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Abstract

The probability that an insurance company can go bankrupt is a crucial quantity to be

able to calculate. There are many ways to calculate such a probability. For example, we could

model the arrival of the claims with a Poisson process. Alternatively, we could use a random

walk in order to model the e�ects that claims have on an insurance company's surplus. The

distribution of the claim sizes also could have an e�ect on the model. An additional model

can use random walks with dependent steps in the form of a time series. This paper seeks

to introduce several of the available models and contains the results of a simulation of one

of Veraverbeke's (1977) results.
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Chapter 1

Introduction

Ruin Probability, also known as collective risk theory, is a branch of actuarial science that

studies an insurer's vulnerability to insolvency based on mathematical modeling of the

insurer's surplus.(Asmussen (2000)) There are several ways to model this. The classical model

is the Compound Poisson model, which is named this way because the arrivals of insurance

claims are assumed to follow a Poisson process with rate �. In this model the claim sizes

are X1, X2, ... and are i.i.d. with some common distribution F . We will also, without loss of

generality, be able to assume that the insurance premium, the amount that the insured pays

for insurance, is p = 1.(Asmussen (2000))

A random walk based model is based on the number of claims that arrive, not the arrival

rates of the claims. This model is named after the random walk Sn, which tracks the move-

ment of an insurance company's surplus (claims vs. premiums). Since insurance companies

will set rates in a manner that will generate pro�ts, one could model the �ow of insurance

claims and premiums as a random walk with positive drift. However, for mathematical pur-

poses we will view the �ow of claims vs. premiums as a random walk with negative drift. This

will be done in spite of a more intuitive model which would be �the other way around�-i.e.

a model with positive drift, where premiums are positive and claims are negative. We will

concentrate on the maximum of such a walk, which is in turn the minimum of the intuitive

model. We will also present a simulation of the asymptotic results of this model.

The third ruin probability model that will be covered here is actually a generalization

of the above random walk model. This model will remove the assumption that the steps of

the random walk Sn are independent. Instead, we will assume the steps are autocorrelated
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and the basic structure of the model will be time-series based. Speci�cally, a two-sided linear

process will be used to model the reserve.



Chapter 2

The Risk Reserve Process

Here we will introduce the risk reserve process, and provide some of the symbols that will

be used throughout the paper, particularly in the Compound Poisson Model. Most of the

material below comes from Asmussen (2000).

2.1 Risk reserve basics

A risk reserve process, Rt where t ≥ 0, in general is a model for the progress of the reserves

of an insurance company. The initial reserve will be denoted R0. We will use  (R0) to denote

the probability of ultimate ruin, which is the probability that an insurance company's reserve

drops below zero. In other words,  (R0) = ℙ(inft≥0 Rt < 0). We can also discuss  (R0, T ) =

ℙ( inf
0≤t<T

Rt < 0), which is the probability of ultimate ruin before time T . Commonly,  (R0)

and  (R0, T ) are referred to as in�nite and �nite horizon ruin probabilities, respectively.

While counter intuitive, it is mathematically easier to work with the Claim Surplus Process,

denoted St = R0 − Rt. With this notation, ruin occurs whenever St > R0. Thus, ultimate

ruin may now be written as  (R0) = ℙ(sup
t≥0

St > R0). Notice that we have switched our focus

from an in�mum of the Rt process to a supremum of the St process; this change will simplify

some of the analysis. Now de�ne, �(R0), which is the time until ultimate ruin, which can be

expressed in a couple of di�erent ways:

�(R0) = inf
t≥0

(t : St > R0) = inf
t≥0

(t : Rt < 0).

Also, we de�neM = sup
0≤t<∞

St andMT = sup
0≤t<T

St, which serve as �maxima� for the Claim

Surplus Process. The addition of M and �(R0) allows us to rede�ne  (R0) and  (R0, T ) in

the following, more succinct, manner.

3
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 (R0) = ℙ[�(R0) <∞] = ℙ(M > R0),

 (R0, T ) = ℙ(MT > R0) = ℙ[�(R0) ≤ T ].

We will also impose some restrictions on the risk reserve process in the next section.

(Assmussen(2000))

2.2 Some assumptions on the risk reserve model

With probability one, there are only �nitely many claims during �nite time intervals: Let

Nt <∞ denote the number of arrivals from time 0 to time t.

We denote the inter-arrival times of claims by {T1, T2, ...}. The arrival of the nth claim

will be denoted as �n =
∑n

i=1 Ti, and Nt = max{n : �n ≤ t}.

The size of the ith claim is denoted by Xi.

Premiums �ow in at rate p, per unit time.

Therefore: Rt = R0 + pt−
∑Nt

i=1Xi and St =
∑Nt

i=1Xi − pt.

2.3 A couple of constants

Risk process models typically have the property that there exists a constant � such that

1
t

∑Nt
i=1 Xi

a.s.→ �, as t → ∞. The interpretation of � is as the average amount of claim per

unit time. Another important quantity is the safety loading constant, denoted � and de�ned

by the relative amount by which the premium rate p exceeds �. In other words, � = p−�
�
.

Any insurance company will try to ensure that � > 0; that is, an insurance company will

set premiums so that the expected premium rate exceeds the expected claim rate. Typically,

according to the theoretical literature, � is fairly small, falling within 10%-20%.

2.4 Some quick results

Below are some results that relate the above constants and other quantities of interest to

each other.
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Theorem 2.4.1. Assume 1
t

∑Nt
k=1Xi → � a.s. , as t → ∞ . If � < 0 , then M = ∞ a.s.

and hence  (R0) = 1 for all R0. If � > 0 , then M < ∞ a.s. and hence  (R0) < 1 for all

su�ciently large R0.

Proof. Recall St =
∑Nt

i=1Xi − pt.

Therefore, St
t

=
∑Nt
i=1Xi−pt

t
.

Alternatively we can write, St
t

= 1
t

∑Nt
i=1Xi − p.

Using 1
t

∑Nt
i=1Xi

a.s.→ �, as t→∞, it follows that St
t
→ �− p, as t→∞.

Recall � = p−�
�
.

If � < 0, then it must be true that � > p .

Therefore, St
t
approaches a positive number as t→∞.

Thus St →∞, and M = sup
0≤t<∞

St =∞.

Similarly, if � > 0, it must be true that p > �.

Thus, St
t
approaches a negative number as t→∞.

Therefore St → −∞, and M <∞.

In order to simplify things, we would like to be able to relate ruin probability models

where p = 1 to models where p ∕= 1. The following theorem does just that.

Theorem 2.4.2. Assume p ∕= 1 and de�ne R
′
t = Rt/p . Then the connection between ruin

probabilities for the given risk process Rtand those  
′
(R0),  

′
(R0, T ) for R

′
t is given by

 (R0) =  
′
(R0) and  (R0, T ) =  

′
(R0, Tp).

Proof. We have that  (R0) = ℙ(inft≥0 Rt < 0)

= ℙ(inf t
p
≥0 R t

p
< 0), by simply replacing t with t

p
.

= ℙ(inf t
p
≥0 R

′
t < 0) using the de�nition of R

′
t .

= ℙ(inft≥0 R
′
t < 0) =  

′
(R0) .

Note: R0 = R
′
0.

For the second case observe,
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 (R0, T ) = ℙ( inf
0≤t≤T

Rt < 0)

= ℙ( inf
0≤ t

p
≤T
R t

p
< 0)

= ℙ( inf
0≤t≤Tp

R t
p
< 0)

= ℙ( inf
0≤t≤Tp

R
′
t < 0) =  

′
(R0, Tp).

For the reserve process R
′
t , the premium collected in the interval [0, t] equals the premium

collected for the process R t
p
in the interval [0, t] , but since R has premium rate p , this amount

is ( t
p
)p = t . Thus, we have that R

′
has premium rate equal to 1. This result shows that

without loss of generality, we may take the premium p = 1 . We will make use of this in

Chapter 4.



Chapter 3

Claim size distributions

Let F be the claim size distribution. There are essentially two classes of distributions that

are possible: light tailed and heavy-tailed distributions (the di�erences between them will

be explained below). The subexponential class of distributions will be introduced. Also, the

Dominated Convergence Theorem will be presented, as it is needed later in the paper.

3.1 Light-Tailed Distributions

A light-tailed distribution is a distribution, F (x), such that its tail, F̄ (x) = 1 − F (x),

satis�es F̄ (x) = O(e−sx) , for some s > 0 . The asymptotic notation f(x) = O(g(x)) means

lim supx→∞ ∣
f(x)
g(x)
∣ <∞ . Some examples of light-tailed distributions are described below.

3.1.1 The Exponential Distribution

Consider the exponential density function

f(x) = �e−�x.

The parameter � is referred to as the rate of the function. The exponential distribution

is a key part of the compound Poisson model, which will be highlighted in Chapter 4. One

of the exponential functions most crucial features is the �memoryless� property:

A random variable X is said to be memoryless, if ℙ(X > s + t∣X > t) = ℙ(X > s) ,

∀s, t ≥ 0. (Ross(2007))

This is equivalently de�ned as

ℙ(X>s+t,X>t)
ℙ(X>t)

= ℙ(X > s)

or ℙ(X > s+ t) = ℙ(X > s)ℙ(X > t) .

7
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For the exponential density function the memoryless property is veri�ed below:

ℙ(X > s+ t) = e−�(s+t)

= e−�se−�t = ℙ(X > s)ℙ(X > t) .

Also it should be noted that the exponential function has mean EX = 1
�
and variance

VX = 1
�2

.

3.1.2 The Gamma Distribution

Consider the gamma density function

f(x) = ��

Γ(�)
x�−1e−�x.

It has moment generating function F̂ (s) = ( �
�−s)

�, s < � (note that F̂ (s) = E(esX) ,

where X ∼ f , i.e. F̂ (s) is the m.g.f of f).

Which has mean, EX = �
�
. The variance , VX = �

�2 .

The tail is F̄ (x) = Γ(�x;�)
Γ(�)

, where Γ(x;�) =
´∞
x
t�−1e−tdt.

Note when � = 1 and � = � the gamma density function is the exponential density

function.

3.2 Heavy-tailed Distributions

A function F is heavy-tailed if and only if its m.g.f F̂ (s) = ∞ for all s > 0. There are also

di�erent (and more strict) de�nitions, some of which will be presented in this section.

3.2.1 The Weibull distribution

f(x) = crxr−1e−cx
r
is the density function. F̄ = e−cx

r
is the distribution's tail. This function

is heavy tailed as long as 0 < r < 1 .

3.2.2 The lognormal distribution

This is the distribution of eY , where Y ∼ N(�, �2). Therefore its density is as follows:

f(x) = 1
x�
√

2�
exp{−1

2
[ log(x)−�

�
]2}.
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Asymptotically the tail is:

F̄ (x) = �
log(x)

√
2�

exp{−1
2
[ log(x)−�

�
]2}.

The mean of the lognormal distribution is EX = e�+�
2
2

.

3.2.3 The Pareto Distribution

The Pareto distribution will be of great use to us in Chapter 5. Its tail posseses properties

that will be useful in illustrating Veraverbeke's theorem.

We will make use of one of its simpler forms, which is f(x) = ���

x�+1 , x ≥ �. Thus, it's tail

is F̄ = (�
x
)�.

It should be noted that the Pareto distribution has a regularly varying tail (see Chapter

5.2) and is also subexponential (see Chapter 3.4).

3.2.4 The Loggamma distribution

The loggamma distribution is the distribution of eY , where Y ∼ Gamma(�, �). Its density

is as follows:

f(x) = ��[log(x)]�−1

x�+1Γ(�)
. For � = 1 , the loggamma distribution is a Pareto distribution.

3.3 Regularly Varying Tails

The tail of a distribution F , is said to be regularly varying with exponent � under the

following conditions:

F̄ (x) ∼ L(x)
x�

, x → ∞, where L(x) is slowly varying, i.e. L(x) satis�es L(xt)
L(x)
→ 1, for any

t > 0, as x→∞.

3.4 Subexponential Distributions

A distribution F is subexponential if:

lim
x→∞

F̄ ∗2(x)

F̄ (x)
= 2, where F̄ ∗2(x), is the convolution square of F̄ . The convolution square is

the distribution of the sum of independent random variables X1, X2 ∼ F . In other words,
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F ∗2(x) =
´∞
−∞ F (x − y) dF (y). Thus F̄ ∗2(x) = 1 − F ∗2(x) =

´∞
−∞ F̄ (x − y)dF (y) . If F

is the distribution function of a nonnegative random variable such that F (0−) = 0 , then

F ∗2(x) =
´ x

0
F (x − y) dF (y) and F̄ ∗2(x) =

´∞
0
F̄ (x − y) dF (y) . In terms of the above

de�nition, this means ℙ(X1 +X2 > x) ∼ 2ℙ(X1 > x).

Equivalently, a distribution is subexponential if:

F̄ ∗n(x) ∼ nF̄ (x) , for every n ≥ 1. F̄ ∗n is the tail of the nth convolution power of F . F ∗n

is the distribution of the sum of n i.i.d. random variables with distribution F .

Examples of subexponential distributions include F such as:

F (x) ∼ x−� , � > 0;

F (x) ∼ exp(−x�), 0 < � < 1;

F (x) ∼ exp(− x
(log x)2

).



Chapter 4

The Compound Poisson Model

Here we will discuss the compound Poisson model.

4.1 Introduction

The compound Poisson model keeps the assumptions from Chapter 2 with the following

additions:

Nt, the number of arrivals in the interval [0, t], is now much less general. Nt is now a

Poisson Process with rate �. This speci�cation of Nt implies (Ross(2007)):

1. N0 = 0 .

2. The inter-arrival times Ti are now distributed exponentially with rate � (which is the

same as exponential with mean 1
�
).

3. The claim sizes Xi , ∀i ∈ ℕ, are i.i.d. with common distribution function F , which is

independent of Nt.

4. The number of events in any interval of length t is Poisson distributed with mean �t .

That is, for all s, t ≥ 0 , ℙ[Nt+s −Ns = n] = e−�t (�t)n

n!
, n ∈ {0, 1, ...} .

For the sake of simplicity, we will assume that the premium rate is p = 1. We are allowed

to do this based on a result from Chapter 2. Therefore, Rt = R0 + t −
∑Nt

i=1 Xi and St =

R0 −Rt =
∑Nt

i=1 Xi − t.

We are looking to �nd the basic formulas for the moments of St = R0−Rt. We �rst need

the nth moment of x, which we will denote �(n) = EXn. For example, � = �(1) = EX. Also,

11
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recall that � = p−�
�
. Additionally, in the Compound Poisson Model, p = 1. Therefore, by

solving for �, we �nd � = 1
1+�

.

It should also be noted here that � = ��. The reasoning behind this is relatively simple.

The quantity, � represents the average amount of claim per unit of time. The average claim

per unit of time is obtained by multiplying the arrival rate by the expected claim size. The

arrival rate is � and the expected claim size is �.

This equation, of course, can be obtained by more theoretical means as well. It will be

presented as a theorem in the next section.

4.2 Some basic Compound Poisson results

Here we will highlight some basic results in regards to St, the claim surplus. The mean,

variance and the moments of St are below.

Theorem 4.2.1. � = ��.

Proof. By its de�nition let � = limt→∞
1
t

∑Nt
i=1Xi.

= E(X1) lim
t→∞

E(Nt
t

), which is equivalent to...

= E(X1)� , since � is the arrival rate.

= ��

Theorem 4.2.2. ESt = t(�− 1)

Proof. ESt = E(
∑Nt

i=1Xi − t).

= E[E(
∑Nt

i=1 Xi − t ∣Nt)].

= E(Nt�)− t , since t is constant, � = EX, and Nt is the number of Xi's.

= �t�− t, since ENt = �t.

Also, Nt and the Xi's are independent of each other.

= t(�− 1), since � = ��.
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Theorem 4.2.3. The variance of St is VSt = t��(2)

Proof. VSt = V(
∑Nt

i=1 Xi − t).

= V(
∑Nt

i=1Xi), since Vt = 0.

= V[E(
∑Nt

i=1Xi ∣Nt)] + E[V(
∑Nt

i=1Xi ∣Nt)], a common result from any calculus based

statistics course.

= V(Nt�) + E[NtV(X)].

= �t�2 + �tV(X).

= �t�(2).

Theorem 4.2.4. The moment generating function of St, EesSt = et�(s),where �(s) =

�(F̂ [s]− 1)− s.

Proof. EesSt = Ees(
∑Nt
i=1Xi−t)

= e−st
∑∞

k=0 Ees(X1+...+Xk)ℙ(Nt = k)

= e−st
∑∞

k=0 F̂ [s]ke−�t (�t)k

k!

= e−st−�t+F̂ [s]�t

= et�(s) .

4.3 Ladder Heights

In order to discuss the Pollaczeck-Khinchine formula, which gives an expression of the ruin

probability for the Compound Poisson model, we must �rst discuss the ladder height distri-

bution.

Consider the claim process St of a general risk process and the time �(R0) = inf
t≥0

(t : St >

R0) . We will assume R0 = 0 . Let �+ = �(0) and the associated ladder height be S�+ . Then

the ladder height distribution is de�ned as

G+(x) = ℙ(S�+ ≤ x) = ℙ(S�+ ≤ x, �+ <∞).
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Note that G+ has no mass on (−∞, 0] , and is typically defective; that is,

∣∣G+∣∣ = G+(∞) = ℙ(�+ <∞) =  (0) < 1 when � > 0 . Note that when � > 0 , there is

positive probability that St will never rise above 0.

Let MT = sup
0≤t<T

St = S�+(KT ), where KT denotes the last ladder height to be de�ned on

the interval [0, T ): KT = max{k : �+(k) < T}. Now, de�ne Mt as the process of relative

maxima. The term ladder height is motivated by the shape of this process. The �rst ladder

step is S�+ = S�+(1), the second step is S�+(2) − S�+(1) , where �+(1) and �+(2) are the times

of the �rst and second relative maxima, respectively. If � > 0 , then there are only �nitely

many ladder steps. Thus M = sup
0≤t<∞

S�+(K), where K is the last ladder height to be de�ned:

K = max{k : �+(k) < ∞}. Therefore, M is the total height of the ladder, i.e. the sum

of all of the ladder steps. Note that since the St process has negative drift (� > 0), there

will be, with probability 1, a �nite value of K. In regards to the compound Poisson model,

the following result from Asmussen (2000) holds. A proof will not be provided, as it would

require tools that are beyond the scope of this text.

For the compound Poisson model with � = �� < 1 , G+ is given by the defective density

g+(x) = �F̄ (x) = �b0(x), where b0(x) = F̄ (x)
�
, for x > 0.

4.4 The Pollaczeck-Khinchine formula

In order to present this formula, we will exploit the fact thatM is the sum of ladder heights.

Assume that � > 0. Equivalently, we assume � < 1. In the compound Poisson model, the

ladder heights are i.i.d. This follows from noting that the process repeats itself after reaching

a relative maximum. Decomposing M as the sum of ladder heights yields the following

formula:

Theorem 4.4.1. The distribution of M is (1− ∣∣G+∣∣)
∑∞

n=0G
∗n
+ , where G+ is given by the

defective density g+(x) = �F̄ (x) = �b0(x) on (0,∞), where b0(x) = F̄ (x)
�

.

Proof. The probability that M is attained in precisely n ladder steps and does not exceed x

is G∗n+ (x)(1− ∣∣G+∣∣) (the term in parenthesis gives the probability that there are no further
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ladder steps after the nth). Summing over n , the formula for the distribution of M follows.

The expression for g+ was provided at the end of Chapter 4.3.

By combining Theorem 4.4.1 with  (R0) = ℙ(M > R0) (from Chapter 2.1), we obtain a

representation for  (R0) which is known as the Pollaczeck-Khinchine formula:

 (R0) = ℙ(M > R0) = (1− �)
∑∞

n=0 �
nF̄ ∗n0 (R0),

where F0 has density b0 = F̄ x
�
. Thus the above expression of  (R0) represents the dis-

tribution of M as a geometric compound. Unfortunately, this formula is not very useful in

terms of computing ruin probabilities, since the formula contains an in�nite sum of convo-

lution powers. However, we shall discuss a special case of Pollaczeck-Khinchine that yields a

simpler result below.

4.4.1 Ruin probability when the initial reserve is zero

The case R0 = 0 is interesting since it gives a formula for  (R0) which depends only on the

mean of the claim size distribution. In fact in this case,

Theorem 4.4.2.  (0) = � = �� = 1
1+�

.

Proof. Recall, �+ = �(0) , thus

 (0) = ℙ(�+ <∞)

= ∣∣G+∣∣

= �
´∞

0
F̄ (x)dx

= �� , which is also equivalent to � and 1
1+�

.

The above formula is often referred to as an insensitivity property. This references the

fact that  (R0) depends on F only through �.



Chapter 5

The Random Walk Model

5.1 Veraverbeke's Theorem

Veraverbeke's Theorem (1977) relates the tail behavior of the maximum of certain random

walks with the tail behavior of their increments. Let Xi, i ≥ 1, be a sequence of independent

and identically distributed random variables, each having mean �, � < 0. De�ne a random

walk Sn by S0 = 0, Sn = Sn−1 + Xn, n ∈ {0, 1, ...}. We are interested in M = max
n≥0

Sn.

However, let us further discuss the distribution of Xi, the increments of the random walk.

Let each Xi ∼ f , where f is a probability density function with cumulative distribution

function F . Let F̄ = 1− F , be its tail. If the tail is regularly varying (this will be explained

in the next section) and the Xi's have negative mean (which we have assumed already) and

−� < −1 , where −� is the index of regular variation, then ℙ(M > t) ∼ 1
−�

´∞
t
F̄ (u) du,

as t tends to in�nity; this is equivalent to ℙ(M > t) ∼ tF̄ (t)
−�(�−1)

, by Karamata's Theorem.

(Barbe(2008)) We seek to verify Veraverbeke's Theorem through simulation. The easiest

function to use for f is a Pareto distribution.

5.2 Why Pareto?

If X has a Pareto distribution with parameters � and � then

f(x) = ���

x�+1 , x ≥ �.

It's tail is F̄ = (�
x
)�. We need for its tail to be regularly varying:

F̄ (y) ∼ L(y)
y�

, y → ∞, where L(y) is slowly varying, i.e. L(y) satis�es L(yt)
L(y)

→ 1, as

y →∞.(Asmussen (2000)) Of course, we will be shifting the Pareto so that it has a negative

mean, however this does not e�ect the properties of the tail.

16
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5.3 The Simulation

The classical function to use to simulate Veraverbeke's results is in fact the Pareto distribu-

tion. It has a regularly varying tail and from a programming perspective, is relatively easy

to create. We need to ensure that �, the mean of each step of the random walk, is negative.

This further promotes our choice of using Pareto as the distribution of the Xi's , since its

mean has a simple, and closed, form. Note that this is not the case for the log-gamma dis-

tribution, which also has regularly varying tails. Depending on the value of its parameters,

the mean of the log-gamma distribution does not have a closed form mean. Thus it is not a

good distribution to base our simulation on.

To generate random variables from a Pareto distribution, we used an inverse uniform

transformation. To be more speci�c, we randomly generate a random uniform value Z ∼

Uni(0, 1) . We then set � and � to some �xed values. Next, we transform each Z generated

to a Y ∼ Pareto(�, �) by using the formula Y = �
Z1/� . We then create a variable X =

Y − ��
�−1

+ � , which is a Pareto random variable minus its mean with a negative number �

added to it . This ensures that X has mean � and has Pareto distribution.

Keep in mind that Y = �
Z1/� > � . Thus the tail distribution function is F̄ = ℙ(Y ≥ x) =

(x
�
)−� , for x ≥ � . We calculate the mean, which is �nite when � > 1 , as follows:

EX =
´∞

0
F̄ (x) dx

=
´ �

0
1 dx+

´∞
�

(x
�
)−� dx

= � + �
´∞

1
x−� dx

= � + � 1
�−1

= �( �
�−1

) , which is the expected result.

These Pareto distributed random variables will be our Xi's, i.e. the steps of our random

walk Sn.

The simulation algorithm is as follows.

1. Generate N1 uniform random variables, Z ∼ Uni(0, 1).

2. Choose values for two variables � and �, the parameters of the Pareto distribution.
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3. Transform each Z generated to a Y ∼ Pareto(�, �) by using the formula Y = �
Z1/� .

4. Create a new variable, X = Y − ��
�−1

+ � , where � < 0 , to ensure that the random

walk will have negative drift.

5. Obtain Sn = X1 + . . .+Xn , for each n ∈ {1, . . . , N1}.

6. Find M = max
0≤n≤N1

Sn.

7. Repeat steps 1-6, N2 times, creating N2 di�erent M values, each denoted Mk, where

k ∈ {1, . . . , N2} .

8. Set a value for t, which is the same t from Chapter 5.1.

9. Create a variable c, to count the number of Mk's that exceed t.

10. Calculate simulated ℙ(M > t) = c
N2
.

11. Compare this value to tF̄ (t)
−�(�−1)

, which is the theoretical result.

To clarify, we generated Mk = max
0≤n≤N1

Sn,k , where Sn,k is the position of the nth step of

the kth random walk. In the initial version the program generated 1000 random walks of

1000 steps in length, i.e. N1 = N2 = 1000 . This number was chosen for two reasons. The

�rst reason is solely practical. The simulation was run using SAS, and generating 1 million

random variables takes about 5 minutes of processing time. Signi�cantly larger numbers seem

to demand too much processing power. Secondly, the probability of not obtaining the true

max of the walk is very low for a large enough −�. The set of the maxima of the random

walks that were used to generate a ℙ(M > t), which would simply be the proportion of the

maxima that were above a set value for t. We then compare this probability to tF̄ (t)
−�(�−1)

, from

Karamata's Theorem, where F̄ (t) = (�
t
)�.

For example, we ran this simulation setting the parameters of the Pareto distribution as

� = 2 and � = 1 . We also set � = −1.

For t = 10, simulated ℙ(M > t) = .102 . The expression tF̄ (t)
−u(�−1)

= 1
10

= .1.
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For t = 100 , simulated ℙ(M > t) = .011 . The expression tF̄ (t)
−u(�−1)

= 1
100

= .01.

For t = 1000, simulated ℙ(M > t) = .002 . The expression tF̄ (t)
−u(�−1)

= 1
1000

= .001.

For t = 10000 , simulated ℙ(M > t) = .000 . The expression tF̄ (t)
−�(�−1)

= 1
10000

= .0001.

Notice that the simulated results (the simulated ℙ(M > t)'s) seem quite close to their

theoretical ( tF̄ (t)
−�(�−1)

) counterparts. This is somewhat surprising given the asymptotic nature

of Veraverbeke's Theorem.

5.4 Global maximum of a negative drift random walk as a model for sta-

tionary waiting time in a G/G/1 queue.

Consider a queueing model where arrivals occur according to a renewal process, the service

times are iid from a general distribution and there is one server. The queue has in�nite

capacity as queue length is unrestricted. Such a queueing model is referred to as G/G/1.

Such a process is generally not Markovian. For the process to be Markovian, the arrivals

follow a Poisson process and the service distribution is exponential. This model is denoted

M/M/1.

Denote the interarrival time by �n. Set �n to be the length of time between the arrival of

customer n− 1 and n. Then the time of arrival of customer n is given by tn = �1 + ⋅ ⋅ ⋅+ �n

where the time of customer 0 is taken to be 0.

Let �n denote the service time of customer n. It is assumed that �n, n ≥ 1 and �n, n ≥ 0

are iid sequences and are independent of each other. Tra�c intensity, denoted p is de�ned as

p = E�0
E�1 .

Note when p < 1, then the average service time is less then the average interarrival time

so that it is unlikely that queue lengths will grow excessively large. We assume the stability

condition that p < 1.

The waiting time process Wn is de�ned as the length of time from customer n's arrival

until commencement of his service. Note that the Wn satis�es a recursion. We have W0 = 0

and
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Wn+1 = (Wn + �n − �n+1)+, n ≥ 0.

To see why this equation is true note that if customer n arrived at time t to the queue,

then he departs the system at time t+Wn + �n. This is clear because he waits Wn units of

time for service to begin and then �n time units later his service �nishes. Therefore customer

n+ 1 who arrives at time t+ �n+1 will have the wait for his service given by

Wn+1 =

⎧⎨⎩
0 if t+ �n+1 > t+Wn + �n,

Wn + �n − �n+1 if t+ �n+1 ≤ t+Wn + �n.

This is equivalent to (Wn + �n − �n+1)+.

Let Xn+1 = �n − �n+1, n ≥ 0 so that Wn+1 = (Wn +Xn+1)+.

Let us observe that we can solve the recursion.

Theorem 5.4.1. Wn = max{0, Xn, Xn+1 +Xn, ⋅ ⋅ ⋅ ,
∑n

i=1 Xi}.

Proof. We establish the result by induction. For n = 0, we have max{0} = 0 = W0. Assume

the proposition is true for n. For n+ 1 we have

Wn+1 = (Wn +Xn+1)+

= (max{0, Xn, Xn+1 +Xn, ⋅ ⋅ ⋅ ,
∑n

i=1Xi}+Xn+1)+

= (max{Xn+1, Xn +Xn+1, ⋅ ⋅ ⋅ ,
∑n+1

i=1 Xi})+

= max{0, Xn+1, Xn +Xn+1, ⋅ ⋅ ⋅ ,
∑n+1

i=1 Xi}

This establishes the induction step. So the recursion holds for all nonnegative integers n.

Theorem 5.4.2. Let Sn =
∑n

i=1 Xi, then ℙ(Wn ≤ w) = ℙ( max
0≤k≤n

Sk ≤ w)

Proof. Observe that (X1, X2, ⋅ ⋅ ⋅ , Xn)
d
= (Xn, Xn−1, ⋅ ⋅ ⋅ , X1)

Therefore (S1, S2, ⋅ ⋅ ⋅ , Sn)
d
= (Xn, Xn−1 +Xn, ⋅ ⋅ ⋅ ,

∑n
i=1Xi).

Hence Wn = max{0, Xn, Xn−1 +Xn, ⋅ ⋅ ⋅ ,
∑n

i=1Xi}
d
= max{0, S1, S2, ⋅ ⋅ ⋅ , Sn}.

Which establishes the above theorem.
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The stationary waiting time distribution is the limiting distribution of Wn. Under the

stability condition p < 1 we have

EXn+1 = E(�n − �n+1) < 0 , n ≥ 0.

Therefore the random walk Sn has negative drift implying that Sn → −∞, a.s.. Hence

Wn
a.s.→ W∞, where W∞ is an a.s. �nite, non-negative random variable.

Since, max
0≤k≤n

Sk ↑ max
k≥0

Sk,

we have ℙ(W∞ ≤ w) = lim
n→∞

ℙ(Wn ≤ w)

= lim
n→∞

ℙ( max
0≤k≤n

Sk ≤ w)

= ℙ(max
k≥0

Sk ≤ w).

Thus we see that the distribution of the global maximum of a random walk with negative

drift gives the distribution of the stationary waiting time.

5.5 Ladder Height Variables in the Random Walk Model

As was noted, the stationary waiting distribution in a G/G/1 queue is given by that of the

global maximum, i.e. the maximum over all time, of a random walk with negative drift. The

value of such a representation would only lie in the possibility that if one may be able to

derive a closed form for the distribution or an approximation to it. Ladder heights variables,

introduced in Chapter 4.3 will provide us with a tool in this direction.

Let Sn be a random walk with S0 = 0. Similar to Chapter 4.3 let the time of �rst passage

to (0,∞) be denoted �1. In other words,

�1 = min{n ≥ 1 : Sn > 0}.

We take the minimum of the empty set to be in�nity, thus �1 = ∞ if Sn ≤ 0, for all

n ≥ 1. On the set {�1 < ∞}, de�ne H1 = S�1 . Of course H1 > 0 whenever it is de�ned. On

the set {�1 = ∞}, the variable H1 is left unde�ned. Thus �1 and H1 are possibly defective

random variables. This means that ℙ(�1 < ∞) ≤ 1 and ℙ(H1 < ∞) ≤ 1, with the strict

inequality possible. The defect, ℙ(�1 =∞), is the same for both. That is

1− F�1(∞) = ℙ(�1 =∞) = 1− FH1(∞)
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where F�1 and FH1 denote the respective distributions of �1 and H1. In the case of interest

to us, a random walk with negative drift,

ℙ(�1 =∞) = ℙ(S1 ≤ 0, S2 ≤ 0, . . .) > 0

so that the variables are strictly defective. The variable H1 is referred to as the �rst ladder

height. The variable �1 will be referred to as the ladder epoch. Successive such variables, such

as second ladder height and epoch, may be de�ned. For example, on the set {�1 <∞} de�ne

the following

�2 = min{n > �1 : Sn > S�1} − �1

where as before �2 =∞ if the value S�1 is never exceeded. This says that S�1 is the global

maximum of the random walk. Note �2 is de�ned as the additional number of steps required

for the random walk to exceed the value S�1 . The value �1 + �2 is referred to as the second

ladder epoch.

If �2 <∞, de�ne H2 = S�1+�2 − S�1 = S�1+�2 −H1.

The variable H1 +H2 is referred to as the second ladder height. The reason for providing

de�nitions of second ladder variable in terms of increments is that the random walk

S�1+1 − S�1 , S�1+2 − S�1 , . . . , S�1+n − S�1 , . . .

say Y1, Y1 + Y2, . . . ,
∑n

i=1 Yi, . . . is a probabilistic replica of the original random walk, Sn.

Therefore �2 has the same distribution as �1 and by independent increments is independent

of �1. Similarly, H2 is an independent copy of H1, in terms of its distribution. In this way

i.i.d pairs are de�ned (�i, Hi), i ∈ {1, . . . , k} where k denotes the last �nite ladder height

variable, i.e. �k <∞ but �k+1 =∞.

Note that the number of variables de�ned is itself a geometric random variable with

probability mass function p(1− p)k, k ∈ {0, 1, . . .} with p = ℙ(�1 =∞). For a random walk

with negative drift p > 0. Therefore, with probability one there is a last ladder height epoch,

say �1 + . . .+ �k. Note that

W∞ = maxn≥0 Sn = H1 + . . .+Hk.
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Also observe that if Hi ∼ H, then de�ne H̃ = (1− p)−1H which is a proper distribution,

H̃(∞) = 1. Let H̃i be an i.i.d. sequence of random variables having distribution H̃. From

our representation of W∞, we have

ℙ(W∞ ≤ w) = ℙ(W∞ ≤ w∣�1 =∞)p+
∑∞

k=2 ℙ(W∞ ≤ w∣�k−1 <∞, �k =∞)p(1− p)k−1

= I[0,∞)(w)p+
∑∞

k=2 ℙ(H̃1 + . . .+ H̃k−1 ≤ w)p(1− p)k−1

= I[0,∞)(w)p+
∑∞

k=2 H̃
∗(k−1)(w)p(1− p)k−1

=
∑∞

k=1 H̃
∗(k−1)(w)p(1− p)k−1

=
∑∞

k=0 H̃
∗(k)(w)p(1− p)k

where H̃∗(0) is the degenerate distribution at zero. Thus the ladder height variables pro-

vide a representation of the distribution ofW∞ as that of a compound geometric distribution.

We record this in the following theorem.

Theorem 5.5.1. Let p = ℙ(�1 = ∞) be the positive defect of the ladder height distribution

in the case of a negative drift random walk.

De�ne H̃(x) = ℙ(H1 ≤ x∣�1 <∞) = (1− p)−1H(x)

where H denotes the defective ladder height distribution. Then

W∞ ∼
∑∞

k=0 p(1− p)kH̃∗(k).

5.6 Dominated Convergence Theorem

We will need to make use of the following theorem in Chapter 5.7, so it is stated below.

(Bartle (2001))

Theorem 5.6.1. Let (fk) be a sequence in ℜ∗(I). In other words, let (fk) be Riemann

Integrable. Also let f(x) = lim fk(x) for all x ∈ I, where I is de�ned as the interval [a, b].

Suppose that there exist functions �, ! ∈ ℜ∗(I) such that

�(x) ≤ fk(x) ≤ !(x) for x ∈ I, k ∈ ℕ.

Then, f ∈ ℜ∗(I) and

´
I

lim
k→∞

fk(x) = lim
k→∞

´
I
fk.
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5.7 Veraverbeke's Approach

In Theorem 5.5.1 we saw that the stationary waiting time distribution for a stable queue, i.e.

its tra�c intensity is less than 1, is given as a compound geometric distribution. Veraverbeke

(1977) exploited this fact by obtaining an approximation to the distribution when the under-

lying random walk has increments with right tail distribution being heavy-tailed in the sense

of belonging to the class of subexponential distributions (see Chapter 3.4). We remark that

distribution functions F with a regularly varying tail belong to the class of subexponential

functions. Let the class of subexponential functions be denoted S. Note that if F ∈ S, then

for every n ≥ 1,

lim
x→∞

F ∗n(x)

F (x)
= n.

The term subexponential derives from the property that if F ∈ S

lim
x→∞

e�xF (x) =∞,∀� > 0.

A basic result on subexponential distributions is the following result which is Lemma 7

of section 4 in Chapter 4 of Athreya and Ney, Branching Processes (1972).

Theorem 5.7.1. (Athreya and Ney) Let G ∈ S. Then for any � > 0 there is a constant

D <∞ such that
G∗n(x)

G(x)
≤ D(1 + �)n,∀n and x > 0.

By combining the above and Theorem 5.5.1 we see that if H̃ ∈ S and x > 0

ℙ(W∞ > x) =
∑∞

k=1 p(1− p)kH̃∗k(x) because H̃∗0(x) = 1− I[0,∞)(x) = 0, for x > 0. Thus

lim
x→∞

ℙ(W∞>x)

1−H̃(x)

= lim
x→∞

∑∞
k=1 p(1− p)k(

H̃∗k(x)

1−H̃(x)
)

=
∑∞

k=1 p(1− p)kk

= 1−p
p

where the limit may be interchanged with the summation by the Dominated Conver-

gence Theorem (presented as Theorem 5.6) using Theorem 5.7.1. Thus we have the following

proposition.
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Theorem 5.7.2. If the ladder height distribution H is subexponential, then ℙ(W∞ > x) ∼
1−p
p
H̃(x) = 1

p
H(x) where H(x) = H(∞)−H(x) = 1− p−H(x).

Proof. From Theorem 5.7.2 one sees that a �rst order asymptotic expansion for the tail

distribution of W∞ is attainable once such an asymptotic equivalent to H(x) is obtained.

Towards that end, Veraverbeke (1977) shows that if the underlying distribution F of the

random walk has �nite mean and

F1(x) =
´ x

0
F (t)dt/

´∞
0
F (t)dt then H ∈ S and furthermore H(x) ∼ p

(−�)

´∞
x
F (t)dt as

x → ∞ where p is the defect of H, i.e. H(∞) = 1 − p. In light of the above asymptotic

equivalence, one obtains by Theorem 5.7.2 the result.

Theorem 5.7.3. Assuming F1 ∈ S we have ℙ(W∞ > x) ∼ 1
(−�)

´∞
x
F (t)dt as x → ∞. In

particular the above holds if F is regularly varying.



Chapter 6

Dependent steps random walk model

Before we discuss the next ruin probability model we need to introduce a few concepts.

6.1 Time series and other notations

A time series is an ordered sequence of observations. The ordering is usually though time,

but the ordering can be taken though other dimensions, such as space. The key feature of a

time series that we will use in this paper is the dependence among observations. Note that

before this point of the paper, we have always assumed that the step sizes were independent

from one another.

There are two basic types of stationary time series, Autoregressive (AR) and Moving

Average (MA).

Let Zt be a stochastic process. An Autoregressive model of order p, denoted AR(p), is

given by

Zt = �1Zt−1 + ⋅ ⋅ ⋅+ �pZt−p + "t

where "t, known as a "white noise series", is a process with mean zero and �nite variance

�2 , i.e. E"t = 0 and E"2
t = �2 <∞.

Let Zt be a stochastic process. A Moving Average model of order q, denoted MA(q), is

given by

Zt = "t − �1"t−1 − ⋅ ⋅ ⋅ − �q"t−q

An AR(p) and an MA(q) model can be mixed in order to form an ARMA(p,q) model.

This is given by

Zt = �1Zt−1 + ⋅ ⋅ ⋅+ �pZt−p + "t − �1"t−1 − ⋅ ⋅ ⋅ − �q"t−q

26
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Before the next model type is introduced, we need to introduce the "backshift" operator.

The "backshift" operator denoted B(Zt) = Zt−1.

We de�ne powers of B iteratively. For example,

B2 = B(B(Zt)) = Zt−2. Thus, B
k = B(Bk−1) = Zt−k.

An ARIMA model is a "di�erenced" version of an ARMA model. We usually will �t a

di�erenced model if there is some evidence of a change in the mean value of a series over

time. Using the backshift operator, we can now de�ne the ARIMA(p,d,q) model. An ARIMA

model may be represented as

(1− �1B − ⋅ ⋅ ⋅ − �pBp)(1−B)dZt = (1− �1B − ⋅ ⋅ ⋅ − �qBq)"t.

6.2 The tail of an infinite series of independent random variables

We will now introduce some of the terminology that will be present in Mikosh and Samorod-

nitsky's ruin probability model. Let us begin by considering the right tail of an in�nite series

say,

X =
∑∞

j=−∞ 'j"j

where "n for all n ∈ ℤ is a sequence of i.i.d. random variables that satis�es regularly

varying and tail balance conditions for some � > 0. The regularly varying and tail balance

conditions are below.

ℙ(∣"∣ > �) = L(�)
��

,

lim
�→∞

ℙ(">�)
ℙ(∣"∣>�)

= p,

and lim
�→∞

ℙ("<−�)
ℙ(∣"∣>�)

= q, as �→∞, for 0 < p ≤ 1. L is a slowly varying (at in�nity) function.

(Mikosch (2000))

In addition to the above conditions, the 'j's are such that the in�nite series X converges.

Under certain conditions the following holds true.

ℙ(X>x)
ℙ(∣"∣>x)

∼
∑∞

j=−∞ ∣'j∣�[pI'j>0 + qI'j<0] which will be de�ned as ∣∣'∣∣��

There are some conditions on 'j.
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⎧⎨⎩
∑∞

j=−∞ '
2
j <∞ for � > 2,∑∞

j=−∞ ∣'j∣�−" for some " > 0, for � ≤ 2.

This leads us to a theorem, which we will not prove in this paper, see the Mikosch and

Samorodnitsky(2000) for details.

Theorem 6.2.1. Let the i.i.d sequence of "n satisfy the regular variation and tail balance

conditions with an � > 0. If � > 1, assume that E(") = 0. If the coe�cients 'n satisfy

the above conditions, then the in�nite series X exists and
ℙ(X>x)
ℙ(∣"∣>x)

∼
∑∞

j=−∞ ∣'j∣�[pI'j>0 +

qI'j<0] = ∣∣'∣∣�� holds.

The theorem above will help us when we are de�ning the model in the next section.

6.3 Mikosch and Samorodnitsky's model

Veraverbeke's assumption of independent step sizes might be unrealistic. For example, in a

queuing context a typical model has steps distributed as the di�erence between service times

and inter-arrival times, and the independence assumption is agreed not to hold.

Note that, x ∈ ℝ , x+ = max(0, x) , which is read �the positive part of x �.

Similarly, x− = −min(0, x) , which is read �the negative part of x �.

Now set Sn = X1 + ⋅ ⋅ ⋅+Xn .

Recall, if the steps Xi ∼ F , i ∈ ℤ were to be i.i.d. subexponential random variables (see

Chapter 3.4 for a de�nition of subexponential) and they generated a random walk

Sn = X1 + ⋅ ⋅ ⋅+Xn, for n ≥ 1 and S0 = 0 , then

ℙ(sup
n≥0

Sn > �) ∼ 1
�

´∞
�
F̄ (u) du , as �→∞, where EX = −� , −� < 0.

In fact, we will model the random walk steps Xn , n ∈ ℤ, of the random walk Sn =∑n
i=1Xi as a two-sided linear process. We will denote the process
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Xi = −� +
∑∞

j=−∞ 'i−j"j , i ∈ ℤ, where "i is a sequence of i.i.d random variables with

mean zero (i.e. E" = 0)and � > 0 is a constant. (Mikosch (2000)) 1 The "j are commonly

referred to as "white noise". Also, note that the Xi's resemble the series X from Chapter

6.2.

While they do resemble a Moving Average (MA) process, notice that the steps Xi's of the

random walk are not technically from an MA, ARMA or ARIMA process. ARIMA processes

are always represented as one-sided (i.e. casual) linear processes. In other words, in an ARMA

or ARIMA process, 'n = 0 for all n < 0.

We will assume that " = "0, will satisfy the regular variation and tail balance conditions.

These are as follows:

ℙ(∣"∣ > �) = L(�)
��

,

lim
�→∞

ℙ(">�)
ℙ(∣"∣>�)

= p,

and lim
�→∞

ℙ("<−�)
ℙ(∣"∣>�)

= q, as �→∞, for some exponent of variation � > 1 and 0 < p ≤ 1. L

is a slowly varying (at in�nity) function. (Mikosch(2000)) We also note that the coe�cients

'j satisfy the following two conditions:

All of the 'j's cannot be equal to zero, some of them can equal zero, just not all of them.

Secondly,
∑∞

j=−∞ ∣j'j∣ <∞.

Notice that these conditions bear a strong resemblance to the regular variation and tail

balance conditions set forth in Chapter 5.

However, it is worth mentioning that the above condition excludes linear processes with

long range dependence which can be described by the condition
∑∞

j=−∞ ∣j'j∣ = ∞. Thus,∑∞
j=−∞ ∣j'j∣ <∞ is referred to as weak dependence.

Combining the weak dependence with the regular variation and tail balance conditions

along with the fact that E" = 0 imply that Xi = −� +
∑∞

j=−∞ 'i−j"j , i ∈ ℤ , converges

absolutely with probability 1 and that EXi = −�. Also, by using Theorem 6.2.1, we obtain

ℙ(X>x)
ℙ(∣"∣>x)

∼
∑∞

j=−∞ ∣'j∣�[pI'j>0 + qI'j<0] = ∣∣'∣∣�� as �→∞.

1Note that this is a bit of an abuse of the terminology �random walk� since the step sizes are not

i.i.d.
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Let us not forget that we are interested in the ruin probability. This is de�ned as

 (�) = ℙ(supn≥0 Sn > �) as �→∞.

Assume that the Sn process had i.i.d steps we would obtain

 iid(�) ∼ 1
�(�−1)

�ℙ(X > �)

∼ ∣∣'∣∣��
�−1

1
�
�ℙ(∣�∣ > �) as �→∞.

Where  iid(�), is the ruin probability under the i.i.d. condition.

Now let's begin to build the dependent steps, time series based model. Because of the

heavy tails, the event

{supn Sn > �}, is expected to occur because of a single large positive or a very small neg-

ative value of the noise, "n. The largest ever contribution of the "important" noise variables

to the state of the random walk is as follows.

Sn = −n�+
∑n

k=1

∑∞
j=−∞ 'k−j"j

= −n�+
∑∞

j=−∞ "j
∑n−j

k=1−j 'k.

Think about large "n's �rst. A possibly large contribution of "+
j to Sn is multiplied by∑n−j

k=1−j 'k. We do not expect every "+
j to make a sizable contribution to the tail of the pro-

cess, because of the negative drift, the contribution of each "+
j dissipates with time. Therefore,

the important noise variables are the ones with high j's, in which case the
∑n−j

k=1−j 'k becomes

approximately
∑n−j

k=−∞ 'k. Represent the largest that this factor becomes with

m+
' = sup

−∞<n<∞

∑n
k=−∞ 'k

Similarly, for the small negative values of "j we utilize

m−' = sup
−∞<n<∞

∑n
k=−∞(−'k).

Mikosch and Samorodnitsky (2000) show that the following ruin probability results hold

asymptotically:

 (�) ∼
∑∞

j=1[ℙ(m+
'"

+
j > �+ j�) + ℙ(m−'"

−
j > �+ j�)]

∼
´∞

1
ℙ(m+

'"
+ > �+ y�) dy +

´∞
1

ℙ(m−'"
− > �+ y�) dy

∼ m+
'

�

´∞
�/m+

'
ℙ(" > y) dy +

m−'
�

´∞
�/m−'

ℙ(" < −y) dy .

By applying Karamata's theorem, we expect to have
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 (�) ∼ [p(m+
' )�+q(m−' )�]

�−1
1
�
�ℙ(∣"∣ > �) ∼ [p(m+

' )�+q(m−' )�]

∣∣'∣∣��
1

�(�−1)
�ℙ(X > �), as �→∞ .



Chapter 7

Recent Developments

Of course, this paper is not all inclusive of all possible ruin probability models. Below are a

few models that have appeared in recent literature.

Hult and Lindskog(2008) study a model similar to the one in Chapter 5, but they further

complicate matters by giving the insurance company a chance to deposit part of its capital

into a bank account that yields interest. In addition the insurance company may invest in n

stocks, denoted "risky assets" by Hult and Lindskog. The interest rate of the bank account

at time t is denoted rt, where the rt's follow a càdlàg adapted process (càdlàg means that

the process is right continuous and has left limits). The prices of the stocks at time t are

a spot process Skt , where k ∈ {1, ⋅ ⋅ ⋅ , n}. The spot prices are assumed to form strictly

positive semimartingales. Now let �0
t denote the fraction of the capital deposited into the

bank account at time t. Let �kt denote the fraction of capital invested in the kth stock at

time t. By construction, �0
t + ⋅ ⋅ ⋅ + �nt = 1. The cumulative premiums minus claims up to

time t are modeled by a Lévy process, denoted "Yt, whose downward jumps are assumed to

have a heavy-tailed, regularly varying, distribution. Thus, by letting R0 > 0 denote initial

capital, the evolution of the risk reserve R"
t is given by the stochastic integral equation.

R"
t = R0 +

´ t
0+
�0
sR

"
s−rs−ds+

∑n
k=1

´ t
0+
�ksR

"
s−

dSks
Sks−

+ "Yt, t ≥ 0.

Avram, Palmowski and Pistorius (2007) study the joint (two-dimensional) ruin problem.

They assume that there are two insurance companies that split both the claims and the

premiums in speci�ed proportions. Speci�cally, say these proportions are �1 and �2, where

�1+�2 = 1. Let the premium rates be labeled c1 and c2. Also, let S(t) represent the cumulative

amount of claims up to time t. We will assume that S(t) is a spectrally positive Lévy process,

32
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which is a Lévy process with only upward jumps. The risk process for the ith company,

labeled Ui is as follows

Ui(t) := −�iS(t) + cit + ui , where i ∈ {1, 2} and ui are the initial cash reserves of the

insurance companies. S(t) will follow the classical model in a matter similar to Chapter 4.

Thus S(t) will be de�ned as the following

S(t) =
∑N(t)

k=1 �k, where N(t) is a Poisson process with rate � and the claims �k are

i.i.d. random variables independent of N(t). The �k's have a distribution function, say F (x),

as well as a mean of �−1. We will also assume that the second company (the company for

which i = 2) is in some way, shape, or form, subordinate to the i = 1 company. Avram,

Palmowski and Pistorius refer to the second company as the reinsurer. Thus, we assume

that the reinsurer gets a smaller share of the pro�ts per amount paid, denoted pi. In other

words we assume

p1 = c1
�1
> c2

�2
= p2.

Let � = �
�
. Just as in Chapter 2 we assume that both of the insurance companies will

attempt to avoid ruin by setting the premiums in such a manner that the rate of incoming

premiums is higher than the rate of incoming claims. In other words we assume pi > �. This

implies that in the absence of ruin, Ui(t) → ∞ as t → ∞, where i ∈ {1, 2}. In a manner

very similar to Chapter 2, ruin occurs when at least one insurance company is ruined at time

� = �(u1, u2) where �(u1, u2) is de�ned as follows

�(u1, u2) = inf{t ≥ 0 : U1(t) < 0 or U2(t) < 0}.

We can also think of ruin geometrically as the �rst exit time of (U1(t), U2(t)) from the

positive (�rst) quadrant. Also familiar to us is the following de�nition of ruin probability:

 (u1, u2) = ℙ[�(u1, u2) <∞].

Analytical solutions in multi-dimensional problems are rare, however Avram, Palmowski

and Pistorius are able to present a closed form solution as long as the �i are exponentially

distributed with intensity �.
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The solution to the two-dimensional ruin problem depends on the relative sizes of the

proportions �1, �2 and premium rates c1, c2. To think about this geometrically, let � = (�1, �2)

and c = (c1, c2) be two vectors with origin (u1, u2) in the "�rst quadrant" created by the

lines "y = u1" and "x = u2"
1. It is assumed throughout that the angle of the vector � with

the u1 axis is larger than the angle of c. In other words we assume �2c1 > �1c2. Starting with

initial capital (u1, u2) ∈ C, where C is the cone

C = {(u1, u2) : u2 ≤ �2
�1
u1},

the process (U1, U2) will hit the u1 axis at time � . In this case, � is also equivalent to

�(u1, u2) = inf{t ≥ 0 : S(t) > b(t)},

where b(t) = min{u1+c1t
�1

, u2+c2t
�2
}.

In the case that (u1, u2) ∈ C, i.e. u2
�2
≤ u1

�1
, b(t) is linear, speci�cally b(t) = u2+c2t

�2
and

ruin will always happen to the second company. Thus the two-dimensional problem may be

viewed as a one-dimensional problem with linear barrier b, premium rate c2, and claim rate

�2�, i.e.

 (u1, u2) =  2(u2) := ℙ(�2(u2) <∞).

where �2(u2) = inf{t ≥ 0 : U2(t) < 0} and  2 is the ruin probability of the re-insurer

(the second insurance company). In the case of claims having structure ℙ[� > x] = �eBx1,

the ruin probability may be written in matrix exponential form,

 2(u2) = �e�
−1
2 (B+b�)u21

For the case u2
�2
> u1

�1

The solution is the Laplace Transform

 (u1, u2, s) := E[e−s�(u1,u2)1�(u1,u2)<∞].

Other papers focus on the the distribution of the time to ruin, denoted

� = inf{t > 0 : U(t) < 0}.

Borovkov and Dickson (2007) explore this subject within the Sparre Anderson model,

where the cash surplus process is

1Note that I mean x and y in the traditional Cartesian plane sense
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U(t) = u+ ct−
∑

j≤N(t) Xj, where u ≥ 0 is the initial cash reserve, c > 0 is the premium

rate and N(t) is a delayed renewal process generated by a sequence of inter-claim times, i.e.

N(t) = inf{T0 + ⋅ ⋅ ⋅+ Tj ≥ t}, where j ≥ 0.

The Xj, where j ≥ 1 are the sequence of claims that follow the exponential distribution.

Note, the X1 claim size occurs at time T0, and so on. Also, we assume that the {Tj} and

{Xj} sequences are both i.i.d. and jointly independent.

Again, let Xj be distributed in the following manner.

ℙ(Xj > x) = e−�x where x ≥ 0.

Let T0 and T1 (which is equal in distribution to Tj, j > 1) have densities f0(t) and f(t),

respectively. Borovkov and Dickson prove that the ruin time has the defective density p� (t)

shown below.

p� (t) = e−�(u+ct){f0(t) +
∑∞

n=1
�n(u+ct)n−1

n!
[u(f ∗n ∗ f0)(t) + c(f ∗n ∗ f1)(t)]},

where f1(t) = tf0(t), g ∗ f is the convolution of functions g and f, and g∗n, n ≥ 2 is the

n-fold convolution of g with itself.
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