

RGIS: EFFICIENT REPRESENTATION, INDEXING AND QUERYING OF LARGE RDF

GRAPHS

by

JAGALPURE, ANIRUDDHA GIRISH

(Under the Direction of Lakshmish Ramaswamy)

ABSTRACT

 RDF data is a labeled directed graph. SPARQL is an RDF Query language that is used to

extract information from the RDF Graph. There are different RDF Engines like Sesame, RDF-

3X, OWLIM & Jena. Jena is the most popular framework and is widely used. Jena In-Memory

model cannot scale for large RDF datasets while Jena SDB and Jena TDB have high latencies. In

this thesis we propose a new system ‘RGIS’ (RDF Graph Split and Index) for processing

SPARQL queries on RDF data. RGIS is not only scalable but also faster than Jena and OWLIM-

SE (BigOWLIM). RGIS uses a custom data format and novel indexing technique to store the

RDF data. Our custom format stores the RDF data into different files based on Classes and

Object Properties present in the RDF data. These files are then given an index and each instance

in these files is given a unique index value. We have also developed an RDF structure-aware

Query Planner that uses the topology of RDF graph to intelligently schedule various query

operations. When compared with Jena TDB, OWLIM and Mulgara on LUBM datasets, RGIS

was not only had faster response times but also has less memory overhead.

INDEX WORDS: RDF, SPARQL, Query Processing, Graph, Jena and Hadoop.

RGIS: EFFICIENT REPRESENTSTION, INDEXING AND QUERYING OF LARGE RDF

GRAPHS

by

JAGALPURE, ANIRUDDHA GIRISH

B.E., University of Pune, India, 2008

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2012

© 2012

Aniruddha Jagalpure

All Rights Reserved

RGIS: EFFICIENT REPRESENTSTION, INDEXING AND QUERYING OF LARGE RDF

GRAPHS

by

JAGALPURE, ANIRUDDHA GIRISH

 Major Professor: Lakshmish Ramaswamy
 Committee: John A. Miller
 Ismailcem Budak Arpinar

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
December 2012

IV

DEDICATION

To my parents, family & friends, for their love, support and encouragement.

V

ACKNOWLEDGEMENTS

Past 2.5 years are the most enriching years of my life and has been a big learning curve. I take

this opportunity to thank Dr. Lakshmish Ramaswamy for his constant support, feedback,

encouragement and motivation. I would like to thank Dr. John A. Miller for his constant inputs,

guidance and motivation for my project. I would also like to thank Dr. Ismailcem Budak Arpinar

for providing his valuable inputs and motivation for my project.

I would also like to thank my friends Akshay, Chinmay & Siva for all the support and

motivation. A special thanks to Kat Gilmore and Sue Myers Smith for their love, support,

motivation and giving me an opportunity to work as lead web developer for the UGA College of

Veterinary Medicine.

VI

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. V

LIST OF TABLES .. VIII

LIST OF FIGURES .. IX

CHAPTER

 1 INTRODUCTION ...1

 1.1 Motivation ..3

 1.2 Contributions ...4

 1.3 Organization ...5

 2 SYSTEM ARCHITECTURE ..7

 3 INDEXING CLASS FILES AND PROPERTY FILES ..10

 3.1 RDF to Notation3 format ...10

 3.2 Class Files and Property Files ..10

 3.3 Indexing Class Files and Property Files ...12

 4 QUERY PLAN GENERATOR ...15

 5 QUERY PLAN EXECUTOR ..20

 6 RESULTS ..22

 6.1 Experimental Setup ..22

 6.2 Performance of RGIS for different Heap Size ...23

 6.3 Response Time for Individual LUBM Test Queries ..28

VII

 6.4 Query Evaluation, Data Load & Query Execution time of RGIS42

 6.5 Comparison with Jena TDB ...45

 6.6 Comparison with OWLIM-Lite ...48

 6.7 Comparison with OWLIM-SE ...49

 6.8 Comparison with Mulgara ...50

 6.9 Discussion ..51

 7 RELATED WORK ..53

 8 CONCLUSIONS AND FUTURE WORK ..58

 8.1 Conclusion ...58

 8.2 Future Work ...59

REFERENCES ..60

VIII

LIST OF TABLES

Page

Table 1: Example - Class File ... 12

Table 2: Example - Property File .. 12

Table 3: Indexed Class File ... 13

Table 4: Example - Indexed Class File ... 13

Table 5: Example – Indexed Class File .. 13

Table 6: Example – Indexed Property File ... 14

Table 7: Node Dependency List ... 18

Table 8: Property List of Nodes .. 18

Table 9: Data Sets used for Test ... 22

Table 10: Total Execution Time of RGIS for 4GB Heap Space ... 42

Table 11: Total Execution Time of RGIS for 3GB Heap Space ... 43

Table 12: Total Execution Time of RGIS for 2GB Heap Space ... 44

Table 13: Space Comparison – RGIS v/s Jena TDB .. 45

Table 14: Total Execution Time ... 48

Table 15: Comparison of RGIS and OWLIM-SE ... 49

Table 16: Execution Time of RGIS and Mulgara ... 50

Table 17: Storage Space required for RGIS and Mulgara .. 51

IX

LIST OF FIGURES

Page

Figure 1: Architecture of RGIS ... 7

Figure 2: Subject-Predicate-Object Example .. 11

Figure 3: Graph Generated for SPARQL Query ... 17

Figure 4: Time for Test Queries v/s 4GB Memory Space .. 24

Figure 5: Memory Utilization for 4GB ... 24

Figure 6: Time for Test Queries v/s 3GB Memory Space .. 25

Figure 7: Memory Utilization for 3GB ... 25

Figure 8: Time for Test Queries v/s 2GB Memory Space .. 26

Figure 9: Memory Utilization for 2GB ... 26

Figure 10: Time for Test Queries v/s 1GB Memory Space .. 27

Figure 11: Memory Utilization for 1GB ... 27

Figure 12: Time v/s Memory for Query 1 .. 28

Figure 13: Memory Utilization for Query 1 ... 28

Figure 14: Time v/s Memory for Query 2 .. 29

Figure 15: Memory Utilization for Query 2 ... 29

Figure 16: Time v/s Memory for Query 3 .. 30

Figure 17: Memory Utilization for Query 3 ... 30

Figure 18: : Time v/s Memory for Query 4 .. 31

Figure 19: Memory Utilization for Query 4 ... 31

X

Figure 20: Time v/s Memory for Query 5 .. 32

Figure 21: Memory Utilization for Query 5 ... 32

Figure 22: Time v/s Memory for Query 6 .. 33

Figure 23: Memory Utilization for Query 6 ... 33

Figure 24: Time v/s Memory for Query 7 .. 34

Figure 25: Memory Utilization for Query 7 ... 34

Figure 26: Time v/s Memory for Query 8 .. 35

Figure 27: Memory Utilization for Query 8 ... 35

Figure 28: Time v/s Memory for Query 9 .. 36

Figure 29: Memory Utilization for Query 9 ... 36

Figure 30: Time v/s Memory for Query 10 .. 37

Figure 31: Memory Utilization for Query 10 ... 37

Figure 32: Time v/s Memory for Query 11 .. 38

Figure 33: Memory Utilization for Query 11 ... 38

Figure 34: Time v/s Memory for Query 12 .. 39

Figure 35: Memory Utilization for Query 12 ... 39

Figure 36: Time v/s Memory for Query 13 .. 40

Figure 37: Memory Utilization for Query 13 ... 40

Figure 38: Time v/s Memory for Query 14 .. 41

Figure 39: Memory Utilization for Query 14 ... 41

Figure 40: Performance – RGIS v/s Jena TDB for Data Set 1 (41 Million Triples) 46

Figure 41: Performance – RGIS v/s Jena TDB for Data Set 2 (83 Million Triples) 47

1

CHAPTER 1

INTRODUCTION

Currently, the web pages are dominated by unstructured and semi-structured format of data on

the web pages. Besides, humans are able to process the information that is available on the web.

Since this information is unstructured, machines cannot interpret the information that is

presented on the web. Hence, with an objective of converting this unstructured data into

structured data and make it more machine readable, The W3C Consortium proposed a standard

Semantic Web. Semantic Web promotes a common data format on the web. Thus, Semantic Web

provides a common framework for data to be shared across the web, platforms and different

enterprises. To accomplish the objectives of Semantic Web, in 1999 The W3C proposed the

Resource Description Framework (RDF), a meta-data data model used to exchange data on the

Web. After its introduction, it has been popular in Semantic Web Technologies and Life

Sciences. Besides, [8] major search engines like Google (RichSnippets) and Yahoo

(SearchMonkey) have started displaying webpages marked up with RDF more prominently in

search results and hence encouraging usage of RDF.

Data in RDF is represented in the form of Triples of Subject, Predicate and Object; and each of

them has a Uniform Resource Identifier (URI). Hence, a group of RDF statements can then form

a labeled directed graph. In such a graph, the nodes (Subject and Object) are two URI’s that are

linked by an edge (Predicate) and this edge also has its own URI. Thus, RDF is a directed,

labeled graph data format that is used to represent information.

2

E.g. Department0 of University0 can be represented in RDF format as shown below:

<ub:Department rdf:about="http://www.Department0.University0.edu">

 <ub:name>Department0</ub:name>

 <ub:subOrganizationOf>

 <ub:University rdf:about="http://www.University0.edu" />

 </ub:subOrganizationOf>

</ub:Department>

As seen in above example, information is represented in a complex structure which is difficult to

understand for humans. Hence, there is a need for a format in which RDF data can be

represented in human-readable format. Hence, W3C proposed a new standard Notation 3

[14][15], the compact representation of RDF’s XML data, which is much simpler and human

readable format than RDF. Turtle (Terse RDF Triple Language)[31], is a serialization format for

RDF data model. It is a subset of Notation3.

E.g. Department0 of University0 can be represented in N3 format as shown below:

<http://www.Department0.University0.edu> a ub:Department ;

 ub:name "Department0" ;

 ub:subOrganizationOf

<http://www.University0.edu> .

Thus, as seen above, the information is much easier to read and for human consumption.

3

Since RDF is a directed, labeled graph format to represent data, there also needs to be a standard

that needs to be established to retrieve the information from the RDF dataset. Hence to retrieve

information from RDF graphs, W3C proposed a new Query Language called SPARQL.

SPARQL (SPARQL Protocol and RDF Query Language)[18][19] is an RDF query language that

is used to retrieve and manipulate the data that is stored in RDF format. It provides the standards

and keywords that need to be used to form a Query to retrieve information from an RDF dataset.

Below is an example, represented in the SPARQL query Language, to retrieve all Graduate

Students taking course GraduateCourse0.

E.g.

 SELECT ?X
 WHERE {
 ?X rdf:type ub:GraduateStudent .
 ?X ub:takesCourse

<http://www.Department0.University0.edu/GraduateCourse0>}

1.1 MOTIVATION

RDF engines support querying, storing & indexing of RDF data. There are many RDF engines

like Jena [27], OWLIM [28], Sesame [29] and RDF-3X [30]. Among all these, Jena is the most

popular framework. In Jena, to store the data, there are several models namely:

• Jena In-Memory:

• Jena SDB

• Jena TDB

Previous research [1] [4] has shown that since Jena In-Memory model loads all the RDF data

into main memory, Jena In-Memory model cannot load for more than 10 Million triples for 2GB

memory. Hence, for larger data sets, it is not possible to use Jena In-Memory Model. Jena SDB

can load up to 650Million Triples and Jena TDB can load up to 1.7 Billion Triples. However

4

previous research [23][24] has shown that these models have high latencies. Hence, in terms of

performance, both these systems are slow. Another important drawback with all these models is

that they are meant to work on a single machine. Hence, there is a need to develop a system,

which can scale to support big data sets and at the same time is efficient and takes less memory

and time to evaluate the queries. Besides, the system should also be implemented on a single

machine and should also work on a distributed framework like Hadoop.

1.2 CONTRIBUTIONS

As there is a need to develop scalable, memory efficient and performance efficient system for

RDF data, we have developed a new system RGIS (RDF Graph Split and Index) which uses

its own custom format and indexing structure to store the RDF data and uses custom Query Plan

Generator which is used to extract information from the custom data format used by the system.

Hence, we have two most important contributions to make:

• Custom Data format and Indexing structure:

We create a separate file for each Class and Property in the RDF data and give a unique

index to each of the files and items in these files. All the instances of a class are then

stored in the respective Class File and each instance is given a unique index. Data in

Property Files is stored in two sections: Header and Body. In Header, we store all the

Meta-data about the Subject and Objects. Whereas in Body, we store the Subject and

Object that are linked to each other by the Predicate that is the name of the Property File.

Instead of storing the URI, we used the index that has been assigned to the Subject/Object

in their respective Class Files.

5

• Query Plan Generator:

The Query Plan Generator provides us with a query plan to execute the SPARQL query

asked by the user. The Query Plan Generator examines the query and gives us the order

in which the triples need to be executed. Since, we are storing the information in our

Custom Format, it also provides information to which files needs to be loaded into the

memory to execute the query.

• Query Plan Executor:

Once the query plan is received from the Query Plan Executor, the Query Plan Executor

loads the required files in the memory and executes the order of triples it has received in

the Query Plan.

Thus, by using our custom data format, we are able to reduce the RDF file size by up to 66%. By

using indexes and selectively loading the data files into the memory, RGIS uses less memory to

perform complex operations and is faster than Jena TDB and OWLIM-SE.

1.3 ORGANIZATION

In Chapter 2, we discuss the System Architecture of RGIS. We would discuss the different

components that are involved in RGIS and their interaction with each other.

In Chapter 3, we discuss the new custom storage and indexing format to store the RDF data. We

would also explain the steps involved to convert he RDF data into the new custom format.

In Chapter 4, we discuss the algorithm the Query Plan Generator uses to generate the Query

Plan.

In Chapter 5, we discuss the details of the execution of Query Plan Executor. The Query Plan

Executor is responsible to execute the Query Plan.

6

In Chapter 6, we discuss our experimental setup to test the working of RGIS. We would also

discuss the performance (time and memory utilization) of the system and compare it with Jena

TDB.

In Chapter 7, we discuss the previous research and related work. We would also discuss on how

RGIS differentiates from the other existing systems.

In Chapter 8, we discuss about our conclusions and the future work that we are working on.

7

CHAPTER 2

SYSTEM ARCHIECTURE

RGIS comprises of three major components: Pre-processor, Query Plan Generator and Query

Plan Executor. As discussed in previous section, RGIS stores RDF data in its custom indexed

format. Hence, the Pre-Processor pre-processes the RDF data and converts into the custom

indexed format. The Query Plan Generator takes the SPARQL query as an input from the user

and generates the Query Plan that needs to be executed. The Query Plan consists of the sequence

of steps be performed and the files that needs to be loaded into the memory to evaluate the

SPARQL query. The Query Plan is then forwarded to Query Plan Executor that then loads the

pre-processed files and then executes the steps in the Query Plan. Below is the diagrammatic

representation of RGIS.

Figure 1: Architecture of RGIS

8

Now, lets discuss in detail the individual working on each of system components mentioned

above:

1. Pre-Processor:

RGIS uses its Custom Format to store the RDF data. In RGIS, RDF data is stored in

‘Class Files’ and ‘Property Files’.

• Class Files:

For every class in the RDF data, we create a Class File, which is named after that class.

All instances of a class are stored in the respective ‘Class File’ of its class.

Now, there can be hierarchy if class in the RDF data. We store this hierarchical

information in a special file called as ‘Class Hierarchy’.

• Property Files:

For every property found in the ontology, we create an Property File, which is named

after the property. Thus, we store the subject and the object, which are linked by a given

property in the respective Property File.

Hence, the primary task of the preprocessor is to convert the RDF data into Class Files

and Property Files. RGIS uses its custom indexing technique. Hence, once the RDF data

is converted into Class Files and Property Files, the pre-processor indexes these files and

also the data inside the files. The details of indexing would be discussed in section 3.2.

Further details of preprocessor are discussed in Chapter 3.

2. Query Plan Generator:

The Query Plan Generator takes the SPARQL query as an input and produces a query

execution plan that is then forwarded to the Query Plan Executor to execute it. The Query

Plan Generator examines the user defined SPARQL query and analyzes it. It then gives

9

us the order in which triples needs to evaluate and also the Meta-data information on

which files needs to be loaded into the memory to evaluate the query. The details of how

a Query Plan is generated are discussed in Chapter 4.

3. Query Plan Executor:

The Query Plan Executor executes the Query Plan that is generated by the Query Plan

Generator. It loads the files mentioned in the Meta-data information of the Query Plan.

Hence, RGIS selectively loads the data into memory. Once the data is loaded into

memory, it executes the Query Plan to generate the results that are then displayed to the

user. The details of execution of Query Plan Executor are discussed in Chapter 5.

10

CHAPTER 3

INDEXING CLASS FILES AND PROPERTY FILES

RGIS uses its custom index data format to store the RDF data into Class Files and Property Files.

Hence, the RDF data needs to be preprocessed and converted into the required format. In this

chapter, we would discuss in details about how to convert the RDF data into the custom index

data format used by RGIS.

3.1 RDF TO NOTATION3 FORMAT:

As seen in the figure1 above, the first step in the preprocessing of the data is converting the RDF

data into Notation3 format. These Notation3 files are then provided as input files for the next

step discussed below.

3.2 CLASS FILES & PROPERTY FILES:

Now, in this sub-module, we first find all the Classes and Object Properties in the ontology and

create a separate file for each of them. Now, the Notation3 files obtained in the above step act as

input files here. The Notation3 files are read and the data in these files is reorganized based upon

the Classes and Object Properties. Thus, depending upon the Class or Property that is read from

the Notation3 file, data is then added into respective Class File or Property File.

E.g.:

11

Figure 2: Subject-Predicate-Object Example

As seen in the above figure, we have:

• Classes: Student, Professor.

• Property: advisor

• Data (Instances): FullProfessor0, UndergraduateStudent4

Hence, when this information is provided to the pre-processor, the preprocessor would create 3

files: Student, Professor & advisor. Hence, the above information will be represented as

following in these 3 files:

12

Class Files:

Student Professor

UndergraduateStudent4 FullProfessor0

Table 1: Example - Class File

Property Files:

advisor

UndergraduateStudent4 FullProfessor0

Table 2: Example - Property File

3.3 INDEXING CLASS FILES & PROPERTY:

Now, in this step, the Class Files and Property Files obtained above are each given a unique

numeric value called as ‘Class File Index’.

• Indexing Class Files:

Each of the class files is given a unique numeric value called as ‘Class File Index’. Hence,

consider the example that we discussed in section 3.1.2, the class files, Students & Professor

are given index ‘1’ & ‘2’ respectively and stored as: ‘1.Student’ & ‘2.Professor’.

Now, the data inside these class files are nothing but instances of the class that were found in

the OWL/RDF files that we processed earlier. Each of these instances inside every class file

is given a numeric value, which we call it as ‘Class Instance Index’. The format of ‘Class

Instance Index’ is:

Class Instance Index = ClassIndex.UniqueNumericValue

13

Now, the data inside these class files is rearranged and stored in the format shown:

ClassIndex.ClassName

Class Instance ClassInstanceIndex

Table 3: Indexed Class File

E.g.:

1.Student

UndergraduateStudent4 1.1

GraduateStudent4 1.2

Table 4: Example - Indexed Class File

2.Professor

FullProfessor0 2.1

FullProfessor8 2.2

Table 5: Example – Indexed Class File

• Indexing Property Files:

The information in the Indexed Object Files is stored in two sections in the file: Header and

Body, which would be discussed below.

Body:

Similar to Class Files, Property Files are also given a unique index, which we would call as

‘Property File Index’. Now, each row in this file represents a Subject-Object value pair,

which is linked by the Property represented by the Property File’s name. Thus, these

instances are replaced by their respective ‘Class Instance Index’ discussed above. Thus, this

information is stored in the ‘Body’ section of the Object Indexed File.

Header:

14

Further, we also store information about the ‘Class Index’ for subject and object that are

present in a given Property File. This information is stored in the ‘Header’ section of the file.

E.g.: Consider the example discussed above. The data for Property File ‘advisor’ would be

converted into:

3.advisor

Header:

Subject: 1

Object: 2

Body:

1.1 2.1

1.7 2.5

Table 6: Example – Indexed Property File

Thus, by using a numeric value instead of the whole URI to represent an instance of a Class,

we were able to reduce the size of the files considerably. The details of it would be provided

in coming sections.

15

CHAPTER 4

QUERY PLAN GENERATOR

There are two objectives for the Query Plan Generator:

• Determine the order in which we need to execute the query

• As data is stored in different files, we need to determine from which files we need to pull the

data.

Let us see in details how these two objectives are met.

Determining the order of execution of the Query is important because the information requested

by the user might be dependent on each other. Hence, we need to determine a path that does not

involve any inter-dependencies. To accomplish this we follow the steps below:

Pseudo Code:

Nodes ← getAllVariables (SPARQL Query)

For i: 1 to |Nodes|

 Nodes[i] ← getClassProperties()

Triples ← getTriples(SPARQL Query)

For i: 1 to |Triples|

 If Subject is variable

 Nodes[Subject].ObjectPropertyList ← Triple [i]

 Else

 Nodes[Object].ObjectPropertyList ← Triple [i]

16

While Nodes != empty

 N = getIndependentNode(Nodes)

 OutputList ← N

 Nodes.remove(N)

Explanation of Algorithm:

1. We determine all the variables that are present in the query. Each variable is considered as a

node.

2. We then compare these variables with the variables that are required in the output and

determine which of these nodes would be our output nodes.

3. We then determine the ‘type’ i.e., ‘Class’ of the node. The Class information can be found

from two places:

a. The class of the node can be specified in the Query

E.g.: ?X ub:type Department

b. From the ‘Header’ section of the Object Indexed File.

4. Once we have determined the Class information about a node, we then add the Object

properties that are asked in the query to the respective nodes. Thus, every node has its own

‘Property List’, which contains the Object Properties.

5. After adding the Object Properties, we check every node for any dependencies and for every

node we create a dependency list.

6. Then, we select a node, which does not have any dependency and add it to the Output List.

7. Then, we remove this node, which we added in the Output List, from the dependency list of

all other nodes.

17

8. We repeat steps 6 & 7 till all nodes are added into the Output List.

Thus, the order in which the nodes are added into the Output List gives us the order in which we

need to execute the query plan.

E.g.: Consider the following query:

SELECT ?X, ?Y, ?Z

WHERE

 { ?X rdf:type ub:GraduateStudent .

?Y rdf:type ub:University .

?Z rdf:type ub:Department .

?X ub:memberOf ?Z .

?Z ub:subOrganizationOf ?Y .

?X ub:undergraduateDegreeFrom ?Y}

For the query above, we would generate a following graph for Steps 1-5:

X
type:

Graduate
Student

Y
type:

University

Z
type:

Department

ub:memberOf
ub:suborganizationOf

ub:undergraduateDegreeFrom

Figure 3: Graph Generated for SPARQL Query

18

Thus, if we follow Steps 1-5 discussed above, we get three nodes: X, Y & Z. The dependencies

of each node can be then express as shown below:

Node Dependency on Node Property List

X Y,Z type: GraduateStudent

underGraduateDegreeFrom: X

memberOf: Z

Y - type: University

Z X type: Department

suborganizationOf: Y

Table 7: Node Dependency List

Hence, if we follow Steps 6-8 discussed in this section, then the order of execution of nodes

would be as follows:

Node Property List

Y 1. type: University

Z 1. type: Department

2. suborganizationOf: Y

X 1. type: GraduateStudent

2. underGraduateDegreeFrom: X

3. memberOf: Z

Table 8: Property List of Nodes

19

Now, once we have determined the order of execution, we now need to determine the files that

are required to evaluate the query. As discussed in Chapter 3, we store all the RDF data in Class

Files and Property Files.

In the Query Plan, as seen in above example, we also generate the Property List. Hence, the

entries in the Property List would determine which files needs to be used and loaded to evaluate

the query. Hence, for the above example, we would be loading the following files:

Class Files:

• University
• Department
• GraduateStudent

Property Files:

• suborganizationOf
• undergraduateDegreeFrom
• memberOf

20

CHAPTER 5

QUERY PLAN EXECUTOR

The Query Plan generated by Query Plan Generator is then forwarded to the Query Plan

executor. The main objective of Query Plan executor is to execute the Query Plan and give the

required output to the user.

Below are the steps that are followed by the Query Plan Executor to execute the Query Plan:

1. Select the node from the Query Plan.

2. Check that in the Object properties of the selected node are there any literals.

a. If literals are found, then place the Object Properties with literals at the start of the

Property List. By evaluating literals first, we can reduce the search space for the

query we are evaluating.

b. If literals are not found, do not change the Property List.

3. Now, for the selected node, evaluate the Property List.

a. For first property in the Property List:

i. Go to the respective Property File, which is loaded in the memory.

ii. Get the required objects from the file and add it to the output list of that

respective node.

b. For rest of Properties in the List:

i. Go to the respective Property File, which is loaded in the memory.

21

ii. Use the Output List obtained in above step and use it as an input to get the

required information from the loaded Property File. Since the Property

File is stored as a Hash Map, the retrieval of the objects is quick.

iii. Add the new relevant objects to the Output List.

iv. Repeat the above steps for all the Object Properties in the List.

22

CHAPTER 6

RESULTS

6.1 EXPERIMENTSL SETUP:

To test the functionality of RGIS, we have used the Leigh University Benchmark, popularly

known as LUBM [25]. LUBM is one of the most popular benchmark for the evaluation of

Semantic Web Repositories. This benchmark is extensively used to measure the performance of

the repository when querying on large data sets. This benchmark contains:

• Ontology with University as its domain

• Customizable and repeatable synthetic data

• 14 test queries [26]

• Performance Metrics

We have used Data Generator (UBA) provided by LUBM to generate our dataset. Thus, to test

RGIS, we generated two data sets and the details are as follows

Data Set Size of

OWL/RDF Files

No of Triples

(In Millions)

Size of files

after Indexing

Disk Space

savings after

Indexing

Data Set 1 3.42 GB 41.27 1.14 GB 66.66 %

Data Set 2 6.90 GB 82.92 2.34 GB 66.08%

Table 9: Data Sets used for Test

23

Thus, as seen from the table above, when the RDF data is processed and converted and stored in

our custom format, we were able to reduce the size of the files by 66%.

To test RGIS, we used a machine having 2.5GHz Intel Core i5 processor, 8GB of RAM, Mac OS

X 10.8.2 and Java 1.6. For testing the response time of RGIS on the LUBM test queries, we used

different Java heap space memory settings.

6.2 PERFORMANCE OF RGIS FOR DIFFERENT HEAP SIZE:

In this section, we will compare the performance of RGIS on the two datasets and on different

memory heap sizes of JVM. This is an important evaluation of the system as this will give us

insight on the response time of RGIS to answer a query and also give us information about the

memory utilization to answer the query. Thus, from the results we can determine the minimum

size of the heap that is required to answer the queries.

24

6.2.1 HEAP SIZE: 4GB

Figure 4: Time for Test Queries v/s 4GB Memory Space

Above figure shows the response time of the system to answer query for both the data

sets when the heap size of JVM is set to 4GB.

Figure 5: Memory Utilization for 4GB

Above figure shows the Heap utilization of the system to answer query for both the data

sets when the heap size of JVM is set to 4GB.

467 672
678 1,062

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
(I

n
m

se
c.

)

LUBM Test Queries

Time for Individual Test Queries

Dataset 1

Dataset 2

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

H
ea

p
Si

ze
: 4

G
B

LUBM Test Queries

Heap Utilization

Dataset 1

Dataset 2

25

6.2.2 HEAP SIZE: 3GB

Figure 6: Time for Test Queries v/s 3GB Memory Space

Above figure shows the response time of the system to answer query for both the data

sets when the heap size of JVM is set to 3GB.

Figure 7: Memory Utilization for 3GB

Above figure shows the Heap utilization of the system to answer query for both

the data sets when the heap size of JVM is set to 3GB.

470 667

667
1,040

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
(I

n
m

se
c.

)

LUBM Test Queries

Time for Individual Test Queries

Dataset 1

Dataset 2

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

H
ea

p
Si

ze
: 3

G
B

LUBM Test Queries

Heap Utilization

Dataset 1

Dataset 2

26

6.2.3 HEAP SIZE: 2GB

Figure 8: Time for Test Queries v/s 2GB Memory Space

Above figure shows the response time of the system to answer query for both the data

sets when the heap size of JVM is set to 2GB.

Figure 9: Memory Utilization for 2GB

Above figure shows the Heap utilization of the system to answer query for both the data

sets when the heap size of JVM is set to 2GB.

463
657

X X

690
1053

0
10000
20000
30000
40000
50000
60000
70000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
(I

n
m

se
c.

)

LUBM Test Queries

Time for Individual Test Queries

Dataset 1

Dataset 2

X X
0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

H
ea

p
Si

ze
: 2

G
B

LUBM Test Queries

Heap Utilization

Dataset 1

Dataset 2

27

6.2.4 HEAP SIZE: 1GB

Figure 10: Time for Test Queries v/s 1GB Memory Space

Above figure shows the response time of the system to answer query for both the data

sets when the heap size of JVM is set to 1GB.

Figure 11: Memory Utilization for 1GB

Above figure shows the Heap utilization of the system to answer query for both

the data sets when the heap size of JVM is set to 1GB.

X X
0

10000

20000

30000

40000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
(I

n
m

se
c.

)

LUBM Test Queries

Time for Individual Test Queries

Dataset 1

X X
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

H
ea

p
Si

ze
: 1

G
B

LUBM Test Queries

Heap Utilization

Dataset 1

28

6.3 RESPONSE TIME FOR INDIVIDUAL LUBM TEST QUERIES:

 6.3.1 Query 1

Figure 12: Time v/s Memory for Query 1

Figure 13: Memory Utilization for Query 1

7198 7333 7049 7252

14293 13848 13541

NA
0

2000
4000
6000
8000

10000
12000
14000
16000

4GB Heap 3GB Heap 2GB Heap 1GB Heap

Ti
m

e
 (m

se
c)

Heap Space

Performance: Time

Dataset 1

Dataset 2

0.95 0.81
0.58 0.52

1.1 1.1 1.1

NA
0

0.5

1

1.5

2

2.5

3

3.5

4

4GB 3GB 2GB 1GB

M
em

or
y

U
se

d
(G

B
)

Heap Space

Performance: Memory

Dataset 1

Dataset 2

29

6.3.2 Query 2

Figure 14: Time v/s Memory for Query 2

Figure 15: Memory Utilization for Query 2

9230

7007
6157 6310

14335 14819 14284

NA
0

2000

4000

6000

8000

10000

12000

14000

16000

4GB Heap 3GB Heap 2GB Heap 1GB Heap

Ti
m

e
 (m

se
c)

Heap Space

Performance: Time

Dataset 1

Dataset 2

1
0.8

0.59
0.42

1.2
0.97 0.84

NA
0

0.5

1

1.5

2

2.5

3

3.5

4

4GB 3GB 2GB 1GB

M
em

or
y

U
se

d
(G

B
)

Heap Space

Performance: Memory

Dataset 1

Dataset 2

30

6.3.3 Query 3

Figure 16: Time v/s Memory for Query 3

Figure 17: Memory Utilization for Query 3

5805 6500 6833

9757

12706
13939

17286

NA
0

2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

4GB Heap 3GB Heap 2GB Heap 1GB Heap

Ti
m

e
 (m

se
c)

Heap Space

Performance: Time

Dataset 1

Dataset 2

1.1
0.91 0.8 0.7

1.6 1.6
1.3

NA
0

0.5

1

1.5

2

2.5

3

3.5

4

4GB 3GB 2GB 1GB

M
em

or
y

U
se

d
(G

B
)

Heap Space

Performance: Memory

Dataset 1

Dataset 2

31

6.3.4 Query 4

Figure 18: : Time v/s Memory for Query 4

Figure 19: Memory Utilization for Query 4

14937 16558 17982

X

33360

52024

X NA
0

10000

20000

30000

40000

50000

60000

4GB Heap 3GB Heap 2GB Heap 1GB Heap

Ti
m

e
 (m

se
c)

Heap Space

Performance: Time

Dataset 1

Dataset 2

1.9
2.1

1.3

X

2.6
2.3

X NA
0

0.5

1

1.5

2

2.5

3

3.5

4

4GB 3GB 2GB 1GB

M
em

or
y

U
se

d
(G

B
)

Heap Space

Performance: Memory

Dataset 1

Dataset 2

32

6.3.5 Query 5

Figure 20: Time v/s Memory for Query 5

Figure 21: Memory Utilization for Query 5

7282 7462 7743
9613

13,212 13490

19848

NA
0

5000

10000

15000

20000

25000

4GB Heap 3GB Heap 2GB Heap 1GB Heap

Ti
m

e
 (m

se
c)

Heap Space

Performance: Time

Dataset 1

Dataset 2

1.2
0.85

0.63 0.68

1.3 1.4
1.6

NA
0

0.5

1

1.5

2

2.5

3

3.5

4

4GB 3GB 2GB 1GB

M
em

or
y

U
se

d
(G

B
)

Heap Space

Performance: Memory

Dataset 1

Dataset 2

33

6.3.6 Query 6

Figure 22: Time v/s Memory for Query 6

Figure 23: Memory Utilization for Query 6

9436 9166 9482

38620

17626
21462

54036

NA
0

10000

20000

30000

40000

50000

60000

4GB Heap 3GB Heap 2GB Heap 1GB Heap

Ti
m

e
 (m

se
c)

Heap Space

Performance: Time

Dataset 1

Dataset 2

1.5 1.4
1.1

0.77

2.1 2 2

NA
0

0.5

1

1.5

2

2.5

3

3.5

4

4GB 3GB 2GB 1GB

M
em

or
y

U
se

d
(G

B
)

Heap Space

Performance: Memory

Dataset 1

Dataset 2

34

6.3.7 Query 7

Figure 24: Time v/s Memory for Query 7

Figure 25: Memory Utilization for Query 7

13081 14631 14365

20845

32,209 30509

44292

NA
0

5000
10000
15000
20000
25000
30000
35000
40000
45000
50000

4GB Heap 3GB Heap 2GB Heap 1GB Heap

Ti
m

e
 (m

se
c)

Heap Space

Performance: Time

Dataset 1

Dataset 2

1.2 1.2 1.3

0.85

3

1.9
1.7

NA
0

0.5

1

1.5

2

2.5

3

3.5

4

4GB 3GB 2GB 1GB

M
em

or
y

U
se

d
(G

B
)

Heap Space

Performance: Memory

Dataset 1

Dataset 2

35

 6.3.8 Query 8

Figure 26: Time v/s Memory for Query 8

Figure 27: Memory Utilization for Query 8

20182 23544 21897

X

55,550

95382

X NA
0

20000

40000

60000

80000

100000

120000

4GB Heap 3GB Heap 2GB Heap 1GB Heap

Ti
m

e
 (m

se
c)

Heap Space

Performance: Time

Dataset 1

Dataset 2

2.5
2.1

1.5

X

3.3
3

X NA
0

0.5

1

1.5

2

2.5

3

3.5

4

4GB 3GB 2GB 1GB

M
em

or
y

U
se

d
(G

B
)

Heap Space

Performance: Memory

Dataset 1

Dataset 2

36

 6.3.9 Query 9

Figure 28: Time v/s Memory for Query 9

Figure 29: Memory Utilization for Query 9

14890 15212 15939

27212 28590
31574

47031

NA
0

5000
10000
15000
20000
25000
30000
35000
40000
45000
50000

4GB Heap 3GB Heap 2GB Heap 1GB Heap

Ti
m

e
 (m

se
c)

Heap Space

Performance: Time

Dataset 1

Dataset 2

1.4 1.3 1.3

0.88

2.6

2.1

1.6

NA
0

0.5

1

1.5

2

2.5

3

3.5

4

4GB 3GB 2GB 1GB

M
em

or
y

U
se

d
(G

B
)

Heap Space

Performance: Memory

Dataset 1

Dataset 2

37

6.3.10 Query 10

Figure 30: Time v/s Memory for Query 10

Figure 31: Memory Utilization for Query 10

6987 7032 7068 7575

13596 13678 13617

NA
0

2000

4000

6000

8000

10000

12000

14000

16000

4GB Heap 3GB Heap 2GB Heap 1GB Heap

Ti
m

e
 (m

se
c)

Heap Space

Performance: Time

Dataset 1

Dataset 2

0.97 0.94
0.66 0.53

1.4 1.3
1

NA
0

0.5

1

1.5

2

2.5

3

3.5

4

4GB 3GB 2GB 1GB

M
em

or
y

U
se

d
(G

B
)

Heap Space

Performance: Memory

Dataset 1

Dataset 2

38

6.3.11 Query 11

Figure 32: Time v/s Memory for Query 11

Figure 33: Memory Utilization for Query 11

467 470 463 479

678 667 690

NA
0

100

200

300

400

500

600

700

800

4GB Heap 3GB Heap 2GB Heap 1GB Heap

Ti
m

e
 (m

se
c)

Heap Space

Performance: Time

Dataset 1

Dataset 2

0.17 0.11 0.08 0.045 0.17 0.13 0.29
NA

0

0.5

1

1.5

2

2.5

3

3.5

4

4GB 3GB 2GB 1GB

M
em

or
y

U
se

d
(G

B
)

Heap Space

Performance: Memory

Dataset 1

Dataset 2

39

6.1.12 Query 12

Figure 34: Time v/s Memory for Query 12

Figure 35: Memory Utilization for Query 12

672 667 657 687

1062 1040 1053

NA
0

200

400

600

800

1000

1200

4GB Heap 3GB Heap 2GB Heap 1GB Heap

Ti
m

e
 (m

se
c)

Heap Space

Performance: Time

Dataset 1

Dataset 2

0.17 0.11 0.08 0.045
0.45 0.45

0.28
NA

0

0.5

1

1.5

2

2.5

3

3.5

4

4GB 3GB 2GB 1GB

M
em

or
y

U
se

d
(G

B
)

Heap Space

Performance: Memory

Dataset 1

Dataset 2

40

6.3.13 Query 13

Figure 36: Time v/s Memory for Query 13

Figure 37: Memory Utilization for Query 13

6181
5741 5414 5372

8317
9277 9509

NA
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

4GB Heap 3GB Heap 2GB Heap 1GB Heap

Ti
m

e
 (m

se
c)

Heap Space

Performance: Time

Dataset 1

Dataset 2

0.9
0.62

0.44
0.23

1.1
0.74 0.62

NA
0

0.5

1

1.5

2

2.5

3

3.5

4

4GB 3GB 2GB 1GB

M
em

or
y

U
se

d
(G

B
)

Heap Space

Performance: Memory

Dataset 1

Dataset 2

41

6.3.14 Query 14

Figure 38: Time v/s Memory for Query 14

Figure 39: Memory Utilization for Query 14

7393 6774 6783
11943 13,558

27006

63072

NA
0

10000

20000

30000

40000

50000

60000

70000

4GB Heap 3GB Heap 2GB Heap 1GB Heap

Ti
m

e
 (m

se
c)

Heap Space

Performance: Time

Dataset 1

Dataset 2

1.4 1.4

0.93 0.79

2 1.9
1.6

NA
0

0.5

1

1.5

2

2.5

3

3.5

4

4GB 3GB 2GB 1GB

M
em

or
y

U
se

d
(G

B
)

Heap Space

Performance: Memory

Dataset 1

Dataset 2

42

6.4 QUERY EVALUATION, DATA LOAD AND QUERY EXECUTION TIME OF RGIS:

For RGIS, the total execution time can be split into:

• Query Plan Generation
• Load Files into memory
• Execute Query Plan.

Time required for Query Plan Generation, Loading the required files into memory and execution

of Query Plan for all the LUBM Test Queries on our datasets are given below.

6.4.1 Heap Space 4GB:

LUBM
Test
Query

Data Set 1 Data Set 2

 Query Plan
Generation
(In msec.)

Load
Files in
Memory
(In
msec.)

Execute
Query
Plan
(In
msec.)

Total
Execution
Time
(In msec.)

Query Plan
Generation
(In msec.)

Load
Files in
Memory
(In
msec.)

Execute
Query
Plan
(In
msec.)

Total
Execution
Time
(In msec.)

1 7 6627	
 563 7198 6	
 1256	
 1726	
 14293	

2 9 3096	
 6124 9230 8	
 5644	
 8681	
 14335	

3 7 3801 1996 5805 6	
 714	
 5559	
 12706	

4 8 5290 9639 14937 6	
 9420	
 23933	
 33360	

5 6 2266 5009 7282 6	
 4040	
 9165	
 13212	

6 5 11 9419 9436 4	
 10	
 17611	
 17626	

7 8 7127 5945 13081 8	
 14820	
 17380	
 32209	

8 6 6838 13337 20182 7	
 14477	
 41065	
 55550	

9 10 8139 6740 14890 8	
 15712	
 12869	
 28590	

10 6 6427 554 6987 5	
 12241	
 1349	
 13596	

11 8 315 143 467 11	
 399	
 267	
 678	

12 8 555 109 672 7	
 869	
 186	
 1062	

13 12 2651 3517 6181 14	
 4220	
 4082	
 8317	

14 5 14 7373 7393 4	
 13	
 13540	
 13558	

Table 10: Total Execution Time of RGIS for 4GB Heap Space

43

6.4.2 Heap Space 3GB:

LUBM
Test
Query

Data Set 1 Data Set 2

 Query Plan
Generation
(In msec.)

Load
Files in
Memory
(In
msec.)

Execute
Query
Plan
(In
msec.)

Total
Execution
Time
(In msec.)

Query Plan
Generation
(In msec.)

Load
Files in
Memory
(In
msec.)

Execute
Query
Plan
(In
msec.)

Total
Execution
Time
(In msec.)

1 7 6748 577 7333 6	
 12068	
 1772	
 13848	

2 10 3045 3952 7007 7	
 5424	
 9386	
 14819	

3 29 3901 2569 6500 7	
 7373	
 6557	
 13939	

4 41 5530 10985 16558 6	
 15810	
 36206	
 52024	

5 6 2210 5244 7462 6	
 3911	
 9571	
 13490	

6 6 13 9146 9166 6	
 11	
 21444	
 21462	

7 8 7575 7047 14631 6	
 13559	
 16943	
 30509	

8 7 6277 17260 23544 6	
 15005	
 80369	
 95382	

9 8 8406 6797 15212 10	
 15365	
 16198	
 31574	

10 7 6471 553 7032 6	
 11865	
 1805	
 13678	

11 7 316 146 470 8	
 400	
 257	
 667	

12 8 553 106 667 7	
 845	
 187	
 1040	

13 11 2633 3095 5741 19	
 4721	
 4536	
 9277	

14 4 11 6758 6774 11	
 36	
 26958	
 27006	

Table 11: Total Execution Time of RGIS for 3GB Heap Space

44

 6.4.3 Heap Space 2GB:

LUBM
Test
Query

Data Set 1 Data Set 2

 Query Plan
Generation
(In msec.)

Load
Files in
Memory
(In
msec.)

Execute
Query
Plan
(In
msec.)

Total
Execution
Time
(In msec.)

Query Plan
Generation
(In msec.)

Load
Files in
Memory
(In
msec.)

Execute
Query
Plan
(In
msec.)

Total
Execution
Time
(In msec.)

1 6 6356 685 7049 7	
 11846	
 1687	
 13541	

2 9 2960 3187 6157 10	
 5502	
 8770	
 14284	

3 6 3290 2906 6833 5	
 8728	
 8551	
 17286	

4 47 5167 12767 17982 NA*	
 NA*	
 NA*	
 NA*	

5 6 2169 5567 7743 5	
 3882	
 15960	
 19848	

6 5 11 9464 9482 36	
 103	
 53896	
 54036	

7 8 7716 6640 14365 7	
 14098	
 30185	
 44292	

8 9 7755 14133 21897 NA*	
 NA*	
 NA*	
 NA*	

9 42 8323 7574 15939 10	
 15628	
 31392	
 47031	

10 6 6401 659 7068 6	
 11922	
 1689	
 13617	

11 8 309 146 463 9	
 402	
 278	
 690	

12 6 543 106 657 8	
 860	
 185	
 1053	

13 11 2320 3082 5414 13	
 4383	
 5112	
 9509	

14 4 10 6768 6783 48	
 31	
 62992	
 63072	

Table 12: Total Execution Time of RGIS for 2GB Heap Space

*For the given Heap Space, RGIS was not able to evaluate the LUBM Test Query.

45

6.5 COMPARISON WITH JENA TDB:

Jena TDB [20][21] is component of Jena to store and query RDF data. It works with Jena ARQ

to provide support for SPARQL. Jena TDB is a high performance RDF store on a single

machine. It uses custom B+ trees and memory mapped IO. Thus, it can support up to 1.7[22]

Billion Triples.

To get better understanding of the performance of RGIS, we compare it with Jena TDB. The

comparison will be with respect to:

• Space required to store the RDF/OWL data.

• Response time for both the systems to evaluate the 14 LUBM Test Queries.

Below are the details of our findings:

6.5.1 Space comparison with JENA TDB:

Dataset Actual Size RGIS Jena TDB

Dataset 1 3.42 GB 1.15 GB 6.97 GB

Dataset 2 6.90 GB 2.33 GB 13.34

Table 13: Space Comparison – RGIS v/s Jena TDB

As seen from the table above, RGIS requires 66% less storage space whereas Jena TDB

requires an additional 100% storage space of that of original data.

Hence, when compared directly with RGIS, Jena TDB requires 600% more storage space

than RGIS to store the same data.

46

6.5.2 Response time to evaluate LUBM Test Queries:

6.5.2.1 Response Time for Dataset 1:

 For a fair comparison, we used 2GB heap space for both the systems when

comparing the response time for Dataset 1. Below is the comparison graph for the

same.

Figure 40: Performance – RGIS v/s Jena TDB for Data Set 1 (41 Million Triples)

7.0
6.2

6.8
18.0 7.7 9.5 14.4 21.9 15.9 7.1 0.5 0.7 5.4 6.8 0.4

208.2

0.3

50.8
74.6

127.3
88.0 81.9

32.5
21.8

17.5

14.1

700.4

69.6

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
(in

 se
c.

)

LUBM Queries

Our System

Jena TDB

47

6.5.2.2 Response Time for Dataset 2:

For a fair comparison, we used 3GB heap space for both the systems when

comparing the response time for Dataset 2. Below is the comparison graph for the

same.

Figure 41: Performance – RGIS v/s Jena TDB for Data Set 2 (83 Million Triples)

13.8
14.8

13.9 52.0
13.5 21.5 30.5

95.4
31.6 13.7 0.7 1.0 9.3 27.0 0.8

614.2

0.8

171.7

28.2

268.6

192.0
171.1

46.3
19.0 0.5

0.3

952.3

226.6

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1,000.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
(in

 se
c.

)

LUBM Queries

Our System

Jena TDB

48

6.5.2.3 Total query time

Now, we compare the total time required to execute the LUBM test queries for

both the datasets on RGIS and Jena TDB. Below is the table that summarizes the

same.

Dataset RGIS Jena TDB

 (Time in sec.) (Time in sec.)

Dataset 1 127.832 1487.283

Dataset 2 338.715 2692.436

Table 14: Total Execution Time

6.6 COMPARISON WITH OWLIM-LITE:

OWLIM Lite is the in-memory model of OWLIM. Previous research [1][4] has shown that

OWLIM-Lite cannot scale for more than 10M triples. Our test Data Sets comprised of 41.27M

and 82.92M Triples. Hence, as seen in previous research, we were not able to load the datasets

into the memory and evaluate the LUBM Test Queries. The Java Heap Space used was 2GB and

3GB respectively.

49

6.7 COMPARISON WITH OWLIM-SE (BigOWLIM):

We compared performance of RGIS with OWLIM-SE, formerly called as BigOWLIM. We

tested the performance of RGIS and OWLIM-SE on our LUBM Datasets. For a fair comparison

between RGIS and OWLIM, both the systems used 2GB heap space and 3GB heap space when

evaluating results for Data Set 1 and Data Set 2 respectively. Below is the execution time

required for RGIS and OWLIM-SE for each of the datasets on each of the LUBM Test Queries.

LUBM

Query

Data Set 1 Data Set 2

RGIS (In Sec.) OWLIM-SE (In Sec.) RGIS (In Sec.) OWLIM-SE (In Sec.)

1 7.05 0.80 13.85 3.71

2 6.16 229.15 14.82 442.84

3 6.83 0.07 13.94 0.16

4 17.98 1.72 52.02 0.51

5 7.74 0.73 13.49 1.93

6 9.48 Could Not Load 21.46 Could Not Load

7 14.37 0.69 32.21 0.31

8 21.90 19.22 95.38 55.842

9 15.94 419.61 31.574 875.86

10 7.07 0.04 13.68 0.15

11 0.46 0.48 0.66 0.66

12 0.66 0.29 1.04 0.36

13 5.41 9.40 9.28 58.53

14 6.78 2170.36 27.00 Could Not Load

Table 15: Comparison of RGIS and OWLIM-SE

50

6.8 COMPARISON WITH MULGARA:

We compared the performance of RGIS with Mulgara on Data Set 1. For a fair comparison, we

used 2GB heap space on both the systems when evaluating the LUBM Test queries on the Data

Set. Below is the execution time required for RGIS and Mulgara for each of the datasets on each

of the LUBM Test Queries.

LUBM

Query

RGIS

(In Sec.)

Mulgara

(In Sec.)

1 7.05 1.69

2 6.16 29.115

3 6.83 1.77

4 17.98 15.52

5 7.74 0.36

6 9.48 0.13

7 14.37 0.99

8 21.90 0.91

9 15.94 45.339

10 7.07 0.03

11 0.46 0.45

12 0.66 0.24

13 5.41 2.83

14 6.78 0.11

Table 16: Execution Time of RGIS and Mulgara

51

We also compared the space required by Mulgara to store the LUBM Data Set. Below is the

table that compares the storage space required by Mulgara and RGIS to store Data Set 1.

Data Set Original Size RGIS Mulgara
Data Set 1 3.42 GB 1.14 GB 7.83 GB

Table 17: Storage Space required for RGIS and Mulgara

6.9 DISCUSSION

Execution Time:

• As seen from the results in table 11, the total execution time for the LUBM queries was

six times than the execution time taken by RGIS.

• From the comparison of RGIS with Jena TDB on both the datasets, in most of the

queries, RGIS performs much better than Jena TDB. Thus, from the results, we can safely

say that we Jena TDB take at least twice the execution time than RGIS.

• Queries 2, 4, 7, 8, 9, all had large datasets and had more join operations involved when

evaluating the query. For such queries, as seen from the results, RGIS performed better

than Jena TDB and was 6 times faster than Jena TDB.

• For queries 1 & 3, the performance of Jena TDB was better than RGIS. We believe that

this is because of the architecture it uses to save information about the Subject, Object

and Predicates. Thus, queries that involve a single class, Jena TDB perform better

because of the architecture of Jena TDB.

• Performance of RGIS was better than OWLIM-SE that involved data-intensive queries

and for queries that required more complex joins.

• Performance of RGIS was better then Mulgara that required complex joins.

52

Storage Space:

• By using the custom storage format, we were able to reduce to size of the files by 66%

that results into using less storage space.

• In comparison with Jena TDB, RGIS used 1/6th the space required by Jena TDB to store

the RDF/OWL datasets.

• The storage space required for Mulgara was 7 times more than that required for RGIS.

Heap Size/Memory:

• For Dataset 1, at least 2GB of heap memory is needed to evaluate and answer all the test

queries.

• For Dataset 2, at least 3GB of heap memory is needed to evaluate and answer all the test

queries.

53

CHAPTER 7

RELATED WORK

In recent years, many researchers have come up with different solutions to improve the

efficiency of RDF Engines. Researchers have also proposed new architectures, techniques and

models to store RDF data and to retrieve it. Previous experience and research has shown that one

of the important reasons for low performance of a RDF engines is because of low performance

on ‘Join Operations’ in SPARQL query processing. Hence, to address this problem, researchers

have proposed using heuristics in SPARQL query planning [7][11][12] and rewriting query to

improve efficiency [10].

Previous work has also suggested that using different storage technique can also help in

improving performance of RDF engines. As described by researchers Thomas Neumann and

Gerhard Weikum in their work [1], the authors replace the ‘literals’ with ‘id’ using a mapping

directory. By using this approach, the authors argue, that the triples are compressed as we use

‘id’ instead of the ‘literal’. Thus, this also helps in faster lookups and simple processing of a

query. Thus, the authors say that we could use ‘id’ of literals when processing the query and

once the query is processed, we can perform a simple lookup in the dictionary indexes to get

back the literals. Besides, the authors have used 6 different tables i.e., all 6 different

permutations of Subject, Object & Predicate, to store the different permutations represented by a

triple in each of these tables, respectively. This is done so that it would result in faster lookup

54

when answering all different patterns of variables with variable in any position of the triple. The

authors argue that they can afford to use 6 different tables to store the data because instead of

storing the whole literal, they just store the ‘id’ of the literal. Hence, this level of redundancy is

acceptable because it uses ‘id’ instead of literals and thus even with redundancy of data, they

were able to still reduce the size of the dataset in the experiments.

In their work [2], authors Javier D. Fernandez, Miguel A. Martinez-Prieto and Claudio

Gutierrez, talk about a new format to represent the data. The authors say that for efficient

management of large RDF data, we can use the structural properties of RDF and split the data

into three major components: Header, Dictionary & Triples. In this paper, the authors say that the

header section can be used to store the meta-data information of the RDF graph. Further, in the

dictionary section, we would be storing the literals and assigning them ‘id’. In the triple section,

instead of storing the literals, we can use their respective id mentioned in the dictionary section.

Hence, the dictionary section would act as a lookup table for the ‘triple’ section.

In RGIS, we give an index to every predicate, class attribute and property. Thus, for a literal, an

index is stored in the class files and this index value is then referenced in the Property files.

Thus, for every predicate, we just have single file and not 6 different files or internal structures

as mentioned in RDF 3X. Besides, only the Property Files have a Header and Body. In the

header, we store the indices of classes of both, subject and object.

Hence, by using a single file for every predicate and storing the data in Header-Body format, we

do not need to store the data into 6 different formats. Besides, the Class Files can then be used to

get the literal for a particular index. Hence, the advantage of using this format is that we load

only those entries into the memory that are required instead of loading the entire dictionary

55

section as described in paper [2]. Hence, by loading only the required entries, RGIS utilizes less

memory, as seen in the section 4.2.

Authors Mohammad Farhan Hussain, et al., in their work [4][6], discuss about a new format to

store the RDF graph. In the paper, the authors say that they would first split the RDF data

according to the Predicates, called as Predicate Split. Thus creating a file for every predicate in

the Ontology. Further, the authors also split the RDF data based on implicit and explicit ‘type

information’ of the object, which the authors call as ‘Predicate Object Split’. Thus, by using this

custom format, the authors were able to reduce the storage space by 70%. Thus, to get the RDF

data into the format discussed in the paper, we need to follow the steps below:

• Convert RDF data to N-Triples

• Predicate Split is then Applied to N-Triples data

• Predicate Object Split is then applied on the data received from above step.

In RGIS, we convert the data to Notation3 format and then split the data based on predicates and

classes. Further, RGIS uses indexes for every Class and Class Objects, which is then referenced

in the Property Files. Besides, we also assign index to every Property File. We also use ‘Header-

Body’ format to store information in the Property Files. Hence, by using this format, our

approach gets distinguished from the approach mentioned in the papers above.

Further in [6], the authors describe an algorithm to evaluate queries such that they could be

processed using Hadoop. In the algorithm, the authors try to find all the triples that are

independent and are grouped together. Then, these triples are removed from the query and the

algorithm is repeated on the rest of the remaining query to find the next independent triples. This

is repeated till we exhaust all the triples that are asked in the query. Thus, the number of

56

repetitions would give us the number of jobs that are required on Hadoop and the group of triples

obtained in every iteration can be used in the respective job on Hadoop.

Further, in [5], the authors say that they grouped independent triples into a job. Also, the

performance of Hadoop is dependent on the number of Jobs that are required to evaluate a query.

In the experiments, the authors have compared the performance on 2-Job Plan and 3-Job Plan.

The experiments show that the performance of 2-Job Plan was better than the performance of 3-

Job Plan. The reason for 2-Job Plan performing better was because of less read/write IO and less

data transfer across the network.

In our approach, we create nodes for every variable that is encountered in the query. Then, based

on the algorithm discussed in section 3.2, we generate a query plan that needs to be executed.

Thus, there is a fundamental difference in both the approaches. The authors believe in grouping

all triples irrespective of the variables and evaluating it. Whereas, in our approach, we would

evaluate variables and the Object Properties associated with it. We believe that using our

approach would result in better organization of data when evaluating complex queries that have

more join operations. Our approach is compatible with Hadoop, but beyond scope of this Thesis.

Authors Lei Zou, et al., in their work [13], describe a novel indexing technique and pruning rules

that help to reduce the query processing time. Further, the authors say that their technique can

also be used to support wildcards in SPARQL query. In their technique, the authors have used

adjacency list to store the RDF data. They then transform the RDF graph into signature graph by

encoding all entities and vertex. They also use a novel indexing technique, VS*-tree, on this

signature graph. The authors have also proposed filtering rules that can be used on the signature

57

graph to evaluate SPARQL queries. The same rules can also be used for SPARQL queries with

wild cards.

Author Richard Cyganiak, in his work [3], gives us a brief overview of the relational algebra for

SPARQL. In the paper, the author describes the techniques that can be used to evaluate the

SPARQL query and convert it into equivalent SQL query. The author also gives an insight on

how the Join operation of SPARQL can be mapped into SQL language.

In RGIS, we do not use the algebra or conversion to SQL mappings. However the algebra and

techniques mentioned by the author were useful to us to perform the join operations and to

evaluate the query. In RGIS, when we generate the query plan, we store the Meta-data i.e.,

information about different files from which we need to load the data into the memory and

perform operations to evaluate the query. Thus, the techniques mentioned in the paper were

helpful to us to determine the Meta-data required evaluating the queries.

58

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 CONCLUSION

Performance and Storage technique are the important areas of research for RDF engines. In

RGIS, we address each of these problems and provide solutions to them. Using its custom data

and indexing format, RGIS uses less storage space to store RDF data. The intelligent Query

Planner and Executor evaluate the SPARQL query and selectively load the files into memory and

hence utilize less memory. Further, as the data is split based on Classes and Object Properties,

we are able to reduce the search space. Thus, by selectively loading the files into memory, we

load only the triples that are required to evaluate the query. Hence, RGIS helps reduce memory

overhead.

RGIS has been tested on a dataset that has 83Million triples. RGIS not only used less storage

space to store RDF data than Jena TDB but also executed the SPARQL queries faster than Jena

TDB. For complex queries that involved complex join operations, performance of RGIS was

faster than Jena TDB and OWLIM. Performance of RGIS was better than Mulgara for few of

LUBM test queries. Hence, as suggested from the results, our algorithm performs better for

SPARQL queries that involves complex join operations.

59

8.2 Future Work

RGIS stores the class hierarchy in Class Hierarchy File. We are currently working to create a

parser that would parse the RDF data and generate the Class hierarchy data and store it in the

Class Hierarchy File.

Currently, RGIS can evaluate SPARQL queries to find Subject and/or Object. We are working

on RGIS so that it would also evaluate SPARQL queries that require finding relations between

Subject-Objects. Thus, RGIS would also answer queries that have predicates as

unknowns/variables. We would also be working to add the different features that are supported

by SPARQL. E.g.: ORDERBY, FILTER, etc.

To improve the performance of RGIS, we would also like to implement a cache, which would

cache the results/ data and thus improve the response time for the queries.

Since the Query Plan and Custom Format to store the data are generic, they could also be used

on a distributed framework like Hadoop. Thus, in the future, we would also be working to test

RGIS on a Hadoop. We believe that by using Hadoop, we would be able to support a bigger

dataset.

60

REFERENCES

[1] Thomas Neumann and Gerhard Weikum. RDF-3X: a RISC-style Engine for RDF. In

Proceedings of the VLDB Endowment, Volume 1, Pages 647-659, 2008.

[2] Fernández, Javier, Miguel Martínez-Prieto, and Claudio Gutierrez. "Compact

representation of large RDF data sets for publishing and exchange." The Semantic Web–

ISWC 2010 (2010): 193-208.

[3] Cyganiak, Richard. "A relational algebra for SPARQL." Digital Media Systems

Laboratory HP Laboratories Bristol. HPL-2005-170 (2005).

[4] Husain, Mohammad Farhan, et al. "Data intensive query processing for large RDF graphs

using cloud computing tools." Cloud Computing (CLOUD), 2010 IEEE 3rd International

Conference on. IEEE, 2010.

[5] Husain, Mohammad, et al. "Heuristics-Based Query Processing for Large RDF Graphs

Using Cloud Computing." Knowledge and Data Engineering, IEEE Transactions on 23.9

(2011): 1312-1327.

[6] Farhan Husain, Mohammad, et al. "Storage and retrieval of large rdf graph using hadoop

and mapreduce." Cloud Computing (2009): 680-686.

[7] Stocker, Markus, et al. "SPARQL basic graph pattern optimization using selectivity

estimation." Proceedings of the 17th international conference on World Wide Web.

ACM, 2008.

61

[8] Huang, Jiewen, Daniel J. Abadi, and Kun Ren. "Scalable sparql querying of large rdf

graphs." Proceedings of the VLDB Endowment 4.11 (2011).

[9] Myung, Jaeseok, Jongheum Yeon, and Sang-goo Lee. "SPARQL basic graph pattern

processing with iterative MapReduce." Proceedings of the 2010 Workshop on Massive

Data Analytics on the Cloud. ACM, 2010.

[10] Hartig, Olaf, and Ralf Heese. "The SPARQL query graph model for query optimization."

The Semantic Web: Research and Applications (2007): 564-578.

[11] Groppe, Sven, Jinghua Groppe, and Volker Linnemann. "Using an Index of Precomputed

Joins in order to speed up SPARQL Processing." Proceedings 9th International

Conference on Enterprise Information Systems (ICEIS 2007 (1), Volume DISI), Funchal,

Madeira, Portugal, INSTICC (June 12-16 2007). 2007.

[12] Neumann, Thomas, and Gerhard Weikum. "Scalable join processing on very large RDF

graphs." Proceedings of the 35th SIGMOD international conference on Management of

data. ACM, 2009.

[13] Zou, Lei, et al. "gStore: answering SPARQL queries via subgraph

matching."Proceedings of the VLDB Endowment 4.8 (2011): 482-493.

[14] Notation3. http://en.wikipedia.org/wiki/Notation_3

[15] Notation3. http://www.w3.org/TeamSubmission/n3/

[16] RDF. http://www.w3.org/RDF/

[17] RDF. http://en.wikipedia.org/wiki/Resource_Description_Framework

[18] SPARQL. http://en.wikipedia.org/wiki/SPARQL

[19] SPARQL. http://www.w3.org/TR/rdf-sparql-query/

[20] Jena TDB. http://jena.apache.org/documentation/tdb/index.html

62

[21] Jena TDB Architecture. http://jena.apache.org/documentation/tdb/architecture.html

[22] Jena TDB and other RDF engines.http://www.w3.org/wiki/LargeTripleStores

[23] Performance of OWLIM and Jena TDB.http://www.ontotext.com/owlim/benchmark-

results/owlim-jena-performance

[24] Jena SDB. http://jena.apache.org/documentation/sdb/query_performance.html

[25] LUBM. http://swat.cse.lehigh.edu/projects/lubm/

[26] LUBM Test Queries. http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt

[27] Jena. http://jena.apache.org/

[28] OWLIM. http://www.ontotext.com/owlim

[29] Sesame. http://www.openrdf.org/

[30] RDF-3X. http://www.mpi-inf.mpg.de/~neumann/rdf3x/

[31] http://en.wikipedia.org/wiki/Turtle_(syntax)

