 .98 .91 1.00 1.00 1.00 .96 1.00 .99 .98

45 .98 .97 .99 1.00 .95 .98 1.00 1.00 1.00

46 .97 .72 .98 .98 .96 .80 1.00 1.00 1.00

47 .98 .92 .99 .99 1.00 1.00 .98 .96 1.00

48 .82 .63 .98 .99 1.00 1.00 .99 1.00 1.00

49 .95 .92 .96 .98 .99 .93 .99 1.00 .89

50 .93 1.00 .99 1.00 .75 1.00 .95 1.00 1.00

51 .93 .92 .98 1.00 .99 1.00 .99 1.00 1.00

52 1.00 .87 1.00 1.00 1.00 1.00 .95 .95 1.00

53 .85 .69 1.00 .99 .99 1.00 1.00 1.00 .99

54 .98 .95 .99 .99 .99 .83 1.00 .95 1.00

55 1.00 .88 .75 .99 .98 .99 1.00 .95 .87

56 .98 .75 .95 1.00 1.00 .93 1.00 1.00 1.00

57 1.00 .86 .74 1.00 1.00 1.00 1.00 1.00 .96

58 .93 .96 1.00 .99 .98 .98 1.00 1.00 .89

59 1.00 .64 1.00 .96 1.00 1.00 .98 1.00 1.00

60 .95 .75 .78 1.00 .99 1.00 1.00 .99 .99

61 1.00 .81 1.00 .96 1.00 .62 1.00 .99 1.00

62 .93 .96 .74 1.00 .99 1.00 1.00 .96 1.00

63 .98 .81 1.00 .99 .67 1.00 .99 .85 .99

64 .98 .98 1.00 .99 .99 1.00 .98 .98 .96

65 .73 .82 1.00 1.00 1.00 .95 1.00 .92 1.00

66 1.00 .93 .98 .99 .98 .96 1.00 .76 1.00

67 1.00 .67 1.00 .99 .99 .99 1.00 1.00 .96

68 .97 .83 .91 1.00 .99 .99 1.00 1.00 .99

69 .98 .84 .90 1.00 .99 1.00 .99 .93 1.00
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Table B.1 – continued from previous page

Replication D1 D1C2D D1C2E D2BR0 D2BR3 D2BR6 D2WR0 D2WR3 D2WR6

70 .97 .98 .86 1.00 .98 .98 .99 1.00 .94

71 .97 .84 .94 .98 .96 .85 1.00 .98 .98

72 1.00 .86 .74 1.00 1.00 .96 .98 .96 .99

73 1.00 .83 .97 .99 .99 .98 1.00 1.00 1.00

74 .97 .68 .99 .99 .99 .98 1.00 .98 .99

75 1.00 .67 1.00 .98 .98 .98 .94 1.00 1.00

76 .98 .78 .99 .95 .99 .96 1.00 1.00 .82

77 .92 .83 1.00 1.00 1.00 .86 .89 .95 .89

78 1.00 .96 .99 .99 1.00 .96 .93 1.00 1.00

79 .98 .95 .98 .99 1.00 .85 1.00 .99 1.00

80 .75 .77 .98 1.00 1.00 1.00 .99 .95 1.00

81 1.00 1.00 .94 .99 1.00 1.00 1.00 .99 1.00

82 .97 .93 .84 .81 .99 1.00 .95 .99 .98

83 1.00 .88 .99 1.00 .94 .98 .99 1.00 1.00

84 1.00 .96 .99 1.00 1.00 .98 1.00 .99 1.00

85 .73 .88 .73 .99 1.00 1.00 .99 1.00 .96

86 .92 .95 1.00 .99 1.00 1.00 .99 .99 1.00

87 .98 .78 .99 .96 1.00 1.00 .99 .96 .99

88 .98 .68 .98 .99 .99 .92 1.00 .99 1.00

89 .97 .96 .88 .99 .96 .99 1.00 .98 1.00

90 .90 .95 .98 1.00 .99 .99 1.00 .95 1.00

91 .98 .74 .98 1.00 .98 .93 .99 .93 .98

92 .95 .74 .96 1.00 .99 .99 1.00 1.00 1.00

93 1.00 .82 .97 1.00 .82 .99 .99 .98 1.00

94 .97 .80 .99 1.00 1.00 .99 1.00 .96 .99

95 1.00 .77 .98 .99 .99 .95 1.00 .98 .82

Continued on next page
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Table B.1 – continued from previous page

Replication D1 D1C2D D1C2E D2BR0 D2BR3 D2BR6 D2WR0 D2WR3 D2WR6

96 1.00 .93 .96 1.00 .96 1.00 .99 1.00 .99

97 1.00 .75 .75 1.00 .98 .86 1.00 .98 .99

98 1.00 .92 .82 .99 .98 1.00 .95 .88 1.00

99 1.00 .68 .73 1.00 .90 1.00 .99 .99 .85

100 1.00 .94 1.00 1.00 .92 1.00 1.00 .99 .99
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Table B.2: Percentage of Passed Item Parameters of MMixRIM Based Heidelberger and

Welch’s (1983) Convergence Diagnostics

Replication D2C2R0D D2C2R3D D2C2R6D D2C2R0E D2C2D3E D2C2R6E

1 1.00 .99 .99 .99 .99 .96

2 .34 .99 .99 .99 .99 .98

3 .96 1.00 1.00 .99 .95 .76

4 .93 .96 1.00 1.00 .96 .95

5 .99 .89 .98 .93 1.00 .95

6 .98 .96 .95 .99 .99 .96

7 1.00 .99 .99 .98 .98 .99

8 .96 1.00 1.00 1.00 .99 .99

9 .97 .71 .98 .99 1.00 .95

10 1.00 .93 .99 .96 .98 1.00

11 .99 .99 .99 .96 .99 .97

12 .99 .99 1.00 .99 .97 .99

13 .99 1.00 .91 .98 .99 .98

14 .88 .98 .99 .97 .99 .99

15 .92 .99 .99 .96 .92 1.00

16 .98 1.00 .99 .96 .98 .99

17 .93 1.00 .99 .99 .35 .81

18 .98 .92 .98 .97 .93 .99

19 .99 .99 .99 1.00 .95 1.00

20 .98 .98 1.00 .99 .99 1.00

21 .99 1.00 .99 .97 .98 .93

22 .63 .99 .96 .99 .99 .99

23 .99 .99 .97 .99 .99 1.00

24 .95 1.00 .99 .99 .99 .95

Continued on next page
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Table B.2 – continued from previous page

Replication D2C2R0D D2C2R3D D2C2R6D D2C2R0E D2C2D3E D2C2R6E

25 .95 1.00 1.00 .99 .95 .98

26 .81 .99 1.00 .95 1.00 1.00

27 .99 1.00 .99 .99 1.00 .98

28 .99 .96 .99 1.00 .99 .97

29 .96 1.00 .99 .95 .85 1.00

30 .99 .98 .98 .98 .99 .99

31 1.00 .97 .96 .99 .88 .96

32 .99 .99 .85 1.00 .99 1.00

33 1.00 .96 .96 .98 1.00 .97

34 .99 .97 1.00 .98 1.00 1.00

35 .89 .91 1.00 .97 1.00 1.00

36 1.00 .97 .96 .95 1.00 .98

37 .99 .98 .98 .99 .81 .96

38 .99 .96 .96 .97 .96 .98

39 .98 1.00 .99 .99 .95 1.00

40 .92 .99 .99 .99 .98 1.00

41 .93 1.00 .96 .98 .99 1.00

42 .95 .87 .97 .98 .96 .99

43 .95 .99 .95 .97 .98 1.00

44 .94 .99 .96 .99 1.00 .99

45 1.00 .98 .93 .99 .98 .99

46 1.00 .95 .99 .98 .99 .99

47 .90 .93 .98 .98 .99 1.00

48 .96 .99 .99 .98 .99 .99

49 .92 .98 .96 .96 .90 .98

50 .99 .98 .92 .99 .99 .99
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Table B.2 – continued from previous page

Replication D2C2R0D D2C2R3D D2C2R6D D2C2R0E D2C2D3E D2C2R6E

51 .92 .99 .99 1.00 .97 1.00

52 .86 .98 1.00 .99 .95 .99

53 .98 .97 .98 .99 .99 1.00

54 .99 1.00 .98 .95 .98 .98

55 .97 .92 .99 .93 1.00 .97

56 .99 .98 .99 .99 1.00 .96

57 .99 1.00 .99 .98 .98 .99

58 .90 .99 .98 .99 .92 .98

59 1.00 .40 .99 .99 .98 1.00

60 .99 1.00 .99 1.00 .99 .95

61 .99 .99 .94 .93 .99 1.00

62 1.00 1.00 .99 .96 .91 .99

63 1.00 .86 1.00 .98 .94 .99

64 .99 .91 1.00 .97 .95 1.00

65 .99 .98 1.00 .96 .94 .99

66 .70 .99 .96 .99 .97 .98

67 .89 .97 .96 .96 .99 .97

68 .99 .70 .99 .95 .98 .99

69 .99 .88 1.00 .96 .98 .99

70 1.00 .95 .91 .98 .95 .99

71 .92 .93 .99 .71 .98 .80

72 .99 .97 .99 .99 .99 .98

73 .99 .99 .99 .99 .99 .93

74 .98 .99 .95 .99 .92 1.00

75 .98 .97 .98 .99 .98 .88

76 .96 .99 .92 .98 1.00 .99
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144



Table B.2 – continued from previous page

Replication D2C2R0D D2C2R3D D2C2R6D D2C2R0E D2C2D3E D2C2R6E

77 .79 .79 .99 .98 .99 .99

78 .98 1.00 .98 .89 .98 .95

79 .98 .99 .95 .99 .96 .99

80 .99 .96 .99 1.00 .98 .99

81 .99 .83 1.00 .99 .99 .96

82 .98 .98 .96 .98 .99 .98

83 .96 .99 .97 .99 .99 .99

84 1.00 .99 .98 .99 .99 1.00

85 .98 .99 .97 .99 .80 .98

86 .99 .93 .92 .99 .92 1.00

87 .83 .98 .96 .97 .98 1.00

88 .98 .99 .95 .98 .95 .99

89 .78 1.00 .99 .99 1.00 .99

90 .95 .99 .95 .99 1.00 .99

91 .99 .97 1.00 .99 .98 1.00

92 .87 .96 .75 1.00 .99 .92

93 .99 .99 1.00 .96 .99 1.00

94 .95 .98 1.00 .99 .96 .95

95 .99 .99 .99 .99 1.00 .99

96 .99 .99 .99 .99 .99 1.00

97 .96 .98 .99 1.00 .94 .99

98 .95 .99 .98 1.00 .99 .99

99 .94 .98 .98 .99 .98 1.00

100 .99 1.00 .95 .99 1.00 .99
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Table B.3: Percentage of Passed Item Parameters of M2PL and Mix2PL Models Based the

Ratio of MC Error to Standard Deviation

Replication D1 D1C2D D1C2E D2BR0 D2BR3 D2BR6 D2WR0 D2WR3 D2WR6

1 1.00 .03 .75 1.00 1.00 .85 1.00 1.00 .90

2 1.00 .01 .75 1.00 1.00 .95 1.00 1.00 .86

3 1.00 .01 .75 1.00 1.00 .87 1.00 1.00 .62

4 1.00 .02 .75 1.00 1.00 .81 1.00 1.00 .87

5 1.00 .00 .75 1.00 1.00 .96 1.00 1.00 .65

6 1.00 .00 .75 1.00 1.00 .96 1.00 1.00 .88

7 1.00 .03 .75 1.00 1.00 .56 1.00 .89 .62

8 1.00 .01 .75 1.00 1.00 .98 1.00 1.00 .83

9 1.00 .01 .75 1.00 1.00 .69 1.00 1.00 .48

10 1.00 .02 .75 1.00 1.00 .99 1.00 1.00 .77

11 1.00 .00 .75 1.00 1.00 .74 1.00 .99 .60

12 1.00 .03 .75 1.00 1.00 .99 1.00 1.00 .80

13 1.00 .01 .75 1.00 1.00 .94 1.00 .95 .54

14 1.00 .00 .75 1.00 1.00 1.00 1.00 1.00 .85

15 1.00 .00 .75 1.00 1.00 1.00 1.00 1.00 .96

16 1.00 .02 .75 1.00 1.00 .86 1.00 .96 .69

17 1.00 .03 .75 1.00 .99 .69 1.00 1.00 .69

18 1.00 .00 .75 1.00 1.00 .99 1.00 .99 .77

19 1.00 .01 .75 1.00 1.00 .79 1.00 .96 .64

20 1.00 .01 .75 1.00 1.00 .89 1.00 1.00 .99

21 1.00 .03 .75 1.00 .87 .71 1.00 1.00 .61

22 1.00 .01 .75 1.00 1.00 .96 1.00 1.00 .90

23 1.00 .01 .75 1.00 1.00 .85 1.00 1.00 .82

24 1.00 .02 .75 1.00 1.00 .89 1.00 1.00 .87
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Table B.3 – continued from previous page

Replication D1 D1C2D D1C2E D2BR0 D2BR3 D2BR6 D2WR0 D2WR3 D2WR6

25 1.00 .01 .75 1.00 1.00 .90 1.00 .89 .57

26 1.00 .01 .75 1.00 1.00 .99 1.00 1.00 .76

27 1.00 .01 .75 1.00 1.00 .86 1.00 1.00 .56

28 1.00 .02 .75 1.00 1.00 .77 1.00 1.00 .79

29 1.00 .00 .75 1.00 1.00 1.00 1.00 1.00 .98

30 1.00 .02 .75 1.00 1.00 .90 1.00 1.00 .68

31 1.00 .02 .75 1.00 1.00 .90 1.00 1.00 .70

32 1.00 .01 .75 1.00 1.00 .85 1.00 1.00 .69

33 1.00 .00 .75 1.00 1.00 .77 1.00 .99 .56

34 1.00 .01 .75 1.00 1.00 .71 1.00 .98 .67

35 1.00 .02 .75 1.00 1.00 .87 1.00 1.00 .96

36 1.00 .02 .75 1.00 1.00 1.00 1.00 .93 .55

37 1.00 .03 .75 1.00 1.00 .99 1.00 1.00 .71

38 1.00 .01 .75 1.00 1.00 .71 1.00 1.00 .92

39 1.00 .01 .75 1.00 .96 .83 1.00 1.00 .50

40 1.00 .00 .75 1.00 1.00 .81 1.00 1.00 .54

41 1.00 .00 .75 1.00 .93 .74 1.00 1.00 .89

42 1.00 .00 .75 1.00 .89 .73 1.00 1.00 .65

43 1.00 .00 .75 1.00 .93 .77 1.00 1.00 .83

44 1.00 .01 .75 1.00 .99 .83 1.00 1.00 .65

45 .98 .01 .75 1.00 1.00 .85 1.00 .86 .74

46 1.00 .01 .75 1.00 1.00 .89 1.00 1.00 .87

47 1.00 .00 .75 1.00 1.00 .96 1.00 1.00 .92

48 1.00 .01 .75 1.00 1.00 1.00 1.00 1.00 .61

49 1.00 .02 .75 1.00 1.00 .71 1.00 1.00 .73

50 1.00 .03 .75 1.00 1.00 .85 1.00 1.00 .74
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Table B.3 – continued from previous page

Replication D1 D1C2D D1C2E D2BR0 D2BR3 D2BR6 D2WR0 D2WR3 D2WR6

51 1.00 .01 .75 1.00 1.00 .85 1.00 1.00 .79

52 1.00 .00 .75 1.00 1.00 .76 1.00 1.00 .88

53 1.00 .01 .75 1.00 1.00 .87 1.00 1.00 .79

54 1.00 .03 .75 1.00 1.00 .88 1.00 1.00 .63

55 1.00 .01 .75 1.00 1.00 .98 1.00 1.00 .95

56 1.00 .01 .75 1.00 1.00 .99 1.00 1.00 .92

57 1.00 .02 .75 1.00 1.00 .93 1.00 1.00 .61

58 1.00 .00 .75 1.00 1.00 .95 1.00 1.00 1.00

59 1.00 .00 .75 1.00 1.00 .99 1.00 1.00 .70

60 1.00 .03 .75 1.00 .96 .93 1.00 .98 .71

61 1.00 .03 .75 1.00 1.00 .68 1.00 .99 .82

62 1.00 .02 .75 1.00 1.00 1.00 1.00 .92 .56

63 1.00 .00 .75 1.00 1.00 .93 1.00 1.00 .57

64 .98 .00 .75 1.00 1.00 .92 1.00 1.00 .77

65 1.00 .00 .75 1.00 1.00 .86 1.00 1.00 .93

66 1.00 .02 .75 1.00 1.00 1.00 1.00 .99 .68

67 1.00 .01 .75 1.00 1.00 1.00 1.00 .95 .82

68 1.00 .01 .75 1.00 1.00 1.00 1.00 1.00 .95

69 1.00 .00 .75 1.00 1.00 .93 1.00 1.00 .58

70 1.00 .02 .75 1.00 1.00 .98 1.00 1.00 .90

71 1.00 .06 .75 1.00 1.00 .64 1.00 .93 .42

72 1.00 .02 .75 1.00 1.00 .76 1.00 1.00 .75

73 1.00 .03 .75 1.00 1.00 .81 1.00 1.00 .98

74 1.00 .00 .75 1.00 1.00 .96 1.00 .96 .56

75 1.00 .02 .75 1.00 1.00 .71 1.00 1.00 .63

76 1.00 .02 .75 1.00 .99 .70 1.00 1.00 .68
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Table B.3 – continued from previous page

Replication D1 D1C2D D1C2E D2BR0 D2BR3 D2BR6 D2WR0 D2WR3 D2WR6

77 1.00 .01 .75 1.00 1.00 .90 1.00 1.00 .87

78 1.00 .02 .75 1.00 1.00 .98 1.00 .99 .54

79 1.00 .01 .75 1.00 1.00 1.00 1.00 1.00 .96

80 1.00 .00 .75 1.00 1.00 1.00 1.00 .96 .42

81 1.00 .00 .75 1.00 1.00 .82 1.00 .99 .68

82 1.00 .02 .75 1.00 1.00 .98 1.00 .99 .51

83 1.00 .02 .75 1.00 1.00 .87 1.00 1.00 .71

84 1.00 .01 .75 1.00 1.00 1.00 1.00 .98 .62

85 1.00 .04 .75 1.00 1.00 .79 1.00 1.00 .56

86 1.00 .00 .75 1.00 1.00 .99 1.00 1.00 .55

87 1.00 .00 .75 1.00 1.00 .87 1.00 1.00 .83

88 1.00 .03 .75 1.00 1.00 .73 1.00 1.00 .50

89 1.00 .02 .75 1.00 1.00 .83 1.00 1.00 .87

90 1.00 .01 .75 1.00 1.00 .87 1.00 1.00 .99

91 1.00 .02 .75 1.00 1.00 .98 1.00 1.00 .77

92 1.00 .02 .75 1.00 1.00 1.00 1.00 1.00 .80

93 1.00 .00 .75 1.00 1.00 .99 1.00 1.00 .96

94 1.00 .02 .75 1.00 1.00 .75 1.00 1.00 .96

95 1.00 .01 .75 1.00 1.00 .96 1.00 .99 .58

96 1.00 .00 .75 1.00 1.00 .71 1.00 1.00 .99

97 1.00 .02 .75 1.00 1.00 .98 1.00 1.00 .86

98 1.00 .00 .75 1.00 1.00 .98 1.00 1.00 .75

99 1.00 .02 .75 1.00 .99 1.00 1.00 1.00 .95

100 1.00 .02 .75 1.00 1.00 .81 1.00 .98 .93
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Table B.4: Percentage of Passed Item Parameters of MMixRIM Based the Ration of MC

Error to Standard Deviation

Replication D2C2R0D D2C2R3D D2C2R6D D2C2R0E D2C2D3E D2C2R6E

1 .96 .88 .90 1.00 .81 .90

2 .76 .90 .86 .98 .99 .95

3 .95 .89 .86 .90 .80 .76

4 .70 .74 .70 .80 .97 .99

5 .77 .81 .82 .94 .87 .93

6 .90 .71 .92 .96 .85 .96

7 .89 .76 .85 .93 .79 .72

8 .93 .90 .88 .92 .82 .97

9 .99 .61 .68 .99 .90 .79

10 .98 .56 .47 .98 .98 .94

11 .79 .72 .76 .40 .92 .66

12 .68 .82 .94 .98 .98 .97

13 .86 .82 .82 .79 .93 .89

14 .80 .90 .99 .81 .77 .74

15 .76 .71 .60 1.00 .73 .91

16 .88 .82 .86 .98 .92 .89

17 .77 .84 .89 .91 .32 .73

18 .83 .88 .80 .93 .96 .96

19 .80 .73 .80 .82 .89 .92

20 .94 .85 .96 .91 .77 .73

21 .93 .74 .85 .78 1.00 .96

22 .76 .86 .85 .96 .79 .92

23 .89 .95 .99 .89 .74 .61

24 .89 .89 .89 .80 .86 .73

Continued on next page
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Table B.4 – continued from previous page

Replication D2C2R0D D2C2R3D D2C2R6D D2C2R0E D2C2D3E D2C2R6E

25 .79 .74 .90 .97 .97 .90

26 .80 .85 .82 .98 .84 .95

27 .94 .79 .86 .80 .95 .92

28 .93 .80 .86 .82 .88 .95

29 .82 .85 .94 .91 .97 .96

30 .92 .89 .80 .99 .99 1.00

31 .82 .83 .82 1.00 .82 .79

32 1.00 .96 .68 .74 .82 .93

33 .95 .87 .89 .83 .83 .88

34 .74 .81 .89 .96 .98 .67

35 .82 .78 .79 1.00 .93 .80

36 .93 .99 .93 .85 1.00 .95

37 .78 .98 .93 .98 1.00 .90

38 .98 .94 .82 1.00 .96 .92

39 .96 .94 .11 .96 .72 .93

40 .80 .85 .80 .99 .81 .77

41 .87 .84 .92 .99 .94 1.00

42 .80 .82 .88 .99 .98 .86

43 .88 .86 .73 .98 .96 .99

44 .82 .88 .98 .88 .99 .93

45 1.00 .98 .89 .94 .99 .95

46 .90 .82 .93 .99 .87 .89

47 .82 .60 .75 .84 .89 .93

48 .88 .90 .81 .96 .98 .99

49 .74 .76 .71 .88 .80 .79

50 .92 .73 .64 .89 .90 .86

Continued on next page
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Table B.4 – continued from previous page

Replication D2C2R0D D2C2R3D D2C2R6D D2C2R0E D2C2D3E D2C2R6E

51 .72 .80 .53 1.00 .99 .96

52 .82 .90 .80 1.00 .93 .92

53 .98 .79 .91 .94 .87 .94

54 .87 .92 .69 .92 .91 .90

55 .85 .76 .78 .99 .93 .92

56 .90 .98 .89 .96 .93 .99

57 .97 .96 .93 .99 .95 .97

58 .96 .86 .73 .93 .95 .93

59 .91 .67 .98 .99 1.00 .93

60 .91 .65 .73 1.00 .99 .99

61 .92 .85 .90 .98 .80 .97

62 .77 .83 .68 .92 1.00 .72

63 .84 .60 .86 .95 .95 .73

64 .85 .67 .79 .99 .96 .91

65 .90 .85 .90 .95 .92 .89

66 .72 .99 .78 .93 .97 .99

67 .76 .88 .86 .95 .99 .77

68 .78 .61 .88 .97 .99 .93

69 .99 .85 .96 .92 .80 .93

70 .89 .92 .88 .98 .98 .90

71 .73 .83 .74 .73 .87 .74

72 .99 .95 .88 .96 .97 .99

73 .88 .87 .93 .88 .86 .86

74 .90 .86 .76 .96 .96 .86

75 .77 .92 .95 .98 .95 .73

76 .91 .90 .94 .86 .90 .82

Continued on next page
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Table B.4 – continued from previous page

Replication D2C2R0D D2C2R3D D2C2R6D D2C2R0E D2C2D3E D2C2R6E

77 .63 .59 .74 .99 .95 .89

78 .66 .82 .86 .80 .74 .93

79 .86 .87 .90 .99 1.00 .85

80 .92 .80 .95 .89 .86 .86

81 .82 .11 .87 1.00 .92 .86

82 .87 .30 .88 .85 .86 .99

83 .89 .88 .79 .96 .99 .97

84 .99 .94 .87 .92 .90 .92

85 1.00 .97 .82 .98 .74 1.00

86 .83 .71 .69 .98 .89 .89

87 .84 .86 .82 .99 .93 .95

88 .95 .71 .92 .96 .88 .98

89 .83 .96 .91 1.00 .95 .99

90 .83 .90 .89 1.00 .86 .86

91 .79 .85 .95 .99 .90 .85

92 .84 .79 .79 .97 .84 .85

93 .98 .92 .93 .77 .88 .97

94 1.00 .80 .72 .70 .71 .70

95 .77 .93 .77 .99 .89 .79

96 .73 .77 .86 1.00 .95 .98

97 .88 .93 .86 .95 .95 .93

98 .84 .91 .90 .89 .79 .79

99 .98 .76 .78 .99 .85 .96

100 .92 .87 .90 1.00 .96 .98
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