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ABSTRACT 

 This dissertation focuses on the characterization of interactions of glycoproteins with 

glycosaminoglycans (GAGs) using primarily nuclear magnetic resonance (NMR) methodology.  

Glycoproteins are proteins carrying covalently linked glycans; many glycoproteins play crucial 

roles in human physiology and disease. Many function by interacting with other glycans, 

including the highly sulfated and structurally diverse glycans found in the extracellular matrix 

(GAGs). The characterization of these systems is best performed on properly glycosylated forms 

produced by the expression of the proteins in mammalian cell culture.  However, mammalian 

protein characterization by traditional NMR methodology is challenging since the uniform 

isotopic labeling with isotopes needed for NMR observation (13C, 15N and 2H) becomes 

extraordinarily expensive and deuteration is very detrimental to cell growth. I describe an 

alternative methodology based on sparse labeling with single isotopically enriched amino acids. 

The primary limitation of sparse labeling is that the connectivities between isotopically labeled 

residues are lost. As a result, traditional triple resonance assignment approaches are no longer 

applicable. To overcome this obstacle, a new strategy is developed to assign the crosspeaks in a 

heteronuclear single quantum coherence (HSQC) spectrum of a sparsely labeled protein sample.  



This strategy uses a genetic algorithm to search for an optimal pairing of HSQC crosspeaks with 

labeled sites based on the experimental and predicted values of chemical shifts, nuclear 

Overhauser effects and residual dipolar couplings. This methodology has been validated on a set 

of previously assigned proteins and a sparsely labeled two-domain construct from a glycosylated 

signaling protein, Robo1-Ig1-2. Using available NMR assignments, I have characterized Robo1-

Ig1-2 interacting with two heparan sulfate tetramers and an octamer using a series of high 

structural content NMR experiments. A model of this complex has been generated and used to 

rationalize how heparan sulfate may modulate interaction with Robol’s signaling partner, Slit2. 

This methodology was then applied to study the interaction between glycoprotein LAR and 

heparan sulfate, another glycoprotein-GAG interaction that is important for signal transduction. I 

present a model for LAR-Ig1-2 interacting with a particular heparan sulfate pentasaccharide, and 

use this to assess heparan sulfate modifications that may lead to enhanced binding and induced 

LAR dimerization. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

In order to properly develop, differentiate and function as tissues, cells detect and 

respond actively to different signaling transduction processes through a series of molecular 

events1. In mammals, these events are activated and mediated by a group of cell-cell adhesion, 

communication and signaling proteins2-3.  Many of these are glycoproteins that can form diverse 

types of complexes and junctions to join cells and the extracellular matrix. Many glycoproteins 

share a similar structural topology: the extracellular region begins with one or more 

immunoglobulin-like (Ig-like) domains which are highly glycosylated, followed by zero to 

several fibronectin type III (FN3) repeats, a transmembrane domain, and a cytoplasmic domain 

which conveys the signal to intracellular systems. The majority of signaling pathways begin with 

interactions between the glycosylated terminal domains of these cell surface proteins and other 

molecules, including free-floating ligands and domains of other membrane proteins on the same 

cell (cis-interactions) or proximate cells (trans-interactions). A molecular understanding of the 

interactions between these glycosylated proteins and various ligands can reveal the complex 

mechanisms responsible for signaling in these pathways.  This understanding can, in turn, 

facilitate intervention in these processes for biomedical purposes. 

Glycosylation is the most common, yet most complex, protein post-translational 

modification. It affects protein function in many ways4-5, including facilitating protein folding 

and complex assembly, guiding protein trafficking, aiding ligand recognition and triggering cell 
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signaling and immunogenicity. The common glycans found in mammals include hexoses 

(glucose, galactose and mannose), hexosamines, deoxyhexoses (fucose), uronic acids (iduronic 

acid, glucuronic acid) and sialic acids. These monosaccharide units are linked together by 

flexible glycosidic bonds to form various oligosaccharide chains. They are linked to the protein 

through N- or O- linkages to specific asparagine, serine or threonine residues.  In general, for the 

pyranoses mentioned above, the conformation of the monosaccharide is fairly rigid except for 

IdoA which, in solution, has two different well-populated conformations (1C4-chair and 2S0- 

skew boat). The motional flexibility of glycans is primarily the result of variations in glycosidic 

torsion angles which are defined as Φ and Ψ angles (in the α(1,4) linkages these are defined as 

O5-C1-O1-C4 and C1-O1-C4-C3 respectively). There are extra degrees of freedom when 

glycans are linked through exocyclic hydroxymethylenes (variation in the angle  for 1-6 linked 

glycans). There are many challenges in glycosylated protein characterization, most of which are 

caused by the heterogeneity, complexity and flexibility of native glycans.  

In order to trigger certain signaling pathways that regulate cell properties and function, 

glycoproteins on the cell surface commonly interact with other extracellular matrix (ECM) 

components. Among the different types of ECM constituents, proteoglycans, present in almost 

all tissues, are the most abundant. Proteoglycans consist of a core protein covalently linked to 

glycosaminoglycans (GAGs). GAGs are linear polysaccharides built from repeating 

dissaccharide units of an N-acetylated or N-sulfated hexoamine and either a uronic acid 

(glucuronic in chondroitin sulfate and glucuronic or iduronic in heparan sulfate) or galactose 

(keratin sulfate)6. Except for hyaluronan (a polymer of glucuronic acid and N-

acetylglucosamine), all of the GAGs contain sulfates at different positions. GAGs have a 

significant degree of internal mobility, both in terms of variations in glycosidic bond torsion 
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angles and, for heparan sulfate, alterations in iduronic acid ring forms.  GAGs typically interact 

with cell-surface glycoproteins through an interaction between the negatively charged sulfates 

and carboxylates and positively charged amino acids in the protein (lysine or arginine). The 

specificity and affinity of these interactions is believed to depend critically on the structure and 

sulfate distributions on the sugar chains. Protein-GAG complexes have important roles and 

functions in cell migration, proliferation and, by extension, cancer progression7-8. In the research 

presented here, the interaction of two glycoproteins with GAGs are completely characterized by 

solution-based NMR spectroscopy methodology. 

1.2 NMR Methodology  

One methodology that has the capacity to deal with the complexity and flexibility of 

glycans, as well as the structure of proteins to which they are attached, is nuclear magnetic 

resonance (NMR).  Over the past half century, de novo protein structure determination by NMR 

has rapidly advanced: from single dimension to multiple dimension experiments and from small 

protein characterization (1-6K in size) to macromolecule complex determination (for example, 

those involving G-protein coupled receptors) 9-10. High-resolution NMR spectroscopy has 

benefitted tremendously from developments and improvements in modern NMR cryogenic 

probes11, high field superconducting magnets12 and console electronics. In addition, there have 

been methodological developments such as multiple isotopic labeling strategies13-14 , innovative 

pulse-sequence design15-16, utilization of new data types17-19, as well as coupling NMR  with 

other structural20-21 and simulation techniques22-23.  

Compared with other structure biology methods, such as X-ray crystallography, which is 

by far the dominant tool for high-resolution protein structure determination24, and cryo-electron 

microscopy, which has been developing dramatically in the past 10 years 25, NMR still holds 
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advantages for dealing with certain types of biomolecules, for example, glycoproteins, and 

systems with high degrees of internal motions, for example glycans26-28 and intrinsically 

disordered proteins 29.    

Preparing samples with a homogeneous glycan composition has been difficult, and even 

when successful, the conformational heterogeneity of flexible glycans inhibits crystallization30. 

As a result, the mutation of specific glycosylation sites to eliminate glycosylation or the use of 

bacterial-hosts for expression without glycosylation have become alternatives for the 

crystallographic studies of glycoproteins. There are certainly concerns about the accuracy of 

functional interpretations based on structures of these non-glycosylated forms. This issue 

becomes far more serious when considering the fact that more than half of eukaryotic proteins 

are, in fact, glycoproteins31.  In order to address some of these concerns, I attempted to develop 

and apply new combinations of NMR methodology to better describe the structure and function 

of glycosylated mammalian proteins and their ligands.  These methods are briefly outlined 

below. 

1.2.1 Chemical Shift Perturbation 

Chemical shift perturbation, or CSP, is a widely used NMR experimental variable for 

studying protein-ligand binding32. CSP is very useful since both disassociation constants (Kds) 

and binding site location can be extracted from the same set of measurements33. Experimentally, 

a non-labeled ligand, which can be a small molecule or a macromolecule, is titrated into a 15N 

labeled protein. The titration process is monitored at each stage by acquiring a 2D heteronuclear 

single quantum coherence (HSQC) spectrum. Direct effects on shift due to the close approach of 

the ligand, or slight changes in protein conformation induced by ligand binding can alter 

chemical shift. The resonances with the most chemical shift changes are more likely to come 
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from residues that are involved in the binding process. In cases of the rapid exchange of ligand 

on and off of the binding site, the dissociation constant of the ligand Kd can be obtained by 

fitting the change in chemical shift as a function of ligand concentration, to an expression for 

fractional population of a binding site as a function of the dissociation constant and protein and 

ligand concentrations.  

1.2.2 Saturation Transfer Difference 

Saturation transfer difference (STD) experiments are used to identify important binding 

epitopes on the ligand34. STD experiments are most applicable if the ligand spends significant 

time on the protein but is not tightly attached to it.  In other words, the off rate is less than typical 

spin-lattice relaxation times. Most glycan-protein interactions fall into this category. In fact, the 

first STD NMR experiment was conducted to study the interaction between GlcNAc and wheat 

germ agglutinin35. STD experiments complement the chemical shift perturbation experiments 

nicely in that they can be used for epitope mapping on the ligand, as opposed to the protein. 

Experimentally, the sample contains both the ligand and the receptor, with approximately 100 

fold excess of ligand. An ‘on-resonance’ one dimensional 1H NMR spectrum is recorded with 

irradiation on some region with protein proton signals but no ligand proton signals (e.g. -1.5 ppm 

or 8 ppm). Protein resonances will be saturated and some of this saturation will be transferred to 

ligand resonances by distance dependence spin-spin relaxation mechanisms.  Similarly, an ‘off-

resonance’ spectrum is recorded using an irradiation frequency set to a value that is significantly 

different from both the protein and the ligand frequency region (e.g. 30 ppm). Subtraction of the 

second spectrum from the former yields a difference spectrum, containing primarily signals that 

result from the saturation transfer from protein to ligand resonances.  
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1.2.3 Transferred Nuclear Overhauser effects 

The conformation of the ligand when bound to the protein receptor can be determined 

through the use of transferred Nuclear Overhauser Effects (trNOEs)36. Transfers of perturbed 

magnetization from one proton in a ligand to another occur in a 1/r6 dependent fashion leading to 

a crosspeak in a typical two dimensional NOESY spectrum.   These effects scale up 

approximately in proportion to the rotational correlation time for the complex.  Observations on 

ligands exchanging between bound and free states, even when the ligand is in excess, reflect 

primarily the geometry of the ligand in the bound state.  NOEs taken at short mixing times can 

be converted to distances using the 1/r6 dependence and used to determine the ligand 

conformation in the bound state. 

1.2.4 Residual Dipolar Couplings 

Residual dipolar couplings (RDCs) arise when a molecule in solution partially orients in 

a magnetic field17.  This results in incomplete averaging of anisotropic magnetic interactions, 

including dipole-dipole interactions between a pair of NMR active spins. The latter is 

represented by the term Dij, which can be expressed in the equation below, where r is the 

distance between a specific pair of nuclei, γi,j are the magnetogyric ratios for the nuclei, μ0 is the 

permittivity of space, h is Planck’s constant, and θ is the angle between the measured 

internuclear vector and the magnetic field. Site specific RDCs contain rich structural, dynamic 

and orientation information for proteins. They can provide long-range constraints on structures in 

situations in which distance-dependent NOEs cannot be observed. 

 

 

 

𝐷𝑖𝑗 = −
𝜇0𝛾𝑖𝛾𝑗ℎ

(2𝜋𝑟)3
⟨
3𝑐𝑜𝑠2𝜃 − 1

2
⟩ 
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Unfortunately the extraction of this information is a little complicated.  The brackets in the 

above expression denote averaging that can, in principle, be established by defining a principal 

alignment frame relative to a molecular coordinate system and then determining the principal 

order parameter and asymmetry parameter to describe motion about this frame.  This means that 

at least five independent RDCs have to be collected for each semi-rigid molecular fragment.  

Many glycoproteins contain more than one extracellular immunoglobulin-like domain. 

There are often crystal or NMR structures of single or pairs of domains and the internal 

geometries of domains are well preserved regardless of the extents of glycosylation or the 

presence or absence of other domains; these domains can serve as the semi-rigid fragments 

needed for RDC analysis.   

The relative domain-domain orientations in solution is one of our primary questions.  When 

the protein used to determine an X-ray crystal structure lacks glycosylation, questions of whether 

or not the existence of glycosylation can affect the relative orientation of each domain remains. 

By using RDCs these questions can be answered. If the relative orientation of domains is 

reasonably well-defined, the resulting orientation frames and degrees of order for properly 

positioned rigid domains should coincide. If there is some dynamic motion between domains, the 

principal order parameters for the two alignment frames will be different37. Thus, residual dipolar 

couplings can provide long-range information about the existence of motion and relative domain 

orientation in multidomain proteins.  

1.2.5 Paramagnetic effects 

Paramagnetic lanthanide ions offer unique opportunities for structural investigations by 

NMR spectroscopy. Typically, these ions are incorporated into the protein by chelating to a 

covalently linked peptide fragment, referred to as a ‘tag’. Among the paramagnetic effects 
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produced by lanthanide ions, paramagnetic relaxation enhancements (PREs) and pseudocontact 

shifts (PCS) stand out for providing long-range (10–40 Å) distance constrains and orientational 

information, which is complementary to the RDC alignment 38-39. The geometric sensitivity of 

the PCS is described by the equation below: 

where ∆𝛿(𝑃𝐶𝑆) denotes the difference in chemical shifts measured between diamagnetic 

and paramagnetic samples, r is the distance between the metal ion and the nuclear spin, ∆𝜒𝑎𝑥 and 

𝛥𝜒𝑟ℎare the axial and rhombic components describing the anisotropy of the tag’s magnetic 

susceptibility tensor (), and the angles 𝜃 and 𝜑 describe the position of the nuclear spin with 

respect to the principal axes of the χ tensor. Among different paramagnetic metal ions, Tb3+, Dy3+ 

and Tm3+ ,Yb3+ are most commonly used because they have the largest anisotropy, ∆χ. Gd3+ can 

only cause PRE effects which is solely distance dependent because of its isotropic susceptibility 

tensor. 

1.2.6 Combining sparse-label NMR data for molecular structure determination 

Molecular docking is a computational technique aimed at accurately predicting the 

configuration of a protein-ligand complex. It often uses the experimental constraints that define a 

receptor binding site and ligand geometry along with estimates of the corresponding interaction 

energy 40-41.  It has been widely used in modern drug design42. Following docking, the complex 

configurations are analyzed and scored using molecular simulation and data mining methods. 

Docking can complement different biophysical experiments and provide invaluable information 

on protein-ligand binding modes in a highly efficient manner40.  

∆𝛿(𝑃𝐶𝑆) =
1

12𝜋𝑟3
[∆𝜒𝑎𝑥(3𝑐𝑜𝑠2𝜃 − 1) +

3

2
𝛥𝜒𝑟ℎ𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜑] 
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HADDOCK (High Ambiguity Driven biomolecular DOCKing)43 is a docking program 

based on a simulated annealing method. It uses diverse biochemical and biophysical interaction 

data to predict a near-native complex conformation. The restrains used in HADDOCK may 

derive from NMR, mass spectrometry, chemical cross-linking, cryo-EM, SAXS, fluorescence 

and so on. When high resolution data are available, such as distance restraints from trNOESY 

experiments or pseudocontact shift restraints from paramagnetic titration, the resulting complex 

structures are more reliable. To date, there are 140 complex structures determined by NMR with 

HADDOCK and deposited in the protein data bank44. 

HADDOCK has been used to derive the models of protein-GAG complexes in this thesis. 

Restraints involving residues of the protein or parts of the ligand identified as being involved in 

an interaction by chemical shift perturbation or STD intensity were entered as ambiguous 

interaction restraints.  Interproton distances derived from trNOE data connecting specific pairs of 

protons were converted to distance constraints. PCSs data for both the protein and ligand were 

implemented using the XPCS restraints as defined in the program. The detailed docking 

procedure is discussed in chapters 2 and 4. 

1.3 Sparse labeling and NMR assignments 

Most structural characterization of proteins has depended on nuclear Overhauser effects 

(NOEs).  NOEs provide short range data (usually < 4Å), and rely on having numerous proton-

proton NOEs to yield total protein structures from the derived short distance constraints.  The 

methods described above are distinct in that they use longer range data and can provide structure 

swith a relatively small number of constraints.  This goes hand-in-hand with a sparse labeling 

strategy in which NMR detectable isotopes are introduced at only a subset of amino acid sites.  

Triple resonance approaches based on heteronuclear magnetization transfer along the 
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polypeptide backbone were breakthroughs in the biomolecular NMR field in late1980s45-46 and 

are still widely employed in NMR structural studies today. A series of three dimensional triple 

resonance experiments enable both backbone and side chain resonance assignments.  Triple 

resonance approaches usually depend on uniform 15N/13C isotope labeling technologies using E. 

coli as a host for over-expression. By combining 15N/13C isotope labeling with extensive 2H 

labeling the relaxation times of carbon nuclei and amide protons (reintroduced by exchange from 

protonated water) can be lengthened and the NMR resolution improved. The combination of 

these methods has allowed for the assignment and structural characterization of proteins up to 

approximately 60 KDa in molecular weight. While E. coli systems for uniformly labeling 

proteins are well developed, inexpensive and easily implemented 13, they cannot be used to 

express natively glycosylated proteins, since most bacteria lack the ability to make complex 

glycans and post-translationally modify proteins. Mammalian cells, such as Human Epithelial 

Kidney cells (HEK) for example, produce complex oligosaccharides, which fulfills the demand 

for proper glycosylation. These non-bacterial hosts are also able to regulate disulfide bond 

formation during protein folding. However, uniform labeling with 13C and 15N can be very costly 

in mammalian cell lines and 2H labeling using high concentration of deuterium is detrimental to 

cells.  

Sparse labeling, where a single or a small subset of isotopically labeled amino acids are 

used to introduce 13C and /or 15N labels, is a good alternative which can be directly employed 

with Eukaryotic hosts47. There are several advantages to sparse labeling. First, it is an 

economical strategy. Many isotopically labeled amino acids are quite inexpensive, which makes 

sparse labeling versatile. Since only a certain number of protein residues are labeled, the 



 

11 

 

complexity of the resulting NMR spectra decreases. Therefore, even without employing of 

deuteration, the resolution of the HSQC experiment can be greatly enhanced.  

The primary limitation of sparse labeling is that the one-bond connectivity between 

isotopically labeled sites is lost. Therefore, traditional triple resonance approaches are not 

applicable and a new strategy is needed to assign the crosspeaks in an HSQC spectrum of a 

sparsely labeled protein sample.  This can be built on information available from some of the 

same experiments described above for structural determination, providing suitable models for a 

protein structure is available.  Chemical shifts of labeled 15N or 13C and protons can be measured 

from 15N-1H or 13C-1H HSQC spectra. NOEs can be obtained from a 15N or 13C edited NOESY 

spectrum. Other long range orientation and geometry restraints such as residual dipolar couplings 

(RDCs) or pseudocontact shifts (PCSs) can also be collected from sparsely labeled proteins. 

Once these observables are combined and compared with the predicted values from available 

protein structures (or domain structures), each crosspeak is able to be uniquely assigned. This 

work will be described in detail in chapter 3. Once the crosspeaks are assigned, structural 

information obtained from the NMR measurements described above can be utilized. 

1.4 Targeting protein-GAG complexes 

1.4.1 Robo1-HS interaction 

 This thesis focuses on two specific proteins that utilize GAGs to modulate signaling; 

roundabout proteins 1, (Robo1) and leucocyte common antigen receptor (LAR).  Robos, or 

Roundabouts, are single-pass transmembrane cell adhesion molecules that are highly conserved 

across many animals. 48 Mammals have four roundabout receptors (Robo1-4). Robo proteins 

share a similar structure, consisting of five immunoglobulin-like domains, three fibronectin type 

III (FN3) repeats, a transmembrane domain, and a cytoplasmic domain with up to four conserved 
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motifs (CC0-3)49.  Signaling by Robos involves a second protein, a Slit protein secreted by 

midline glia cells. In mammals, Slit-Robo signaling is required for the proper development of the 

CNS, lung, kidney and endothelial cell migration 50-52. For example, the binding of Slit2 to 

Robo1 triggers cytoskeletal rearrangements within the axon growth cone, resulting in axon 

repulsion. This fundamental function of the Slit-Robo interaction is conserved between 

invertebrates and vertebrates. Biochemical and genetic experiments have shown that heparan 

sulfate (HS) is required for Slit-Robo signaling in most systems53-54. Previous research has also 

shown that the Slit-Robo interaction is mediated by the D2 domain of Slit and Ig1-2 domains of 

Robo. The existence of HS promotes the formation of a Slit-Robo-HS signaling complex 55. 

There is evidence that the interactions with HS vary depending on particular sulfation patterns 

and other structural details of this polymeric ligand 56. There is a substantial amount of previous 

structural information, including crystal structures of two domain constructs from both human 

and drosophila homologs 54-55, but these have used no-glycosylated proteins.  The drosophila 

structure shows a piece of heparin sandwiched between two Robo1 molecules.  There is also a 

crystal structure of the Robo1-D1 domain in complex with the D2 domain of Slit2 54.Our studies 

of Robo1 interacting with HS use this prior structural information as a starting point and provide 

a useful model for how a well-defined HS oligomer may modulate Slit2-Robo1 signaling in the 

presence of native glycosylation.  These studies are described in chapter 2. 

1.4.2 LAR-HS interaction 

LAR, or leukocyte common antigen-related protein, is one of the type IIa receptor protein 

tyrosine phosphatases (RPTPs). Structurally, type IIa RPTPs, including LAR, share a very 

similar domain architecture; they contain three immunoglobulin-like (Ig) domains, followed by 

nine fibronectin type II (FN) units, a single transmembrane helix and two intracellular 
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phosphotyrosine-specific phosphatase domains. Different from other RPTPs most of which 

remain as orphan receptors57, the type IIa RPTPs have been shown to bind a variety of cell 

surface proteins or soluble ligands and are believed to be highly involved in cell-cell or cell-

matrix contacts58-61. LAR regulates diverse biological events, such as axonal guidance and 

outgrowth during neural development 62, synaptic organization63, cell proliferation64 and immune 

response65. Heparan sulfate proteoglycans (HSPGs) and chondroitin sulfate proteoglycans 

(CSPGs) can both interact with LAR and modulate RPTP signaling at neuronal growth cones 

while giving opposite results 61. HSPGs complexing with LAR result in proteins clustering and 

promote neuron extension to the post synapse and interaction with postsynaptic proteins such as 

TrkC receptor protein tyrosine kinase61, 66. On the other hand, CSPGs complexing with LAR 

disrupt protein clustering, and lead to an inhibition of neural growth and regeneration59, 61. 

Crystallography and site-direct mutagenesis studies have suggested that the first Ig domain (Ig-1) 

is structurally crucial for glycosaminoglycan binding and the first two Ig domains (Ig 1-2) are a 

minimum structural requirement for interaction with the postsynaptic ligand TrkC60. Based on 

previous structural information, we aimed to generate a structure for a specific interaction 

between LAR and a well-defined HS, and provide an improved understanding of RPTP protein 

clustering and signaling pathways. The results of this research will be presented in chapter 4. 

The results described in both chapters 2 and 4 depend, to some extent, on paramagnetic 

perturbations introduced by inserting a lanthanide-binding peptide into the native protein 

structure.  This procedure has some limitations in that proteins stability and function are easily 

perturbed.  In chapter 5, we describe some efforts to explore some alternative options for 

introducing paramagnetic metals into proteins and measuring PREs and PCSs. These methods 

include attaching metal ion binding chelates that carry a sulfhydryl group to a cysteine in the 
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protein via a disulfide bond. We also attempted to improve the performance of lanthanide 

binding peptides by screening various constructs using MD simulation. The detailed methods 

and results of these approaches are described in chapter 5. 

Together, these studies demonstrate a novel approach to the assignment of NMR 

resonances in glycosylated mammalian proteins and provide significant insights into how GAGs 

regulate signaling events for a pair of related protein systems.  The methods presented here will 

pave the way for the structural characterization of other glycosylated proteins and their GAG 

binding properties.  
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CHAPTER 2 

STRUCTURAL ASPECTS OF HEPARAN SULFATE BINDING TO ROBO1-IG1-21 

                                                 
1. Reproduced in part with permission from [Gao, Q.; Chen, C. Y.; Zong, C.; Wang, S.; Ramiah, 

A.; Prabhakar, P.; Morris, L. C.; Boons, G. J.; Moremen, K. W.; Prestegard, J. H., Structural 

Aspects of Heparan Sulfate Binding to Robo1-Ig1-2. ACS Chemical Biology 2016, 11 (11), 

3106-3113.] Copyright [2016] American Chemical Society. 
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2.2 Abstract 

Roundabout 1, or Robo1, is a cell surface signaling molecule important in axon guidance 

during mammalian development.  Its interaction with heparan sulfate (HS) chains and members 

of the Slit protein family is essential to its activity, making characterization of these interactions 

by structural methods such as NMR highly desirable. However, the fact that Robo1 is a 

glycosylated protein prevents employment of commonly used bacterial hosts for expression of 

properly glycosylated forms with the uniform 15N, 13C, and 2H labeling needed for NMR studies. 

Here, we demonstrate an alternative methodology based on sparse labeling with single 

isotopically enriched amino acids, combined with high structural content NMR experiments to 

characterize the binding geometries of a two domain construct of glycosylated Robo1 (Robo1-

Ig1-2) interacting with two different synthetic HS tetramers (IdoA-GlcNS6S-IdoA2S-GlcNS6S-

(CH2)5NH2 and IdoA-GlcNS6S-IdoA-GlcNS6S-(CH2)5NH2) as well as an octamer (GlcA-

GlcNS6S-IdoA-GlcNS-IdoA2S-GlcNS6S-IdoA-GlcNAc6S-(CH2)5NH2).  Significant chemical 

shift perturbation of crosspeaks from K81 on titration of Robo1-Ig1-2 with the HS tetramer 
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containing 2-sulfation of an iduronic acid residue provides initial evidence for the location of a 

binding site, and a disassociation constant of 255 µM. The second tetramer lacking this sulfation 

is shown to occupy a similar site, but has enhanced binding affinity, as does the octamer which 

carries additional N and 6-O-sulaftion. The binding epitopes and bound conformations of the HS 

tetramers have been further characterized by saturation transfer difference (STD), transferred 

nuclear Overhauser effect (trNOE) and paramagnetic perturbations. A model of the complex with 

the 2-sulfated tetramer has been generated using the docking program, HADDOCK, and 

constraints derived from the various NMR experiments. A post-processing energetic analysis 

provides a rationale for the lower binding affinity of the 2-sulfated tetramer, despite favorable 

electrostatic interactions between the sulfate and the positively charged K81 residue, and 

examination of the binding site in comparison to previously identified Robo-Slit interactions 

provides a rationale for modulation of Robo-Slit interactions by HS. 

2.3 Introduction 

Robo1 (roundabout receptor 1) is one of four members of the human ROBO family; all 

are developmentally important cell-surface signaling molecules most recognized for their role in 

axon guidance 1, but also for their role in angiogenesis 2, and the development of many internal 

organs 3, including those of the reproductive system4.  Robo1 is also involved in tumorigenesis, 

cancer progression and metastasis, possibly through its regulation of growth factors or 

chemokines in the tumor microenvironment 5. Its signaling is regulated by interactions with 

Slit2, one of three members of a family of very large secreted glycoproteins.  Interactions 

between Robos and Slits, including Robo1 and Slit2, are modulated by interactions with heparn 

sulfate (HS) 1, 6 (Figure 2.1A).  There is evidence that the interactions with HS vary depending 

on particular sulfation patterns and other structural details of this polymeric ligand 7.  Producing 
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a structure illustrating specific interactions between protein and ligand for a well-defined 

segment of HS would provide a basis for understanding this specificity and using this 

understanding in the design of molecules that could compete in modulating important 

physiological processes.  Here we present a model for the interaction of a particular 2-sulfated 

HS tetramer (IdoA-GlcNS6S-IdoA2S-GlcNS6S-(CH2)5NH2, ligand 1 in Figure 2.1B) with the 

terminal two domains of Robo1, and use that model to rationalize the higher affinity of an analog 

lacking 2-sulfation (IdoA-GlcNS6S-IdoA-GlcNS6S-(CH2)5NH2, ligand 2 in Figure 2.1B) and an 

octamer in which ligand 1 is extended by two residues (IdoA-GlcNS6S) at each end . The model 

is based on a combination of NMR cross-relaxation data that define bound ligand geometry, 

saturation transfer difference (STD) data that identify binding epitopes of the ligand, and 

paramagnetic perturbation and ligand induced chemical shift data that allow placement of the 

ligand in a binding site.  The resulting ligand geometry and binding site location are found to 

complement previously proposed Robo1-Slit2 interactions. 

 

A                                                                               B 

Figure 2.1. (A) Cartoon representation of the Robo1-Slit2-HS interaction and domain 

organization. Robo1 is shown in blue, with the Ig1-2 domains labeled in dark blue. Slit2 is in 
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green and the heparan sulfate chain attached to proteoglycan, glypican in yellow. (B) Structures 

of heparan sulfate ligands 1 and 2 used in this study. All of the sulfate groups are labeled in red.  

Previous work on Robo1 – HS complexes have in general used natural isolates, often 

from depolymerized heparin rather than HS, or similar isolates in which levels of sulfation have 

been chemically or enzymatically modified 11-12.  These are in general not homogeneous 

preparations, making structural characterization difficult.  Here we capitalize on a synthetic 

strategy directed at the preparation of tetramers and octamers with specific sulfation patterns 11.  

Previous work has suggested that both 6-sulfation and N-sulfation are important 7.  We selected 

the pair, IdoA-GlcNS6S-IdoA2S-GlcNS6S-(CH2)5NH2), and IdoA-GlcNS6S-IdoA-GlcNS6S-

(CH2)5NH2) for study and provide a structural model for the former.  The model allows us to 

rationalize these differences. 

NMR can provide a number of different data types that build on existing structural data to 

provide details of ligand-protein interactions.  Transferred nuclear Overhauser effect (trNOE) 

and saturation transfer difference (STD) experiments provide information about bound ligand 

geometry and interaction epitopes of the ligand respectively.  Neither require isotope labeling of 

the ligand, but they do require assignment of proton resonances from the ligand. Those 

assignments are provided. 

Among the most widely used indicator of interacting groups on the protein surface is 

chemical shift perturbation of specific protein resonances upon ligand binding.  While there is 

not a strict dependence on proximity of the ligand to a residue showing perturbed resonances, 

residues showing perturbations are very likely to be in the binding site.  Data acquisition usually 

employs a two dimensional 15N-1H heteronuclear single quantum coherence (HSQC) experiment, 

which provides an observable crosspeak (juncture of 1H and 15N resonances) for nearly every 
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amino acid in a protein, provided protein can be uniformly isotopically labeled with 15N.  We use 

chemical shift perturbation data in the current study, however, Robo1 is a glycoprotein, as well as 

a protein with two conserved disulfide bonds, that has resisted expression in the bacterial hosts 

normally used for uniform isotopic labeling.  Here we use a sparse labeling strategy that can be 

applied in mammalian (HEK293) cells 13-14.  Proteins can be labeled by supplementation with a 

single isotopically labeled type of amino acid or by supplementation with complementary groups 

of isotopically labeled amino acids.  Here we select labeling with 15N-labeled lysine because of 

the frequent involvement of this positively charged amino acid in interaction with negative 

sulfates and carboxylates on HS. We also label separately with 15N-labeled phenylalanine as this 

amino acid is sometimes found in glycan binding sites. 

Crosspeaks in spectra from sparsely labeled proteins are typically well resolved and 

selective perturbation of any peak provides both an indication of binding site location and a 

means of determining binding constants though the concentration dependence of chemical shift 

changes.  However, a structural interpretation requires sequence specific assignment of perturbed 

crosspeaks.  Here we document an approach to the assignment of sparsely labeled proteins that 

combines chemical shift prediction with data from residual dipolar couplings (RDCs) and 15N-

edited NOEs to make assignments.  The strategy is successful and provides important 

experimental information on the location of the HS binding site in Robo1.   

Because chemical shift perturbation provides only qualitative structural information, we 

also provide data coming from paramagnetic perturbations of ligand chemical shifts by a 

lanthanide ion bound to a site in the protein.  Lanthanide ions such as Dy3+ and Tm3+ cause both 

paramagnetic relaxation enhancement (PRE) which broadens and decreases intensity of HSQC 

crosspeaks with an inverse sixth power distance dependence and pseudo contact shifts (PCSs) 
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which move resonances with a dependence on the inverse third power of the distance from the 

ion as well as the orientation of the vector connecting the ion and observed site. The Robo1 

construct does not have a native site capable of binding a lanthanide ion.  To introduce a site a 

lanthanide binding loop has been engineered into the Robo1 construct 15-17.  This has provided 

more quantitative information on the location of the bound 2-sulfated ligand, as well as a 

comparison of how the ligands with and without 2-sulfation bind. 

All of the NMR data have been combined in a constrained docking approach using the 

program HADDOCK 18.   The resulting structure shows an interaction between lysine 81 of 

Robo1 and the 2-sulfate of the internal iduronic acid in ligand 1, as well as the participation of 

arginine residues previously identified by mutational studies 9.  Despite the involvement of a 

favorable lysine 81- 2-sulfate interaction, the ligand without 2-sulfation appears to bind in the 

same site with an even higher affinity.  We are able to rationalize the higher affinity based on a 

high penalty for desolvation of the extra 2-sulfate. This is confirmed by calculating the solvation 

energy using an MM-PB/GBSA method, followed by per-residue energy decomposition analysis 

19-21. The sites used by these ligands lie adjacent to a site previously determined for binding of 

the D2-domain of Slit2 10.  The docked structures provide a useful model for how HS may 

modulate Slit2-Robo1 signaling. 

2.4 Materials and Methods 

2.4.1 Materials 

15N-Phe, 15N- Lys, and deuterium oxide were purchased from Cambridge Isotope 

Laboratories. Pf1 Phage was purchased from ASLA biotech. All other chemicals were purchased 

from Sigma-Aldrich unless otherwise stated. Heparan sulfate teramer 1 (IdoA-GlcNS6S-IdoA2S-

GlcNS6S-(CH2)5NH2), tetramer 2 (IdoA-GlcNS6S-IdoA-GlcNS6S-(CH2)5NH2) and octamer 
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(GlcA-GlcNS6S-IdoA-GlcNS-IdoA2S-GlcNS6S-IdoA-GlcNAc6S-(CH2)5NH2) were synthesized 

by Chengli Zong in the Geert-Jan Boons laboratory. 

2.4.2 Protein expression and purification 

The protein sequence of Robo1 was analyzed for domain boundaries using the UniProt 

database and a truncated protein sequence comprised of Ig domains 1 and 2 (plus flanking 

regions) was chosen for gene synthesis. For the Robo1 construct containing a lanthanide binding 

loop a site between -strands C and D of Ig domain 1 was chosen based on the similarity 

between separation of strand ends and loop ends in a previous insert in an -helical protein 15.  

The lanthanide binding loop differed from the original construct from the Imperiali lab by the 

replacement of a tryptophan with an alanine, addition of a serine at the N terminus and 

replacement of a leucine and alanine with a serine and glycine at the C terminus 17. The final 

sequence with the inserted tag in bold is: GSRLRQEDFPPRIVEHPSDLIVSKGEPATLNCK 

AEGRPTPTIEWYKGSYIDTNNDGAYEGDELSGGERVETDKDDPRSHRMLLPSGSLFFLR

IVHGRKSRPDEGVYVCVARNYLGEAVSHNASLEVAILRDDFRQNPSDVMVAVGEPAVME

CQPPRGHPEPTISWKKDGSPLDDKDERITIRGGKLMITYTRKSDAGKYVCVGTNMVGER

ESEVAELTVLERPSFVK. Numbering is from 58 to 266 based on the Uniprot sequence. DNAs 

corresponding to this sequence was synthesized by GenScript (Piscataway, NJ) with codons 

optimized for utilization in mammalian cell expression.  DNA fragments for the native Robo1-

Ig1-2 sequence, the sequence with the loop insert, a R136AK137A mutant that showed 

diminished binding capability, and a separate Robo1-D1 sequence  were cloned into the 

mammalian expression vector containing an excretion signal, a His-tag, a GFP super-folder 

sequence, and a TEV cleavge site (pGEn2) using restriction digestion and ligation into  sites 

designed into the vector. Large scale DNA preparations were prepared and transiently transfected 
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into HEK293S suspension culture cells in FreeStyle 293 media (Thermo Fisher Scientific, 

Waltham MA). The cell media was exchanged to Freestyle dropout media (missing Lys or Phe 

amino acids) supplemented with 150 mg/L isotopically labeled (or unlabeled) Phe or Lys on the 

second day of transfection. The recombinant protein was harvested from culture supernant after 6 

days of growth using Ni2+ -NTA chromatography and concentrated to ~1 mg/mL. The resulting 

protein preparation was digested with recombinant TEV to cleave between Robo1 and GFP and 

then subjected to Ni2+-NTA chromatography a second time to remove GFP.  It was subsequently 

purified by size exclusion chromatography. The average protein yields were 10 mg/L.  

Examination of trypsinized fragments containing lysine and phenylalanine indicate that 15N 

labeling is about 75%. N-glycan profiling was based on release of N-linked oligosaccharides 

from Robo1-Ig1-2 by treatment with PNGase F. The resulting glycan mixture was analyzed by 

MALDI-TOF/MS (AB Sciex 5800, Applied Biosystems) and ESI-MS/MS (LTQ-Orbitrap, 

Thermo Scientific). Glycans were identified by comparison of masses to those expected for N-

glycans commonly found in mammalian systems.  The released glycans are very heterogeneous 

with most major peaks belonging to biantennary structures having core fucosylation (see Figure 

2.2) 
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Figure 2.2. N-glycans profile of Robo1-Ig1-2, the possible structure are listed on the top 

of each m/z. 

2.4.3 NMR spectroscopy  

All the NMR spectroscopy was performed on Varian/Agilent instruments with DD2 (21.1 

T and 18.8 T) consoles and 5 mm cryogenically cooled triple resonance probes. NMR protein 

samples were 150 µM in 10% D2O buffer containing 25 mM Tris and 100 mM potassium 

chloride at pH 7.0 for the two-dimensional 15N-HSQC titration experiments, three dimensional 

15N-filtered NOE experiments and RDC experiments.  Robo1 loop samples for measurement of 

paramagnetic perturbations contained lanthanides (Dy3+, Tm3+, Tb3+ or Gd3+, as well as Lu3+ for 

a diamagnetic control) at lanthanide to protein ratios slightly less than 1:1 under the same buffer 

conditions. Pseudo contact shifts (PCSs) of proteins and ligands, as well as RDCs for the protein, 

were determined with heparan sulfate tetramer 1 and 2 from standard 15N-HSQC spectra with a 
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1:2 protein/ligand ratios. Samples for the STD and trNOE experiments were 15 µM in protein 

and 900 µM in ligand, all in 100% D2O buffer containing 20 mM phosphate, 100 mM potassium 

chloride and pH 7.0. All samples contained Dimethyl-2-silapentane-5-sulfonate (DSS) as an 

internal reference.  

For titration experiments, increasing concentrations of heparan sulfate tetramer 1 and 2 (0 

µM to 560 µM in steps of 70 µM) were added to the Robo1-Ig1-2 sample (150 µM) and binding 

was monitored by 15N HSQC. Each ligand was added from a highly concentrated solution of 

ligand such that the addition of ligand causes effectively no dilution of protein.  

15N-filtered NOEs were collected using a standard three-dimensional NOESY-HSQC 

sequence from the Agilent/Varian Biopack using a mixing time of 150 ms.   

Residual dipolar couplings (RDCs) data were measured on a protein sample containing 

12.5mg/mL Pf1 phage. The 1JN-H couplings were measured, in isotropic solution and in 

anisotropic Pf1 phage using a pulse sequence in which cross-peaks in HSQC spectra are 

modulated by J+D coupling in the 15N dimension 22. The modulation delays varied from 0.5 to 

14 ms in 8 steps for all experiments. 

Both STD and trNOE experiments were standard Biopack experiments.  STD on Robo1-

Ig1-2 with heparan sulfate tetramer 1 and 2 were carried out separately with a 15 µM protein at a 

1:60 protein/ligand ratio and a 15 µM protein sample in the absence of ligand as control. Both 

the control and experimental samples were irradiated at -1.5 ppm, and saturation times were 

increased from 1 to 4 s in steps of 1 s. To obtain the final spectrum, the STD NMR spectrum of 

Robo1-Ig1-2 in the absence of ligands was subtracted from the STD NMR spectrum in the 

presence of ligands.  The trNOE experiments on Robo1-Ig1-2 with heparan sulfate tetramer 1 
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and 2 were performed using the same samples as the STD experiments with a mixing time of 150 

ms.  

To allow interpretation of STD and trNOE experiments, spectra of the ligand must be 

assigned.  This was accomplished by acquiring 1H proton, 1H-1H TOCSY, 1H-1H NOESY, 13C-1H 

HSQC and 13C-1H HMQC.  A 13C-1H HSQC spectrum with complete assignments is included in 

Figure 2.3. 

 

 



 

35 

 

   

Figure 2.3.  An illustration of 13C-1H HSQC spectrum of ligand 1 and 2 with 1D proton 

trace on the top. The assignment of each proton is labeled by the side. The full assignments for 

both ligand 1 and 2 are given in the follow. 

Ligand 1: 1H NMR (500 MHz, Deuterium Oxide) δ 5.32 (d, 1H, J = 3.4 Hz, H1C), 5.15 

(d, 1H, J = 3.1 Hz, H1B), 5.03 (d, 1H, J = 3.6 Hz, H1A), 4.78 (d, 1H, J = 4.5 Hz, H1D), 4.63 (d, 

1H, J = 2.0 Hz, H5B), 4.48 (d, 1H, J = 2.4 Hz, H5D), 4.29 – 3.38 (m, 18H, H3A, H4A, H5A, 

H6A, H2B, H3B, H4B, H3C, H4C, H5C, H6C, H2D, H3D, H4D, OCH2 Linker), 3.20 – 3.15(m, 

2H, H2A, H2C), 2.92 (t, 2H, J = 7.4 Hz, NCH2 Linker), 1.71 – 1.28 (m, 6H, 3*CH2 Linker). 

Ligand 2: 1H NMR (800 MHz, D2O): δ 5.33 (d, 1H, J= 3.7 Hz, H1C), 5.11 (d, 1H, J= 3.7 

Hz, H1A), 4.97 (d, 1H, J = 2.0 Hz, H1B), 4.85 (d, 1H, J = 4.9 Hz, H1D), 4.71 (d, 1H, J = 2.2 Hz, 

H5B), 4.57 (d, 1H, J = 3.9 Hz, H5D), 4.35 (dd, 1H, J = 2.2 and 11.2 Hz, H6aC), 4.29 (dd, 1H, J = 

1.7 and 11 Hz, H6aA), 4.23 (dd, 1H, J = 5.4 and 11.2 Hz, H6bA), 4.17 (dd, 1H, J =1.7 and 11 Hz, 

H6bC), 4.08 (t, 1H, J = 4.0 Hz, H3B), 4.04 (t, 1H, J = 2.6 Hz, H4B), 4.00 – 3.98 (bm, 2H, H5A, 
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H5C), 3.85 (dd, 1H, J = 3.9 Hz, J = 5.9 Hz, H4D), 3.74 – 3.61 (m, 7H, OCHH Linker, H2B, 

H4C, H3D, H4A, H3A, H3C), 3.55 – 3.52 (m, 2H, OCHH Linker, H2D), 3.25 (dd, 1H, J = 3.9 

and 10.3 Hz, H2A), 3.23 (dd, 1H, J = 3.7 and 10.8 Hz, H2C), 2.98 (t, 2H, J =  7.5 Hz, NCH2 

Linker), 1.69 – 1.44 (m, 6H, 3*CH2 Linker). 

2.4.4 Data processing and analysis   

All the NMR data were processed with NMRPipe/NMRDraw 23 and SPARKY 24.  

Chemical shift changes for residues showing substantial changes in HSQC spectra were 

combined using the formula √
1

2
[𝛿𝐻

2 + (0.14𝛿𝑁)2] 25.  The resulting curves as a function of 

ligand concentration were fit to equation 1 to extract dissociation constants for the heparan 

sulfate tetramers 25. 

 

All the trNOEs were based on peak pick volumes from SPARKY.  These were converted 

to distances using a 1/r6 distance dependence and a 2.5 Å separation for the GlcNAc H1-H2 pair 

as a calibration distance. 

Assignment of crosspeaks to specific protein sites was initially accomplished by 

comparing a variety of experimental data to data based on predictions using the coordinate file, 

2v9r.  Data included 1H and 15N chemical shifts, 15N-filtered NOEs, and RDCs,   Predictions of 

chemical shifts were done with PPM_one 26, NOEs were predicted from the crystal structure 

using a 1/r3 distance dependence, and RDCs were calculated using REDCAT 27. All of the 

information has more recently been combined in a genetic algorithm approach within MATLAB 

scripts (MathWorks, Inc.) 28 to confirm assignments. 

 

∆𝛿𝑜𝑏𝑠 = ∆𝛿𝑚𝑎𝑥{([𝑃]𝑡 + [𝐿]𝑡 + 𝐾𝑑) − [([𝑃]𝑡 + [𝐿]𝑡 + 𝐾𝑑)2 − 4[𝑃]𝑡[𝐿]𝑡]}/2[𝑃]𝑡    (1) 
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2.4.5 Susceptibility tensor determination  

To extract susceptibility tensors needed in calculating PCS derived constraints on the 

ligand, experimental RDCs and PCSs for 15N labeled protein sites were used. To combine RDC 

and PCS data we took advantage of the fact that the same anisotropic magnetic susceptibilities of 

lanthanides that produces PCSs also induces the alignment needed for RDC measurement.    

RDCs produced by field –induced alignment of molecules with anisotropic susceptibilities rise 

with magnetic field squared and are significant above 14T.  RDCs were extracted for the sites in 

domain D1 of Robo1-Ig1-2 using the formula in equation 2 and data collected at field strengths 

corresponding to proton observation at 600 and 900 MHz. 

𝐷𝑁𝐻,exp (900) =
9002

9002−6002 [(𝐽 + 𝐷)𝐻𝑁 (900) − (𝐽 + 𝐷)𝐻𝑁 (600)]  (2) 

The PCSs and RDCs (6 PCSs and 3 RDCs) were then combined in the program REDCAT 

to determine the susceptibility tensor (order tensor).  This requires appropriate scaling using 

different RDCmax and PCSmax constants (24350 Hz for 15N-1H RDCs and 18.54×106 ppm for 

PCSs at 900 MHz) and the extraction of inter-nuclear and ion-nuclear vectors from an 

appropriate pdb file.   

2.4.6 MD simulation of the Robo1-Ig1-2-loop construct  

To provide an appropriate pdb file for loop containing Robo1-Ig1-2 a 1 µs molecular 

dynamics (MD) trajectory was produced.  The molecular dynamics simulation was carried out 

using the AMBER 14 package [30] and the ff14SB force field [31] with the SANDER module. 

The GLYCAM_06j-1 force field [32] was adapted to the ff14SB force field for carbohydrate 

simulation. The crystal structure of Robo1-Ig1-2 (pdb: 2v9r) was used to obtain the initial atomic 

coordinates and the lanthanide-binding loop was modeled in using tools in CHIMERA 29. A 
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cubic box of TIP3P [33] water molecule was used to solvate the protein, maintaining a distance 

8.0 Å between face of the box and the solute. The system was first energy minimized by 2000 

steps of minimization including steepest descents and conjugate gradients. Then the system was 

heated gradually to 300 K at 2 fs stepwise for 400 ps. The MD simulation last for 1 µs with a 2 fs 

time step with the pressure and temperature maintained. Frames from 401 ns to 1000 ns were 

used to find the average ion and isotopically labeled site positions required by REDCAT. The 

resulting order tensor elements were Sxx=-8.22×10-5, Syy=-3.31×10-4 and Szz=4.13×10-4. The Q 

factor for back-calcualted data was 0.22. This order tensor and the PCSmax were then used to 

predict PCSs for the ligands to be used in scoring of docked poses as described in the following 

section.  

2.4.7 Robo1- HS complex assembly by HADDOCK  

Models of  Robo1- HS complex  were generated using the docking program HADDOCK 

18. The average Robo1-Ig1-2-loop structure generated from MD simulation was used as the input 

protein structure. Ligands structures were produced using the GLYCAM web server 30. 

Restraints involving residues of the protein or parts of the ligand identified as being involved in 

an interaction by chemical shift perturbation or STD intensity were entered as ambiguous 

interaction restraints.  Interproton distances derived from trNOE data connecting specific pairs of 

protons were converted to upper and lower bounds for distance constraints by adding or 

subtracting 0.6 Å and 0.3 Å. PCSs data for both the protein and ligand were implemented using 

the XPCS restraints as defined in HADDOCK.  The ligand was set to be fully flexible and the 

loops of the protein containing the residues having the most perturbed chemical shift on ligand 

addition or identified as interacting residues in mutational studies were specified as semi-

flexible. The docking began with rigid-body energy minimization followed by semi-flexible 
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refinement using simulated annealing and ended with water refinement using default force field 

parameters. 200 refined models ranked by the weighted sum of electrostatic and van der Waals 

energies were obtained and the twenty top scoring models were submitted to further analysis. 

2.4.8 Solvation energy calculations   

Similar MD trajectories were initiated as described for the Robo1-Ig1-2-loop construct, 

but now with the 2-sulfated HS tetrasaccharide docked into the Robo1-Ig1-2-loop construct as in 

the top five results from HADDOCK docking. In each simulation, the solvated complex was 

equilibrated by carrying out 50 ps of minimization, heating and density equilibration followed by 

2200 ps of constant pressure equilibration at 300 K. Production runs of 50 ns were then initiated.  

Various properties including density, temperature, pressure and potential energies were 

monitored to ensure that the equilibration had been achieved and was well maintained. In order 

to calculate the free binding and solvation energy of the protein-ligand interactions, the 

molecular mechanics generalized Born surface area (MM-GBSA) method followed by per-

residue decomposition analysis was conducted. The full length MD (50ns) was taken for the 

post-processing free binding energetic analysis with igb = 5 for each 10th frame (500 frames in 

total) 20. 

2.5 Results 

2.5.1 Chemical shift perturbation of sparsely labeled Robo1-Ig1-2   

Robo1 is a highly glycosylated protein which prevents employment of bacterial hosts 

commonly used for protein expression. Instead, sparse labeling of Robo1-Ig1-2 from HEK293 

cell with lysine and phenylalanine has been used. There are 12 lysines and 5 phenylalanines in 

the Robo1-Ig1-2 construct. The 2D 15N-1H HSQC spectra of lysine labeled and phenylalanine 

labeled Robo1-Ig1-2 are shown in Figures 2.4A and 2.4B respectively.  
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                                      A                                                                          B 

Figure 2.4. 2D 15N-1H HSQC HSQC spectra of (A) 15N Lys labeled Robo1-Ig1-2 and (B) 

15N Phe labeled Robo1-Ig1-2. Each peak is labeled with a peak number as a reference for the 

following assignment. 

Crosspeaks for all phenylalanine residues are observed, but two crosspeaks are missing 

from the HSQC of lysine labeled Robo1-Ig1-2.  It is common to find missing HSQC crosspeaks 

due to high rates of amide proton exchange in solvent exposed regions or in regions that are 

dynamic and suffer line broadening due to modulation of chemical shifts on timescales near the 

reciprocal of shift changes in Hz. Comparing the HSQC with that of a mutant, R136AK137A, 

that was found to lack binding activity 31, one finds a superimposable spectrum with no 

additional crosspeaks missing.  This shows that one missing crosspeak belongs to K137. The 

other missing crosspeak belongs to K266.  Mass spectral analysis of the intact protein shows a 

mass deficiency equivalent to that of a lysine and a trypsin digest of Robo1-Ig1-2 detects only C-

terminal peptides missing K266. It is likely that some proteolysis has occurred during expression 

and isolation.  

Chemical shift perturbation is a qualitative method for studying protein-ligand binding 

and both dissociation constants, 𝐾𝑑 ,and binding site location can be determined from the same 
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set of experiments. The 15N-1H HSQC spectra for the lysine labeled Robo1-Ig1-2 in the presence 

of different concentration of HS tetramer 1 (IdoA-GlcNS6S-IdoA2S-GlcNS6S-(CH2)5NH2) and 

2 (IdoA-GlcNS6S-IdoA-GlcNS6S-(CH2)5NH2)) are overlaid in Figure 2.5A and 2.5B. One lysine 

residue shows significant chemical shift perturbation (> 0.05) when titrated with ligand 1 and 

moderate perturbation with ligand 2. No phenylalanine residues show any significant 

perturbation during titration, which indicates that phenyalanines are not highly involved in the 

binding process.  But even perturbation of a single peak can allow determination of a binding 

constant. Binding affinities have been extracted by fitting curves for chemical shift as a function 

of concentration to the binding equation given in methods (see Figure 2.6).  These are of 255 ± 

30 µM and 45 ± 30 µM for ligands 1 and 2 respectively.  A similar titration with an HS octamer 

containing the IdoA2S at the third position from the non-reducing end (GlcA-GlcNS6S-IdoA-

GlcNS-IdoA2S-GlcNS6S-IdoA-GlcNAc6S-(CH2)5NH2) shows a 𝐾𝑑 of 86 ± 11 µM with K81 

showing a very similar perturbation (0.06 ppm). 

 

Figure 2.5. (A) Overlaid 1H−15N HSQC spectra for Robo1-Ig1-2 with ligand 1. Shifted 

resonances are presumed to be close to the binding site. A dissociation constant of ~255 µM is 

obtained by   fitting titration data. (B) A portion of the 1H−15N HSQC spectrum for Robo1-Ig1-2 
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with ligand 2 is shown. The same resonance shows less perturbation but a lower a dissociation 

constant of ~45 µM is extracted. The overlaid titration spectra are in rainbow color coding with 

increased concentration of HS tetramer (0 µM of ligand one in red and 560 µM in purple with a 

stepwise increase of 70 µM; 0 µM of ligand 2 in red and 390 µM in purple with a first step of 30 

µM and later steps of 60 µM). 
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Figure 2.6. Binding affinity of Robo1 with (A) ligand 1 and (B) ligand 2. 

2.5.2 Assignment of sparsely labeled Robo1-Ig1-2 

The fact that residues whose chemical shifts are perturbed on ligand addition are likely 

involved in ligand binding makes their resonance assignment a high priority.  Triple resonance 

approaches are widely employed in most NMR crosspeak assignments of proteins. However, the 

requirement for uniform isotopic enrichment in 13C, 15N and frequently 2H makes this approach 

impractical for proteins that must be expressed in mammalian cells.  A series of new resonance 

assignment strategies applicable to sparsely labeled proteins is under development 14, 32.  Here we 

combine a number of measurements that can be made on sparsely 15N labeled proteins with 
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predictions based on known domain structures to achieve these assignments for Robo1-Ig1-2.  

The measured NMR observables include backbone chemical shifts, RDCs and NOEs.   

 Since the individual measurement types seldom give unambiguous assignments one 

would ideally examine predictions for all measurement types using an entire set of permuted 

assignments to make a decision.  Even for the 10 unassigned lysine crosspeaks this is an arduous 

task (10! is 3.6288 million possible assignments).  Instead we have sequentially applied each 

measurement type retaining only assignments that agree within generous error limits at each step.  

First, amide chemical shifts were predicted by PPM_one 26, which incorporates effects from both 

backbone geometry and remote groups as seen in the crystal structure, and compared with each 

of the crosspeak positions using a 2 sigma standard deviation. Next, NOEs for protons within 4 

Å of each labeled amide were predicted using distances extracted from 2v9r using Chimera [32] 

and shift predictions from PPM_one to position NOEs in the proton dimension of a hypothetical 

3-dimensional spectrum.  They were compared to the experimental NOE measurements from a 

15N-edited HSQCNOESY, again considering a shift difference of 2 sigma (0.34 ppm) and 

observation of 2/3 of the expected peaks as acceptable. Last, RDCs were measured for each 

labeled site and compared with predictions using REDCAT 27.  1H-15N RDCs are inherently 

dependent on the protein structure at each site because they reflect the average of (1-3cos2) 

where  is the angle of an H-N bond vector relative to the magnetic field.  However, their 

measurement requires partial alignment in a suitable medium (here a dilute bacteriophage 

solution), and defining this alignment requires determination of five alignment parameters.  10 

lysine RDCs are adequate for both alignment parameter determination and assignment screening, 

providing we can assume the two Robo1-Ig1-2 domains are rigidly oriented with respect to one 

another.  This is not strictly correct, as we shall discuss below, but we decided to proceed using 



 

45 

 

the crystal structure, 2v9r, which proves to have domain orientations near the dominant 

structures seen in a long (1 µs) MD trajectory.  Solutions with RDC Q factors less than 0.3 were 

regarded as acceptable.  The experimental and predicate data are summarized in Table 2.1 for 

crosspeaks from domain Ig1-2.  At each step predictions are included only for possibilities 

resulting from the precious step.  Two additional pieces of information were used to confirm 

assignments and resolve ambiguities arising from the presence of crosspeaks from two domains.  

First, consistency with distance information from a Robo1-Ig1-2 loop construct with Gd3+ 

complexed was examined (see section on paramagnetic perturbations below).  Second, a 

construct containing only the first domain was labeled and the correct association of crosspeaks 

with each of the two domains was confirmed.  

Most important among these assignments is that of crosspeak 6 to K81.  This is the peak 

that shifts with addition of ligand, particularly HS ligand 1.   While there is no specific 

relationship between shifts and the separation of the shifted residue and the ligand, it is highly 

likely that the distance of separation is short.  Moreover, the fact that ligand 1, which has a 

sulfate on the 2 position of the internal iduronic acid produces a significantly larger shift than 

ligand 2, suggests that K81 is involved in an ion pair interaction with this sulfate group.  This, 

along with abolition of binding in the R136A, K137A mutant, identifies a potential binding site 

on the protein.   
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Table 2.1. Experimental (Exp.) and predicted (Pred.) data leading to assignment of labeled sites in the Robo1-Ig1-2.  

 

Peak 

number 

15N,1H shift (ppm) NOE (ppm) RDC (Hz) Final 

Assignment Exp. Pred. Exp. Pred. Exp./Pred. 

Domain 1 Lys 

Lys -3 122.8,8.9 

K81(123.9,8.6) 

K90(123.4,8.4), 

K103(124.2,8.9), 

0.80,0.95,4.83, 

5.02,6.70 

K103(0.92,1.29,1.92,2.65,4.92,8.43) 

K90(0.18,1.70,1.79,2.87,4.58,7.89, 

9.10) 

-11.3±4.9/K103(-7.5) K103 

Lys - 6 122.7,8.6 
K81(123.9,8.6), 

K90(123.4,8.4), 

0.57,1.44,1.73, 

1.80,3.75,4.22, 

4.66 

K81(0.56,0.65,1.78,3.78,4.66) 

K90(0.18,1.70,1.79,2.87,4.58,7.89, 

9.10) 

3.3±3.2/K81(3.4) K81 

Lys - 7 123.7,8.3 
K81(123.9,8.6), 

K90(123.4,8.4), 

0.70,0.80,1.31, 

1.41,1.61,1.64, 

1.73,4.50.4.59, 

4.78 

K81(0.56,0.65,1.78,3.78,4.66) 

K90(0.18,1.70,1.79,2.87,4.58,7.89, 

9.10) 

3.0±0.7/K90(3.0) K90 

Lys - 10 119.6,7.9 
K90(123.4,8.4), 

K112(117.9,7.8) 

1.54,1.67,1.73, 

1.79,4.12,4.78 

7.93 

K112(1.49,1.79,1.59,4.33,4.36,7.69,8.17,

8.27,8.54) 
-1.5±2.2/ K112(-1.5) K112 

       

Peak 

number 

15N,1H shift (ppm) NOE (ppm) RDC (Hz) Final 

Assignment Exp. Pred. Exp. Pred. Exp./Pred. 

Domain 2 Lys 

Lys - 1 120.1,9.2 

K205(120.3,9.3), 

K232(122.5,8.7), 

K237(119.3,8.1) 

0.72,0.67,0.59, 

0.97,0.91,1.84, 

1.89,1.72,1.65, 

1.58,1.41,1.23, 

3.05 

K205(0.65,0.68,0.73,1.52,3.12,4.13,5.51,

9.12) 

K232(0.73,0.94,1.72,1.87,1.49,1.65,1.72,

1.87,4.70,8.27) 

-15.6±3.4/K205(-16.3) K205 

Lys - 2 122.4,9.3 

K205(120.3,9.3) 

K206(124.9,8.3) 

K232(122.5,8.7), 

 

0.70,0.68,0.59, 

0.97,0.93,1.84, 

1.89,1.72,1.65, 

1.58,1.41,1.23, 

3.05 

K205(0.65,0.68,0.73,1.52,3.12,4.13,5.51,

9.12) 

K232(0.73,0.94,1.72,1.87,1.49,1.65,1.72,

1.87,4.70,8.27) 

6.7±2.7/K232(6.9) K232 
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             *Assignment of Peaks 5 and 8 to K214 and K224 remains ambiguous 

Lys - 4 121.0,8.8 

K205(120.3,9.3), 

K224(121.8,7.8), 

K237(119.3,8.1) 

0.96,0.86,1.45, 

1.30,1.24,4.78, 

4.60 

K205(0.65,0.68,0.73,1.52,3.12,4.13,5.51,

9.12) 

K237(0.77,1.49,1.70,4.25,4.20,9.29) 

-13.8±3.7/K237(-13.3), 

K205(-16.3) 
K237 

Lys - 5 120.5,8.7 

K205(120.3,9.3) 

K214(117.8,7.9), 

K224(121.8,7.8), 

K237(119.3,8.1) 

0.92,0.82,0.95, 

1.60,1.54,1.47, 

1.32,1.24,4.55 

K214(1.87,2.64,2.67,7.66) 

K224(1.46,1.67,4.02,4.28,8.73) 

K237(0.77,1.49,1.70,4.25,4.20,9.29) 

1.1±0.9/K214(1.2), 

K224(1.3) 
K214 or K224 

Lys - 8  119.4,8.2 

K214(117.8,7.9), 

K224(121.8,7.8), 

K237(119.3,8.1) 

1.44,1.91,1.68, 

1.53,3.04,2.90, 

2.52,4.64,4.54, 

7.68, 

K214(1.87,2.64,2.67,7.66) 

K224(1.46,1.67,4.02,4.28,8.73) 

 

7.7±1.6/K224(7.3), 

K214(7.7) 
K224 or K214 

Lys - 9 120.2,8.0 

K205(120.3,9.3) 

K206(124.9,8.3) 

K237(119.3,8.1) 

K224(121.8,7.8), 

0.85,0.80,0.72, 

1.89,1.73,1.64, 

1.47,1.24,1.06, 

4.71,4.78,4.01, 

5.13,8.98 

K205(0.65,0.68,0.73,1.52,3.12,4.13,5.51,

9.12) 

K206(0.73,1.15,1.32,4.93,7.6) 

-15.2±1.7/K205(-16.3), 

K206(-14.6) 
K206 

 

 
      

Peak 

number 

15N,1H shift (ppm) NOE (ppm) RDC (Hz) Final 

Assignment Exp. Pred. Exp. Pred. Exp./Pred. 

Phe 

Phe - 1 117.9,9.6 
F66(119.0,9.1) 

 

0.77,1.01,1.61, 

2.59 

F66(0.46,1.56,2.69,2.37,2.96,6.93,7.11,6.

85) 

 

0.5±2.5/F66(1.8) F66  

Phe - 2 125.8,9.5 
F128(127.8,9.3), 

F129(126.9,9.6) 
2.61,3.18,4.83 

F128(0.35,0.45,1.60,1.98,2.88,4.65,4.80,8

.98) 

F129(1.04,2.66,5.12,7.03,7.15) 

15.6±5.0/F128(15.6), 

F66(12.2) 
F128 

Phe - 3 127.1,9.1 

F128(127.8,9.3), 

F129(126.9,9.6), 

F172(123.3,8.6) 

1.01,4.53,6.89 

F128(0.35,0.45,1.60,1.98,2.88,4.65,4.80,8

.98) 

F129(1.04,2.66,5.12,7.03,7.15) 

16±5.0/F129(11) F129 

Phe - 4 127.7,9.0 
F128(127.9,8.9), 

F172(123.3,8.6) 

0.77,1.05,2.86, 

5.34 

F128(0.35,0.45,1.60,1.98,2.88,4.65,4.80,8

.98) 

F172(1.43,2.57,2.92,4.76,7.09) 

12.1±5.2/F172(9.4) F172  

Phe - 5 122.1,8.2 F264(124.9,8.3)* 2.25,4.35,4.75 F264(1.57,3.05,4.37,4.10,7.96,8.20)* -6.8±0.8/NA* F264 



 

48 

 

2.5.3 Saturation transfer difference NMR 

Saturation transfer difference (STD) experiments complement the chemical shift 

perturbation experiments nicely in that they identify potential interaction epitopes on the ligands.  

They are applicable when exchange of ligands on and off proteins occurs on a timescale less than 

typical NMR spin relaxation times. The ligands studied here easily fall into that category.   The 

mechanism is very much like that of an NOE experiment; saturation of magnetization of a 

particular proton on the protein is transferred to a proton on the ligand in a  
1

𝑟6
  dependent way, 

where r is the distance between two protons, and a ligand resonance with a close approach to a 

protein proton will decrease in intensity, identifying it as a part of the binding epitope on the 

ligand.  However, saturation of protein protons is not specific; spin exchange among protons in a 

large molecule like a protein is so efficient that saturation of one set of protons (those on methyl 

groups near -1.5 ppm in our case) quickly spreads to protons in the proteins.  Hence, epitope 

identification on the ligand is qualitative, much like the identification of binding site residues in 

the proteins by chemical shift perturbation.  There are some complexities.  The changes in 

intensity are sometimes small and there are changes in the protein spectrum as well. Taking a 

difference between spectra with and without protein saturation, and filtering out the much 

broader resonances of the protein usually leaves a spectrum dominated by resonances for protons 

in close contact with the protein.  For the protein studied here, a glycoprotein, there are 

additional complications in that many of the resonances from the attached glycan are not broad 

and persist in the difference spectrum at positions that often overlap with those of our ligand.  

Hence, a double difference spectrum was produced using an equivalent STD spectrum acquired 

on the protein in the absence of ligand. 
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STD experiments were acquired with a series of saturation times ranging from1 to 4 s 

(see Figure 2.7); the build-up rates are useful in comparing to simulated STD spectra once a 

model of the complex is obtained 33.  However, in Figure 2.8 we report data only using the 

longest saturation time (4 s).  Quantification of the signal has been made by dividing the STD 

signal intensity by original ligand proton spectrum intensity and then scaling all intensities 

relative to that with the highest level. For ligand 1, the largest signals arise from H2C (or H2A 

which is overlapped), H2B, and H4D.   H2B is on the internal IdoA residue, supporting a direct 

interaction of this residue with the protein surface near K81. Most other protons show a 

significant signal reduction suggesting that significant spin diffusion among ligand protons may 

challenge our ability to interpret these signals as specific interactions at the protein surface. 

Ligand 2 shows STD signals for most ligand protons as well.  H2C and H4D are among those 

most perturbed as with ligand 1 and there is a significant signal for H2B, which is strongly 

perturbed in ligand 1.  A strong signals is also seen for H6A in ligand 2 which is only moderately 

in ligand 1.  The similarities support the suggestion that the two ligands occupy a similar site, but 

with some significant differences in detailed contacts.  In any event, STD spectra provide another 

useful source of information for molecular docking. 
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Figure 2.7. Experimental STD build up curves of Robo1 with ligand 1 (A) and ligand 2 

(B) for saturation at -1.5 ppm with saturation times from 1 to 4 s. 
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Figure 2.8. Quantification of experimental saturation transfer double difference data on 

various resonances with a saturation time of 4 s at -1.5 ppm of (A) ligand 1 and (B) ligand 2. 

Errors are derived based on RMS noise limits. 
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2.5.4 Transferred nuclear Overhauser effect  

Heparan sulfates (HS) are a group of glycans with a significant degree of internal 

mobility, both in terms of variations in glycosidc bond torsion angles and iduronic acid ring 

forms.  A subset of these conformers are likely to be selected on binding to Robo1-Ig1-2. Nuclear 

Overhauser Effects (NOEs) provide insight into conformations sampled through their  
1

𝑟6  

dependence on interproton distances between protons. Transferred Nuclear Overhauser Effects 

(trNOE) report rather specifically on bound conformations because of the enhanced transfers of 

magnetization in large molecular assemblies (effects scale up approximately in proportion to the 

rotational correlation time for the complex).  This allows contributions to observed ligand NOEs 

from bound ligands to dominate over contributions from ligands in solution even at ligand to 

protein ratios of 20:1.  NOEs taken at short mixing times can be converted to distances using the 

1/r6 dependence and a reference NOE with a known distance, in our case that for the GlcNAc C 

H2 and H4 pair at 2.5Å.   Distances converted in this way are are weighted averages of sampled 

conformations.  However, the number of conformers sampled in the bound state tends to be small 

and derived distances in this case should be close to those in the minimum energy bound 

conformer.  The derived distances between pairs of nuclei on opposite sides of the glycosidic 

bonds in bound conformers of ligands 1 and 2 are listed in Table 2.2.  

Table 2.2. Transglycosidic distances of ligand 1 and 2 measured in bound and free state 

from trNOEs.  Errors are derived based on RMS noise limits in reference and sample spectra.  

Ligand 1 Sugar Ring 

1 
Sugar Ring 2 Atom 1 Atom 2  Bound Ligand (Å) Free ligand (Å) 

 Linker GlcNAc A methylene H1 2.27 ± 0.04 2.74 ± 0.04 

 GlcNAc A IdoA B H4 H1 1.90 ± 0.04 2.38 ± 0.05 

 IdoA B GlcNAc C H3 H1 2.47 ± 0.04 2.65 ± 0.04 

 IdoA B GlcNAc C H4 H1 2.25 ± 0.04 2.45 ± 0.05 
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Ligand 2 Sugar Ring1 Sugar Ring 2 Atom 1 Atom2 Bound Ligand (Å) Free ligand (Å) 

 Linker GlcNAc A methylene H1 2.38 ± 0.06 2.60 ± 0.05 

 GlcNAc A IdoA B H4 H1 3.02 ± 0.05 2.77 ± 0.07 

 GlcNAc A IdoA B H6 H1 3.10 ± 0.05 2.98 ± 0.06 

 IdoA B GlcNAc C H3 H1 2.48 ± 0.13 2.37 ± 0.06 

 IdoA B GlcNAc C H4 H1 2.69 ± 0.07 2.57 ± 0.07 

 GlcNAc C IdoA D H6 H1 2.95 ± 0.04 2.26 ± 0.06 

       

 

For comparison, distances derived from NOEs for the same pairs in the absence of 

protein are also listed. There are some moderate differences between the bound and free state. 

For example, for ligand 1, distance between GlcNAc A H4 and IdoA B H1 in the bound state is 

found to be 1.90 ± 0.04 while that found in the free state is marginally larger (2.38 ± 0.05 Å). For 

ligand 2, the distance between GlcNAc C H6 and IdoA D H1 is found to be 2.95 ± 0.04 Å while 

that in the free state is significantly shorter (2.26 ± 0.06 Å).  Note that these deviations involve 

the terminal residues of the tetrasaccharide which may have more motional freedom in solution; 

no significant differences were observed for the central portion of the tetrasaccharide suggesting 

that something close to the minimum energy conformer found in solution is selected for the 

bound state. The bound state data provide additional distance restraints when implementing 

docking. 

2.5.5 Pseudo contact shifts (PCSs) of Robo1-Ig1-2 and the HS complex  

Paramagnetic effects caused by lanthanide ions offer unique opportunities to more 

quantitatively position ligands in protein-ligand complexes 34. Pseudo contact shifts (PCSs) are 

changes in chemical shift caused by an average magnetic field from an induced dipole moment 

centered on the unpaired electron distribution of the lanthanide. It depends not only on the 

distance between a nucleus and the metal ion (decreases with r-3) but also on the orientation and 
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magnitude of the anisotropic part of the ion’s susceptibility tensor. Once the susceptibility tensor 

is known, precise long-range distance and orientational constraints can be deduced from PCSs. 

To provide a site capable of binding a paramagnetic ion in Robo1-Ig1-2, a short polypeptide 

(SYIDTNNDGAYEGDELSG) has been engineered into the Robo1-Ig1-2 construct between 

strands C and D of the D1 domain.  Luminescence data based on a tryptophan to Tb3+ energy 

transfer show the site to have a binding affinity of 62 nM (see Figure 2.9); affinities for other 

lanthanides are expected to be similar. The superimposed spectra of lysine and phenylalanine 

labeled Robo1-Ig1-2-Loop with Tm3+ (a paramagnetic lanthanide) and Lu3+ (diamagnetic 

lanthanide) are shown in Figure 2.10. The unique diagonal shifts in peak positions are used to 

pair the resonances in each spectrum (since PCSs are independent of the nucleus, near identical 

chemical shifts are observed in both 1H and 15N dimensions). Similar measurements can be made 

on at least well resolved resonances from ligands in 1D proton experiments.  In these cases an 

average of the resonance position for the uncomplexed ligand and the complexed ligand is 

measured (our ligands are in fast exchange) and shifts have to be scaled by the percentage bound 

(data shown in Table 2.3). The qualitative similarity of shifts for ligands 1 and 2 indicate that 

they adopt a similar pose when binding with Robo1-Ig1-2.  
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Figure 2.9. Tb3+ binding affinity of Robo1 LBT construct. 

 

                 

                              A                                                                               B 

Figure 2.10. Superposition of 15N-1H HSQC spectra of (A) 15N-Lys labeled and (B) 15N-

Phe labeled Robo1-Ig1-2, engineered with lanthanide binding peptide loaded with Lu3+ (red) or 

Tm3+ (blue).   
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Table 2.3A. Limiting PCS of ligand 1 

Resonance PCS (ppm) 

H1A 0.109 

H2A/C 0.186 

H3A/H4C N/A 

H6A/H2B 0.125 

H1B 0.130 

H3B 0.167 

H1C 0.154 

H3C N/A 

H5C/H4B 0.128 

H6C N/A 

H1D 0.128 

H2D 0.101 

H4D 0.127 

H5D 0.147 

 

Table 2.3B. Limiting PCS of ligand 2 

Resonance PCS (ppm) 

H1A 0.060 

H2A N/A 

H3A/H3C N/A 

H5A 0.084 

H6A N/A 

H1B 0.071 

H2B/H4C N/A 

H3B 0.070 

H4B 0.054 

H1C 0.071 

H6C N/A 

H1D 0.058 

H4D 0.060 

H5D 0.030 
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2.5.6 Location and tensor alignment for the Ln-binding loop  

Before the observed PCSs for the ligand can be converted to useful constraints on ligand 

poses in the binding site, the position of the lanthanide ion and the anisotropic part of its 

susceptibility tensor must be determined.  Similar to the case with RDCs five independent 

elements of a tensor (now a susceptibility tensor) must be determined, plus additional 

translational coordinates must be specified to properly place the ion in the coordinate frame of 

the protein.  Placement of the ion was done by averaging positions found in an extensive MD 

simulation (see methods).  For the tensor elements it would be tempting to use PCSs for the 10 

observable sites in the HSQC spectrum of 15N-lysine labeled Robo1-Ig1-2 and 5 observable sites 

in the HSQC spectrum of 15N-phenylalanine labeled Robo1-Ig1-2.   However, we would again 

need to assume a rigid Robo1-Ig1-2 structure, and previous literature do indicate significant 

flexibility between Robo1 D1 and D2 domains 9-10.   Using data for just domain D1, where the 

loop is attached, there are just 3 lysines and 3 phenylalanine making the number of data points 

for tensor determination marginal. Hence, we used the fact that the same anisotropic part of the 

susceptibility tensor is responsible for boththe PCSs and field induced RDCs.  Only three filed-

induced RDCs could be measured, but this raised the number of data points to 9.  All data used 

for tensor determination are listed in Table 2.4. 

Table 2.4. Measured pseudo contact shifts and field-induced RDCs of Robo1-LBP loaded 

with Tm3+. The values in bold are from D1 domain and used for tensor determination. 

HSQC peak number H PCS (ppm) Field Induced RDC (Hz) 

Lys NH1 0.073 -2.9 

Lys NH2 0.027 2.9 

Lys NH3 Broad away Broad away 

Lys NH4 0.064 -2.5 
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Lys NH5 0.062 -1.2 

Lys NH6 0.304 7.0 

Lys NH7 -0.062 -14.7 

Lys NH8 0.036 -3.3 

Lys NH9 0.057 -13.4 

Lys NH10 0.172 7.8 

Phe NH1 -0.151 NA 

Phe NH2 0.088 NA 

Phe NH3 0.283 NA 

Phe NH4 0.182 NA 

Phe NH5 0.004 NA 

 

2.5.7 Computational docking  

High ambiguity driven biomolecular docking (HADDOCK) was used to combine all of 

the structural constrains to determine the structure of a Robo1-Ig1-2 HS complex. Haddock 

makes use of a variety biochemical and biophysical data to characterize protein ligand 

complexes.  More qualitative information, such as those coming from chemical shift 

perturbations and STD experiments, are represented as ambiguous restraints and the more 

quantitative ones, such as those coming from trNOE and PCSs, are treated explicitly in error 

functions that that compare experimental data and predictions calculated from various models. 

The energetically minimized coordinates of HS tetramers 1 and 2 were generated using 

GLYCAM 30, 35, and the docking process was as described in the Materials and Methods. In the 

end, the top 5 HADDOCK structures with the lowest energy and score as well as no distance 

restraint violations greater than 0.5 Å were obtained for pose evaluation. Figure 2.11A shows that 

the top 5 structures form a single cluster.  A single average representation of the protein is shown 

in Figure 2.11B in a ribbon format with residues making frequent contacts with the ligand shown 

as ball and stick entities.   
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                                                                       A 

 

                                                                        B                                                                                                         

Figure 2.11. (A) Overlaid top 5 HADDOCK structures of Robo1-Ig1-2-HS with highest 

scores and lowest energy. (B) Expanded view of the binding pocket for the best HADDOCK 

structure with interacting residues within 1 Å of van der Waals contact presented in a stick 

representation.  

2.6 Discussion 

The top 5 structures show a well-clustered binding location as well as well-defined ligand 

conformation. The structure with the highest docking score and lowest energy is used as an 
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illustration in Figure 2.11B: the residues within 1 Å of van der Waals contact of the ligand 

include K81, V133, H134, G135, R136, K137, I167, and R169.  Five of these are positively 

charged residues, a number close to the number of negatively charged residues in ligands 1 and 

2, namely 7 and 6 respectively. Among the listed residues, K81, R136 and K137 have been 

confirmed by site-directed mutagenesis to participate in the interaction with HS 6, 9. More 

specifically R169 is close enough for a strong electrostatic interaction with IdoA D (4.1 Å). The 

sidechain of R136 is close enough to interact with the 6-sulfate of GlcNAc C (3.0 Å) as well as 

the carboxylate of the 2-sulfated IdoA B (1.6 Å). The side chain of K81 is close enough to 

interact with the 2-sulfate of IdoA B (1.8 Å) as well as the N-sulfate of GlcNAc C (1.8 Å).  The 

side chain of H134 is close enough to interact with the 2-sulfate of IdoA B (2.9 Å).  K137 is 

close enough to interact with the N-sulfate of GlcNAc A (2.0 Å).   There are also strong van der 

Waals interactions that may explain some of the stronger STD signals.  The epsilon methylene 

protons of K18 are close enough to H2 of IdoA B for at least transicent interactions (2.7 Å).   The 

gamma methyl protons of I167 are in van der Waals contact with H4 of IdoA D and the methyl 

protons of V133 are in van der Waals contact with the reducing terminus extension on GlcNAc 

A.   

Given the number of potential of favorable interactions with the 2-sulfate of IdoA B, 

including K81, it may seem strange that removal of this sulfate in ligand 2, which appears to 

occupy essential the same binding site, actually leads to a higher affinity.  However, note that 

K81 does interact with other electronegative groups (the N-sulfate of GlcNAc C) which may 

become stronger if not shared with a 2-sulfate on IdoA B, and the carboxyl group of IdoA B 

favorably interacts with R136 that may also be stronger if another positive residue is not in play.  

In rationalizing binding affinities, it is also important to remember that these relate not just to 
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favorable interactions with the protein, but to the difference in free energies between the ligand-

protein complex in solvent and the separated ligand and protein in solvent.  To properly consider 

these effects molecular mechanics-generalized Born surface area (MM-GBSA) calculations were 

utilized. In order to specifically study the role the 2-SO3 of IdoA B we treated it as a separate 

residue in a per-residue energy decomposition analysis. The top 5 docked structures were chosen 

for energy calculation.  The average electrostatic interactions with K81 are indeed favorable (       

-49.34 kcal/mol).  However, the desolvation penalty in moving this sulfate from water to the 

protein is actually larger (52.33 kcal/mol).   Hence, according to this analysis, the 2-sulfate does 

not produce a net favorable reduction in binding free energy, despite the favorable interactions 

between ligand and residues seen in the model for the binding site.  The decrease in binding 

affinity is less than a factor of 6 and does not correspond to a large free energy difference (~ 1 

kcal/mol).  The net free energy changes suggested by on our model are not highly precise, but are 

well within this range.  Based on our calculations, the N-sulfates appear to reduce the net free 

energy of binding more significantly and their positioning in the site may contribute more to 

specificity for segments of HS with N-sulfated GlcNAcs separated by IdoA residues.  

Based on the data from trNOE (Table 2.2) as well as the final docked structure, the 

overall conformation, as defined by inter-residue glycosidic torsion angles (Table 2.5), of the 

bound tetramer is not significantly different from the conformations dominating the free state. 

All of the IdoA residues also prefer a 1C4 chair conformation.  Starting structures with ligand 

residues in both the chair 4C1 and the skew-boat 2S0 conformation were tested.  Neither gave 

clusters with competitive scores or energies. The 1C4 chair conformation is also known to be 

more energetically favorable in solution especially when it is a non-reducing terminal 36.  Most 

of the previous studies on ligand interactions of Robo1 use depolymerized heparin rather than 
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HS as ligands. Homogeneous HS oligomers with specific sulfation patterns make it possible to 

directly demonstrate the importance of each sulfate group, as illustrated here for the 2-sulfated 

group on the internal IdoA of our tetramers.   

Table 2.5. Glycosidic torsion angles of ligand 1 extracted from docked structure and 

crystal structure created by GLYCAM. The Φ and Ψ angles in the α(1,4) linkages are defined as 

O5-C1-O1-C4 and C1-O1-C4-C3 respectively. 

Sugar ring Φ angle (docked) Φ angle (free) Ψ angle (docked) Ψ angle (free) 

GlcNAc 

A 

94.8° 72.3° 89.0° 61.9° 

IdoA B -86.8° -63.7° 103.6° 107.9° 

GlcNAc 

C 

79.6° 72.7° 119.6° 96.5° 

IdoA D -43.4° -65.0° 127.0° 112.8° 

 

Comparison to crystal structures:  To date, there have been several structural 

characterizations of Robo1-ligand interactions using different methodologies 7, 9-10, 31.  It is of 

particular interest to compare our results on docking of a heparin sulfate ligand to the crystal 

structure of drosophila Robo1-D1,D2 in which a heparin tetramer has been modeled.  The 

protein sequence is 53% identical, and the HS tetramers are identical except that the heparin 

fragment has both IdoA residues 2-sulfated.  In the crystal structure, the heparin fragment is 

sandwiched between two Robo1-Ig1-2 monomers.  The residue corresponding to K81 in our 

structure in both monomers is involved with binding.  On one side this contacts the 2-sulfate of 

the internal IdoA, as in our model, but then the tetramer turns away from this monomer to make 

contacts between the corresponding lysine of the other monomer and the 6-sulfate of the 

penultimate GlcNAc and the 2-sulfate of the non-reducing terminal IdoA.  In our model the 

tetramer continues along the surface of the D1 domain making contact with K137 and R136. 
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There is no evidence for dimer formation under the conditions of our experiment.  An average 

correlation time of 13 ns measured from cross-correlation experiments of Robo1 alone and the 

Robo1-Ig1-2-HS tetramer complex reveals that the protein remains monomeric before and after 

interacting with HS tetramer in solution (see Figure 2.12). Moreover, there is a single 

glycosylation site near the C-terminus of domain 1 that may well influence dimerization and 

inter-domain geometry.  Most crystal structures have employed material lacking this 

glycosylation. 
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Figure 2.12. Rotational correlation time τc of Lys residues in Robo1 in the presence and 

absence of ligand 1. 

Crystal structures of Robo1-Ig1-2 show different positions of domain D2 relative to D1.  

For example, structures in the 2v9q structure differ from that in 2v9r by a bend between D1 and 

D2 domains of 35 degree.  From our MD simulation, the protein tends to adopt the more bent 
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conformation after the first 400 ns of stabilization. The average conformation between 400 ns to 

1000 ns also shows a curved structure which indicates that this conformation tends to be more 

energetically favorable in the solution state. This curved structure of Robo1-Ig1-2 is able to make 

more efficient contact between the interacting amino acid residues and each glycan ring 

compared with the straight form, particularly I167 and R169.  

One further point of note is that the HS octamer containing the IdoA2S in the middle 

(GlcA-GlcNS6S-IdoA-GlcNS-IdoA2S-GlcNS6S-IdoA-GlcNAc6S-(CH2)5NH2) binds to Robo1-

Ig1-2 with an affinity higher than the corresponding tetramer 1 and a very similar perturbation of 

K81 (0.06 ppm when extrapolated to its limiting value (see Figure 2.13).  This suggests that the 

ligand binds the central four residues in a very similar manner to the tetramer with the extra 

residues extending in both directions and finding additional favorable interactions.  Examination 

of the model finds additional positively charged residues in both directions, R173 and R195 for 

the non-reducing end and R116, R119 and R131 for the reducing end. 
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Figure 2.13. Binding affinity of Robo1 with HS octamer with a kd of 86 ± 11 µM. 
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Robo1 signaling is initiated by interactions with Slit2 4, and this interaction is known to 

be facilitated by interactions with HS 37.  There is no structure showing the trimeric Robo1, Slit2, 

HS complex, but there is a crystal structure of a Robo1-D1-Slit2 D2 complex. Having a model 

for HS interacting with Robo1-D1-2, we can build a model for the trimeric complex by 

superimposing Robo1-D1 in our model with Robo1-D1 in the crystal structure.  This model is 

presented in Figure 2.14.  The HS tetramer (in beige) sits well in the grove between the two 

proteins and some of the positively charged residues highlighted in red located on the suggested 

extended binding surface of Robo1-Ig1-2, and the surface of the docked Slit2-D2, show potential 

interaction sites by which by which  a longer HS segment could stabilize the trimeric complex.  

Production of a suitable Slit2 construct to explore this possibility is under consideration. 

 

Figure 2.14. Model of trimeric Robo1-Ig1-2 (blue) –HS (beige) –Slit (green) with 

positive residues labeled in red.  

2.7 Conclusion 

A detailed model for the interaction of a HS tetramer with a two domain fragment of 

Robo1 has been determined.  The HS tetramer has a specific sulfation pattern that includes 2-

sulfation of an internal iduronic acid residue.  A second tetramer lacking this sulfation is shown 
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to occupy a very similar site, but have enhanced binding affinity.  A structural rationalization for 

this difference is suggested.  The model also leads to a plausible explanation for how HS 

facilitates the interaction between Robo1 and its signaling partner, Slit2, providing a guide for 

further studies using longer HS oligomers and complexes involving both Robo1 and Slit2.  The 

methods used in the current study also set a precedent useful in studies of other complexes of 

glycosylated proteins.   The methods exploit a number of NMR experiments that can be applied 

to glycosylated proteins sparsely labeled with NMR active isotopes.  These methods should be 

applicable to the large number of other systems found on the surfaces of mammalian cells.  

 

2.8 References 

1. Kastenhuber, E.; Kern, U.; Bonkowsky, J. L.; Chien, C. B.; Driever, W.; 

Schweitzer, J., Netrin-DCC, Robo-Slit, and Heparan Sulfate Proteoglycans Coordinate Lateral 

Positioning of Longitudinal Dopaminergic Diencephalospinal Axons. J Neurosci 2009, 29 (28), 

8914-8926. 

2. Andrews, W.; Liapi, A.; Plachez, C.; Camurri, L.; Zhang, J. Y.; Mori, S.; 

Murakami, F.; Parnavelas, J. G.; Sundaresan, V.; Richards, L. J., Robo1 regulates the 

development of major axon tracts and interneuron migration in the forebrain. Development 2006, 

133 (11), 2243-2252. 

3. Domyan, E. T.; Branchfield, K.; Gibson, D. A.; Naiche, L. A.; Lewandoski, M.; 

Tessier-Lavigne, M.; Ma, L.; Sun, X., Roundabout Receptors Are Critical for Foregut Separation 

from the Body Wall. Developmental cell 2013, 24 (1), 52-63. 

4. Dickinson, R. E.; Duncan, W. C., The SLIT-ROBO pathway: a regulator of cell 

function with implications for the reproductive system. Reproduction 2010, 139 (4), 697-704. 



 

67 

 

5. Gara, R. K.; Kumari, S.; Ganju, A.; Yallapu, M. M.; Jaggi, M.; Chauhan, S. C., 

Slit/Robo pathway: a promising therapeutic target for cancer. Drug discovery today 2015, 20 (1), 

156-164. 

6. Hussain, S. A.; Piper, M.; Fukuhara, N.; Strochlic, L.; Cho, G.; Howitt, J. A.; 

Ahmed, Y.; Powell, A. K.; Turnbull, J. E.; Holt, C. E.; Hohenester, E., A molecular mechanism 

for the heparan sulfate dependence of Slit-Robo signaling. Journal of Biological Chemistry 2006, 

281 (51), 39693-39698. 

7. Zhang, F. M.; Moniz, H. A.; Walcott, B.; Moremen, K. W.; Linhardt, R. J.; Wang, 

L. C., Characterization of the interaction between Robo1 and heparin and other 

glycosaminoglycans. Biochimie 2013, 95 (12), 2345-2353. 

8. Dickson, B. J.; Gilestro, G. F., Regulation of commissural axon pathfinding by 

slit and its Robo receptors. Annual review of cell and developmental biology 2006, 22, 651-75. 

9. Fukuhara, N.; Howitt, J. A.; Hussain, S. A.; Hohenester, E., Structural and 

functional analysis of slit and heparin binding to immunoglobulin-like domains 1 and 2 of 

Drosophila Robo. The Journal of biological chemistry 2008, 283 (23), 16226-34. 

10. Morlot, C.; Thielens, N. M.; Ravelli, R. B. G.; Hemrika, W.; Romijn, R. A.; Gros, 

P.; Cusack, S.; McCarthy, A. A., Structural insights into the Slit-Robo complex. P Natl Acad Sci 

USA 2007, 104 (38), 14923-14928. 

11. Zong, C. L.; Venot, A.; Dhamale, O.; Boons, G. J., Fluorous Supported Modular 

Synthesis of Heparan Sulfate Oligosaccharides. Org Lett 2013, 15 (2), 342-345. 

12. Chappell, E. P.; Liu, J., Use of biosynthetic enzymes in heparin and heparan 

sulfate synthesis. Bioorgan Med Chem 2013, 21 (16), 4786-4792. 



 

68 

 

13. Barb, A. W.; Meng, L.; Gao, Z. W.; Johnson, R. W.; Moremen, K. W.; 

Prestegard, J. H., NMR Characterization of Immunoglobulin G Fc Glycan Motion on Enzymatic 

Sialylation. Biochemistry-Us 2012, 51 (22), 4618-4626. 

14. Prestegard, J. H.; Agard, D. A.; Moremen, K. W.; Lavery, L. A.; Morris, L. C.; 

Pederson, K., Sparse labeling of proteins: Structural characterization from long range constraints. 

J Magn Reson 2014, 241, 32-40. 

15. Barb, A. W.; Ho, T. G.; Flanagan-Steet, H.; Prestegard, J. H., Lanthanide binding 

and IgG affinity construct: Potential applications in solution NMR, MRI, and luminescence 

microscopy. Protein Sci 2012, 21 (10), 1456-1466. 

16. Zhuang, T. D.; Lee, H. S.; Imperiali, B.; Prestegard, J. H., Structure determination 

of a Galectin-3-carbohydrate complex using paramagnetism-based NMR constraints. Protein Sci 

2008, 17 (7), 1220-1231. 

17. Barthelmes, K.; Reynolds, A. M.; Peisach, E.; Jonker, H. R. A.; DeNunzio, N. J.; 

Allen, K. N.; Imperiali, B.; Schwalbe, H., Engineering Encodable Lanthanide-Binding Tags into 

Loop Regions of Proteins. J Am Chem Soc 2011, 133 (4), 808-819. 

18. Dominguez, C.; Boelens, R.; Bonvin, A. M. J. J., HADDOCK: A protein-protein 

docking approach based on biochemical or biophysical information. J Am Chem Soc 2003, 125 

(7), 1731-1737. 

19. Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S. H.; Chong, L.; Lee, 

M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, 

T. E., Calculating structures and free energies of complex molecules: Combining molecular 

mechanics and continuum models. Accounts Chem Res 2000, 33 (12), 889-897. 



 

69 

 

20. Gandhi, N. S.; Mancera, R. L., Free energy calculations of glycosaminoglycan-

protein interactions. Glycobiology 2009, 19 (10), 1103-1115. 

21. Miller, B. R.; McGee, T. D.; Swails, J. M.; Homeyer, N.; Gohlke, H.; Roitberg, 

A. E., MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J Chem 

Theory Comput 2012, 8 (9), 3314-3321. 

22. Tjandra, N.; Grzesiek, S.; Bax, A., Magnetic field dependence of nitrogen-proton 

J splittings in N-15-enriched human ubiquitin resulting from relaxation interference and residual 

dipolar coupling. J Am Chem Soc 1996, 118 (26), 6264-6272. 

23. Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A., Nmrpipe - 

a Multidimensional Spectral Processing System Based on Unix Pipes. J Biomol Nmr 1995, 6 (3), 

277-293. 

24. Goddard, T.; Kneller, D., SPARKY 3. University of California, San Francisco 

2004, 15. 

25. Williamson, M. P., Using chemical shift perturbation to characterise ligand 

binding (vol 73, pg 1, 2013). Prog Nucl Mag Res Sp 2014, 80, 64-64. 

26. Li, D. W.; Bruschweiler, R., PPM_One: a static protein structure based chemical 

shift predictor. J Biomol Nmr 2015, 62 (3), 403-409. 

27. Valafar, H.; Prestegard, J. H., REDCAT: a residual dipolar coupling analysis tool. 

J Magn Reson 2004, 167 (2), 228-241. 

28. Sumathi, S.; Surekha, P., MATLAB-Based Genetic Algorithm. Computational 

Intelligence Paradigms: Theory and Applications Using Matlab 2010, 547-589. 



 

70 

 

29. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; 

Meng, E. C.; Ferrin, T. E., UCSF chimera - A visualization system for exploratory research and 

analysis. J Comput Chem 2004, 25 (13), 1605-1612. 

30. Woods, R., glycam Web. Complex Carbohydrate Research Center. Athens, GA: 

University of Georgia 2005. 

31. Li, Z. X.; Moniz, H.; Wang, S.; Ramiah, A.; Zhang, F. M.; Moremen, K. W.; 

Linhardt, R. J.; Sharp, J. S., High Structural Resolution Hydroxyl Radical Protein Footprinting 

Reveals an Extended Robo1-Heparin Binding Interface. Journal of Biological Chemistry 2015, 

290 (17), 10729-10740. 

32. Prestegard, J. H.; Sahu, S. C.; Nkari, W. K.; Morris, L. C.; Live, D.; Gruta, C., 

Chemical shift prediction for denatured proteins. J Biomol Nmr 2013, 55 (2), 201-9. 

33. Pederson, K.; Mitchell, D. A.; Prestegard, J. H., Structural Characterization of the 

DC-SIGN-Lewis(X) Complex. Biochemistry-Us 2014, 53 (35), 5700-5709. 

34. Otting, G., Protein NMR Using Paramagnetic Ions. Annual Review of Biophysics, 

Vol 39 2010, 39, 387-405. 

35. Kirschner, K. N.; Yongye, A. B.; Tschampel, S. M.; Gonzalez-Outeirino, J.; 

Daniels, C. R.; Foley, B. L.; Woods, R. J., GLYCAM06: A generalizable Biomolecular force 

field. Carbohydrates. J Comput Chem 2008, 29 (4), 622-655. 

36. Ferro, D. R.; Provasoli, A.; Ragazzi, M.; Casu, B.; Torri, G.; Bossennec, V.; 

Perly, B.; Sinay, P.; Petitou, M.; Choay, J., Conformer Populations of L-Iduronic Acid Residues 

in Glycosaminoglycan Sequences. Carbohyd Res 1990, 195 (2), 157-167. 



 

71 

 

37. Johnson, K. G.; Ghose, A.; Epstein, E.; Lincecum, J.; O'Connor, M. B.; Van 

Vactor, D., Axonal heparan sulfate proteoglycans regulate the distribution and efficiency of the 

repellent slit during midline axon guidance. Current biology : CB 2004, 14 (6), 499-504. 

 

 

 

 



 

72 

 

 

 

CHAPTER 3 

NMR ASSIGNMENTS OF SPARSELY LABELED PROTEINS USING A 

GENETIC ALGORITHM2 
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3.2 Abstract 

Sparse isotopic labeling of proteins for NMR studies using single types of amino acid 

(15N or 13C enriched) has several advantages.  Resolution is enhanced by reducing numbers of 

resonances for large proteins, and isotopic labeling becomes economically feasible for 

glycoproteins that must be expressed in mammalian cells.  However, without access to the 

traditional triple resonance strategies that require uniform isotopic labeling, NMR assignment of 

crosspeaks in heteronuclear single quantum coherence (HSQC) spectra is challenging. We 

present an alternative strategy which combines readily accessible NMR data with known protein 

domain structures. Based on the structures, chemical shifts are predicted, NOE cross-peak lists 

are generated, and residual dipolar couplings (RDCs) are calculated for each labeled site. 

Simulated data are then compared to measured values for a trial set of assignments and scored.  A 

genetic algorithm uses the scores to search for an optimal pairing of HSQC crosspeaks with 

labeled sites.  While none of the individual data types can give a definitive assignment for a 

particular site, their combination can in most cases, and a completely correct assignment is 

typically found near the top of an ordered list of possibilities. Four test proteins previously 

assigned using triple resonance methods and a sparsely labeled glycosylated protein, Robo1, 
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previously assigned by manual analysis, are used to illustrate the method and develop a criterion 

for identifying sites assigned with high confidence.   

3.3 Introduction 

In the structural biology field, NMR is most noted for its ability to produce de novo 

structures of small proteins in solution.  Its contributions are significant in that the structures are 

produced in solution and often involve proteins that have resisted crystallization.  Nevertheless, 

interest of the structural biology community is shifting to larger proteins and multi-protein 

complexes.  Some of the proteins of interest are also glycoproteins.  Here, applications are 

limited, because most current resonance assignment methodology depends on a set of triple 

resonance experiments that require uniform enrichment of proteins in 15N and 13C, and for larger 

proteins, perdeuteration is required as well.  For glycoproteins native glycosylation is often 

important, and expression in mammalian cells is preferred.  The need to supplement media for 

these cells with labeled amino acids makes uniform labeling extraordinarily expensive and the 

cells do not tolerate high deuterium content.  However, sparse labeling with single or small 

subsets of isotopically labeled amino acids is still possible.  Certain subsets of isotopically 

labeled amino acids are relatively inexpensive, making application to glycoproteins economical, 

and the reduction in numbers of resonances increases resolution for larger proteins 1-3. Even with 

fewer labeled sites chemical shift perturbation can provide information on ligand binding or 

protein-protein association 4, and residual dipolar couplings (RDCs) can constrain relative 

orientation of structural units in multi-domain proteins or protein-protein complexes 5-6.  The 

only prerequisite is the replacement of triple resonance methods with an alternative assignment 

strategy.   Here we present a strategy based on collection of data readily obtained on sparsely 
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labeled sites and describe a convenient software implementation that uses a genetic algorithm to 

search for an optimal set of assignments. 

The types of data that can be acquired on sparsely labeled proteins include heteronuclear 

single quantum coherence (HSQC) spectra from which chemical shifts of both protons and 

heteronuclei (15N or13C) can be measured.  HSQC experiments also provide the basis for 

collection of 15N- or 13C-edited nuclear Overhauser effects (NOEs) 7 and one-bond residual 

dipolar couplings (RDCs) 5.  When structures are available for at least the domains comprising 

multi-domain proteins, or the proteins comprising multi-protein complexes, it is possible to 

predict each of these data types in a site specific manner.  There are now several different 

chemical shift prediction programs 8-11 that are based on the existence of three dimensional 

structures for protein domains.  The NOE vectors associated with a given crosspeak in the 2-3 

plane of a 3D NOESY-HSQC can also be predicted from a three dimensional structure, assuming 

a 1/r6 dependence of NOE intensity on interproton distances,  and RDCs can be predicted using 

programs such as REDCAT 12 or PALES 13, provided a sufficient number of RDCs are available 

to simultaneously evaluate the level and direction of partial orientation. 

It is clear that comparison of any of the above data types with predictions can be used to 

facilitate assignments.  The automated assignment of some NOE peaks in the course of structure 

determination is quite common 14-16, and there are several examples of the use of NOEs for 

structural characterization without explicit NOE crosspeak assignments 17-18.  There is also 

increasing use of both NOE and chemical shift data to validate or extend assignments made by 

traditional triple resonance methods 19-21.  However, most of these procedures rely to some extent 

on uniform isotope labeling.  For sparsely labeled systems there has been some prior effort at 

resonance assignment.  We have attempted to use amide exchange rate correlations in NMR and 
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MS data to achieve assignments of 15N labeled sites 22-23.  There have also been approaches that 

label proteins with combinations of amino acids to make assignments based on connectivities 

similar to those seen in triple resonance experiments 24-26, and of course, assignment in sparsely 

labeled proteins can be facilitated by mutating residues to remove crosspeaks from labeled sites 

one at a time 27.  However, these approaches are labor intensive.  13C-methy labeling of large 

proteins can also be seen as a type of sparse labeling, and this has fostered the development of 

assignment strategies that depend on data that can be collected via these sites, primarily methyl-

methyl NOEs 28 and paramagnetic effects 29.  It has also stimulated exploration of probabilistic 

approaches to assigning using these and other types of data 30-31. 

Recently, we utilized the data types described above, namely chemical shifts, RDCs and 

NOEs, to assign a glycoprotein sparsely labeled with 15N enriched amino acids.  Resonance 

assignment used a largely manual approach in which each type of prediction is sequentially used 

to exclude possible assignments 32.   However, it is difficult to set strict exclusion limits in a 

sequential strategy. In principle, it is better to assign a score based on agreement between 

measurement and prediction of all data types and use these scores in a search over all possible 

pairings of labeled sites with measured crosspeaks.  A systematic search over all possibilities 

would be feasible with modern computers and a small number of sites, but this quickly becomes 

unmanageable.  Even at 12 sparsely labeled sites, the number of possible assignments is 

enormous; 12! = 470,001,600.  Instead we use a procedure based on evolutionary algorithms, 

more specifically a genetic algorithm 33. Genetic algorithms have been used previously to 

facilitate NMR assignments 34-35, but not for the assignment of sparsely labeled proteins. We test 

our implementation of a genetic algorithm search for an optimal assignment on a set of proteins 

for which the required data and assignments have been deposited.   Four of the test proteins come 
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from a recent summary of X-ray/NMR structure pairs produced by the Northeast Structural 

Genomics group (NESG) 36.  The existing assignments in this case are by traditional triple 

resonance methods on uniformly labeled proteins, but we mimic a sparsely labeled set by 

selecting resonances for a subset of amino acids.  We also test the procedure on a sparsely 

labeled two domain fragment of the Robo1 protein whose assignment is achieved by a sequential 

approach 32. Robo1 is a glycosylated protein whose activity in developmentally related cell-

signaling is regulated by interaction with certain heparan sulfate (HS) epitopes.  Assignment was 

critical to locating the HS binding site and modeling an HS-Robo1 complex.  

The new procedure proves to be quite successful.  It is relatively fast, requiring from 

several minutes to a few hours of computational time.  In three of the five cases the completely 

correct assignment is found among the top five scoring solutions (chromosomes), and the correct 

assignment is always found in the set of solutions having scores less than a score corresponding 

to measurements falling within one or two standard deviations of predictions.  Many crosspeaks 

are also assigned consistently to correct sites within most of this solution set.  Based on this 

consistency we suggest a criterion for identification of crosspeaks which can be assigned with 

high confidence in the absence of known assignments.  The procedure, therefore, provides a 

robust means of assigning NMR spectra and sets the stage for answering many more questions 

involving ligand binding and protein-ligand complex assembly for some of the more challenging 

structural biology systems.  

3.4 Materials and Methods 

3.4.1 Test set selection  

 Four test proteins were chosen from the 40 pairs of NMR-X-ray structures produced by 

the Northeast Structural Genomics group, imposing the additional requirement that the resolution 
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of the X-ray structures be below 2 Å 36. The NMR data for Robo1-Ig1-2 are from our paper 

reporting its interaction with heparan sulfate 32.    There are several X-ray structures for the Ig1-2 

construct, but these show significant differences in inter-domain orientation.  For the purpose of 

this application domain motions were simulated in a long MD trajectory (1µs) 32 and an x-ray 

structure (PDB 2V9R) that closely approximated the domain orientation in the most highly 

populated state of this trajectory was selected.  The PDB accession codes for the structures and a 

summary of experimental data used for all test proteins are summarized in Table 3.1. 

Table 3.1. Structure and experimental information on chosen test proteins and a 

glycoprotein. 

PDB 
Total 

Residues 
Labeled Sites 

Available 

RDC Data 

Inter-residue NOE 

crosspeaks per 

residue 
X-ray (resolution Å) NMR 

3C4S (1.70) 2JZ2 58* Ala 4, Val 8 12 4.8 

3CWI (1.90) 2K5P 70 Ala 7, Val 9 11 7.9 

3LMO (2.00) 2KW2 93 Ala 12, Lys 6 17 6.4 

3FIA (1.45) 2KHN 111 Ala 8, Lys 6 8 8.2 

2V9R (2.00) NA 212 Lys 12, Phe 5 17 7.4 

*3C4S is a dimer. Monomer A with 58 residues was used. 

3.4.2 Experimental and predicted data 

15N-1H HSQC chemical shifts.  Because RDC analysis requires at least 5 measurements 

to fit order parameters before data can be used to assess quality of alignment or crosspeak 

assignment, we strove to have at least 10 measurements.  Based on the expression construct for 

Robo1-Ig1-2, lysine and phenylalanine would yield 17 measurements, but two lysine crosspeaks 

were not observed.  One N-terminal site is missing due to proteolysis, as confirmed by mass 

spectral analysis. The other unobserved site was identified as K137 by a selective mutation that 

produced no change in the number of HSQC crosspeaks. The two sites were thus eliminated 
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from assignment consideration. Data for one phenylalanine was also not used because it 

exhibited high levels of internal motion, consistent with its being very near the end of the non-

structured C-terminus (absent in some crystal structures).  Hence, 14 of the 17 sites were subject 

to assignment by our methodology.  To mimic a similar level of sparse labeling in the 4 

uniformly labeled test proteins, we selected data from alanine and valine or alanine and lysine. 

The specific numbers of sites are listed in Table 3.1. Experimental errors for chemical shifts are 

all small compared to prediction errors and will, therefore, be neglected.  

There are several program options for the prediction of chemical shift data 8-10, and they 

have very similar estimated precision for amide N and H shifts. Here, we chose PPM_one 8 to 

perform chemical shift prediction. Both backbone amide nitrogen and proton chemical shifts of 

the labeled sites were predicted using the crystal structures listed in Table 3.1. Errors for 

predicted 1H and 15N chemical shifts were taken to be 0.17 ppm and 1 ppm respectively, numbers 

consistent with limits suggested by the authors of prediction programs 8-9.   

Nuclear Overhauser Effects (NOEs). Experimental NOE data to be used for 1H-15N 

crosspeak assignment are most useful when both chemical shifts and intensities of NOE 

crosspeaks are available.  For most deposited NOE data only peak lists containing chemical 

shifts and constraint files containing upper and lower distance limits for proton pairs are 

available. However, there is no reliable way to work back from distance limits to a crosspeak 

intensity. Therefore, we chose cases where the original 15N-filtered NOE peak lists included the 

intensity of each crosspeak. Because the crosspeaks from intra-residue contacts are less useful in 

making assignments, we removed these by considering crosspeaks from a 15N-edited TOCSY 

spectrum.  NOE crosspeaks at corresponding chemical shifts were eliminated from the list.  

Experimental amide proton NOE vectors containing only inter-residue data were then 
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constructed by spreading intensity over a range of chemical shift equal to the estimated accuracy 

of predicted shifts.  Since the vectors mimic columns emanating from H-N crosspeaks in 3D 

NOESY-HSQC data sets, it is also possible to take vectors directly from the columns in the 3D 

data sets when these are available.  

 For predicted NOE data the intensities for peaks in amide proton NOE vectors were 

predicted using a 
1

𝑟6
  dependence on interproton distances derived from crystal structures. This 

would be correct for a rigid spherical protein with NOEs measured from initial slopes.  We 

cannot assume the selected data meet these conditions, but since we are not seeking perfect 

scores, just best scores, we believe the treatment is adequate. The intensities were placed in 

predicted amide proton inter-residue NOE vectors at the chemical shift positions predicted by 

PPM_1 and spread over a range equal to the estimated chemical shift accuracy.   

Residual Dipolar Couplings (RDCs). 15N-1H Residual dipolar couplings (RDCs) reflect 

the orientation of each H-N bond vector relative to the magnetic field; hence, they are very 

dependent on the structure of each site. Experimental RDCs (8-17 in number) were obtained 

along with their estimated errors (typically 1Hz for the 4 uniformly labeled test proteins, and 2-5 

Hz for the Robo1 set).   Unlike the previous data types, predicted values could not be obtained 

independently for each site, because the data must be used to determine the five order parameters 

in addition to the RDCs.  Therefore, for each possible set of assignments, all RDCs were used 

simultaneously, in combination with coordinates for nitrogen and proton pairs at potential sites, 

to calculate order parameters by singular value decomposition.  A set of predicted RDCs were 

then back-calculated using the parameters and compared to measurements.    
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Missing and substandard data.  It is not always possible to have complete data sets or 

data sets with uniform high quality.  Sometimes crosspeaks are not observed in HSQC spectra, 

because of motional contributions to line widths, interference from solvent and other 

contaminants, or accidental overlap of a pair of crosspeaks.  Sometimes there is supplementary 

information that makes the interpretation of certain measurements suspect, and one would 

choose to disregard that data.  For example, spin relaxation data may suggest a high level of 

internal motion that would compromise the interpretation of RDCs.  As the number of 

measurements of a given type must always equal the number of sites, the software package 

described below handles missing measurements by entering 999 as a default measurement.  The 

package also handles cases where the number of measurements exceeds the number of sites by 

entering 999 for null sites.   

3.4.3 Program development 

Our implementation of a genetic algorithm search for correct assignments of HSQC 

crosspeaks is based on routines available in  MATLAB 37-38.  The complete package, 

“ASSIGNments for Sparsely Labeled Proteins”, ASSIGN_SLP, can be downloaded from the 

internet site http://tesla.ccrc.uga.edu/software/.  The program executing the genetic algorithm 

search is designated ASSIGN_SLP.mat.  

Implementation of the genetic algorithm. An initial population of chromosomes 

(assignments) is constructed randomly, usually a number approaching 10,000; this value may 

seem large for a genetic algorithm, however the size of the search space and the complexity of 

the objective function require it.  With respect to the number of possible assignments, this is still 

a relatively small sampling (about 0.3 % for 10 sites).  For each chromosome, sites remain in 
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fixed order and crosspeaks (with their associated data) are randomly assigned to each site.  The 

only restriction is that each crosspeak is used only once in an assignment. 

Selection and mutation of chromosomes.  Chromosomes are selected from the entire 

pool with a frequency biased toward high scores, which means farther from the best individual 

score, and these are subjected to modification.  There are two general processes used, a 

permutation mutation and a pairwise crossover process, as illustrated in the flow chart.  The 

frequencies with which the processes are used is governed by rate constants which are normally 

tuned for a particular application. As we intend our program to be applicable to a range of 

different data types we attempted to eliminate the normal tuning process by looping through a 

combination of rates (0.2, 0.4, 0.6 and 0.8 for both mutation and crossover).  An initial set of 

rates is selected, a new set of chromosomes is generated, the new set is re-scored and it is 

subjected to another cycle.  This cycle is continued for a given crossover and mutation rate until 

a convergence criterion is reached.  In our case, the convergence criterion is that the lowest score 

does not change after 100 iterations or that a set maximum number of 500 iterations is reached.  

The program then selects another set of mutation and crossover rates, generates another set of 

random assignments and starts the process over.  When all pairs of rates have been used the 

program ends.   

Output of results.  There are two post-processing programs which are used.    The first is 

designated “OutputAnalysis”; it is used to convert the cell array MATLAB file to a text file, with 

all duplicates removed, and sorted from lowest to highest score.  The text file has a header with 

all the information necessary to reproduce the search.  Examination of the ordered list may 

suggest adjustment of weighting factors for different data types or extraction of a few top scoring 

assignments for validation against unused data.  The next program, “StatisticalAnalysis”, is used 
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to generate a heatmap and histogram from the text file output of the previous program.  The 

output of “StatisticalAnalysis” is two MATLAB figures, a heatmap and a histogram, which are 

saved in a user specified location.  

The software package contains documentation and examples.  The documentation 

explains how the programs are to be used.  There are 5 examples in sub-directories which 

contain all the input files and the output files needed to reproduce the examples.  In order to 

make the software user-friendly, a preparation file is given with the commands used to generate 

the output of all the examples. 

The work flow through the primary program is depicted in Figure 3.1.   Input includes: 

the pdb file, a list of sites to be assigned (a-h in the flow chart), output from chemical shift 

programs, output from the NOE vector script and other experimental data with estimates of 

errors.  Coordinates are extracted by the provided script from the pdb file for the calculation of 

predicted RDCs and NOEs, and predicted chemical shifts for the relevant sites are extracted from 

output files of PPM_one or SHIFTX2. 

One of the most important aspects of the search program is the objective function, in our 

case a sum of scores for different data types.  It must minimize at a global optimal solution, 

weight each data type appropriately and provide a useful limit on what we regard as an 

acceptable solution.  For most data types (RDCs and chemical shifts) our scores are based on a 

root mean square deviation (RMSD) between the predicted value for each site (pred(i)) and the 

experimental value being assigned to that site, exp(q(i)).  See Equation 1. 

1

√𝑛
√∑

(exp(𝑞(𝑖)) − 𝑝𝑟𝑒𝑑(𝑖)))2

(𝑒𝑟𝑟𝑜𝑟(𝑞(𝑖)))2⁄𝑛
𝑖=1     (1) 
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The error estimate, error(q(i)), is used to scale each score contribution by a number that 

reflects the information content of the measurement type. For example, in the case of chemical 

shifts, the error is from the estimated precision of predictions supplied by the authors of the 

prediction programs.  If the range of measurements (largest deviation of prediction and 

measurement) is divided by the error, we have an estimate of the information content. As 

measurements assigned to particular sites begin to approximate predicted values, their 

contribution to the score is reduced.  When the differences between experiment and prediction 

are at the estimated error, the score for each measurements type would equal one, and any total 

score less than one or two times the number of measurements types should be considered 

acceptable.  Hence, the scaling provides both a weighting by information content and a 

convenient cut off for acceptable solutions.   

In calculating an RMSD the number of comparisons contributing to the mean for a given 

measurement type (n) is normally the total number of independent measurements.  For chemical 

shifts this is just the number of measurements, but for RDCs the number of independent 

measurements is less than the number of experimental data by five because of the order 

parameters that must be determined.   In the case of missing data there should also be an 

additional subtraction for the number of data points entered as 999.  This would appropriately 

make the errors seem somewhat larger.   However, we must also consider information content.  

This is particularly important for RDCs.  As the number of RDCs approaches 5, the five 

parameters will, in most cases, allow a perfect match of predicted to experimental data, and the 

information content for assignment will actually approach zero.  Hence, we have added an 

additional scaling factor of (n-5)/n to the RDC part of the scoring function.  
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There are some limitations to the above RMSD-based procedure.  First, it is hard to 

define an RMSD for some types of measurement, NOEs, for example.  For NOEs we calculate a 

Pearson correlation coefficient that compares the predicted and experimental NOE vectors.  This 

has the advantage of making the absolute intensity of the vectors irrelevant; only NOE patterns 

matter.  The coefficient, R, is 1 for a perfect match between experimental and predicted NOE 

vectors and zero for no correlation.  To mimic an RMSD that goes to zero for a perfect match we 

use the square of (1-R) averaged over all NOE vectors.  To replace the estimate of error we use 

data from the four uniformly labeled test proteins, where we know correct assignments, to 

estimate NOE information content.  To do this we calculate heat maps (see below).  When 

predicted and experimental NOEs are listed in the correct order the scores on the diagonal 

represent correct pairings and the scores off the diagonal represent those for incorrect pairings.  

The ratios of the averages on and off the diagonal are about 5 for the test proteins and this is 

what we used for a weighting factor (equivalent to using an error estimate of about 0.2). 

The above procedures, particularly those that simply use error estimates as opposed to a 

heat map analysis, are not perfect.  Improper weighting relative to information content can still 

occur.  This is often recognizable in an ordered list of acceptable solutions that includes 

contributions to total scores from individual data types.  A contribution from one particular data 

type may consistently have an unusually small or large contribution, or its contributions may fall 

continuously through the list indicating that is dominating the algorithm.  It is possible in these 

cases to further adjust weighting factors to eliminate this behavior.   

Scores can also be adjusted to take into account additional knowledge about pairings. 

Since sparse labeling often includes data from samples labeled with different amino acids, we 

know that a specific set of crosspeaks must be associated with sites having a particular amino 
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acid type.  Adding 100 to experimental and predicted chemical shifts for one amino acid type 

forces incorrect associations to have unacceptable scores.   Other types of knowledge, for 

example, knowledge about surface versus interior protein location can be introduced in a similar 

fashion.  

 

Figure 3.1. Work flow of the assignment strategy using a genetic algorithm. The sparsely 

labeled sites are represented by letters a-h and the HSQC crosspeaks are numbered 1-8. The 

region where certain mutations happened is labeled by blue and green. 

The objective function is evaluated for each of the trial assignments (chromosomes).  

Chromosomes with a total score less than a user specified value is saved in an output file; this 

maximum score usually is set to two to three times the number of measurement types. Detailed 

information of chromosomes selection and mutation rates determination are described in the 

Supplemental Materials. Chromosomes are then selected from the entire pool with a frequency 

biased toward high scores, which means farther from the best individual score, and these are 

subjected to modification.  There are two general processes used, a permutation mutation and a 
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pairwise crossover process, as illustrated in the flow chart.  The frequencies with which the 

processes are used is governed by rate constants which are normally tuned for a particular 

application. As we intend our program to be applicable to a range of different data types we 

attempted to eliminate the normal tuning process by looping through a combination of rates (0.2, 

0.4, 0.6 and 0.8 for both mutation and crossover).  An initial set of rates is selected, a new set of 

chromosomes is generated, the new set is re-scored and it is subjected to another cycle.  This 

cycle is continued for a given crossover and mutation rate until a convergence criterion is 

reached.  In our case, the convergence criterion is that the lowest score does not change after 100 

iterations or that a set maximum number of 500 iterations is reached.  The program then selects 

another set of mutation and crossover rates, generates another set of random assignments and 

starts the process over.  When all pairs of rates have been used the program ends.   

The raw output is a MATLAB file in a “cell array,” which is a Java data class used by 

MATLAB.  The output contains possible solutions generated in each of the mutation/crossover 

cycles that have scores less than a user specification. In addition to detailing the match of 

crosspeaks to sites, contributions of each data type to the total score are given along with 

information that allows a direct comparison of predicted to experimental values.   

3.5 Results 

Assignments for our four uniformly labeled test proteins and one glycoprotein have been 

produced using the programs introduced above. The four uniformly labeled test proteins range in 

size from 55 to 212 amino acids.  Different mixes of secondary structures are represented, 

including those rich in alpha-helix, rich in beta-sheet and a combination of both. There are 

instances of missing data and different levels of internal motion.   For the two domain construct 

from Robo1, our example of a sparsely labeled glycoprotein, 15N-1H HSQC spectra for the lysine 
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and phenylalanine labeled versions are shown in chapter 2.  These spectra give examples of the 

resolution that can be expected for a sparsely labeled, non-deuterated 23 kDa protein.             

Working with the first four proteins, for which assignments are well documented by 

traditional methods, provides an opportunity to evaluate the degree to which each measurement 

type contributes to the assignment process.  Their contributions can be visualized in the 

heatmaps similar to those generated by the auxiliary statistical analysis program. The examples 

shown in Figure 3.2 use the X-ray structure, 2K5P, for prediction and the deposited information 

for the NMR structure, 3CWI, for experimental data.    Experimental assignments are listed on 

the y-axis and predicted assignments are listed on the x-axis, both ordered with respect to 

increasing residue numbers.  Correct assignments fall on the diagonal.  The contributions to the 

total score from each data type have been generated using an in-house MATLAB script 

(available at the ASSIGN_SLP download site).  The values are represented on the plots in gray-

scale, with black representing zero (best score) and white a normalized score of 1. The amino 

acids represented are 7 alanines and 9 valines.  Since we do not allow cross-assignments between 

the amino acid types, white regions exist for coordinates1-7, 8-16 and 8-16, 1-7.  The first 3 

panels are heatmaps of the scores for individual data types; chemical shifts, NOEs and RDCs. 

From these heatmaps, it is clear that NOEs are the most informative since the darkest spots for 

most possible assignments fall on the diagonal. However, it is also obvious that there are cases 

with little distinction between pairs of possible assignments (scores for peaks 1, 6, and 13), and 

an incorrect assignment would be indicated for peaks 9 and 12.  Data for RDCs and chemical 

shifts are typically less definitive, but still useful.  Adding all the scores together produces a plot 

in which the diagonal box is darkest for all but one possible site.  The heatmaps have already 
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been used to extract an error estimate for NOEs, but they could be used to evaluate the proper 

weighting for all data types.  We will examine this possibility in the future.               

 

Figure 3.2. Heatmaps comparing predicted and experimental values of each type of 

measurement (chemical shift, NOEs and RDCs) and total score contribution. Each number on 

both X- and Y- axes represent one labeled residue.  The amino acid type is assumed to be known 

for the two sets of crosspeaks. 

An example of the output of our assignment program for the 3CWI-2K5P protein is 

shown in Table 3.2. The output contains not only all the possible assignments but also the 

solution rank and the score contributions from each type of measurement. There is a comparison 

of experimental and predicted RDC data for each site.  For chemical shifts the experimental data 

are given for each site; the predicted data are given in the output header.  For NOEs individual 

score contributions in terms of (1-R)2 are given.  In the example presented, the first rank solution 

is a single-swap of two residue assignments (peak 3 should assigned to 48 and peak 4 should 
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assigned to 32); peak 3 has no RDC data, making assignments for this pair somewhat 

ambiguous. 

The results of application of our assignment program to all four uniformly labeled test 

cases are summarized in Table 3.3.  In all cases 1H and 15N chemical shifts, NOE peak lists for 

HSQC crosspeaks, and a single set of RDCs were available.  The top score solutions contain at 

least 70% of correct assignments (case 3FIA) and can reach 100% of correct assignments (case 

3C4S).  The correct solution is always found near the top of the list; the worst case is number 11 

out of 7493 solutions for 3FIA which has 6 missing RDCs.  

The application to Robo1-Ig1-2 deserves a separate discussion.  Robo1-Ig1-2 is both 

larger than the other test proteins, (212 residues), it has the potential complication of internal 

motion between domains, and it is a glycoprotein where sparse labeling with individual amino 

acids is necessary.   The top ranked assignment from an initial run (having a score of 4.09) 

contains 10 correct assignments and the completely correct solution was solution number 366. 

However, the Robo1 protein is a good example of using some intelligence in changing the 

weights of the contributions in the objective function to improve performance.  The calculation 

using initial error estimates had high chemical shift contributions to the scores and several of the 

RDC’s did not agree with the back-calculation of individual contributions.  By increasing the 

errors of the chemical shift terms to lessen their importance in the objective function, the correct 

solution moved from a rank of 366 to a rank of 18 in a list of 354 acceptable solutions with 

scores less than 5.09. The top ranked solution still had 10 correct assignments. 

For Robo1-Ig1-2 it is possible to see some of the reason for the four missed assignments 

in the top ranked solution.  The RDC degeneracy makes it hard to distinguish peak 4 from 9, 

peak 6 from 7 and peak 13 from 14. Therefore, swaps between assignments for these pairs might 
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have been expected.  10 correct out of 14 is in fact not a bad result.  We might also have 

expected the RDC data to be compromised in the Robo1-Ig1-2 case by the existence of inter-

domain motion.  This could have led to different alignment tensors for the two domains and 

completely incorrect RDC predictions when assuming a rigid structure and extracting a single set 

of alignment parameters.   The fact that RDCs fit reasonably well may mean that motions are 

fairly restricted in the presence of the large attached glycan.  The crystal structures showing large 

variations in inter-domain geometry were all produced on non-glycosylated material. 

It may seem convenient to focus on top-ranked solutions, however, this is not particularly 

valuable for a protein for which there is not prior knowledge of the correct assignment. 

Identifying sites which are assigned with high confidence is actually more important than 

obtaining a complete assignment.  For example, in applications to ligand binding by chemical 

shift perturbation, one only needs to know the assignment of the perturbed peak, and for domain 

orientation using RDC measurements, one only needs an adequate number of confident 

assignments to use RDCs.  
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Table 3.2. First rank solution for assignments of 3CWI-2K5P. 

Solution 

Rank 

1                

Peak number 2 5 1 3 4 7 6 12 15 9 14 11 8 13 16 10 

Residue number 15 26 30 32 48 51 59 5 12 20 29 35 37 43 54 60 

Exp.RDC 2.69 7.24 0.96 999 0.74 -9.87 3.33 -3.24 999 3.2 9.5 999 -0.17 999 -1.28 999 

Calculated RDC 3.04 8.41 -0.14 0 0.42 -8.94 1.1 -1.92 0 3.5 9.6 0 0.15 0 0.11 0 

Exp. shift (N) 121.2 126.1 131.1 120.2 119.9 119.5 121.1 226* 225* 217.9* 219.2* 221.2* 227.6* 226.8* 226.2* 221.8* 

Exp. shift (H) 7.36 8.71 8.54 8.01 8.03 7.54 8.33 108.56

* 

108.56

* 

107.81

* 

107.58

* 

107.33

* 

109.62

* 

108.87

* 

109.22

* 

109.06

* 

NOE score 0.01 0.2 0 0.11 0.23 0.1 0.01 0.05 0.05 0.15 0.03 0.2 0 0.43 0 0 

Data type RDC N H NOE Sum/Score           

Total score 1.48 0.99 1.19 1.52 5.19           

*100 is automatically added to the chemical shift for the second type of amino acid so that different types of amino acid will 

not be cross-assigned. 999 is used to indicate data that are not available. The incorrect assignment is colored in gray; 3 and 4 should be 

interchanged.
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Table 3.3 Assignment summary of four test protein cases. 

         *If the lowest score for an application is below 4, all the solutions with a score under 5 are 

collected. If the lowest score is above four, all the solutions with a score more than the lowest 

score plus 1.0 are collected. 

One approach to assessing the probability of a correct assignment is to look at the 

frequency with which a crosspeak is assigned to the same site in solutions which fall within a 

standard deviation or so of satisfying experimental data.  Since we have tried to scale scores 

relative to estimated error for each data type, the cut-off for solutions to examine should be 

roughly equal to the number of data types used.  Our test cases had 4 data types.  We would 

expect to see a significant number of solutions with scores below 4.  Two of the test proteins fall 

in this class, 3CWI had a best solution score of 3.66 and 3FIA had a best solution score of 3.87.  

The other 3 had best scores of 4.45, 5.38, and 4.09. The higher scores could represent an 

underestimate of error, a systematic deviation in some data due to internal motion, or minor 

differences in structure between solution and crystal.  To get an adequate sampling of solutions 

we will examine solutions with scores less than 5.0 if the minimum score is less than 4 and one 

plus the minimum when the minimum score is larger or equal to 4. We consider these to be 

acceptable assignments. 

A visual way of presenting this analysis is shown in Figure 3.3. Histograms show the 

number of times a crosspeak is assigned to each site. If we take consistency to be assignment of 

PDB 3C4S 3CWI 3LMO 3FIA 

Labeled Sites and Number Ala 4, Val 8 Ala 7, Val 9 Ala 12, Lys 

6 

Ala 8, Lys 6 

Number of  Acceptable Solutions* 260 1376 14006 7493 

Top Score Solution (correct/total) 12/12 14/16 16/18 10/14 

Correct Solution Rank 1 4 2 11 

Consistently Assigned Crosspeaks 

(correct/total) 

7/12 10/16 15/18 10/14 

Missing Data 0 5 RDCs 1 RDCs 6 RDCs 
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the same residue to a given crosspeak in more than 50% of the acceptable assignments, we find 

the following:  of the 60 assignments which we can compare to the results of traditional triple 

resonance assignments, we would assign with confidence 35 peaks or about 60% of them.  We 

find that among these 35 we would make one mistake.  This would correspond to being correct 

97% of the time, something close to a 95% confidence limit.  The Robo1 system is a little 

different because we have good reason to believe that the structural model may be inadequate.  

Nevertheless, applying the same criteria we find that we can assign 7 of the 14 peaks with 

confidence and all of these agree with our manual assignment.   
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Figure 3.3. Histogram showing the frequency with which each crosspeak (measurement) 

is assigned to each site (residue) for test proteins and Robo1.  

3.6 Discussion 

Thus, we have clearly demonstrated an alternate procedure for assignments of HSQC 

crosspeaks from sparsely labeled proteins.  This is particularly useful for glycoproteins that may 

have to be expressed in mammalian cell culture.  Certain isotopically labeled amino acids are 

only moderately expensive.  Drop-out media for mammalian cell culture is available and 

procedures for expression using 100-300 mg/L of labeled amino acid have been described 39.  

The basic experiments for data collection are straightforward and not extremely time consuming. 

For Robo1-Ig1-2 only a single protein sample was needed for a complete set of experiments on 

each amino acid type; this is less than that typically required for a complete set of traditional 3D 

NMR experiments. The computation times are also modest, and more importantly, do not require 

personnel time.  For the proteins studied, each required 5 hours or less to cover all cross-over 

mutation rates (0.1, 0.2, 0.4, 0.6 and 0.8) on a Xeon E5-2640 CPU.  
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We have emphasized the use of 15N-enriched amino acids, but methods are equally 

applicable to 13C-enriched amino acids.  Metabolic labeling in methyl groups of isoleucine, 

leucine and valine, combined with perdeuteration, has become a popular approach to NMR-

based structural work on large proteins 40.  Some alternate assignment strategies have also been 

developed for these systems 28-31, but we believe the approach described here could offer some 

advantages.  Labeling with 13C-methyl alanine provides the same excellent sensitivity and 

resolution, but it also provides RDCs that are backbone centered, much like 15N-1H amide RDCs. 

These can be used in our assignment strategy. Complete deuteration of large proteins would have 

to be sacrificed to collect the type of NOE data we use, but there is precedent for collection of 

NOEs on partially deuterated proteins that give well resolved spectra 41 42.   

The procedure we describe does require structures for at least the individual domains 

comprising a protein, or proteins comprising a multi-protein complex.  Structures for many of the 

proteins of interest today have been produced by X-ray crystallography or NMR and are 

available through readily accessible databanks.  In principle, many other proteins can be modeled 

from homologous proteins in databanks 43-44.  We have not examined the use of modeled protein 

structures.  However, it is likely that high quality structures will be required, as RDCs, NOEs and 

chemical shifts are all highly sensitive to three dimensional structure.  Some limitations may also 

arise, because, NOEs are not sensitive just to an average structure or minimum energy structure, 

but to all structures sampled on the timescale of an NMR measurement.  Accounting for 

conformational sampling using molecular dynamics trajectories remains one of the most 

promising options for improving predictions of chemical shifts, RDCs and NOEs.  There have 

already been attempts to improve both chemical shift predictions and NOE predictions using 

these trajectories.   
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We have used just four types of data in this presentation.  However, addition of other data 

types is relatively straightforward.  Pseudo-contact shifts have the same geometry dependence as 

RDCs and can be predicted with the same single-value-decomposition algorithms used for 

RDCs.  A precedent for use of these in resonance assignment has been established29,45.    

Paramagnetic relaxation enhancements (PREs) also have the same dependence as an NOE.  

There are other types of readily accessible data that would require design of distinctly different 

scoring functions.  Amide protein exchange rates, for example, are easily measured from 15N-1H 

HSQCs, and there have been some attempts at making predictions based on structure 46.  These 

additions promise significant improvements in the applicability of our sparse-label assignment 

strategy in the future. 

In summary, we have successfully demonstrated an NMR resonance assignment strategy 

that does not rely on triple resonance experiments and is applicable to proteins that benefit from 

sparse isotope labeling as opposed to uniform isotopic labeling.  A program, “ASSIGNments for 

Sparsely Labeled Proteins”, that uses a genetic algorithm to search for the best match of readily 

accessible experimental data to data predicted from known domain structures, has been 

developed.   While a set of relatively small, previously assigned, proteins has been used to 

validate methods, the approach is applicable to larger proteins and a growing number of 

glycoproteins that are proving important in the study of human physiology and disease.  
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CHAPTER 4 

STRUCTURAL CHARATERIZATION OF HEPARAN SULFATE 

INTERACTING WITH LAR-IG1-23

                                                 
3 To be submitted to the Journal of Biological Chemistry. 
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4.2 Abstract 

Leukocyte common antigen-related (LAR) protein is one of the type IIa receptor protein 

tyrosine phosphatases (RPTPs) which are important for signal transduction at the axon surfaces. 

Heparan sulfate chains play essential roles in the modulation of LAR signaling. Here, we report 

the structural characterization of the first two immunoglobulin domains (Ig1-2) of LAR 

interacting with a heparan sulfate pentasaccharide (GlcNS6S-GlcA-GlcNS3,6S-IdoA2S-

GlcNS6S-OME, trade name fondaparinux) using multiple solution-based NMR methods. 

Because LAR is natively glycosylated we chose to express the protein in mammalian cells. 

Perdeuteration is not an option under these conditions and uniform labeling with 15N and 13C can 

be very expensive.  Therefore, to maintain resolution and reduce expense we applied a sparse 

labeling strategy in which supplementation with a single type of isotopically enriched amino 

acids is used (in this case 15N-enriched lysine). The assignments of labeled crosspeaks have been 

achieved using the software package, ASSIGN_SLP, and the aid of a lanthanide binding peptide 

construct to decrease crosspeak overlap and take advantage of distance dependent paramagnetic 

relaxation enhancement. Titration of LAR with fondaparinux reveals significant perturbations of 

crosspeaks assigned to Lys 68, 69, 71 and 72, allowing these residues to be associated with the 
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binding site and a disassociation constant of 60 µM to be obtained. Saturation transfer difference 

(STD) and transferred nuclear Overhauser effect (trNOE) experiments have identified binding 

epitopes and bound conformations of fondaparinux. NMR restraints derived from STD, trNOE, 

and shift perturbation data were combined in the docking program, HADDOCK, to generate 

models for the LAR-fondaparinux complex. The modeled complex is further analyzed by post-

processing energetic analysis to identify key residues involved in the binding process. 

4.3 Introduction 

LAR, or leukocyte common antigen-related protein, is one of the type IIa receptor protein 

tyrosine phosphatases (RPTPs). Different from other RPTPs, most of which remain as orphan 

receptors1, the type IIa RPTPs have been shown to bind a variety of cell surface proteins or 

soluble ligands and are believed to be highly involved in cell-cell or cell-matrix contacts2-5. LAR 

regulates diverse biological events, such as axonal guidance and outgrowth during neural 

development 6, synaptic organization7, cell proliferation8 and immune response9. Among the 

ligands that can interact with LAR and modulate RPTP signaling at neuronal growth cones are 

heparan sulfate proteoglycans (HSPGs) and chondroitin sulfate proteoglycans (CSPGs), 5. 

Extensive previous studies have shown that the HSPGs and CSPGs oppositely regulate synaptic 

function upon binding with LAR.  HSPGs complexing with LAR result in proteins clustering and 

promote neuron extension to the post synapse and interaction with postsynaptic proteins such as 

TrkC receptor protein tyrosine kinase5, 10.  Contrarily, CSPGs complexing with LAR disrupt 

protein clustering, and lead to an inhibition of neural growth and regeneration3, 5. Protein-

glycosaminoglycan interactions are heavily dependent on the structural characteristics of the 

glycan, such as length of the sugar chain and sulfation patterns11-12. For example, among 

different chondroitin sulphate isoforms (e.g. CS-A, CS-C and CS-E), CS-E shows a preference in 
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the interaction with RPTP sigma and inhibits the signaling pathways13. However, no similar 

specificity characterization or structural detail has been revealed for the heparan sulfate LAR 

interaction. Therefore, generating a structure of specific interaction between LAR and a well-

defined HS would provide structural insight and an improved understanding of protein clustering 

and signaling pathways.  In this paper, we present a solution model for the first two extracellular 

immunoglobulin-like domains of LAR (LAR-Ig1-2) (crystal structure shown in Figure 4.1. A) 

and their interaction with a specific HS pentasaccharide chain (GlcNS6S-GlcA-GlcNS3, 6S-

IdoA2S-GlcNS6S-OME, trade name fondaparinux).  The structure of fondaparinux, with our 

residue naming convention is shown in Figure 4.1.B).  

         

Figure 4.1.  (A) The LAR-Ig1-2 structure is shown as a ribbon diagram with Lys 

residues labeled in blue. (B) Structures of the heparan sulfate pentasaccharide used in this study 

with sulfate groups labeled in red. 

Structurally, type IIa RPTPs, including LAR, share a very similar domain architecture, 

containing three immunoglobulin-like (Ig) domains, followed by nine fibronectin type II (FN) 

units, a single transmembrane helix and two intracellular phosphotyrosine-specific phosphatase 

domains2. Earlier crystallography and site-direct mutagenesis studies have suggested that the first 

Ig domain (Ig-1) is structurally crucial for the glycosaminoglycans binding and the first two Ig 
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domains (Ig 1-2) are a minimum structural requirement for interaction with the postsynaptic 

ligand TrkC4. Therefore, we selected the first two Ig domains for this study. The availability of a 

Ig1-2 crystal structure5 will not only facilitate the protein assignment process but also allow a 

direct comparison with structures from our study. Compared with the remaining Ig domains, Ig 

1-2 are believed to display the least inter-domain orientation flexibility4.  This may be a valuable 

characteristic for synaptic signaling, and verification of retention of this structure in solution 

could be important.  

To produce an acceptable sample, expression in a mammalian host was chosen (HEK 293 

cells).  LAR has a single N-glycosylation site in the first two domains, more specifically at N117 

on the Ig1 domain. Normally the glycans would be complex and heterogeneous. To make the 

glycosylation homogenous, we expressed LAR-Ig1-2 in a cell line deficient in GnT1, stopping 

synthesis at a high mannose type; we then cleaved these high mannose forms to a single 

GlcNAc.  This single sugar, covalently attached to the protein, has been shown maintain 

structural stability and some level of function in many glycoproteins14. We believe it will do so 

for LAR. To allow study by NMR a sparse labeling strategy was chosen15. 15N-enriched lysines 

were chosen for selective labeling because of the likely involvement of lysines in GAG-related 

binding processes. The Ig1-2 construct has 13 lysines well dispersed throughout the structure, 

and they are expected to give well dispersed crosspeaks in two-dimensional 15N-1H heteronuclear 

single quantum coherence (HSQC) spectra.  

Previously we developed strategies to make crosspeak assignments for a sparsely labeled 

protein (see chapters 2 and 3 of this thesis).16-19. Here we have applied ASSIGN_SLP20, a 

software package designed to use a genetic algorithm to search for an optimal assignment of 

HSQC crosspeaks to specific lysine sites using predicted and experimental values for chemical 
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shifts, RDCs and NOEs. These procedures are complemented by the use of paramagnetic effects 

from a lanthanide binding peptide introduced into the protein construct21.  The distance 

dependence of these effects allowed separation of crosspeaks into subgroups which could then be 

matched with a smaller set of sites. These methods proved quite efficient and successful. The 

crosspeak assignments provide a basis for functional interpretation and structural analysis. 

To date, the achieved structural characteristics of LAR-HS complexes are based on using 

either long-chain heparin22 or depolymerized heparan sulfates (i.e., dp 4, 6, 8 or 10), both of 

which are highly heterogeneous, or  a HS mimic (sucrose octasaccharide) 5 which lacks the 

structural and functional features of HS. In this study, we use a structurally well-defined and 

homogenous HS pentassacharide, GlcNS6S-GlcA-GlcNS3,6S-IdoA2S-GlcNS6S-OME (trade 

name fondaparinux), which is of reasonable length, to generate a more realistic model for HS 

binding to LAR.   A series of NMR techniques are used to generate data, including chemical 

shift perturbation (CSP) which defines the protein binding pocket, saturation transfer differences 

(STD) and transferred nuclear Overhausser effects (trNOE) which identify the ligand binding 

epitope and geometry. The model is generated by the docking program, HADDOCK23, using the 

data as restraints.  The binding geometry is rationalized by binding free energy analysis and per-

residue decomposition. The resulting structure shows an extended binding cleft which 

encompasses the binding site for sucrose octasulfate (an HS mimic) identified in an existing 

crystal structure5.  This structural characterization begins to build a solid foundation for 

understanding LAR-HS signaling. 
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4.4 Materials and Methods 

4.4.1 Materials  

15N- Lys and deuterium oxide were purchased from Cambridge Isotope Laboratories. All 

other chemicals including HS fondaparinux, sodium salt, were purchased from Sigma-Aldrich 

unless otherwise stated. 

4.4.2 Protein expression and purification  

The detailed expression and purification procedure was described previously24. Briefly, 

the genes for LAR-Ig1-2 and a construct containing a lanthanide-binding peptide loop, LAR-

loop-Ig1-2, were synthesized by GenScript (Piscataway, NJ) with codons optimized for 

utilization in mammalian cell expression.  The DNA fragments for both sequences were cloned 

into the mammalian expression vector, pGEn2, which includes codes for an export signal, His-

tag, AviTag, GFP-superfolder, and TEV cleavage site, using restriction digestion and ligation into 

a site following the TEV sequence (sequences given in Figure 4.2).  

Large scale DNA preparations were prepared and transiently transfected into Lec1 

(GnT1-) suspension culture cells in FreeStyle 293 media (Thermo Fisher Scientific, Waltham 

MA). The cell medium was exchanged to Freestyle dropout medium (Lys, Phe, Tyr, and Val 

amino acids) supplemented with 150 mg/L isotopically labeled Lys and non-isotopically labeled 

Phe, Tyr and Val in the second day of transfection. The recombinant protein was harvested after 6 

days of growth and was purified from the culture supernatant using Ni2+ -NTA chromatography 

and concentrated to ~1 mg/mL. The resulting protein preparation was digested with recombinant 

TEV to cleave between LAR and GFP and then subjected to Ni2+-NTA chromatography a second 

time to remove GFP.  The N-glycan was trimmed off by Endo-H cleavage and one GlcNAc was 

left attached to the protein. The protein was subsequently purified by size exclusion 



 

111 

 

chromatography. The final protein yield was 12 mg/L. An average 15N labeling efficiency for 

lysines was 77%, as determined by analyzing the isotopic envelope of the tryptic peptides 

containing lysine residues by mass spectrometry.  

 

Figure 4.2. Construct sequences of LAR and LAR_loop. 

4.4.3 NMR spectroscopy  

All the NMR spectroscopy was carried out on Agilent instruments with DD2 (18.8 T and 

14.0 T) consoles and 5 mm cryogenically cooled triple resonance probes. NMR protein samples 

were 220 µM in 10% D2O buffer containing 10 mM MES and 100 mM NaCl at pH 6.0 for 15N 

HSQC titration, 3D 15N-filtered NOE, and RDC experiments. LAR loop samples contained 

lanthanides at lanthanide to protein ratios slightly less than 1:1. The protein-ligand complex 

samples for STD and trNOE experiments were in 100% D2O buffer containing 20 mM sodium 
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phosphate and 100 mM NaCl at pH 6.5, at a protein ligand ratio of 1:30 with a ligand 

concentration of 1.2 mM.  

NMR experiments were standard Biopack experiments conducted at 25 °C.  A mixing 

time of 40 ms and 90 ms was used in trNOE and HSQC-NOESY experiments (pulse sequence: 

gnoesyNfhsqcA). Two sets of RDCs were measured on protein samples containing either 12.5 

mg/mL Pf1 phage (ASLA biotech) or 4.2 % PEG (C12E5/hexanol) bicelle using a pulse 

sequence in which cross-peaks in HSQC spectra are modulated by J+D coupling in the 15N 

dimension25. LAR-Ig1-2 (170 µM) was titrated with increasing concentration of fondaparinux 

from 50 µM to 550 µM in steps of 50 µM from 0 µM to 150 µM and in steps of 100 µM from 

150 µM to 550 µM, and recorded by 1H-15N HSQC (pulse sequence: gNfhsqc ). The 

disassociation constant was determined by fitting the chemical shift perturbation as a function of 

concentration for each sparsely labeled residue as described before16. The STD (pulse sequence: 

dpfgse_satxfer)  samples were irradiated at both -2.5 and 9.5 ppm with interleaved irradiation at 

30 ppm to create difference spectra, and saturation times were increased from 1 to 4 s in steps of 

1 s. The residue specific rotational correlation times for the protein were obtained from an SCT–

CCR experiment using the same sample from the titration experiment26. The ligand proton 

resonances were assigned by acquiring and analyzing 1H proton, 1H-1H TOCSY, 1H-1H NOESY, 

13C-1H HSQC and 13C-1H HMBC spectra. All the NMR data were processed with NMRPipe27 

and analyzed with SPARKY28.   

4.4.4 Assignment of sparsely labeled LAR 

 The assignment of each labeled Lys residues in LAR-Ig1-2 was achieved using the 

program Assign_SLP20. The input experimental data include amide 1H and 15N chemical shifts, 

two sets of RDCs and 15N-filtered NOEs. NOEs were converted to vectors using a script 
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contained in the program package. In order to improve crosspeak assignments, LAR with the 

lanthanide binding loop loaded with Gd3+ was used to separate labeled sites into a nearby group 

and a distant group based on paramagnetic broadening and loss of crosspeak intensity. There is 

less potential degeneracy of data when groups are smaller, making the assignment more robust. 

Different snapshots (600 ns, 800 ns and 1000 ns) from an MD simulation of LAR-Ig1-2 

containing the lanthanide binding loop were utilized to identify 5 sites closest in distance to the 

metal. Assignment to these groups was enforced by adding penalties to the genetic algorithm 

objective function in proportioninter to elements of a user-specified constraint matrix in which 

elements denoting assignment to a correct group have value zero and elements denoting 

assignment to and incorrect group have value one (proportionality constant 10 in this case).   In 

principle, the efficiency of the calculation could also be improved by running the ASSIGN_SLP 

separately on the two groups. The number of assignments to be screened is given by N! where N 

is the number of sites to be assigned.  Dividing the calculation into two steps, one of size n and 

one of size (N-n), has a complexity of (N-n)! x n!, which is much less than N!.  However, the use 

of RDC data requires the determination of 5 order parameters and at least 6 pieces of data for any 

calculation to be effective.  The size of one of our groups is too small to take this route.  Other 

details of the genetic algorithm implementation have been described previously20.  Briefly, a 

combination of mutation and crossover rates (0.2, 0.4, 0.6 and 0.8 for both mutation and 

crossover) was used to allow a thorough search of assignment space, and all the assignments 

with a score under 8 were collected as possible solutions and saved for analysis. 

4.4.5 Computational Docking  

The docking program HADDOCK23 was used to generate the molecular models of the 

LAR-fondaparinux complex. The crystal structure of human LAR-Ig1-2 (PDB 2YD5) was used 
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as the input protein structure. Two PDB structures of fondaparinux with the 2S IdoA group in 

either 1C4 or 2S0 ring forms were generated using the GLYCAM29 web server. Ambiguous 

interaction restraints were set for the protein residues identified as involved in binding by 

chemical shift perturbation in the NMR titration experiments and similar restraints were set for 

residues in the ligand based on STD data. Interproton distance restraints within the ligand were 

set based on distances calculated from trNOE data using a 1/r6 dependence of NOE intensity and 

a reference distance from the intra-residue 1H-2H pair of the GlcNAc residue.  The upper and 

lower limits were set by adding or subtracting 0.3 Å to the calculated distance.  During the 

flexible docking part of the routine, the ligand was set to be fully flexible and strands of the 

protein containing direct binding sites were specified as semi-flexible. The detailed docking 

process has been described previously 16. In the end, 20 top scoring models with the lowest rms 

NOE deviation and lowest energy were obtained.   

4.4.6 MD simulation, free binding energy calculation and per-residue decomposition 

 In order to provide pdb structures of loop containing LAR-Ig1-2, a molecular dynamics 

(MD) trajectory was carried out using the SANDER module of AMBER 1430 and the ff14SB31 

force field. The atomic coordinates were initially obtained from pdb 2YD5 with the lanthanide 

binding loop modeled in using CHIMERA32. The protein was solvated by a cubic box of TIP3P 

water. The MD simulation lasted for 1 µs after 2000 steps of minimization followed by 400 ps of 

heating. Similar MD (MD) trajectories were initiated with the top 4 output HADDOCK 

structures using the AMBER 14 package. The GLYCAM_06j-133 force field was used for 

carbohydrate simulation. For free energy calculation and per-residue decomposition, the same 

protein and ligand structures produced by HADDOCK were used to extract the initial atom 

coordinates. This MD simulation lasted for 50 ns after minimization, heating and density 
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equilibration. The molecular mechanics generalized Born surface area (MM-GBSA)34 method 

followed by per-residue decomposition was applied to calculate the free binding energy of the 

bound state and the solvation energy of both the protein and ligand in solution. Detailed 

parameterization was described elsewhere16. 

4.5 Results 

4.5.1 Assignment of LAR HSQC crosspeaks   

Figure 4.3 shows superimposed 15N-1H HSQC spectra of the 15N-Lys labeled two domain 

constructs of LAR, one containing a lanthanide binding loop carrying a diamagnetic ion (blue), 

and one without that loop (red).  Several options for loop insertion had been explored, however, 

insertion in the loop normally connecting -strands E and F (between residues G70 and K71) 

was the only position giving acceptable levels of expression, retention of LAR structure and 

useful lanthanide affinity.  12 and 13 crosspeaks are observed in the respective spectra; there are 

13 lysine sites in the construct and we would expect 13 peaks.  Peaks that are absent or of 

reduced intensity often reflect exchange broadening due to internal motion near the 

corresponding sites. Preservation of crosspeak positions on comparing the non-loop and a loop 

sample with a diamagnetic ion verify the retention of basic structural features of LAR, except for 

regions corresponding to crosspeaks 5, 10 and 11.   

There are three lysines within two residues of the loop insertion, and it is not surprising 

that crosspeaks from these sites would shift.  The affinity for fondaparinux also proves to be 

greatly reduced in the loop construct.  This is also not surprising as the three sequentially 

proximate lysines are among the residues previously suggested to be involved in HS binding.  

Hence, we will use the loop construct for crosspeak assignment purposes and for verification of 
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the in-solution inter-domain structure of the LAR two domain construct. We will return to the 

non-loop structure for determination of a fondaparinux-LAR complex. 

 

Figure 4.3. 2D 15N-1H HSQC spectra of (red) 15N Lys labeled LAR and (blue) 15N Lys 

labeled LAR-loop. Each peak in the LAR-loop spectrum is labeled with a peak number as a 

reference for the following assignment. 

The LAR loop construct was selected to conduct initial resonance assignments partly 

considering the sharper lines and the more dispersed chemical shifts, especially in the direct 

dimension.  This dispersion is particularly critical for collection of subsequent 15N-filtered 

NOESY spectra, which were collected in a pseudo 2D fashion relying on dispersion in the proton 

dimension.  To carry out assignments we used the program ASSIGN_SPL which requires 

multiple NMR observables including amide chemical shifts, 15N-filtered NOEs and RDCs, as 

well as corresponding predicted values, using domain structures available from the crystal 

structure5. The predicted proton and nitrogen chemical shifts were generated using the PPM_one 
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software35.  NOEs were predicted using a simple 1/r6 dependence of NOE intensity on 

interproton distance, and these intensities were used to generate a predicted vector in similar 

format to the experimental values.  Predicted RDCs have to be determined for each possible 

assignment because of the need to determine five order parameters along with the back-

calculated RDC set.  So, this is done internally in ASSIG_SLP.  Predicted and experimental 

values for chemical shifts and NOEs are given in Table 4.1 and Table 4.2.  Experimental RDCs 

are given in Table 4.3.   

Table 4.1. Experimental and predicted chemical shifts of Lys labeled 15N-HSQC. 

Predicted chemical shifts are based on the 1000th ns snapshot from the LAR-loop MD run. 

Residue numbers are from the MD run, those in parentheses are from the crystal structure. 

Crosspeak Experimental Lys residue Predicted 

 N (ppm) H (ppm) MD (crystal structure) N(ppm) H (ppm) 

1N-H 123.113 9.462 3(32) 126.975 8.427 

2N-H 121.556 9.148 8(37) 118.833 8.123 

3N-H 128.096 9.107 32(61) 121.242 8.294 

4N-H 124.751 8.854 39(68) 121.665 8.535 

5N-H 125.224 8.738 40(69) 127.394 7.845 

6N-H 127.772 8.692 61(71) 121.681 8.325 

7N-H 121.254 8.666 62(72) 120.668 8.528 

8N-H 123.945 8.592 111(121) 120.616 8.688 

9N-H 123.664 8.505 134(144) 124.628 8.701 

10N-H 122.317 8.26 138(148) 123.97 8.229 

11N-H 120.449 8.047 160(170) 118.78 8.671 

12N-H 122.068 7.975 175(185) 125.576 8.702 

13N-H 123.632 7.959 194(204) 120.347 8.348 

 

Table 4.2. Experimental and predicted NOEs within 4 Å. Predicted chemical shifts are 

based on the 1000th ns snapshot of LAR-loop.  
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Experimental NOEs Predicted NOEs 

HSQC crosspeak 

number 

1H 

(ppm) 

Lys residues 

(MD naming) 

Predicted contact residue 

name, number and atom 

chemical shift 

(ppm) 

1 1.221 3 SER 2 HA 4.539 

 0.664 3 LYS 3 HB3 1.77 

 0.306 3 LYS 3 HG3 1.381 

 0.125 3 LYS 3 HA 4.359 

 -0.069 3 LYS 3 HG2 1.381 

 9.462 3 LYS 3 HB2 1.77 

 5.004 8 ILE 7 H 8.676 

 7.95 8 PHE 6 HB3 2.837 

 4.639 8 GLN 26 H 8.608 

 9.478 8 GLN 26 HB2 2.005 

  8 LYS 8 HA 4.477 

2 4.67 8 ILE 7 HB 1.722 

 1.137 8 LYS 8 HB3 1.755 

 1.491 8 LYS 8 HB2 1.755 

 9.157 8 PHE 6 HA 5.259 

  8 ILE 7 HA 4.001 

3 4.425 8 ALA 27 HA 5.508 

 1.503 8 PHE 6 HB2 2.837 

 1.133 8 VAL 9 HG12 0.387 

 9.132 32 LYS 32 HG2 1.551 

  32 PRO 31 HA 4.513 

4 9.246 32 LYS 32 HB2 1.713 

 4.762 32 LYS 32 HA 4.13 

 1.403 32 PRO 31 HB3 2.096 

 1.157 32 LYS 32 HG3 1.551 

 0.629 32 GLU 30 HA 4.627 

 0.453 32 PRO 31 HB2 2.096 

 0.154 32 LYS 32 HB3 1.713 

 -0.069 39 MET 38 HA 5.012 

 4.506 39 MET 38 HB3 1.84 

 8.849 39 LYS 39 HB2 1.584 

  39 LYS 39 HB3 1.584 

5 4.839 39 LYS 39 HA 4.144 

 2.364 39 MET 38 HB2 1.84 

 1.884 39 LYS 62 HA 4.501 

 1.62 39 VAL 63 HG13 1.045 

 1.045 40 LYS 39 HA 4.144 

 0.811 40 TYR 95 HA 5.135 
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 8.756 40 LYS 40 HB2 1.597 

  40 LYS 40 HB3 1.597 

6 4.651 40 LYS 40 HA 4.105 

 1.878 40 GLU 96 H 8.834 

 1.579 40 GLU 96 HG2 2.143 

 1.033 40 LYS 39 HG3 0.811 

 0.84 40 LYS 39 HG2 0.811 

 0.594 61 GLY 60 HA3 4.018 

 0.324 61 LYS 61 HG2 1.376 

 -0.063 61 LYS 61 HA 4.687 

 9.248 61 GLY 60 HA2 4.018 

 8.709 61 LYS 61 HG3 1.376 

  61 LYS 39 HB3 1.584 

7 3.83 61 LYS 39 H 8.535 

 1.508 61 LYS 61 HB3 1.721 

 1.033 61 MET 38 HB3 1.84 

 1.209 61 LYS 61 HB2 1.721 

 4.651 62 LYS 62 HB3 1.868 

 4.33 62 LYS 61 HA 4.687 

 8.72 62 LYS 61 HB2 1.721 

  62 LYS 62 HG3 1.496 

8 8.76 62 LYS 62 HA 4.501 

 4.604 62 LYS 61 HB3 1.721 

 4.421 62 LYS 62 HB2 1.868 

 4.163 62 MET 38 HG2 2.306 

 2.446 62 LYS 62 HG2 1.496 

 1.776 111 ALA 110 HA 4.644 

 1.594 111 ALA 110 HB3 1.244 

 1.244 111 LYS 111 HB3 1.822 

 8.596 111 LYS 111 HB2 1.822 

  111 ASP 12 HA 4.736 

9 4.526 111 LYS 111 HA 5.137 

 3.765 111 ASP 12 HB3 2.78 

 1.536 111 ALA 110 HB1 1.244 

 1.305 111 ALA 110 HB2 1.244 

 1.165 111 ILE 94 HG12 1.381 

 0.717 134 LEU 133 HA 4.661 

 0.506 134 LEU 133 HG 1.863 

 8.52 134 LYS 134 HA 4.637 

  134 LYS 134 HG3 1.346 

10 4.733 134 MET 144 HE3 1.807 

 4.276 134 LEU 213 HA 4.952 

 1.643 134 LEU 133 HD22 0.722 
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 1.315 134 LYS 134 HG2 1.346 

 8.26 134 LYS 134 HB3 1.836 

  134 TYR 214 HD2 7.105 

11 8.233 134 TYR 214 H 8.642 

 8.345 138 GLU 137 HA 4.558 

 4.716 138 LYS 138 HB3 1.785 

 4.264 138 LYS 138 HB2 1.785 

 3.931 138 LYS 138 HA 3.94 

 1.649 138 VAL 217 HA 4.33 

 1.325 138 GLU 137 HB3 2.009 

 8.05 138 VAL 215 HG12 0.711 

  138 ARG 216 H 8.421 

12 7.201 138 GLU 137 HG3 2.234 

 9.266 160 PHE 159 HA 5.05 

 4.667 160 PHE 159 HB3 2.825 

 1.678 160 LYS 160 HA 4.257 

 1.372 160 LYS 160 HB2 1.429 

 0.671 160 VAL 165 HG23 0.691 

 0.383 160 PHE 159 HD2 7.059 

 1.203 160 LYS 160 HB3 1.429 

 7.978 160 LEU 163 H 7.942 

  160 PHE 159 HB2 2.825 

13 4.757 160 PRO 164 HA 4.434 

 1.362 175 ILE 174 HA 4.584 

 0.828 175 LYS 175 HB2 1.616 

 0.377 175 ILE 174 HG23 0.771 

 0.23 175 GLN 183 H 8.76 

 7.996 175 LYS 175 HA 4.455 

  175 ILE 174 HG22 0.771 

  175 LYS 175 HB3 1.616 

  175 LEU 182 HG 1.158 

  175 GLN 183 HB3 1.841 

  175 ILE 184 HA 4.601 

  194 LYS 194 HB2 1.653 

  194 LYS 194 HG2 1.365 

  194 GLY 193 HA3 4.099 

  194 GLY 193 HA2 4.099 

  194 LYS 194 HA 4.296 

  194 LYS 194 HG3 1.365 

  194 LYS 194 HB3 1.653 

  194 ASN 212 HD22 6.994 
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 Table 4.3. Experimental RDCs of LAR_loop using phage and PEG as alignment media. 

Crosspeak Phage RDC(Hz) Error (Hz) PEG RDC(Hz) Error (Hz) 

1 -3.037 1.76 -1.491 1.366 

2 -4.746 5.457 -4.771 1.89 

3 -0.971 9.244 0.941 7.01 

4 -3.514 1.201 -5.516 1.123 

5 -4.677 5.721 -9.298 4.052 

6 -7.213 0.982 3.811 1.652 

7 -9.676 1.578 3.776 1.557 

8 7.576 1.417 4.244 1.464 

9 -2.98 1.278 -9.005 1.242 

10 -1.019 1.104 -1.06 0.548 

11 -0.477 0.636 -0.631 0.299 

12 -8.8 1.946 -1.722 1.917 

13 -0.222 0.778 -14.583 1.935 

The assignment of crosspeaks to lysine sites was further constrained by correlating 

pramagnetically perturbed crosspeaks with sites close to the ion carried by the lanthanide binding 

loop in the LAR-Loop construct. The superimposed spectra of lysine labeled LAR-Loop with 

and without Gd3+ (a paramagnetic lanthanide) are shown in Figure 4.4. From the overlaid spectra 

we can tell that the intensities of crosspeaks 2, 3 5, 10 and 11 decrease the most; this indicates 

these residues to be the closest in distance to the lanthanide. By comparing the distances from the 

MD simulation, the 5 residues nearest the ion belong to K68, K69, K71, K72 and K121. 

ASSIGN_SLP assigns penalties to any assignment which does not pair one of the five sites with 

one of the 5 perturbed crosspeaks.  

The statistical results of assignment using 3 different MD frames as input protein 

structures are summarized in Table 4.4, and the histograms are shown in Figure 4.5.  Previous 

work (see chapter 320) has suggested a validation criterion based on the frequency of assignment 

of a crosspeak to the same site (more than 50% of the time corresponds to a 95% confidence 

limit).  These assignments are indicated with an asterisk in the table.  Other assignments 
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represent the most frequent assignment.  Multiple residues are listed when the frequencies of 

assignment to multiple residues are similar.  Assignments using the 1000ns frame are most 

definitive, yielding six definitive assignments.  Confident assignments from the 600 ns frame 

were used to confirm two additional assignments.  If we accept the two additional singly most 

probable assignments from the 1000 ns frame, the remaining three crosspeaks can be assigned by 

elimination. 

 

Figure 4.4. Superposition of 15N-1H HSQC spectra of 15N-Lys labeled LAR-Ig1-2, 

engineered with lanthanide binding peptide loaded with Gd3+ (blue). 
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                                      A                                                                    B 

   

                                  C 

Figure 4.5. Histograms of statistical results of assignments using (A) 600 ns (B) 800 ns 

and (C) 1000 ns frames as input structures. 

Table 4.4. Assignments summary of 15N-Lys LAR-loop. 

Crosspeak 600 ns 800ns 1000 ns Assignment summary 

1 K160 K160 K160,K134 K134(144) 

2 K62,K111 K111 K111* K111(121) 
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3 K39,K62 K61,K40 K40* K40(69) 

4 K134* K134 K3,K175 K3(32) 

5 K40 K39 K39 K39(68) 

6 K175* K3 K175 K175(185) 

7 K160,K175,K138 K138 K160 K160(170) 

8 K32 K32* K32* K32(61) 

9 K194* K194 K194,K3 K194(204) 

10 K111,K39 K40,K62 K62,K40 K62(72) 

11 K61* K62* K61* K61(71) 

12 K3,K160 K8,K138 K8* K8(37) 

13 K8* K8* K138* K138(148) 

*Assignment frequency is higher than half of the total assignments. The residue number 

used in the table are according to the amber MD naming system. The residue number 

corresponding to the crystal structure number is listed in parentheses. 

4.5.2 Inter-domain geometry of LAR-Ig1-2   

The RDC data used in the assignment process is also potentially valuable as a means of 

assessing the inter-domain geometry of two domain constructs, like our LAR construct.  We have 

implicitly assumed the folded version of inter-domain geometry seen in the crystal structure (see 

fig. XXX) is preserved in solution, since we needed to combine RDC data for both domains to 

meet minimum requirements for order parameter determination and back-calculation of RDCs.  

However, the fact that we find assignments with total scores in the range expected for 

consistency with all data, suggests that the folded domain geometry is appropriate.  Once 

crosspeaks are assigned, we can also assess the validity of this geometry directly by looking at Q 

factors for RDC data36.  These are ratios of root-mean square deviation (RMSD) of measured and 

calculated RDCs and the root-mean square of the measurements.  Figure 4.6 shows a correlation 
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plot of measure and back-calculated RDCs for our phage and bicelle data.  Loop regions are the 

least ordered in structure, hence the residues located adjacent to these regions are excluded for a 

RDC calculation.  Residues within two of the loop insertion are K69, 71 and 72.  K68 is also 

close (three away), however, its N-H vector does not move significantly during the MD 

simulation. Therefore, K68 is included in the calculation. 10 pieces of RDC data remain and 

these were used in the final calculation. Q factors of 0.19 (phage) and 0.43 (PEG) were obtained.  

A Q factor of 0.4 (based on a larger set of RDC values) has been suggested to reflect a structure 

comparable to an X-ray structure of approximately 2.5 Å resolution37.  Hence, we believe these 

numbers support the contention that the folded LAR structure is preserved in solution.  

     

                                    A                                                                     B                                              

Figure 4.6. Correlation plot of experimental RDCs and back-calculated RDCs for (A) 

phage and (B) PEG bicelle media. 

Comparison of Q factors back-calculated using the folded LAR structure to those back-

calculated using an alternative structure provide another means of assessing the significance of 

these measurements.  The Ig1-2 domains of LAR are structurally similar to the Ig1-2 domains of 

Robo1, but Robo1 has a more extended structure.  So, adjusting LAR inter-domain geometry to 

superimpose with Robo1 would yield a suitable trial structure.  The inter-domain geometry of 



 

126 

 

Robo1 is quite flexible and it results in different forms of crystal structure (pdb 2v9r and 2v9q, 

discussed in chapter 2). Our previous study has shown that Robo1 Ig1-2 domains adopt a slightly 

bent conformation (pdb 2v9r) as opposed to a straight conformation (pdb 2v9q). Therefore, a 

model of LAR (shown in Figure 4.7) is built based on the Robo1 crystal structure pdb 2v9r. To 

do this we have broken the linking peptide (which contains no lysines) and aligned each domain 

of LAR to the respective domains of Robo1. Q factors obtained for phage and bicelle data are 

now 0.43 and 0.88.  The increase confirms that, despite the small number of RDCs, we are 

sensitive to inter-domain geometry, and the folded LAR structure is the best representation. 

 

Figure 4.7. LAR-Ig1-2 model based on Robo1 (pdb 2v9r). LAR Ig1 is in beige, Ig2 is in 

pink and Robo Ig1-2 is in blue. 

4.5.3 Protein binding site identified by NMR titration 

 Direct information on the residue composition of binding sites, as well as disassociation 

constants (Kd), can be extracted from chemical shift perturbations on addition of ligand to a 

sample. The overlaid 2D 15N-1H HSQC spectra of LAR with increasing concentrations of 

fondaparinux are shown in Figure 4.8A. The maximum chemical shift perturbation of each Lys 

site is plotted in Figure 4.8B. 
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                            A                                                                           B 

Figure 4.8. (A) HSQC spectra of 170 µM LAR with increasing concentration of 

fondaparinux from 0 µM to 550 µM with rainbow colors coded. (B) Total chemical shift 

perturbation of each Lys residue is plotted against the crosspeak number.  

Four residues, belonging to peaks 3, 5, 10 and 11, display substantial chemical shift 

perturbation (> 0.05 ppm) upon the titration with fondaparinux. Fitting the average of the shifts 

for these peaks, a disassociation constant (Kd) of 60 ± 24 μM is determined. This is a moderately 

high affinity, well within the range of dissociation constants found for Robo1 interactions with 

HS oligomers (see chapter 2). The data and best fit line are shown in Figure 4.9.  

The limiting shifts for perturbed crosspeaks can also be used as a very qualitative 

indicator of residue involved in fondaparinux binding.  Crosspeaks 3, 5, 10 and 11 have been 

assigned to Lys 69, 68, 72 and 71. Previous literature has also reported these four residues to be 

crucial for binding to heparin by site directed mutagenesis22. The crystal structures of LAR with 

sucrose octasulfate, a mimic compound of heparan sulfate, has also pointed to these four 

residues5 .  The identification of these residue will be used later as a constraint in generating a 

model for a fondaparinux-LAR complex. 
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Figure 4.9. Binding affinity of LAR-Ig1-2 for the HS fondaparinux. 

4.5.4 Ligand binding epitopes from STD experiments   

Binding epitopes on a ligand can be qualitatively identified by saturation transfer 

difference (STD) NMR16, 38-39. The magnetization saturation of a protein proton can be 

transferred to a nearby bound-state ligand proton in a 1/r6 fashion, where r is the distance 

between the two protons. The intensity of the resonance associated with this proton then 

decreases.  If the ligand returns back to the free solution state in a time which is short compared 

to its T1 relaxation time, its resonance intensities are largely retained and result in diminished 

intensities of the averaged solution spectrum for the ligand. The larger the intensity loss, the 

smaller the distance between the ligand proton and the protein proton. Therefore, the binding 

epitope of ligand can be qualitatively characterized.   
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Despite the fact that most protein resonances are suppressed in a normal STD experiment 

by filtering out broad lines, there are complexities that arise with glycosylated proteins, like 

LAR. Although our LAR construct has been treated with Endo-H glycosidase to trim off the 

high-mannose glycans generated from the Lec1 cell line, leaving a single GlcNAc attached to the 

protein, the resonance signals from GlcNAc are often sharp and can carry through to the STD 

difference spectrum. Therefore, we conduct a double difference STD experiment and interpret it 

in a more qualitative manner.  

Figure 4.10A and B are the histograms of relative STD intensity of different ligand 

protons irradiated at -2.5 ppm and 9.5 ppm respectively using a saturation time of 4s. Glycan 

residues are designated as A to E starting from the non-reducing end as in Figure  4.1B, and 

protons are numbered starting with the anomeric proton and proceeding sequentially toward the 

exo-cyclic hydroxymethlene or carboxyl group of each residue. The largest STD intensity losses 

come from BH3/BH4, and some parts of the A (AH2 and AH5) and C (CH1, CH3 and CH5) 

residues. These results indicate that these three residues are most proximate to the protein 

surface, especially the GlcA, with the most significant perturbation from BH3 and BH4 protons, 

whereas the remainder of the ligand (mainly D and E) suffers less perturbation. The linker 

residue (-OME) presents a much stronger STD signal, particularly with 9.5 ppm irradiation. This 

could be associated with a more direct saturation path between aromatic residues and this group 

in the bound complex; there are phenylalanine and tyrosine groups underlying the putative 

binding region.  However, the longer methyl relaxation times and sharp resonance also makes 

these groups more susceptible to experimental artifacts, and this methyl group is not 

characteristic of a native HS fragment.  Hence, we will disregard its interactions in our 

conformational search.  In addition to the strongly perturbed resonances, the histogram shows 
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multiple moderate STD losses throughout the ligand. These effects arise from spin diffusion 

among sets of proximate protons, especially when binding is tight and release from the protein 

slow.   These effects limit the use of STD information to a more qualitative application. The 

strongest STD signals (more than 50%) have been implemented as ambiguous restraints for use 

in the HADDOCK program which will be described later in this chapter. 
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Figure 4.10. Saturation transfer double difference data on various resonances with a 

saturation time of 4 s at (A) -2.5 ppm and (B) 9.5 ppm for fondaparinux.  Data is normalized to 

the STD effect for the proton showing the largest saturation in each case. 

4.5.5 Ligand bound conformation from trNOE experiments  

The transferred nuclear Overhauser effect (trNOE) is a powerful NMR phenomenon to 

study protein-bound ligand conformations. The rotational correlation time of the ligand in the 

bound state is longer than that in the free state. Therefore, the efficiency of magnetization 

transfer is increased in a large complex, and large negative NOEs will dominate over the small 

positive NOEs found for small ligands in solution. We actually use the change in sign of the 
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NOE on moving from small to large correlation times to advantage by choosing a temperature at 

which contributions form free ligands in solution are near zero (30 °C at 600 MHz with a mixing 

time of 40 ms). The intensity of trNOE signals measured from resonances averaged over 

populations with high free-state contributions can then be interpreted through a 1/r6 dependence 

on interproton distances of the bound state. We use a distance of 2.5 Å between H2 and H4 of 

the GlcNAc residue as a reference distance when converting NOE intensity to distance. 

Heparan sulfate glycosaminoglycans display a significant level of structural flexibility, 

primarily due to variation in glycosidic linkage torsion angles and the multiple glycan ring 

conformations of IdoA. Hence, HS oligomers can adopt conformations in the bound state which 

are different from the dominant conformation in solution.  In Table 4.5, we report trNOE-based 

distances between pairs of nuclei affected either by glycosidic torsion angles or ring 

conformations for the bound state of fondaparinux. The distances of same pairs of protons 

determined from NOEs in the free state are also listed as a comparison.  

Table 4.5. Interproton distances of fondaparinux derived in free and bound states from 

NOE data. 

Nuclei pair Free ligand (Å) Error (Å) trNOE (Å) Error (Å) 

AH1-BH4 2.62 0.02 2.86 0.21 

CH1-DH4 2.41 0.02 2.65 0.20 

CH3-DH1 2.43 0.11 3.05 0.25 

DH1-DH2 3.16 0.01 N/A N/A 

DH1-DH3 3.27 0.01 2.72 0.19 

DH1-EH4 2.71 0.02 3.14 0.25 

DH1-EH61 2.85 0.02 2.91 0.23 

DH1-EH62 3.22 0.03 2.49 0.19 

Linker H-EH1     2.96 0.02 3.22 0.20 

 

There are some differences between the fondaparinux interproton distances converted 

from NOEs measured in a free state and the distances converted from trNOE measurements 
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which are dominated by the bound state. For instance, the measurable transglycosidic distances 

between CH3 and DH1 are 0.62 Å longer in the bound state (3.05 Å) than that in the free state 

2.43 Å. Similarly, a trNOE observed between DH1 and EH4 gives a calculated distance of 3.14 

Å, which is also significantly longer than the free state distance (2.71 Å). These two trNOE 

distances measured from a bound fondaparinux suggest it adopts a preferred conformation which 

is different from the dominant free state conformation, particularly with respect to the glycosidic 

linkages between GlcNS3,6S C and IdoA2S D, and IdoA2S D and GlcNS6S E. Besides the 

transglycosidic distance, another piece of useful information comes from distances between 

protons on the IdoA2S ring. The distance between IdoA2S D H1 and H2 and D H1 and D H3 are 

3.16 Å and 3.27 Å respectively in the free state.  These suggest a mixture of a 1C4 chair and 2S0 

skew-boat conformation. The skew-boat conformation is known to be particularly favorable in 

solution when a 3-O-sulfate is attached to the preceding GlcNAc residue40.  A trNOE between 

IdoA2S D H1 and H3 in the bound state gives a 2.72 Å distance, which is shorter than that of the 

free state (3.27 Å), indicating a much higher population of the skew-boat conformer and perhaps 

even some sampling of a true boat conformer. These trNOE data provide another source of 

structural information that can be applied as restraints in the docking process. 

4.5.6 Oligomerization state calculated from rotational correlation times 

 A previous study showed that heparin was able to induce oligomerization of RPTP σ41. 

In this study, heparin dp8 was the minimum length of a heparin oligosaccharide to promote 

RPTP σ oligomerization. Under the conditions of our experiment, there is no evidence for 

oligomer formation.  An average rotational correlation time (c) of 8.41 ns was measured from 

cross-correlation experiments on an LAR-fondaparinux complex suggesting that the protein 

remains monomeric after interacting with fondaparinux (see Table 4.6). As a general rule of 
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thumb, the τc of a protein in solution in nanoseconds is approximately 0.5 times its molecular 

weight in kDa. The molecular weight of LAR is 22 KDa giving an estimated τc of 11 ns for 

monomer and 22 ns for dimeric state.  Of course, fondaparinux is only 5 residues long, so we 

cannot make definitive conclusions about the effect of a longer HS oligomer.  LAR is also not 

identical to RPTP σ, but it is sufficiently similar in sequence and function to look for possible 

oligomerization modes once we have a structure of the LAR-fondaparinux complex. 

Table 4.6. Rotational correlation time τc of Lys residues in LAR in the presence of 

fondaparinux.  

Crosspeak 1 2 3 4 5 6 7 8 9 10 11 12 13 

TauC (ns) 8.55 8.15 5.75 7.8 11.65 9.9 9.05 7.25 8.65 7.15 6.95 10.05 8.4 

Assignment K144 K121 K69 K32 K68 K185 K170 K61 K204 K72 K71 K37 K148 

Average TauC 8.41 ns 

 

4.5.7 Complex modeling by computational docking 

High Ambiguity Driven biomolecular DOCKing (HADDOCK) is a versatile software 

package for biomolecule docking that uses a variety of biophysical information23. Here we 

combine all the restraints deduced from different types of NMR measurements, including the 

chemical shift perturbation data to determine the protein binding pocket, STD-based information 

on fondaparinux to determine binding epitopes, and trNOE measurements which allow pairwise 

distance restraints on the bound ligand conformation to give a detailed structure of the LAR-

fondaparinux complex. Details concerning the specific docking process are described in the 

Materials and Methods section. Although we have clear evidence for a 2S0-skew boat 

conformations in the bound form, two sets of HADDOCK runs were conducted starting with 

skew-boat and chair conformations separately. The energy minimized input structures for IdoA 
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were made using the GLYCAM web tool. The overall free energies of binding taken from a 

molecular mechanics-generalized Born surface area (MM-GBSA) calculation conducted on a 50 

ns MD simulation of docked structures were in fact significantly more negative for the skewed-

boat structures (-39.34 kcal/mol for the best chair structure versus  -43.71kcal/mol for the 

average of the best three skew-boat structures). Hence, we focus on the skew-boat structures in 

what follows.  The top 5 structures with lowest HADDOCK score, energy as well as smallest 

rms NOE violations are presented in Figure 4.11.  Comparing the top docked structures, we find 

that most of the structure differences arise from the last two sugars (IdoA2S and the reducing end 

GlcNS6S, residues D and E). These interact with multiple lysines on the binding loop, taking 

advantage of the motional freedom of these residues. A single structure representation of the 

protein residues having close contacts with the ligand is illustrated in Figure 4.12.  

4.5.8 Free energy calculation and analysis  

Molecular mechanics-generalized Born surface area (MM-GBSA)34 calculations were 

conducted  as to identify residues making major contributions to a free energy of binding.   Even 

though docking finds the same binding pocket, the top 5 docked structures with IdoA2S in the 

2S0 conformation were not well aligned and showed three types of positioning, therefore 3 

structures representing different bound states were chosen for the energy analysis. The energy 

analysis is shown in Table 4.7. Because the conformational entropy terms are excluded from the 

calculation and conformations for both protein and ligand are assumed to be the same in the 

dissociated state as in the associated state, there is typically a large overestimation of binding 

energies.  Therefore, absolute energies are not meaningful, but relative contributions from 

different interacting groups and types of energy, particularly for the ligand, can be. The free 

protein part of the overestimation, which is associated with not allowing the protein to adjust 
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conformation and interact optimally with both solvent and counter-ions in the free state, is 

fortunately the same for all ligands, and won’t affect analysis of the ligand part of the analysis.  

Solvent interactions for the free ligand may also be better approximated because most surfaces of 

the ligand are solvent exposed, regardless of conformation.  Table 4.8 shows the ligand part of 

the energy decomposition.      

 

 

 

Figure 4.11. Top 5 HADDOCK structures with the highest score and lowest energy for 

the LAR-fondaparinux complex, starting with IdoA2S in the 2S0-skew boat conformation. 
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Figure 4.12. Expanded view of the binding pocket for the LAR-fondaparinux 

HADDOCK structure.  While IdoA2S started in a 2S0 conformation, it is more boat-like in this 

structure.  Nearby interacting residues are shown as stick structures and labeled. 

Table 4.7.  MM-GBSA energy component analysis of the interactions of the 

fondaparinux – LAR-Ig1-2 complex. 

 Mean value of 1C4 

structure (kcal/mol) 

Standard deviation 

(kcal/mol) 

Mean value of 2S0 

structure (kcal/mol) 

Standard 

deviation 

(kcal/mol) 

(kcal/mol) 

ELE -885.05 92.11 -904.67 87.04 

VDW -27.81 8.05 -29.83 5.99 

INT 0 0 0 0 

GAS -912.86 94.87 -934.50 88.23 

GBSUR -4.11 0.82 -4.37 0.47 

GB 879.01 88.24 893.26 82.89 

GBSOL 874.91 87.75 888.90 82.75 

GBELE -6.04 10.17 -11.41 10.85 

GBTOT -37.96 10.72 -45.61 10.23 

ELE, non-bonded electrostatic energy; VDW, non-bonded van der Waals energy; INT, bond, 

angle, dihedral energies; GAS, ELE+VDW+INT; GBSUR, hydrophobic contributions to 

solvation free energy for GB calculations; GB, reaction field energy calculated by GB; 

GBSOL=GBSUR+GB; GBELE=GB+ELE; GBTOTAL=GBSOL+GAS. All energies are in 

kcal/mol. 
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Table 4.8. Per-residue free energy decomposition of fondaparinox by MM-GBSA. All 

energies are in kcal/mol. 

  

van der 

Waals 
Electrostatic 

Polar 

Solvation 
Non-polar Solv TOTAL 

Structure1 GlcNS6S E -0.829706 -9.24199 11.914534 -0.138422246 1.7044 

 Ido2S D -0.779146 -52.633566 51.377852 -0.138602693 -2.173 

 GlcNS3,6S C -1.748396 -60.81628 61.25015 -0.084021235 -1.399 

 GlcA B -3.733636 -58.353608 60.063738 -0.534431174 -2.558 

 GlcNS6S A -5.626716 -85.480442 81.523724 -1.220501218 -10.8 

 6-O-sulfate A -1.246506 -38.146192 41.600684 -0.446028149 1.762 

 6-O-sulfate C -0.541652 -47.614176 47.671596 -0.322706866 -0.807 

 3-O-sulfate C -0.218276 -58.772708 58.359308 -0.249511738 -0.881 

 2-O-sulfate D -0.105096 -31.274244 31.751916 -0.092826749 0.2797 

 6-O-sulfate E -0.094084 -9.010922 9.661438 -0.020360866 0.5361 

Structure 2 GlcNS6S E -1.13236 -25.294204 27.950062 -0.176792198 1.3467 

 Ido2S D -0.687954 -95.27199 87.688796 -0.19624968 -8.467 

 GlcNS3,6S C -1.828848 -85.77829 87.909882 -0.153272736 0.1495 

 GlcA B -2.085772 -54.348434 57.066436 -0.286577122 0.3457 

 GlcNS6S A -3.717194 -81.411562 78.264068 -0.973291421 -7.838 

 6-O-sulfate A -0.440018 -17.4071 19.116184 -0.118821456 1.1502 

 6-O-sulfate C -0.203734 -31.224506 31.790806 -0.040662864 0.3219 

 3-O-sulfate C -0.098286 -87.50416 82.923378 -0.392379998 -5.071 

 2-O-sulfate D -0.571136 -47.084156 49.026078 -0.18705744 1.1837 

 6-O-sulfate E -0.113428 -16.217698 16.929708 -0.017257925 0.5813 

Structure 3 GlcNS6S E -1.324558 -10.40416 12.539278 -0.178529674 0.632 

 Ido2S D -0.795402 -76.98578 73.92209 -0.255227861 -4.114 

 GlcNS3,6S C -2.482934 -88.210108 88.921224 -0.19269635 -1.965 

 GlcA B -2.06481 -48.01781 49.793296 -0.380465568 -0.67 
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 GlcNS6S A -3.587294 -52.581182 55.575192 -0.768571992 -1.362 

 6-O-sulfate A -0.459228 -35.713552 37.626984 -0.286873301 1.1673 

 6-O-sulfate C -0.427192 -32.967002 34.623002 -0.058167734 1.1706 

 3-O-sulfate C -0.44977 -85.213384 81.721704 -0.456844622 -4.398 

 2-O-sulfate D -0.125008 -47.048892 47.692304 -0.173710642 0.3447 

 6-O-sulfate E -0.306512 -11.823726 13.198436 -0.096766934 0.9714 

Average GlcNS6S E -1.095541 -14.980118 17.467958 -0.164581373 1.2277 

 Ido2S D -0.7541673 -74.963779 70.996246 -0.196693411 -4.918 

 GlcNS3,6S C -2.0200593 -78.268226 79.36041867 -0.143330107 -1.071 

 GlcA B -2.6280726 -53.573284 55.64115667 -0.400491288 -0.961 

 GlcNS6S A -4.3104013 -73.157729 71.78766133 -0.987454877 -6.668 

 6-O-sulfate A -0.7152506 -30.422281 32.781284 -0.283907635 1.3598 

 6-O-sulfate C -0.3908593 -37.268561 38.028468 -0.140512488 0.2285 

 3-O-sulfate C -0.255444 -77.163417 74.33479667 -0.366245453 -3.45 

 2-O-sulfate D -0.26708 -41.802431 42.82343267 -0.151198277 0.6027 

 6-O-sulfate E -0.1713413 -12.350782 13.263194 -0.044795242 0.6963 

 

4.6 Discussion 

There is no crystal structure of LAR complexed with heparan sulfate available to date; 

only one with sucrose octasulfate as an HS mimic (pdb 2YD8)5. Sucrose octasulfate is very 

different from a true HS oligomer; it has just two sugar residues, neither one occurring in HS.  

Fondaparinux is more representative of HS for at the least highly sulfated segments, sharing a 

repeating disaccharide of GlcNAc and IdoA or GlcA.   The highly sulfated characteristic shared 

with sucrose octasulfate likely is responsible for the similarity in binding sites. In the sucrose 

octasulfate structure, three residues are within 1 Å van der Waals contacts: K68, K69 and R77.  

In our study, the docked structure of fondaparinux has some part within 1 Å of van der Walls 
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contact with residues K68, K69, K71, K72, S74, S75, R77, F78 and R100. The three residues 

identified in the sucrose octasulfate complex structure are also identified here. Six of the residues 

in contact with fondaparinux are positively charged. Fondaparinux is a highly negatively charged 

ligand. There are 8 different sulfation groups and two carboxylate groups distributed on both 

sides of the ligand, giving many opportunities for electrostatic interactions with positively 

charged protein residues. Examining the protein structure we find that all of the binding site 

residues, except F78 and R100, are located on loops. Significant motional flexibility of these 

loops could also facilitate numerous contributions to electrostatic interactions. The predicted 

average free energies of binding given by MM-GBSA calculations for the three 2S0 

conformations were, in fact dominated by the electrostatic component of the free energy of 

binding (GBELE).   The flexibility of the loops combined with the flexibility of fondaparinux 

may contribute to our finding several conformations lying close in calculated free energies of 

binding (all within +/- 3.8 kcal).   

It is useful for us to compare the results we got from our Robo1-HS tetramer study to the 

present research on LAR interaction with fondaparinux. A binding constant of 45 µM was 

obtained from the interaction of Robo1 and an HS tetramer which only contains two N-sulfates, 

two 6-O-sulfates and two carboxylates. Given that fondaparinux is a much more highly sulfated 

GAG and more positive protein residues are involved, a binding constant of 60 µM may suggest 

that fondaparinux is not an ideal ligand for LAR interactions. Some insight into which groups 

may be more or less important could arise from a per-residue decomposition of MM-GBSA free 

energies and an examination of the ligand portion of this decomposition.  We treated the 2-O-

sulfate 3-O-sulfate and 6-O-sulfates as separate residues in this decomposition so their 

contributions can be explicitly examined (see Table 4.8). 
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Note that, binding energy contributions from the sugar rings also come primarily from 

electrostatic interactions. The high electrostatic energy can, however, be compensated for by 

high desolvation energies and even result in a positive total energy in some cases. A similar 

phenomenon was observed in our study of Robo1 interacting with an HS tetramer. To be more 

specific, among the 5 decomposed sulfates in fondaparinux (three 6-O-sulfates, one 3-O-sulfate 

and one 2-O-sulfate), only the 3-O-sulfate on the middle GlcNS3,6S shows an average favorable 

total energy -3.45kcal/mol). All of the other sulfates, although having very large electrostatic 

contributions, have this more than offset by a higher desolvation penalty. Among the residual 

sugar rings, which contain either a negatively charged carboxylate, in the case of GlcA and IdoA 

residues, or N-sulfates, in the case of the three GlcNAc residues, only the non-reducing end 

GlcNAc consistently shows a favorable energy of interaction, while that of the reducing end is 

always unfavorable. This could of course result from a distortion caused by the unusual 

concentration of charge around the central GlcNAc; 3-O-sulfation is actually rare in native HS42 .  

However, examining the current structure, one finds that Lys 68 is well positioned to interact 

with a 2-O-sulfate if the GlcA residue near the non-reducing end were replaced with IdoA2S.  

Extending the oligomer at the non-reducing with an additional IdoA2S may also add favorable 

contacts with Arg 97.  These predictions of changes that may increase affinity are worthy of 

examination. 

Previous studies have shown that heparan sulfate may induce LAR ectodomain 

oligomerization in solution. In our case, however, an average correlation time of 8.4 ns (see data 

in Table 4.6) suggests that the protein still remains monomeric in solution when it interacts with 

fondaparinux.  This doesn’t mean that longer oligomers couldn’t induce aggregation.  The results 

from previous research on RPTP σ binding with depolymerized heparin showed that dp8 was the 
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minimum length to assemble RPTP σ oligomers. In our model, if we orient the two domains with 

the C-terminus pointing down toward a hypothetical membrane and the N-terminus pointing up, 

the binding site is near the top of the two domain construct. LAR molecules could assemble 

along a charge-rich portion of an extended HS chain that is well outside the membrane surface.  

Also, with just a slight tilt one can have an HS chain insert between a pair of LAR molecules 

with its non-reducing end contacting R100, R77, R97 and pointing toward the membrane.  In this 

geometry the HS chain could facilitate formation of either a 2:1 or a 2:2 LAR-HS complex with 

the HS chains contacting lysine and arginine residues on both LAR molecules. One does note 

that several of the HS sulfates of the monomer in Figure 4.12 do point out toward the solution 

and could complex with a second LAR molecule in a dimer structure.  Among the residues that 

could contact sulfates normally exposed to solution are Lys 72 and Arg 63.  A model for the 2:2 

complex is shown in Figure 4.13. Examination of possibilities for multimer formation would 

require work with a set of longer, well-defined HS oligomers.   

 

Figure 4.13. A model for LAR-fondaparinux in a 2:2 binding mode. The view is looking 

down toward the membrane surface from above the LAR molecules. 
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4.7 Conclusions  

Biomolecular NMR measurements combined with high ambiguous docking has provided 

a detailed model for the interaction of a well-defined heparan sulfate pentasaccharide 

(fondaparinux) with the first two Ig domains of human LAR. Compared with a crystal structure 

where LAR is co-crystalized with sucrose octasulfate, the structure produces a more physically 

plausible set of molecular interactions, and is able to give some direction to future studies of 

LAR, its signaling mechanism, and its interaction with signaling partners, such as TrkC. The 

methodology developed and documented here, particularly that for the assignment of spectra 

from sparsely labeled proteins, opens application to a large number of glycosylated that are best 

expressed in mammalian cells. Many of the other type IIa RPTPs fall in this class. 
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CHAPTER 5 

IMPROVING LANTHANIDE BINDING TAGS 
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5.2 Abstract 

Paramagnetic effects produced by lanthanide ions can provide rich structural information. 

They are particularly useful in protein structural investigations by NMR spectroscopy.  In order 

to optimize paramagnetic effects in a target protein, a metal ion must be chelated in a fixed 

position without disrupting the protein. A lanthanide binding loop has been successfully inserted 

to two protein targets, and achieved reasonable paramagnetic effects in the previous work. 

However, there are still limitations regarding the loop stability and metal binding affinity. In this 

chapter, we discuss the efforts in improving the performance of lanthanide binding peptides by 

screening new constructs using MD simulation. In addition, an alternate approach of introducing 

the metal ion by using chelates carrying a sulfhydryl group has also been explored. 

5.3. Methods and Results 

Pseudo contact shifts (PCS) are very useful in that they perturb chemical shifts of 

resonances of both ligands and proteins in a distance and angle dependent manner.  A detailed 



 

150 

 

description of these effects is given in chapter 2 where we have used them to advantage in 

making resonance assignments and docking a heparan sulfate ligand to Robo1.  In order to 

introduce PCSs to a protein system, a paramagnetic metal site with a high magnetic susceptibility 

anisotropy (Δχ) and short electron spin lifetime must be engineered into the protein. High Δχs 

also provide field-induced RDCs.  Inducing RDCs in this way avoids the usual use of liquid 

crystal media to induce alignment which can sometimes have problematic interactions with 

proteins or ligands.  It also has the advantage of inducing orientation from the point of one 

domain, reducing the number of unknowns needed to characterize a dynamic system. To 

accomplish metal site introduction for work described in chapter 2 we replaced a short peptide 

loop in the native structure with a lanthanide binding peptide.  Using lanthanides with longer 

electron spin relaxation times (Gd3+) paramagnetic relaxation effects (PREs) purely distance 

dependent effects arise.  This was used to advantage in chapter 4.  However, inserting these 

peptide loops can be challenging.  They can interfere with ligand binding, destabilize protein 

structure or lose lanthanide binding affinity.  Therefore, it is important to consider better ways to 

design loop insertions and completely different means of binding lanthanides.  

Using a metal ion-binding chelate is an alternate approach that has been used to introduce 

a lanthanide into the protein. Chelates carrying a sulfhydryl group, for example, IDA-SH, NTA-

SH 1 or DOTA-M8-SH 2, can be attached via a disulfide bond. A single native or mutated 

cysteine site is needed in order to apply this method. Quite often mammalian glycosylated 

proteins have at least one internal pair of disulfide bonds that is required to stabilize the fold and 

tertiary structure of the protein. Adding an additional cysteine and making this specifically 

reactive in chelate addition is often problematic.  Nevertheless, we explored this option and 

results are described in this chapter. 
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Experimentally, two mutants (S203C and S162C) were produced separately for the 

mammalian glycosylated protein Robo1. The 1H-15N HSQC spectra of 15N lysine labeled Robo1 

mutants were nearly identical to the native protein, except for perturbation of a peak at 8.0/119.5 

ppm that is assigned to K205 near and on the same side of the -strand as S203. This indicates 

that the presence of the extra cysteine does not disrupt the protein structure except by very local 

contact (Figure 5.1).  

 

 

                                  (A)                                                               (B) 

Figure 5.1.  15N-1H HSQC spectra of (A) 15N-Lys labeled Robo1 Ig1-2 S162C and (B) 

15N-Lys labeled Robo1 Ig1-2 S203C. 

Disulfide bonds in proteins are formed by oxidation of the thiol groups of cysteine 

residues. The introduced cysteine can also be oxidized by the dissolved O2 in the solution, which 

can reach a concentration as high as 0.4 mM when exposed to room temperature air. As a 

consequence disulfide-linked dimers can form. Therefore, the biggest challenge in successfully 

employing this ligation method is to reduce the mutant cysteine without breaking the native 

intra-molecular di-sulfide bonds in Robo1. Different treatments were explored to search for 

suitable conditions: All the buffers used during the expression process were degassed by 
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injecting argon into the buffer for a period of time to expel oxygen and an equivalent amount of 

reducing agent (TCEP used here) was added before attempting ligation of the chelate and filtered 

out by centrifugation. The level of free SH groups were monitored using Ellmans’s reagent 

during these treatments to assure the existence of one free sulfhydryl.  Despite these efforts, trials 

with ligation of the two mutants were not successful. Neither produced a ligated product. One 

Cys mutation (S162C) was likely too close to the glycosylation site and the other Cys mutation 

(S203C) is somewhat buried in a depression on the proteins surface. Either could have made the 

cysteine less reactive. What’s more, enzymatic digestion and peptide analysis by mass 

spectrometry suggested that either the mutated cysteine had been partially oxidized or the 

disulfide bonds had been broken during the reduction process. These results reveal potential 

problems and uncertainties in using disulfide forming chemistry to introduce paramagnetic metal 

chelates into proteins that contain native disulfide bonds. 

Another way to improve paramagnetic metal ion binding properties is to stay with 

lanthanide-binding peptides, but engineer shorter polypeptide-based lanthanide binding tags 

(LBTs), into the protein3. The polypeptide approach is advantageous because it can be encoded 

into a protein expression vector and expressed via standard molecular biology methods. The 

original LBTs were designed by the Imperiali laboratory4-5and they comprise 17- 23 amino acid 

including 6-8 carboxyl groups and a tryptophan. The tryptophan is used to induce luminescence 

of the bound Tb3+ through energy transfer and the disassociation constant can be obtained by 

luminescence monitoring during titration.  An LBT with a sequence of 

SYIDTNNDGAYEGDELSG was originally engineered into glycosylated mammalian proteins, 

Robo1 and LAR. Using luminescent data (irradiating at 277 nm and observing at 542 nm a 

dissociation constant of 62 nM and 1.7 μM were determined respectively (see figure 5.2).  
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Figure 5.2. Tb3+ binding affinity of (A) Robo1 with the original LBT construct and (B) 

LAR with the original LBT construct. 
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  There were sound reasons to introduce the LBT as a replacement for a native loop.  

Attachment of the peptide to either the N- or C-terminus of the protein usually introduces 

motional degrees of freedom between protein and tag that reduce PCSs and make both PREs and 

PCSs more difficult to interpret. Insertion into a loop usually reduces motional freedom, but this 

has its own challenges.  It must be done without causing structural changes or unfolding of the 

protein.  It also must be done without distorting the ion coordinating geometry and reducing ion 

affinity.  This is not easy to accomplish since even 1.5 kcal of distortion can change affinities by 

an order of magnitude.  To optimize loop insertion in Robo1 different insertion positions were 

tried, finally settling on replacing the short loop -strands C and D of Ig domain 1.  Also several 

loop modifications have been made on the original polypeptide-based LBT 

(SYIDTNNDGAYEGDELSG) in an effort to shorten the loop without disrupting the protein 

structure, but still reduce peptide motion and preserve ion binding affinity. These designs are 

shown in Table 5.1. To avoid some of the effort in expressing and characterizing multiple 

constructs, structural screening was done by running long (1 us) MD trajectories and examining 

the LBT peptide position every 100 ns of the trajectories. Superposition of these snapshots for 

some of the constructs is shown in Figure 5.3. The parameters chosen for the MD simulations are 

the same as those described in chapter 4 for the work on LAR.  Some of the variations in peptide 

design included removing the end serines and a glycine. The glycine originally located on the 

protein was replaced by a valine to improve the coordination, and the tryptophan that extended 

into solution was moved to replace a tyrosine that seemed to make good contact with the protein 

surface. 
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Table 5.1. Designed LBT peptide constructs for Robo1 Ig1-2 domains. 

 

(Original construct) 

 

(Construct c) 

Design Protein sequence LBT peptide 

Original sequence NCKAEGRPTPTIEWYKG SYIDTNNDGAYEGDELSG 

Construct a NCKAEGRPTPTIEWYKG YIDTNNDGWYEGDEL 

Construct b NCKAEGRPTPTIEWYKG SYIDTNNDGWYEGDELS 

Construct c NCKAEGRPTPTIEWYKG YIDTNNDGWYEGDELS 

Construct d NCKAEGRPTPTIEWYKV YIDTNNDGWYEGDELS 

Construct e NCKAEGRPTPTIEWYKV YIDTNNDGWYEGDESS 

Construct f NCKAEGRPTPTIEWYKV WIDTNNDGSYEGDELS 
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(Construct d) 

 

(Construct e) 

 

(Construct f) 

  Figure 5.3. Superposition of different snapshots for some of the constructs. The MD 

simulations lasted for 1 μs.  The constructs are designated: original, c, d, e and f.  The sequences 

are given in Table 5.1. 
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Based on the MD simulation, the motion of the loop was reduced when construct a, c, d 

and f were used. There were interactions with the GAG binding loop located at the back of the 

LBT loop for construct c. The G44V mutation shifted the loop position to be away from the 

GAG binding loop in d and the coordination was improved, but in construct d Y45 was exposed 

in solution and the alpha helix on the loop was corrupted on construct e. In construct f, the metal 

ion was restricted along the entire simulation without any structural corruption or interaction. 

Hence, we inserted this LBT loop (construct f) to Robo1 Ig1-2 domain construct between strands 

C and D of the Ig1 domain to experimentally determine the metal binding affinity and resulting 

paramagnetic effects.  

Luminescence data show the site to have a binding affinity of 3.3 µM (Figure 5.4), 

indicating a decreased affinity comparing the original loop affinity of 60 nM. The superimposed 

spectra of lysine labeled Robo1-Ig1-2-loopF with Dy3+ (a paramagnetic lanthanide) and Lu3+ 

(diamagnetic lanthanide) are shown in Figure 5.5. The unique diagonal shifts in peak positions 

are used to pair the resonances in each spectrum. Only moderate PCSs (< 0.1 ppm) were 

measured, possibly because the lanthanide ion has been moved further away from most labeled 

lysine sites, but also there may be residual motion not seen in the timescale of the MD 

simulation. These results suggest that MD may be of value in eliminating some constructs that 

clearly won’t work, but precision and length of simulations are not sufficient to exclude loop 

motion and prevent modest alteration of ion binding constants. Constructs still need to be 

examined experimentally to determine the exact properties of the LBT loop and the paramagnetic 

effects.  It may be possible that energy decomposition analysis would guide iterations in 

construct design that could improve stability an ion affinity further.   
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Figure 5.4. Tb3+ binding affinity of Robo1 LBT construct F.

 

Figure 5.5. Superposition of 15N-1H HSQC spectra of 15N-Lys labeled Robo1-Ig1-2 

engineered with lanthanide binding peptide construct F loaded with Lu3+ (red) or Dy3+ (blue). 
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CHAPTER 6 

CONCLUDING REMARKS 

Despite the prevalence of protein glycosylation in mammalian systems and the 

importance of glycan-protein interactions in signaling events, the structural characterization of 

glycosylated systems remains rare.  This is primarily due to challenges in preparing 

glycoproteins and well defined glycan ligands.  This thesis has focused on developing new 

solution-based NMR methodology to illuminate the structure and function of glycosylated 

mammalian proteins and their interactions with glycosaminoglycans. The application of these 

methods to terminal domains from two membrane anchored signaling proteins has begun to lay a 

solid foundation for understanding biomolecular functions, including cell signaling processes 

that begin with glycan-protein interactions at the cell surface. 

The first phase of this research was the development of structural characterization 

approaches for glycosylated mammalian proteins and their application to Robo1. Robo1 is a cell 

surface signaling molecule important in axon guidance during mammalian development.  Its 

interaction with heparan sulfate (HS) chains and members of the Slit protein family is essential 

to its activity, making characterization of these interactions by structural methods such as NMR 

highly desirable. From these studies, we obtained a detailed model of Robo1-Ig1-2 interacting 

with a heparan sulfate tetramer and an explanation for how heparan sulfate may facilitate the 

interaction between Robo1 and its signaling partner, Slit2.  In the process, sparse labeling with 

NMR active isotopes was tested, along with a number of structurally sensitive NMR expetiments 

that can be applied to sparsely labeled systems.  The methods used set a precedent which can 
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facilitate studies of a large number of other glycosylated protein complexes found on the surfaces 

of mammalian cells. 

The second phase of research involved the development of a software package that 

facilitates NMR resonance assignment of sparsely labeled proteins.  Sparse isotopic labeling of 

proteins for NMR studies offers advantages in spectral resolution and economical expression of 

glycoproteins in mammalian cells. However, a major limitation is that the one-bond connectivity 

between isotopically labeled sites is lost; making resonance assignment by traditional triple 

resonance approaches are not applicable. A particular milestone in our research is the 

development of a complete NMR resonance assignment strategy that does not rely on triple 

resonance experiments. We designed the “ASSIGNments for Sparsely Labeled Proteins 

(ASSIGN_SLP)” program, (built on a MATLAB platform), to use a genetic algorithm to search 

for an optimal paring of HSQC crosspeaks with labeled sites in proteins having known domain 

structures.  Its objective function is based on differences between readily accessible experimental 

data and predictions from known domain structures. This assignment method is applicable to a 

number of large and glycosylated proteins that benefit from sparse isotope labeling.  

The final stage of this research involved the application of the resonance assignment 

strategy and structurally sensitive NMR experiments to a second glycoprotein-GAG interaction 

system. Leukocyte common antigen-related (LAR) protein is a type IIa receptor protein tyrosine 

phosphatase (RPTP) that is important for signal transduction at the axon surfaces. 

Glycosaminoglycans are known to modulate LAR signaling. We successfully constructed a 

detailed model that demonstrates the interaction of a heparan sulfate pentasaccharide 

(fondaparinux) with LAR-Ig1-2 by combining various biomolecular NMR measurements with a 

docking procedure that uses highly ambiguous constraints. The assignments of crosspeaks from 
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the HSQC spectrum of sparsely labeled LAR were achieved using ASSIGN_SLP. This modeled 

structure offers important guidance for future studies of LAR with respect to its signaling 

mechanism and its interaction with signaling partners. This second successful application 

confirms the value of our approach for characterizing glycoproteins that are best expressed in 

mammalian cells. 

Future structural studies of protein-GAG interactions would require longer and well-

defined glycosaminoglycan chains to fully characterize binding sites, receptor oligomerization 

and interactions with other proteins. Expressing proteins with different glycan forms also would 

be important for demonstrating the full impact of glycosylation upon oligomerization and ligand 

interaction.  The current work used protein with heterogeneous glycosylation in the Robo1 study 

and homogeneous glycosylation but with just a single GlcNAc in the LAR study.  The number of 

different NMR measurements and the precision of those measurements can also be improved.  

Chapter 5 clearly outlined steps that could be taken to facilitate the measurement of 

paramagnetic constraints.  These have not been added to ASSIGN_SLP yet but their addition 

should be straight forward.  Labeling proteins with a larger number of amino acid types will also 

improve the accuracy of future models.  With these additions, we believe that the approach 

described here will evolve into a robust procedure for the characterization of glycosylated 

proteins and protein-glycan complexes.  

 

 


