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ABSTRACT 

 RDF data is a labeled directed graph. SPARQL is an RDF Query language that is used to 

extract information from the RDF Graph. There are different RDF Engines like Sesame, RDF-

3X, OWLIM & Jena. Jena is the most popular framework and is widely used. Jena In-Memory 

model cannot scale for large RDF datasets while Jena SDB and Jena TDB have high latencies. In 

this thesis we propose a new system ‘RGIS’ (RDF Graph Split and Index) for processing 

SPARQL queries on RDF data. RGIS is not only scalable but also faster than Jena and OWLIM-

SE (BigOWLIM). RGIS uses a custom data format and novel indexing technique to store the 

RDF data. Our custom format stores the RDF data into different files based on Classes and 

Object Properties present in the RDF data. These files are then given an index and each instance 

in these files is given a unique index value. We have also developed an RDF structure-aware 

Query Planner that uses the topology of RDF graph to intelligently schedule various query 

operations. When compared with Jena TDB, OWLIM and Mulgara on LUBM datasets, RGIS 

was not only had faster response times but also has less memory overhead.  
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CHAPTER 1 

INTRODUCTION 

 

Currently, the web pages are dominated by unstructured and semi-structured format of data on 

the web pages. Besides, humans are able to process the information that is available on the web. 

Since this information is unstructured, machines cannot interpret the information that is 

presented on the web. Hence, with an objective of converting this unstructured data into 

structured data and make it more machine readable, The W3C Consortium proposed a standard   

Semantic Web. Semantic Web promotes a common data format on the web. Thus, Semantic Web 

provides a common framework for data to be shared across the web, platforms and different 

enterprises. To accomplish the objectives of Semantic Web, in 1999 The W3C proposed the 

Resource Description Framework (RDF), a meta-data data model used to exchange data on the 

Web. After its introduction, it has been popular in Semantic Web Technologies and Life 

Sciences. Besides, [8] major search engines like Google (RichSnippets) and Yahoo 

(SearchMonkey) have started displaying webpages marked up with RDF more prominently in 

search results and hence encouraging usage of RDF.  

Data in RDF is represented in the form of Triples of Subject, Predicate and Object; and each of 

them has a Uniform Resource Identifier (URI).  Hence, a group of RDF statements can then form 

a labeled directed graph. In such a graph, the nodes (Subject and Object) are two URI’s that are 

linked by an edge (Predicate) and this edge also has its own URI. Thus, RDF is a directed, 

labeled graph data format that is used to represent information.  
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E.g. Department0 of University0 can be represented in RDF format as shown below: 

<ub:Department rdf:about="http://www.Department0.University0.edu"> 

 <ub:name>Department0</ub:name> 

    <ub:subOrganizationOf> 

   <ub:University rdf:about="http://www.University0.edu" /> 

 </ub:subOrganizationOf> 

</ub:Department> 

 

As seen in above example, information is represented in a complex structure which is difficult to 

understand for humans. Hence, there is a need for a format in which RDF data can be 

represented in human-readable format. Hence, W3C proposed a new standard Notation 3 

[14][15], the compact representation of RDF’s XML data, which is much simpler and human 

readable format than RDF. Turtle (Terse RDF Triple Language)[31], is a serialization format for 

RDF data model. It is a subset of Notation3. 

E.g. Department0 of University0 can be represented in N3 format as shown below: 

<http://www.Department0.University0.edu> a ub:Department ; 

       ub:name "Department0" ; 

       ub:subOrganizationOf 

<http://www.University0.edu> . 

Thus, as seen above, the information is much easier to read and for human consumption. 
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Since RDF is a directed, labeled graph format to represent data, there also needs to be a standard 

that needs to be established to retrieve the information from the RDF dataset. Hence to retrieve 

information from RDF graphs, W3C proposed a new Query Language called SPARQL. 

SPARQL (SPARQL Protocol and RDF Query Language)[18][19] is an RDF query language that 

is used to retrieve and manipulate the data that is stored in RDF format. It provides the standards 

and keywords that need to be used to form a Query to retrieve information from an RDF dataset. 

Below is an example, represented in the SPARQL query Language, to retrieve all Graduate 

Students taking course GraduateCourse0. 

E.g. 

 SELECT ?X   
 WHERE { 
  ?X rdf:type ub:GraduateStudent .    
  ?X ub:takesCourse 

<http://www.Department0.University0.edu/GraduateCourse0>} 
 

1.1  MOTIVATION 

RDF engines support querying, storing & indexing of RDF data. There are many RDF engines 

like Jena [27], OWLIM [28], Sesame [29] and RDF-3X [30]. Among all these, Jena is the most 

popular framework. In Jena, to store the data, there are several models namely: 

• Jena In-Memory: 

• Jena SDB 

• Jena TDB 

Previous research [1] [4] has shown that since Jena In-Memory model loads all the RDF data 

into main memory, Jena In-Memory model cannot load for more than 10 Million triples for 2GB 

memory. Hence, for larger data sets, it is not possible to use Jena In-Memory Model. Jena SDB 

can load up to 650Million Triples and Jena TDB can load up to 1.7 Billion Triples. However 
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previous research [23][24] has shown that these models have high latencies. Hence, in terms of 

performance, both these systems are slow. Another important drawback with all these models is 

that they are meant to work on a single machine. Hence, there is a need to develop a system, 

which can scale to support big data sets and at the same time is efficient and takes less memory 

and time to evaluate the queries. Besides, the system should also be implemented on a single 

machine and should also work on a distributed framework like Hadoop. 

 

1.2  CONTRIBUTIONS 

As there is a need to develop scalable, memory efficient and performance efficient system for 

RDF data, we have developed a new system RGIS (RDF Graph Split and Index) which uses 

its own custom format and indexing structure to store the RDF data and uses custom Query Plan 

Generator which is used to extract information from the custom data format used by the system. 

Hence, we have two most important contributions to make: 

• Custom Data format and Indexing structure: 

We create a separate file for each Class and Property in the RDF data and give a unique 

index to each of the files and items in these files. All the instances of a class are then 

stored in the respective Class File and each instance is given a unique index. Data in 

Property Files is stored in two sections: Header and Body. In Header, we store all the 

Meta-data about the Subject and Objects. Whereas in Body, we store the Subject and 

Object that are linked to each other by the Predicate that is the name of the Property File. 

Instead of storing the URI, we used the index that has been assigned to the Subject/Object 

in their respective Class Files. 
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• Query Plan Generator: 

The Query Plan Generator provides us with a query plan to execute the SPARQL query 

asked by the user. The Query Plan Generator examines the query and gives us the order 

in which the triples need to be executed. Since, we are storing the information in our 

Custom Format, it also provides information to which files needs to be loaded into the 

memory to execute the query. 

• Query Plan Executor: 

Once the query plan is received from the Query Plan Executor, the Query Plan Executor 

loads the required files in the memory and executes the order of triples it has received in 

the Query Plan.  

Thus, by using our custom data format, we are able to reduce the RDF file size by up to 66%. By 

using indexes and selectively loading the data files into the memory, RGIS uses less memory to 

perform complex operations and is faster than Jena TDB and OWLIM-SE.  

 

1.3 ORGANIZATION 

In Chapter 2, we discuss the System Architecture of RGIS. We would discuss the different 

components that are involved in RGIS and their interaction with each other. 

In Chapter 3, we discuss the new custom storage and indexing format to store the RDF data. We 

would also explain the steps involved to convert he RDF data into the new custom format. 

In Chapter 4, we discuss the algorithm the Query Plan Generator uses to generate the Query 

Plan. 

In Chapter 5, we discuss the details of the execution of Query Plan Executor. The Query Plan 

Executor is responsible to execute the Query Plan. 
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In Chapter 6, we discuss our experimental setup to test the working of RGIS. We would also 

discuss the performance (time and memory utilization) of the system and compare it with Jena 

TDB. 

In Chapter 7, we discuss the previous research and related work. We would also discuss on how 

RGIS differentiates from the other existing systems. 

In Chapter 8, we discuss about our conclusions and the future work that we are working on. 
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CHAPTER 2 

SYSTEM ARCHIECTURE 

 

RGIS comprises of three major components: Pre-processor, Query Plan Generator and Query 

Plan Executor. As discussed in previous section, RGIS stores RDF data in its custom indexed 

format. Hence, the Pre-Processor pre-processes the RDF data and converts into the custom 

indexed format. The Query Plan Generator takes the SPARQL query as an input from the user 

and generates the Query Plan that needs to be executed. The Query Plan consists of the sequence 

of steps be performed and the files that needs to be loaded into the memory to evaluate the 

SPARQL query. The Query Plan is then forwarded to Query Plan Executor that then loads the 

pre-processed files and then executes the steps in the Query Plan. Below is the diagrammatic 

representation of RGIS. 

 

Figure 1: Architecture of RGIS 
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Now, lets discuss in detail the individual working on each of system components mentioned 

above: 

1. Pre-Processor: 

RGIS uses its Custom Format to store the RDF data. In RGIS, RDF data is stored in 

‘Class Files’ and ‘Property Files’.  

• Class Files: 

For every class in the RDF data, we create a Class File, which is named after that class. 

All instances of a class are stored in the respective ‘Class File’ of its class.   

Now, there can be hierarchy if class in the RDF data. We store this hierarchical 

information in a special file called as ‘Class Hierarchy’. 

• Property Files: 

For every property found in the ontology, we create an Property File, which is named 

after the property. Thus, we store the subject and the object, which are linked by a given 

property in the respective Property File. 

Hence, the primary task of the preprocessor is to convert the RDF data into Class Files 

and Property Files. RGIS uses its custom indexing technique. Hence, once the RDF data 

is converted into Class Files and Property Files, the pre-processor indexes these files and 

also the data inside the files. The details of indexing would be discussed in section 3.2. 

Further details of preprocessor are discussed in Chapter 3. 

2. Query Plan Generator: 

The Query Plan Generator takes the SPARQL query as an input and produces a query 

execution plan that is then forwarded to the Query Plan Executor to execute it. The Query 

Plan Generator examines the user defined SPARQL query and analyzes it. It then gives 
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us the order in which triples needs to evaluate and also the Meta-data information on 

which files needs to be loaded into the memory to evaluate the query. The details of how 

a Query Plan is generated are discussed in Chapter 4. 

3. Query Plan Executor: 

The Query Plan Executor executes the Query Plan that is generated by the Query Plan 

Generator. It loads the files mentioned in the Meta-data information of the Query Plan. 

Hence, RGIS selectively loads the data into memory. Once the data is loaded into 

memory, it executes the Query Plan to generate the results that are then displayed to the 

user. The details of execution of Query Plan Executor are discussed in Chapter 5. 
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CHAPTER 3 

INDEXING CLASS FILES AND PROPERTY FILES 

 

RGIS uses its custom index data format to store the RDF data into Class Files and Property Files. 

Hence, the RDF data needs to be preprocessed and converted into the required format. In this 

chapter, we would discuss in details about how to convert the RDF data into the custom index 

data format used by RGIS.  

 

3.1 RDF TO NOTATION3 FORMAT: 

As seen in the figure1 above, the first step in the preprocessing of the data is converting the RDF 

data into Notation3 format. These Notation3 files are then provided as input files for the next 

step discussed below. 

 

3.2 CLASS FILES & PROPERTY FILES: 

Now, in this sub-module, we first find all the Classes and Object Properties in the ontology and 

create a separate file for each of them. Now, the Notation3 files obtained in the above step act as 

input files here. The Notation3 files are read and the data in these files is reorganized based upon 

the Classes and Object Properties. Thus, depending upon the Class or Property that is read from 

the Notation3 file, data is then added into respective Class File or Property File. 

 

E.g.:  
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Figure 2: Subject-Predicate-Object Example 

 

As seen in the above figure, we have: 

• Classes: Student, Professor. 

• Property: advisor 

• Data (Instances): FullProfessor0, UndergraduateStudent4 

Hence, when this information is provided to the pre-processor, the preprocessor would create 3 

files: Student, Professor & advisor. Hence, the above information will be represented as 

following in these 3 files: 
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Class Files: 

Student Professor 

UndergraduateStudent4 FullProfessor0 

Table 1: Example - Class File 

Property Files: 

advisor 

UndergraduateStudent4 FullProfessor0 

Table 2: Example - Property File 

 

3.3 INDEXING CLASS FILES & PROPERTY: 

Now, in this step, the Class Files and Property Files obtained above are each given a unique 

numeric value called as ‘Class File Index’.  

• Indexing Class Files: 

Each of the class files is given a unique numeric value called as ‘Class File Index’. Hence, 

consider the example that we discussed in section 3.1.2, the class files, Students & Professor 

are given index ‘1’ & ‘2’ respectively and stored as: ‘1.Student’ & ‘2.Professor’. 

Now, the data inside these class files are nothing but instances of the class that were found in 

the OWL/RDF files that we processed earlier. Each of these instances inside every class file 

is given a numeric value, which we call it as ‘Class Instance Index’. The format of ‘Class 

Instance Index’ is: 

Class Instance Index = ClassIndex.UniqueNumericValue  
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Now, the data inside these class files is rearranged and stored in the format shown: 

 

ClassIndex.ClassName 

Class Instance ClassInstanceIndex 

Table 3: Indexed Class File 

E.g.: 

1.Student 

UndergraduateStudent4 1.1 

GraduateStudent4 1.2 

Table 4: Example - Indexed Class File 

2.Professor 

FullProfessor0 2.1 

FullProfessor8 2.2 

Table 5: Example – Indexed Class File 

• Indexing Property Files: 

The information in the Indexed Object Files is stored in two sections in the file: Header and 

Body, which would be discussed below. 

Body: 

Similar to Class Files, Property Files are also given a unique index, which we would call as 

‘Property File Index’. Now, each row in this file represents a Subject-Object value pair, 

which is linked by the Property represented by the Property File’s name. Thus, these 

instances are replaced by their respective ‘Class Instance Index’ discussed above. Thus, this 

information is stored in the ‘Body’ section of the Object Indexed File. 

Header: 
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Further, we also store information about the ‘Class Index’ for subject and object that are 

present in a given Property File. This information is stored in the ‘Header’ section of the file. 

E.g.: Consider the example discussed above. The data for Property File ‘advisor’ would be 

converted into: 

3.advisor 

Header: 

Subject: 1 

Object: 2 

Body: 

1.1 2.1 

1.7 2.5 

Table 6: Example – Indexed Property File 

Thus, by using a numeric value instead of the whole URI to represent an instance of a Class, 

we were able to reduce the size of the files considerably. The details of it would be provided 

in coming sections. 
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CHAPTER 4 

QUERY PLAN GENERATOR 

 

There are two objectives for the Query Plan Generator: 

• Determine the order in which we need to execute the query 

• As data is stored in different files, we need to determine from which files we need to pull the 

data.  

Let us see in details how these two objectives are met. 

Determining the order of execution of the Query is important because the information requested 

by the user might be dependent on each other. Hence, we need to determine a path that does not 

involve any inter-dependencies. To accomplish this we follow the steps below: 

Pseudo Code: 

Nodes ← getAllVariables (SPARQL Query) 

For i: 1 to |Nodes| 

 Nodes[i] ← getClassProperties() 

Triples ← getTriples(SPARQL Query) 

For i: 1 to |Triples| 

 If Subject is variable 

  Nodes[Subject].ObjectPropertyList ← Triple [i] 

 Else 

  Nodes[Object].ObjectPropertyList ← Triple [i] 
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While Nodes != empty 

 N = getIndependentNode(Nodes) 

 OutputList ← N 

 Nodes.remove(N) 

 

Explanation of Algorithm: 

1. We determine all the variables that are present in the query. Each variable is considered as a 

node. 

2. We then compare these variables with the variables that are required in the output and 

determine which of these nodes would be our output nodes. 

3. We then determine the ‘type’ i.e., ‘Class’ of the node. The Class information can be found 

from two places: 

a. The class of the node can be specified in the Query 

E.g.: ?X ub:type Department 

b. From the ‘Header’ section of the Object Indexed File. 

4. Once we have determined the Class information about a node, we then add the Object 

properties that are asked in the query to the respective nodes. Thus, every node has its own 

‘Property List’, which contains the Object Properties. 

5. After adding the Object Properties, we check every node for any dependencies and for every 

node we create a dependency list. 

6. Then, we select a node, which does not have any dependency and add it to the Output List.  

7. Then, we remove this node, which we added in the Output List, from the dependency list of 

all other nodes. 
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8. We repeat steps 6 & 7 till all nodes are added into the Output List. 

Thus, the order in which the nodes are added into the Output List gives us the order in which we 

need to execute the query plan. 

E.g.: Consider the following query:  

SELECT ?X, ?Y, ?Z  

WHERE  

 { ?X rdf:type ub:GraduateStudent .    

?Y rdf:type ub:University .    

?Z rdf:type ub:Department .    

?X ub:memberOf ?Z .    

?Z ub:subOrganizationOf ?Y .    

?X ub:undergraduateDegreeFrom ?Y} 

For the query above, we would generate a following graph for Steps 1-5: 

 

 

 

 

 

 

 

 

 

X 
type: 

Graduate 
Student 

Y 
type: 

University 

Z 
type: 

Department 

ub:memberOf 
ub:suborganizationOf 

ub:undergraduateDegreeFrom 

Figure 3: Graph Generated for SPARQL Query 
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Thus, if we follow Steps 1-5 discussed above, we get three nodes: X, Y & Z. The dependencies 

of each node can be then express as shown below: 

Node Dependency on Node Property List 

X Y,Z type: GraduateStudent 

underGraduateDegreeFrom: X 

memberOf: Z 

Y - type: University 

Z X type: Department 

suborganizationOf: Y 

Table 7: Node Dependency List 

Hence, if we follow Steps 6-8 discussed in this section, then the order of execution of nodes 

would be as follows: 

Node Property List 

Y 1. type: University 

Z 1. type: Department 

2. suborganizationOf: Y 

X 1. type: GraduateStudent 

2. underGraduateDegreeFrom: X 

3. memberOf: Z 

Table 8: Property List of Nodes 
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Now, once we have determined the order of execution, we now need to determine the files that 

are required to evaluate the query. As discussed in Chapter 3, we store all the RDF data in Class 

Files and Property Files.  

In the Query Plan, as seen in above example, we also generate the Property List. Hence, the 

entries in the Property List would determine which files needs to be used and loaded to evaluate 

the query. Hence, for the above example, we would be loading the following files: 

Class Files: 

• University 
• Department 
• GraduateStudent 

 
Property Files: 

• suborganizationOf 
• undergraduateDegreeFrom 
• memberOf 
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CHAPTER 5 

QUERY PLAN EXECUTOR 

 

The Query Plan generated by Query Plan Generator is then forwarded to the Query Plan 

executor. The main objective of Query Plan executor is to execute the Query Plan and give the 

required output to the user. 

Below are the steps that are followed by the Query Plan Executor to execute the Query Plan: 

1. Select the node from the Query Plan. 

2. Check that in the Object properties of the selected node are there any literals. 

a. If literals are found, then place the Object Properties with literals at the start of the 

Property List. By evaluating literals first, we can reduce the search space for the 

query we are evaluating. 

b. If literals are not found, do not change the Property List. 

3. Now, for the selected node, evaluate the Property List. 

a. For first property in the Property List: 

i. Go to the respective Property File, which is loaded in the memory. 

ii. Get the required objects from the file and add it to the output list of that 

respective node. 

b. For rest of Properties in the List: 

i. Go to the respective Property File, which is loaded in the memory. 
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ii. Use the Output List obtained in above step and use it as an input to get the 

required information from the loaded Property File. Since the Property 

File is stored as a Hash Map, the retrieval of the objects is quick. 

iii. Add the new relevant objects to the Output List. 

iv. Repeat the above steps for all the Object Properties in the List. 

  



 

22 

 

 

CHAPTER 6 

RESULTS 

 

6.1 EXPERIMENTSL SETUP: 

To test the functionality of RGIS, we have used the Leigh University Benchmark, popularly 

known as LUBM [25]. LUBM is one of the most popular benchmark for the evaluation of 

Semantic Web Repositories. This benchmark is extensively used to measure the performance of 

the repository when querying on large data sets. This benchmark contains: 

• Ontology with University as its domain 

• Customizable and repeatable synthetic data 

• 14 test queries [26] 

• Performance Metrics 

We have used Data Generator (UBA) provided by LUBM to generate our dataset. Thus, to test 

RGIS, we generated two data sets and the details are as follows 

Data Set Size of 

OWL/RDF Files 

No of Triples 

(In Millions) 

Size of files 

after Indexing 

Disk Space 

savings after 

Indexing 

Data Set 1 3.42 GB 41.27  1.14 GB 66.66 % 

Data Set 2 6.90 GB 82.92 2.34 GB 66.08% 

Table 9: Data Sets used for Test 
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Thus, as seen from the table above, when the RDF data is processed and converted and stored in 

our custom format, we were able to reduce the size of the files by 66%.  

To test RGIS, we used a machine having 2.5GHz Intel Core i5 processor, 8GB of RAM, Mac OS 

X 10.8.2 and Java 1.6. For testing the response time of RGIS on the LUBM test queries, we used 

different Java heap space memory settings. 

 

6.2 PERFORMANCE OF RGIS FOR DIFFERENT HEAP SIZE: 

In this section, we will compare the performance of RGIS on the two datasets and on different 

memory heap sizes of JVM. This is an important evaluation of the system as this will give us 

insight on the response time of RGIS to answer a query and also give us information about the 

memory utilization to answer the query. Thus, from the results we can determine the minimum 

size of the heap that is required to answer the queries.  
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6.2.1 HEAP SIZE: 4GB 

 

 

Figure 4: Time for Test Queries v/s 4GB Memory Space 

Above figure shows the response time of the system to answer query for both the data 

sets when the heap size of JVM is set to 4GB. 

 

Figure 5: Memory Utilization for 4GB 

Above figure shows the Heap utilization of the system to answer query for both the data 

sets when the heap size of JVM is set to 4GB. 
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6.2.2 HEAP SIZE: 3GB

 

 

Figure 6: Time for Test Queries v/s 3GB Memory Space 

Above figure shows the response time of the system to answer query for both the data 

sets when the heap size of JVM is set to 3GB. 

 

Figure 7: Memory Utilization for 3GB 

Above figure shows the Heap utilization of the system to answer query for both 

the data sets when the heap size of JVM is set to 3GB. 
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6.2.3 HEAP SIZE: 2GB 

 

 

Figure 8: Time for Test Queries v/s 2GB Memory Space 

Above figure shows the response time of the system to answer query for both the data 

sets when the heap size of JVM is set to 2GB. 

 

Figure 9: Memory Utilization for 2GB 

Above figure shows the Heap utilization of the system to answer query for both the data 

sets when the heap size of JVM is set to 2GB. 
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6.2.4 HEAP SIZE: 1GB 

 

 

Figure 10: Time for Test Queries v/s 1GB Memory Space 

Above figure shows the response time of the system to answer query for both the data 

sets when the heap size of JVM is set to 1GB. 

 

Figure 11: Memory Utilization for 1GB 

Above figure shows the Heap utilization of the system to answer query for both 

the data sets when the heap size of JVM is set to 1GB. 
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6.3 RESPONSE TIME FOR INDIVIDUAL LUBM TEST QUERIES: 

 6.3.1 Query 1 

 

Figure 12: Time v/s Memory for Query 1 

 

 

Figure 13: Memory Utilization for Query 1 
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6.3.2 Query 2 

 

Figure 14: Time v/s Memory for Query 2 

 

 

Figure 15: Memory Utilization for Query 2 
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6.3.3 Query 3 

 

Figure 16: Time v/s Memory for Query 3 

 

 

Figure 17: Memory Utilization for Query 3 
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6.3.4 Query 4 

 

Figure 18: : Time v/s Memory for Query 4 

 

 

Figure 19: Memory Utilization for Query 4 
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6.3.5 Query 5 

 

Figure 20: Time v/s Memory for Query 5 

 

 

Figure 21: Memory Utilization for Query 5 
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6.3.6 Query 6 

 

Figure 22: Time v/s Memory for Query 6 

 

 

Figure 23: Memory Utilization for Query 6 
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6.3.7 Query 7  

 

Figure 24: Time v/s Memory for Query 7 

 

 

Figure 25: Memory Utilization for Query 7 

13081 14631 14365 

20845 

32,209 30509 

44292 

NA 
0 

5000 
10000 
15000 
20000 
25000 
30000 
35000 
40000 
45000 
50000 

4GB Heap 3GB Heap 2GB Heap 1GB Heap 

Ti
m

e 
 (m

se
c)

 

Heap Space 

Performance: Time 

Dataset 1 

Dataset 2 

1.2 1.2 1.3 

0.85 

3 

1.9 
1.7 

NA 
0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4GB 3GB 2GB 1GB 

M
em

or
y 

U
se

d 
(G

B
) 

Heap Space 

Performance: Memory 

Dataset 1 

Dataset 2 



 

35 

 6.3.8 Query 8  

 

Figure 26: Time v/s Memory for Query 8 

 

 

Figure 27: Memory Utilization for Query 8 
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 6.3.9 Query 9  

 

Figure 28: Time v/s Memory for Query 9 

 

 

Figure 29: Memory Utilization for Query 9 
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6.3.10 Query 10 

 

Figure 30: Time v/s Memory for Query 10 

 

 

Figure 31: Memory Utilization for Query 10 
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6.3.11 Query 11 

 

Figure 32: Time v/s Memory for Query 11 

 

 

Figure 33: Memory Utilization for Query 11 
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6.1.12 Query 12 

 

Figure 34: Time v/s Memory for Query 12 

 

 

Figure 35: Memory Utilization for Query 12 
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6.3.13 Query 13 

 

Figure 36: Time v/s Memory for Query 13 

 

 

Figure 37: Memory Utilization for Query 13 
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6.3.14 Query 14 

 

Figure 38: Time v/s Memory for Query 14 

 

 

Figure 39: Memory Utilization for Query 14 
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6.4 QUERY EVALUATION, DATA LOAD AND QUERY EXECUTION TIME OF RGIS: 

For RGIS, the total execution time can be split into: 

• Query Plan Generation 
• Load Files into memory 
• Execute Query Plan. 

 

Time required for Query Plan Generation, Loading the required files into memory and execution 

of Query Plan for all the LUBM Test Queries on our datasets are given below. 

6.4.1 Heap Space 4GB: 

LUBM 
Test 
Query 

Data Set 1 Data Set 2 

 Query Plan 
Generation 
(In msec.) 

Load 
Files in 
Memory 
(In 
msec.) 

Execute 
Query 
Plan 
(In 
msec.) 

Total 
Execution 
Time 
(In msec.) 

Query Plan 
Generation 
(In msec.) 

Load 
Files in 
Memory 
(In 
msec.) 

Execute 
Query 
Plan 
(In 
msec.) 

Total 
Execution 
Time 
(In msec.) 

1 7 6627	
   563 7198 6	
   1256	
   1726	
   14293	
  
2 9 3096	
   6124 9230 8	
   5644	
   8681	
   14335	
  
3 7 3801 1996 5805 6	
   714	
   5559	
   12706	
  
4 8 5290 9639 14937 6	
   9420	
   23933	
   33360	
  
5 6 2266 5009 7282 6	
   4040	
   9165	
   13212	
  
6 5 11 9419 9436 4	
   10	
   17611	
   17626	
  
7 8 7127 5945 13081 8	
   14820	
   17380	
   32209	
  
8 6 6838 13337 20182 7	
   14477	
   41065	
   55550	
  
9 10 8139 6740 14890 8	
   15712	
   12869	
   28590	
  
10 6 6427 554 6987 5	
   12241	
   1349	
   13596	
  
11 8 315 143 467 11	
   399	
   267	
   678	
  
12 8 555 109 672 7	
   869	
   186	
   1062	
  
13 12 2651 3517 6181 14	
   4220	
   4082	
   8317	
  
14 5 14 7373 7393 4	
   13	
   13540	
   13558	
  

Table 10: Total Execution Time of RGIS for 4GB Heap Space 
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6.4.2 Heap Space 3GB: 

LUBM 
Test 
Query 

Data Set 1 Data Set 2 

 Query Plan 
Generation 
(In msec.) 

Load 
Files in 
Memory 
(In 
msec.) 

Execute 
Query 
Plan 
(In 
msec.) 

Total 
Execution 
Time 
(In msec.) 

Query Plan 
Generation 
(In msec.) 

Load 
Files in 
Memory 
(In 
msec.) 

Execute 
Query 
Plan 
(In 
msec.) 

Total 
Execution 
Time 
(In msec.) 

1 7 6748 577 7333 6	
   12068	
   1772	
   13848	
  
2 10 3045 3952 7007 7	
   5424	
   9386	
   14819	
  
3 29 3901 2569 6500 7	
   7373	
   6557	
   13939	
  
4 41 5530 10985 16558 6	
   15810	
   36206	
   52024	
  
5 6 2210 5244 7462 6	
   3911	
   9571	
   13490	
  
6 6 13 9146 9166 6	
   11	
   21444	
   21462	
  
7 8 7575 7047 14631 6	
   13559	
   16943	
   30509	
  
8 7 6277 17260 23544 6	
   15005	
   80369	
   95382	
  
9 8 8406 6797 15212 10	
   15365	
   16198	
   31574	
  
10 7 6471 553 7032 6	
   11865	
   1805	
   13678	
  
11 7 316 146 470 8	
   400	
   257	
   667	
  
12 8 553 106 667 7	
   845	
   187	
   1040	
  
13 11 2633 3095 5741 19	
   4721	
   4536	
   9277	
  
14 4 11 6758 6774 11	
   36	
   26958	
   27006	
  

Table 11: Total Execution Time of RGIS for 3GB Heap Space 
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 6.4.3 Heap Space 2GB: 

LUBM 
Test 
Query 

Data Set 1 Data Set 2 

 Query Plan 
Generation 
(In msec.) 

Load 
Files in 
Memory 
(In 
msec.) 

Execute 
Query 
Plan 
(In 
msec.) 

Total 
Execution 
Time 
(In msec.) 

Query Plan 
Generation 
(In msec.) 

Load 
Files in 
Memory 
(In 
msec.) 

Execute 
Query 
Plan 
(In 
msec.) 

Total 
Execution 
Time 
(In msec.) 

1 6 6356 685 7049 7	
   11846	
   1687	
   13541	
  
2 9 2960 3187 6157 10	
   5502	
   8770	
   14284	
  
3 6 3290 2906 6833 5	
   8728	
   8551	
   17286	
  
4 47 5167 12767 17982 NA*	
   NA*	
   NA*	
   NA*	
  
5 6 2169 5567 7743 5	
   3882	
   15960	
   19848	
  
6 5 11 9464 9482 36	
   103	
   53896	
   54036	
  
7 8 7716 6640 14365 7	
   14098	
   30185	
   44292	
  
8 9 7755 14133 21897 NA*	
   NA*	
   NA*	
   NA*	
  
9 42 8323 7574 15939 10	
   15628	
   31392	
   47031	
  
10 6 6401 659 7068 6	
   11922	
   1689	
   13617	
  
11 8 309 146 463 9	
   402	
   278	
   690	
  
12 6 543 106 657 8	
   860	
   185	
   1053	
  
13 11 2320 3082 5414 13	
   4383	
   5112	
   9509	
  
14 4 10 6768 6783 48	
   31	
   62992	
   63072	
  

Table 12: Total Execution Time of RGIS for 2GB Heap Space 

*For the given Heap Space, RGIS was not able to evaluate the LUBM Test Query. 
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6.5 COMPARISON WITH JENA TDB: 

Jena TDB [20][21] is component of Jena to store and query RDF data.  It works with Jena ARQ 

to provide support for SPARQL. Jena TDB is a high performance RDF store on a single 

machine. It uses custom B+ trees and memory mapped IO. Thus, it can support up to 1.7[22] 

Billion Triples. 

To get better understanding of the performance of RGIS, we compare it with Jena TDB. The 

comparison will be with respect to: 

• Space required to store the RDF/OWL data. 

• Response time for both the systems to evaluate the 14 LUBM Test Queries. 

Below are the details of our findings: 

6.5.1 Space comparison with JENA TDB: 

Dataset Actual Size RGIS Jena TDB 

Dataset 1 3.42 GB 1.15 GB 6.97 GB 

Dataset 2 6.90 GB 2.33 GB 13.34 

Table 13: Space Comparison – RGIS v/s Jena TDB 

  

As seen from the table above, RGIS requires 66% less storage space whereas Jena TDB 

requires an additional 100% storage space of that of original data. 

Hence, when compared directly with RGIS, Jena TDB requires 600% more storage space 

than RGIS to store the same data. 
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6.5.2 Response time to evaluate LUBM Test Queries: 

6.5.2.1 Response Time for Dataset 1: 

 For a fair comparison, we used 2GB heap space for both the systems when 

comparing the response time for Dataset 1. Below is the comparison graph for the 

same. 

 

Figure 40: Performance – RGIS v/s Jena TDB for Data Set 1 (41 Million Triples) 
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6.5.2.2 Response Time for Dataset 2: 

For a fair comparison, we used 3GB heap space for both the systems when 

comparing the response time for Dataset 2. Below is the comparison graph for the 

same. 

 

Figure 41: Performance – RGIS v/s Jena TDB for Data Set 2 (83 Million Triples) 
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6.5.2.3 Total query time  

Now, we compare the total time required to execute the LUBM test queries for 

both the datasets on RGIS and Jena TDB. Below is the table that summarizes the 

same. 

Dataset RGIS Jena TDB 

 (Time in sec.) (Time in sec.) 

Dataset 1 127.832 1487.283 

Dataset 2 338.715 2692.436 

Table 14: Total Execution Time 

 

6.6 COMPARISON WITH OWLIM-LITE: 

OWLIM Lite is the in-memory model of OWLIM. Previous research [1][4] has shown that 

OWLIM-Lite cannot scale for more than 10M triples.  Our test Data Sets comprised of 41.27M 

and 82.92M Triples. Hence, as seen in previous research, we were not able to load the datasets 

into the memory and evaluate the LUBM Test Queries. The Java Heap Space used was 2GB and 

3GB respectively. 
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6.7 COMPARISON WITH OWLIM-SE (BigOWLIM): 

We compared performance of RGIS with OWLIM-SE, formerly called as BigOWLIM. We 

tested the performance of RGIS and OWLIM-SE on our LUBM Datasets. For a fair comparison 

between RGIS and OWLIM, both the systems used 2GB heap space and 3GB heap space when 

evaluating results for Data Set 1 and Data Set 2 respectively. Below is the execution time 

required for RGIS and OWLIM-SE for each of the datasets on each of the LUBM Test Queries. 

LUBM 

Query 

Data Set 1 Data Set 2 

RGIS (In Sec.) OWLIM-SE (In Sec.) RGIS (In Sec.) OWLIM-SE (In Sec.) 

1 7.05 0.80 13.85 3.71 

2 6.16 229.15 14.82 442.84 

3 6.83 0.07 13.94 0.16 

4 17.98 1.72 52.02 0.51 

5 7.74 0.73 13.49 1.93 

6 9.48 Could Not Load 21.46 Could Not Load 

7 14.37 0.69 32.21 0.31 

8 21.90 19.22 95.38 55.842 

9 15.94 419.61 31.574 875.86 

10 7.07 0.04 13.68 0.15 

11 0.46 0.48 0.66 0.66 

12 0.66 0.29 1.04 0.36 

13 5.41 9.40 9.28 58.53 

14 6.78 2170.36 27.00 Could Not Load 

Table 15: Comparison of RGIS and OWLIM-SE 
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6.8 COMPARISON WITH MULGARA: 

We compared the performance of RGIS with Mulgara on Data Set 1. For a fair comparison, we 

used 2GB heap space on both the systems when evaluating the LUBM Test queries on the Data 

Set. Below is the execution time required for RGIS and Mulgara for each of the datasets on each 

of the LUBM Test Queries. 

LUBM  

Query 

RGIS 

(In Sec.) 

Mulgara 

(In Sec.) 

1 7.05 1.69 

2 6.16 29.115 

3 6.83 1.77 

4 17.98 15.52 

5 7.74 0.36 

6 9.48 0.13 

7 14.37 0.99 

8 21.90 0.91 

9 15.94 45.339 

10 7.07 0.03 

11 0.46 0.45 

12 0.66 0.24 

13 5.41 2.83 

14 6.78 0.11 

Table 16: Execution Time of RGIS and Mulgara 
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We also compared the space required by Mulgara to store the LUBM Data Set. Below is the 

table that compares the storage space required by Mulgara and RGIS to store Data Set 1. 

Data Set Original Size RGIS Mulgara 
Data Set 1 3.42 GB 1.14 GB 7.83 GB 

Table 17: Storage Space required for RGIS and Mulgara 

 

6.9 DISCUSSION 

Execution Time: 

• As seen from the results in table 11, the total execution time for the LUBM queries was 

six times than the execution time taken by RGIS. 

• From the comparison of RGIS with Jena TDB on both the datasets, in most of the 

queries, RGIS performs much better than Jena TDB. Thus, from the results, we can safely 

say that we Jena TDB take at least twice the execution time than RGIS. 

• Queries 2, 4, 7, 8, 9, all had large datasets and had more join operations involved when 

evaluating the query. For such queries, as seen from the results, RGIS performed better 

than Jena TDB and was 6 times faster than Jena TDB.  

• For queries 1 & 3, the performance of Jena TDB was better than RGIS. We believe that 

this is because of the architecture it uses to save information about the Subject, Object 

and Predicates.  Thus, queries that involve a single class, Jena TDB perform better 

because of the architecture of Jena TDB. 

• Performance of RGIS was better than OWLIM-SE that involved data-intensive queries 

and for queries that required more complex joins. 

• Performance of RGIS was better then Mulgara that required complex joins. 
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Storage Space: 

• By using the custom storage format, we were able to reduce to size of the files by 66% 

that results into using less storage space.   

• In comparison with Jena TDB, RGIS used 1/6th the space required by Jena TDB to store 

the RDF/OWL datasets. 

• The storage space required for Mulgara was 7 times more than that required for RGIS. 

Heap Size/Memory: 

• For Dataset 1, at least 2GB of heap memory is needed to evaluate and answer all the test 

queries. 

• For Dataset 2, at least 3GB of heap memory is needed to evaluate and answer all the test 

queries.  
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CHAPTER 7 

RELATED WORK 

 

In recent years, many researchers have come up with different solutions to improve the 

efficiency of RDF Engines. Researchers have also proposed new architectures, techniques and 

models to store RDF data and to retrieve it. Previous experience and research has shown that one 

of the important reasons for low performance of a RDF engines is because of low performance 

on ‘Join Operations’ in SPARQL query processing. Hence, to address this problem, researchers 

have proposed using heuristics in SPARQL query planning [7][11][12] and rewriting query to 

improve efficiency [10].   

 

Previous work has also suggested that using different storage technique can also help in 

improving performance of RDF engines. As described by researchers Thomas Neumann and 

Gerhard Weikum in their work [1], the authors replace the ‘literals’ with ‘id’ using a mapping 

directory. By using this approach, the authors argue, that the triples are compressed as we use 

‘id’ instead of the ‘literal’. Thus, this also helps in faster lookups and simple processing of a 

query. Thus, the authors say that we could use ‘id’ of literals when processing the query and 

once the query is processed, we can perform a simple lookup in the dictionary indexes to get 

back the literals.  Besides, the authors have used 6 different tables i.e., all 6 different 

permutations of Subject, Object & Predicate, to store the different permutations represented by a 

triple in each of these tables, respectively. This is done so that it would result in faster lookup 
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when answering all different patterns of variables with variable in any position of the triple. The 

authors argue that they can afford to use 6 different tables to store the data because instead of 

storing the whole literal, they just store the ‘id’ of the literal. Hence, this level of redundancy is 

acceptable because it uses ‘id’ instead of literals and thus even with redundancy of data, they 

were able to still reduce the size of the dataset in the experiments. 

In their work [2], authors Javier D. Fernandez, Miguel A. Martinez-Prieto and Claudio 

Gutierrez, talk about a new format to represent the data. The authors say that for efficient 

management of large RDF data, we can use the structural properties of RDF and split the data 

into three major components: Header, Dictionary & Triples. In this paper, the authors say that the 

header section can be used to store the meta-data information of the RDF graph.  Further, in the 

dictionary section, we would be storing the literals and assigning them ‘id’. In the triple section, 

instead of storing the literals, we can use their respective id mentioned in the dictionary section. 

Hence, the dictionary section would act as a lookup table for the ‘triple’ section. 

In RGIS, we give an index to every predicate, class attribute and property. Thus, for a literal, an 

index is stored in the class files and this index value is then referenced in the Property files. 

Thus, for every predicate, we just have single file and not 6 different files or internal structures 

as mentioned in RDF 3X.  Besides, only the Property Files have a Header and Body. In the 

header, we store the indices of classes of both, subject and object.   

Hence, by using a single file for every predicate and storing the data in Header-Body format, we 

do not need to store the data into 6 different formats. Besides, the Class Files can then be used to 

get the literal for a particular index. Hence, the advantage of using this format is that we load 

only those entries into the memory that are required instead of loading the entire dictionary 
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section as described in paper [2]. Hence, by loading only the required entries, RGIS utilizes less 

memory, as seen in the section 4.2. 

 

Authors Mohammad Farhan Hussain, et al., in their work [4][6], discuss about a new format to 

store the RDF graph. In the paper, the authors say that they would first split the RDF data 

according to the Predicates, called as Predicate Split. Thus creating a file for every predicate in 

the Ontology. Further, the authors also split the RDF data based on implicit and explicit ‘type 

information’ of the object, which the authors call as ‘Predicate Object Split’. Thus, by using this 

custom format, the authors were able to reduce the storage space by 70%. Thus, to get the RDF 

data into the format discussed in the paper, we need to follow the steps below: 

• Convert RDF data to N-Triples 

• Predicate Split is then Applied to N-Triples data 

• Predicate Object Split is then applied on the data received from above step. 

In RGIS, we convert the data to Notation3 format and then split the data based on predicates and 

classes. Further, RGIS uses indexes for every Class and Class Objects, which is then referenced 

in the Property Files.  Besides, we also assign index to every Property File. We also use ‘Header-

Body’ format to store information in the Property Files. Hence, by using this format, our 

approach gets distinguished from the approach mentioned in the papers above.  

Further in [6], the authors describe an algorithm to evaluate queries such that they could be 

processed using Hadoop. In the algorithm, the authors try to find all the triples that are 

independent and are grouped together. Then, these triples are removed from the query and the 

algorithm is repeated on the rest of the remaining query to find the next independent triples. This 

is repeated till we exhaust all the triples that are asked in the query. Thus, the number of 



 

56 

repetitions would give us the number of jobs that are required on Hadoop and the group of triples 

obtained in every iteration can be used in the respective job on Hadoop. 

Further, in [5], the authors say that they grouped independent triples into a job. Also, the 

performance of Hadoop is dependent on the number of Jobs that are required to evaluate a query.  

In the experiments, the authors have compared the performance on 2-Job Plan and 3-Job Plan. 

The experiments show that the performance of 2-Job Plan was better than the performance of 3-

Job Plan. The reason for 2-Job Plan performing better was because of less read/write IO and less 

data transfer across the network. 

In our approach, we create nodes for every variable that is encountered in the query. Then, based 

on the algorithm discussed in section 3.2, we generate a query plan that needs to be executed. 

Thus, there is a fundamental difference in both the approaches. The authors believe in grouping 

all triples irrespective of the variables and evaluating it. Whereas, in our approach, we would 

evaluate variables and the Object Properties associated with it. We believe that using our 

approach would result in better organization of data when evaluating complex queries that have 

more join operations. Our approach is compatible with Hadoop, but beyond scope of this Thesis.  

 

Authors Lei Zou, et al., in their work [13], describe a novel indexing technique and pruning rules 

that help to reduce the query processing time. Further, the authors say that their technique can 

also be used to support wildcards in SPARQL query.  In their technique, the authors have used 

adjacency list to store the RDF data. They then transform the RDF graph into signature graph by 

encoding all entities and vertex. They also use a novel indexing technique, VS*-tree, on this 

signature graph. The authors have also proposed filtering rules that can be used on the signature 
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graph to evaluate SPARQL queries. The same rules can also be used for SPARQL queries with 

wild cards. 

 

Author Richard Cyganiak, in his work [3], gives us a brief overview of the relational algebra for 

SPARQL. In the paper, the author describes the techniques that can be used to evaluate the 

SPARQL query and convert it into equivalent SQL query. The author also gives an insight on 

how the Join operation of SPARQL can be mapped into SQL language. 

In RGIS, we do not use the algebra or conversion to SQL mappings. However the algebra and 

techniques mentioned by the author were useful to us to perform the join operations and to 

evaluate the query. In RGIS, when we generate the query plan, we store the Meta-data i.e., 

information about different files from which we need to load the data into the memory and 

perform operations to evaluate the query. Thus, the techniques mentioned in the paper were 

helpful to us to determine the Meta-data required evaluating the queries. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

 

8.1 CONCLUSION 

Performance and Storage technique are the important areas of research for RDF engines. In 

RGIS, we address each of these problems and provide solutions to them. Using its custom data 

and indexing format, RGIS uses less storage space to store RDF data. The intelligent Query 

Planner and Executor evaluate the SPARQL query and selectively load the files into memory and 

hence utilize less memory. Further, as the data is split based on Classes and Object Properties, 

we are able to reduce the search space. Thus, by selectively loading the files into memory, we 

load only the triples that are required to evaluate the query. Hence, RGIS helps reduce memory 

overhead.  

RGIS has been tested on a dataset that has 83Million triples. RGIS not only used less storage 

space to store RDF data than Jena TDB but also executed the SPARQL queries faster than Jena 

TDB. For complex queries that involved complex join operations, performance of RGIS was 

faster than Jena TDB and OWLIM. Performance of RGIS was better than Mulgara for few of 

LUBM test queries. Hence, as suggested from the results, our algorithm performs better for 

SPARQL queries that involves complex join operations.  
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8.2 Future Work 

RGIS stores the class hierarchy in Class Hierarchy File. We are currently working to create a 

parser that would parse the RDF data and generate the Class hierarchy data and store it in the 

Class Hierarchy File. 

Currently, RGIS can evaluate SPARQL queries to find Subject and/or Object. We are working 

on RGIS so that it would also evaluate SPARQL queries that require finding relations between 

Subject-Objects. Thus, RGIS would also answer queries that have predicates as 

unknowns/variables. We would also be working to add the different features that are supported 

by SPARQL. E.g.: ORDERBY, FILTER, etc. 

To improve the performance of RGIS, we would also like to implement a cache, which would 

cache the results/ data and thus improve the response time for the queries. 

Since the Query Plan and Custom Format to store the data are generic, they could also be used 

on a distributed framework like Hadoop. Thus, in the future, we would also be working to test 

RGIS on a Hadoop. We believe that by using Hadoop, we would be able to support a bigger 

dataset. 
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