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Abstract

Modern agriculture is facing tremendous challenges in its sustainability, productivity, and

quality for a rapidly growing human population, changing climate, and shortfall of arable

land and water resources. Improved crops and advanced farming management are essential to

tackling those challenges, but both encounter the same bottleneck in the evaluation of plant

performance (plant phenotyping) and postharvest quality. Thus, it is paramount to utilize

sensing, automation, and data analytics technologies to develop innovative solutions for high

throughput plant phenotyping and postharvest quality assessment. This dissertation focused

on the development of imaging-based approaches for the accurate, rapid, and nondestructive

measurements of key plant phenotypic traits and postharvest quality properties.

A ground mobile system was designed and implemented to integrate RTK-GPS, multi-

view color, RGB-D, thermal, and hyperspectral imaging for field-based plant phenotyping.

Computer control modules were developed for individual sensors and integrated into a Lab-

VIEW program to control and synchronize sensors for field data collection. A number of

image analysis methods were developed to extract phenotypic traits related to plant mor-

phology, physiology, and development. Reflectance differences were studied between healthy



and bruised blueberry tissues in the spectral range from 950 nm to 1650 nm, providing a basis

for non-destructive detection of blueberry bruising. A new index, the bruise ratio index, was

defined and calculated using a machine learning based approach to quantify bruise severity

for individual berries. Experimental results showed that the developed systems and method-

ologies can accurately and rapidly extract key phenotypic traits (height, width, projected leaf

area, volume, photosynthetic efficiency at the canopy level, germination rate, and flowering

patterns) and postharvest quality properties (bruise ratio). Such extracted traits also demon-

strated their usefulness for genetics/genomics studies and in farm management. Thus, these

developed systems and methodologies can be effective and efficient tools for the evaluation

of plant performance (plant phenotyping) and postharvest quality.
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Chapter 1

Introduction

1.1 Background and Significance of This Study

Food security is one of the biggest challenges for the world. The global population is likely

to exceed 9 billion by 2050, which will require more food, fiber, and fuel products from

agricultural production systems [3]. To fulfill these increasing demands, current crop pro-

ductivity needs to be almost doubled by 2050, which translates into an annual growth rate

of 1.75% of total factor productivity (TFP) [4]. On average, the current TFP annual growth

rate is around 1.5% globally, but the TFP annual growth rate has decreased to 0.96% in

developing countries, presenting a great challenge for the improvement of crop productivity.

In addition to productivity, sustainability is another crucial factor for agriculture. Crop

productivity must be increased in a sustainable way because the global population will keep

increasing and could be over 11 billion by 2100, causing the situation to become even more

challenging [5]. Moreover, agriculture sustainability is also facing tremendous challenges

from different phenomena such as a decrease in the availability of the workforce, climate

change, a shortage of arable land, and limited water resources [6].

There are two potential ways to address these issues: improvement of crops and improve-

ment in crop management. Improvement of crops aims at breeding new cultivars so that

crops would naturally produce a higher yield, better quality, and improved adaptability to

various environments (e.g., saline soils). Improvements in crop management through imple-

menting advanced farming techniques such as precision agriculture would minimize the input

(e.g., irrigation and chemical applications) and maximize the outcome (e.g., productivity
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and quality) for an agricultural production system through technological innovations (e.g.,

sensing, automation, and data science techniques). Both methods face the same conundrum:

how to evaluate a large amount of plants in the field. Therefore, it is paramount to develop

new technologies to accurately evaluate crops in a high throughput manner.

Over the past decade, high-throughput phenotyping platforms (HTPPs) in greenhouses

or growth-chambers have been developed and run by several transnational seed companies

or nation-wide public institutions such as the Australian Plant Phenomics Facility (APPF),

the European Plant Phenotyping Network (EPPN), and the United States Department of

Agriculture (USDA) [7]. Phenotypic traits of various plants can be quickly and accurately

measured by these HTPPs in a non-destructive manner under controlled environments.

However, depending on experimental purposes, phenotypic traits have to be measured under

field conditions, because some quantitative trait loci or candidate genes could be less effec-

tive under field conditions than in controlled environments [7, 8, 9]. This occurs primarily

because some important factors for plant growth and development, such as soil conditions,

cannot be simulated in the controlled environments [10, 11, 12]. For instance, plants can only

access a limited volume of soil in a pot, which is a significantly different scenario from field

conditions. It is very difficult to simulate natural soil conditions in a controlled environment

as it is made up of a complex mixture of various nutrients, organic matter, gases, liquids,

and numerous organisms [12]. Therefore, it is necessary to develop innovative technologies

for field-based high throughput plant phenotyping.

In recent years, advances in proximal sensing, computing, automation, and robotic tech-

niques have created opportunities for field-based high-throughput phenotyping [13, 14, 8,

15, 16, 17, 18]. Computing, automation and robotic technologies ensure the improvement of

phenotyping throughput, and proximal sensing techniques enable the feasibility of accurately

measuring phenotypic traits under field environments.
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1.2 Objectives

The overall goal of the dissertation was to develop data acquisition systems and data analyt-

ical approaches for field-based high throughput plant phenotyping and laboratory posthar-

vest quality assessment. Specific objectives were as follows:

1. Develop a ground mobile data acquisition system with multimodal imaging for field

based high-throughput plant phenotyping;

2. Extract plant morphological traits (canopy size and shape) from 3D point clouds

3. Characterize canopy-level photosynthetic activities by a ground hyperspectral imaging

system

4. Characterize plant development (plant seedling and flowering) by color imaging and

deep learning

5. Detect and quantify blueberry bruising by near infrared (NIR) hyperspectral images

1.3 Overview of the Dissertation Chapters

This dissertation contains nine chapters. Chapter 1 introduces the significance of this study

and the current status of in-field high throughput plant phenotyping, and defines the objec-

tives of this dissertation. Chapter 2 provides a comprehensive review on deep convolutional

neural networks for plant phenotyping applications.

Chapter 3 reports on the development of a ground mobile system with multimodal

imaging for field data collection on plant phenotyping. Calibrations were taken to validate

the accuracy of the sensor measurements. A small-scale experiment was carried out to eval-

uate the usefulness of the system for plant phenotyping and the management of agricultural

production systems.
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Chapter 4 studies the use of 3D point clouds to characterize plant canopy size and shape,

which can be used to select cultivars suitable for mechanical harvesting and to guide pruning

actions for farm management.

Chapter 5 introduces a new methodology for estimating photosynthetic efficiency at the

canopy level through a passive sensing approach.

Chapter 6 explores the combination of a deep learning-based object detector (Faster

RCNN) and a classic video tracking method (Kalman filter) for detecting and counting

plant seedlings in videos collected for individual plots.

Chapter 7 investigates the use of a multi-view color imaging system and a deep learning-

based object detector (Faster RCNN) to count white blooms for individual plants over

a growing season, which derives flowering curves to characterize flowering patterns for

angiosperms in the field.

Chapter 8 examines reflectance differences between healthy and bruised tissues in the

spectral range from 950 nm to 1650 nm, which can be used to establish a classification

model for bruising detection and quantification.

Chapter 9 provides general conclusions and future research directions.

Chapters 2 to 8 represent seven manuscripts written individually. Chapter 2 provides a

comprehensive review on convolutional neural networks in image-based plant phenotyping,

The other chapters serve to address questions related to the development of a data acquisition

system (Chapter 3) and image analysis methods for extracting phenotypic traits for plant

morphology (Chapter 4), physiology (Chapter 5), development (Chapters 6 and 7), and
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postharvest quality (Chapter 8). As they are independent, these seven chapters remain in a

general manuscript format.
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Chapter 2

Convolutional Neural Networks for Image-based High Throughput Plant

Phenotyping: A Review1

1Yu Jiang and Changying Li. To be submitted to Plant Phenomics.
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2.1 Abstract

Plant phenotyping has been recognized as the bottleneck for improving the efficiency of

breeding programs, understanding of plant-environment interactions, and management of

agricultural systems. In the past five years, imaging approaches have shown the great poten-

tial for high-throughput plant phenotyping, resulting in more attention paid to imaging-based

plant phenotyping. With an increased amount of image data, it is urgent to develop robust

analytical tools that can extract phenotypic traits accurately and rapidly. The goal of this

review is to provide a comprehensive overview for the latest studies using deep convolutional

neural networks (CNNs) in plant phenotyping applications. We specifically review the use

of various CNNs and CNN meta-models for plant stress evaluation, plant development, and

postharvest quality assessment. We systematically organize the studies based on the tech-

nical development from imaging classification, object detection, and image segmentation,

thereby identifying state-of-the-art solutions for certain phenotyping applications. Finally,

we provide several directions for future research in the use of CNNs and CNN meta-models

for plant phenotyping purposes.

2.2 Introduction

Food security is one of the biggest challenges for the world. The global population is likely

to exceed 9 billion by 2050, which will necessitate more food, fiber, and fuel products

from agricultural production systems [3]. To fulfill the increasing demands, the current

crop productivity needs to be doubled approximately by 2050, which translates into an

annual growth of 1.75% of total factor productivity (TFP) [4]. On average, the current TFP

annual growth is around 1.5% globally, but the TFP annual growth decreases to 0.96% for

developing countries, thus presenting a significant challenge for the improvement of crop

productivity. In addition to the productivity, sustainability is another crucial factor for the

agriculture. Crop productivity must be increased in a sustainable way because the global
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population will continue to increase and could exceed 11 billion by 2100, making these

situations even more challenging [5]. Agriculture sustainability, however, faces tremendous

challenges from a decreased availability of workforce, changing climate, shortfall of arable

land, and limited water resources [6]. It is thus paramount to improve simultaneously the

productivity and the sustainability of agricultural production systems.

There are two potential ways to address these issues: improvement of crops and improve-

ment of management. Improvement of crops aims to breed new crop cultivars, so that crops

would naturally have a higher yield, better quality, and improved adaptability to various

environments (e.g., saline soils). Improvement of management seeks to advance farming con-

cepts such as precision agriculture, which minimizes the input (e.g., irrigation and chemical

application) and maximizes the outcome (e.g., productivity and quality) for an agricultural

production system through technological innovations (e.g., sensing, automation, and data

science techniques). Both ways face the same bottleneck: evaluation of a large amount of

plants in the field. It is therefore paramount to develop new technologies to accurately

evaluate crop plants in a high throughput manner.

High throughput plant phenotyping (HTP) has been recognized as integral to overcoming

this bottleneck [7, 19, 9, 20, 21, 22, 23, 18]. In the past five years, various HTP solutions

were developed to dramatically improve phenotyping capability and throughput, including

tower-based systems, gantry-based systems, ground mobile systems, low- and high-altitude

aerial systems, and satellite-based systems. An obvious trend has been noticed in the recent

development of HTP systems: imaging sensors have been used more frequently because of

their ample capacity for extracting complex traits. Imaging-based solutions have been used

for a wide range of phenotyping applications covering plant morphology, physiology, devel-

opment, and postharvest quality. A typical pathway for imaging-based plant phenotyping

is a four-step cyclic graph (Figure 2.1). The first step is to identify and define phenotypic
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traits to be measured, which largely determine the use of suitable imaging modalities for

plant sensing. Measurement of phenotypic traits usually demands one or more computer

vision tasks (e.g., fruit counting would require object detection). This problem can be solved

by developing new or improved algorithms through conventional image/signal processing,

machine learning, or a combination of the two. Consequently, data processing pipelines can

be designed to extract defined phenotypic traits to support and facilitate domain applica-

tions such as genetics/genomics studies, breeding programs, and farm management. Among

these options, algorithm development becomes noticeably challenging because of significant

disparities in image quality (e.g., illumination, sharpness, occlusions, and so forth) [24].

These image quality variations dramatically affect the performance of image/signal pro-

cessing algorithms and to poor generalizations for measuring the same phenotypic traits

from different datasets. Conventional machine learning (ML)-based approaches generally

provide an improved generalizability, but most of them still cannot provide the accept-

able generalizability needed for current phenotypic purposes. In addition, conventional ML

approaches require significant efforts to design data representations (features) manually that

are invariant to imaging environment changes. Feature designing is laborious and needs

expertise in computing and image analysis, which prevents the use of conventional ML

techniques for phenotyping applications.
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Figure 2.1: Diagram of the pathway of imaging-based plant phenotyping.

Deep learning (DL) is a subset of machine learning and it allows the learning of data

representations in a hierarchical way. The key advantage of DL is that features will be

learned automatically from input data, thereby breaking down barriers to developing

intelligent solutions for different applications. A commonly used DL architecture is deep

convolutional neural networks (CNNs) that have achieved state-of-the-art performance for

important computer vision tasks, such as image classification/regression, object recognition,

and image segmentation (both semantic and instance). CNNs originated in the 1980s [25]

and showed their first success in the recognition of hand-written digits in the 1990s by

using backpropagation-based training [26]. In 2012, a breakthrough (AlexNet) was made

because of significant improvements in computational power (and therefore CNN model

complexity) and availability of annotated datasets (e.g., ImageNet) [27]. Since then, various

CNN models have been developed for image classification and eventually showed better per-

formance than humans on the same dataset [28]. In addition, CNNs have been used widely

as feature extractors to be integrated with a meta-model for other computer such vision
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tasks as object detection and semantic and instance segmentation. CNN-based solutions

have provided state-of-the-art performance compared to traditional approaches in almost

all of these tasks, demonstrating a great potential to improve data analysis performance

in such imaging-based applications as imaging-based plant phenotyping. In particular, the

advancement of transfer learning (or domain adaptation) and the emergence of DL devel-

opment framework further facilitate the use of DL techniques for domain applications, so

DL approaches have been adopted rapidly for plant phenotyping in recent years, and an

exponentially increasing trend is foreseen for DL-based plant phenotyping in the future.

It is thus necessary to conduct a literature review to summarize the existing knowledge,

good practices, limitations, and potential solutions for applying DL techniques in plant

phenotyping.

Several papers have been published in the last two years that provide comprehensive

reviews of DL techniques for such computer vision tasks as image classification [29], object

detection [30], and semantic segmentation [31]. These reviews effectively summarize the

basic principles, development history, and future trends for CNNs and CNN meta-models in

computer vision, but none of them provide information related to agriculture and therefore

highlight a gap between the technology theories and phenotyping applications. There have

been pioneering efforts that have focused on various DL techniques for general agriculture

applications [32] and plant stress phenotyping [33]. They were, however, either too broad

(covering all DL techniques for all agricultural applications) or too narrow (limited to a

particular phenotyping task) and lack a focused and comprehensive review on DL in image-

based plant phenotyping.

The goal of this review paper is to thoroughly scrutinize the current efforts, provide

insights, and identify potential research directions for the utilization of CNNs and CNN

meta-models for image-based plant phenotyping. This review paper targets key phenotyping
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tasks related to plant physiology, plant development, and postharvest quality assessment.

With these efforts, it is expected that readers can bring CNNs and CNN meta-models into

their research projects to benefit the plant phenotyping community. The rest of this paper

is organized in the following way: Section 2.3 provides a concise introduction to important

CNNs and CNN meta-models used in image classification, object detection, and semantic

and instance segmentation. Section 2.4 provides a review of CNNs and CNN meta-models for

image based plant phenotyping; Section 2.5 discusses key issues in the application of CNNs

and CNN meta-models to plant phenotyping; and finally, Section 2.6 provides conclusions

and future research directions.

2.3 CNNs and CNN Meta-models for Computer Vision Tasks

Since 2012, CNNs have dominated the solutions for computer vision tasks because of their

superior performance. While efforts have been made to thoroughly review the development

of CNNs and CNN meta-models for computer vision tasks [31, 29, 30], it will be useful

to provide a brief introduction here for the completeness of this review. Most image-based

phenotyping applications essentially demand solutions for one or more tasks related to image

classification, object detection, and segmentation, so CNNs and CNN meta-models for those

tasks are reviewed in this section. Because CNNs and CNN meta-models evolve rapidly,

the following review is limited to models that provide significant performance improvements

and are used widely as benchmark methods by other domain applications. For convenience,

useful information is summarized for those reviewed models, including development year and

group, the original reference, the key innovation concept, and the source code (or third-party

implementation) if available (Table S1).

2.3.1 Image Classification

Image classification is one of the core tasks in computer vision and aims to assign images

with predefined class labels. CNNs are artificial neural networks that combine a set of
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mathematical operations (e.g., convolution, pooling, and activation) using various con-

nection schemes (plain stacking, inception, and residual connection), and the operational

parameters (e.g., convolutional kernels) can be learned from annotated images to predict

image class labels (Image Classification in Figure 2.2). The development of modern CNNs

for image classification can be grouped into three stages: 1) emergence of modern CNNs

(2012 to 2014); 2) intensive development and improvement of CNN architecture (2014 to

2017); and 3) reinforcement learning for CNN architectural design (i.e., the concept of using

artificial intelligence, AI, to improve AI, 2017 to present).
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Figure 2.2: Diagrams of mechanism of CNNs and CNN meta-models for image classification,

object detection, and semantic and instance segmentation.

In 2012, the first modern CNN network (also known as AlexNet) was reported by

Krizhevsky et al. [27] and demonstrated breakthrough performance on image classification

in the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC 2012) competi-

tion. It showed improvements of 8.2% and 8.7% on top-1 (35.7% versus 45.7%) and top-5
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(17% versus 25.7%) errors. This work led the trend of applying CNNs for image classification

and other computer vision tasks. On the other hand, studies were conducted to understand

the mechanism of CNNs, so CNNs could be improved in a systematic way. A pioneering

work improved AlexNet to a new variant (ZFNet) using a visualization tool [34]. The visu-

alization tool is a framework that is integrated with CNNs and can map neuron activities

back to the input pixel space. Pixel-wise activations, therefore, can be visualized after each

convolutional layer. This would be particularly useful for researchers to understand the

CNN mechanism and improve architectural design. The study also showed that learned

features could be generalized to various classifiers, suggesting CNNs could learn general

representations of images rather than specific features for classification. CNN architecture

was intensively studied from 2014 to 2017, and several representative CNNs were developed

with improved architectural design, including VGGNet [35], Inception-based CNNs [36, 37],

ResNet and its variants [28, 38], and DenseNet [39]. These improvements attempted to

dramatically enhance network learning capability and reduce computational complexity by

using efficient operations (e.g., 3 by 3 convolutional operation as the building block) and

revised connection schemes (e.g., inception modules, residual modules, and dense blocks).

With these improvements, representative CNNs can usually surpass human performance on

image classification for various datasets. It should be noted that performance improvement

because of CNN architectural modification was heavily dependent on human expertise and

tuning efforts, which means that CNN architectural improvement could be as laborious

as feature engineering in traditional ML used along with different applications. To solve

this problem, a study was conducted to explore the possibility of searching optimal CNN

architecture using reinforcement learning which is a learning method to reward operations

yielding improved performance [40, 41]. A reinforcement learning framework was introduced

to seek optimal convolutional cells on a small annotated dataset, and the resultant cells were

stacked in different ways and transferred to a large unknown dataset. Experimental results

showed that CNNs built by searched convolutional cells provided different degrees of perfor-
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mance improvement than CNNs designed manually. This work demonstrated the capability

of using AI to improve AI, which is the new direction for solving some problems in designing

CNN architecture. The search process, however, is extremely expensive computationally (500

NVIDIA P100 GPUs for 4 days), which limits the potential use for other domain applications.

2.3.2 Object Detection

Object detection seeks to detect and classify all potential objects in a given image. The use

of CNNs for object detection can be categorized into two groups: one-stage and two-stage

CNN meta-models (Object Detection in Figure 2.2). Two-stage models were firstly studied

because it was intuitive to combine region proposal methods (or ROIs) and CNNs. OverFeat

framework was developed to use a single CNN to extract features for training classifiers and

regressors separately [42]. The trained classifiers and regressors were used to predict class

labels and bounding box coordinates, respectively, for candidate ROIs generated using a

sliding window method. Although the OverFeat framework provided the best performance

on the localization task of the 2013 ILSVRC competition, the high computational cost and

complex framework training presented difficulties for practical applications. A region-based

CNN (RCNN) family was introduced to solve those issues, including the original RCNN [43],

Fast RCNN [44], and Faster RCNN [45]. Three key techniques were identified in CNN meta-

models of the RCNN family. First, a region proposal network (RPN) was developed to gen-

erate candidate object ROIs using features extracted from CNNs, which simultaneously saved

processing time and increased region proposal accuracy. Second, an ROI pooling operation

was developed to extract a fixed number of features from ROIs with varying sizes, thereby

avoiding the repeated computation of features for different ROIs. Third, a multi-task loss

function was used to unify the training process, which enabled an end-to-end training for

object detection. With the three improvements, Faster RCNN has been widely used as either

a benchmark for performance comparison or an object detector for domain applications (e.g.,
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pedestrian detection in autonomous driving) because it is easy to train and mostly provides

good detection performance. Although Faster RCNN provides state-of-the-art accuracy, its

efficiency is still far behind for real-time applications such as autonomous driving. This is

mainly because the two-stage meta-models spend time handling different components for

inference [30]. Compared with two-stage models, one-stage models can reduce time expense

by global regression/classification, mapping directly from image pixels to bounding box coor-

dinates and class probabilities. In other words, candidate object regions are generated from

each pixel in feature maps, and then classified and fine-tuned to accurate object boundaries.

Representative one-stage models include you-only-look-once (YOLO) family [46, 47] and

single shot detector (SSD) framework [48]. A critical issue, however, has been realized for

these one-stage models: an extreme imbalance between the number of object and background

regions. Most image regions contain only the background information (identified as irrelevant

regions), providing a limited contribution to model training process. A focal loss function

was proposed to put more penalties on inaccurately detected (or classified) samples, which

solved the issues resulting from sample imbalance and ultimately led to the development of an

improved one-stage framework RetinaNet [49]. When using the same CNN backbone model,

RetinaNet achieved comparable performance with Faster RCNN and 29% improvement of

computational efficiency. Nevertheless, if detection accuracy is the most important factor to

consider, two-stage models would be the option; otherwise, one-stage models provide better

computational efficiencies for embedded systems.

2.3.3 Semantic and Instance Segmentation

Semantic segmentation seeks to provide masks for objects with the same semantic meaning,

e.g., all plants in an image, whereas instance segmentation seeks to provide individual

objects in a given image. In general, CNN meta-models for semantic/instance segmentation

can be classified into two groups: encoder-decoder based framework and detection based
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framework (Semantic and Instance Segmentation in Figure 2.2).

Encoder-decoder based models usually contain two phases. The encoder phase uses CNNs

to extract feature maps that are semantically meaningful from input images, and the decoder

phase uses transposed convolution (also known as deconvolution) for upsampling of extracted

feature maps to per-pixel labels. Two techniques have been used to improve the segmenta-

tion accuracy of encoder-decoder models. First, a lateral connection scheme is used to link

feature maps with the same spatial resolution between the encoder and decoder phases,

which helps with the transition of semantic meaning from input images to output segmen-

tation results [50]. Second, a conditional random field (CRF) is used as a post-processing

method to improve the segmentation accuracy of object boundaries [51]. Representative

encoder-decoder based models include U-Net [50], fully convolutional network (FCN) [52],

and DeepLab family [53, 51]. A detection-based framework relies on CNN meta-models

for object detection. Several studies have explored the use of object detection models for

instance segmentation, including simultaneous detection and segmentation (SDS) based on

RCNN [54] and DeepMask based on Faster RCNN [55]. They did not, however, reach an

acceptable performance for the instance segmentation task [31]. Breakthrough performance

was achieved by Mask RCNN that adds an FCN network on top of Faster RCNN for gener-

ating masks of individual objects [56]. Many successive studies and applications also proved

that Mask RCNN could provide state-of-the-art performance for instance segmentation.

2.4 CNNs for Image based Plant Phenotyping

2.4.1 CNNs for Plant Stress Phenotyping

Plant stress phenotyping is an important aspect of plant phenotyping and can be used

to evaluate resistance and tolerance among different accession lines for genetics/genomics

studies and breeding programs. In addition, plant stress detection is crucial for under-

standing plant physiological activities. Plant stress phenotyping can be categorized into four
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stages: 1) identification (presence of stress); 2) classification (type of stress); 3) quantifica-

tion (severity of stress); and 4) prediction (possibility of stress occurrence) [33]. From the

computer vision perspective, all the four stages can be considered as an image classification

task, whereas some stages could involve other processing methods such as object detection

and semantic/instance segmentation.

Studies related to stress phenotyping have focused primarily on stress identification and

classification, utilizing CNNs as image classifiers to identify images that contain stressed

plants or plant leaves. The development of image classification-based studies can be split

into two phases. In the first phase, studies intensively investigated CNNs with representative

or custom architecture because of the availability of annotated datasets and the simplicity

of CNN implementation and training for image classification. There are several large anno-

tated image sets for plant biotic and abiotic stresses that accelerate the evaluation of various

CNNs for stress phenotyping. For instance, PlantVillage (https://plantvillage.psu.edu/) is a

publicly available image dataset containing over 54,000 labelled images of plant leaf. These

images cover 14 crop species for 26 types of stresses and healthy leaves. This can be used to

either evaluate a new CNN architecture or pretrain a CNN model for transfer learning. Data

annotation for image classification is also relatively easy, so a large number of images in a

newly collected dataset can be annotated with reasonable time and cost, especially when a

proper data collection procedure is used. As a result, studies related to plant stress detection

typically have a sufficient number of annotated images (several thousand or more) for model

training. In addition, a DL framework has been developed to accelerate the implementation

and training of CNNs for image classification. Commonly-used DL frameworks include Caffe

(University of California Berkeley), Theno (University of Montreal), TensorFlow (Google),

PyTorch (Facebook), CNTK (Microsoft), and so on. Key CNNs (e.g., Inception-based

CNNs, ResNet family, and DenseNet) have been implemented using a different framework,

and researchers can quickly develop a simple computer program for training CNNs as long as
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annotated data are available. These advancements facilitate the use of CNNs for plant stress

detection. By using good training practices (e.g., data augmentation, background removal,

and transfer learning), various studies showed that CNNs achieved accuracies from 87% to

99% for stress identification and classification [57, 58, 59, 60, 61, 62, 63, 64, 65, 66]. Details

of these studies can be accessed in the comprehensive overview provided for those studies [33].

In the second phase, pioneering studies attempted to understand reasons leading to high

performance of CNNs for stress identification and classification because the understanding

would not only help to improve CNNs but also ensure biological correctness of obtained

results. Although some studies adopted the deconvolution layers to visualize the activated

pixels in different convolutional layers, the visualization results were not used to compare

with human evaluation or correlate to biological knowledge. Until 2018, an explainable

framework (xPlNet) was developed to both identify (or classify) plant stresses and generate

an explainable map that showed pixels determining the identification (or classification)

results [1] (Figure 2.3a). In this framework, the reference activation level (the mean pixel

intensity plus three times pixel intensity variation) of healthy leaves was calculated for each

of the feature maps extracted in the first convolutional layer. For a testing image, feature

maps from the first convolutional layer subtracted the reference activation to calculate the

feature-importance metric (weighted average of leaf pixel intensity in each of the feature

maps). Feature maps were ranked based on their importance, and the top-K (K = 3 in

the original study) feature maps were selected to calculate the explainable map (EM).

The mean intensity of the EM can be used to quantify stress severity. A separate study

also examined various techniques to understand the mechanism of CNNs for disease diag-

nose [2]. Explanation maps generated by xPlNet generally showed the best correlation with

manual annotation and validated its efficacy for finding pixels correlated to plant diseases

(Figure 2.3b). Compared with studies in the first phase, the two pioneering studies demon-

strated the importance of understanding the mechanism of CNNs for stress phenotyping as
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well as the potential for stress severity quantification.

Figure 2.3: Key concept and results of xPlNet for plant stress detection: (A) diagram of the

developed xPlNet for calculating explanation map for a given image, and (B) visualization

results using different methods for an image containing a stressed leaf. (A) and (B) were

reproduced using figures from [1] and [2], respectively.

In addition to the classification of entire images, a study was conducted to generate

a heat map of stressed lesion probabilities from small patches obtained using a sliding

window over a given image [67]. Generated heat maps were used as input images to a

separately trained CNN for detection of stressed lesions. The developed method showed two
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advantages. First, high-resolution images were directly processed without downsampling,

so detailed spatial information could be utilized by CNNs. Second, generated heat maps

were used as a visualization tool to explain reasons leading to classification decisions. This

advantage, however, was not recognized and fully explored. As the combination of the

sliding window method and CNN resembled the OverFeat framework (an early effort on

using CNNs for object detection), improved CNN meta-models for object detection were

used for plant stress phenotyping [68]. Three representative meta-models (Faster RCNN,

SSD, and R-FCN) were trained and evaluated, and experimental results showed that the

best detection accuracy was 86% at an intersection of union (IOU) level of 0.5. Trained

meta-models could identify and localize the symptomatic regions. As plants could be

infected by multiple diseases, the object detection based solutions could detect all possible

causes, providing a more comprehensive evaluation than image classification based solutions.

Semantic/instance segmentation could provide pixel-level identification of plant stresses,

so that plant stresses can be easily quantified using the ratio of stressed pixels and healthy

pixels. To the best of our knowledge, however, there was no study that explored the use of

segmentation-based solutions for plant stress phenotyping at the time of writing this review.

This could be an important direction for research in the future.

2.4.2 CNNs for Plant Development

Plant and organ development is another important aspect for plant phenotyping. Detection

and counting of plants and plant organs are the key to characterizing plant development. In

this section, a comprehensive overview is provided for studies related to the detection and

counting of plants and plant organs. Based on data format, these studies can be classified as

two categories: detection and counting in still images and detection and counting in image

sequences and videos.
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Detection and Counting in Still Images

It is straightforward to apply CNN meta-models designed for the object detection task to

detect plants and plant organs in still images (Detection based Methods in Figure 2.4).

DeepFruits is the first study that explored the use of modern CNN meta-models (i.e.,

Faster RCNN) for fruit detection [69]). Several key contributions were recognized in this

study. First, transfer learning was used to train a Faster RCNN model with 100 labeled

images, demonstrating the potential of using limited labeled images to train CNN meta-

models. Second, when using RGB images, the trained Faster RCNN model provided a 1%

improvement of F1 score than the CRF model. Third, data fusion was conducted at the

raw-data level and decision level for Faster RCNN models. Experimental results showed

that decision-level fusion further improved the F1 score to 0.838 (additional 2% compared

with Faster RCNN with no fusion). However, raw-data level fusion showed a 2% reduction

of F1 score than the RGB-based Faster RCNN. Two potential reasons were given for the

performance reduction. First, the decision-level fusion contained two Faster RCNN models,

which had twice the parameters that a single Faster RCNN model had to model image data

distribution, and ultimately resulted in the performance improvement. Second, the perfor-

mance reduction of raw-data level fusion was because the weights pretrained on ImageNet

dataset were more suitable for RGB color images than NIR images.

Although the two explanations are reasonable, a more possible reason might be the inef-

fective transfer learning of the revised Faster RCNN architecture. In order to use four-channel

(RGB-NIR) images for training, the receptive field of the first layer in the backbone CNN

was changed from 3 to 4, meaning each filter in the first layer had an additional dimension

that had to be initialized randomly. As a consequence, the output from the revised first layer

was not likely to follow the data distribution pretrained on ImageNet dataset, and this new

data distribution could eventually ruin the rest of the CNN because CNNs are hierarchical

and deep layers are dependent on shallow layers [29]. In other words, pretrained weights in

23



deep layers would not effectively model data, resulting in lower transfer learning efficiency.

Even worse, if pretrained weights are somehow in a local minima or saddle, transfer learning

could provide worse results than randomly initialized weights. Last, the study also applied

the Faster RCNN model for other fruit such as cantaloupe, apples, avocados, mangos, and

oranges, showing the generalizability of Faster RCNN for fruit detection. While the study

reported much useful information, a major drawback was the limited images for training

and testing. Although 100 images could let researchers train a Faster RCNN with high

accuracy, the testing image sizes (from 11 to 34) were too small to confirm the achieved high

performance. In particular, training and testing images were acquired in the same condition,

which significantly reduced the variation of images. This may also be one major factor that

CNN-based solutions showed only marginal improvements over conventional methods.

Several studies generally followed similar practices and used the region-based CNNs

(e.g., RCNN and Faster RCNN) for detection and counting of mushrooms [70]. Two critical

issues were not addressed by these studies. The first issue was to train CNN meta-models

using high-resolution images that usually have a large size and cannot be fed into CNN

meta-model for training. A new approach was developed to solve this issue by splitting one

high-resolution image into multiple small patches. Each patch still had a reasonable size

(e.g., 500 by 500 pixels), so that all the patches could be used to train a CNN meta-model

such as Faster RCNN with high-resolution images [71]. In the testing stage, an image was

still split into patches with a certain overlap (e.g., 50% between two neighboring patches)

and a Faster RCNN model was used to detect maize ears in each patch. Because of the high

overlap between patches, one ear could be detected in multiple patches. Overlap between

each pair of detections were calculated and detections with small pixel area were removed

to avoid repeated detections. This strategy substantially increased training samples and

could handle images with an arbitrary resolution. The second issue was to detect small-

sized objects, which is also a general challenge for CNN based object detection methods.
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An intuitive solution was to use features from shallow layers for region proposals because

features from shallow layers reserved more spatial information and would be able to identify

small-sized objects. Based on this, features from multiple layers (shallow, middle, and deep)

were used for regional proposals of Faster RCNN models [72]. Compared with standard

Faster RCNN models, the modified Faster RCNN model achieved an improvement of 4.7%

for the F1 score for detecting almonds in still images.

Apart from Faster RCNN, a custom two-stage framework was proposed to use superpixels

generated by the simple linear iterative clustering (SLIC) algorithm as region proposals [73].

A CNN model was used to classify each superpixel as flower or non-flower objects. While this

approach showed higher performance than conventional ML methods (e.g., color features

and SVM classifier), it had a potential limitation in region proposal. The advantage of end-

to-end CNN meta-models is that they are able to use rich features for accurate localization,

especially when images varied dramatically. However, superpixels were subject to image

variations and might not provide optimal region proposals. Thus, the generalizability of this

approach is very likely inferior than the end-to-end methods.
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Figure 2.4: Diagrams of key concepts for using CNNs and CNN meta-models for plant/organ

detection, counting, and localization.

In addition to the two-stage meta-models, one-stage meta-models were investigated for

situations that required fast processing speed. YOLO-v2 was used to detect and count apples

and pears in still images [74]. Compared with the original YOLO-v2 model, a modification

was made to change the default grid cell from 13 by 13 to 26 by 26, so that relatively

small-sized apples could be detected. The modified YOLO-v2 model achieved an F1 score of

0.9 at the IOU level of 0.5. As the study was concerned about inference speed, the authors

halved the YOLO-v2 model from 24 layers to 12 layers, providing a dramatic increase of

processing speed (from 4 FPS to 10 FPS) with an acceptable accuracy reduction (F1 score

from 0.9 to 0.8).
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For some applications, fruit/organ quantity is more important than location information,

and thus problems can be simplified as an image regression or classification problem (Regres-

sion/Classification based Methods in Figure 2.4). For regression-based methods, a major

modification was to replace the softmax layer of a CNN with a single neuron for regressing

numeric values (e.g. fruit counts). This simple end-to-end counting solution provided high

accuracies (over 90%) for counting tomatoes [75], Arabidopsis leaves [76, 77], and tassels [78].

In particular, the CNN feature extractor for tomato counting was trained using synthetic

images and tested on real images, showing the potential for developing simulated learning

methods to reduce the efforts on data annotation. This provided a useful direction to solve

the limited availability of labeled datasets. It is should be noted that the study only tested on

red tomatoes which have distinctive color features from the background. The generalizability

of the developed approach should be further validated for images with challenging situations.

Tassels exhibit varied poses, sizes, and colors in a given image, presenting a difficulty to

use global features to characterize them. TasselNet was thus developed to solve this issue

in two steps [78]. In the first step, a local CNN regression model was established to predict

the number of tassels in each patch of an image. In the second step, the estimated count

in each image patch was averaged on individual pixels in that patch, creating a counting

map with the same spatial size as the original image. The summation of all pixel intensities

in the counting map is the final tassel count in that image. Experimental results showed

that TasselNet achieved counting accuracies of from 74.8% to 97.1%, which were 2 to 5

times higher than conventional methods. TasselNet used the patch-based training method

which substantially increased the number of images for training. In addition, TasselNet

required dot annotation rather than bounding boxes, which also reduced the difficulties in

image annotation. A common finding has been identified in all these studies: a moderately

complex CNN is recommended because of the potential of model overfitting. This could be

a particular concern for regression based counting methods, as its learning target is much
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simpler than either image classification or object detection. A major drawback that is also

noteworthy is that no location information can be provided by regression based methods,

limiting the potential of using these methods for other applications. For classification based

methods, plant/organ counting was treated as a discrete counting (or scoring/grading)

problem and thus a predefined score or grade (e.g., 10% of inflorescence) were assigned to a

given image rather than an exact count.

A representative classification based method is WheatNet, which was developed to predict

the percentage of flowering in wheat images [79]. Multiple images were acquired for each

plot. A total of 11 classes were annotated for each plot (and thus images for that plot),

corresponding to 11 visual scores of percentage heading from 0 to 100% with an interval

of 10%. The average prediction of all images in a plot was the final percentage headings

for that plot, which reduced counting errors because of inaccurate classification. By fitting

the per-plot percentage heading into a sigmoid function, an error of 1.25 days was achieved

between the manual and CNN-based measurement of heading date (50% of emerged heads),

indicating the high accuracy of the developed method. It should be noted that heading

dates estimated using WheatNet counts showed the comparable broad sense heritability

(H2 = 0.987) as those estimated using manual counts (H2 = 0.982), indicating the great

potential of incorporating DL for plant phenotyping and, therefore, breeding programs and

genetics/genomics studies. However, the developed method has a major limitation in that

it might be very difficult to generalize the method for other plants with complex canopy

structures and flowering patterns such as cotton. Flowers in those plants are usually with in

canopies rather than on-top of canopies, presenting more partial or full occlusions. If flowers

cannot be imaged, it is not feasible to train any ML/DL model for detection and counting.

Additionally, classification based counting methods have the same issue as regression based

methods, which cannot provide location information that is actually important to understand

plant development.
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Detection and Counting in Image Sequences and Videos

Although the aforementioned studies demonstrated that the detection and counting of plants

and plant organs can be fairly accurate in still images, a single image is usually not adequate

to cover a plant of tree crops (e.g., an apple tree) or an entire plot of row crops. Thus, image

sequences and videos should be acquired for those situations, requiring the expansion of

detection and counting methods. The key challenge of object detection in image sequences

or videos is to associate the same object over different images. There are currently two types

of methods to solve this issue: tracking-based methods and reconstruction-based methods.

The key concept of tracking-based methods is to associate detections of the same object

over consecutive image sequences or video frames, so individual objects can be tracked to

avoid repeated counts (Tracking-based Methods in Figure 2.4). Two types of methods can

be used for correspondence estimation.

The first type is based on trajectory information, which can be acquired using sensors

such as RTK GPS and IMU devices. A framework was developed to count mangoes for

yield estimation [80]. The framework firstly detected mangoes in each still image using a

Faster RCNN model. Camera location and pose parameters were collected for each image, so

that the geometric correspondence was calculated between pixels in two consecutive images.

Thus, it was able to associate and track mango detections from one image to the next image.

Experimental results showed that the developed framework achieved an accuracy of 98.6%

for mango counting with inexpensive computational cost, demonstrating the efficacy and

efficiency of tracking based methods. The developed framework had three limitations. First,

the use of positioning devices would increase the cost of the data acquisition system, which

could be an issue for small farms and research projects that lack adequate funds. Second, the

accuracy of geometric correspondence was dependent on the accuracy of positioning devices,

which might be problematic in applications with very tall trees that can block GPS signals.
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Last, if fruit samples could be seen from both sides because of relatively open canopies, the

developed framework could overestimate the number of fruit counts and thus yield load.

The second type is based on video tracking algorithms. A simple tracking algorithm

was developed for sweet pepper counting [81]. Sweet peppers were detected using a Faster

RCNN model in all images. In the first image, all detections were initialized as trackers.

In the rest of the images, the intersection of union (IOU) and boundary measure (the

ratio of the intersection between a tracker and a detection to the area of that detection)

metrics were used to quantify the closeness between a detection and a tracker. For a given

pair of detection and tracker, if they had an IOU value and a boundary measure that

exceeded predetermined thresholds, the detection and tracker would be associated. When

sweet peppers moved in or out of images, the IOU and boundary measure metrics become

problematic because of the aspect ratio change of the bounding boxes. To avoid this issue,

start and stop zones were configured and sweet peppers detected in these zones would not

be used for tracking. A small set of image sequences were used to determine the IOU and

boundary measure thresholds as well as the start and stop zones. Although the simple

tracking algorithm provided an average counting accuracy of 95.9%, it might not be stable

because the thresholds could be dramatically different in various datasets. If the testing

image sequences and videos were acquired in slightly different conditions, the thresholds

might become invalid and result in degraded performance. As a result, the developed algo-

rithm requires a calibration step for finding proper parameters for different datasets. In

addition, if fruit objects were highly occluded, the accuracy of detection-tracker association

would decrease significantly. To overcome these issues, the optical flow algorithm was used

as the tracking framework [82]. The optical flow provided motion information between two

consecutive images, so the potential position of each bounding box in the current image

can be estimated in the next image. Thus, the detection-tracker association is constrained

by the image motion, which improved the association accuracy. The optical flow relies on
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some assumptions such as small motion between images and brightness consistency. The

first assumption can be satisfied by controlling the data collection movement speed and

image (video) acquisition frame rate, whereas the second assumption is relatively easy to

be broken. For instance, the optical flow provides degraded performance due to illumination

changes, and the illumination change is unavoidable in field conditions [83]. Also, some plant

organs (e.g., flowers) are not rigid objects and are affected by wind. When the wind blows,

flower shapes can change dramatically, resulting in considerable differences in pixel inten-

sities between images. There are other tracking algorithms such as particle filter, multiple

hypotheses tracking (MHT), and probability hypothesis density (PHD), but they have not

been used for plants and plant organ counting.

The key concept of reconstruction based methods is to reconstruct a global coordinate

system to which objects detected in individual images can be projected (Reconstruction

based Methods in Figure 2.4). For 2D reconstruction, global ortho-images were reconstructed

by mosaicking image sequences or video frames, so sub-images of an entire crop tree or plot

could be extracted from the ortho-images [84, 85]. Subsequently, detection based methods

were used to detect and count plants and plant organs in the extracted sub-images. For 3D

reconstruction, point clouds were obtained using either image sequences or video frames

through photogrammetric algorithms (e.g., the structure from motion, SfM) [86, 87] or addi-

tional imaging sensors (e.g., LiDARs) [80]. A transformation relationship was established

between 2D images and obtained 3D point clouds, so that objects detected in 2D images can

be projected to the 3D space or vice versa. As detections of the same object would be highly

overlapped in the 3D space, redundant detections could be eliminated to obtain accurate

object quantity. Additionally, 3D reconstruction based methods enabled the extraction of

additional objection information such as 3D location and object morphology (e.g., diameter

or volume), providing great potential for comprehensive evaluation of plant/organ develop-
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ment.

There were several challenges, however, for the 3D reconstruction based methods. First,

highly overlapped objects were hard to be accurately detected, leading to inaccurate detec-

tion and counting. To overcome this issue, detection and classification based methods were

combined [86]. Instead of detecting individual apples, a Faster RCNN model was trained to

detect apple clusters, which substantially simplified the problem complexity and improved

the detection accuracy. For each detected cluster, a classification based counting method was

used to determine the number of apples in that cluster. Although the combination of two

strategies dramatically simplified the problem complexity and improved the accuracy, the

developed framework was considerably expensive computationally. Also, individual apples

could not be projected in 3D space, which lost the possibility of extracting additional phe-

notypic traits for development characterization. Another issue was the computational cost,

especially the SfM technique used to obtain 3D point clouds. The computational complexity

of the SfM technique increases quadratically along with the number of used images. Certain

environmental factors (e.g., wind) would also result in failure of 3D reconstruction using the

SfM. Generally, these are open issues to photogrammetric 3D reconstruction in the field,

which become limiting factors for 3D reconstruction based methods as well.

2.4.3 CNNs for Postharvest Quality Assessment

While the plant phenotyping community is primarily focusing on in-season plant per-

formance, postharvest quality is also an important part for plant phenotyping because

postharvest properties significantly affect the eventual crop productivity and quality. Based

on the nature of the analysis, postharvest quality assessment can be classified as two cate-

gories: qualitative assessment and quantitative assessment. Qualitative assessment provides

scores/grades for crop fruit, such as defect detection and freshness grading, whereas quanti-

tative assessment provides continuous values for crop postharvest properties such as firmness
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and soluble solid content (SSC).

Qualitative assessment of postharvest quality is similar to plant stress phenotyping,

with a unique emphasis on fruit rather than plants. Most studies investigated the use of

CNNs to detect defects for fruit such as mangosteens [88], cucumbers [89], potatoes [90],

blueberries [91], and peaches [92]. These studies reported detection accuracies from 87.85%

to 98.6%, which usually were 10% to 20% higher than conventional ML methods, demon-

strating the advantages of using CNNs for qualitative assessment of postharvest quality.

Although these efforts showed certain success in addressing problems, they had several big

limitations. First, because of the availability of labeled data, most studies used very shallow

CNN architecture (e.g., one convolutional layer followed by one pooling layer and one fully

connected layer), meaning that the potential of CNNs for postharvest quality assessment

has not been fully investigated. Even though patch-based training with data augmentation

could substantially increase sample sizes, most of the image patches were highly correlated,

presenting potential concerns to overfitting problems. Second, as of writing, no studies

explored techniques for understanding the mechanism of CNNs, making CNN decisions and

high performance unexplained. In addition to defect detection, qualitative assessment of

postharvest quality includes crop grading. A CNN based system was developed to grade

freshness of packed lettuce [93]. In this system, the CNN was trained to classify each pixel as

lettuce, packaging, and artifacts using a small patch (3 by 3 pixels) surrounding that pixel.

Experimental results showed that the trained CNN achieved an accuracy of 97.9% for pixel-

level classification (equivalent to segmentation). The quality grading with segmentation was

comparable with grading using the images of lettuce without packing. This demonstrated

the potential of using CNN to segment lettuce for grading without removing packaging,

showing the possibility for on-shelf sorting.

33



Quantitative assessment of postharvest quality (e.g., sugar/acid ratio and bruising) can

also be processed using CNNs. A study was conducted to develop a CNN-based regression

model for estimating sugar/acid ratio for citrus [94]. Images of excitation-emission matrix

(EEM) were used as inputs to train a custom CNN with 8 layers for regression. Sugar/acid-

ratio values were estimated with the trained CNN models for 20 testing samples and results

showed that CNN-based regression model achieved the lowest prediction error of 2.48, which

was 2 to 3 times less than conventional regression models. Another study investigated the

use of fully convolutional network (FCN) for segmenting bruised, non-bruised, and calyx end

tissues for blueberries [95]. The FCN meta-model was based on a VGG-16 network. Experi-

mental results showed that the developed approach provided the segmentation accuracies of

73.4% to 81.2%, which was substantially higher than the SVM based segmentation method

(46.6%). A partial reason was that the spectra of the calyx end were similar to bruised

and non-bruised tissues, and thus conventional classifiers struggled to accurately segment

them. In contrast, CNN-based approaches could learn other features such as shape and

position, which significantly contributed to the improvement of the segmentation accuracy

of the calyx end. This study was the only case using an end-to-end CNN meta-model for

postharvest quality assessment, providing valuable experiences for future studies. However,

there were several issues in the study. First, hyperspectral images have many more channels

than RGB images, leading to an issue of transfer learning. In the study, an additional layer

was developed to reduce the dimensionality of raw hyperspectral images from an arbitrary

value to 3, so that weights pretrained on other datasets can be used for the bruising dataset.

However, experimental results showed FCN models trained using transfer learning were less

accurate than those trained from scratch. The authors stated that this was primarily because

of the difference between the bruising dataset and the ImageNet dataset, meaning that the

majority of learned filters from the ImageNet are not useful for bruising detection. This raises

the critical question of how large publicly available datasets can benefit postharvest quality

34



assessment studies that rely more on advanced imaging modalities (e.g., multispectral and

hyperspectral imaging) than RGB imaging.

2.5 Discussion

2.5.1 Data Availability

The availability of diverse annotated datasets is a key factor for all DL related studies.

Adequate annotated datasets enable and ensure the fast development and evolution of DL

methods. This generally holds true for domain applications such as plant phenotyping. For

biotic/abiotic stress phenotyping, data annotation is relatively straightforward, resulting

in several large publicly available datasets such as PlantVillage. For plant development,

such as the sensing technologies are under development, not many datasets are publicly

available, not to mention the lack annotated datasets. As the main concept of DL is to learn

features from data, it is really hard to develop (or even use) DL techniques without sufficient

annotated data. In particular, data annotation has several challenges for plant phenotyping.

First, data annotation sometimes requires domain expertise. For instance, it is easy to label

cars, whereas it is difficult to label particular plant diseases because of the need of domain

expertise. Thus, it is not easy to crowdsource annotation tasks, which limits the efficiency

and throughput of data labeling. Second, unlike common uses, plant phenotyping oftentimes

relies on advanced imaging techniques such as thermal and hyperspectral imaging. Labeling

of those data is dramatically more difficult than labeling color images because of fewer

visual cues. Third, there are many phenotyping applications that require object detection

and segmentation (semantic, instance, or panoptic), and these applications require instance-

level (bounding boxes) and pixel-level (masks) annotations. Those are very time-consuming

tasks and become the major limiting factor for using DL in plant phenotyping. Some of the

challenges are common for general computer vision tasks, and researchers have proposed

and developed some solutions. Transfer learning is one of the most important techniques

for significantly reducing the requirements of labeled data. Transfer learning relies on the

35



assumption that a very large dataset ensures that the learned filters are common for other

datasets. Thus, for some domain applications with limited labeled data, transfer learning

could significantly improve the training efficiency and accuracy. However, the key challenge

is whether phenotyping datasets are similar to very large common datasets (e.g., ImageNet

or MS COCO), especially for some phenotyping applications using advanced imaging tech-

niques (e.g., hyperspectral imaging). Active learning is another effort for the reduction of

the cost of data labelling. Compared with conventional data annotation, active learning

aims to find and label samples that maximize model performance. Thus, the majority of

samples are ignored in labeling, thus saving time. Crowdsourcing is also a viable way for

data annotation, which requires less investment in labor cost. Some studies have demon-

strated the capability of using crowdsourcing for quickly labelling a large image datasets

for machine learning applications [96]. In particular, there are some commercial services for

crowdsourcing labelling such as Amazon Mechanical Turk and CrowdFlower. Through those

services, a reasonable quality and throughput can be ensured for data annotation.

2.5.2 Adoption of DL Methods for Plant Phenotyping

Another important consideration is the adoption of DL methods for plant phenotyping.

Technology companies have released various DL framework that accelerate the development

and implementation of new DL algorithms. In particular, the DL community encourages

researchers to share source codes of original studies to facilitate other research projects. These

efforts considerably ease the adoption of latest DL methods for domain applications such as

plant phenotyping. However, there is still a delay in the use of the latest technologies for

plant phenotyping. This likely occurs for three reasons. First, some of the latest DL methods

require a significant investment in computational power, which cannot easily be achieved

by ordinary research labs. Second, original DL solutions might not be directly usable for

plant phenotyping applications. Additional efforts are necessary to adopt those advanced DL
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solutions, and sometimes these efforts are time-consuming. Thirdly, large private companies,

who invest heavily in plant phenotyping, do not divulge their research efforts in this area.

2.5.3 CNNs for 3D Imaging Processing

3D imaging, an important imaging technique, has not been mentioned yet. An important

plant phenotyping task is to characterize and understand plant morphology. While few

studies reported the use of CNN in a scenario with 3D imaging, they have primarily focused

on the detection in 2D images and projected the detections in 3D for processing, such as

removal of redundant detections and determinations of detections with occlusions. None of

them really utilized CNNs for plant morphology characterization and understanding. In par-

ticular, 3D point clouds can be collected using various approaches in plant phenotyping appli-

cations, and most of them need to be processed using conventional 3D processing methods.

One possible reason is that even the DL community has not delivered many reliable tools

for 3D point cloud processing. PointNet and PointNet++ are pioneering work for processing

3D point clouds, but they are limited to the number of points in each model (a couple of

thousands points) [97, 98]. If the point cloud is too large, there is no efficient computational

solution for the network training and inference. Thus, many of 3D imaging work requires the

technical development from the DL community.

2.6 Conclusions

In this review, CNNs and CNN meta-models for image-based plant phenotyping were

comprehensively reviewed to provide advantages and disadvantages of using them for dif-

ferent tasks of plant phenotyping. Through these studies, CNNs and CNN meta-models

demonstrated the great potential for solving the most challenging problems encountered in

various plant phenotyping applications. In particular, some end-to-end CNN meta-models

significantly streamlined the process of extracting phenotypic traits from images. This would
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enable the improvement of data processing and ultimately plant phenotyping applications.

Several future research directions that use CNNs and CNN meta-models for plant phe-

notyping are identified. First direction is to develop efficient labeling strategies or active

learning methods, so that the availability of labeled datasets can be significantly increased

to meet the general requirements of training CNNs and CNN meta-models. This holds true

especially for postharvest quality assessment that utilizes different imaging modalities and

has limited samples. The second direction is to customize a deep learning framework that

can facilitate the adoption of latest DL techniques for plant phenotyping applications. Such

a framework can provide common interface for algorithm integration, so that newly devel-

oped models and tools can be added for use with little or no development effort, such as

visualization tools for model explanation and reinforcement learning for model improvement.

The third direction is to adopt and develop CNNs and CNN meta-models for direct 3D pro-

cessing, especially skeleton extraction, branch-pattern classification, and plant-development

understanding.
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Chapter 3

GPhenoVision: A Ground Mobile System with Multi-modal Imaging for

Field-Based High Throughput Phenotyping of Cotton1

1Jiang, Y., Li, C., Robertson, J. S., Sun, S., Xu, R., and Paterson, A. H. 2018. Scientific Reports,
8. Reprinted here with permission of publisher.
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3.1 Abstract

Imaging sensors can extend phenotyping capability, but they require a system to handle

high-volume data. The overall goal of this study was to develop and evaluate a field-based

high throughput phenotyping system accommodating high-resolution imagers. The system

consisted of a high-clearance tractor with sensing and electrical systems. The sensing system

was based on a distributed structure, integrating environmental sensors, real-time kinematic

GPS, and multiple imaging sensors including RGB-D, thermal, and hyperspectral cameras.

Custom software with a multilayered architecture was developed using LabVIEW for system

control and data collection. The system was evaluated by scanning a cotton field with 23

genotypes for quantification of canopy growth and development. A data processing pipeline

was developed to extract phenotypes at the canopy level, including height, width, projected

leaf area, and volume from RGB-D data and temperature from thermal images. Growth rates

of morphological traits were accordingly calculated. The traits had strong correlations (r =

0.54–0.74) with fiber yield and good broad sense heritability (H2 = 0.27–0.72), suggesting the

potential for conducting quantitative genetic analysis and contributing to yield prediction

models. The developed system could be a useful tool for a wide range of breeding/genetic,

agronomic/physiological, and economic studies.

3.2 Introduction

Agriculture is facing tremendous challenges from the rapidly growing population that

demands more food, feed, fiber, and fuel, as well as from the changing climate and severe

shortfall of arable land and water resources [6]. To overcome these challenges, it is necessary

to select and cultivate new crop genotypes with high yield and quality while using a reduced

amount of natural resources such as water. Cotton (Gossypium) is the most important source

of natural fiber, and in recent years it has also become an important source of food and

feed (e.g. cottonseed oil for humans and hulls for livestock) [99]. Consequently, improving

40



cotton production and quality is crucial to fulfilling the fiber and food requirement of over

nine billion people by 2050 [3]. Genetic/genomic research and breeding programs hold great

potential to double the current production of cotton. Two key factors have been recognized

for these programs: development of diversity panels and evaluation of phenotypic traits [7].

During past decades, advances in genetic technologies paved the way for genetic analysis of

large crop populations. In particular, high-throughput sequencing techniques have enabled

rapid and inexpensive genotyping of crop plants to provide thousands of recombinant

lines for genetic selection and genomics studies. However, current phenotyping primarily

relies on manual measurements and observations, and is far behind genotyping in terms of

throughput, accuracy, and repeatability. This limits the potential use of crop genotypes in

genotype-phenotype mapping and characterizing genotype-environment interactions [100].

High throughput phenotyping (HTP) has been recognized as an essential part of a new

’Green Revolution’ to further improve crop yield and quality as well as to better understand

crop genomics [100].

In the past decade, greenhouse- and chamber-based high throughput phenotyping systems

have been developed by several transnational companies, public institutions, and universi-

ties [101]. These systems are fully automated and can accurately measure phenotypic traits

of individual plants. Many studies have demonstrated successful use of HTP systems to

reveal relationships between genotypes and phenotypes [102, 103, 104, 105]. These studies

primarily focused on crop resistance and/or tolerance to stress and nutrient-deficiency, and

the experiments took place in greenhouses, where environments were artificially controlled

to simultaneously provide consistent ambient condition (e.g. illumination) for data collec-

tion and minimize confounding effects (spatial heterogeneity) on experiments. In addition,

automation subsystems could efficiently and precisely implement treatments (e.g. irriga-

tion and nutrient spray) for experiments, and provide accurate environment and treatment

records (irrigated water and nutrient amount) for data analyses. Although the greenhouse-
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based HTP systems provide the aforementioned beneficial features, they have three major

limitations. First, system development and maintenance are usually prohibitively expensive

for small breeding programs. Second, most greenhouse- and chamber-based systems can only

handle up to several hundred potted plants (or plant wells) in an experiment, so the max-

imum population size is far too small for breeding programs. Third, and most importantly,

quantitative trait loci or candidate genes identified in controlled environments may be less

effective in field conditions [7]. Plant growth and development can be significantly affected

by environmental factors such as soil, and these factors are extremely difficult (or sometimes

impossible) to simulate in controlled environments.

To address these issues, it is imperative to develop systems for field-based high throughput

phenotyping (FB-HTP). In consideration of system cost, utility, and spatial and temporal

resolution, FB-HTP systems based on high-clearance ground vehicles are currently preferred

for breeding programs of moderate scale (up to a few thousand plots) [106, 107, 108]. Several

representative systems have been developed recently [109, 110, 111, 112, 113, 114, 115]. Some

of these systems [109, 110, 111] have demonstrated usefulness in breeding programs and

genomics studies [116, 117, 118]. It is noteworthy that imaging techniques were frequently

applied in recent systems due to their ample capacity for extracting complex traits. The

imaging techniques included conventional RGB, thermal, spectral, and 3D imaging modules.

Integration of multimodal imaging sensors would significantly improve the sensing capability

of an FB-HTP system, because a multimodal imaging system cannot only measure traits

from a single imaging module, but also provide a set of traits from different imaging modules.

For instance, RGB and 3D imagers can be integrated to provide both color and position

information for plants or plant organs. Generally, the data volume of imaging modules is

high, thus presenting a technical challenge in data acquisition. In particular, the continuous

scanning mode is preferable for high throughput data collection in the field, which further

increases the demand in a data acquisition (DAQ) system dedicated for field-based phe-
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notyping systems. There are three features that need to be included in the DAQ system:

high-throughput, customizability, and modularity. High-throughput means that the DAQ

system needs to handle high-volume data generated by imaging sensors. Customizability

allows researchers to quickly develop and upgrade an integrative FB-HTP with various

imaging modules for different phenotyping purposes. Modularity splits individual modules

into independent working environments, which prevents entire-system malfunction and

reduces the amount of effort required in development, when adding or removing imaging

modules.

The overall goal of the research described in this paper was to develop and evaluate

a modular and customizable ground mobile system using multiple imaging modalities for

FB-HTP. Specific objectives were to: 1) develop a modular and customizable ground mobile

system integrated with multiple high resolution imagery modules including RGB-D, thermal,

and hyperspectral cameras, 2) calibrate and validate the sensing system, and 3) evaluate the

usefulness of the FB-HTP system for breeding programs and genomics studies.

3.3 Development and Validation of the GPhenoVision System

3.3.1 Platform mechanical design and implementation

The ‘GPhenoVision’ system consists of five components including a platform, mechanical

structures, sensing and electrical systems, and data acquisition software. A high-clearance

tractor (Spider DP, LeeAgra Inc. Lubbock, TX, USA) was the platform upon which other

system components were integrated (Figure 3.1a). In the current study, the wheel track and

clearance of the platform were set as 1.83 m and 1.5 m, respectively, and narrow wheels

were selected to minimize mechanical disturbance. An aluminum frame (width of 1.52 m)

with three polyethylene tarpaulins covering the top and two sides was built as an enclosure

to provide a shaded area. The platform engine and a secondary alternator were installed

in the back of the platform by default, so the enclosure was attached to the front of the
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tractor to reduce engine-induced variations. The enclosure covered plants for imaging to

reduce ambient interferences such as strong sunlight and wind effects. An adjustable sensor

frame was welded in front of the tractor and covered by the enclosure, the height of which

could vary from 1.2 m to 2.4 m above the ground. Imaging sensors were installed on the

sensor frame in custom camera holders, and a rubber cushion was added between metal

frames to further reduce high-frequency vibrations that could be potentially transferred

to sensors. This vibration reduction helped to decrease the possibility of acquiring blurry

images. The installation positions of sensors were predetermined so that acquired images

could be geo-referenced. On top of the enclosure and tractor cab, there were two sensor

bases on which environmental sensors and positioning devices were mounted. In the middle

of the platform, a metal frame was fabricated to hold instruments of the electrical system.

Passenger seats were installed on each side of the tractor for testing purposes. In the testing

stage, additional operators were on the tractor to test the image acquisition software during

field data collection.
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Figure 3.1: (a) Diagram and picture of the GPhenoVision system design and (b) architecture

of data flow and management. N is the number of the primary sensing unit(s) integrated to

the GPhenoVision system; N = 1 in the current study.

3.3.2 Sensing system

The sensing system contained two subsystems: a DAQ system and local computing resources

(Figure 3.1b). The DAQ system consisted of a primary sensing unit, a positioning unit, and

an auxiliary sensing unit, and was integrated into the platform for data collection in field

conditions (left block in Figure 3.1b). In the primary sensing unit, an RGB-D camera (Kinect

for Windows v2, Microsoft, Redmond, WA, USA), a thermal camera (A655sc, FLIR Systems

Inc., Wilsonville, OR, USA), and a hyperspectral camera (MRC-923-001, Middleton Spectral

Vision, Middleton, WI, USA) were connected to a rugged laptop (S400, Getac Technology

Corporation, Taipei, Taiwan) that was equipped with a solid state drive (SSD; 850 Pro 1TB,
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Samsung Electronics, Suwon, South Korea). The laptop used an Intel i7-4712 MQ CPU with

8 GB of RAM and Windows 10 Pro operating system. A serial port (RS232) of the laptop

was utilized to receive GPS data from the positioning unit based on a real time kinematic

GPS (RTK-GPS; Cruizer II, Raven Industries Inc., Sioux Falls, SD, USA). Based on each

camera’s field of view (FOV) and scanning mode, the sampling frequencies of the RGB-D

and thermal cameras were 6 frames per second (FPS), whereas the hyperspectral cameras

were 100 FPS. All cameras used global shutter to avoid the Wobble effect during data

collection. Accordingly, data volume of the primary sensing unit was estimated (Table 3.1).

In the auxiliary sensing unit, a single-board computer (Raspberry 3 Model B, Raspberry

Pi Foundation, Cambridge, UK) was used to receive and save ambient information (air

temperature, relative humidity, and pressure) by controlling a microcontroller (Arduino

Uno, Arduino, Vancouver, BC, Canada) that regulated an environmental sensor (BME280,

Bosch Sensortec, Gerlingen, Germany). The primary and auxiliary sensing units were wired

to a router for communication of synchronized timestamps and DAQ commands.
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Table 3.1: Key specification and data volume of the cameras used in the primary sensing

unit
RGB-D camera Thermal camera Hyperspectral camera

Manufacturer Microsoft FLIR Middleton Spectral Vision

Model Kinect for Windows v2 A655sc MRC-923-001

Scanning mode Area scan Area scan Line scan

Field of view 70◦ × 60◦ 80◦ × 64.4◦ 55.9◦

Data type
16-bit unsigned integer (depth)

32-bit unsigned integer (color)
32-bit single precision 16-bit unsigned integer

Spectral range Visible (color), 827–850 nm (depth) 7.5–14 µm 400–1000 nm

Image resolution
512× 424 (depth)

1920× 1080 (color)
640× 480 640(spatial)× 236(spectral)

Image size
0.42 MB (depth)

8 MB (color)
1.18 MB 0.29 MB

Designed frame rate (maximum)
6 (30) FPS (depth)

6 (30) FPS (color)
6 (30) FPS 100 (200) FPS

Data volume (maximum)
2.52 (12.6) MB/s (depth)

48 (240) MB/s (color)
7.08 (35.4) MB/s 29 (58) MB/s

Total data volume per second 86.6 (346) MB/s

After field data collections, data could be transferred to local and remote computing

resources for data processing and sharing (right block in Figure 3.1b). A server computer

was equipped with a redundant array of independent disks (RAID 1) of 4 terabytes for

storing data generated in one growth season. The server computer was also used to perform

algorithms for extracting phenotypic traits.

3.3.3 Electrical system

The electrical system was based on the secondary alternator (200 amps) of the tractor plat-

form, an absorbed glass mat (AGM) battery (Yellowtop D34, OPTIMA Batteries, Inc.,

Milwaukee, WI, USA), a power inverter (APS1000-12, Power Bright, Fort Lauderdale, FL,

USA), and an uninterruptible power supply (UPS; Back-UPS Pro 1500, APC by Schneider
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Electric, West Kingston, RI, USA). When the system ran, the alternator continuously gen-

erated and output power to the power inverter through the battery. The inverter boosted

the input power from 12-volt direct-current (DC) to 120-volt alternating current (AC) and

transferred to the UPS to provide stable AC output for the sensing system. A 2-kilowatt

power generator (EU2000i, Honda Power Equipment, Alpharetta, GA, USA) was chosen as

an alternative power generating source in case the secondary alternator malfunctioned. In

total, the electrical system using either the secondary alternator or the power generator could

provide AC output of 865 watts with the UPS protection, which was adequate to power the

sensing system used in GPhenoVision (see Supplementary Table S1).

3.3.4 Data acquisition software

Custom computer software was developed using LabVIEW 2015 (National Instruments,

Austin, TX, USA) and deployed on the rugged laptop to control the positioning and primary

sensing units for data acquisition. The software was based on a multilayered architecture;

each layer worked independently but the layers could be synchronized with user commands

(Figure 3.2a). The graphical user interface (GUI) received user commands and transferred

them to the sensor control layer for processing. The GUI also worked with the data display

layer to present current image frames to users. The sensor control layer utilized multiple

threads, with each thread controlling a single sensor through an event-driven finite state

machine (EFSM) (Figure 3.2b). Due to the multithread design, the GPS and the RGB-D,

thermal, and hyperspectral cameras could acquire data using different sampling frequencies.

Additionally, although all sensors shared the same EFSM, sensor initialization, finalization,

image preview, and acquisition relied on specific drivers or software development kits (SDKs)

for each sensor. In the present study, the RGB-D camera required its driver to be provided

by the manufacturer and a third-party LabVIEW library (Haro3D, HaroTek LLC, Keller,

TX, USA), whereas the thermal and spectral cameras required only their official SDKs. The

serial communication virtual instruments (VIs) provided by LabVIEW were used to receive
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data from the GPS. As the total data volume could be up to 346 MB/s, it was necessary to

design a data cache layer, which increased the performance of data transferring and storage

by buffering data from sensors in the computer memory. The data transfer layer periodically

inquires the data cache layer and writes buffered data back to the SSD hard drive.

Figure 3.2: (a) Design of the data acquisition (DAQ) software for the GPhenoVision system:

(a) software architecture of the DAQ program; (b) the event-driven finite state machine

(EFSM) developed for sensor threads in the sensor control layer; and (c) the front panel of

the custom DAQ program.

The software front panel showed data (GPS, depth, color, thermal, and hyperspectral

images), memory cache status, and operation log in real time during field data collection

(Figure 3.2c). This allowed operators to quickly read height or temperature of plants from

raw images or investigate potential issues such as failure of certain sensors. Sensors could

be individually configured and controlled through sensor control panels (indicated with

red rectangle in Figure 3.2c). The collected images were saved in a folder specified by the

operator. After configuring and turning on certain sensors, an operator could start and stop
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data collections by using the ’Record’ and ’Stop’ buttons, accordingly.

In addition to the aforementioned computer software, a custom Python (Python 2.7)

script was developed and deployed on the single-board computer to acquire air temperature,

relative humidity, and pressure with acquisition timestamps under 1 Hz. Timestamps of

the primary and auxiliary sensing units were synchronized through a network time protocol

(NTP) service that was installed on the rugged laptop. Due to its small amount of data

(35 bytes per second), the auxiliary sensing unit was controlled to start/stop by a physical

button, and continuously recorded data during a whole data collection session without being

interrupted by commands from the DAQ software controlling the primary sensing unit.

3.3.5 System calibration and validation

Calibration and validation methods

Prior to using the system, it was important to calibrate and validate sensors in the primary

sensing unit because they would provide essential data for extracting phenotypic traits.

The three cameras were used to acquire images for different types of traits, and thus they

had various aspects to be calibrated or validated 3.2. For the Kinect v2 camera, depth

accuracy is a key factor because it determines the accuracy of each point in a colored point

cloud retrieved from the sensor. Although the depth accuracy of Kinect v2 camera has been

proven in both laboratory and field conditions [119, 120], it was necessary to re-validate

sensor measurements as the camera was integrated into a new system. To account for ambient

effects such as wind, depth accuracy of the Kinect v2 camera was evaluated by measuring

plant height in field conditions. The GPhenoVision system scanned 100 cotton plants on

three different days while recording wind speed information with a portable anemometer

(HYELEC MS6252B, Huayi Electronics Industrial Ltd., Hangzhou, Zhejiang, China). Plant

heights were extracted from depth images by using the method described in a previous

study [120], and also manually measured on each day for reference. The system and manual
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measurements were compared using simple linear regressions, and the adjusted R2 and root

mean squared error (RMSE) were used as accuracy indicators.
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Table 3.2: Summary of calibration and validation experiments for the RGB-D, thermal, and

hyperspectral cameras used in the GPhenoVision system.

Sensor Test parameter Test loca-

tion

Test objective

RGB-D camera Depth accuracy Field Validate the accuracy of sensor

measurements of morphological

traits

Thermal camera Measurement accuracy (com-

pared with thermocouple mea-

surements) for an object with

various temperatures

Laboratory Validate the measurement accu-

racy in a control environment to

provide an accuracy baseline

Thermal camera Measurement accuracy (com-

pared with thermocouple mea-

surements) for an object at

different distance to the camera

Field Validate the repeatability of mea-

surements due to the change of

object-to-camera distance

Thermal camera Temperature differences between

thermal camera measurements

for plants under shaded and

unshaded areas

Field Verify the absence of the shading

effect to canopy temperature

measurements

Hyperspectral

camera

Accuracy of the regression model

between pixel locations on the

spectral dimension and standard

wavelengths

Laboratory Calibrate and validate the rela-

tionship between pixel locations

on the spectral dimension and

wavelengths in a scan line

Hyperspectral

camera

Maximum and minimum spatial

resolution

Field Calibrate and validate the spa-

tial resolution of the camera

under various object-to-camera

distances
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Three experiments were conducted to validate measurement accuracy of the thermal

camera under various conditions. The first experiment was to provide a baseline of the

thermal camera accuracy by measuring surface temperature of a blackbody (an object with

emissivity of 1; 4-inch Blackbody Source, FLIR Systems Inc., Wilsonville, OR, USA) in

laboratory conditions. The thermal camera and blackbody were placed on the same plane

separated by a distance of 2.4 m (the maximum distance between objects and the thermal

camera on the system), and a T-type thermocouple was attached to a corner of the blackbody

surface to measure its temperature for reference. The camera and thermocouple measured

temperatures synchronously. A total of 26 surface temperatures ranging from 24◦C to 69◦C

were set to the blackbody by adjusting its powering voltage, and each temperature was

measured by both the thermal camera and thermocouple for 200 frames; therefore, both the

thermal camera and thermocouple were used to collect 200 data points. The mean value of

the 200 data points collected by each sensor was calculated as the sensor measurement at

each known blackbody temperature. The mean values obtained from the thermal camera

and thermocouple were compared using linear regressions, and the adjusted R2 and RMSE

values were used for accuracy evaluation.

Although the first experiment provided the baseline of thermal camera accuracy, the base-

line was obtained in laboratory conditions that were different from field conditions (practical

data collection conditions). The second experiment was to test whether the thermal camera

could repeatedly provide accurate measurements of objects at different distances from the

camera in field conditions. The thermal camera was oriented towards nadir, installed on

the GPhenoVision system, and raised to the highest position (2.4 m above the ground).

The blackbody was set to a constant voltage (therefore a constant surface temperature in

theory), and placed on a tripod that was in the center of the camera’s FOV. The blackbody

was raised from 0 to 1.5 m above the ground with an interval of 0.1 m, and at each height,

its surface temperature was measured for 200 frames (therefore yielding 200 data points) by
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both the thermal camera and thermocouple. Since blackbody temperature could vary due

to fluctuations of ambient conditions, the thermal camera measurements were compensated

by using Equation 3.1. Analysis of variance (ANOVA) test was conducted on the compen-

sated measurements to identify any existence of statistical differences among temperatures

measured at different heights.

TIcompensatedh,i = TIrawh,i + TCh,i − TCh,1, h = 0, 0.1, ..., 1.5, i = 1, 2, ..., 200 (3.1)

where TI and TC represented temperatures measured by the thermal camera and thermo-

couple, respectively; h indicated heights of blackbody; and i was the number of frames (or

data points) at a certain height.

During data collection, plants would be shaded by the enclosure and this might raise

concern regarding shading effects on temperature measurements. The last experiment was

to test any shading effect on measurements of canopy temperature in field conditions. In the

experiment, only half of the enclosure was covered so that the thermal camera could acquire

images of plants under both shaded and unshaded conditions. The GPhenoVision system

with the modified enclosure was used to scan 30 plants on three days (14 July 2016, 22 July

2016, and 26 July 2016). A total of 90 pairs of images were collected, each containing the

same single plant that appeared in both the shaded and unshaded areas under the modified

enclosure. The plant in each image was masked by a thresholding method to calculate its

mean canopy temperature. Differences in temperatures measured under the two shading

conditions were computed, and the mean value and standard deviation of the temperature

differences were used to evaluate shading effects. During data collection, shading would be

considered to have no effect on canopy temperature measurements if a mean difference of

zero was achieved with a standard deviation of less than 0.5◦C.
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The hyperspectral camera was calibrated in spectral and spatial dimensions, respectively.

A method proposed in a previous study [121] was used to calibrate the spectral dimension.

To obtain a more accurate regression, three calibration lamps were used including a Krypton

lamp (Model 6031, Oriel Instruments, Stratford, CT, USA), a Xenon lamp (Model 6033, Oriel

Instruments, Stratford, CT, USA), and an Hg (Ar) lamp (Model 6035, Oriel Instruments,

Stratford, CT, USA). Additionally, the spatial resolution was calculated and tested using two

test targets that were printed on letter-size (215.9 mm × 279.4 mm) bright white papers.

The first target contained two resolution patterns of 1/8 and 1/6 line pairs per millimeter

(LP/mm) with each of 15 pairs, and the second target contained three resolution patterns of

1/20, 1/15, and 1/10 LP/mm with each of 5 pairs. The targets were placed at three heights to

evaluate spatial resolutions under the worst (targets were on the ground), common (targets

were 1 m above the ground), and best (targets were 1.5 m above the ground) conditions.

The spatial resolution under each condition was calculated as a ratio of the target length

(279.4 mm) to the number of pixels representing the target in an image. Subsequently, the

calculated spatial resolutions were validated by using the resolution patterns. If a resolution

pattern was correctly identified in an image, two image pixels at least should be assigned to

any line pair in the pattern with one pixel for the black stripe and another for the white. As

a result, the spatial resolution was confirmed by the resolution patterns using Equation 3.2.


SR ≤ 1

2×r , if pattern was correctly identified

SR > 1
2×r , otherwise

(3.2)

where SR is the camera spatial resolution in mm/pixel and r is the pattern resolution in

LP/mm.

Calibration and validation results

Overall, the system and manual measurements of plant height were strongly correlated

(adjusted R2 > 0.99) with an RMSE of 0.034 m for data on all three days (Figure 3.3a).
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Compared with results from another study [120], both adjustedR2 and RMSE were slightly

improved, indicating that the GPhenoVision system could accurately measure plant height

in field conditions. Additionally, these results were stably obtained when using data on

individual days (see Supplementary Table S2), which meant that the system had high

repeatability to accurately measure plant height under various conditions.
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Figure 3.3: Calibration and validation results of three sensors used in the primary sensing

unit. (a) Depth accuracy of the RGB-D camera. (b) Regression between blackbody temper-

atures measured using thermal camera and thermocouple in laboratory conditions. (c) Raw

(top) and compensated (bottom) blackbody temperatures measured using thermal camera in

field conditions when placing blackbody at various heights in the sensing range. (d) Canopy

temperatures measured under shaded and unshaded conditions. (e) Regression between wave-

lengths and pixel locations on the spectral dimension in images. (f) Spatial resolution of the

hyperspectral camera under the best (top) and worst (bottom) situations.

For the blackbody surface temperature, thermal camera and thermocouple measurements

were highly correlated, with an RMSE of 0.43◦C, and thus thermal camera measurements

were as accurate as traditional contact measurement methods (Figure 3.3b). Consequently,

thermal images acquired by the camera could be directly used for extracting canopy tem-

perature by configuring a proper emissivity. The emissivity can be set from 0.93 to 0.99
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depending on crops to be studied [122]. A value of 0.96 is commonly used as cotton plant

emissivity [123] and has been used for field data collection in the present study. In the second

experiment, although the blackbody was set at a constant voltage, its surface temperatures

measured by raw thermal images and thermocouple varied when the blackbody was placed

at different heights (top chart in Figure 3.3c). This indicated that the temperature varia-

tions were primarily due to fluctuations of ambient conditions. After compensation, thermal

imaging measurements showed no statistical difference with thermocouple measurements

when the blackbody was placed at various heights (bottom chart in Figure 3.3b). Exceptions

occurred at the heights of 0.3, 0.6, and 1 m above the ground, but the temperature differences

at these three heights were less than the nominal camera accuracy (0.5◦C). As a result, tem-

perature measurements with the thermal camera were consistently accurate as long as plants

were within the system measurement range (0 to 1.5 m). The mean difference in canopy

temperatures between plants under shaded and unshaded areas was negligible, because the

actual difference (3 × 10−4◦C) was smaller than the nominal camera sensitivity (0.05◦C).

Additionally, the standard deviation was less than the camera’s nominal accuracy, which

meant that there was no shading effect on canopy temperature measurements (Figure 3.3d).

This was probably because canopy temperature would not immediately decrease when plants

were shaded for only one or two seconds during data collection. Therefore, images acquired

by the thermal camera of the GPhenoVision system could be used to accurately extract

physiological traits such as canopy temperature.

Following a previously developed method [121], no “keystone” or “smile” distortion was

observed in the spatial and spectral dimensions (see Supplementary Figure S1), and thus

correction of distortion was not needed for the hyperspectral camera. In the spectral cali-

bration, 22 representative wavelengths from 404.66 nm to 992.3 nm were identified and used

to establish the regression equation between pixel locations on the spectral dimension and

wavelengths (Figure 3.3e). The regression equation was satisfactory because the standard
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and calculated wavelengths were strongly correlated (adjusted R2 = 1). The RMSE (less

than 1 nm) was also acceptable because the spectrograph has a nominal spectral resolution

of 2.7 nm. In the spatial calibration, the length (279.4 mm) of the two targets was recog-

nized as 41, 74, and 128 pixels in hyperspectral images acquired at the worst (on the ground),

common (1 m above the ground), and best (1.5 m above the ground) conditions. Thus, the

spatial resolutions of the hyperspectral camera ranged from 2.2 to 6.8 mm/pixel and was

3.8 mm/pixel under the common condition. The worst and best resolutions were validated

by the test patterns on the targets. In the worst condition, resolutions of lower than 1/15

LP/mm were successfully identified as 5 pairs, whereas resolutions of 1/10 LP/mm were not

correctly recognized (bottom chart in Figure 3.3f). Based on Equation 3.2, this confirmed

that the spatial resolution (6.8 mm/pixel) was better than 7.5 mm/pixel but worse than

5 mm/pixel. The hyperspectral camera successfully resolved all patterns in the best con-

dition, which agreed with the calculated spatial resolution of 2.2 mm/pixel (better than 3

mm/pixel; top chart in Figure 3.3f). Nonetheless, even the worst spatial resolution would

be 6.8 mm/pixel, which was smaller than the size of a cotton leaf. Thus, the hyperspectral

camera of the GPhenoVision system has an adequate spatial resolution for many elements

of phenotyping.

3.4 Methods

3.4.1 Experimental Design and Field Data Collection

The GPhenoVision system is intended to be eventually used for experiments involving thou-

sands of lines, so it was necessary to evaluate system capability in a phenotyping scenario.

As the entire project was at a fledgling stage, the system was evaluated in a small-scale

experiment with a special field layout. A field (33.727458 N, -83.299273 W) contained 132

plants (11 plants per row × 12 rows), and used a single plant layout (SPL) where individual

plots had in-row and across-row width of 1.52 m (see Supplementary Figure S4). The ‘SPL’

field was planted on 25 May 2016 with each plot comprising a single plant sampling 23
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different genotypes. The genotypes belonged to three groups: elite Gossypium hirsutum (G.

hirsutum), Gossypium barbadense (G. barbadense, represented by a single elite cultivar) ,

and exotic G. hirsutum genotypes, which include wild and elite cottons not adapted to the

study area.

The field was scanned using the system on five days in 2016 including 14 July (51 days

after planting, DAP 51), 28 July (DAP 65), 4 August (DAP 72), 19 August (DAP 87), and 26

August (DAP 94). This covered two cotton growth stages: 1) canopy development (DAP 30–

80) and 2) flower and boll development (DAP 80–120). No irrigation was scheduled during the

data collection period. To obtain daily maximum canopy surface temperature, data collection

was strictly conducted in a period from 1200 to 1500 hours on each day (see Supplementary

Table S7). Although it could collect data with all imaging modules (see Supplementary

Figure S5 for representative images from all imaging modules), the GPhenoVision system in

the present study, ran at a constant speed of 1 m/s, with depth, color, and thermal modules

in a continuous scanning mode. To save storage space, the operator manually controlled

the DAQ software to start/stop saving images at the beginning/end of each row. Cotton

fiber was manually harvested and weighed for individual plants on 4 November 2016 (DAP

163). Although a precipitation sensor was not available on the farm during the data collection

period, precipitation information was obtained from a public service (Weather Underground,

The Weather Company, Atlanta, GA, USA) based on sensors 11 km away from the SPL field.

3.4.2 Extraction of Phenotypic Traits

After all plants germinated, positions of individual plants (defined as the position of plant

main stem) were surveyed using an RTK-GPS (Cruizer II, Raven Industries Inc., Sioux

Falls, SD, USA). Each of the collected images (depth, color, and thermal images) had a

corresponding GPS record, and this record indicated the image acquisition position repre-

senting the image center. In the configuration (field layout and camera installation position)
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of the present study, a depth, color, or thermal image captured a single plant with little or

no coverage of adjacent plants if that plant was located close to the image center (image

acquisition position). Because image acquisition was in a continuous mode, there were mul-

tiple images that contained one particular plant. To select only one image from each type of

camera for each plant, Euclidean distances were calculated between the physical position of

a plant and acquisition positions of all images. The depth, color, and thermal images with

the minimum distances to the center of a plant were assigned to that plant for phenotypic

trait extraction.

Subsequent image processing was performed on each plants images to extract phenotypic

traits including five morphological traits and canopy temperature. Depth and color images

were used to extract the morphological traits (left block in Figure 3.4). The raw depth

and color images were firstly reconstructed to colored point clouds using a built-in function

provided by the Kinect v2 sensor SDK, and a color filter (threshold of 0.15) based on excess

green (ExG) index was applied to the colored point clouds to segment canopy points from

the background. The plant points were used to calculate the five morphological traits: 1)

plant height (H) was the distance between the ground surface (z equals 0) and the highest

plant point; 2) width across-row (WAR) was the maximum distance along the x-axis; 3)

width in-row (WIR) was the maximum distance along the y-axis; 4) projected leaf area

(PLA) was the area covered by the canopy boundary; and 5) canopy volume (CV) was

calculated using convex hull algorithm. Growth rates were calculated based on differences

in the morphological traits between two measurement days to quantify dynamic changes of

plant canopy. In total, growth rate of the morphological traits was calculated in five periods

including DAP 51–65, DAP 65–72, DAP 72–87, DAP 87–94, and DAP 51–94.
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Figure 3.4: Flowchart of extracting morphological traits from depth and color images, and

canopy temperature from thermal images. Excess green (ExG) index was used to segment

plants from background in colored point clouds.

Canopy temperature was represented by the difference between canopy and air tempera-

ture (Tc-Ta). Air temperatures were retrieved from environmental data collected by the aux-

iliary sensing unit, whereas mean canopy temperatures were calculated from thermal images

(right block in Figure 3.4). An adaptive thresholding algorithm (Otsu) was performed on

each image to segment plants from the ground and the tractor frame. In the resultant binary

images, connected components were identified and their centroid and circumcircle diameter

were calculated. The connected component in the most central position was recognized as

the target plant mask using Equation 3.3, and connected components representing parts

of neighboring plants and/or weeds were removed using Equation 3.4. The final mask was

subsequently applied to the original thermal image to calculate mean canopy temperature.
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IndexCCplant = argmin(
√

(xi − Ixcenter)2 + (yi − Iycenter)2), i = 1, 2, . . . , n (3.3)

where Indexplant is the index of the connected component (CC) in the most central position,

Ixcenter and Iycenter are the x and y coordinates of the image center, and i is the index of a

given connected component.

CCvalidated
i =


1, (ri + rc) ≤

√
(xi − xc)2 + (yi − yc)2

0, otherwise

, i = 1, 2, . . . , n (3.4)

where CCvalidated is a flag for a connected component, 1 or 0 means to include/exclude

the connected component in the mask, xi, yi, and ri are the x and y coordinates and the

circumcircle diameter of the ith connected component , xc, yc, and rc are the x and y

coordinates and the circumcircle dimeter of the target plant connected component.

3.4.3 Statistical Analyses

Pearson correlation analyses were conducted between fiber yield and the extracted traits (or

growth rates), and correlation coefficient (r) was used as an indicator to evaluate the poten-

tial of traits for establishing a yield prediction model useful to select high-yielding genotypes

in breeding programs. Analysis of variance (ANOVA) with post-hoc Tukey-Kramer tests

were conducted on the extracted traits among three genotype groups, exploring differences

in plant growth and development between various cultivated and exotic species. In addition,

broad sense heritability (H2) was calculated for individual traits, and used as an indicator to

evaluate the usefulness of a trait for genotype selection and/or quantitative genetic analyses

such as genome-wide association studies (GWAS) and quantitative trait locus (QTL) map-

ping. ANOVA tests were performed on the extracted traits measured on each day between

individual G. hirsutum genotypes. In the resultant ANOVA tables, the mean sum of squares
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(MS) for the sources of ‘genotype’ and ‘error’ were the variances due to genotype and envi-

ronment (including measurement error), respectively. Accordingly, H2 values were calculated

for individual traits using Equation 3.5 [124]. The G. barbadense species included only one

genotype (Pima S6) in the present study. To avoid effects due to various species, data points

of the G. barbadense species (Pima S6) were excluded from correlation analyses with fiber

yield and H2 calculation. All tests were performed in SAS (SAS 9.4, SAS Institute Inc.,

Cary, NC, USA) using a significance level of 0.05.

H2 =
VG
VP

=
VG

VG + VE
(3.5)

where H2 is the broad sense heritability, VP is the total phenotypic variance, and VG and VE

are phenotypic variances due to genotype and environment effects.

3.5 Results

3.5.1 Representative Images Acquired by the System

The GPhenoVision system could successfully control the RGB-D and thermal cameras to

acquire depth, color, and thermal images of cotton plants under field conditions (Figure 3.5).

The system demonstrated the capability of simultaneously acquiring and storing high-volume

images generated by multiple imaging sensors of high resolution. Therefore, the system could

be a useful tool for field data collection, and the system design is reusable for FB-HTP

projects aiming to utilize high-resolution imaging sensors.
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Figure 3.5: Representative color, depth, and thermal images acquired by the GPhenoVision

system on five days in the field.

Additionally, the acquired images could potentially be used to extract various phenotypic

traits. The depth images contained 3D information about plant canopies, which was useful

to extract morphological traits such as canopy height, projection area, and volume. In com-

bination with color images, depth images could be converted to colored point clouds in which

vegetative components were easily segmented from the background. This might improve accu-

racies of measuring morphological traits, compared with other 3D imaging sensors such as

LiDAR. Furthermore, color features were important for detecting certain plant organs such

as flowers. Thermal images had an advantage in measuring not only canopy temperatures

but also the temperature distribution over a canopy. Some leaves were cooler than others,

probably due to their geometric distributions or physiological responses to environments.

3.5.2 Extracted Phenotypic Traits

Overall, plant canopies elongated and expanded substantially from DAP (day after planting)

51 to 87 (canopy development stage), but only slightly after DAP 87 by which time the

flower and boll development stage had started (plant height, width in-row (WIR), and
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width across-row (WAR) in Figure 3.6). Projected leaf area (PLA) followed the trends of

plant width, whereas canopy volume (CV) followed the trends of both plant height and

width (projected leaf area and canopy volume in Figure 3.6). This was because projected

leaf area was primarily affected by plant expansion, but canopy volume was affected by

both canopy elongation and expansion. Thus, any single dimensional development led to

increases of canopy volume. Canopy temperature showed a different trend than canopy

expansion (Tc-Ta in Figure 3.6). Before DAP 72, canopy temperatures decreased, as plants

rapidly developed and increased leaf area available for transpiration (resulting in evaporative

cooling). The decrease of canopy temperature was also due to environmental factors. The

total precipitation levels were 111.76 mm and 178.82 mm during the period from the day

of planting to DAP 51, and from DAP 66 to 72, respectively, resulting in an increase of

average daily precipitation from 2.23 mm to 25.55 mm (see Supplementary Table S3 for

detailed precipitation information). However, from DAP 73 to 94, environmental factors

became dominant. Average daily precipitation was 6.21 and 3.19 mm per day from DAP 73

to DAP 84 and DAP 85 to 94, respectively. Reduced water availability may reduce tran-

spiration, leading to higher canopy temperatures that may indicate water stress. The plant

height, projected leaf area, and canopy temperature showed similar trends with previous

studies [110, 111]. Moreover, GPhenoVision could measure multi-dimensional phenotypic

traits such as projected leaf area and canopy volume, providing new tools for understanding

canopy growth and development.
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Figure 3.6: Six phenotypic traits measured using the GPhenoVision system on 14 July (51

days after plating, DAP 51), 28 July (DAP 65), 04 August (DAP 72), 19 August (DAP

87), and 26 August (DAP 94) in 2016. Asterisk and error bar indicated the mean value and

standard deviation of traits for all plants in the field, respectively. DAP 51, 65, and 72 were

in canopy development stage, and DAP 87 and 94 were in flower and boll development stage.

3.5.3 Correlation between Extracted Traits and Fiber Yield

Morphological traits generally had clear positive correlations (r > 0.5) with fiber yield

(Table 3.3, see Supplementary Figure S2.1–S2.5 and Table S4.1–S4.5 for detailed results).

The correlations became strong until DAP 87 and then were relatively weak on DAP 94.

This is consistent with findings that canopy growth and development primarily contributes

to fiber yield in early stages rather than late stages [125]. Single-dimensional traits were

comparable (sometimes slightly better) with 2D and 3D traits in terms of correlation with

fiber yield. This was likely due to the single plant layout where a plot contained only one

plant. Compared with usual plot design, plant height in the single plant layout could be

more indicative of plant growth and development, showing strong correlation with fiber

yield. High canopy temperature, an indicator of plant water stress, mostly showed negative

correlations with fiber yield. However, no correlation was observed between fiber yield and

canopy temperatures measured on DAP 72, when ample water was available, suggesting that

at that time growth was not constrained by water limitation and thus canopy temperature
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was not predictive of fiber yield [111].

Table 3.3: Pearson correlation coefficients between fiber yield and phenotypic traits measured

on five days after planting (DAP) in 2016. Pearson correlation tests used data from 100 plants

(n=100) in the field. Asterisks (or abbreviations) indicated different statistical signifiance

levels: NS for not significant, * for p-value <0.05, ** for p-value <0.01, *** for p-value

<0.001.
Date (DAP) Plant height Width in-row Width across-row Projected leaf area Canopy volume Tc-Ta

14 July (51) 0.65*** 0.67*** 0.70*** 0.66*** 0.59*** -0.65***

28 July (65) 0.68*** 0.65*** 0.61*** 0.60*** 0.49*** -0.44***

04 August (72) 0.68*** 0.64*** 0.66*** 0.63*** 0.62*** NS

19 August (87) 0.69*** 0.64*** 0.62*** 0.66*** 0.58*** -0.45***

26 August (94) 0.56*** 0.60*** 0.65*** 0.60*** 0.53*** -0.25*

During the entire phenotyping period (DAP 51 to 94), growth rates of all morphological

traits showed positive correlations with fiber yield (Table 3.4, see Supplementary Figure

S3.1–S3.5 and Table S5.1–S5.5 for detailed results). Growth rates of projected leaf area and

canopy volume had stronger correlations with fiber yield than plant heights and widths,

suggesting that growth rates of 2D and 3D traits might be better predictors than those of

1D traits in a linear model for yield estimation. It was noteworthy that growth rates of

WIR, WAR, PLA, and CV had no statistical correlation with fiber yield from DAP 87 to 94,

because reproductive growth became dominant in this period and WIR, WAR, PLA, and CV

did not change significantly. However, plant height increased slightly in that period, because

excessive vegetative growth was from a single terminal bud located at the tallest part of

branches. A moderate negative correlation was observed between fiber yield and growth

rate of plant height from DAP 87 to 94, supporting the hypothesis that excessive vegetative

growth may reduce reproductive growth in late stages of crop development. Therefore, a

combination of growth rates of multi-dimensional morphological traits would be particularly
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useful for studying plant energy use efficiency in different growth stages.

Table 3.4: Pearson correlation coefficients between fiber yield and daily phenotype growth

rates calculated between different days after planting (DAP) in 2016. Pearson correlation

tests used data from 100 plants (n=100) in the field. Asterisks (or abbreviations) indicated

different statistical signifiance levels: NS for not significant, * for p-value <0.05, ** for p-value

<0.01, *** for p-value <0.001.

Period Plant height Width in-row Width across-row Projected leaf area Canopy volume

14 July to 28 July (DAP 51-65) 0.54*** 0.39*** 0.32** 0.52*** 0.43***

28 July to 04 August (DAP 65-72) NS NS NS 0.51*** 0.58***

04 August to 19 August (DAP 72-87) NS 0.22** 0.21** 0.52*** 0.38***

19 August to 26 August (DAP 87-94) -0.36** NS NS NS NS

14 July to 26 August (DAP 51-94) NS 0.34*** 0.29** 0.55*** 0.50***

3.5.4 Differences in Extracted Traits Among Genotype Groups

Overall, G. barbadense had the lowest value of all traits after DAP 65, with a shorter and

smaller plant canopy than G. hirsutum and exotic genotypes (Figure 3.7). Plant height

of G. barbadense Pima S6 reached its maximum on DAP 65, 22 days earlier than the G.

hirsutum and exotic genotypes, whereas other static traits generally reached the highest

level on DAP 87. These data might indicate abnormal vegetative growth of G. barbadense

genotypes, which are not well adapted to the study area and not generally grown there.

Manual field assessment showed all G. barbadense plants to be lodged, although most were

otherwise healthy and continued to grow horizontally.
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Figure 3.7: Differences in extracted traits among three cotton groups: Gossypium hirsutum,

Gossypium barbadense, and ‘exotic’ genotypes. Growth rates were calculated in five periods

including P1 (DAP 51–65), P2 (DAP 65–72), P3 (DAP 72–87), P4 (DAP 87–94), and P5

(DAP 51–97). Each marker indicated the mean value of traits for a genotype used in the

study, and genotypes in the same group were rendered as the same color. Groups with

different letters were statistically different from each other (see Supplementary Table S6 for

detailed p-values), and group mean values were sorted alphabetically. DAP 51, 65, and 72

(accordingly P1 to P3) were in canopy development stage, and DAP 87 and 94 (P4) were in

flower and boll development stage.
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Plant canopy size (projected leaf area) of exotic genotypes was smaller than those of G.

hirsutum and G. barbadense cultivars on DAP 51, indicating that the exotics established

their maximum size slower than the two cultivated genotype groups. This was expected

because the exotics tend to be late flowering and experience rapid vegetative growth in late

stages. After DAP 51, the exotics did indeed experience rapid vegetative growth, consis-

tently as high as those of G. hirsutum genotypes, resulting in large plant canopies that were

comparable with G. hirsutum genotypes in late stages (after DAP 87). Some exotic geno-

types (T0246BC3MDN, T0018MDN, T0347MDN, and T0151DN) had even larger canopies

than G. hirsutum genotypes and maintained high vegetative growth rates, perhaps reflecting

greater investment in vegetative growth and less in reproductive growth (seed and associated

fiber).

Trait variations of the exotics were larger than those of elite G. hirsutum genotypes,

especially static traits after DAP 87 and growth rates in the period from DAP 87 to DAP

94. This was expected, because elite G. hirsutum genotypes have been selected by plant

breeders for many years and are generally very closely related to one another. On the other

hand, the exotics harbor substantial genetic variations, some of which may be used to improve

G. hirsutum genotypes by crossing and selection.

3.5.5 Broad Sense Heritability of Extracted Traits

Most of the measured traits had broad sense heritability (H2) greater than 0.5, supporting

the usefulness of the GPhenoVision system in genomics/genetics studies. H2 values of mor-

phological traits (static traits) decreased to their lowest values in the middle of the growing

season, and then began to increase and ultimately reached the maximum values at the last

measurement date (Figure 3.8). In particular, H2 values for all morphological traits were

larger than 0.5 after DAP 87 (H2 of some traits was over 0.7 after DAP 94), indicating the

usefulness of the traits for quantitative genetic analyses such as genome-wide association
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studies (GWAS) and quantitative trait locus (QTL) mapping. On the contrary, H2 of canopy

temperature showed a random pattern. Canopy temperature is expected be useful for geno-

type selection on certain days but not others. This was probably due to two reasons. First,

during periods when cotton plants have adequate soil moisture, there may be little or no

temperature difference between drought resistant and non-resistant genotypes. Further, wide

row and plant spacing provided more air movement and less competition among plants for

water. Second, the experiment was small and might not have used sufficiently large samples

to discern statistically significant differences in canopy temperature. Thus, it would be better

to study canopy temperature in experiments with irrigation treatments and larger popula-

tions. H2 values of growth rates (dynamic traits) showed an increasing trend until reaching

maximal levels (>0.7) in the middle of the growing season (DAP 65 to 72 or DAP 72 to 87).

The growth rates H2 over the entire growing season (DAP 51 to 94) were also larger than

0.6. Low-yielding genotypes may continue to grow vegetatively while high-yielding early- and

late-season genotypes are in reproductive growth stages during the period from DAP 72 to 87.

Figure 3.8: Broad sense heritability (H2) of phenotypic traits extracted in the present study.

H2 > 0.5 indicated a trait would be useful for genotype selection, and H2 > 0.7 indicated a

trait would be useful for genotype differentiation.
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3.6 Discussion

Compared with other existing integrated systems, GPhenoVision is a field-based HTP

system that consists of multiple high-resolution imaging modalities. Modularity and cus-

tomizability are two key features of the GPhenoVision system. The modular design is

implemented and demonstrated at various levels. The GPhenoVision system is firstly decou-

pled into four subsystems, with each providing a particular system function: mechanical

platform for system mobility, electrical system for powering, and sensing system and soft-

ware for data acquisition. In particular, the sensing system and data acquisition software

are separated as two parts, because the sensing system addresses hardware concerns (e.g.

sensor installation position and communication interface) while the data acquisition software

provides efficient solutions for user interaction and data management (e.g. data transfer,

visualization, and storage). Subsystems are modules in the GPhenoVision system, and

replacement/modification of any module will not affect other modules or the entire system

functionality as long as the replacement/modification follows the same module interface.

For instance, the electrical system is a valid module to the entire system as long as it

provides stable 120V AC power output (the module interface), regardless of which power

source (either the tractor secondary alternator or a separate power generator) is being used.

Individual subsystems are also decoupled into modules for certain functions, and the DAQ

software primarily demonstrates the modular design at this level. The DAQ software uses

a multilayered architecture, with each layer being a software module. The synchronization

of the sensor control, and data cache and transfer layers provides a mechanism for avoiding

data acquisition latency due to the large difference between the data volume generated by

imaging sensors and the input/output (I/O) speed of hard drives. Although the data transfer

layer with an SSD can achieve a writing speed up to 520 MB/s, which is adequate for most

imaging sensors such as LiDARs and hyperspectral cameras, they can be replaced by new

hardware and system writing functions to fulfill requirements of higher resolution (thus data

volume) sensors without modification of other software modules. The sensor control layer is
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further decoupled, and each sensor thread is considered as a module in this layer with the

module interface of the EFSM. Any EFSM-based sensor thread can be properly controlled

by the sensor control layer regardless of the differences in implementation of sensor control.

For instance, the RTK-GPS needs a simple LabVIEW function to initialize a serial port for

communication/data transfer, whereas the hyperspectral camera needs multiple SDK func-

tions to initialize the SDK library, open a USB3 port for communication/data transfer, and

configure camera parameter. Although the initialization implementation of the two sensors

is different, the sensor control layer turns them into the same state (sensor initialization)

due to the modular design. In other words, sensors (sensor threads) are interchangeable to

the sensor control layer because they follow the same module interface. The modularity at

various levels does not only simplify the system development and maintenance, but also

increases the system customizability. Various sensors can be conveniently integrated into

(or removed from) the system for different phenotypes by adding (or deleting) EFSM-based

sensor threads in the sensor control layer of the DAQ software. In addition, integrated

sensors can be readily selected to use (or not use) in the DAQ software due to the modular

design. As the priority of phenotypic traits changes between different growth stages, the

system can use various combinations of imaging modules without modification of source

code. For instance, canopy temperature becomes less meaningful in late stages such as cotton

boll maturity, and thus the thermal camera can be turned off to reduce data storage space.

The modular design ensures the stability of customization of the GPhenoVision system in

various situations, because turning-off or malfunction of one sensor (module) will not affect

the use of other sensors (modules).

The calibration and validation results showed that the RGB-D, thermal, and hyper-

spectral cameras achieved sufficient measurement performance for measuring various types

of phenotypic traits. The RGB-D camera is used to measure morphological traits, and

plant height as a representative morphological trait has been repeatedly measured by the
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RGB-D camera with a difference of 3–4 cm to manual measurements. If considering the

field conditions with a wind speed of 3–6.6 m/s, this measurement error is acceptable.

The thermal camera is used to measure canopy temperature, and it achieved the nominal

measurement accuracy (0.5◦C) in both the laboratory and field conditions. In addition,

there was no difference between measurements of plants under shaded and unshaded areas,

suggesting no shading effect on the canopy temperature measurement during the regular

data collection. The hyperspectral camera provides a high spectral sampling interval of 2.6

nm with a spectral shift less than 1 nm, and the best and worst spatial resolutions are 2.2

mm/pixel and 6.8 mm/pixel, respectively. Given this level of spectral and spatial resolutions,

the hyperspectral camera may provide ample information to study plant physiological status

(e.g. photosynthesis and diseases) at the organ level, but these need to be further studied by

considering experimental design, plant material preparation, agronomic practices, and data

analysis.

Although the present study was small-scale, it demonstrated the usefulness of measured

phenotypic traits for genomics studies and breeding programs. The sensing capabilities of

the GPhenoVision system created new opportunities for measuring multi-dimensional mor-

phological traits such as projected leaf area and canopy volume. In particular, cotton plants

continued vegetative growth along different dimensions during the growing season, so it

would be better to characterize canopy growth and development using morphological traits

in multiple dimensions. Additionally, growth rates were calculated for morphological traits

in multiple dimensions, providing the possibility of studying relationships between canopy

architecture at different growth stages and plant reproductive efficiency. In contrast, the

usefulness of canopy temperature mostly depended on plant growth and environmental con-

ditions. Precipitation was only 0.36 mm/day during DAP 51 to DAP 65, resulting in a large

variation of canopy temperature among genotypes on DAP 65. Therefore, different levels of
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irrigation are necessary to study drought-resistant genotypes by using thermal imaging data.

The GPhenoVision system is modular and customizable, and has demonstrated the poten-

tial for genetics/genomics studies and breeding programs, but it should be acknowledged that

several parts of the system can be further improved. First, the current illumination configu-

ration (just relying on solar radiation) was not optimal for all three imaging modules. The

RGB-D and thermal cameras worked well in the shading condition, whereas the hyperspec-

tral camera showed a relatively low signal intensity due to the reduced incident light. The

enclosure can be further split into two sections: RGB-D and thermal section and hyper-

spectral section. Additional illumination sources can be configured to increase the incident

light intensity (and thus reflectance intensity in images) in the section for the hyperspectral

camera. Second, challenges still remain in the development of data processing algorithms

to take full advantage of the sensing capabilities of the GPhenoVision system. The algo-

rithms in the present study were developed for processing images collected in the SPL field,

and need a significant modification for data collected in fields with regular plot layout. In

addition, new algorithms should be able to accurately extract complex traits from 3D or

hyperspectral images, which require advanced techniques in computer vision and machine

learning. For instance, plant components such as flowers or cotton bolls can potentially be

detected using convolutional neural networks, even in field conditions containing a complex

background. Moreover, processing speed will be an important concern that affects pheno-

typing throughput. Therefore, it is necessary to consider new computational approaches such

as cloud computing and GPU-based optimization to speed up algorithms for trait extraction.

In addition, image data are usually in high volume, posing challenges in data storage, man-

agement, and sharing. If a project involves researchers from the same institution, a viable

solution is to use a storage service maintained by local agencies; otherwise, cloud-based ser-

vices need to be considered such as ‘CyVerse’, because they can provide reliable data storage,

management, and sharing to users in different regions.
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3.7 Conclusions

The GPhenoVision system reported in this study can control RGB-D, thermal, and hyper-

spectral cameras to collect images of cotton plants in field conditions. The proposed sensing

system structure and DAQ software architecture would allow rapid development of a custom

FB-HTP system that could handle imaging sensors that generate high-volume data. The

validation and calibration results showed that the three cameras could provide accurate raw

data for phenotyping purposes. Most of the measured traits had H2 over 0.5 (some over 0.7),

confirming the usefulness of using the GPhenoVision system in genomics/genetics studies.

Future studies will be focused on developing image processing algorithms to extract more

traits and deploying the system in a large-scale experiment for genetic analyses.
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Chapter 4

3D Point Cloud Data to Quantitatively Characterize Size and Shape of

Shrub Crops1

1Jiang, Y., Li, C., Takeda, F., Kramer, E. A., Ashrafi, H., and Hunter, J. 2019. Horticulture
Research, 6(1), 43. Reprinted here with permission of publisher.

78



4.1 Abstract

Size and shape are important properties of shrub crops such as blueberries, and they can

be particularly useful for evaluating bush architecture suited to mechanical harvesting. The

overall goal of this study was to develop a 3D imaging approach to measure size-related traits

and bush shape that are relevant to mechanical harvesting. 3D point clouds were acquired

for 367 bushes from five genotype groups. Point cloud data were preprocessed to obtain clean

bush points for characterizing bush architecture, including bush morphology (height, width,

and volume), crown size, and shape descriptors (path curve λ and five shape indices). One-

dimensional traits (height, width, and crown size) had high correlations (R2 = 0.88–0.95)

between proposed method and manual measurements, whereas bush volume showed relatively

lower correlations (R2 = 0.78–0.85). These correlations suggested that the present approach

was accurate in measuring one-dimensional size traits and acceptable in estimating three-

dimensional bush volume. Statistical results demonstrated that the five genotype groups were

statistically different in crown size and bush shape. The differences matched with human

evaluation regarding optimal bush architecture for mechanical harvesting. In particular, a

visualization tool could be generated using crown size and path curve λ, which showed

great potential of determining bush architecture suitable for mechanical harvesting quickly.

Therefore, the processing pipeline of 3D point cloud data presented in this study is an

effective tool for blueberry breeding programs (in particular for mechanical harvesting) and

farm management.

4.2 Introduction

Blueberries are nutritious fruit, containing ample amounts of phytochemicals (e.g., antiox-

idants) beneficial to human health [126]. The United States (US) is the largest blueberry

producer and consumer in the world, and the recognition of blueberry economic and nutri-

tional values have prompted cultivation of blueberries in other countries (e.g., Chile, China,
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Mexico, Peru, Australia, and European countries) [127]. Thus, an increasing demand for

blueberries has been foreseen, requiring improvements in blueberry production technology

and fruit quality in the future. These improvements require breeding programs to develop

superior genotypes that are better adapted to different climates and modern agriculture

production practices, including fruit harvesting with over-the-row (OTR) mechanical har-

vesters. Phenotyping technologies provide various traits for genotype evaluation in breeding

programs [7, 100, 128]. These traits can also be used for management decision-making in

commercial production fields such as the ability to use mechanical harvesting methods with

limited (or even no) impacts on fruit quality.

Bush architecture is important for tree/shrub crops, because it usually can be used for

growth evaluation, biomass estimation, yield prediction, harvest efficiency improvement, and

utilization of plant protection products (PPPs) such as pesticides [129]. Size and shape are

two important aspects of bush architecture. Size-related traits indicate the overall growth

status of bushes, which are related to yield potential. Studies were conducted to use size-

related traits to evaluate blueberry vegetative growth under various environments, showing

a reasonable correlation between those traits (e.g., bush height) and berry yield [130, 131].

Bush shape describes the geometry of bushes, which is an important factor affecting the

performance of OTR mechanical harvesters. Some blueberry growers are already using

OTR mechanical harvesters. More growers expect to rely on OTR mechanical harvesters to

pick blueberries for fresh market, addressing the challenges of increasing harvest labor cost

and anticipated insufficient labor force. To maximize the performance of OTR mechanical

harvesters, blueberry plants ideally should have a narrow and small crown (e.g., small cross-

section area near the ground) and a vase-shaped canopy [132, 133, 134]. A narrow and small

crown is easy to tighten with catch plates of OTR harvesters, leaving small gaps between

the bush and the catch plates to prevent berries from falling to the ground [135, 136]. This

reduces yield losses due to mechanical harvesting. A vase-shaped canopy positions fruit away
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from the central crown of a blueberry plant, providing a relatively open area for berries

to drop onto harvester catch plates. This reduces external impacts (and thus potential

bruises) on machine-harvested berries for better fruit quality and longer shelf-life. To date,

the determinations of bush dimension, crown size, and bush shape have largely relied on

manual assessments, which are subjective and laborious.

Crop size-related traits have been widely studied using 2D and 3D imaging modali-

ties. 2D imaging approaches were primarily used to extract unitless ratios or traits in the

unit of image pixel [15]. When a reference object is provided or the imaging system is

pre-calibrated, extracted traits can be converted to real world units. Conversion models

are usually established for greenhouse- or chamber-based phenotyping systems due to the

easy deployment of reference objects and precise configuration of a pre-calibrated imaging

system [137, 138, 139, 140]. When the distance between the canopy and camera is relatively

consistent, unitless ratios (e.g., canopy coverage ratio) are comparable over different data

collection periods and thus they have been extracted in many 2D imaging based studies [15].

With the increased availability of 3D sensing approaches, researchers are starting to fre-

quently use 3D imaging techniques for measuring size-related traits [141, 15]. Previous

studies intensively investigated size-related traits at the plant and canopy levels for tree

and shrub crops such as apples [142], pears [142], grapes [142, 143, 144], hickories [145],

olives [146], almonds [147], peaches [148], and blueberries [149]. These studies showed a

general trend that the accuracy of crop size measurement mostly depended on point cloud

quality which is determined by sensing range and imaging approaches. Photogrammetry

based 3D imaging approaches (e.g., the structure from motion (SfM)) are inexpensive and

can provide detailed point cloud data, but they require considerable computational resources

for 3D reconstruction. The quality of reconstructed point clouds is significantly affected by

ambient conditions such as illumination changes and wind. In addition, the SfM technique

requires the use of reference objects to scale reconstructed point clouds, if no metric data
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(e.g., accurate metric positions of image acquisition) is provided. In such cases, reference

targets need to be included in the imaging scene, introducing potential challenges for large

field experiments (e.g., over several hundreds of plots) [150, 151, 152]. Active 3D imaging

instruments (e.g., LiDARs) are costly but usually provide fast 3D measurements. Some

active instruments have particular outdoor configurations (e.g., special emitting illumina-

tion sources) to dramatically improve the accuracy and repeatability of 3D reconstruction

in the field. However, occlusions can lead to incomplete scanning of objects, presenting

difficulties in trait measurement. For instance, it would be difficult to measure plant organs

and branches under the canopy because they cannot be imaged by instruments using a single

sensing angle. Recently, a handheld mobile laser scanner was developed so that full-view

point clouds can be obtained [153]. Two studies demonstrated that the handheld laser

scanner could obtain point clouds with much less missing points due to occlusion for forest

structure characterization and inventory [154, 155]. Thus, it is worthwhile to explore the use

of this laser scanner to obtain point cloud data for measuring size-related traits of shrub

crops, especially the traits of plant parts under the canopy such as crown size of blueberry

plants.

Shape analysis methods can be grouped into two categories: descriptive methods and

outline-based methods [156]. Both methods have been commonly used to analyze shapes

of fruits, vegetables, and plant leaves. Descriptive methods usually define landmark points

that can be used to derive ratios, angles, and their combinations for quantifying object

shapes. Descriptive methods have been used to study the shape of tomatoes [157, 158], egg-

plants [159], vineyard grape leaves [160], and peppers [161]. Outline-based methods rely on

advanced mathematical tools (e.g., curve functions and elliptical Fourier analysis (EFA)) to

quantitatively describe object shapes using transformed features. Studies reported the use of

EFA for analyzing the shape of mistletoe berries [162], cotton leaves [163], oranges [164], ash

tree fruit [165], and persimmons [166]. Shape descriptors defined in descriptive methods have
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clear physical meanings, which can be easily interpreted and compared. However, defining

descriptors requires a good understanding of domain needs and knowledge, involving

extra efforts from domain experts. In contrast, features extracted using outline-based

methods usually have no direct physical meaning, which requires visualization tools for

feature interpretation and understanding. Outline-based methods use general mathematical

models/framework to calculate shape features, which require almost no domain knowledge

for conducting data analyses. It is also possible to use both methods for a comprehensive

analysis because shape descriptors from the two methods could be complementary to each

other [167]. In fact, both methods would be suitable for bush shape analysis for two reasons:

1) there is a clear physical definition of optimal bush shape for mechanical harvesting, and

thus it would be straightforward to define landmark points to extract shape features; 2)

previous studies [168, 162] demonstrated that a curve function (path curve) can effectively

depict differences between vase-shape, cone-shape, and round shape, which would be worth-

while to explore.

To the best of our knowledge, only one study from our group has reported on the potential

of using 3D imaging to extract size-related traits and shape descriptors of bush crops such

as blueberries [149]. The study used an unmanned aerial system (UAS) to acquire oblique

images of blueberry bushes from approximately 3 m above the ground for reconstructing

point clouds using the SfM technique. It achieved a strong correlation (R2 = 0.92) between

imaging and manual measurements of bush dimensions (e.g., height and width) with an

root mean square error (RMSE) of 0.1 m, indicating a high system measurement accuracy.

However, correlations were less desirable (R2 = 0.380.55) between imaging and manual mea-

surements for crown size which is one of the most important parameters of machine harvest

efficiency. The undesirable correlations occurred primarily due to the limitation of data

collection system. When images were acquired on top of bushes regardless of using nadir or

oblique perspectives, bush canopy occluded plant architecture close to the ground, leading
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to an incompletion of bush crown reconstruction and thus inaccurate measurement of crown

size. In addition, some shape descriptors defined in the study may not have been effective in

identifying desired bush shapes. For instance,“blockiness” was defined as the ratio of widths

at 85% and 65% canopy heights, but it had no relation to the position of the widest canopy

cross-section which is the determinant among round (the widest cross-section in the middle),

conical (the widest cross-section in lower canopy), and vase shapes (the widest cross-section

in upper canopy). In fact, bush canopy can be round, conical, and vase-shaped for the same

“blockiness” value. Therefore, it is necessary to address aforementioned issues and provide

improved approaches in both data collection and analysis for measuring size-related traits

and bush shape. These approaches would be particularly useful for breeding programs to

select blueberry genotypes suited to machine harvesting.

The overall goal of this study was to develop a 3D imaging approach to measure blueberry

bush dimensions and shape in the field. Specific objectives were to: 1) evaluate the accuracy

of sensor measurements for objects with standard shapes in field conditions; 2) develop

data processing algorithms to extract size-related traits (bush dimensions and crown size)

and shape descriptors of blueberry bushes; 3) evaluate the accuracy of proposed method;

and 4) explore the usefulness of bush shape descriptors for machine harvesting and farm

management.

4.3 Materials and Methods

4.3.1 Blueberry Field and Data Collection

The study was conducted in two blueberry fields. The first field (33◦53’10.7”N, 83◦25’15.1”W)

was located at the Horticultural Farm of the University of Georgia in Watkinsville, Georgia,

USA and consisted of 7-year-old southern highbush blueberry (Vaccinium darrowii) bushes.

The bushes had been un-pruned for two years at the time of this study. Point cloud data were

collected in a sub area (23 m×15 m) containing 47 bushes (O’Neal cultivar) on 4 October
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2016 with a clear sky view and an average wind speed of 2.7 m/s. A closed-loop walking path

was predetermined, with at least one pass for each side of individual bushes. This walking

strategy ensured that bushes would be scanned from multiple angles to improve point cloud

coverage. While moving along the predefined path, a person carried the ZEB1 scanner

(GeoSLAM, Ruddington, Nottinghamshire, United Kingdom) and swung the scanner node

across the movement direction. The walking speed was about 1.4 m/s, and it took approx-

imately 5 minutes to complete the scanning. A total of 20 bushes were selected for further

analyses, because they were relatively small plants which in practice could be measured

manually.

The second field (34◦21’42”N, 77◦50’11.9”W, 68 m×12.5 m) named Ideal Tract Farm

was in the Horticulture Research Station in North Carolina. The study characterized 222 8-

year-old bushes that have been bred for mechanical harvesting. The 222 bushes were pruned

prior to data collection. Data collection was conducted on 15 March 2018 with an overcast

sky and an average wind speed of 3.5 m/s. A closed-loop walking path was used with one

pass on each side of individual bushes, ensuring that bushes would be scanned from multiple

angles to improve point cloud coverage. While moving along the predefined path, a person

carried the ZEB1 scanner and swung the scanner node across the movement direction. The

walking speed was about 1.0 to 1.2 m/s due to the muddy ground condition, and it took

approximately 10 minutes to complete the scanning. All 222 bushes were used for further

data analyses, but no manual measurements were conducted.

4.3.2 Data Processing Pipeline of Extracting Size and Shape Traits

Point Cloud Preprocessing

A data processing pipeline was developed to extract size-related traits and bush shape,

including data acquisition, preprocessing, and trait extraction (Figure 4.1 and Figure 4.2).

Raw data were manually transferred from the scanner to a workstation computer and
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uploaded to the manufacturer’s web service (GeoSLAM Cloud, Bingham Nottingham,

Notts, UK) for 3D reconstruction. The reconstructed point cloud data contained 4.7 million

points (152 MB in LAS format) and 17 million points (547 MB in LAS format) for the two

experimental fields.

In the preprocessing stage, clean point clouds of individual blueberry bushes were

obtained (Preprocessing in Figure 4.1). The first step was to rotate the point cloud of the

entire scanning area to a coordinate system in which the ground plane was paralleled to the

x-y plane and the bush row direction was aligned with x-positive direction. Ground normal

was calculated through plane fitting using maximum likelihood estimation sample consensus

(MLESAC) [169], and rotation transform matrices (Ty and Tx) were accordingly derived for

the x-z and y-z planes. Rotation matrix for the x-y plane (Tz) was derived based on the row

direction identified using Hough transform. The point cloud of the scanning area was ras-

terized to a depth image, with each image pixel representing the maximum depth (z value)

in a grid of 0.5×0.5 m2 in the point cloud. The depth image was thresholded (the threshold

was 0.3 because bushes were at least 0.3 m above the surrounding ground) to segment bush

pixels. The Hough transform was performed on all bush pixels to detect lines (bush rows) in

a feature space ([α, ρ]) where α was the complementary angle to the line orientation and ρ

was the distance from the line to the origin. If a line represented a bush row, the line should

go through as many bush pixels as possible, and thus the high occurrence of [α, ρ] values

(the α line with the least intersection points with curves in the Hough space graph) denoted

bush rows. The best α value was accordingly selected to calculate the bush row direction.

Subsequently, a rotated point cloud of the scanning area was calculated using Equation 4.1.
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PtCloudtrans = PtCloudorignTxTyTz

Tx =


1 0 0

0 cos(θx) sin(θx)

0 −sin(θx) cos(θx)



Ty =


cos(θy) 0 sin(θy)

0 1 0

−sin(θy) 0 cos(θy)



Tz =


cos(θz) sin(θz) 0

−sin(θz) cos(θz) 0

0 0 1



(4.1)

Where PtCloud denoted a point cloud matrix, T represented rotation matrices, θx, θy, and

θz were rotation angles around the x-, y-, and z-axes, respectively.

The rotated point cloud was re-oriented to ensure that the bush row vector was towards

the x-positive direction, and then the experimental area was cropped based on its dimen-

sion (23 m and 15 m along x-positive and y-positive directions). Bounding boxes were

manually drawn for the selected 20 bushes, and raw point clouds of individual bushes

(PtCloudRawBush) were segregated accordingly.
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Figure 4.1: Flowchart of data acquisition and preprocessing to obtain clean point clouds

of individual blueberry bushes. In the diagram, for the adaptive ground removal based on

height histogram, the red and blue dot indicated the determined threshold and the height

value with the least bin gradient, respectively. The green dash lines depicted the value range

in which bin gradient values were close to zero.

The second step was to remove ground and noise points in raw bush point clouds,

obtaining clean bush point clouds for trait extraction. The ground surface was not flat

due to agronomic practices (e.g., additional woody layer), and as a result plane-fitting based
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Figure 4.2: Flowchart of data processing to extract size and shape traits for blueberry bushes.
(a) overall diagram of trait extraction; (b) measurement of size-related traits; (c) measure-
ment of bush crown size; and (d) calculation of bush shape indices. In the sub panel (c),
WAR15 and WIR15 were the width across-row and width in-row of the cross-section at
0.15 m above the ground, and WAR15 was used as crown size in the present study. In the
sub panel (d), green and brown colors indicated the canopy and crown part of bush. Blue
and red curves were the contours and the best fitted path curves of the bush canopy. P1
to P11 denoted 11 landmark points including the bush top-center point (P1), left (P2) and
right (P3) endpoints of the broadest cross-section, bush leftmost (P4) and rightmost (P5)
endpoints, left (P6) and right (P7) canopy-crown separation points, left (P8), center (P9),
and right (P10) endpoints of the bush bottom, and the center point of the canopy bottom
(P11). It should be noted that in this case, P6 did not exist and P3 and P5 overlapped. LM
was the center line of the bush, and LL and LR were the left and right border lines between
bush upper and lower portions. L1 and L2 were the left and right outer boundary lines of
the bush bottom portion. hn, hupper, and hlower denoted the height of the bush crown and
canopy upper and lower triangles.
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methods such as random sample consensus (RANSAC) could not remove ground points cor-

rectly. An adaptive thresholding approach was proposed for ground point removal. In each

raw bush point cloud, a height histogram was generated using a bin width of 0.01 m, and

bin gradients were calculated accordingly. The threshold of ground points was determined

by three criteria: its bin gradient was close to zero; it was greater than the lower limit of the

bin with the least gradient value; and it should be as small as possible. The threshold was

calculated using Equation 4.2.

hground = min({h|0 < |G(h)| < t} ∩ {h|h > argminh(G(h))}) (4.2)

Where hground was the determined height threshold for ground points, G(·) was the

gradient of a bin, h was the lower limit of bins in a height histogram, and t (set to 5 in the

present study) was a noise factor for selecting bins with the gradient close to zero.

If point heights were lower than the threshold, the points in raw bush point clouds

(PtCloudRawBush) were classified as ground (PtCloudground) or otherwise bush (PtCloudbush).

After removing ground points, noise points in bush point clouds (PtCloudbush) were detected

and excluded using statistical outlier removal (SOR) filter. For each point, Euclidean dis-

tances to its k nearest neighboring points were calculated. A point was categorized as noise,

if the mean distance between that point to its k neighboring points was larger than n times

of the standard deviation (Equation 4.3 and Equation 4.4).

D(p, k) =

∑k
i=1

√
(px − pix)2 + (py − piy)2 + (pz − piz)2

k
(4.3)

N(p) =


1(noise), µD(p,k) > n× δD(p,k)

0, otherwise

(4.4)

Where D(p, k) denoted a range of Euclidean distances between a point p in bush point

clouds to each of its k nearest neighbors. pi indicated the ith neighboring point of p. px, py,
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and pz (p·x, p
·
y, and p·z) were the x, y, and z coordinates of the point p (or its neighboring

point pi) in point clouds. N denoted noise flag, and µD and δD were the mean and standard

deviation of D(p, k), and n was the scalar of standard deviation.

Based on some preliminary tests, k and n were set as 10 and 1 in this study, respectively.

The SOR filter could eliminate scattered noise points but not point clusters of relatively large

objects such as weeds. Density-based spatial clustering of applications with noise (DBSCAN)

algorithm was used to further filter out point clusters of non-bush objects. After SOR fil-

tering, the points were clustered using the DBSCAN algorithm, and the largest point cluster

was selected as the clean bush point cloud (PtCloudCleanBush) (Equation 4.5).

PtCloudCleanBush = argmaxC(|Ci|), i = 1, 2, ..., n (4.5)

Where PtCloudCleanBush denoted the clean point cloud of a blueberry bush, C denoted a

point cluster that was identified using the DBSCAN algorithm, i was the index of identified

point clusters, ranging from 1 to n, and | · | operator calculated the number of points in a

point cluster.

Size-related Trait Measurement

Size-related traits were measured from the clean bush point clouds of individual bushes

(Figure 4.2a). The measurement was to calculate bush dimensions and crown size, and the

shape analysis was to find the best boundary curve of canopy and derive shape indices.

Bush Dimension Bush dimension parameters included bush height, width in-row (WIR),

and width across-row (WAR), which were the maximum length of a bush along the z-, x-,

and y-directions, respectively (Figure 4.2b). Bush volume was estimated using concave and

convex hulls.
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Crown Size Crown size is an essential dimensional parameter, affecting the configuration

of catch plate (also known as fish scale) and ultimately the performance (e.g., ground loss)

of machine harvesters. In the horticultural community, the term “crown” refers to a cross-

section at a certain height [170]. In this study, crown size was defined as the bush diameter

across-row at 15 cm from the bottom of main stems where the catch plates of OTR har-

vesters contact with plants. Cross-section points at such height were separated using height

information, and subsequently distances from individual cross-section points to the cross-

section median center were calculated (Figure 4.2c). A distance histogram was generated

with a bin width of 0.05 m, and local minimal bin values (the bin value is less than that of

two neighboring bins) were identified to group bins into different bin clusters. The first bin

cluster contained points representing the bush crown, and the 95th percentile distance of

the first bin cluster (between the first and second local minimal bin values) was used as the

threshold to exclude cross-section points that were far away from the cross-section center.

The retained points (Pretained) were fitted to a two-dimensional (2D) Gaussian distribution.

The distribution mean and variances were used as the center and initial values of the semi-

axes for an ellipse curve. Constrained optimization was used to find the minimum values of

the two axes, so that the ellipse curve could reach a predefined point coverage (Equation 4.6).

The ellipse’s vertical diameter was the crown size of a bush.

min f(dx, dy) = dx + dy

subject to |Pcovered|
|Pretained|

≥ Tcoverage, Pcovered = {p|p
2
x

d2x
+

p2y
d2y
≤ 1, p ∈ Pretained}

(4.6)

Where dx and dy were the horizontal and vertical diameters of the ellipse curve. Tcoverage

was the predefined coverage (set as 0.9 in the present study). Pcovered is a set of points

covered by the fitted elliptical curve and p indicated a point in the two sets (Pcovered and

Pretained). | · | operator calculated the number of points in a point set.
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Bush Shape Analysis

Due to the importance of machine harvester configuration and performance, the across-row

bush shape was analyzed in the present study (Figure 4.2d). For each bush, clean bush point

cloud was projected onto the y-z plane, and rasterized to a grayscale image using a grid size

of 0.01×0.01 m2. As the shape analysis was conducted on images, the coordinate system used

the top-left corner as the origin (0, 0) and x- and y-coordinates increased along the right

and downward directions. In the grayscale image, pixel intensity represented the distance

from a pixel to the starting point of a bush along the x-direction. The grayscale image was

thresholded to a raw bush mask, and morphological operations were used to remove noise

pixels and fill holes, generating the final bush mask for successive processing.

Landmark Point Detection A total of 11 landmark points were defined in the present study,

including the center point of the bush topmost row (P1), left (P2) and right (P3) endpoints

of the broadest horizontal cross-section, bush leftmost (P4) and rightmost (P5) endpoints,

left (P6) and right (P7) canopy-crown separation points, left (P8), center (P9), and right

(P10) endpoints of the bush bottom, and the center point of the canopy bottom (P11). P1

to P5 and P8 to P10 were detected based on their definitions, and five lines (LM, LL, LR,

L1, and L2) were identified accordingly. LM was the center line of bush, which is a vertical

line passing through P11. LL was the left border lines, which is a horizontal line that passes

through the point close to the bush bottom in P2 and P4 and intersects with LM. L1 was the

left outer boundary passing through P8 and the point close to bush bottom in P2 and P4.

Similarly, LR and L2 were identified on the right side of the bush. LM, LL, and LR split the

skeleton endpoints into four quadrants. Distances from individual endpoints in the left-lower

quadrant to L1 were calculated. P6 was an endpoint in the left-lower quadrant that satisfied

four criteria: 1) it had the most considerable distance to L1, 2) its distance to L1 was larger

than a threshold (the median of all left-lower endpoints’ distances plus the median absolute
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deviation (MAD)), 3) it was close to the bush bottom as much as possible, and 4) it located

above L1 (Equation 4.7 and Equation 4.8).

P6 = pxk, k = argmax(pxi,n) and pxi ∈ PP6candidate (4.7)

PP6candidate = {pxj|Dll(pxj) = max(Dll)

∩ Dll(pxj) > Med(Dll) +MAD(Dll)

∩ pxj,n > fL1(pxj,m)}

(4.8)

Where px indicated an endpoint pixel in the lower-left quadrant, and k, i, and j were the

indices of P6 pixel, P6 candidate pixels (PP6candidate), and endpoint pixels in the lower-left

quadrant, respectively. pxj,m and pxj,n were the horizontal and vertical coordinates of a pixel

pxj in images. Dll denoted the set of distances from individual left-lower endpoints to L1.

Med and MAD were operators to calculate the median and MAD values of a set. fL1 was

the function of L1.

P7 could be identified using the same criteria in the lower-right quadrant. The vertical

coordinate of the one close to the bush bottom in P6 and P7 was used to separate bush

crown and canopy. P11 was the center point of the separation cross-section. It should be

noted that P6 and P7 are not guaranteed to be present, because bush main stems may

spread at a position very close to the ground or form branches at higher positions, resulting

in an unclear separation between canopy and crown. If both P6 and P7 were missing, the

canopy-crown separation line would merge with the bush bottom line, and consequently P11

became the same with P9.

Canopy Contour Fitting Canopy shape is another important factor affecting the perfor-

mance of machine harvesting. Vase-shaped canopy is likely to reduce the total harvesting

loss and bruising damage, leading to an improved harvest yield and quality. For a blue-

berry bush, canopy pixels were segmented in the bush mask image using the landmarks, and
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canopy contour was extracted from the segmented part. Path curve was used to quantify the

canopy contour shape. A path curve is defined by a single parameter λ: the path curve is

a circle when λ equals to one, and becomes conical (or vase-shaped) when λ is larger than

one (or less than one). As the curve position was considered, the function for drawing a

two-dimensional (2D) path curve was defined using Equation 4.9.

fptcwptc,hptc,λ
: t ∈ R→ Sptc ∈ R× R

fptcwptc,hptc,λ
(t) = aptc · (∓w′ptc + offsetm,

eth2ptc
2

+ offsetn)

aptc = 1

e−λt+
hptc
2
et

w′ptc =
wptc×(e−λtmax+

hptc
2
×etmax )

2

tmax =
ln( 2λ

hptc
)

λ+1

t ∈ [−20, 20]

(4.9)

Where fptc denoted the function for drawing a 2D path curve, and wptc, hptc, and λ were

the width, height, and shape factor of a path curve. w′ptc was the base value of horizontal

coordinates of a path curve given the width of wptc. aptc reached its maximum value when t

was tmax. Based on previous study [162], the domain of definition from -20 to 20 provided

adequate range for covering typical object contours.

Detailed mathematical explanations of a typical function of path curve can be found

in [168, 162]. To evaluate the fitness of a path curve to a bush canopy contour, an energy

function was defined as Equation 4.10.

eptc =

√∑n
i=1 dist(px

ptc
i )

n
(4.10)

Where eptc was the energy function of a path curve, pxptci denoted the ith pixel in a path

curve, and n was the total number of pixels in a path curve. dist(pxptci ) was a function to

calculate the distance from pxptci to the nearest pixel of the canopy contour.
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Gradient descent approach was used to find the optimal path curve parameters (wptc,

hptc, and λ) that minimized the energy function. In the present study, the gradient descent

optimization would stop, if the path curve energy reached to a minimum value with no

change in the following 5 iterations or the total iteration reached 500. The path curve with

the minimum energy value was selected as the best fitting curve using certain initial values.

To avoid fitting to local optima, wptc and hptc were initiated with various values. wptc ranged

from dwcanopy
2
e to wcanopy, and hptc ranged from dhcanopy

2
e to hcanopy, with an increment of 5

pixels for both. wcanopy and hcanopy were the width and height of the bounding box of canopy.

The path curve with the lowest energy value among the best path curves using various initial

values was selected as the final fitting path curve of canopy for a bush.

Shape Index Calculation The detected landmark points and fitted path curve were used

to derive five shape indices: 1) noncanopy-bush height ratio (NBR), 2) canopy vertical ratio

(VR), 3) canopy aspect ratio (AR), 4) canopy curvedness (CN), and 5) canopy irregularity

(IRR) (Figure 4.2d). The five indices quantified bush shape aspects for machine harvesting

and agronomic management. NBR was to evaluate the potential of catch plate configuration,

with high values for a wide range of placing catch plates of machine harvesters. VR and AR

represented the canopy overall shape. Low VR and AR values (< 1) would represent a vase-

shaped canopy with short fruit dropping height, which is preferred for machine harvesting;

whereas high VR and AR values (> 1) would represent a conical canopy with greater fruit

dropping height, which is not ideal for machine harvesting. CN and IRR were more related to

agronomic management. In particular, high IRR values indicated an irregular canopy shape

that requires agronomic actions such as pruning. Mathematical definitions of the five indices

were provided in Equation 4.11.
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NBR = hn
hbush

= hn
hn+hupper+hlower

V R = hupper
hlower

AR =
hfittedptc

wfittedptc

CN =
|Sfittedptc |−|Striangles|

|Sfittedptc |
=
|Sfittedptc |−|Supper|−|Slower|

|Sfittedptc |

IRR =
|{Sfittedptc |
|Scanopy | =

|Scanopy |−|Sfittedptc |
|Scanopy |

(4.11)

Where hn, hupper, and hlower were heights of non-canopy part, and canopy upper (with

vertices of P1, P2, and P3) and lower (with vertices of P11, P2, and P3) triangles. hfittedptc

and wfittedptc were the height and width of the fitted canopy path curve. Supper, Slower, S
fitted
ptc ,

and Scanopy denoted sets of pixels within the canopy upper and lower triangles, fitted path

curve, and the canopy contour. | · | operator calculated the number of pixels in a given set.

4.3.3 Performance Evaluation

It is important and necessary to evaluate the accuracy of measured size-related traits by the

proposed method. Five size-related traits were manually measured for reference, including

bush height, WIR, WAR, volume, and crown size. Bush height, WIR, WAR, and crown

size were measured using a measuring tape based on their definitions, whereas bush volume

was estimated using a cylindrical model (see Figure S7 in Supplementary Materials). A

bush was visually and vertically segregated into layers with an interval of 5 cm, with each

layer being assumed as a cylinder. Circumference of each layer was manually measured, and

thus diameter could be estimated to calculate the layer volume. The summation of all layer

volumes was used as a reference value of bush volume. Simple linear regression analyses

were performed between sensor and manual measurements for size traits. R2 and RMSE

were used as indicators to evaluate the accuracy of sensor measurements. In addition, MAEs

and MREs were calculated as additional parameters for accuracy evaluation. All analyses
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were conducted in MATLAB (Statistics Toolbox 2017b, The MathWorks Inc. Natick, Mas-

sachusetts, USA).

Statistical analyses were conducted on the extracted crown size and shape descriptors

to evaluate their usefulness of identifying optimal bush architecture suitable for mechanical

harvesting. Although there were 16 genotypes in the North Carolina field, they have been

selected for mechanical harvesting and are extremely similar in terms of bush architecture.

Thus, it was reasonable to treat all genotypes in the North Carolina field as one genotype

group (hereafter, NCSU MH group). An additional point cloud dataset was used to increase

the diversity of bush architecture, containing three highbush blueberry cultivars (Star, Mead-

owlark, and Farthing) with distinctive bush shapes [149]. In summary, crown size and shape

descriptors were extracted using 367 bushes from five genotype groups (20 bushes in the

O’Neal group, 222 in NCSU MH, 42 in Star, 43 in Meadowlark, and 40 in Farthing). As

sample sizes were dramatically different among groups, Kruskal-Wallis tests (nonparametric

equivalent to analysis of variance test) were performed on extracted crown size and shape

descriptors to identify statistical differences among the five groups. Kruskal-Wallis tests were

conducted in R 3.4.2 (R Development Core Team, 2008) (package asbio) using a significance

level of 0.05.

4.4 Results

4.4.1 Reconstructed Point Cloud Data

Reconstructed results contained a scanning trajectory and raw point clouds for scanned areas

(Figure 4.3). In trajectories, the lowest position indicated the starting and ending points of

each data collection session, and starting and ending points could be further differentiated

based on the relative movement direction. The starting point was the origin in each scanned

point cloud. The waveform of trajectories reflected the oscillation of the LiDAR node.
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Figure 4.3: Point cloud data collected using a handheld mobile laser scanner in two fields:

(a) Horticulture Farm of the University of Georgia and (b) Horticulture Research Station

in North Carolina. The displayed point clouds were cropped to remove irrelevant objects.

White lines indicate the walking path and sensor node oscillations of data collection sessions,

and star and triangle markers show the starting and ending points of the walking path.

Raw point clouds were rendered by color using point height information, with blue to red

representing low to high values. The blueberry field at the Horticulture Farm of the University

of Georgia showed an obvious sloped terrain: the southern side (top part in the figure) was

at a lower elevation than the northern side (bottom part in the figure), resulting in different

height values (colors) of ground points (Figure 4.3a). In contrast, the terrain elevation was

relatively level (ground points looked in similar blue colors) in the field at the Horticulture

Research Station in North Carolina, but clear color contrasts were observed between furrows

(dark blue) and plant beds (turquoise). These differences increased data variability and

could be particularly challenging for point cloud preprocessing, but algorithms developed
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in this study successfully removed ground and noise points, suggesting its generalizability

to various field conditions (see the section of ground removal and bush point denoising in

Supplementary Materials).

4.4.2 Accuracy of Size Measurements

The scanner achieved the nominal measurement accuracy (2–3 cm) when measuring objects

with standard shapes (see the section of validation of measurement accuracy in Supple-

mentary Materials), providing a performance baseline to evaluate accuracies of measuring

size-related traits. Generally, correlation was high (R2 = 0.92–0.95) between sensor and

manual measurements of bush height and width (Figure 4.4a to Figure 4.4c). The RMSE

and mean absolute error (MAE) of bush height were comparable with those of objects

with standard shapes, whereas the RMSE and MAE of width were two times larger. This

occurred primarily because blueberry bushes were non-rigid objects that could be swayed

by wind during data collection. Bush movements had relatively small effects on z-direction,

resulting in little or no change in height measurements. However, the movements would have

substantial effects on the x- and y-directions, leading to large errors in width measurements.

Nonetheless, mean relative errors (MREs) (around 5%) indicated that those errors of width

measurements were acceptable.
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Figure 4.4: The accuracy of sensor measurements and the efficacy of crown size measure-

ments. (a), (b), (c), and (d) are regression results between sensor and manual measurements

of bush height, width in row (WIR), width across row (WAR), and crown size; and (e) is

the efficacy of the present algorithm for measuring upright (top chart) and inclined (bottom

chart) bushes.

For bush volume, manual measurements were less than convex hull volumes but greater

than concave hull volumes (see Figure S4 (a) and (b) in Supplementary Materials). Com-

pared with concave hull volumes, convex hull volumes were better correlated (R2 = 0.85)
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with manual measurements, because both convex hull and manual measurements included

space that was not occupied by branches. It was noteworthy that convex hull method

included considerably more of unoccupied space between branches than the manual estima-

tion method, resulting in high MAE (0.21 m3) and MRE (104%) of volume measurements.

In particular, the convex hull method tended to substantially overestimate (around 120%)

the volume of bushes with irregular architecture and tall crown (compare (c) and (d) in

Figure S4 in Supplementary Materials). This occurred because irregular architecture and

tall crown led to large hollow (or empty) areas among (or below) bush canopies that would

be included by the convex hull method. However, the manual method used a short height

interval (0.05 m in the present study) and significantly reduced the amount of hollow/void

areas in volume estimation. Compared with convex hull volumes, concave hull volumes

showed a lower correlation with manual measurements, but they were closer to the actual

reference values (much smaller MAE (0.05 m3) and MRE (19%)). A potential reason was

that the amount of space included by the convex hull method was more related to plant

size changes than that excluded by the concave hull method. When the plant size increases,

the convex hull consistently includes extra space due to the expansion of plant points, but

the concave hull method may or may not exclude space depending on the local surface.

The concave hull method could match with manual measurements for a flat surface, while

it could exclude a large space for a curved surface such as the transition section between

canopy and non-canopy parts. The bushes had a large variation of the surface curvature,

leading to inconsistent changes of space exclusion by the concave hull method and thus a

lower correlation with the plant size changes. For bushes with a relatively regular shape,

if point clouds were dense enough, the concave hull volume should be the most accurate

measurements; otherwise, it represented the lower limit of bush volume. For instance, if

a bush grew in a more regular shape, the concave hull volume was closer to the manual

measurement (compare (c) and (d) in Figure S4 in Supplementary Materials).
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A high correlation (R2 = 0.88) was also achieved between sensor and manual measure-

ments of crown size (Figure 4.4d). Both RMSE (0.03 m) and MAE (0.04 m) were close to

the nominal instrument accuracy, indicating a high measurement accuracy of the present

algorithm. Compared with a previous study, the correlation (R2) increased from 0.56 to 0.88

and the RMSE decreased from 0.06 to 0.03 m, both of which were substantially improved.

These improvements were achieved due to the appropriate exclusion of non-crown points

(Figure 4.4e). For upright bushes, the cross section usually contained one core point cluster

with several points that were somewhat away from the cluster (see first row in Figure 4.4e).

Direct use of the cross-section points would result in a large error of crown size measure-

ments, regardless of using either a fitted diameter or width across-row of the cross section

as the crown size. On the contrary, the present algorithm filtered out distant points using

the 95th percentile (an empirical value) of distances to the cross-section center, reducing

the measurement error. In addition, main bush branches would not naturally distribute as a

circle, so an ellipse shape was better for crown fitting and thus crown size measurement. For

inclined bushes, the cross section mostly contained several point clusters (see bottom charts

in Figure 4.4e). The cluster closest to the cross-section center represented the actual crown,

whereas the clusters away from the cross-section center were points of branches. Thus, the

measurement accuracy was improved by using only the closest cluster.

4.4.3 Efficacy of Crown Size and Shape Descriptors for Bush Identifica-

tion

Crown size and shape descriptors showed statistical differences among five genotype groups

including four cultivars and one research population bred in North Carolina for mechanical

harvesting (NCSU MH group hereafter) (Figure 4.5). The crown size of O’Neal cultivar

was statistically more significant than that of the remaining groups, whereas crown sizes

of the remaining groups were in a similar range although Meadowlark cultivar had the

smallest crown size. This occurred primarily due to two reasons. Firstly, bushes in the
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five groups were treated with different agronomic practices such as pruning of low-angled

branches originating near the ground and large upright canes away from the core cluster.

O’Neal bushes were planted in a research farm and not pruned for two years before the

data collection, resulting in a larger crown size. On the contrary, other group bushes were

routinely pruned (based on commercial production guideline) and regulated (only for Star,

Meadowlark, and Farthing), leading to a smaller crown size with less variations. Secondly,

the five groups were being evaluated for different breeding targets. The four cultivars were

bred primarily for features such as high fruit quality and size, whereas the NCSU MH group

have been selected for mechanical harvesting that requires a small crown. Catch plates

on OTR harvesters are pivot mounted on a rail on both sides of the harvester frame and

overlap with neighboring plates (see Figure S6 (a) and (b) in Supplementary Materials).

When the harvester moves to contact blueberry plants, catch plates are pushed to sides,

allowing bush canes to go into the harvester, and then the plates retract to cover empty

areas. When catch plates (e.g., fishscales) do not fully retract and return to a crown size area

at the base of the plant, it would create an opening area where detached blueberries can

potentially fall through to ground (e.g., ground loss). Smaller crown means less ground loss.

Thus, the NCSU MH group should present desired crown size even without crown regulation.
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Figure 4.5: Crown size and shape analysis results of the five blueberry groups. (a) Statistical

analysis results of the extracted crown size and shape descriptors and (b) fitted path curves

of representative bushes. Groups with different letters are statistically significant with each

other, and group mean values of each index are sorted alphabetically. In (b), green and brown

colors are used to render canopy and non-canopy parts of individual blueberry plants, and

red curves are the fitted path curves. No representative bush was selected for the O’Neal

group due to the large variation of crown size and bush shape in the group.

All shape descriptors showed significant differences between at least two genotype groups,

suggesting that the shape descriptors could be used for identifying blueberry genotypes with

different bush architecture. The NCSU MH group had the least λ values (0.8±0.26), followed

by Meadowlark (0.89±0.17), Farthing (1.1±0.24), and Star (1.42±0.42). By definition, these

λ value ranges indicated in general a vase-shaped canopy for NCSU MH and Meadowlark

groups, a round canopy for Farthing, and a conical canopy for Star (Figure 4.5b). Thus,

NCSU MH and Meadowlark bushes would have an optimal shape (vase shape) for mechan-

ical harvesting, which agreed with human subjective evaluation. Meadowlark also can be
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grafted on sparkleberry (Vaccinium arboreum) rootstock with monopodial growth habit,

which creates even smaller crown diameter [171]. It should be noted that canopy vertical

ratio (VR) showed the same trend and statistical results as λ. This was because VR essen-

tially quantified the location of the widest canopy cross section where branches expanded

horizontally. An ideal vase shape would have the horizontal expansion at a higher position

of the canopy, leading to VR values less than 1, whereas a conical shape would have the

opposite pattern. A round shape would result in VR values equal to 1. Although VR showed

the same efficacy as λ in overall shape quantification, VR values had larger variations than

λ, which presented a concern of using it for differentiating blueberry genotypes with a small

number of replications. The capability of using extracted traits for genotype differentiation

needs to be further tested when a smaller number of replications is used.

In contrast to crown size, λ, and VR, other shape descriptors (non-canopy-bush height

ratio (NBR), canopy aspect ratio (AR), canopy curvedness (CN), and canopy irregularity

(IRR)) could not be used for bush shape evaluation based on simple rules (e.g., small crown

is preferred), requiring more domain knowledge for proper interpretation and use. Star had

the highest NBR value indicating the tallest non-canopy part, which is good for mechanical

harvesting due to more positions for configuration of harvester catch plates. However, an

excessively tall crown is not desired because it may result in a yield reduction more sub-

stantially than the ground loss due to mechanical harvesting. In commercial field setup for

mechanical harvesting, low hanging branches are pruned to eliminate their interference with

the catch plates and minimize bush crown size to prevent excessive ground loss, but the

pruning cannot be aggressive to impact yield. Thus, the NBR index needs to be used as a

balance factor for breeding blueberry genotypes suited to mechanical harvesting. AR values

of four cultivars were significantly lower than the NCSU MH group. A low AR value indi-

cates an oblate canopy, which is desired owing to a short dropping height (and thus reduced

external impacts) for berries, but if the canopy is excessively oblate, mechanical harvesters
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may damage branches as well as berries on those branches, decreasing harvest yield and berry

quality. It was also noteworthy that the AR index might reflect breeding preferences due to

different growing environments. The four cultivars are widely grown in southern Georgia,

whereas the NCSU MH group has been bred in a research station along the coastal area

where wind would be generally strong during blueberry vegetative and reproductive growth

stages (March–May). Thus, the use of AR index also requires considerations of other factors

to evaluate the fitness of bush shape for mechanical harvesting. CN evaluated the curvedness

of bush canopy contour and IRR indicated the likelihood of having abnormally extended por-

tions, both of which provided useful information for agronomic management such as pruning.

In particular, the IRR values indicated the management practices conducted on bushes. The

ONeal and NCSU MH groups showed statistically lower CN values and higher IRR values,

suggesting a suboptimal bush architecture regarding agronomic management, but they had

different reasons: the O’Neal group was due to insufficient management (no pruning for 2

years), whereas the NCSU MH group was due to different growth periods. Data collection

of the NCSU MH group was conducted in March when bushes had little or no leaf, and con-

sequently bushes were expected to be more irregular. Nonetheless, NBR, AR, CN, and IRR

require additional considerations from various aspects for proper interpretation and cannot

be used as simple criteria for bush selection and management.

4.4.4 Visualization Tool for Identification of Optimal Bush Architecture

for Mechanical Harvesting

As the crown size and λ could be used for bush evaluation based on simple criteria, a

visualization tool (scatter plot) was generated to identify an optimal bush architecture for

mechanical harvesting (Figure 4.6). Two standard axes were made based on requirements

of crown size and bush shape for mechanical harvesting. For an ideal bush architecture,

the crown size needs to be less than 20.32 cm [171] and the bush needs to be vase-shaped

(λ less than 1), whereas for an acceptable bush shape, the crown size can be increased to
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30.48 cm [171] and the bush can be slightly conical (λ less than 1.1). The two standard axes

split the space into four quadrants: 1) the upper-left is for bushes with desired crown size

but undesired bush shape; 2) the upper-right is for bushes with undesired crown size and

shape; 3) the lower-left is for bushes with desired crown size and bush shape, and 4) the

lower-right is for bushes with desired shape but undesired crown size. When using the ideal

criterion, Meadowlark was the only group having most bushes with ideal crown size and bush

shape. When using the acceptable criterion, most Farthing and NCSU MH bushes met the

requirements of crown size and bush shape for mechanical harvesting, whereas the O’Neal

group primarily laid in the first quadrant where both crown size and bush shape were not

ideal for mechanical harvesting. Star bushes were mostly identified in the second quadrant

where the bush shape was not acceptable for mechanical harvesting.
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Figure 4.6: Scatter plot of crown size and the natural logarithm of λ for 145 bushes. Green

(or yellow) axes indicate the value limits of crown size and path curve λ for bushes well suited

to (or acceptable for) mechanical harvesting. Solid circles represent the center of individual

clusters. For each representative bush, green and brown colors are used to render the canopy

and non-canopy parts, and the red line in each bush silhouette indicates the height where

the crown size was measured.

4.5 Discussion

The data processing pipeline has demonstrated the feasibility of using a handheld mobile

laser scanner to measure size-related traits and shape descriptors of blueberry bushes in

the field. For data collection, the scanner has a dynamic and expansive sensing perspective,

which is a major advantage over aerial imaging systems and terrestrial LiDAR systems in
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which cameras or LiDARs acquire data from an individual angle. The scanner node keeps

moving along and across the operator’s movement direction, so a wide range of sensing

angles are used to dramatically reduce the possibility of missing points due to object occlu-

sions. However, the scanning throughput of the handheld scanner is relatively low. If the

operator keeps oscillating the scanner node and walks at 1.4 m/s (a regular walking pace),

the scanning throughput is 0.42 ha/h. Considering the weight of the scanner with necessary

accessories (2.5 kg in total weight), operators may become fatigued after collecting data for

a period. In practice, it is also difficult for operators to continuously oscillate the sensor

node, so oscillating sensor node can be problematic in a long-time data collection session,

which reduces the diversity of sensing angles and thus the data quality. To increase the

scanning throughput and avoid human fatigue issues, it is necessary to integrate the scanner

with motorized vehicles for autonomous data collection. In fact, the scanner was originally

developed for both handheld and vehicle-based applications [153], so it can be mounted on

a motorized platform (e.g., a gator utility vehicle) with modifications to improve the data

collection throughput.

The present data processing pipeline can accurately extract size-related traits, especially

the crown size. Compared with a previous study [149], the measurement accuracy of crown

size has been significantly increased due to not only the improved measurement algorithm

but also a different way of collecting point cloud data. As for the aforementioned advantage,

the scanner can have various sensing angles, and some angles (e.g., parallel with bush crown)

can be particularly useful for acquiring points of the bush crown that is usually occluded

by bush canopies from the nadir and top-to-bottom oblique views. If raw point clouds miss

many points of the bush crown (or other bush parts), it is not possible to improve the mea-

surement accuracy of algorithms. Although the processing pipeline is independent of data

collection systems, the processing performance highly depends on the quality of acquired

data that are affected by data collection systems to a certain extent. Due to practical reasons
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(e.g., easy to measure ground truth data), small to mid-size bushes were used to evaluate the

accuracy of the presented approach, which avoided a potential issue of branch entanglement

between neighboring plants. The entanglement usually introduces difficulties in accurate

segregation of individual plants (especially the upper canopy), which could dramatically

affect the measurement of WIR and bush volume.

The extracted crown size and shape descriptors (primarily λ) provide objective evaluation

and measurements for identifying bushes suitable for mechanical harvesting. In particular,

the visualization tool (scatter plot of crown size and λ) is particularly useful for rapid deter-

mination of optimal bush architecture. NBR and AR indices can be used as balance factors to

select bushes suited to a particular harvesting machine or growing environment and maintain

other desired features such as yield. CN and IRR can be incorporated into agronomic man-

agement decision process such as pruning. However, the use of the four parameters (NBR,

AR, CN, and IRR) highly depends on breeding and management purposes. Thus, thresholds

or value ranges of the parameters for optimal bush architecture need to be determined with

specific domain purposes and may vary dramatically among applications. In addition, all

the extracted traits could be used by harvester manufacturers to improve the design of fruit

catching system. The five genotype groups were selected because they had distinctive bush

architecture. With a large number of replications (at least 20 reps per group), it would be

relatively easy to differentiate the groups from each other using the crown size and shape

descriptors. We acknowledge that it is necessary to conduct successive studies involving a

wide variety of genotypes with fewer replications, so the statistical power of extracted traits

can be further tested for genotype differentiation.

4.6 Conclusions

The data processing pipeline presented in this study accurately measured size-related traits

and bush shape from point cloud data collected by the handheld mobile laser scanner in
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the field. Shape descriptors were used to identify bushes with desired features for machine

harvesting, and bushes with non-ideal shapes that required pruning actions. Thus, the present

processing pipeline with the data collection instrument is particularly useful for blueberry

breeding programs and farm management. Future studies will focus on the development of

autonomous data collection system and experiments of using shape descriptors for genotype

differentiation in a large-scale field.
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Chapter 5

Ground based Hyperspectral Imaging to Characterize Canopy-Level

Photosynthetic Activities1

1Jiang, Y., Snider, J. L., Li, C., Rains, G. C., and Paterson, A. H. Submitted to ISPRS Journal
of Photogrammetry and Remote Sensing, July 19, 2019.
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5.1 Abstract

Improving plant photosynthesis provides the best possibility for increasing crop yield poten-

tial, which is considered a crucial effort for global food security. Chlorophyll fluorescence is an

important indicator for the study of plant photosynthesis. Previous studies have intensively

examined the use of spectrometer, airborne, and spaceborne spectral data to retrieve solar

induced fluorescence (SIF) for estimating gross primary productivity and carbon fixation.

None of the methods, however, had spatial resolution and scanning throughput that are suit-

able for applications at the canopy and sub-canopy levels, thereby limiting photosynthesis

analysis for breeding programs and genetics/genomics studies. The goal of this study was to

develop a hyperspectral imaging approach to characterize plant photosynthesis at the canopy

level. An experiment field was planted with two cotton cultivars that received two different

treatments (control and herbicide treated), with each cultivar-treatment combination having

8 replicate 10-m plots. A ground mobile sensing system (GPhenoVision) was configured with

a hyperspectral module consisting of a spectrometer and a hyperspectral camera that cov-

ered the spectral range from 400 nm to 1000 nm with a spectral sampling resolution of 2

nm. The system acquired downwelling irradiance spectra from the spectrometer and reflected

radiance spectral images from the hyperspectral camera. On the day after 24 h of the DCMU

application, the system was used to conduct six data collection trials in the experiment field

from 0800 h to 1800 h with an interval of 2 hours. A data processing pipeline was developed

to measure SIF using the irradiance and radiance spectral data. Diurnal SIF measurements

were used to estimate the effective quantum yield and electron transport rate, deriving rapid

light curves (RLCs) to characterize photosynthetic efficiency at the group and plot levels.

Experimental results showed that the effective quantum yield estimated by the developed

method highly correlated with those measured by a pulse amplitude modulation (PAM) flu-

orometer. In addition, RLC characteristics calculated using the developed method showed

similar statistical trends with those derived using the PAM data. Both the RLC and PAM

data agreed with destructive growth analyses. This suggests that the developed method can
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be used as an effective tool for future breeding programs and genetics/genomics studies to

characterize plant photosynthesis at the canopy level.

5.2 Introduction

The global population is likely to exceed 10 billion by 2050, presenting great challenges

for agriculture [3]. To fulfill the needs of the rapidly growing population, the current agri-

cultural yield must be doubled by that time, which translates into an annual increase

of 1.75% total factor productivity (TFP) [4]. Currently, the global TFP growth rate is

approximately 1.5%, leaving a gap of 0.25% annually. Even worse, the TFP growth rate

is only approximately 0.96% in developing countries, which is far behind the required

growth rate. Cotton (Gossypium) is one of the most important textile fibers in the world,

accounting for about 25% of total world textile fiber use [172]. Thus, improvement of cotton

production is vital to fulfilling the fiber requirements of over nine billion people by 2050 [100].

As with all agricultural crops that have reproductive structures of economic importance,

the yield of cotton can be expressed as a function of total seasonal light interception, radiation

use efficiency, and harvest index [173]. Thus, yield improvement can be achieved by increasing

any one of these three variables. The “Green Revolution” introduced dwarfing genes into the

most important C3 cereal crops (e.g., rice and wheat), allowing an increased biomass alloca-

tion to grain with a reduction in the total aboveground biomass (thus an increased harvest

index). Breeding programs have continued to increase carbon allocation into grain [174], and

in cotton specifically, genetic yield improvement historically has also been associated with

an increase in biomass partitioning to reproductive units (bolls) [175, 176]. [177], however,

suggested that future yield improvements in high potential environments would likely be

achieved by 1) selecting cotton varieties that exhibit a more indeterminate growth habit (i.e.

capitalize on the high insolation levels experienced in long growing season environments);

and 2) increasing photosynthetic efficiency either through breeding or biotechnology efforts.
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Photosynthesis is a process that converts radiant energy into biochemical energy, and is the

basis of plant growth. In contrast with efforts to breed for desirable plant growth habits or

greater harvest index, photosynthetic improvement has not yet been achieved for breeding

programs, and remains a promising avenue for increasing agricultural productivity in the

future. In addition, variations in photosynthetic efficiency can be used as indicators of plant

stress, which can be used for selecting genotypes with high levels of stress tolerance or for

making management decisions at the field scale [178]. Furthermore, there is a tremendous

amount of interest in using remote sensing to model gross primary productivity of natural

ecosystems according to the original framework of [173] [179]. In order to achieve this, the

photosynthetic efficiency of the canopy must be estimated.

Chlorophyll fluorescence parameters are often used to evaluate photosynthetic perfor-

mance and stress in plants [180]. These parameters include three measurable variables,

i.e., minimal fluorescence (F0 or F
′
0) when photosystem II (PSII) centers are open, max-

imal fluorescence (Fm or F
′
m) when PSII centers are closed, and steady state fluorescence

(Fs or F
′
s), and several derived variables such as variable fluorescence (Fv = Fm − F0 or

F
′
v = F

′
m − F

′
0) and difference in fluorescence (Fq = Fm − Fs or F

′
q = F

′
m − F

′
s) between Fm

(or F
′
m) and Fs (or F

′
s). Variables denoted by prime are for light-adapted states, or otherwise

for dark-adapted states. These parameters can be used to calculate the maximum ( Fv
Fm

or

F
′
v

F ′m
) and operating (

F
′
q

F ′m
, a.k.a., ΦPSII) efficiencies of PSII photochemistry, both of which are

useful for photosynthetic efficiency evaluation and plant stress detection [181].

There are active and passive sensing approaches to measure chlorophyll fluorescence

parameters. Active techniques include pulse amplitude modulation (PAM) [182] and laser

induced fluorescence transient (LIFT) [183], both of which can emit predefined light to

measure minimal fluorescence (F0), steady state fluorescence (Fs), and maximal fluorescence

(Fm), and can calculate variable fluorescence (Fv). Based on active techniques, portable
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instruments (e.g., PAM fluorometers) have been developed and widely used for photosyn-

thesis studies [184, 185, 186, 187, 188, 189]. Active techniques rely on artificial illumination,

however, which limits the use for large scale applications [190]. Passive techniques retrieve

chlorophyll fluorescence emission excited by solar illumination (natural sunlight), which is

termed as solar induced fluorescence or sun induced fluorescence (SIF). Upwelling radiance

from plants under solar illumination is a mixture of SIF and surface reflectance, and it is

feasible to decouple SIF signals from the upwelling radiance in Fraunhofer lines of the solar

spectrum in which irradiance is substantially reduced because of atmospheric absorption

(e.g., hydrogen and oxygen). In the red and far-red spectral range, three Fraunhofer lines

are frequently used for SIF retrieval, including Hα at 656 nm because of hydrogen and

O2-B at 687 nm and O2-A at 760 nm because of oxygen. Common SIF retrieval approaches

include conventional Fraunhofer line discrimination (FLD), improved FLD variants, and

reflectance-based ratios [191]. Many studies explored the use of ground based spectrometers

to retrieve SIF of plant leaves and reported high correlations between SIF measurements and

fluorescence measured using active techniques (e.g., PAM fluorometers) [191, 192, 193, 194].

Large national research institutions (e.g., European Space Agency, EPA and National Aero-

nautics and Space Administration, NASA) launched programs to investigate the use of

hyperspectral imagery sensed remotely from planes and satellites to monitor SIF changes at

the regional and global levels, to estimate carbon fixation and gross primary productivity

(GPP). These data would be invaluable for research studies and policy-making to secure

the food supply [195, 196, 197, 198, 199]. Spectrometer-based approaches can provide the

highest accuracy of measurement location (a specific point on a leaf), but have an obvious

limitation in the scanning throughput (point by point). By contrast, airborne and space-

borne solutions provide a substantially faster scanning throughput, but have compromised

spatial resolutions (sub-meter to meters). Neither approach, therefore, would be suitable

for breeding programs and plant-science studies at the canopy or sub-canopy levels. A few

studies examined the use of ground hyperspectral imaging to measure SIF, showing high
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measurement accuracies and the potential of spatial variation analysis [200, 201]. However,

these studies were restricted to the scope of instrumentation validation and did not utilize

retrieved SIF for characterizing whole-canopy photosynthesis.

A particularly notable limitation to using SIF to estimate canopy-level photosynthetic

efficiency is the method for estimation of maximal fluorescence (F ′m) at the canopy level,

which has not been reported previously. If F ′m could be determined for the canopy using

SIF, real-time estimates of crop-level photosynthetic efficiencies could be obtained using

passive sensing approaches. Direct measurement of F ′m faces a significant challenge: the

maximum intensity of solar illumination on the ground is far less than a ”saturating” flash

intensity used by PAM fluorometers, so maximal fluorescence at the canopy level cannot be

directly measured. In fact, it has been demonstrated that leaves of plants previously accli-

mated to high light environments often do not close all reaction centers despite exposure

to such a ”saturating” flash intensity, preventing even direct measurement of F ′m by using

PAM fluorometry. A multi-phase flash approach was developed, however, to estimate F ′m

and electron transport rate (ETR) without the ”saturating” light [202]. Using this method,

a leaf sample is successively exposed to flash intensities in either ascending or descending

order, and the intensity of chlorophyll fluorescence is quantified at each step. Fluorescence

intensity (F ) is then plotted versus the reciprocal of photosynthetically active radiation

(PAR) and a function is fit to the data to obtain the y intercept and an estimate of apparent

F ′m at an infinite light intensity when all reaction centers would hypothetically be closed.

Since it is often necessary to expose single leaf samples to different PAR levels in succession

to obtain an estimate of F ′m, it might also be possible to estimate F ′m for the canopy by

taking advantage of natural, diurnal variation in PAR and SIF.

The overall goal of this study was to develop a ground-based hyperspectral imaging

approach to characterize photosynthesis at the canopy level. Specific objectives were to
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1) develop a ground-based hyperspectral imaging system to measure diurnal SIF changes

using the FLD method; 2) calculate effective quantum yield and ETR to derive light curves

for characterizing plant photosynthesis; and 3) validate the efficacy of the characterization

method by comparing the hyperspectral imaging derived measurements with PAM-derived

measurements and destructive crop growth analysis.

5.3 Materials and Methods

5.3.1 Plant Materials and Experiment Design

To evaluate the utility of diurnal SIF measurements for estimating whole canopy photosyn-

thetic efficiency, a field experiment was established at the University of Georgia Lang-Rigdon

research farm near Tifton, GA. Two cotton cultivars (PHY 841 RF and PHY 340 W3FE)

were planted on June 19, 2018 at a 2.5 cm depth and a seeding rate of 11 seeds per m2.

Individual plots were 1 row with a length of 9 m and an inter-row spacing of 0.91 m. The

two cultivars planted represent two different species of cotton adapted to different cotton

production regions of the southern United States (US) and were previously shown to differ

in leaf anatomical characteristics and photosynthetic response to light intensity [203]. PHY

841 RF is a Pima cotton (Gossypium barbadense) cultivar widely grown in the arid south-

western US, whereas PHY 340 W3FE is an upland cotton (Gossypium hirsutum) cultivar

primarily grown in the humid southeastern US. To generate large differences in photosyn-

thetic efficiency of the canopy, once the crop had reached the initial stages of floral bud

development (referred to as “squaring”), plots received one of two possible herbicide treat-

ments. Untreated control plots received only water applied as a foliar spray at a rate of 130 L

ha-1. Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea, also known as DCMU) treated plots

had a 41% solution of DCMU (w/w; Diuron 4L) applied at a rate of 2.35 L/ha and a total

application volume (water plus Diuron solution) of 130 L/ha. Diuron is a highly selective

herbicide that specifically blocks the transfer of electrons from PSII to plastoquinone during
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the thylakoid reactions of photosynthesis. There were two rows of buffer plants between adja-

cent herbicide treatments to prevent drift onto non-target plants. Fertility, pest control, and

irrigation were managed according to University of Georgia Cooperative Extension recom-

mendations [204]. The experiment was arranged as a split plot, randomized complete block

design, where DCMU treatment represented the whole plot factor and cultivar represented

the sub-plot factor. There were eight replicate plots for each cultivar within a particular

herbicide treatment.

5.3.2 Data Acquisition

Hyperspectral Data Acquisition

The GPhenoVision system was configured with a spectral module for spectral data acqui-

sition [205]. The spectral module consisted of one spectrometer (Flame VIS-NIR, Ocean

Optics Inc., Largo, FL, USA) and one hyperspectral camera (MSV500, Middleton Spectral

Vision, Middleton, WI, USA) (Figure 5.1). Both sensors were calibrated radiometrically and

spectrally (also spatially for the hyperspectral camera), covering the spectral range from

400 nm to 1000 nm with a spectral sampling resolution of 2 nm. The spectrometer was

equipped with a cosine corrector (field of view of 180◦) facing towards the sky, whereas the

hyperspectral camera was positioned nadir to the ground. The spectrometer acquired the

irradiance spectra of the sunlight. Depending on the solar irradiance intensity, the sampling

frequency of the spectrometer varied from 20 Hz to 50 Hz, so that signal intensities could

stay in the optimal range without saturation. The hyperspectral camera was positioned

2.15 m above the ground, collecting radiance spectral images of plant canopies of two plots

at a time. To ensure the spatial aspect ratio, the hyperspectral camera ran at 100 frames

per second (FPS) and the platform moved at an approximate speed of 0.5 m/s. Six data

collection trials were conducted on 9 August 2018 (beginning approximately 24 h after

Diuron application) at 0800, 1000, 1200, 1400, 1600, and 1800 h, respectively.
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Figure 5.1: Illustration of data collection system: (a) picture of the GPhenoVision system

and (b) diagram of the system configuration and sensor installation.

Fluorometry Measurement

Active chlorophyll fluorescence measurements were conducted on the uppermost fully

expanded leaf at approximately the fourth mainstem node below the plant terminal using

a portable pulse-amplitude-modulation (PAM) fluorometer (OS5p+, Opti-Sciences, Inc.,

Hudson, NH, USA). At each diurnal sampling time, the leaf blade was clipped so that

the orientation of the exposed adaxial surface relative to incoming solar radiation was left

unchanged, and steady state fluorescence (F
′
s) was measured under ambient light condi-

tions. While measuring fluorescence, PAR at the leaf surface was estimated using a PAR

sensor integrated into the leaf clip. Subsequently, maximal fluorescence intensity (F
′
m) was

estimated using a multi-phase flash approach comparable to the methods described in [202],

where relative fluorescence intensity is plotted versus the reciprocal of PAR following expo-

sure of the leaf sample to a sequence of flashes with increasing intensity (2850, 5700, and

8550 µmol/m2/s) for a total duration of 0.95 s. A linear function was fit to the resulting

data set to estimate F
′
m at infinite light intensity. This represents fluorescence intensity when

all reaction centers are closed.
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5.3.3 Characterization of Canopy-level Photosynthetic Efficiency

Retrieval of Solar Induced Fluorescence

Collected spectral data were used to retrieve SIF values at the canopy level (Figure 5.2).

Irradiance spectra of the sunlight and radiance hyperspectral cubes of the plant canopy

were synchronized using timestamps, resulting in meta-hyperspectral cubes of each scanning

row, where individual pixels had both irradiance and radiance spectra. Based on the spatial

information, a meta-hyperspectral cube was further split into two sub-cubes, with each

sub-cube containing irradiance and radiance data for one plot.
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Figure 5.2: Flowchart of image processing from collected raw data to meta-SIF (solar induced

fluorescence) images. In the meta-hyperspectral cube, each pixel had both irradiance and

radiance spectra covering the spectral range from 400 to 1000 nm with a spectral resolution

of 2 nm.
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The following processes were performed for the meta hyperspectral cube of a single plot.

Grayscale images at 749 nm and 685 nm were used to generate a band ratio image (I749/I685).

A threshold was applied to the band ratio image to create the mask of plant canopies in

that plot. An arbitrary value of 3 was used in the present study based on the trial-and-

error method. Chlorophyll absorbs incident light (particularly blue and red light in the

visible spectral range) and emits fluorescence in the red and far-red spectral range. Upwelling

radiance spectra of plant canopies thus contain both reflectance and fluorescence signals in

the red and far-red spectral range. Fraunhofer lines are a set of spectral absorption lines

in the spectrum of sunlight related to particles in the solar and terrestrial atmosphere. Hα

at 656 nm, O2-B at 687 nm, and O2-A at 760 nm are three Fraunhofer lines in the red

and far-red spectral range. The reduction of solar irradiance in the Fraunhofer lines results

in a decrease of the canopy reflectance and an increase in the ratio of fluorescence and

reflectance signals, which maximizes the suitability of decoupling chlorophyll fluorescence

from the canopy reflectance. A standard Fraunhofer line discrimination (sFLD) method has

been developed to use irradiance and radiance signals at two spectral bands [206]. One band

is one Fraunhofer line, and the other band is a wavelength near the corresponding Fraunhofer

line. In the present study, the O2-A band (approximately at 761 nm) and its neighboring

band (759 nm) were used to calculate SIF values of individual pixels using Equation 5.1.

SIFp =
E759
p L761

p − E761
p L759

p

E759
p − E761

p

(5.1)

Where SIFp was the SIF value (W/m2/nm/sr) of a pixel p. E·p and L·p represented the

irradiance (W/m2/nm) and radiance (W/m2/nm/sr) intensities of p at a certain wavelength.

The plant canopy mask was multiplied with retrieved SIF values, forming the SIF image of

the plot. As each image line of a radiance hyperspectral cube had a corresponding irradiance

spectrum, PAR values were calculated for individual lines of SIF images using Equation 5.2.
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PARp =
1

Asts

∫ 700

400

Eλ
p

eλ
dλ =

1

Asts

∫ 700

400

Eλ
pλ

hc
dλ (5.2)

Where PARp was the PAR value (µmol/m2/s) of a pixel p. As was the surface area (m2)

of the cosine corrector equipped with the spectrometer, and ts was the integration time (s)

of the spectrometer. Eλ
p was the irradiance of p at the wavelength λ (nm). eλ was the energy

of a photon at the wavelength λ, h was the Planck constant, and c was the light speed in a

vacuum.

Subsequently, a meta-SIF image was generated for a plot, consisting of a plot SIF image

and a PAR curve (PAR values for lines along the row direction of the corresponding SIF

image).

Calculation of Effective Quantum Yield and Electron Transport Rate

For data derived from hyperspectral images (HSI), the potential maximum SIF value was

estimated for each of four combinations of genotype and treatment. In each genotype and

treatment combination, a regression model was used to fit SIF measurements versus recip-

rocals of PAR, and the model y-interception (the reciprocal of PAR equaled to zero) was

treated as the maximum SIF value for that combination. An exponential model was used

for the two control treatment combinations, whereas three different models were used for

the two Diuron combinations due to a lack of obvious data distribution patterns (likely due

to damage to the photosynthetic apparatus and resulting non-photochemical quenching).

The three models for the Diuron combinations included a linear regression model, quadratic

regression model, and average model that used the mean value of SIF measurements as the

maximum SIF. After obtaining the maximum SIF value for each approach, the effective

quantum yield of PSII (φPSII) and photosynthetic ETR were calculated using Equation 5.3

and Equation 5.4 for data points in each combination.
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φPSII =
SIFm − SIF

SIFm
= 1− SIF

SIFm
(5.3)

ETR = PAR× φPSII × Aleaf ×RPSII (5.4)

Where φPSII was the effective quantum yield of PSII for a SIF value (SIF ). SIFm was

the estimated maximum SIF value for a genotype and treatment combination. Aleaf was the

leaf absorbance of incident light, and a typical value (0.84) for C3 species (e.g., cotton) was

used in this study. RPSII was the distribution ratio of absorbed energy between photosystem

I (PSI) and photosystem II (PSII), which was assumed as equal distribution (0.5) [207].

For PAM fluorometry data, the maximal fluorescence intensity and PAR were obtained,

so φPSII was calculated using Equation 5.5 [208] while ETR was still calculated using Equa-

tion 5.4.

φPSII =
F
′
m − F

′
s

F ′m
= 1− F

′
s

F ′m
(5.5)

Where φPSII was the effective quantum yield of PSII. F
′
s and F

′
m were the steady state

and maximal fluorescence intensities under actinic light.

Rapid Light Curve and Standardized ETR

ETR and PAR values were used to generate rapid light curves (RLCs) using the method

proposed by [209]. To quantitatively analyze RLCs, RLCs were fitted using an empirical

model (Equation 5.6) [210].

ETR = mETR× (1− eα×PAR/mETR) (5.6)

Where mETR was the photosynthetic capacity at saturating light by which all reaction

centers were hypothetically closed and α was the initial slope of the RLCs before the onset
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of saturation, i.e., the slope of the light-limiting region of RLCs.

RLCs were generated and modeled at two levels: the group level and the plot level.

RLCs at the group level were calculated using all data points (N=48) of individual group

(a genotype and treatment combination), and RLC parameters were compared to evaluate

differences in canopy-level photosynthetic efficiency among the four groups. In order to

testify the statistical significance of the differences, RLCs at the plot level were calculated

using data points (N=6) of individual plots. Consequently, individual group would have 8

replicates for conducting statistical analyses.

While mETR can be used to compare differences of photosynthetic efficiency between

groups, standardized ETR (sETR) values were calculated by setting PAR equal to 1500

µmol/m2/s, which is a common value in the study area and is generally considered a satu-

rating light intensity for cotton [211].

5.3.4 Growth Analysis

Crop performance was also verified by destructively harvesting all above-ground plant

material in a 2 meter length of row on two sample dates to derive classical crop growth

indices. Plants were sampled on 9 August 2018 (immediately after SIF measurements) and

23 August 2019 (a two week interval). On each sample date, plants were placed in plastic

bags with moist paper towels to ensure that plant tissues did not desiccate between harvest

and measurement. In the laboratory, plants were separated into leaves and stems, and leaf

area was determined using a leaf area meter (LI-3100, LI-COR Corp., Lincoln, Nebraska

USA). Total dry weight was assessed following a 48 h drying period at 80◦C in a forced-air

oven.
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Five growth parameters were calculated including crop growth rate (CGR), net assim-

ilation rate (NAR), relative growth rate (RGR), the difference in leaf area index (∆LAI),

and the difference in leaf mass fraction (∆LMF) between the two sample dates. The five

parameters were defined by Equation 5.7 to Equation 5.11.

CGR =
W total
t2 −W total

t1

(t2− t1)× Aland
(5.7)

NAR =
W total
t2 −W total

t1

t2− t1
× lnAleaft2 − lnAleaft1

Aleaft2 − Aleaft1

(5.8)

RGR =
lnW total

t2 − lnW total
t1

t2− t1
(5.9)

∆LAI =
Aleaft2 − Aleaft1

Aland
(5.10)

∆LMF =
W leaf
t2

W total
t2

− W leaf
t1

W total
t1

(5.11)

Where W leaf and W total represented the leaf and total dry weights. Aleaf and Aland

represented the leaf and land areas. In the present study, the Aland was 1.82 m2 (0.91 m ×

2 m). t2 and t1 were the sampling date in days after planting (DAPs).

5.3.5 Statistical Analysis

To test the effectiveness of standardized ETR values, ANOVA tests were performed on

the five growth parameters and standardized ETR values estimated using four approaches

(PAM and three HSI-based methods). After testing the effects due to genotype, treatment,

and the interaction between genotype and treatment, ANOVA tests were further performed

on the traits between treatments for each genotype. ANOVA tests were performed at the

significance level of 0.05 in R [212]. In addition to ANOVA tests, Pearson correlation analysis
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was conducted between each pair of traits and sETR, evaluating the potential of using the

sETR for growth prediction. Pearson correlation analyses were also conducted in R.

5.4 Results

5.4.1 Representative Meta-SIF Images

Meta-SIF images showed obviously different trends between the control and Diuron groups

(Figure 5.3). In the control groups, SIF values had the same trend with PAR values: SIF

values increased with the increase of PAR values and decreased with the reduction of PAR

values. In contrast, SIF values for Diuron-treated plots exhibited no relation with PAR

values: SIF values were low and relatively constant irrespective of PAR changes throughout

the day. This observation agreed with the experimental design. The control groups were

healthy, showing fluorescence intensity changes along with varied PAR levels, whereas an

inhibitor of electron transport beyond PSII would be expected to cause damage to the

photosynthetic apparatus and potentially increase non-photochemical quenching (NPQ) of

the fluorescence signal.
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Figure 5.3: Representative meta-SIF images for control and Diuron plots. In meta-SIF images,

each pixel had both SIF value and corresponding photosynthetically active radiation (PAR)

values.

In addition, variations were observed within a plot (see the control group at 1400 h in

Figure 5.3). Leafy regions in the plot showed higher SIF signals than less leafy regions,

because the leafy regions usually had a faster vegetative growth (and thus more mature

leaves), resulting in a higher capacity of conducting photosynthesis. This suggests that cal-

culated meta-SIF images could be used for analyzing the spatial variation of photosynthesis.

As the present study aimed to explore the possibility of using SIF measured by passive HSI

method to characterize photosynthetic efficiencies at the canopy level, experiments were not
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designed to analyze spatial variations of SIF in a plot. Thus, successive studies are needed

to take the full advantage of HSI data to analyze spatial variations of SIF (and potentially

other photosynthetic parameters).

5.4.2 Estimated Maximal Fluorescence

Generally, the control groups were well (R2 = 0.85) fitted by the exponential model, whereas

the Diuron groups showed large variations in the model that best fit the SIF response to

PAR (Figure 5.4. As exponential models showed a strong relationship between SIF and PAR

in control groups, it was reasonable to use the y-interception of the models as the maximal

fluorescence intensity. In contrast, the three models for the Diuron groups provided different

goodness-of-fit and maximal fluorescence values. Regarding goodness-of-fit, the quadratic

model provided the best estimation of the maximal fluorescence, followed by the linear

model and average model. This was possibly because the level of NPQ in Diuron treated

plots would have been higher under the highest light intensities where the most damage

would have been expected. Although a previous study showed a linear relationship between

chlorophyll fluorescence and PAR under high light intensities (over 2800 µmol/m2/s) [202],

no strong linear relation was observed between SIF and PAR under solar illumination (up

to 2000 µmol/m2/s) in the present study. In particular, the linear model provided a reduced

goodness-of-fit than the quadratic model, suggesting that the linear model might not be

optimal for estimating the maximal fluorescence for the Diuron groups. However, there was

a reasonable consideration for using the average model despite the worst goodness-of-fit. No

obvious trend was identified between SIF and PAR values in the Diuron groups, and thus

variations among data points could be considered as random measurement errors. If so, it

was acceptable to use the mean value as the group measurement (and thus the maximal

fluorescence of that group), thereby reducing the measurement error. Nonetheless, the three

models provided different values for maximal fluorescence intensity and would have different
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effects on the successive data processing.

Figure 5.4: Estimation of maximal fluorescence values for control and Diuron treatment. An

exponential model was used to fit the SIF and PAR reciprocal values for plots in the control

group, whereas three models (linear, quadratic, and average) were used to fit the SIF and

PAR reciprocal values for plots in the Diuron treatment group. The maximal fluorescence

value was defined as the value when the PAR reciprocal equaled zero.
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5.4.3 Calculated Effective Quantum Yield and RLCs

Overall, the Pima and Upland cultivars showed the similar trends and patterns for φPSII and

ETR values calculated using PAM and hyperspectral data (Figure 5.5). For all four methods,

φPSII values decreased with increasing PAR values in the range from 0 to 2000 µmol/m2/s

for control groups, whereas φPSII values were relatively lower and showed no correlation

with PAR values for Diuron groups. Control and Diuron groups were distinctively different

from each other in φPSII over PAR calculated using PAM data. While control and Diuron

groups were still separable, overlaps between the two groups were identified with different

magnitudes in φPSII over PAR calculated using HSI data. The overlaps between control and

Diuron groups for quantum yield were the largest when φPSII values were calculated using

maximal fluorescence estimated by the linear model, and the overlaps became smaller and

were the least when φPSII values were calculated using maximal fluorescence estimated by

the average and quadratic models, respectively. This occurred primarily because of the dif-

ference in estimated maximal fluorescence values for the Diuron groups. The HSI quadratic

model provided the lowest value of the estimated maximal fluorescence, resulting in the

lowest φPSII values. In particular, a lower maximal fluorescence value lead to more negative

φPSII values that were treated as zero, which increased the magnitude of the difference

between the control and the Diuron groups.
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Figure 5.5: Calculated effective quantum yield of PSII (φPSII) and electron transport rate

(ETR) for the two genotypes under control and Diuron treatments. PAR shorts for photo-

synthetically active radiation.

ETR values rapidly increased with increasing PAR values in the range from 0 to 600

µmol/m2/s and gradually reached a plateau afterwards for control groups. This trend
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held true for ETR values calculated using PAM- and HSI-derived φPSII . ETR values cal-

culated using PAM-derived φPSII remained low (near zero) in the PAR range from 0 to

2000 µmol/m2/s for Diuron groups, showing a clear separation from control groups. In

contrast, ETR values calculated using HSI-derived φPSII showed different magnitudes of

overlap between control and Diuron groups. In the PAR range from 0 to 1500 µmol/m2/s,

all three HSI-based methods showed a distinction between control and Diuron groups, with

the largest overlap by the HSI linear method followed by average and quadratic methods. In

the PAR range from 1500 to 2000 µmol/m2/s, the HSI linear method showed no distinction

between two treatment groups, whereas the HSI quadratic and average methods still showed

a distinct difference. This matched with the observations of φPSII .

Quantitative RLC models further validated the aforementioned observations (Table 5.1).

For all four methods, control groups had a substantially higher value of mETR and a lower

value of initial slope (α) than Diuron groups for both cultivars. Although the HSI linear

method provided ETR values that had a large overlap between control and Diuron groups,

the quantitative characteristics of the fitted RLC models were dramatically different from

each other, showing that even in the worst case (HSI linear method), the developed method

could be used to identify the photosynthetic efficiency difference between the two groups.

Although different methods showed a similar trend on the RLC characteristics between

different treatments, the absolute values of those characteristics were different. mETR cal-

culated using HSI methods was 60% to 70% lower than those calculated using the PAM

method, and α were 15% to 20% higher. The reduction of absolute values for mETR was

partially because the PAM and HSI methods provided measurements at different levels.

The PAM method measured a single leaf near the top of a plant with little or no shading,

whereas the HSI methods measured a whole canopy that had leaves at different levels of

shading. So, it would be expected that the HSI methods provided lower ETR than the PAM

method. In addition to herbicide treatment differences, the two cultivars showed certain
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differences. The Pima cultivar had a lower minimum saturating irradiance (estimated by

mETR
α

[210]) than the Upland cultivar. This suggests that the Pima cultivar would enter

into the stage dominated by non-photochemical quenching at lower light intensities than

the Upland cultivar [213]. This finding is in agreement with a previous study showing that

individual leaves of Pima cotton reached light saturation for net photosynthesis at a lower

light intensity than Upland cotton [214].

Table 5.1: RLCs calculated using ETR and PAR values for each genotype and treatment

combination. The RLC model was ETR = mETR× (1− eα×PAR/mETR).

Method Cultivar Treatment mETR α Ek R2

PAM Pima Control 296.70 0.3989 743.73 0.94

PAM Pima Diuron 0.00 0.5000 0.00

PAM Upland Control 303.90 0.3771 805.98 0.99

PAM Upland Diuron 2.12 0.5000 4.24

HSI Linear Pima Control 177.51 0.4780 371.33 0.92

HSI Linear Pima Diuron 50.13 77.0580 0.65

HSI Linear Upland Control 210.07 0.4348 483.13 0.99

HSI Linear Upland Diuron 46.19 93.9418 0.49

HSI Quadratic Pima Control 177.51 0.4780 371.33 0.92

HSI Quadratic Pima Diuron 0.00 0.5000 0.00

HSI Quadratic Upland Control 210.07 0.4348 483.13 0.99

HSI Quadratic Upland Diuron 0.00 0.5000 0.00

HSI Avg Pima Control 177.51 0.4780 371.33 0.92

HSI Avg Pima Diuron 0.00 95.0250 0.00

HSI Avg Upland Control 210.07 0.4348 483.13 0.99

HSI Avg Upland Diuron 0.00 0.5000 0.00
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φPSII measured using different HSI methods also showed different correlations with those

measured using the PAM method (Figure 5.6). In fact, a high correlation (R2 = 0.73) was

achieved between PAM and HSI methods for control groups. Differences in correlations

mainly came from the measurements for Diuron groups. The quadratic model provided the

best estimate of maximal fluorescence, exhibiting the strongest correlation between PAM

and HSI-based estimates of quantum efficiency at the canopy level. This suggests that

the quadratic model could be an optimal method for estimating maximal fluorescence for

Diuron groups. The average model showed a reduced but comparable performance with

the quadratic model. Considering its engineering rationale, the average model could also be

an option for estimating maximal fluorescence for Diuron groups. Additional experiments

are needed to determine which method (the quadratic or average model) would be the

most optimal in terms of model generalization capability to different datasets. However, the

linear model provided the lowest correlation, suggesting that the linear model would not be

suitable for maximal fluorescence estimation for Diuron groups.
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Figure 5.6: Results of correlation analysis between the effective quantum yield of PSII (φPSII)

values derived from PAM and HSI data. φPAM indicated values calculated using PAM data.

φHSIL, φHSIQ, and φHSIA indicated values derived from hyperspectral data using the maximal

fluorescence value estimated by the linear, quadratic, and average models.

5.4.4 ANOVA Test Results

Generally, growth traits and sETR calculated using four methods showed significant differ-

ences between treatments but no difference between genotypes (Table 5.2). This suggests

that the sETR measurements were effective in identifying the differences in plant growth

between control and Diuron groups. It should be noted that although an interaction effect

was identified for ∆LMF and sETR calculated using the HSI methods, control groups still

showed higher values than Diuron groups irrespective of genotype, indicating the validity

of main effect (treatment) significance for those traits. RGR was the only trait showing a
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significant difference between genotypes.

Table 5.2: P-values of ANOVA tests on the growth traits and standardized ETR values

estimated using four approaches.

Trait Cultivar Treatment Interaction between cultivar and treatment

CGR 0.1568 0.0001 0.8406

NAR 0.1229 0.0002 0.3513

RGR 0.0128 0 0.2899

∆LAI 0.1801 0.0018 0.3906

∆LMF 0.9069 0.0008 0.006

sETRPAM 0.0792 0 0.65

sETRHSIL 0.2661 0 0.0237

sETRHSIQ 0.0864 0 0.0411

sETRHSIA 0.1663 0 0.0241

For each cultivar, growth traits and sETR calculated using four methods had statistically

higher values for control groups than Diuron groups (Figure 5.7). Growth traits (e.g., CGR,

NAR, RGR, and ∆LMF ) were positive for control groups, indicating normal plant growth,

whereas those traits were close to zero or even negative, indicating plant loss of mass and

leaf area in Diuron treated plots. The same patterns were observed for sETR calculated

using four methods. An exception was ∆LMF , which represents dry matter partitioning to

leaf area. Both cultivars showed negative ∆LMF for control and Diuron groups, meaning

both cultivars distributed a smaller fraction of total dry matter to leaves at the later sample

times irrespective of treatment. The Pima cultivar exhibited a greater decline in LMF for

the Diuron group than the control group, likely reflecting the Diuron damage and resulting

defoliation that led to leaf mass fraction reduction. In contrast, the Upland cultivar showed

no difference of ∆LMF between treatments. This is likely because the total growth was
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negatively affected to a comparable extent as leaf mass.

Figure 5.7: ANOVA tests on the growth traits and standardized ETR values estimated

using four approaches. Asterisks indicated statistical differences between two treatments at

different significance levels: * <0.05, ** <0.01, and *** <0.001. CGR, NAR, RGR, and sETR

values were in the units of g/m2/d, g/m2/d, g/g/d, and µmol/m2/s, respectively.
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5.4.5 Correlation between Traits

High correlations (r = 0.92 to 0.95) were achieved for sETR calculated using the PAM

method and HSI methods, further indicating the validity of using the developed method

for canopy-level photosynthetic efficiency quantification (Figure 5.8). sETR, irrespective of

calculation method, also showed moderate correlations (r = 0.46 to 0.67) with growth traits,

indicating the potential of using calculated sETR for crop growth prediction. Among the

three HSI methods, the HSI linear method provided the lowest correlation, whereas the HSI

quadratic and average methods showed relatively higher correlations. This demonstrates

that the estimation of maximal fluorescence affects the capability of using sETR for growth

prediction as well.

141



Figure 5.8: Pearson correlation values between each pair of five growth traits and standard-

ized ETR values estimated using four approaches. Values on the upper-triangle were the

correlation values for the subplots in the lower triangle. Significant (p-value <0.05) correla-

tion values were rendered by red color or otherwise by black color.

5.5 Discussion

The developed approach used a passive hyperspectral imaging system to retrieve diurnal

SIF values that were used for estimating maximal fluorescence, effective quantum yield of

PSII and ETR values at the canopy level. Irrespective of the approach utilized to model
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SIF to diurnal light intensity, the following conclusions can be made. Maximal fluorescence

estimates for the canopy, derived from the best fit function of SIF versus the reciprocal of

PAR in both the Diuron-treated plots and the control plots, were used to calculate actual

quantum yield of the canopy. φHSI estimates were strongly correlated with φPAM estimates

when considered across multiple diurnal sample times, in response to Diuron treatment, or

for the two different species of cotton evaluated (Figure 5.6). Furthermore, φHSI values were

used to calculate ETR at a given diurnal PAR level, and diurnal light response curves were

generated for both PAM and HSI-based methods. From these data, a standardized measure

of ETR at a common light intensity (1500 µmol/m2/s) was calculated for both PAM and

HSI-based methods. There was a strong correlation between HSI- and PAM-derived sETR

values (r = 0.95; Figure 5.8), and canopy estimates of ETR were also predictive of whole-

crop growth responses in the weeks following treatment. Thus, we suggest that is possible

to estimate canopy-level photosynthetic efficiency from passive, diurnal measurements of

SIF and PAR at the canopy at the time of measurement. This is a particularly notable

achievement since a number previous studies have collected diurnal SIF measurements at

the agro-ecosystem scale in attempts to model gross primary productivity [179, 215, 216].

The methodology reported herein would allow researchers to obtain a direct measure of

ecosystem-scale photosynthetic efficiencies from existing data sets. Furthermore, the use

of hyperspectral imaging to delineate plot-scale photosynthetic efficiencies, would allow

for direct selection of genotypes with higher diurnal photosynthetic activities. Last, the

developed method measures chlorophyll fluorescence in field conditions, which could expand

fluorescence-based early detection of plant stresses (described by [217], [218], and [219])

from the laboratory to the field. This could be particularly useful for agricultural production

systems.

The developed approach has two major limiting factors, however. First, ETR values mea-

sured by HSI data showed a larger absolute difference than those measured by PAM data.
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This can be solved by improving the spectral sampling resolution [220]. The hyperspec-

tral camera and spectrometer used the spectral sampling resolution of 2 nm in the present

study, utilizing only around 50% depth of the Fraunhofer O2-A line [220]. This limits the

SIF retrieval accuracy and thus derivation of effective quantum yield of PSII and ETR

values. On the contrary, the spectral sampling resolution of the hyperspectral camera and

downwelling spectrometer can be configured to approximately 0.2 nm, which could pro-

vide greater potential for further improvement of measurement accuracy. The finest spectral

resolution will result in a large increase of data volume, presenting potential challenges in

data collection, management, and processing. Second, estimation of maximal fluorescence

dramatically affected the calculation of effective quantum yield and ETR as well as RLC

models. In the present study, a linear model provided the poorest results in which control and

Diuron groups showed a large overlap. Although fitted RLC models still showed a significant

difference between treatments, it could be problematic to identify subtle differences of pho-

tosynthetic efficiency among genotypes. This could limit the potential of using the developed

method for genetics/genomics studies and breeding programs. Future studies, therefore, need

to validate the efficacy of three models used in the present study and examine new ways to

estimate maximal fluorescence using passive sensing methods. For instance, maximal flu-

orescence estimation models for stressed plants can be established and validated in a full

PAR range from 0 to 6000 µmol/m2/s in a controlled environment, and transferred to field

applications where data are acquired in a part of the full PAR range.

5.6 Conclusions

The developed method showed promising results in using passive hyperspectral data to

estimate effective quantum yield, ETR, and RLC models for the whole canopy. Patterns

observed using calculated RLC characteristics agreed closely with growth traits, indicating

that the developed method can be used to differentiate plants under extreme differences in

photosynthetic efficiency. Regression analysis results confirmed that the calculated values
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had potential for plant growth prediction. Future studies will focus on exploring various

estimation methods for maximal fluorescence of the canopy and potential applications in

breeding programs and genetics/genomics studies.
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Chapter 6

DeepSeedling: Deep Convolutional Network and Kalman Filter for Plant

Seedling Detection and Counting in the Field1

1Jiang, Y., Li, C., and Paterson, A. H. Submitted to Plant Methods, April 8, 2019.
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6.1 Abstract

Plant population density is an important factor for agricultural production systems due to

its substantial influence on crop yield and quality. Traditionally, plant population density

is estimated by using either field assessment or a germination-test-based approach. These

approaches can be laborious and inaccurate. Recent advances in deep learning provide new

tools to solve challenging computer vision tasks such as object detection, which can be

used for detecting and counting plant seedlings in the field. The goal of this study was to

develop a deep-learning-based approach to count plant seedlings in the field. Overall, the

final detection model achieved F1 scores of 0.727 (at IOUall) and 0.969 (at IOU0.5) on the

SeedlingAll testing set in which images had large variations, indicating the efficacy of the

Faster RCNN model with the Inception ResNet v2 feature extractor for seedling detection.

Ablation experiments showed that training data complexity substantially affected model

generalizability, transfer learning efficiency, and detection performance improvements due

to increased training sample size. Generally, the seedling counts by the developed method

were highly correlated (R2 = 0.98) with that found through human field assessment for

75 test videos collected in multiple locations during multiple years, indicating the accuracy

of the developed approach. Further experiments showed that the counting accuracy was

largely affected by the detection accuracy: the developed approach provided good counting

performance for unknown datasets as long as detection models were well generalized to those

datasets. The developed deep-learning-based approach can accurately count plant seedlings

in the field. Seedling detection models trained in this study and the annotated images can

be used by the research community and the cotton industry to further the development of

solutions for seedling detection and counting.
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6.2 Introduction

Plant population density is defined as the number of plant stands per unit area, which is

an important factor for agricultural production systems due to its substantial influence on

crop yield potential and fruit quality [221, 222, 223, 224, 225]. Plant population density is

particularly important for growers right after the germination stage, providing hard date

from which to evaluate the necessity of replanting the field if the density if not adequate.

Thus, it is crucial to calculate the plant population density when plants are in the seedling

stage.

There are two conventional ways for estimation of plant population density: field assess-

ment and a germination-test-based approach. To estimate plant population density, a field

assessment involves manually counting the number of plant seedlings/stands in randomly

selected subareas of a field and using the average value to represent the plant population

density. While this approach is the most straightforward, it is laborious (especially for

large fields) and could be inaccurate due to improper sampling of subareas. A germination-

test-based approach involves estimating the plant population density by using the total

number of planted seeds and the maximum germination potential determined by laboratory

germination tests. This approach is relatively simple (indeed, such data usually accompanies

purchased seed), but it could provide estimation that is considerably different from the

actual value due to differences of testing and field conditions.

To address these issues, several studies have been conducted to investigate the use of

color images to count plant seedlings in the field [226, 227, 228]. These studies relied on con-

ventional image processing, which primarily utilized color information to segment vegetative

areas that were used for estimation of plant counts. While these approaches showed high

counting accuracies (approximately 90%), they had two major disadvantages. First, color

information was sensitive to ambient illumination and plant status. For instance, plants
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looked darker on cloudy days than sunny days, and plants just sprouting from the soil might

have different color than well-established seedlings. Second, counting models were site- and

time-dependent. Typically, a calibration step was necessary: a small portion of a field would

be manually counted to establish a regression model between pixel counts (or the number

of segmented areas) and actual plant counts, so the regression model could be applied

to the rest of the images for automatic processing. A regression model established in one

experimental site (growth stage) might not transfer to another site (growth stage), requiring

model validation or re-calibration. In particular, breeding programs and genetics studies

involve a wide variety of genotypes with considerable variations in germination time, raising

a particular concern about using these image-processing-based approaches for plant counting.

Seedling detection is an essential part of seedling counting. Recent breakthroughs in

deep learning (e.g., deep convolutional neural networks, also known as, CNNs) have demon-

strated strong performance for object detection [30]. In particular, faster-region-based CNN

(Faster-RCNN) was developed as a CNN-based meta-architecture for object detection [45],

which has been shown to provide state-of-the-art performance for various applications and

competitions [30]. Researchers explored the use of Faster RCNN for in vivo fruit detection

for peppers [69, 81], mangoes [80], apples [86, 229], almonds [72], and maize ears [71]. These

studies reported promising detection accuracy (F1 score from 0.8 to 0.92) and thus per-image

counting accuracy (relative counting errors from 2% to 15%). In addition, several of these

studies further expanded the Faster-RCNN-based fruit detection and counting from a single

image to consecutive image sequences.

The key challenge of counting in image sequences or videos is to preclude repeated

counting of one fruit object. Three approaches were used to solve this challenge. The first

approach reconstructed 3D point clouds of a crop row using 2D images by the structure

from motion (SfM) technique, and fruit detections were projected from individual 2D images
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to the reconstructed global 3D space [86, 229]. As a single fruit object occupied a unique

3D position, detections of one fruit object in different 2D images would highly overlap in

the 3D space. Thus, redundant detections of one fruit object could be removed to avoid

repeated counting. The second approach used the position (from RTK GPS) and pose

(from IMU devices) of image acquisition to estimate the geometric correspondence between

pixels in two consecutive images. With this approach, fruit detections in one image could be

associated with detections in the next image, thus tracking individual detections through

image sequences or videos for counting [80]. In the third approach, a tracking-via-detection

strategy was developed to track and count fruit objects in image sequences [81, 229]. The

key of the tracking-via-detection strategy is detection-tracker association (assign a detection

to a tracker). In [81], the intersection of union (IOU) and boundary measure (the ratio of

the intersection between a tracker and a detection to the area of that detection) metrics

were used to quantify the closeness between a detection and a tracker. Thresholds of IOU

and boundary measure were determined using a small set of image sequences. For a given

pair of detection and tracker, if they had an IOU value and a boundary measure that

exceeded the predetermined thresholds, the detection and tracker would be associated. In

[229], optical flow was calculated to estimate object motion (center positions for trackers)

between consecutive images. The estimated center positions for trackers would be compared

with center positions for detections. If the center-to-center distance was the minimum, a

detection and a tracker would be associated. Although all the three approaches provided

fairly high counting accuracies (95.56% to 97.83% for [86], 98% for [80], and 95.9% for [81]),

they had various limitations. The first approach was computationally expensive due to the

SfM-based reconstruction. In addition, certain environmental factors (e.g., wind) would

result in failure of 3D reconstruction using the SfM. The second approach was less com-

putationally expensive than the first one, but the use of positioning sensors (e.g., RTK

GPS and IMU) substantially increased the cost of data acquisition systems, which could be

problematic for small research projects/farms. The third approach was the least expensive
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in terms of computation and hardware investment, but the tracking strategy was not robust

to different noises. For the method used in [81], the IOU and boundary measure thresholds

were determined using only a small set of image sequences. If the testing image sequences

and videos were acquired in slightly different conditions, the thresholds might become invalid

and result in degraded performance. For the optical flow method [229], the calculation of

optical flow could be dramatically influenced by ambient illumination changes, resulting in

inaccurate motion estimation and tracking [83]. These issues could be addressed by using

other tracking methods such as Kalman filter.

To the best of our knowledge, no study has reported the use of a CNN-based approach

for seedling detection and counting. Based on the successes of fruit detection and counting,

it is worth exploring the use of CNN-based approaches for seedling detection and counting.

In particular, the combination of CNN-based detection models and sophisticated tracking

framework would provide inexpensive but accurate counting solutions.

The overall goal of this study was to develop an approach based on CNN and Kalman

filter to counting cotton seedlings in the field. Specific objectives were to 1) collect and

annotate image datasets for detection model training and testing, 2) train Faster-RCNN

models for seedling detection, 3) examine the key factors (training sample size, transfer

learning efficiency, and generalizability) for detection model training, and 4) use the trained

Faster-RCNN models and Kalman filter to track and count cotton seedlings in videos of

individual plots or field segments.
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6.3 Methods

6.3.1 Data Collection and Preparation

Videos were collected using various imaging systems in the cotton germination stage at

different locations over multiple years (Table 6.1). The collected videos were split into

detection and counting sets. Videos in the detection set were used to extract video frames

at a frequency of 6 frames per second (FPS), forming three image datasets that were used

for plant seedling detection. For convenience, the three image datasets will be referred to as

TAMU2015, UGA2015, and UGA2018 hereafter. Videos in the counting set were segregated

into 75 video clips (25 clips per dataset) for evaluating the developed counting algorithm.

Each video clip represented an approximately 3-m long segment in the videos collected in

the state of Texas or a single plot in the videos collected in the state of Georgia.
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Table 6.1: Data collection summary.

Data collection Texas A&M Uni-

versity

University of

Georgia

University of

Georgia

Location Corpus Christi,

TX, USA

Watkinsville,

GA, USA

Watkinsville,

GA, USA

Plot length 10.67 m 3.05 m 1.5 m

Seed spacing 0.08 m/seed

(average)

0.1 m/seed

(average)

0.15 m/seed

Date 12 April 2015

11 DAPs

15 June 2015

11 DAPs

13 June 2018

7 DAPs

Weather Sunny Cloudy Sunny

Camera Samsung Galaxy

Note3

Panasonic

DMC-G6

Fujifilm X-A10

Video configuration 1920 × 1080 @ 30

FPS

1920 × 1080 @

60 FPS

1920 × 1080 @

30 FPS

ISO/HDR Auto / Auto 160 / Off Auto / Not sup-

port

Average moving

speed

0.6 m/s 0.75 m/s 0.6 m/s

Number of

collected

videos (detec-

tion/counting)

3 (2/1) 6 (4/2) 4 (2/2)

Number of plots

per video

7 16 19
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Three image datasets were preprocessed to reduce the image variability (Figure 6.1). A

contrast limited adaptive histogram equalization (CLAHE) algorithm was applied to equalize

the value channel of images in the HSV color space, which enhanced the image contrast and

reduced the image variation due to ambient illumination changes. The preprocessed images

were manually annotated with bounding boxes for objects of two classes: plant seedlings and

weeds. Monocotyledon weed was the only weed type observed and labeled in the TAMU2015

dataset, whereas dicotyledons were the primary weed type in the UGA2015 dataset. Very

small-sized weed objects (less than 30×30 pixels) were not labeled. As pre-emergent her-

bicides were applied, there was no weed identified in the UGA2018 dataset. After manual

annotation, the three datasets were partitioned into training, validation, and testing sets

with a ratio of 80%/10%/10% (Table 6.2). Subsequently, four comprehensive datasets were

generated by combining the three datasets (Table 6.3). As the T15U15, T15U18, and U15U18

datasets were only used for model training and validation, the validation and testing sets of

the original datasets (e.g., TAMU2015, UGA2015, and UGA2018) were merged into a single

validation set. The SeedlingAll dataset was generated by combining all three datasets with

the original partitioning.
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Figure 6.1: Example images in the TAMU2015, UGA2015, and UGA2018 datasets.

155



Table 6.2: Summary of data annotation and partitioning for the TAMU2015, UGA2015, and

UGA2018 datasets

Dataset TAMU2015 UGA2015 UGA2018

Total number of

images

2204 1895 1511

Number of training

images

1801 1603 1253

Number of valida-

tion images

202 146 129

Number of testing

images

201 146 129

Total number of

annotations (plant

seedling / weed)

21915 (21133 / 782) 7802 (6849 / 953) 5880 (5880 / 0)

Number of training

annotations (plant

seedling / weed)

17939 (17290 / 649) 6524 (5743 / 781) 4862 (4862 / 0)

Number of valida-

tion annotations

(plant seedling /

weed)

1964 (1911 / 53) 643 (553 / 90) 540 (540 / 0)

Number of testing

annotations (plant

seedling / weed)

2012 (1932 / 80) 635 (553 / 82) 478 (478 / 0)

Number of videos

for counting test

25 25 25

156



Table 6.3: Summary of data annotation and partitioning for the combined datasets

Dataset T15U15 T15U18 U15U18 SeedlingAll

Total number of

images

4099 3715 3406 5610

Number of training

images

3404 3054 2856 4657

Number of valida-

tion images

695 661 550 477

Number of testing

images

N/A N/A N/A 476

Total number of

annotations (plant

seedling / weed)

29739

(27997 /

1742)

27809

(27025 /

794)

13696

(12736 /

960)

35597

(33862 /

1735)

Number of training

annotations (plant

seedling / weed)

24466

(23035 /

1431)

22805

(22154 /

661)

11388

(10606 /

782)

29325

(27895 /

1430)

Number of valida-

tion annotations

(plant seedling /

weed)

5273 (4962

/ 311)

5004 (4871

/ 133)

2308 (2130

/ 178)

3147 (3004

/ 143)

Number of testing

annotations (plant

seedling / weed)

N/A N/A N/A 3125 (2963

/ 162)

6.3.2 Seedling Detection and Counting

A deep CNN based approach was developed for cotton seedling detection and counting

(Figure 6.2). For a given video of cotton seedlings, video frames were extracted at the video
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frame rate and enhanced using the CLAHE algorithm. The enhanced images were fed into

a Faster RCNN model to detect cotton seedlings. The detected seedlings were tracked in all

video frames to count the number of seedlings in the given video. Seedling detection and

tracking are the key of the developed approach, so details of the two parts are provided in

the following sections.

Figure 6.2: Flowchart of the deep convolutional network based approach for cotton seedling

detection and counting.

Architecture, Training, and Evaluation of Detection Model

The Faster RCNN meta architecture was used due to its success in many object detection

applications [30]. The architecture contains a feature extractor, a region proposal network

(RPN), and a classification and regressor module. The feature extractor is usually a deep

CNN network, which extracts informative feature representations from the raw input images

in a hierarchical fashion. The RPN uses the extracted features to generate potential regions
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of interest (ROIs), and the classification and regressor module uses the features in each ROI

to identify the ROI class and refine the coordinates of ROI bounding box. In this study,

the Inception ResNet v2 network [230] was used as the feature extractor due to its great

potential of differentiating classes with similar appearances and shapes (e.g., dicotyledonous

weed and cotton seedlings).

Transfer learning was used to improve the training efficiency and effectiveness. In the

present study, the Faster RCNN model was initialized by weights pretrained on the common

objects in contexts (COCO) dataset, and fine-tuned on the SeedlingAll training set. Mini-

batch stochastic gradient descent (SGD) and the Adam optimizer were used for model

training. While training the model, data augmentation was performed to increase the diver-

sity of training images, including horizontal and vertical image flip and random changes of

image saturation, brightness, and contrast. The Faster RCNN model and training programs

were implemented using Tensorflow. Training processes were performed on two computing

nodes hosted by the Georgia Advanced Computing Resource Center (GACRC), with each

being configured with 14 CPU cores (2.8 GHz per core), 120 GB CPU memory, and a GPU

card (Tesla V100 16GB, NVIDIA Corporation, Santa Clara, CA, USA) under the operating

system of CentOS 7.5. Based on preliminary experiments, the model was trained for a total

of 50,000 iterations (equivalent to 22 epochs) using an initial learning rate of 0.0001, a

dropout rate of 0.5 for the RPN and classification and regressor modules, and weight decay

of 0.001. Model checkpoints were saved after every 5,000 training iterations, and a total of

10 checkpoints were evaluated on the validation set to select the best model for testing and

seedling counting. For the sake of brevity, the training procedure and configuration was the

base training configuration.

Mean average precision (mAP), mean average recall of the top 100 detections (mAR100),

and an F1 score were calculated at IOU0.5 and IOUall (from IOU0.5 to IOU0.95 with an
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interval of 0.05) and used as metrics to evaluate the overall performance of detection models.

The use of metrics at IOUall was to more strictly evaluate the localization accuracy of detec-

tion models. In addition, average precision (AP), average recall of the top 100 detections

(AR100), and an F1 score at IOU0.5 were calculated for the seedling and weed classes, so

per-category performance of detection could be analyzed. These evaluation metrics were

used for ablation experiments as well.

Ablation Experiments

Training Sample Size While model performance benefits from a large amount of training

samples, it is usually laborious to obtain a large training set for domain applications such as

seedling detection. Therefore, it is important to investigate improvements of model perfor-

mance due to increased training sample sizes. For each of the TAMU2015, UGA2015, and

UGA2018 datasets, a total of 7 Faster RCNN models were trained using different training

sample sizes, including 100, 200, 300, 500, 700, and 1000 randomly selected training images

and all training images. Model training was conducted using the base training configura-

tion, with the reduction of training iterations from 50,000 to 35,000 (based on preliminary

experiments). For each training sample size, the best model checkpoint was selected based

on validation performance and was used to obtain testing performance.

Transfer Learning using Different Pretrained Models In the present study, transfer learning

was implemented through model initialization using pretrained weights. Thus, pretrained

models may have considerable impact on the transfer learning efficiency. Model initial-

ization using weights pretrained on large common datasets (e.g., ImageNet and COCO)

would improve the model training for domain applications, especially for those with a small

number of training images. However, improvements could be degraded when domain data

are extremely different from the common datasets. Two model initialization methods were
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used and compared to examine the transfer learning efficiency using different pretrained

models: 1) model initialization using weights pretrained on the COCO dataset and 2) model

initialization using weights pretrained on a domain dataset that is different from a target

dataset. For example, if the UGA2018 dataset was a target dataset, Faster RCNN models

would be initialized using weights pretrained on the COCO and T15U15 datasets, respec-

tively. Subsequently, the two initialized models were trained on a subset of 100 images that

were randomly selected from the UGA2018 training set. The base training configuration was

used for model training and validation, with the reduction of training iterations from 50,000

to 5,000 (based on preliminary experiments). Performance on the UGA2018 testing set was

obtained using the best checkpoint for each of the two models. This process was repeated

10 times, so a total of 10 testing results were calculated for each initialization method

for a given target dataset, enabling statistical comparisons between the two methods. The

TAMU2015 and UGA2015 were used as target datasets as well.

Model Generalizability The model generalizability was also a key factor for training deep

neural networks due to the high cost of labeling a large amount of images for domain appli-

cations. To evaluate model generalizability, detection performance on a target dataset was

compared between models trained using datasets acquired in the same and different data

collection sessions. For instance, if the TAMU2015 testing set was a target dataset, detec-

tion performance of a Faster RCNN model trained on the TAMU2015 training set would

be compared with that trained on the U15U18 dataset. The base training configuration was

used for model training and validation.

Seedling Counting by Tracking

The total number of detected seedlings from all frames of a video was considerably larger

than the actual number of seedlings in that video, because one cotton seedling could be

repeatedly detected in consecutive video frames, resulting in recurrent counts. To address
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this issue, detected seedlings were tracked in a video, so each seedling would be assigned

with a single tracker and thus counted only once.

In the present study, seedling tracking was essentially to associate multiple detections

(bounding boxes) of the same seedling over consecutive frames in a video. The state of a

seedling tracker (ttt) included the detection and moving speed of a seedling in a video, and

was formulated using Equation 6.1.

ttt = [u, v, s, r, u̇, v̇, ṡ]T (6.1)

Where u, v, s, r were the horizontal and vertical center (in pixels), area (in pixels), and

aspect ratio of a bounding box. u̇, v̇, ṡ were the corresponding first-order derivatives with

respect to time (in the unit of video frames).

The Kalman filter [231] was used to track detected seedlings in consecutive video frames

(Object tracking and counting in Figure 6.2). The seedling tracking was treated as a

discrete-time filtering problem, and it was solved by two steps [232]. The first step was

prediction process (also known as time update) in which states of seedling trackers in the

current frame were used to predict their states in the next frame using the dynamic model of

Kalman filter. The second step was update process (also known as measurement update) in

which observations (seedling detections) in the next frame were associated with the seedling

trackers to update the trakcer states and the dynamic model of Kalman filter. The two steps

were performed alternatively over frames to track seedlings in a video.

In the first frame (i = 1), seedling trackers (T1) were initialized using the seedling detec-

tions identified by a Faster RCNN model, with a value of zero for u̇, v̇, ṡ. Starting from the

second frame (i ≥ 2), tracker states (ttt) and the state covariance matrix (PPP ) in the ith frame
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were estimated using the information of seedling trackers in the i-1 th frame by the prediction

process (Equation6.2 and Equation6.3).

t̂
i|i−1
k̂t
i|i−1
k̂t
i|i−1
k = FFFt̂

i−1|i−1
k̂t
i−1|i−1
k̂t
i−1|i−1
k , FFF =



1 0 0 0 1 0 0

0 1 0 0 0 1 0

0 0 1 0 0 0 1

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



(6.2)

Pi|i−1Pi|i−1Pi|i−1 = FFFPi−1|i−1Pi−1|i−1Pi−1|i−1F
TF TF T +QQQ, QQQ =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 10−2 0 0

0 0 0 0 0 10−2 0

0 0 0 0 0 0 10−4



(6.3)

Where t̂
i|i−1
k̂t
i|i−1
k̂t
i|i−1
k was the a priori estimated state of the kth seedling tracker in the ith frame,

t̂
i−1|i−1
k̂t
i−1|i−1
k̂t
i−1|i−1
k was the a posteriori estimated state of the kth seedling tracker in the i-1 th frame,

and FFF was the matrix of state transition. Pi|i−1Pi|i−1Pi|i−1 was the a priori state covariance matrix for

the ith frame, and Pi−1|i−1Pi−1|i−1Pi−1|i−1 was the a posteriori state covariance matrix for the i-1 th frame.

QQQ was the process noise covariance matrix and determined arbitrarily in this study [232].

In the ith frame, the Kalman filter was updated by the update process using seedling

trackers in the i-1 th frame (Ti−1) and seedling detections in the current frame (Di). As

detections were the ground truth measurements for existing trackers, it was necessary to

associate detections and trackers for updating the Kalman filter. The cost of assigning a new
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detection (djdjdj ∈ Di) to an existing tracker (tktktk ∈ Ti−1) was the negative IOU value between

the detection (djdjdj) and the tracker’s predicted detection (t̂
i|i−1
k̂t
i|i−1
k̂t
i|i−1
k ). The assignment task was

optimally solved using the Hungarian algorithm [233] that minimized the assignment cost

under a constraint of the minimum IOU value of 0.1 (Equation 6.4).

min
∑N(Di)

j=1

∑N(Ti−1)
k=1 c(djdjdj, t̂

i|i−1
k̂t
i|i−1
k̂t
i|i−1
k )aj,k, aj,k =

1, djdjdj assigned to t̂
i|i−1
k̂t
i|i−1
k̂t
i|i−1
k

0, otherwise

subject to ∀j, aj,k1 = aj,k2 ⇒ k1 = k2, k1, k2 = 1, . . . , N(Ti−1)

∀k, aj1,k = aj2,k ⇒ j1 = j2, j1, j2 = 1, . . . , N(Di)

∀j and k, |c(djdjdj, t̂i|i−1k̂t
i|i−1
k̂t
i|i−1
k )| > 0.1

(6.4)

Where Di was the set of seedling detections in the ith frame and Ti−1 was the set of trackers

in the i-1 th frame. N(·) was the function counting the number of elements in a set. djdjdj was

the state of the j th seedling detection in Di and t̂
i|i−1
k̂t
i|i−1
k̂t
i|i−1
k was the a priori estimated state of the

kth tracker (tktktk) in Ti−1. c(djdjdj, t̂
i|i−1
k̂t
i|i−1
k̂t
i|i−1
k ) was the cost for assigning djdjdj to t̂

i|i−1
k̂t
i|i−1
k̂t
i|i−1
k (i.e., the negative

IOU value between the bounding boxes of djdjdj and t̂
i|i−1
k̂t
i|i−1
k̂t
i|i−1
k ), and aj,k indicated the assignment

flag, with one for assigning djdjdj to t̂
i|i−1
k̂t
i|i−1
k̂t
i|i−1
k . It should be noted that one detection could be only

assigned to one tracker or otherwise unassigned.

After the detection-tracker association, the detections (Di) and trackers (Ti−1) were cat-

egorized into three groups: trackers associated with new detection, unassigned detections,

and unassociated trackers. Trackers associated with new detection were used for the update

process that calculated the a posteriori state covariance matrix in the ith frame (Pi|iPi|iPi|i) using

Equation 6.5 to Equation 6.7 and their a posteriori states of the trackers using Equation 6.8

and Equation 6.9.
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SiSiSi = HHHPi|i−1Pi|i−1Pi|i−1H
THTHT +RRR, HHH =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0


, RRR =



1 0 0 0

0 1 0 0

0 0 10 0

0 0 0 10


(6.5)

KiKiKi = Pi|i−1Pi|i−1Pi|i−1H
THTHTS−1iS
−1
iS
−1
i (6.6)

Pi|iPi|iPi|i = (III −KiKiKiHHH)Pi|i−1Pi|i−1Pi|i−1(III −KiKiKiHHH)T +KiKiKiRRRK
T
iK
T
iK
T
i (6.7)

yiyiyi = dtdtdt −HHHt̂i|i−1associatedt̂
i|i−1
associatedt̂
i|i−1
associated (6.8)

t̂
i|i
associatedt̂
i|i
associatedt̂
i|i
associated = t̂

i|i−1
associatedt̂
i|i−1
associatedt̂
i|i−1
associated +KiKiKiy

iyiyi (6.9)

Where SiSiSi was the innovation covariance matrix of the Kalman filter in the ith frame.

HHH was the measurement matrix that mapped a tracker state to a measurement (detection)

state. RRR was the measurement error covariance matrix and determined arbitrarily in this

study. KiKiKi and III were the optimal Kalman gain for the ith frame and identity matrix, respec-

tively. yiyiyi was the innovation (also known as measurement residual) between the a priori

estimated state of a tracker (t̂
i|i−1
associatedt̂
i|i−1
associatedt̂
i|i−1
associated) and the state of that tracker’s associated detection

(dtdtdt) in the ith frame, and t̂
i|i
associatedt̂
i|i
associatedt̂
i|i
associated was the a posteriori estimated state of that tracker.

Unassigned detections (zeros for u̇, v̇, ṡ) were initialized as new trackers and added into

the existing tracker set (Ti−1). Unassociated trackers from Ti−1 were removed, forming the

new tracker set for the ith frame (Ti). All frames were processed sequentially using the

prediction and update processes of the Kalman filter, which provided a list of trackers with

their lifetime (number of video frames in which trackers existed).
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In theory, the number of trackers would be the number of seedlings in a video as one

tracker exactly corresponded to one seedling. However, in practice, seedling detection models

could occasionally provide inaccurate detection results, resulting in potential initialization

of noisy trackers. Thus, a lifetime filter was used to select valid trackers (trackers with a

lifetime longer than a threshold), and the number of valid trackers was used as the number

of seedlings in a video. In the present study, the lifetime threshold was arbitrarily set as a

quarter of video frame rate, which was 7 for TAMU2015 and UGA2018 videos and 15 for

the UGA2015 testing videos.

Counting Accuracy Evaluation

The developed approach with modelSAll was used to count the number of seedlings in the 75

testing videos collected in multiple locations and years. Simple linear regression tests were

performed between the video-derived counts and human field assessment, and the fitted

slope, adjusted coefficient of determination (R2), and root mean squared error (RMSE) were

used as the evaluation metrics. Mean absolute error (MAE) and mean relative error (MAR)

were also calculated as additional metrics for counting accuracy evaluation. In addition, the

developed approach with modelU15U18, modelU15T15, and modelT15U18 was tested using 25

testing videos of TAMU2015, UGA2018, and UGA2015, respectively. The same metrics were

calculated to compare with those calculated using modelSAll, which provided an evaluation

of the counting accuracy of unknown datasets.

6.4 Results

6.4.1 Detection Performance on SeedlingAll Dataset

Overall, the Faster RCNN model (modelSAll) trained using the SeedlingAll training set

achieved an F1 score of 0.727 (at IOUall) and 0.969 (at IOU0.5) on the SeedlingAll testing

set in which images had large variations. The modelSAll had even a better performance (F1

score of 0.998) for the seedling class, indicating the efficacy of the Faster RCNN model with

166



an Inception ResNet v2 feature extractor for seedling detection. The modelSAll successfully

addressed various challenges in the testing images (Figure 6.3). The primary challenge in the

testing images originally collected in the TAMU2015 dataset was occlusion. Despite excessive

overlap between seedling objects, the modelSAll could detect all seedlings with corresponding

bounding boxes that were tightly fitted to the seedlings ((a) and (b) in Figure 6.3). The

key challenges in testing the originally collected images in the UGA2015 dataset were the

background complexity and presence of dicotyledonous weeds. The background was rela-

tively simple (no weeds) in some images but could be complex (many weeds) in other images

(compare (c) and (d) in Figure 6.3). Seedings were accurately detected by the modelSAll even

under shaded conditions (the second topmost detection in Figure 6.3d). However, weeds

(especially small-sized weeds) were not correctly detected when the background was very

complex (dashed rectangles in Figure 6.3d). It should be noted that there was no misclas-

sification between dicotyledonous weeds and cotton seedlings, both of which are similar in

appearance (e.g., color and shape). These observations suggested that the feature extractor

(Inception ResNet v2) should be powerful enough to extract features for differentiation of

classes with similar appearance (cotton seedlings), whereas the RPN network was probably

insufficient to provide proposals for regions of interest (ROIs) of small-sized weeds. In fact,

detection of small-sized objects is a challenging issue for region based neural networks,

especially for datasets with a mixture of objects of other sizes [234]. Nonetheless, the trained

models would be acceptable as the primary goal of this study was to detect seedlings rather

than weeds.
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Figure 6.3: Cotton plant seedlings and weeds detected in representative images of the

SeedlingAll testing set by the Faster RCNN model that was trained using the SeedlingAll

training set. (a) and (b) are images originally collected in the TAMU2015 dataset, (c) and

(d) in the UGA2015 dataset, and (e) and (f) in the UGA2018 dataset.

6.4.2 Ablation Experiment Results

Training Sample Size

Generally, model performance was improved with the increasing of training sample size, but

the improvements heavily depended on the evaluation metric and task difficulty (Figure 6.4).

IOUall is more strict than IOU0.5, forcing a higher model accuracy for object localiza-

tion. Compared with IOU0.5, it was clearer to observe performance improvements due
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to increased training sample size at IOUall. The model (modelTAMU2015) trained on the

TAMU2015 dataset reached the maximum F1 score after 500 and 1000 training images

at IOU0.5 and IOUall, respectively (Figure 6.4a). The model (modelUGA2018) trained on

the UGA2018 dataset showed a slightly increasing trend at IOUall (compare the curves at

IOU0.5 and IOUall in Figure 6.4c). Thus, more training images would benefit the training

of the bounding box regressor of Faster RCNN models. In addition, the difficulties of

seedling and weed detection were different in various images. Based on the results of the

SeedlingAll dataset, seedling and weed detections were the most difficult in the images from

the UGA2015 dataset, followed by the TAMU2015 and UGA2018 datasets. When using

the same evaluation metric, the increasing trend of model performance with higher number

of images was evident for the UGA2015 dataset but less obvious for the TAMU2015 and

UGA2018 datasets. This finding held true for individual classes (Figure 6.5). For the seedling

class, datasets containing challenging situations (e.g., excessive occlusion in the TAMU2015

dataset and high similarities between classes in the UGA2015 dataset) required more than

300 training images to reach the best performance, whereas less-challenging datasets could

use only 100 training images for the best result. For the weed class, the precision-recall

(PR) curves mostly expanded to be closer to the ideal PR curve (the top-right border) when

increasing the training sample size, meaning that weed detection would be relatively more

complex than seedling detection for Faster RCNN models. This was because the weed class

was more diverse than the seedling class in the datasets. Cotton seedling was essentially

a single biological category in spite of variations due to environment changes, whereas

weeds contained many subspecies that could be intrinsically different from each other in

appearances. It was also noteworthy that the expansion magnitudes were different for the

TAMU2015 and UGA2015 datasets. The TAMU2015 dataset contained monocotyledonous

weeds that were distinct from cotton seedlings, whereas the UGA2015 dataset contained

dicotyledonous weeds that were similar to cotton seedlings. Therefore, more training images
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provided more improvements for the UGA2015 dataset than for the TAMU2015 dataset.

Figure 6.4: Detection performance (F1 score) calculated using different number of training

images for: (a) the TAMU2015 dataset, (b) the UGA2015 dataset, and (c) the UGA2018

dataset.

Figure 6.5: Per-category precision-recall curves generated using different number of training

images. (a), (b), and (c) are for seedling detection in the TAMU2015, UGA2015, and

UGA2018 datasets, and (e) and (f) are for weed detection in the TAMU2015 and UGA2015

datasets.
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Transfer Learning using Different Pretrained Models

Transfer learning by model initialization using weights pretrained on a domain dataset

showed varied efficiencies. These efficiency variations were dependent on evaluation metrics

and datasets (Figure 6.6). When using a strict evaluation metric, model initialization using

weights pretrained on a domain dataset generally yielded better performance than that using

weights pretrained on a common dataset such as the common objects in context (COCO)

dataset (overall performance at IOUall in Figure 6.6). This occurred primarily because two

domain datasets were likely similar to each other, so learned weights from one domain

dataset could be more beneficial for the model training process for another domain dataset.

For instance, compared with weights pretrained on a common dataset, weights (especially for

the bounding box regressor) pretrained on a domain dataset would be closer to the optimal

values for another domain dataset, resulting in better localization of objects and thus F1

score at IOUall. An exception was identified for the experiment on the TAMU2015 dataset:

the overall F1 score from the model initialized using weights pretrained on the COCO dataset

was slightly higher than that on the U15U18 dataset (compare the overall performance at

IOU0.5 and IOUall in Figure 6.6c). This occurred mainly because of the reduced similarity

between the two domain datasets (TAMU2015 and U15U18 datasets). The TAMU2015 con-

tained monocotyledonous weeds, whereas the U15U18 contained dicotyledonous weeds. In

such a case, due to a higher object diversity, weights (features) learned on the COCO dataset

would have higher possibility of representing objects in the TAMU2015 than those learned on

the U15U18 dataset (see weed detection performance in Figure 6.6c). Thus, transfer learning

efficiency of using weights pretrained on a common dataset was better than a domain dataset.
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Figure 6.6: Boxplots of performance (F1 score) on the testing set for models initialized using

different pretrained models. (a) are results for the UGA2018 dataset using models initialized

by weights pretrained on the COCO and T15U15 datasets, respectively, (b) are results for the

UGA2015 dataset using models initialized by weights pretrained on the COCO and T15U18

datasets, respectively, and (c) are results for the TAMU2015 dataset using models initialized

by weights pretrained on the COCO and U15U18 datasets, respectively. Base indicates model

initialization using weights pretrained on the COCO dataset, whereas DA indicates model

initialization using weights pretrained on a domain dataset. For each of the TAMU2015,

UGA2015, and UGA2018 datasets, a subset of 100 images were randomly selected from the

training set to train a Faster RCNN model. A total of 10 models were obtained through

10 training repetitions for statistical comparisons between the models. Asterisks indicate

statistical differences in model performance at the significance levels of 0.05 (*), 0.01 (**),

and less than 0.001 (***).
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Model Generalizability

The generalizability of trained Faster RCNN models was largely data dependent. The

Faster RCNN model trained using the T15U15 dataset (modelT15U15) provided comparable

performance (1% difference) to the modelUGA2018 for the UGA2018 testing set, indicating

a strong model generalizability to new datasets (see results for the UGA2018 testing set

in Table 6.4). This occurred primarily because the T15U15 dataset was diverse to cover

possible object status (e.g., appearance variation and object occlusion) in the UGA2018

dataset. On the contrary, Faster RCNN models trained using the U15U18 (modelU15U18) and

T15U18 (modelT15U18) datasets showed a substantially decreased performance for the testing

set of TAMU2015 (decreasing of 36%) and UGA2015 (decreasing of 39%) respectively. This

was because of large differences between training and testing datasets. Compared with

the TAMU2015 dataset, the U15U18 dataset contained no monocotyledonous weed, so the

modelU15U18 could not correctly detect weeds in the testing images of the TAMU2015 dataset

(compare results for the TAMU2015 testing set in Table 6.5). As the U15U18 dataset con-

tained occluded seedling objects (in spite of less occurrence than in the TAMU2015 dataset),

the modelU15U18 showed an acceptable generalizability (7% reduction to the modelTAMU2015)

for seedling detection. Similarly, the T15U18 dataset contained no dicotyledonous weed, so

the modelT15U18 had poor performance of weed detection for the UGA2015 testing set. The

missing of dicotyledonous weeds led to performance reduction to both the seedling and weed

classes. Dicotyledon weeds are very similar to cotton seedlings in appearance and shape,

resulting in misclassification between weeds and seedlings.

173



Table 6.4: Overall performance of the model generalizability

Training set Testing set mAP

IOUall

mAR100

IOUall

F1

IOUall

mAP

IOU0.5

mAR100

IOU0.5

F1

IOU0.5

T15U15

training

UGA2018

testing

0.763 0.808 0.785 0.981 1.000 0.991

UGA2018

training

UGA2018

testing

0.778 0.818 0.798 0.983 0.992 0.987

T15U18

training

UGA2015

testing

0.179 0.335 0.233 0.352 0.683 0.464

UGA2015

training

UGA2015

testing

0.599 0.695 0.643 0.923 0.997 0.959

U15U18

training

TAMU2015

testing

0.377 0.535 0.442 0.588 0.857 0.698

TAMU2015

training

TAMU2015

testing

0.791 0.827 0.809 0.989 1.000 0.995
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Table 6.5: Per-category performance of the model generalizability at the IOU0.5

Training set Testing set Plant

AP

Plant

AR100

Plant

F1

Weed

AP

Weed

AR100

Weed

F1

T15U15

training

UGA2018

testing

0.981 1.000 0.991 NA NA NA

UGA2018

training

UGA2018

testing

0.983 0.992 0.987 NA NA NA

T15U18

training

UGA2015

testing

0.676 0.814 0.739 0.027 0.553 0.052

UGA2015

training

UGA2015

testing

0.988 0.995 0.991 0.859 1.000 0.924

U15U18

training

TAMU2015

testing

0.911 0.940 0.925 0.266 0.775 0.396

TAMU2015

training

TAMU2015

testing

0.999 0.999 0.999 0.980 1.000 0.990

6.4.3 Counting Accuracy

Overall, seedling counts that were calculated using the developed approach with the

modelSAll model were highly correlated (R2 = 0.98) with those by human field assess-

ment (Figure 6.7a). The slope of the regression equation was one, suggesting that seedling

counts calculated by the developed approach can be used directly. For the 75 testing videos,

53 (70%) videos had an absolute counting error less than or equal to 1 seeding, and 15

(20%) videos with an absolute counting error greater than 1 had a relative counting error

of less than 10% (Figure 6.7b). Thus, a total of 90% of the testing videos showed accept-

able counting accuracies, whereas the rest 10% of the testing videos showed large counting

errors (larger than 15%). Nonetheless, the mean relative error for all the 75 videos was 7%,
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indicating the efficacy of the developed counting approach.

Figure 6.7: Regression results between seedlings counts calculated by the developed approach

and human field assessment. (a) Results obtained using the modelSAll detection model for

all testing videos (n=75, lifetime threshold of 7 was used for the TAMU2015 and UGA2018

testing videos and 15 for the UGA2015 testing videos). (b) Counting differences between

the proposed method and field assessment. A total of 53 videos (70%) had the counting

differences less than 1 seedling, and 68 videos (90%) had the counting differences less than

5 seedlings.

Detection performance showed strong influences on the counting accuracy of the devel-

oped approach (Table 6.6). When detection models (e.g., modelT15U15 and modelU15U18) were

well generalized to seedling detection, the developed approach with such detection models

provided similar counting accuracies for videos collected in separate data collection sessions

(see results for TAMU2015 and UGA2018 testing videos in Table 6.6). It was noteworthy

that R2 values decreased primarily due to the narrow range of seedling quantities. As a

result, subtle counting errors could have considerable influences on the R2 values. When

detection models (e.g., modelT15U18 ) had poor generalizability to seedling detection, the

counting performance of the developed approach with such models degraded dramatically
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(see results for UGA2015 testing videos in Table 6.6).

Table 6.6: Regression results between seedling counts obtained by the proposed method and

human field assessment.

Detection

model

Testing

videos

Regression equation Video

quantity

R2 RMSE MAE MRE

modelSAll All Y = X 75 0.98 1.6 1.5 7%

modelSAll TAMU2015 Y = 0.96 X 25 0.85 3.3 3.4 11%

modelSAll UGA2018 Y = X 25 0.99 0.2 0.5 6%

modelSAll UGA2015 Y = 1.01 X 25 0.96 1.1 0.8 4%

modelU15U18 TAMU2015 Y = 0.95X 25 0.80 3.9 3.4 11%

modelU15T15 UGA2018 Y = 1.02X 25 0.68 0.8 0.6 7%

modelT15U18 UGA2015 Y = 0.32X + 18.65 25 0.33 4.3 12.1 57%

R2 refers to adjusted R2

RMSE: root mean squared error

MAE: mean absolute error

MRE: mean relative error

The reduction of counting accuracy was primarily due to tracking errors caused by

inaccurate seedling detection (Figure 6.8). In one of the TAMU2015 testing videos, the

detection results were accurate in Frame 60 and Frame 63 but not accurate in Frame 61 and

Frame 62. Consequently, some trackers lost continuity in tracking between Frame 60 and

the following video frames. When all seedlings were correctly detected in Frame 63 again,

although some of the detected seedlings were the same in Frame 60 and Frame 63, they were

assigned to new trackers due to the tracking discontinuity. As a consequence, the number

of seedling trackers would be higher than the actual number of seedlings from Frame 60 to

Frame 63, which ultimately led to inaccurate counts of seedlings in that video. Depending
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on the lifetime of new trackers (the number of frames new trackers could last), the seedling

count in a video could be higher or lower than the actual value. This would be a major error

source for the developed approach.

Figure 6.8: An example of seedling tracking errors due to inaccurate detection results. The

detection model was modelSAll and the testing video was from TAMU2015 dataset.
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6.5 Discussion

In terms of counting performance, the developed approach provides a similar accuracy

(93%) of seedling counting to other CNN-based approaches for fruit counting [81, 86, 80],

showing the efficacy of using CNN-based approaches for seedling counting. Compared with

the approach based on conventional image processing for seedling counting [226], the devel-

oped approach shows two advantages. First, the counting accuracy was improved from 88%

to 92%. Second, and more importantly, the developed approach shows great potential to

be generic for cotton seedling detection. Experiments showed trained seedling detection

models, and the counting approach could be well generalized to unseen datasets, so they can

potentially be used in similar applications by the cotton industry and research communities

with little or no modification. To the best of our knowledge, the SeedlingAll dataset is the

largest annotated dataset of cotton seedlings, and publicizing such a dataset would benefit

both research communities and the cotton industry.

While showing certain advantages, the developed approach has two major limiting fac-

tors. First, detection models considerably influence the counting accuracy of the developed

approach. It is not a trivial task to train an accurate and robust detection model in many

applications. Three important factors have been examined in the present study, including

the training sample size, transfer learning using different pretrained models, and model

generalizability. Experimental results showed that all three factors were somehow data

dependent. On one hand, if agronomic practices (e.g., application of pre-emergent herbi-

cides) are implemented in a future project, seedling detection would be fairly simple due to

few object categories in videos/images. Thus, seedling detection can be solved using either

the modelSAll directly, or using a new detection model that is initialized with the modelSAll

and trained on a small number of annotated images (100 to 300 images based on the present

study) from the newly collected dataset. In particular, for a specific experimental site or

farm, it is highly recommended to be consistent in data collection conditions (e.g., cameras
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for image acquisition, camera configuration, and illumination conditions) to enhance the

similarity between datasets collected over time and thus counting accuracies for long-term

uses. If data in a future project are more complex (e.g., more frequent occlusions, more

extreme illumination conditions, and more types of vegetation) than any of the datasets in

this study, it is necessary to label a fairly large amount of data to ensure the possibility of

achieving the best detection performance. If so, the value of trained models and annotated

data in the present study may be relatively reduced in future studies.

Secondly, a conventional Kalman-filter-based tracking algorithm is not adequate to solve

issues caused by inaccurate detection of seedlings. When a cotton seedling cannot be correctly

detected in consecutive video frames, the current tracking algorithm is likely to terminate the

seedling tracker in the frame where that seedling is mis-detected, and assign a new tracker

in the next frame where that seedling is re-detected. Thus, that seedling could be counted

repeatedly in a video, resulting in counting errors. This occurs primarily because the current

strategy of detection/tracker assignment is based on the IOU metric. No detection means no

intersection with any existing trackers. There are two ways to solve this issue. First, a new

strategy can be used for tracker termination. If no detection can be assigned to a tracker,

that tracker can be kept for extended frames (e.g., 3 video frames), which can address the

tracking discontinuity due to inaccurate detection results to some extent. In the extended

frames, the dynamic model for that tracker is updated using the information obtained in

the last frame where that tracker has an associated detection, reducing the model accuracy.

Thus, this strategy requires an additional checking procedure that ensures the correctness of

detection and tracker association. Feature-based approaches are preferred to maximize the

checking accuracy. Second, tracking information can be used to improve detection accuracy.

The developed approach solely relies on the detection procedure to provide “ground truth

measurements” for trackers. Thus, if the detection procedure is not accurate, the tracking

procedure cannot be accurate. To address this issue, the tracking information needs to be
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used for the detection as well. For instance, the RPN of Faster RCNN could provide inac-

curate region proposals (e.g., no region proposal around an existing tracker), leading to

misdetection of seedlings and therefore inaccurate tracking. In fact, the tracking procedure

predicts bounding boxes of all existing trackers in the next frame. These predicted bounding

boxes can be used as region proposals for detection models (e.g., a Faster RCNN model) or

be evaluated by a separately trained CNN (e.g., a ResNet model) that determines the pres-

ence of plants (classified as either background or plants). With these efforts, it is expected

to reduce the possibility of missing an existing tracker in the next frame and ultimately

improve the tracking and counting accuracy. This detection-tracking continuum may vio-

late some assumptions of the Kalman filter in a strict consideration. For instance, Kalman

filter assumes that sensor measurement is independent of the dynamic model. To solve these

potential issues, it is necessary to use other filtering approaches such as the particle filter.

These solutions need to be further explored in future studies.

6.6 Conclusions

The developed approach based on deep CNNs can accurately count germinated cotton

seedling in the field. Experimental results showed that the approach generalized well to

unseen datasets, indicating the great potential of applying the approach for other plant or

plant organ detection and tracking. Trained detection models and the annotated images

can be reused by the research communities and the cotton industry. Future studies will be

focused on the improvement of computation efficiency for real time online processing.
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Chapter 7

DeepFlower: A Deep Learning Framework to Characterize Flowering

Patterns of Angiosperms in the Field1

1Jiang, Y., Li, C., Xu, R., Sun, S., Robertson, J. S., and Paterson, A. H. To be submitted to
Plant Physiology.
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7.1 Abstract

Flowering is one of the most important processes for angiosperms (flowering plants), reflecting

the transition from vegetative to reproductive growth and central importance to crop yield

and adaptability. Conventionally, categorical scoring systems have been widely used to study

flowering patterns, which are laborious and subjective. The goal of this study was to develop

a deep learning based approach to characterize flowering patterns, as an example using

cotton plants that flower progressively over several weeks, with flowers distributed across

much of the plant. A ground mobile system (GPhenoVision) was modified with a multi-

view color imaging module, to acquire images of a plant from four viewing angles at a time.

A total of 116 plants from 23 genotypes were imaged during an approximately 2-month

period with an average scanning interval of 2 to 3 days, yielding a dataset containing 8666

images. A subset (475) of the images were randomly selected and manually annotated to

form training and testing datasets for training and selecting the best Faster RCNN model.

With the best Faster RCNN model, a deep learning based framework (DeepFlower) was

developed to detect and count individual emerging blooms for a plant on a given date. The

DeepFlower framework was used to process all images to obtain bloom counts for individual

plants over the flowering period, using the resulting counts to derive flowering curves (and

thus flowering characteristics). Regression analysis showed that the DeepFlower framework

could accurately (R2 = 0.88 and RMSE = 0.79) detect and count emerging blooms on

cotton plants, and statistical analysis showed that imaging-derived flowering characteristics

had the same effectiveness as manual assessment for identifying differences among genetic

categories or genotypes. The developed approach could thus be an effective and efficient tool

to characterize flowering patterns for angiosperms with complex canopy architecture.
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7.2 Introduction

Flowering is one of the most important processes for angiosperms (flowering plants), reflecting

the transition from vegetative to reproductive growth and significantly affecting crop yield

and adaptability to various environments. Therefore, characterization of flowering patterns

(especially flowering time) would not only facilitate studies for understanding angiosperms

genetically and physiologically, but also holding potential to contribute to breeding of new

cultivars for optimal yield and environmental adaptability [235, 236, 237].

Conventionally, studies related to plant flowering patterns have required human evalu-

ators to check experiment fields and record flowering status manually. For instance, plants

and plots can be checked regularly by human evaluators to monitor characteristics such as

the number of days after planting to the first bloom. In addition, human evaluators often

used a categorical scoring system to assess flowering stages (e.g., estimating when 10% of

plants in a plot have opened blooms), so that the time duration between particular flowering

stages can be calculated. Human recorded flowering data have helped researchers to study

flowering patterns for several important crops such as maize [238], rice [239], cereal [240], and

sorghum [241]. Human evaluation, however, has two major disadvantages. First, the evalua-

tion is subjective, which means that different human evaluators might give different scores

for the same plant/plot. As a result, collected flowering data could contain a substantial

amount of noise. Second, human evaluation is laborious, and presents great challenges for

large-scale experiments and breeding programs. An automated high throughput approach

to characterize flowering patterns can mitigate each of these disadvantages.

Advances in high throughput plant phenotyping and breakthroughs in deep learning

enable the possibility of rapid characterization of flowering patterns for plants in the field.

Several studies demonstrated the use of deep convolutional neural networks (CNNs) and

meta-models (e.g., Faster RCNN meta-model [45]) to detect and count fruit in images for

184



crops such as mangoes [80], apples [86], and sweet peppers [81]. Although these studies

achieved relatively high counting accuracies (R2 >0.92), they were primarily used for “one

time” measurements of yield estimation. A big challenge to flowering characterization is

that in many plants it occurs over a long period of time, requiring one to frequently detect

and count newly opened blooms on plants. Two very recent studies reported the use of

deep CNNs to characterize flowering patterns. One study reported a two-stage framework

to detect and count blooms in cotton plots from aerial images [85]. The framework first

segmented candidate regions of blooms using a thresholding method, and subsequently

classified the candidate regions as bloom or non-bloom using a custom CNN to count the

number of blooms in individual cotton plots. Although the two-stage framework showed

some success in counting blooms, it had a major limitation in that a considerable portion of

blooms could not be captured by aerial images because of occlusions, resulting in a relatively

large underestimation of bloom counts. In addition, this study only measured bloom counts

for several days, lacking of the capability for flowering pattern analyses over a long flowering

period. The other study reported a CNN-based approach that could classify ground images

of wheat plant into 10 levels (from 0% to 100% with an interval of 10%) of inflorescence

load [79]. An empirical equation was used to fit inflorescence load scores over a flowering

period to estimate the peak flowering time for individual wheat plots. Experimental results

showed that the imaging-derived peak flowering time had the same power to identify quan-

titative trait loci as the peak flowering time derived manually. As wheat forms floral heads

mainly at the top of plants, however, this method also did not consider situations (e.g.,

cotton or many other plants) in which blooms could not always be seen from the top view.

In addition, the study simplified the bloom counting problem as a classification task, which

lacked the capability of detecting individual blooms. To address the aforementioned limita-

tions, it is necessary to explore the use of side-view ground images and CNN based object

detection meta-models to detect and count individual blooms over an entire flowering period.
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The goal of the study was to develop a deep learning based approach to characterize

flowering patterns of angiosperms in the field. Specific objectives were to 1) develop a multi-

view imaging system that can acquire images of plants in a high throughput manner; 2)

develop a deep learning based framework (DeepFlower) to detect and count emerging blooms

on plants in images and to characterize flowering patterns for individual plants; and 3)

evaluate the accuracy and efficacy of the developed approach for identification of differences

in flowering patterns among genetic categories and genotypes.

7.3 Materials and Methods

7.3.1 High Throughput Imaging System and Experimental Design

A previously developed ground mobile imaging system (GPhenoVision [205]) was modified

with a multi-view color imaging module for data acquisition (Figure 7.1A). The multi-view

color imaging module consisted of four consumer grade mirror-less cameras (X-A10, Fujifilm

Holdings Corporation, Tokyo, Japan) that faced towards the center of the system enclosure

approximately 90◦ apart from neighboring cameras. To avoid potential issues of image

quality (e.g., blurry images) because of high-frequency vibration, an inexpensive camera

mount was manufactured by combining a camera ball mount and a vibration isolator,

providing flexibility of the viewing angle configuration and the capability of isolating high-

frequency vibrations (Figure 7.1B). A custom trigger device was developed to synchronize

triggering signals to all four cameras. The trigger device and an RTK-GPS (Cruizer II,

Raven Industries Inc., Sioux Falls, SD, USA) were connected to a laptop computer in which

a custom LabVIEW program ran to automatically save timestamps of triggering signals and

RTK-GPS records. The developed data acquisition system acquired four color images at a

time with RTK-GPS information.
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Figure 7.1: Diagram of the data acquisition system and field layout. A: GPhenoVision system

with the color imaging module for acquiring four-view images of plants. B: Implementation

of a specially designed camera mount for isolating high frequency vibration. C: The single

plant layout (SPL) field used in the present study.

Cotton seeds of 24 genotypes (from 3 genetic categories including Gossypium hirsutum,

Gossypium hirsutum, and Gossypium barbadense) were planted in pots in a greenhouse on

13 June 2018 to obtain cotton seedlings. An experimental field was transplanted with 132

cotton seedlings (12 plants per row × 11 rows) in a single plant layout (SPL) where individual

plants (treated as one plot) had an in-row and across-row width of 1.52 m (Figure 7.1C).

Two batches of transplanting were conducted. The first batch of transplanting was conducted

on 26 June 2018 (13 days after planting, DAPs), yielding 75 (out of 89 survived seedlings)

healthy plants over the growing season. The second batch of transplanting was conducted on

5 July 2018 (22 DAPs), yielding additional 41 (out of 43 survived seedlings) healthy plants.

A total of 116 plants from 23 genotypes, therefore, were used in the present study. The

modified GPhenoVision system imaged the field in a continuous scanning mode every 2 days

(or 3 days if over weekends) during the flowering period from 20 August 2018 (68 DAPs) to

24 October 2018 (133 DAPs).
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7.3.2 DeepFlower for Characterization of Flowering Patterns

Image Preprocessing and Labeling

Collected images were segregated to individual plants based on the collection location infor-

mation, generating a dataset containing 8666 images collected for 116 plants on 26 dates. A

total of 475 images were randomly selected from the dataset and manually annotated with

bounding boxes of five classes (see Figure S3). The five classes included the target plant,

emerging bloom, opened cotton boll, region with specular reflectance, and others (objects

other than the four classes). This labeling strategy was named as the 5-class labeling strategy.

The 475 images were randomly shuffled to form training (380 images) and testing (95 images)

datasets for training and evaluating object detection models.

Bloom Detection

A deep learning based framework (DeepFlower) was developed to detect and count emerging

blooms in the collected images (Figure 7.2). The framework consisted of three major sections

including object detection, emerging bloom counting, and flowering characterization.
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Figure 7.2: DeepFlower processing pipeline for detection, counting, and characterization of

flowering patterns using deep learning method and color images.

Object detection was the key of the DeepFlower framework. Because of the success of

many object detection applications [30], the Faster RCNN meta-architecture was used as the

object detector in the present study (see Object detector in Figure 7.2). The architecture

contains a feature extractor, a region proposal network (RPN), and a classification and

regressor module. The feature extractor is usually a deep CNN network, which extracts

informative feature representations from the raw input images in a hierarchical fashion. The

RPN uses the extracted features to generate potential regions of interest (ROIs), and the
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classification and regressor module uses the features in each ROI to identify the ROI class

and refine the coordinates of ROI bounding box. As images contained diverse object classes

with a similar appearance, the Inception ResNet v2 was used as a feature extractor due to

its strong capability of learning adequate features to differentiate similar object classes.

As a limited number of labeled images were available, a transfer learning technique

was used to facilitate model training. A Faster RCNN model was initialized using weights

pretrained on the Common Objects in Context dataset (aka. COCO dataset, a large anno-

tated image dataset open to the public) and fine-tuned on the training dataset for bloom

detection. As the Faster RCNN model was trained using images labeled by the 5-class

labeling strategy, the model was named as FrRCNN5-cls for conciseness. Model training

was performed using a mini-batch stochastic gradient descent (SGD, batch size was 2) by

the Adam optimizer with an initial learning rate of 5 × 10−5, a dropout rate of 0.5 for the

RPN and classification and regressor modules, and a weight decay of 1 × 10−3. Based on

preliminary experiments, a total 50,000 training steps (equivalent to 167 epochs) were used

to ensure the model convergence for the bloom detection task. Model checkpoints were saved

after every 5,000 training iterations, which were used to select the best model for bloom

detection. Two computing nodes (14 2.8 GHz CPU cores, 120 GB CPU memory, and Tesla

V100 16GB GPU memory) hosted by the Georgia Advanced Computing Resource Center

(GACRC) were used for model training under the operating system of CentOS 7.5 with

Tensorflow 1.12.0.

The trained Faster RCNN model could detect up to 100 bounding boxes of target plant

and emerging blooms with classification confidence scores in a given image. If the confidence

score was less than an arbitrary threshold (0.7 in the present study), a detection was removed

from the detection result. Consequently, the final detection results contained only detections

with a high classification confidence, which were used for bloom counting.
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Bloom Counting

A counting strategy was developed to use detection results from the Faster RCNN model to

count the number of emerging blooms for a plant on one day (see Counting in Figure 7.2).

The strategy counted the number of emerging blooms for a plant in two steps. In the first

step, emerging bloom detections were treated as blooms within the target plant if the cen-

troids of their bounding boxes were within the bounding box of the target plant detection.

Subsequently, the number of emerging blooms on the target plant was obtained for each of

the four images acquired for a plant on one day. This provided an accurate bloom count

for a plant from each of the four viewing angles. In the second step, we hypothesized that

most (or all) emerging blooms should be seen from one of the four viewing angles, and thus

the strategy selected the image (viewing angle) that provided the maximum bloom count

from the four images as the number of emerging blooms for a plant on that day. As the

first step only considered emerging blooms within a target plant, this counting strategy was

summarized as the “plant-based counting” strategy.

Flowering Characterization

The numbers of emerging blooms per plant per day over the flowering period were used to

derive flowering curves for individual plants (see Characterization in Figure 7.2). A flowering

curve was defined as the cumulative percentage of total opened emerging blooms over the

growing time (in DAPs). Three critical points were defined on a flowering curve, including

first bloom date (FBD) when the first bloom was identified, flowering start date (FSD)

when at least 5% of emerging blooms occurred on a plant, and flowering end date (FED)

when at least 95% of emerging blooms occurred on a plant. Three flowering characteristics

were derived from the three critical points. FBD and FSD were directly used as flowering

characteristics, whereas FSD and FED were used to calculate flowering duration (FD), which

was important for many applications related to improvements of environment adaptability.

191



7.3.3 Ablation Experiments

Labeling Strategy

While image labeling seems straightforward, it could significantly affect the performance of

trained deep neural networks or deep meta-models. For the bloom detection task, a simple

class definition was used to label images for training, including only three classes i.e., target

plant, emerging bloom, and non-bloom. The non-bloom class contained all regions that

were labeled other than plant and emerging bloom classes. This labeling strategy has been

mostly used by many deep learning applications, which annotated only objects of interest.

For brevity, this labeling strategy was named as the 3-class labeling strategy. Accordingly,

the same training process was applied to train another Faster RCNN model (FrRCNN3-cls)

using images labeled by the 3-class labeling strategy. This model was compared with the

FrRCNN5-cls model in terms of detection accuracy.

Counting Strategy

The “plant-based counting” strategy would provide an accurate count of emerging blooms

on a target plant in an image, but it required additional efforts on labeling (e.g., annotating

target plants in images) and computing (e.g., judgement of emerging bloom location within

or outside of a target plant). A simplified counting strategy was to directly use the number

of emerging bloom detections as the count for a plant in an image, which might save those

labeling and computing efforts. This simplified strategy could be valid, because images were

captured for a single plant and might not contain much information of neighboring plants.

As this strategy would use all emerging bloom detections in an image, it was named as the

“whole image-based countin” strategy. An ablation experiment was conducted to compare

the two counting strategies in terms of counting accuracy.
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7.3.4 Statistical Analysis

For detection and counting accuracies, simple linear regression analyses were performed

between imaging derived and manual counts for the 116 plants on 26 dates. No interception

term was used for those analyses. The slope of regression equation, coefficient of deter-

mination (R2), and root mean squared error (RMSE) were used as indicators to evaluate

performance. In addition, error analyses were conducted for the optimal counting framework

(the combination of the best detection model and counting strategy) for both absolute

counting and cumulative percentage calculation.

For flowering characteristics, analysis of variance (ANOVA) analyses were performed on

the three flowering characteristics (FBD, FSD, and FD) among three genetic categories and

genotypes, respectively, exploring differences in flowering patterns between various cultivated

and exotic species. All tests were performed in R using a significance level of 0.05.

An important aspect of the present study is to guide the design of future large-scale

experiments. The minimum replication number, therefore, was estimated for each flowering

characteristic for experiments that are likely to include at least 200 genotypes from one pop-

ulation in a nested association mapping (NAM) study for cotton. Estimation was performed

using the one-way ANOVA model with an effect size calculated using the present study data,

a significance level of 0.05, and a statistical power of 0.95 in the G*Power software [242].

7.4 Results

7.4.1 Representative Detection Results

Generally, the Faster RCNN model (FrRCNN5-cls) could accurately detect plants and

emerging blooms under different illumination, bloom load, and occlusion conditions
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(Figure 7.3). If a proper viewing angle was used, the enclosure mostly provided uni-

form and bright illumination (e.g., Figure 7.3A). The illumination could be an issue as

the enclosure did not fully cover the imaging area. When the solar zenith angle was steep

or the camera was configured to face the enclosure entrance, the field of view (FOV) of

cameras could include both shaded and strongly illuminated areas. Consequently, collected

images could have very dark illumination for the shaded part, making it difficult to identify

objects with low reflectance (e.g., the plant in Figure 7.3B). The FrRCNN5-cls model learned

feature representations to detect the plant, showing its capability to handle object variations

because of extreme illumination changes. In addition to illumination, bloom load also varied

dramatically during the entire flowering process. Plants would have fewer emerging blooms

in early and late stages than the peak flowering time. The FrRCNN5-cls model provided

accurate detection results for both cases, showing the efficacy of using a single model to

process images of plants in different flowering stages. Occlusion was another great challenge

for detecting emerging blooms. Cotton plants were branchy and leafy during the flowering

period, so blooms were frequently occluded by plant leaves and branches. Depending on

the cultivar and development stages, the occlusions varied in direction and severity (see

Figure 7.3E and 7.3F), which introduced issues for object detection (especially by using

traditional image processing). The FrRCNN5-cls model learned effective features to describe

and detect occluded emerging blooms, especially some heavily occluded emerging blooms

(Figure 7.3F). All of these successful cases demonstrated the capability of the FrRCNN5-cls

model to detect plants and emerging blooms in images with varied conditions.
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Figure 7.3: Representative results of plants and emerging blooms detected by the trained

Faster RCNN model. The top three rows demonstrate successful detections under different

illumination, bloom load, and occlusion conditions. The bottom row shows two failed cases

of emerging bloom detection, one of which because back-sided leaves had higher reflectance

and were identified incorrectly as emerging blooms, and the other because a lower con-

trast between emerging blooms and the background could lead to mis-detection of emerging

blooms.
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The FrRCNN5-cls model, however, could not process certain cases. The abaxial surface

of leaves has a higher reflectance than the adaxial surface [243], showing a similar contrast

pattern with emerging blooms (brighter than adjacent areas). When the abaxial surface of

leaves was exposed to the camera and surrounded with bracts, these leaves could not be

differentiated easily from true emerging blooms by even human observation (Figure 7.3G),

thereby generating false positive detections of emerging blooms. In addition, because of a high

reflectance, emerging blooms under strong illumination lost the contrast with background and

detailed textures, and thus became considerably more difficult to be identified in the images.

In this situation, emerging bloom objects were not accurately detected by the FrRCNN5-cls

model.

7.4.2 Results of Ablation Experiments

Labeling Strategy

Two labeling strategies were used in this study: 3-class and 5-class labeling strategies. The

3-class labeling strategy included the classes of target plant, emerging bloom, and non-

bloom objects, whereas the 5-class labeling strategy further split the non-bloom class into

three classes, resulting in five classes of target plant, emerging bloom, region with specular

reflectance, opened boll, and others.

Overall, the model (FrRCNN5-cls) trained using the 5-class labeling strategy had an

improved performance (F1 score) than that (FrRCNN3-cls) trained using the 3-class labeling

strategy (Figure 7.4). In particular, the F1 score of emerging bloom detection increased

by 5% by using the 5-class labeling strategy. Both the precision and recall contributed to

improvement of the F1 score, meaning that the FrRCNN5-cls simultaneously reduced false

positive detection and increased true positive detection (Figure S1 and Figure S2). Compared

with 3-class labeling, the 5-class labeling strategy could split more efficiently classes with

similar appearance. Consequently, the variation within a class would become smaller than
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the differences between classes, providing benefits for training deep neural networks. For

instance, there could be several types of non-bloom objects that had a distinct appearance.

There were also some bright gaps between plant branches and leaves, which formed regions

that had a similar appearance to emerging blooms, whereas there were some other objects

(e.g., camera) that looked dissimilar from emerging blooms (see “specular reflectance” and

“others” objects in Figure S3). If these regions/objects were labeled with different classes,

it would be relatively easier for deep neural networks to learn features to form classification

boundaries for separating classes with similar appearance. Otherwise, deep neural networks

might not learn effective features, resulting in misclassification between regions/object with

a similar appearance.

Figure 7.4: Detection accuracies (F1 score) on the validation dataset by using models trained

with datasets labeled by the 5-class (FrRCNN5-cls) and 3-class (FrRCNN3-cls) methods,

respectively. The overall accuracy was calculated using the weighted average of accuracies

for emerging bloom and plant classes.

Counting Strategy

Overall, for each image, the “plant-based counting” strategy provided improved accuracy

over the “whole image-based counting” strategy (Figure 7.5). Comparing imaging-derived

and manual counts, although the regression slope calculated using the “plant-based counting”
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strategy was slightly higher than that calculated using the “whole image-based counting”

strategy, a higher correlation and lower root mean squared errors (RMSE) were achieved

by using the “plant-based counting” strategy, indicating the effectiveness of the “plant-

based counting” strategy for improving counting accuracy (Figure 7.5A and 7.5D). These

improvements were primarily because the “plant-based counting” strategy made more sam-

ples in the counting error range within ±1, especially a 3% increase with no counting

difference (Figure 7.5B and 7.5D). As an absolute counting error of one bloom might

be substantial when plants had very few emerging blooms (e.g., early and late flowering

stages), relative counting errors were calculated for samples with counting errors less than

one bloom (Figure 7.5C and 7.5F). Compared with the “whole image-based counting”

strategy, the “plant-based counting” strategy increased the number of samples with no

relative counting error by 5% and dramatically reduced the number of samples with relative

counting errors over 20%. It is also noteworthy that the “plant-based counting” strategy

dramatically improved the counting accuracy for samples that had a zero count with the

manual method but a non-zero count with the imaging method (denoted by asterisks in

Figure 7.5C and 7.5F).
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Figure 7.5: Counting accuracies calculated using the “plant-based counting” (top row) and

“whole image-based counting” (bottom row) strategies, respectively, for individual plants on

each of the 26 scanning dates (a total of 3016 data points). A and D are linear regression

results between the imaging derived and manual counts. B and E are the histogram of

counting errors. C and F are the histogram of relative counting errors for samples with an

absolute counting error of less than 1. In C and F, the numbers on top of the bars indicates

the relative improvement (over 5%) of using the “plant-based counting” strategy over the

“whole image-based counting” strategy. The asterisk denotes samples that had a zero count

with the manual method but a non-zero count with the imaging method.

Although the FrRCNN5-cls and the “plant-based counting” strategy demonstrated

improved performance on emerging bloom detection and counting, respectively, signifi-

cant counting errors were identified by jointly using the FrRCNN5-cls and the “plant-based

counting” strategy as a counting framework (Figure 7.6). For absolute counting, the combi-
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nation of the FrRCNN5-cls model and the “plant-based counting” strategy provided accurate

measurements (less than one bloom) for plants with zero to four emerging blooms per day

(approximately 79% of cases). Absolute counting errors substantially increased, however,

when plants had five or more emerging blooms (approximately 21% of cases). On average,

the developed counting framework also reached a plateau of 6 blooms per plant per day.

Thus, when plants reached peak flowering time (over 10 emerging blooms per day), absolute

counting errors were over 4 blooms per plant per day, which was equivalent to about 50%

relative counting errors. This occurred primarily because of the assumption in the developed

counting framework that a single image from a particular viewing angle would capture most

(or even all) emerging blooms on a plant on one day, and thus the counting framework

could obtain the maximum bloom count from one out of four images for a single plant.

This assumption generally held true in flowering stages when plants had a small number

of emerging blooms per day, so the counting framework provided accurate counts for most

plants. This assumption, however, was invalid during the peak flowering time when plants

had a large number of emerging blooms per day. Furthermore, emerging blooms were dis-

tributed around plant canopies, so a single image from any viewing angle would not be

sufficient to capture all blooms on a plant, resulting in a significant underestimation of

absolute bloom counts.
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Figure 7.6: Errors of absolute counting (top chart) and cumulative percentage (bottom chart)

for emerging blooms per plant by using the FrRCNN5-cls and the “plant-based counting”

strategy. For absolute counting, plants were grouped into 13 categories based on the number

of emerging blooms (0 to 12) on those plants on a particular date. For cumulative percentage,

plants were grouped into 10 categories (from 0–10% to 90%–100%) of opened blooms on those

plants on a particular date. The number on top of each grouped bar indicated the differ-

ence between counts (or cumulative percentage) calculated using the imaging and manual

methods.
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The significant underestimation of absolute bloom counts, however, showed a limited

influence on the accuracy of calculating cumulative percentage of emerging blooms. Errors

in the cumulative percentage of emerging blooms were less than 2% irrespective of flow-

ering stages. A possible reason was that cumulative percentage was the ratio of total opened

emerging blooms from the beginning of flowering to a specific day and total opened emerging

blooms over the growing season. The underestimation of absolute counts would be included

with both the numerator and denominator of the cumulative percentage, and thus the effect

could be cancelled out to certain extent. Nonetheless, the high accuracy of the calculated

cumulative percentage of emerging blooms could hold the great potential for flowering char-

acterization.

7.4.3 Results of Flowering Characteristics and Statistical Analyses

Representative Flowering Curves

As the developed counting framework underestimated the number of emerging blooms on

plants during the peak flowering time, the absolute bloom counting curves generated using

imaging-derived counts also showed large differences from those generated using manual

counts during that time (Figure S4). This suggests that the curves should not be used for

quantitative analyses such as the maximal number of emerging blooms per plant over a

growing season. The flowering curves derived by the imaging method, however, generally

showed a similar trend as the curves derived by the manual method, suggesting that the flow-

ering curves derived by the imaging method could be used for certain qualitative analyses.

For instance, the field received precipitation (approximately 8 mm of rain) and experienced

chilling temperatures (approximately 10◦C cooler than the monthly-average temperature)

on 16 September 2018 (95 DAPs) and 24 September 2018 (103 DAPs), respectively. After

the weather changed, the plants mostly had a reduced number of emerging blooms on the

next sampling day in flowering curves derived by both the manual and imaging methods.

Certain genotypes (e.g. Exotic T0368BC3MDN GH196 and Elite DES 56), however, did not
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show such a pattern, which means that the genotypes could be potentially more resistant to

severe weather changes than other genotypes (Figure S5).

Cumulative flowering curves generated using bloom counts derived by the imaging

method were very similar to those generated using manual counts (Figure 7.7). The same

correspondence was also observed for individual genotypes (Figure S6). This suggests that

the curves derived using the imaging method could potentially be used for both qualita-

tive and quantitative characterization of flowering patterns. Two distinctive patterns were

observed from the curves. First, exotic G. hirsutum presented a larger within-group variation

than elite G. hirsutum and G. barbadense. This was because the exotic group contained wild

genotypes that are diverse in their flowering patterns, whereas elite G. hirsutum were cul-

tivated for fiber production and thus selected for flowering patterns that conferred optimal

yield. There was only one cultivar in the G. barbadense group, which should not present large

variation. Second, both exotic and elite G. hirsutum showed a relatively steeper slope than

G. barbadense, indicating a potential difference in flowering duration between various species.
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Figure 7.7: Cumulative flowering curves derived using imaging and manual counts for three

genetic categories (elite G. hirsutum, exotic G. hirsutum, and G. barbadense) in both the

first and second transplanting batches. Group mean values are drawn in lines (solid and

dashed lines for results derived by the imaging and manual methods, respectively), and group

standard deviations are indicated by shaded areas (magenta and blue for results derived by

the imaging and manual methods, respectively).

Statistical Analysis Results

Significant interaction effects were presented on extracted flowering characteristics (first

bloom date, flowering start date, and flowering duration) between the genotype and trans-

planting date, suggesting the necessity of analyzing flowering patterns for each transplanting

batch separately (see Table S1 to Table S6). As only the much larger first transplanting batch
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showed statistical significance among genetic categories or genotypes, successive sections

focused on data of the first transplanting batch.

Flowering characteristics calculated using the flowering curves derived by the imaging

method showed the same statistical power in differentiating the three genetic categories as

those calculated using the flowering curves derived by the manual method (Figure 7.8). For

the first bloom date and flowering start date, although G. barbadense showed the lowest

values with the least standard deviation, it could not be statistically separated from the

G. hirsutum groups for two reasons. First, exotic G. hirsutum contained diverse genotypes,

presenting a large variation that covered the other two groups. Second, G. barbadense had

only two replicates in the first transplanting batch, which had limited statistical power to

be differentiated from other groups. For flowering duration, however, G. barbadense was

significantly longer than the G. hirsutum groups, which was an expected flowering pattern

for G. barbadense (Pima cotton) in the study area.
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Figure 7.8: Boxplot of flowering characteristics (first bloom date, flowering start date, and

flowering duration) among three genetic categories (elite G. hirsutum, exotic G. hirsutum,

and G. barbadense) in the first transplanting batch. Groups with a statistically significant

difference (p <0.05) are denoted with different letters, and group mean values of each char-

acteristic are sorted alphabetically.

While the order of individual genotypes was slightly different, flowering characteristics

derived by the imaging and manual methods showed very similar statistical patterns among

genotypes (Figure 7.9). Genotype T0368BC3MDN.GH196 had the first bloom (first bloom
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date) and entered into the flowering period (flowering start date) significantly later than

other genotypes, suggesting that T0368BC3MDN.GH196 could be used for studying genes

and gene regions controlling flowering time. In addition, genotype T0368BC3MDN.GH196

had a significantly shorter flowering duration than other genotypes. This occurred likely

because of environmental effects. Overall, air temperature decreased dramatically (more

than 15◦C) after 120 DAPs, leading to a sudden drop of emerging blooms. Although sev-

eral blooms opened after 120 DAPs (see Figure S5), the freezing temperature might cause

an early termination of flowering for T0368BC3MDN.GH196. Some other genotypes also

presented significant differences in flowering duration, such as genotype T1046cBC1.GH212

for a longer duration and genotypes T0281aMDN.GH198 and T1046aBC1.GH210 for a

shorter duration. It should be noted that genotype Pima.S6.2011.3841 had a statistically

longer flowering duration using the characteristic derived from manual counts but not by

that derived from imaging counts, which was the only difference in the statistical patterns

between the two methods. This possibly occurred because manual counts would not miss any

emerging blooms on a plant, having a relatively stronger capability to identify differences

between genotypes with fewer replicates.
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Figure 7.9: Boxplot of flowering characteristics (first bloom date, flowering start date, and

flowering duration) among 23 genotypes in the first transplanting batch. Genotypes with

statistically higher values are denoted by “+”, whereas genotypes with statistically lower

values are denoted by “-”. Differences were inferred at the significance level of 0.05.
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Based on the estimation, each genotype should have at least 2 replicates to ensure

adequate statistical power to identify the significance of the first bloom date and flowering

start date, or at least 3 replicates to ensure the statistical power to identify the significance

of flowering duration among the 23 genotypes (Table 7.1). As there were only 2 replicates

per genotype Pima.S6.2011.3841, no significant difference in flowering duration was identi-

fied between Pima.S6.2011.3841 and other genotypes, which agreed with the experimental

result. If the variation because of genotype remains the same as that in the first transplanting

batch, using more genotypes (e.g., 200 genotypes in a population) would slightly increase

the statistical power for identifying significance among genotypes. Flowering curves derived

by the imaging method, therefore, would remain effective for flowering pattern analyses in

large-scale experiments.

Table 7.1: Estimated number of replications per genotype at the significance level of 0.05

and power of 0.95. FBD shorts for first bloom date, FSD shorts for flowering start date, and

FD shorts for flowering duration. The asterisk denoted the estimation for one population in

a NAM study.

Trait Batch Effect size F Number of genotypes Estimated number of replications

FBD 1 1.18 22 2

FBD* 1 1.18 200 2

FSD 1 1.52 22 2

FSD* 1 1.52 200 2

FD 1 0.88 22 3

FD* 1 0.88 200 2

7.5 Discussion

The DeepFlower framework demonstrated efficacy of detecting and counting emerging

blooms in images to characterize flowering patterns for different genetic categories or geno-

209



types. Flower characteristics derived by the imaging method showed an almost identical

capability for identifying significance among genotypes with manual counts, which further

validated the effectiveness of the DeepFlower framework for studying flowering patterns.

In particular, the DeepFlower framework successfully revealed flowering patterns for cotton

plants that have a complex canopy architecture (and thus difficulties of emerging bloom

detection and counting) and therefore should transfer well to other flowering plants that

have the same or similar canopy architecture. This suggests that the combination of the

image acquisition system and DeepFlower framework can be an effective and efficient tool

for characterization of flowering patterns for plants in the field, holding great potential for

identifying gene loci that control flowering behavior for different plant genotypes.

Although the DeepFlower framework showed promising results for extracting flowering

characteristics, at least two aspects can be further improved. First, the scanning throughput

is relatively low for the current configuration. The platform ran at approximately 0.25 m/s

and took around 25 minutes to complete the scanning of the present experimental field

(approximately 0.05 ha), resulting in a scanning throughput of 0.12 ha/h. This throughput

might not be adequate for very large-scale experiments, e.g., that involve up to several

thousand genotypes with at least two replicates per genotype (up to a couple of hectares).

Challenges, however, would need to be identified to balance the platform cost (camera with

high resolution and fast frame rate), image quality (blurry), and scanning throughput (plat-

form moving speed). Second, the present DeepFlower framework oversimplifies the counting

task by using only one single image with the maximum count among the four viewing images.

The framework depends upon the assumption that most or all emerging blooms can be seen

from a single one of these four viewing angles. Experimental results, however, showed that

this assumption is invalid when plants enter into peak flowering time, leading to a signifi-

cant underestimation of bloom counts. Consequently, absolute bloom counting curves cannot

be used for quantitative analysis of flowering patterns. A viable solution is to integrate 3D
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imaging so that 2D detections can be projected onto a global 3D space for counting. For

instance, photogrammetric methods (e.g., structure from motion) can be used to recon-

struct 3D point clouds using images from multiple viewing angles, so that for a single plant

emerging bloom detections can be projected from different 2D images onto a global 3D space

to remove duplicated detections (and thus counts). In the present study, preliminary tests

using the collected images suggested that images from four viewing angles (approximately

90◦ apart from each neighboring angle) could not provide adequate image overlap to recon-

struct 3D point clouds of a single plant, and thus the 2D to 3D projection. It is therefore

necessary to conduct successive studies to explore the optimal image collection configuration

(e.g., viewing angles and number of images) for 3D reconstruction using photogrammetric

methods. Another way is to fuse 2D images with 3D point clouds acquired using separate

instruments (e.g., LiDARs), which enables the 2D to 3D projection. This will also require

considerable efforts to develop new sensing systems for data collection and algorithms for

data fusion (especially multi-source heterogeneous data fusion).

7.6 Conclusions

The developed imaging approach (combination of the image acquisition system and Deep-

Flower framework) can be an efficient and effective tool for detecting and counting blooms

on plants in the field, demonstrating promising results for characterization of flowering pat-

terns. In particular, the developed approach can potentially be used for many other flowering

plants that have a simpler or similar canopy architecture, providing potential for deepening

understanding of the flowering process in general. Future studies will be focused on the inte-

gration of 3D imaging to further improve the counting accuracy and expand the capability

of mapping bloom positions on plants.
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Chapter 8

Nondestructive Detection and Quantification of Blueberry Bruising using

Near-Infrared (NIR) Hyperspectral Reflectance Imaging1

1Jiang, Y., Li, C., and Takeda, F. 2016. Scientific Reports, 6, 35679. Reprinted here with per-
mission of publisher.
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8.1 Abstract

Currently, blueberry bruising is evaluated by either human visual/tactile inspection or firm-

ness measurement instruments. These methods are destructive, time-consuming, and subjec-

tive. The goal of this paper was to develop a non-destructive approach for blueberry bruising

detection and quantification. Experiments were conducted on 300 samples of southern high-

bush blueberry (Camellia, Rebel, and Star) and on 1500 samples of northern highbush blue-

berry (Bluecrop, Jersey, and Liberty) for hyperspectral imaging analysis, firmness measure-

ment, and human evaluation. An algorithm was developed to automatically calculate a bruise

ratio index (ratio of bruised to whole fruit area) for bruise quantification. The spectra of

bruised and healthy tissues were statistically separated and the separation was independent

of cultivars. Support vector machine (SVM) classification of the spectra from the regions of

interest (ROIs) achieved over 94%, 92%, and 96% accuracy on the training set, independent

testing set, and combined set, respectively. The statistical results showed that the bruise

ratio index was equivalent to the measured firmness but better than the predicted firmness

in regard to effectiveness of bruise quantification, and the bruise ratio index had a strong cor-

relation with human assessment (R2=0.78-0.83). Therefore, the proposed approach and the

bruise ratio index are effective to non-destructively detect and quantify blueberry bruising.

8.2 Introduction

The United States (U.S.) produced 239,000 tonnes of blueberries in 2013, accounting for

57% of total world production [244]. More than half of U.S. production went to the fresh

fruit market and created over 579 million dollars in revenue [245]. Much of the blueberry

crop destined for fresh market is still hand-harvested. Mechanical harvesting has a major

limitation in that it creates more bruises which decrease fruit quality and ultimately reduce

the monetary value of the blueberry crop [246]. In fact, fruit bruising causes around 10%

of total economic losses of the blueberry industry every year. Additionally, bruising may
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accelerate other biological processes such as spoilage [247]. Even worse, rotten or fermented

fruit could affect other healthy fruit, resulting in significant losses during long-distance

transportation [248].

Bruising is a type of subcutaneous tissue damage without rupturing fruit skin [249].

Typically, the tissue damage causes the mixture of phenolic compounds and polyphenol

oxidase, generating dark coloration. Bruises are indicated by the discoloration of damaged

tissues and thus they can be observed and differentiated from healthy tissues [249]. Con-

sequently, visual inspection is an intuitive way to detect and assess fruit bruising. Bruises

are not externally observable for most fruits, especially fruits with dark coloration such as

blueberries. Therefore, visual inspection requires slicing fruit samples. Currently, each blue-

berry sample is sliced along the equatorial axis and the slices are imaged by color cameras.

Human graders evaluate the color images and calculate the bruising level, the ratio of the

area of the discolored region to the total surface area of the slice. Typically, a blueberry with

a bruising level higher than 0.2 (20%) is considered bruised, and the percent of bruised fruit

in each treatment is the bruise severity for that group. A limitation of the method is that

it is impossible to detect bruises that are not present on the sliced cross-section. Moreover,

illumination conditions could significantly affect inspection results.

In addition to discoloration, bruised tissues are typically softer than healthy tissues [249].

A palpation method is often used in which a blueberry is held between one’s thumb and

index fingers and the fruit is gently squeezed and rolled. However, this method is subjec-

tive and labor- and time-consuming. Therefore, a number of automated approaches have

been developed to measure fruit firmness that can be used as an indirect index for bruise

quantification and assessment. Those approaches include firmness/texture analysis, acoustic

impulse-response measurement [250], and resonance frequency-based method [251]. Although

these methods provide objective and repeatable measurements of fruit firmness, they are
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destructive to fruit samples. To overcome this issue, a laser air-puff detector was invented to

measure fruit firmness in a non-contact manner [252], and was applied to blueberry firmness

measurement [253]. A fruit sample is deformed by a puff of air and a laser displacement

sensor is used to record the deformation to assess the fruit firmness. Although the technique

does not directly contact samples, it could cause potential damage after repeated measure-

ments because fruit deformation in each measurement could be accumulated and ultimately

result in fruit damage.

In recent years, advanced imaging modalities have been explored as non-destructive

approaches for bruise detection. X-ray imaging was applied to detect bruises using the

difference in radiation attenuation coefficients between bruised and healthy tissues. Typi-

cally, bruised tissues have lower density and absorb less radiation than healthy tissues. The

results showed that X-ray imaging could achieve over 90% accuracy in detecting bruises in

apples [254]. Nonetheless, X-ray imaging techniques have potential safety issues and X-ray

instruments are expensive for agricultural applications. As a non-ionizing method, magnetic

resonance imaging (MRI) was also explored due to the difference in free water (water released

by damaged cells) between bruised and healthy avocado tissues [255]. In early stages, more

free water was released in the bruised areas, resulting in higher intensity in MRI images. The

results showed that MRI detected bruises immediately after impact, but it was not practical

for the food industry or large-scale food research because of the high cost of the instru-

ments. In addition, a dynamic thermal imaging (TI) method, pulsed-phase thermography

(PPT), has been studied because of the difference in thermal diffusivity between bruised and

healthy fruit [256]. When heating or cooling fruit samples, the diffusivity difference caused

different rates of temperature change which were used to differentiate bruised and healthy

fruit. PPT is less costly than X-ray imaging and MRI without safety concerns. However,

the relatively low signal-to-noise ratio (SNR) and topological effects could cause potential

issues for quantitative data analysis such as bruise quantification. To date, none of the three
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imaging modalities has been used for blueberry bruise detection.

Hyperspectral Imaging (HSI) has been investigated for fruit bruise detection because

both physical and chemical property changes affect the spectral profile [257]. Previous studies

have demonstrated the feasibility of using HSI reflectance mode to detect bruises in various

fruits. In particular, the spectral range from 900 to 1700 nm was appropriate to detect

bruises in apples [256, 258, 259], pears [260], and jujube [261]. In this spectral range, all the

studies identified bruised tissues with over 88% accuracy, as the spectra of bruised tissues

were significantly different from those of healthy tissues. The spectral difference between the

bruised and healthy tissues was probably due to tissue disruption including cell wall failure

and the release of free water from cells. The free water absorbed more light and affected the

reflectance spectra of bruised tissues in the range from 900 to 1700 nm, especially at several

key wavelengths with high water absorption such as 970 nm, 1200 nm, and 1470 nm [262].

Other than directly using them to identify bruised tissues, the spectra of the fruit could

be correlated to fruit firmness by regression models such as partial least squares regression

(PLSR) [263]. Two consecutive studies were conducted to predict blueberry firmness using

reflectance and transmittance modes ranging from 400 to 1000 nm [264, 265]. Results showed

that the predicted firmness could be used for qualitative analysis of blueberry bruising, but

the root mean squared error of predictions (RMSEPs) were 20% of the mean value of the

fruit firmness, which might be insufficient for quantitative assessment of blueberry bruising.

In addition to its efficacy for detecting fruit bruising, HSI is also suitable for the food

industry because it is safer than X-ray imaging, more affordable than MRI, and better

in image quality than thermal imaging. In particular, the HSI reflectance mode could be

applied to fruit packing lines for online sorting after modifications [257]. There was no HSI

study done for blueberry bruising so far, and most HSI studies primarily explored spectral

differences and did not take full advantage of the technique. Therefore, the present study
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utilized both the spatial and spectral information for blueberry bruising quantification by

combining image processing algorithms and chemometrics.

The overall goal of this study was to develop a non-destructive approach using near-

infrared (NIR) hyperspectral imaging (950 to 1650 nm) to detect and quantify blueberry

bruising. Specific objectives were to (i) classify healthy and bruised tissues using the spectra

extracted from the regions of interest (ROIs) of the SHB (southern highbush blueberry) and

NHB (northern highbush blueberry) fruit, (ii) quantify blueberry bruising using the bruise

ratio index, and (iii) compare the effectiveness of bruise quantification using the bruise ratio

index, measured and predicted firmness, and human assessment.

8.3 Materials and Methods

8.3.1 Sample Collection and Preparation

Two experiments were conducted in this research (Figure 8.1). The first experiment was

conducted to study the spectral differences between healthy and bruised tissues in southern

highbush cultivars, and bruises were manually created at controlled positions (see Supple-

mentary Table S13). A total of 300 blueberry samples of three southern cultivars including

Camellia, Rebel, and Star were collected in May 2015 from a commercial farm in Alma,

Georgia, USA. Each cultivar contained 100 samples that were divided into four groups: a

control treatment of 10 samples and three bruise treatments with 30 samples each. The

control treatment was kept intact, whereas the three bruise treatments were dropped onto a

steel surface from heights of 15, 23, and 31 cm, respectively. In order to control the position

of fruit bruising, bruises were created by a specially-designed pendulum. The wooden arm

of the pendulum was connected with a sample holder made of silicon rubber through a

screw eye. For the screw eye, the thread end was installed into the wooden arm, and the

loop end was adhered to the back face of the sample holder. The steel screw eye enables the

sample holder to be attached and released by a switchable magnet, facilitating consistent
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sample dropping. For each blueberry sample, one side was stuck on the sample holder using

petroleum jelly when the sample holder was attached by the magnet, and the other side

would hit the contacting surface when the sample holder was released. Therefore bruises

mainly occurred on the impacted face. After bruise creation, all the samples were divided

equally into two groups and stored in an air-conditioned room (23◦C with 30–35% relative

humidity) for 24 and 48 hours, respectively, before they were imaged.

Figure 8.1: Overall flowchart of the two experiments conducted in this research.

The second experiment was conducted to study the spectral differences between healthy

and bruised tissues for northern highbush cultivars, and the bruises were created by ran-

domly dropping the fruit from certain heights (see Supplementary Table S13). A total of

1500 blueberry samples of three northern highbush cultivars including Bluecrop, Jersey, and

Liberty were collected in August 2015 from a commercial farm in Grand Junction, Michigan,
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USA. Each cultivar contained 500 samples that were divided equally into five treatments,

with each treatment sub-divided into four replicate groups of 25 samples each. The five

treatments were: control; fully-bruised (dropped from 90 cm onto a steel surface 8 times);

treatments dropped onto a steel surface from 60 and 120 cm; and onto a padded surface from

120 cm. The purpose of the fully-bruised treatment was to easily and accurately extract the

spectra of bruised tissues because random dropping was not able to control the bruise posi-

tion and could cause difficulties in spectral extraction and classifier training. After bruise

creation, all samples were stored in an air-conditioned room (23◦C with 20-25% relative

humidity) for 24 hours, and were then used for further image acquisition and processing.

8.3.2 Hyperspectral Image Acquisition

The samples of the first experiment were imaged using a hyperspectral imaging system

previously built by the Bio-Sensing and Instrumentation Laboratory of the University of

Georgia [266]. All images were acquired in a light chamber to avoid the interference of

ambient light (Figure 8.1), and two 12V 35W halogen lamps (S4121, Satco Products Inc.,

NY, USA) were used as the illumination source. Prior to collecting images, an image of a

99% reflective panel (SRT-99-050, Labsphere Inc., North Sutton, NH, USA) was obtained

as the white reference, and an image taken with the optical lens being covered was obtained

as the dark reference. As the position of bruises was controlled, the samples were placed

on a black cardboard holder with the bruised surfaces facing toward the camera. Control

samples were imaged from three angles (stem, calyx, and equatorial axis). A total of 24

hyperspectral images were collected including 12 images for 150 samples stored for 24 hours

and 12 images for 150 samples stored for 48 hours (see Supplementary Figure S7 and Table

S14 for detailed image layout).

The samples of the second experiment were imaged using a hyperspectral imaging system

based on a portable light chamber and data acquisition device (Figure 8.1). A frame grabber
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(PCI-1426, National Instruments Corp., TX, USA) was installed in a PCIe expansion box

(NA 211A-NB, Netstor Technolog, Taiwan, China) through a PCIe to PCI adapter (ST369,

Sintech Electronic, Shenzhen, China). The frame grabber was used to connect the camera

of the hyperspectral imaging unit and a laptop. In addition to the two 12V 35W halogen

lamps, a 12V 20W halogen lamp (PC 81763, GE Lighting, OH, USA) was used to enhance

the uniformity of the illumination. White and dark reference images were collected using

the same procedure as used in the first experiment. Since the position of bruising was not

controlled in the second experiment, it was necessary to image both the stem and calyx sides.

A total of 120 (5 treatments × 4 treatment replicates × 3 cultivars × 2 sampling positions)

hyperspectral images were acquired, and each image contained 25 samples from a treatment

replicate. All acquired hyperspectral images covered 141 wavelengths ranging from 950 to

1650 nm with a spectral interval of 5 nm.

8.3.3 Reference Measurements

Firmness

After image acquisition, the firmness of the blueberry samples was measured for reference. In

the first experiment, a texture analyzer (TA.XT2i Texture Analyzer, Texture Technologies

Corp., NY, USA) was used to measure firmness by following the procedure proposed by [265].

Each blueberry fruit was compressed between two parallel plates at a constant velocity of 1

mm/s for a total deformation of 3 mm. The firmness was calculated from the slope (N/mm)

of the force/deformation curve between 0.5 mm and 2.5 mm displacement, as the curve was

relatively straight in this range. In the second experiment, a FirmTech machine (FirmTech

2, BioWorks, Inc., KS, USA) was used to directly measure firmness (N/mm) of individual

berry samples.
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Color Image of Sliced Fruit and Human Evaluation

After firmness measurement, the blueberry samples were sliced and imaged by a color camera

for reference and human evaluation. In the first experiment, the samples were sliced perpen-

dicular to the bruise position. For instance, if a bruise was created on the stem side of

a fruit, the fruit was to be sliced along the stem-to-calyx axis, enabling an evaluator to

observe the bruise on the slicing plane. The sliced samples were imaged by a digital single

lens reflex (DSLR) camera (D40, Nikon Corp., Japan) under ambient illumination. As the

slicing method was different from the approach used in a previous study [135], these color

images of the sliced samples were only used for reference. However, in the second experi-

ment, the samples were sliced by following the protocol described by Brown [135]. The sliced

samples were imaged by another DSLR camera (5D Mark II, Canon Inc., Japan) under

ambient illumination. These color images were used for both reference and human evalua-

tion. Trained human graders calculated the number of pixels of the discolored (bruised) area

and the total cross-sectional area of each sample, and the ratio between the two was used as

the human assessment of the bruising level of a sample [135]. In total, the two experiments

produced two datasets (Dataset1 for experiment #1 and Dataset2 for experiment #2), and

each dataset contained hyperspectral images, firmness measurements, and color images of

sliced fruit (human assessment of bruising level only for Dataset2).

8.3.4 Hyperspectral Image Processing

Automatic Blueberry Segmentation

The hyperspectral images were preprocessed by flat field correction to remove artifacts

caused by non-uniform illumination or variations in the pixel-to-pixel sensitivity of the

detector (Figure 8.2). The process was executed in a customized program developed in IDL

(IDL 7.1, Exelis Inc., VA, USA). Subsequently, the grayscale images at 1075 nm were used

to create masks for segmenting individual samples from the background. The masks were

automatically generated by thresholding. The grayscale images were thresholded at intensity
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levels of 737 and 942 (out of 4095) for Dataset1 and Dataset2, respectively. The resulting

images were enhanced by morphological operations to fill holes and remove noise, and the

refined results were used as masks. In addition, individual samples were able to be recognized

by calculating connected components in the masks. The operations were implemented in

MATLAB (MATLAB 2015b, The MathWorks Inc., MA, USA).
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Figure 8.2: Flowchart of the hyperspectral image processing from flat field correction to

calculation of the bruise ratio index.

Manual ROI Selection and Spectral Extraction

To accurately extract the spectra of healthy and bruised tissues, regions of interests (ROIs)

were manually selected on the grayscale images at 1200 nm in ENVI (ENVI 4.7, Exelis

Inc., VA, USA); this wavelength was chosen because the contrast between the bruised and
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healthy tissues was most prominent at this wavelength. For Dataset1, to accurately extract

the spectra of healthy and bruised tissues, a total of 31 samples were used for ROI selection,

including 14 fully healthy and 17 fully-bruised samples. For Dataset2, a total of 600 (300

per treatment) samples from control and fully-bruised treatments were used for spectra

extraction. One ROI was drawn on each selected sample, and the spectra of individual

pixels in the ROIs were extracted. To balance the number of the extracted spectra, equal

numbers of spectra for the two classes were selected from the extracted spectra. For the

class with less spectra, all the spectra were kept, whereas for the class with more spectra,

a subset of the spectra were randomly selected to keep the number of the spectra the same

as the other class. Consequently, two spectral libraries (SpectraLib1 and SpectraLib2) were

collected consisting of spectra of 28352 and 61580 pixels, respectively, and each contained

equal numbers of spectra for healthy and bruised tissues.

Spectra and Image Classification

Support Vector Machine (SVM) was used for classification in this research. The SVM clas-

sifier was implemented by LibSVM (a software library for SVM classification) [267], and

the training and evaluation were executed in MATLAB. All classifier parameters were in

default values as the objective of this research was to explore the classification performance

baseline of the proposed method. Three methods were used to evaluate the efficacy of the

hyperspectral imaging approach: (a) two classifiers were trained and evaluated on each

individual spectral library by 10-fold cross validation, respectively; (b) the classifier was

trained on one spectral library but evaluated on another library; and (c) the classifier was

trained and evaluated on the combined spectral library by 10-fold cross-validation. It should

be noted that all three methods were for classification of the spectra extracted from ROIs.

The classifier trained by the combined spectral library was used as the final model to

classify the masked hyperspectral images at the pixel level. According to a previous study
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[268], the spectra of the calyx end were unrelated to bruises but often misclassified as bruised

tissues, and thus the calyx end needed to be excluded in image classification. The calyx end

was a 5-pixel-radius circle located at the center of each connected component in the masks,

and the pixels within the circle were excluded during classification.

Based on the image classification results, bruise ratios were calculated to quantify bruises

on each fruit. Since the samples in Dataset1 were only imaged on one side, the bruise ratio

index of each sample was calculated by the ratio of the number of pixels classified as bruised

to the total number of fruit pixels. However, in the results of Dataset2 where each fruit was

imaged on two sides, the bruise ratio index of each sample was calculated by averaging the

ratio of each half.

Firmness Prediction

Hyperspectral imaging has been used to predict fruit firmness by training regression models

using the mean spectra of each fruit [257]. For comparison purposes, mean spectra of indi-

vidual blueberry samples were extracted from the masked hyperspectral images, and the

extracted spectra of each fruit with the measured firmness were used to train a PLSR model

for fruit firmness prediction. According to previous studies [264, 265], to avoid effects caused

by different initial conditions of blueberries, the spectra extracted from one experiment

were not used to predict firmness of the samples in another experiment. Therefore, 300 and

1500 mean spectra were extracted and used for firmness prediction in the first and second

experiments, respectively. The predicted firmness was used as an indirect index for blueberry

bruising quantification and assessment.
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8.3.5 Statistical Tests and Comparison

To rigorously prove the potential of using the hyperspectral imaging system for bruise iden-

tification, multivariate analysis of variance (MANOVA) tests were conducted to compare the

extracted spectra of healthy and bruised tissues of different cultivars. All 141 wavelengths

were considered as variables, and they were multivariate-normally distributed.

To explore the effectiveness of bruise quantification and assessment, bruise ratio index

was compared with measured firmness, firmness predicted by PLSR, and human assess-

ment of bruising level. Since firmness is an indirect index for bruising quantification and

assessment, bruise ratio index is not directly comparable with firmness values. Multiple

comparisons followed by Kruskal-Wallis test (nonparametric equivalent to analysis of vari-

ance test) were conducted to compare the differences among various treatments when using

the bruise ratio index, measured and predicted firmness, respectively, as the data were not

normally distributed. Two indices were considered to be equivalent if they showed the same

statistical pattern among various treatments.

Since human assessment is also an area ratio of bruised tissue to cross-section of a

fruit sample, the bruise ratio index and human assessment are comparable. The correlation

between human assessment and the bruise ratio index was analyzed by using linear regres-

sion and the coefficient of determination (R2). Additionally, a threshold was used to classify

each fruit according to its bruise ratio index and human assessment, respectively. A fruit

was classified as bruised if its bruise ratio index (or human assessment) exceeded a threshold

of 0.2 (20% bruised area) in the present study. Analysis of variance (ANOVA) tests were

conducted to compare the difference between the number of bruised fruit calculated using

the bruise ratio index and human assessment for each treatment. The calculated number of

bruised fruit in individual treatments were normally distributed.
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The MANOVA and ANOVA tests were performed in SAS (package glm, SAS 9.3, SAS

Institue Inc., NC, USA), whereas the multiple comparisons followed by Kruskal-Wallis test

were conducted in R 3.2.4 [212] (package asbio). All tests were two-tailed and used a signif-

icance level of 0.05.

8.4 Results and Discussion

8.4.1 Grayscale Images at Representative Wavelengths

Grayscale images were observed at five representative wavelengths including three wave-

lengths for free water absorption (980, 1200, and 1470 nm) and two wavelengths for local

peaks (1075 and 1650 nm). Generally, the blueberry samples of both southern and northern

cultivars were hypo-intense (less bright) at higher wavelengths (1200, 1470, and 1650 nm)

compared to lower wavelengths (980 and 1075 nm), whereas the background always absorbed

most of the light at all five wavelengths (Figure 8.3). In particular, the contrast between the

samples and background was the highest at 1075 nm because the samples absorbed the least

light at this wavelength. Therefore, the grayscale images at 1075nm can be used to segment

the blueberry samples from the background.
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Figure 8.3: Grayscale images at representative wavelengths of blueberries: (A) for southern

highbush cultivars (Dataset #1) and (B) for northern highbush cultivars (Dataset #2).

On each sample, healthy tissues were hyper-intense (brighter) while bruised tissues were

hypo-intense (less bright) at 980, 1075, and 1200 nm. Both healthy and bruised tissues were

hypo-intense at 1470 and 1650 nm. The contrast between the healthy tissues and bruised

tissues was the highest at 1200 nm. Therefore, grayscale images at 1200 nm were used to

manually select ROIs of healthy and bruised tissues for spectra extraction.

One exception was the calyx end, which appeared as dark as bruised tissues in most

wavelengths. However, this phenomenon was observed from all the samples in both control

and bruising treatments, and thus the low reflectance intensity was not due to bruises. In
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fact, compared with other parts of the fruit, the calyx end typically is harder to bruise so the

low reflectance intensity was most likely because the calyx end might have special chemical

or physical properties, leading to more light absorption and less reflection. As a result, to

accurately detect and quantify bruises, it was necessary to exclude the calyx end of each

fruit in the following hyperspectral image classification and bruise ratio index calculation.

8.4.2 Reflectance Spectra of Healthy and Bruised Tissues

Since the present study focused on bruise detection and quantification, experimental vari-

ables were not discussed if they did not affect the separation between healthy and bruised

tissues. According to statistical test results, the closest mean spectra of healthy and bruised

tissues were statistically separable regardless of development time (see Supplementary Figure

S1, Figure S2, and Table S1) and blueberry cultivar (see Supplementary Figure S3–S6, Table

S2, and Table S3). Therefore, the spectral difference between healthy and bruised tissues

was not affected by the two variables (Figure 8.4). Prior to spectral normalization, there

was no obvious shape difference in the mean spectra of healthy (or bruised) tissues between

southern (Dataset1) and northern (Dataset2) highbush blueberry cultivars (Figure 8.4a

and 8.4b). Although the intensity of the spectra from NHB cultivars was on average higher

than that of SHB cultivars, the difference was primarily caused by different illumination

conditions. After removing this effect by spectral normalization, the mean spectra showed no

obvious difference in both shape and intensity between SHB and NHB cultivars (Figure 8.4c

and 8.4d). Therefore, the spectra extracted from one experiment can be used to train a

classifier to differentiate the spectra extracted from another experiment.
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Figure 8.4: Mean spectra (solid line) and standard deviation (error bar) of healthy and

bruised tissue. (a) and (b) are in flat field corrected reflectance for southern and northern

cultivars, respectively; and (c) and (d) are in normalized reflectance for southern and northern

cultivars, respectively.

The mean spectra between healthy and bruised tissues in both SHB and NHB cultivars

were clearly different (Figure 8.4). Regarding the spectral shape, the mean spectra of healthy

and bruised tissues can be grouped into three segments, i.e., 950 to 1150 nm, 1150 to 1280

nm, and 1280 to 1650 nm. The spectra of healthy and bruised tissues showed little or no

difference in the first two segments but a significant difference in the third one. In the third

spectral range from 1280 to 1650 nm, the intensity of the spectra decreased to the minimum

at 1470 nm, and then began to increase for healthy tissues while being flat for bruised tissues

between 1470 and 1650 nm. After spectral normalization, the upward trend of the spectral

intensity of healthy tissues became more obvious (Figure 8.4c and 8.4d), which could be
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useful to classify healthy and bruised tissues.

In addition, two local minima (at 980 and 1200 nm) and the global minimum (at 1470

nm) matched typical absorption wavelengths of liquid water [262], confirming the assump-

tion that fruit bruising causes redistribution of free water in fruit tissues. According to a

previous study [269], bruises cause damage to cell membranes and result in leaking free

water. The free water stays around the bruised tissues in early stages, and then diffuses

away and evaporates out of the fruit, resulting in dry cavities in late stages. Therefore, in

early stages, bruised tissues contain more free water than healthy tissues and thus absorb

more light at certain wavelengths with high liquid water absorption.

In terms of the spectral intensity, prior to spectral normalization, the intensity of the

mean spectra of healthy tissues were always higher than that of bruised tissues (Figure 8.4a

and 8.4b). The spectra of healthy and bruised tissues in southern cultivars (Dataset1) had

a larger overlap than the spectra in northern cultivars (Dataset2). This occurred mainly

because of the differences in manual ROI selection between the two experiments. Compared

with Dataset2, Dataset1 had no fully-bruised treatment dedicated for spectra extraction

of bruised tissues. Therefore, the selected ROIs for bruised tissues in Dataset1 might have

higher possibility of mixing with healthy tissues than those in Dataset2, ultimately resulting

in a large spectral overlap between two treatments. After spectral normalization, the dif-

ferences between healthy and bruised tissues were most prominent at three ranges: 950 to

1000 nm, 1150 to 1400 nm, and 1500 to 1650 nm. Potentially, wavelengths in these three

ranges could be used for feature selection and improvement of the classification performance.
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8.4.3 Classification Results

Classification of Spectra Extracted from ROIs

Both the 10-fold cross-validation on the training set and the evaluation on independent

test sets achieved accuracies of over 92%, indicating the proposed detecting method was

accurate and robust (Table 8.1). The accuracies of the 10-fold cross-validation were over

94% with a variation up to 0.34% because normalized spectra of healthy and bruised tissues

within each dataset were clearly separated with little overlap. Accuracies decreased 2.35%

and 3.79% when using SpectraSet2 and SpectraSet1 as independent test set, respectively.

The performance reduction was largely because testing the classifier using an independent

test set is more rigorous than k-fold cross-validation. It should be noted that since all

the parameters used in the SVM classifier were set to default values, they might not be

optimal for all cases, and thus parameter optimization could further improve the accuracy.

In addition, information at some wavelengths might be redundant features for classification,

so feature selection could improve the classification performance as well.

Training set Test set 10-fold cross valida-

tion on training set

Accuracy

on test set

SpectraLib1 SpectraLib2 94.68±0.34% 92.41%

SpectraLib2 SpectraLib1 97.05±0.15% 93.29%

Table 8.1: Classification performance of using independent test set: SpectraSet1 consisting

of 28352 spectra extracted from Dataset1 (southern cultivars) and SpectraSet2 consisting of

61580 spectra extracted from Dataset2 (northern cultivars).

Overall, the 10-fold cross-validation on the combined spectral data from SpectraSet1 and

SpectraSet2 achieved over 96% accuracy for the test sets (Table 8.2). Although the accuracy

of classifying pixels of healthy tissues (true negative) was slightly higher (2.26%) than that of

bruised tissues (true positive), they were comparable classification results with satisfactory
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accuracies. In addition, the classification performance on the combined spectral library was

stable (performance variation was up to 0.21%). It should be noted that these performances

are based on the spectral data extracted from the selected ROIs and the performance on all

the images at the pixel level may vary.

Classified as bruised Classified as healthy Total

Actual as bruised 42773(95.12%, true positive) 2193(4.88%, false negative) 44966

Actual as healthy 1179(2.62%, false positive) 43787(97.38%, true negative) 44966

Overall Accuracy: 96.25±0.21% for test

Table 8.2: Confusion matrix of 10-fold cross validation on the combined spectra from

Dataset1 and Dataset2

Image Classification

For Dataset1, the proposed method recognized bruises using hyperspectral images, and the

results closely matched the observations of bruises in the color images of the sliced fruit

(Figure 8.5). The blueberry samples were sliced perpendicular to the bruise position, which

was controlled in the experiment, so the bruises were easily observed on the slicing plane.

In addition, it was noteworthy that the pendulum wooden arm with the sample holder

(22.5-29 g) was 15 times heavier than a typical blueberry sample (1.5-2 g), and thus bruises

created by the pendulum were significantly more severe than those created by randomly

dropping the fruit onto a steel surface from the same height. Therefore, the bruises created

in the first experiment were clearly discolored compared to healthy tissues. Some samples

in control groups were highly or fully bruised in both image classification results and color

images of sliced fruit, because they may have been damaged during transportation prior to

the experiments. The bruises were more severe on the stem side and equatorial axis than on

the calyx side, which validated the assumption that calyx end was harder to bruise.
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Figure 8.5: Grayscale image at 1200 nm, classified image, and color image of sliced fruit

of representative results from Dataset1 (southern highbush cultivars). Red and green color

represent bruised and healthy tissues, respectively.

For Dataset2, although the proposed method identified bruises, sometimes the results did

not match with the observations of bruises in the color images of the sliced fruit (Figure 8.6).

This occurred mainly because different bruise creation and slicing methods were used in

the second experiment. Compared with those created by the pendulum, the bruises created
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by randomly dropping from certain heights were less severe and tended to be shallower.

Consequently, if blueberry samples were only sliced along the equatorial axis, the bruises

would not be observed on the slicing plane if they occurred at shallow positions not along

the equatorial axis. The bruises were consistently more severe on the stem side than on the

calyx side. In addition, the amount of bruises and their severity were related to the drop

height and the impact surface [268]. The classified images clearly showed this pattern. When

samples were dropped from different heights onto the same steel surface, more bruises (red

areas) were observed in the samples with higher drop heights. When samples were dropped

onto different surfaces from the same height, less bruises (red areas) were observed in the

samples dropped onto the padded surface than onto the steel surface.
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Figure 8.6: Grayscale image at 1200 nm, classified image, and color image of sliced fruit

of representative results from Dataset2 (northern highbush cultivars). Red and green color

represent bruised and healthy tissues, respectively.
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8.4.4 Comparison between Bruise Ratio Index and Traditional Measure-

ments

The statistical patterns obtained using bruise ratio index matched the patterns calculated

using firmness measurement (see (a1), (a2) and (a4), (a5) in Figure 8.7A). When the drop

height was increased, more bruises were created, and thus higher bruise ratio index and

lower firmness of blueberry samples were measured. In addition, the results showed the same

statistical significance among the treatments when using bruise ratio index and measured

firmness, respectively (see Supplementary Table S4–S7). Therefore, the bruise ratio index

calculated by the proposed non-destructive method was equivalent to measured firmness in

the statistical tests.
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Figure 8.7: Statistical analysis results in the present study. Panel (A): boxplot of measured

firmness, bruise ratio index extracted from HSI, and predicted firmness by PLSR. Treat-

ments with different letters are statistically significant with each other (see Supplementary

Table S4–S9), and treatment mean values of each index are sorted alphabetically. (a1-a3)

and (a4-a6) are measured firmness, bruise ratio index, and predicted firmness for Dataset1

(southern cultivars) and Dataset2 (northern cultivars), respectively. Panel (B): linear regres-

sion between bruise ratio index and human assessment for three northern cultivars including

Bluecrop, Jersey, and Liberty. Panel (C): Comparison between the number of bruised fruit

calculated by bruise ratio index and human assessment using a threshold value of 0.2. The

red color of the treatment name indicated the results calculated by the bruise ratio index

were statistically different from that calculated by human assessment (see Supplementary

Table S10–S12).
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Although it showed a certain efficacy, firmness predicted by the PLSR model did not

show statistical differences for some treatments (see (a1), (a3) and (a4), (a6) in Figure 8.7A).

In Dataset1, the predicted firmness of the control treatment was statistically higher than

that of the bruise treatments. However, the predicted firmness of bruise treatments dropped

from 15 cm was not statistically higher than that of the treatments dropped from 23 and

31 cm, and thus the predicted firmness could not accurately represent bruises caused by

different drop heights (see Supplementary Table S8). In Dataset2, although the treatments

dropped onto steel and padded surfaces were statistically different, there was no significant

difference between the control and bruise treatments dropped from 60 cm onto a steel surface

and from 120 cm onto a padded surface (see Supplementary Table S9). Thus, the predicted

firmness had the effectiveness of bruising assessment in certain situations, but it could not

quantify bruising as accurately as the bruise ratio index. These observations agreed with

previous studies [264, 265] which showed that the predicted firmness had a relatively large

RMSEP using either reflectance or transmittance spectra. Therefore, compared with the

predicted firmness, bruise ratio index could be a more effective index to non-destructively

quantify and assess blueberry bruising.

Overall, the R2 value (0.78-0.84) indicated that bruise ratio index was strongly cor-

related with human assessment for northern cultivars (Figure 8.7B). However, the Root

Mean Squared Error (RMSE) was up to 12.5% of the bruise ratio index range (0 to 1),

suggesting that bruise ratio index might be considerably different from human assessment

in some treatments. In fact, the correlation analyses were further validated by the results

of the thresholding classification of bruised fruit (Figure 8.7C). For most cases, the differ-

ences between the number of bruised fruit calculated using bruise ratio index and human

assessment were within 5 and they were not statistically different (see Supplementary Table

S10–S12). This confirmed that bruise ratio index was correlated with human assessment.

However, for some cases such as the control group of Bluecrop, the number of bruised fruit
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calculated using bruise ratio index was significantly different from that calculated using

human assessment (treatment names in red in Figure 8.7C, see Supplementary Table S10–

S12). Although human visual inspection was the most intuitive approach to evaluate and

quantify blueberry bruising, it can only observe and evaluate bruises that developed on the

slicing plane. For those bruises that did not occur on the equatorial axis or the slicing plane,

human graders could not observe and evaluate them. For instance, a sample with a firmness

of 1.46 N/mm was graded as healthy fruit with no bruised tissue, whereas the proposed

imaging method measured a bruise ratio index of 0.2492 (Figure 8.8a). To further explain

this inconsistency between the human assessment and bruise ratio index, more advanced

imaging techniques such as MRI need to be explored to characterize blueberry bruising.

Figure 8.8: Inconsistent cases between bruise ratio index and traditional indices: (a) in con-
sistency between bruise ratio index and human assessment (b) inconsistency between bruise
ratio index and measured firmness.

Additionally, inconsistencies between measured firmness, bruise ratio index, and human

assessment were observed. For instance, a blueberry with a firmness of 2.62 N/mm had a

bruise ratio index of 0.4895 and a human assessment of 0.35 (Figure 8.8b). Both bruise ratio

index and human assessment were high, indicating that the fruit had bruises on it. However,

the firmness measurement was high as well, contrary to the fact that bruised berries tend to

be softer. This likely occurred because the instrument only measures the firmness in a local

area. If a bruise develops 90 degrees from the measuring axis of the instrument, the fruit

firmness reading may be greater than that measured along the bruising axis. Nevertheless,

the fact was that this sample had spectra similar to bruised fruit but a firmness value

similar to healthy fruit. This could explain the reason that the predicted firmness had large
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RMSEP, which was not good for accurately quantifying blueberry bruising. If a training set

contains samples like the fruit in Figure 8.8b, the training process will force the PLSR model

to fit those data, which may lead to large errors in predicting the firmness of common samples.

Bruise ratio as an index calculated by a non-destructive imaging approach showed a

strong correlation with human assessment measured in a destructive manner. In addition, in

the statistical tests, bruise ratio index was equivalent to firmness measured by instruments

but better than firmness predicted by using hyperspectral imaging with the PLSR model.

Therefore, bruise ratio index could be an effective index for quantification and assessment of

blueberry bruising. Potentially, this method could also be used for assessing bruises of other

berry fruits.

8.5 Conclusions

The proposed non-destructive approach based on NIR hyperspectral imaging was an accurate

and stable method to detect blueberry bruising. Compared with traditional indices, bruise

ratio index was an effective index for quantification of blueberry bruising. Therefore, the

proposed method and index could be used to non-destructively quantify and assess blueberry

bruising by both researchers and the commercial industry. Future studies will be focused on

feature selection and classifier optimization to further improve the efficiency and accuracy

of the method, enabling the proposed method for online sorting of bruised blueberries.
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Chapter 9

Limitations and Future Work

9.1 Limitations

In this dissertation, the developed data acquisition system and analytical methods strongly

enhanced the sensing and analysis capability for field-based, high-throughput plant phe-

notyping and for laboratory-based postharvest quality assessment. Extracted phenotypic

traits also demonstrated the usefulness for genetics/genomics studies, breeding programs,

and precise farm management in small- and medium-scale experiments, proving the value

of technologies developed for improving agricultural productivity and sustainability. Cotton

and blueberry, which represented a typical field crop and a specialty crop respectively, were

used as model crops. The system developed and analytical methods applied herein could

be potentially extended to plant phenotyping and postharvest quality assessment for other

crops. However, several limitations were identified in this dissertation:

1. Plant structure, as an important aspect of plant morphology, needs to be further

studied by using new 3D imaging modalities that can acquire high resolution, full-view

3D point clouds for plants in the field. Important parameters (e.g., internode properties

and branch angles) are expected to be extracted from those high resolution, full-view

3D point clouds, supplementing the current quantification of plant morphology.

2. As the primary focus was to achieve the best detection and counting accuracy, imple-

mentations of CNN-based approaches developed for seedling and flower detection and

counting were not optimized for computing efficiency, which prevents the use of those

approaches in embedded systems and online applications.
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3. DeepFlower framework did not take full advantage of using images taken from mul-

tiple viewing angles for bloom detection and counting, which significantly reduced the

counting accuracy after certain plant growth stages.

4. Optical properties of bruised blueberry tissues have not been thoroughly studied in

this dissertation, limiting the understanding of fruit bruises and the optimization of

sensing and processing methods for bruising detection and quantification.

9.2 Future Work

Due to the time and scope limitations of this dissertation, future studies are expected to

address several issues identified:

1. Multi-year and multi-location experiments are necessary to validate the developed

methodology for estimation of canopy-level photosynthetic efficiency using a passive

sensing approach. Through these experiments, it is expected to conclusively obtain the

optimal method for using diurnal SIF measurements to estimate maximal fluorescence

for stressed plants.

2. Nationwide collaborative efforts are expected to establish large, open, and annotated

datasets and benchmarks for agricultural applications (e.g., plant phenotyping), which

can significantly facilitate the adoption of DL techniques for plant phenotyping.

3. Efficient transfer learning/active learning methods will significantly improve the use of

deep learning techniques for a wide range of agricultural applications.

4. It is worthwhile to explore an end-to-end CNN meta-model for fusing multimodal

imaging data for the understanding of plant development.

5. Several methods reported in this dissertation are expected to be applied in large-scale

experiments to leverage genetics/genomics studies.
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6. In the future, robotics and information systems technologies can be used to further

improve the automation of data collection, management, and processing, thereby pro-

ducing a data-driven system that could support both agricultural production systems

and scientific research.
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