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ABSTRACT 

In Livestock applications, genome wide association studies and genomic selection are 

regularly conducted using purebred populations.  Estimation and often validation of SNP are 

carried out using primarily pure bred animals. This process was successful when estimated SNP 

effects were used to predict genomic breeding values of animals of similar breed. However, it 

fails at different degrees when these SNP estimates are used for genomic prediction in other 

breeds or crossbred animals. Current approaches for dealing with admixed and crossbred 

populations in genomic selection rely on using different groups of pooled animals in the training 

and validation sets, and hence are data dependent and often lead to reduction in accuracies for 

animals in the pure breed populations. In an admixture population or in presence of crossbred 

animals, pooled data based methods assume that SNP effects are the same across breeds or sub-

populations. This assumption is inaccurate due to the fact that several parameters such as allele 

frequencies, strength of linkage disequilibrium, and linkage phase change across sub-

populations. To remedy the problem, we proposed a multi-compartment model where the effect 

of an SNP could be different between breeds and parameterized as a function of its effect on one 

of the breeds in the pooled population through a one to one mapping function. In a simulation 

study, it was shown the proposed multi-compartment model is clearly superior to the pooled 



 

 

breed approach as it accounts for the difference in SNP effects across divergent lines. Its 

superiority compared to the pooled data approach ranged from approximately from 17 to 47% 

and increases as the divergence between lines increases. However, the proposed multi-

compartment model suffers from the high dimensionality of the unknown parameters to estimate. 

In fact, an extra parameter per SNP and per component in the admixed population is needed to be 

estimated. Although the model works well when the number of animals in each breed is 

reasonable, it performance degrades as the number of animals in some lines decreases, making 

the estimation of their corresponding SNP effects numerically instable and, in extreme cases, 

statistically inefficient (severely biased). To overcome this problem, we proposed not to estimate 

a mapping parameter for each SNP rather to build a model  as a function of information already 

available in the genotype data via a hierarchical structural model. In this study, the genetic 

difference between lines was modeled as a function of the change in linkage disequilibrium and 

the potential change in linkage phase. 

INDEX WORDS: Genomic selection, SNP, admixed, linkage disequilibrium 

 

 

 

 

 

 

 

 

 



 

 

 

 

GENOMIC SELECION IN GENETICALY HETEROGEOUS POPULATIONS 

By 

  El Hamidi Abdel Hay 

 

BS, Southern Polytechnic State University, 2008 

MS, University of Georgia, 2011 

 

 

A Thesis Submitted to the Graduate Faculty of the University of Georgia in Partial 

Fulfillment of the Requirements for the Degree 

 

DOCTOR OF PHILOSOPHY 

 

 

 

ATHENS, GEORGIA  

2014 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2014 

EL Hamidi Abdel Hay 

All Rights Reserved 



 

 

 

 

GENOMIC SELECION IN GENETICALLY HETEROGENEOUS  POPULATIONS 

 

by 

El Hamidi Abdel Hay 

 

 

 

 

 

Major Professor: Romdhane Rekaya 

                                                                                                  Committee:         Ignacy Misztal  

                                                                                                                          J. Keith Bertrand 

                                                                                                                             Sammy Aggrey 

Electronic Version Approved:  

Maureen Grasso  

Dean of the Graduate School  

The University of Georgia  

December 2014 

 



iv 

 

 

 

DEDICATION 

 

 

To: My Family. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

 

 

ACKNOWLEDGEMENTS 

I would like to express my sincere appreciation to Dr Romdhane Rekaya for his 

guidance, support and input. Without him I could not have done it. I would like to also thank the 

entire animal and breeding genetics group at The University of Georgia.  

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS…………………………..………………………...…………………v 

LIST OF TABLES…………………………………………………………...……..……………vii 

LIST OF FIGURES……………………………………………………………………………..ix 

CHAPTER 

1 INTRODUCTION………………………………………………………………………..1 

2 LITERATURE REVIEW………………………………………………………………....3 

3 A MULTI-COMPARTMENT MODEL FOR GENOMIC SELECTION IN 

ADMIXTURE POPULATIONS………………………………………………………...23 

4 A STRUCTURAL MODEL FOR GENETIC SIMILARITY IN GENOMIC SELECTION 

OF ADMIXED POPULATIONS………………………………………………..………48 

5 USE OF OBSERVED GENOMIC INFORMATION TO INFER LINKAGE 

DISEQUILIBRIUM BETWEEN MARKERS AND 

QTLS……………………………………………...……………………………………...68 

 

6 CONCLUSIONS………………………………………………………………………...85 

 

 



vii 

 

 

 

LIST OF TABLES 

Page 

Table 3.1: Correlations between true and molecular breeding values using different training and 

validation datasets using heritability of 0.3 and 0.5 for lines A and B………………42 

Table 3.2: Correlations between true and molecular breeding values using pooled data method 

and multi-compartment model for heritability 0.3………………………………...…43 

Table 3.3: Correlations between true and molecular breeding values using pooled data method 

and multi-compartment model for heritability 0.5………………………………...…44 

Table 3.4: Correlations between true and molecular breeding values using pooled data method 

and multi-compartment model for different population size in the case of α~ U [-2, 2] 

and a heritability of 0.3………………………………………………………………45 

Table 3.5: Gain (loss) in prediction accuracy using pooled data model and multi-compartment 

model…………………………………………………………………………………46 

 Table 4.1: Simulation parameters………………..………………….……………………..……64 

Table 4.2: Accuracy of genomic prediction using the pooled data (M1), the multi-compartment 

(M2) and the structural (M3) models ……………………….……………………...65 

Table 4.3: Genomic prediction accuracy when training and validating on the same sub-

population…………………………………………………………………………..66 



viii 

 

Table 4.4: Accuracy of genomic prediction from different validation data sets using pooled 

reference population (Line A and Line B)……………………………………..…….67
 

 Table 5.1: Linkage disequilibrium between markers and QTLs for breeds A and 

B……..…………………………………………..……….……………………..……80 

Table 5.2: Mean and standard deviation of change of LD between markers……………………81 

Table 5.3: Coefficient of determination for models M1 and M2 in the second simulation scenario   

 …………………………………………………………………………………………………...82 

Table 5.4: Average coefficient of determination over all QTLs for models M1 and M2 in the 

second and third simulation 

scenarios...…………………...……………………………………………………………..…….83 

 

 

 

 

 

 

 

 

 



ix 

 

 

 

LIST OF FIGURES 

Figure 3.1: Q-Q plot of simulated α values……………………………………………………...47 

Figure 5.1: Linkage disequilibrium between markers and QTL for breeds A and B ……...........84 

 

 



1 

 

 

 

CHAPTER 1 

INTRODUCTION 

With the advancement of high-throughput genotyping technologies, genetic improvement 

of livestock species and plants has changed dramatically. Before the use of genomic information, 

animal breeders relied on the use of the BLUP methodology (Henderson, 1984) to rank and 

select genetically superior animals. Needless to say, BLUP technic worked extremely well and 

has led to substantial genetic gain. It is still the most used method for genetic selection in 

livestock and poultry species. Unfortunately, classical genetic improvement suffers from few 

limitations. Such limitations are the need for continuous phenotypes collection, pedigree 

recording and also the long generation interval in some species. The completion of the human 

and several livestock genomes was a major breakthrough, and it provided an unprecedented 

opportunity to understand and dissect traits important to the livestock industry. Currently it is a 

routine to genotype animals for thousands of single nucleotide polymorphisms (SNP), generating 

high density panels. These high density marker panels were designed to capture linkage 

disequilibrium between SNP markers and potential quantitative trait loci (QTL). These SNP 

markers could be used to compute genomic estimated breeding values (GEBV) as suggested by 

Meuwissen et al. (2001) leading to the so called genomic selection. Several studies have shown 

that high accuracies for GEBV can be obtained compared to traditional EBV and a substantial 

decrease in generation interval is achieved (Meuwissen et al., 2001; Shaffer et al., 2006). 

Currently, genomic selection is carried out using two alternative methods either multi-step 

procedure (Goddard and Hayes, 2007) or single step procedure based on BLUP methodology 
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that uses a relationship matrix merging pedigree and genomic information (Aguilar et al., 2010). 

Genomic selection is often conducted using purebred populations. Training and validation are 

mostly carried out using a select elite set of pure bred animals (i.e. proven sires). One major 

limitation of genomic selection is prediction equations derived from one breed couldn’t be 

applied to other breeds or crossbred animals. This situation could be problematic to some 

segment of livestock industry (beef cattle, swine or poultry) where the traits of interest are 

measured in crossbred or admixed populations with uncertain breed composition (Kachman et 

al., 2013; Toosi et al., 2009). Current approaches for dealing with admixed and crossbred 

populations in genomic selection relies on adjusting genomic matrix to account for different 

breeds or pooling different breeds or lines of animals in the training set. However pooled data 

approach suffers from few problems such as data dependence and reduction in accuracies for 

animals in the pure breed populations.  

In this dissertation project, an innovative method for adjusting for the heterogeneity of 

the data by allowing SNP marker effects to change across different subgroups was proposed and 

evaluated using simulated data. This new method present a clear departure for existing methods 

that assume constant SNP effects across breeds or lines. The objectives of this research project 

are the following: 

1) Develop a hierarchical Bayesian model that allows for the change of SNP marker effects 

between different breeds. 

2) To build a model for the change in SNP marker effect across lines as a function of 

information available in the observed marker genotype data via a hierarchical structural 

model. 
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CHAPTER 2 

LITERATURE REVIEW 

Use of Genomic Information 

With the completion of cattle genome in 2004 and the advancement in genotyping and 

sequencing technologies it is now possible to efficiently genotype animals for thousands of 

single nucleotide polymorphisms (SNP), generating high density marker panels. These high 

density panels provided an opportunity to identify SNP markers in linkage disequilibrium with 

potential quantitative trait loci (QTL) or identify functional genes. There are many benefits of 

performing genome wide association studies (GWAS) in animal agriculture. By using groups of 

markers, the effects of genomic regions can be estimated and combined to form genomic 

estimated breeding values (GEBV) as suggested by Meuwissen et al. (2001). This method is a 

marker assisted selection which is referred to in the literature as genomic selection. These 

GEBVs are more accurate in estimating the true genetic potential of an animal than those 

obtained using the classical estimated breeding values (EBVs). Additionally, GEBVs can be 

calculated early on in the life of an animal, thus substantially reducing the generation interval as 

shown in a study by Schaeffer (2006) and others. The increased accuracy and the reduced 

generation interval will lead to an increase in the genetic response. Furthermore, GWAS is a 

useful tool in the discovery of functional variants, and /or causal mutations affecting 

economically important traits. Such discovery could be of great importance for the understanding 

of the genetic mechanisms underlying complex traits (Hirschhorn et al., 2005) and an 

opportunity for further improvement of selection methods. Using multiple regression or variance 
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component based models, substantial progress has been achieved in the last ten years in 

estimating genomically enhanced breeding values (König et al., 2009). Several breeding 

associations and breeding companies have already started using such information in their genetic 

selection programs. Several studies showed a substantial increase in reliability using genomic 

information compared to classical methods (Harris and Johnson 2010; Su et al., 2012). 

Unfortunately, genome wide evaluation methods suffer from few limitations such as the large 

size of genotypic data, population stratification and genomic pre-selection.   

Genome Wide Association Studies 

Genome wide association studies (GWAS) rely on estimating the association between 

phenotypic variation and a large number of genetic variants such as SNP markers. GWAS is a 

useful tool; it has led to several discoveries in human applications, livestock and plants (Hindorff 

et al., 2008; Visscher et al., 2012). The incentive of performing GWAS in livestock animals is 

the discovery of genes controlling economically important traits. Dairy cattle are ideal 

populations to perform GWAS due to the small effective population size and the strong artificial 

selection that has been applied over time. These population characteristics create strong blocks of 

LD, making association studies informative and more accurate. A study by De Roos et al. (2008) 

showed that in order to find significant associations in dairy cattle, SNP markers should be 

placed approximately every 10 Kb. Using dairy cattle population, Pryce et al. (2009), carried out 

a genome wide association study to validate and identify gene regions controlling production and 

fertility traits. Significant associations were observed such as a putative QTL on chromosome 18 

affecting fertility. Additionally, several other mutations affecting milk production were 

validated.  A genome wide association study by Guo et al. (2012) was carried out and revealed 

several candidate genes that control production traits in cattle. Daetwyler et al. (2007) performed 



5 

 

a genome scan in Holstein cattle and reported several associations between SNP markers and 

potential QTLs. Significant regions in Bos Taurus autosomes were found to be associated with 

milk yield and protein yield.  

In human applications, genome wide association study was not as successful. Many genetic 

variants were reported as having an association with a certain disease or a trait, however majority 

of these variants have little to no established biological relevance (McClellan and King, 2010). 

Genome wide association studies (GWAS) suffers from a major problem which is the high 

dimensionality of the parameter space causing a large number of false positives. Furthermore, 

GWAS is still unable to identify sufficient number of variants that could explain the majority of 

the variability observed in traits of interest. A famous example is “lost heritability” in the case of 

human height (Maher, 2008).  Studies showed that this lost heritability problem is largely due to 

the lack of power to identify variants with small effects which jointly explain large portion of the 

total genetic variation. Further, complex traits are often under the control of genetic and 

environmental factors and their potential interaction. Thus, detecting genetic variants associated 

with these traits is challenging especially when these variants have moderate to small effects. 

Genomic Selection 

Genomic selection was first proposed by Meuwissen et al. (2001), a decade later it has 

completely changed genetic selection and improvement of livestock species. Genomic selection 

consists of the prediction of the genetic merit of animals based on a high number of genetic 

markers that are in linkage disequilibrium with quantitative trait loci. The techniques used to 

implement genomic selection, the parameters that affect its accuracy, and some limitations of the 

method will be discussed in the next section. 
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Linkage Disequilibrium  

Genomic selection relies on linkage disequilibrium (LD) between markers and 

quantitative trait loci. Linkage disequilibrium is the non-random association of alleles at different 

loci. When the physical distance separating two genes is short, these two genes will tend to get 

inherited together. LD is affected by factors such as effective population size, evolutionary 

forces, mutation and also admixture and migration (Hill and Robetson, 1968; Sved, 1971; Ardlie 

et al., 2002). Linkage disequilibrium is computed using either quantities D’ or r
2
. Both methods 

are commonly used; D’ is a measure of LD from a biological perspective which measures the 

probability of possible haplotypes. On the other hand, r
2 

is a statistical measure of the correlation 

between two loci; it ranges between 0 and 1, 0 being no linkage disequilibrium and 1 being 

perfect linkage disequilibrium. 

Assuming two loci and two alleles for each locus (A, a, B, b) and the genotypic frequencies of 

AB, Ab, aB and ab are f11, f12, f21 and f22 respectively. Linkage disequilibrium, D, is calculated 

according to Hill and Robertson, (1968) as the following: 

D= f11- f22- f12 f21 

Among all species, humans have the lowest extent of linkage disequilibrium due to a large 

effective population size. Some studies reported that LD extents to approximately 50 Kb 

(Pritchard and Przeworski 2001; Maniatis et al., 2002; Weiss and Clark, 2002). In Livestock 

species, LD is stronger than in humans as a result of stronger natural or/and artificial selection 

leading to  smaller effective population size (Nsengimana et al., 2004). In a study by McRae et 

al. (2002), genetic markers were used to assess the extent of LD in two sheep populations. The 

study showed high levels of LD extending for tens of cM, and decreased as the physical distance 
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between markers increased.  Further, measuring LD could be difficult as several parameters 

could affect the final outcome. The type of markers used to measure LD is important; LD 

measure in humans using SNP markers is smaller when using microsatellites (Pritchard et al., 

2001). Most studies measuring LD in cattle use microsatellite markers instead of SNP markers, 

since microsatellites tend to have higher heterozygosity.   

Genome wide association studies (GWAS) and genomic selection strongly depend on the 

strength of LD between SNP markers and potential QTLs affecting traits of interest. In a study 

by Khatkar et al. (2008) showed that in the case of association mapping in Holstein-Friesian 

cattle, one SNP marker is needed every 40 Kb.  The need of high density SNP marker panels is 

justified, since they capture LD between SNPs and QTLs. However, genotyping for high density 

panels is still relatively expensive. To overcome this issue, several methods have been proposed 

to impute SNP marker genotypes. 

Imputation of SNP Genotypes  

The cost of genotyping is still relatively high and different sizes of SNP marker panels 

are available ranging in density from few thousands SNPs to hundred thousand SNPs. A 

plausible solution to controlling the cost of SNP genotyping is to genotype animals for cheap low 

density panels and then impute the missing genotypes to construct a higher marker density map. 

Several methods have been developed to impute missing genotypes. These methods could be 

classified into two categories: methods based solely on linkage disequilibrium (population based 

methods) and methods which exploit linkage disequilibrium and pedigree information (family 

based methods). The first type of imputation methods is used mainly in human applications due 

to the lack of pedigree information, while the second type is used in animal agriculture. For 
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instance, Fast-Phase algorithm (Scheet et al. 2006) utilizes population based linkage 

disequilibrium. It is based on the idea that haplotypes in a certain population cluster together, so 

a hidden markov chain was implemented (Scheet et al., 2006) to predict SNP marker genotypes. 

In another study, a neural network approach has been adopted to impute missing SNP genotypes 

and it showed decent levels of accuracy (Sun et al., 2008).  

Genotypes phasing is also of a great importance in animal agriculture. Knowing the source of 

alleles of the genotype is useful in QTL mapping, understanding the underlying biology of the 

traits of interest and in detecting genetic imprinting. Most imputation algorithms have the ability 

of phasing genotypes. Daetwyler et al. (2011) described an imputation and phasing algorithm 

(ChromoPhase) which utilizes the characteristic of finite populations to phase sections of the 

genome. The algorithm was applied to real Holstein data to impute missing genotypes in a 3k 

SNP chip panel to construct a high density 50K SNP chip panel. The algorithm performed well 

in imputing the missing genotypes with an accuracy of 92% for animals with a genotyped sire. 

Accuracy of the imputation of genotypes depends on different parameters such as the size of 

reference population, the origin of the reference population and the genetic relationships.  Huang 

et al. (2012) showed that the accuracy of imputation increased with the increase of the size of the 

reference population. Increasing the reference population by 100 individuals increased the 

accuracy by 8%. 

Multi-step genomic selection approach 

Multi-step approach are often a regression based method (VanRaden 2008, Hayes et al. 2009) 

and it consists of a sequence of several steps: 1) BLUP analysis to generate pseudo phenotypes 

such as EBVs or de-regressed proofs or DYD, 2) estimation of SNP marker effects often using  a 
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Bayesian based method (Meuwissen et al., 2001; Gianola et al., 2006), and 3) calculation of the 

GEBVs as a linear function of the estimated SNP effects. 

In the multi-step genomic selection, the statistical model generally used is: 

ij

nsnp

j
iji egxy 

1


 

where y is a column vector of pseudo phenotypes such as de-regressed proofs or DYDs, xi is the 

vector of SNP marker genotypes, gi is the SNP marker effect, and e is the error. 

 If the number of SNP markers exceeds the number of phenotype records, the statistical model 

becomes non-identifiable. Implementing the model through a frequentist method is not possible 

and therefore a Bayesian approach is necessary. Meuwissen et al. (2001) proposed different 

Bayesian methods to implement the model above. 

Single-Step Genomic selection 

Single-step genomic selection is a unified approach eliminating the SNP markers effects 

estimation as in the multi-step (Mistzal et al. 2009). This approach is based on an enhanced 

relationship matrix, called a genomic relationship matrix which combines genomic information 

and pedigree information as described by Legarra et al. (2009). The model used is as follows: 

y = Xb + Zu +e 

y is a vector of observations, b is a vector of fixed effects and u is a vector of random animal 

effects and e is the residual. The relationship matrix can be modified to H = A + AΔ to account 

for genomic information and AΔ is the deviation from expected relationships. Matrix G replaces 
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the numerator relationship matrix for the genotyped animals (Legarra et al., 2009). Solving 

MME is exactly the same as in traditional mixed models. A detailed explanation on the 

construction of the G matrix could be found inVanRaden (2008). 

G =ZZ’/ [2Σpiqi]. 

Where Z is nxm genotypes matrix, n is the number of animals and m is the number of genotypes 

and pi and qi are allelic frequencies. Division by [2Σpiqi] makes G analogous to A.  

 Aguilar et al. (2009) implemented a single-step procedure for genomic evaluation using national 

evaluation framework and compared its performance to a multiple-step procedure. The single 

step approach performed similarly to the multi-step approach and yielded similar accuracies. It is 

important to note that the single step approach has many advantages compared to the multiple 

step approach. Multiple step procedure requires 1) classical animal model evaluation 2) 

generation of pseudo phenotypes such as de-regressed proofs or daughter deviations 3) 

estimation of a large number of parameters (VanRaden et al., 2009b; Misztal et al., 2009; 

Aguilar et al., 2009). Single step eliminates all these steps.  

Population Stratification  

Genome wide association study (GWAS) is a useful tool in identifying variants 

associated with a certain trait. This method has been shown to work well when the population is 

homogenous. However when the population consists of different subgroups of genetically 

distinct individuals, GWAS performs poorly. Accounting for population stratification is crucial 

and substantial literature has been already published (Yu et al., 2006; Kang et al., 2010; Price et 

al., 2010; Wang et al, 2014). 
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Population stratification and heterogeneity is also a problem in the animal genomic field. 

Genomic selection is usually conducted on purebred animals and it works well when sufficient 

genotypes are available. Unfortunately, these ideal conditions are often violated at different 

degrees when only limited number genotypes are available for a breed or a crossbred sub-

population. Additionally, for some commercial level animals (often crossbreds), phenotypic 

information is seldom available limiting thus the potential use of genomic prediction.   In 

genomic selection, SNP marker effects are estimated using a training population or e reference 

population. The latter consists of individuals with both genotypic and phenotypic records. The 

validation data set contains individuals without phenotypic records, SNP marker effects 

estimated from training data set are used to predict genomic estimated breeding values (GEBV). 

Several studies showed that applying SNP marker effects estimated in a certain breed do not 

predict accurately GEBVs in another breed (Hayes, et al., 2009; Erbe et al., 2012; Weber et al., 

2012).  

Genomic selection is based on assumptions which fit a single breed scenario, however 

sometimes the population of interest is an admixed or crossbred population as mentioned earlier. 

Population make-up is a major factor in determining the accuracy of genomic predictions 

(Goddard, 2009; Habier et al., 2007, 2010). In a study by Daetwyler et al. (2012), they 

decomposed the accuracy of genomic prediction into the contributions from population structure 

and LD between SNP and QTL in a multiple breeds of sheep.. They concluded that the accuracy 

of genomic predictions strongly depends on the population structure.  

In a study by Wientjes et al. (2013), they investigated the effects of relationships and linkage 

disequilibrium between marker and QTL on the accuracy of genomic predictions. Their results  

showed that  accuracy of genomic predictions depends on linkage disequilibrium and on the  
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extent of the relationship between the reference population and the validation population. Toosi 

et al. (2009) carried out a simulation study using different training population structure and  their 

results showed that the accuracy of prediction is highest when the same breed is used in training 

and validation data sets. The accuracy decreased with the decrease in the genetic similarity 

between training and validation populations. 

As indicated  earlier, genomic selection could be implemented  through two approaches: 1) 

variance component based approach such as the  single step procedure where a  a genomic 

relationship matrix instead of pedigree relationships is used or 2) a regression based approach 

where first SNP effects are estimated in a training data set and then tested on a validation set. 

This multi-step approach has been implemented through different procedures, especially 

Bayesian methods via Markov Chain Monte Carlo (MCMC) techniques.. Hayes et al. (2009) 

showed that using a genomic relationship matrix to carry out genomic selection is an attractive 

approach; however it does not perform as well as Bayesian approaches in the case of multiple 

breed populations. It was concluded  that the accuracy of genomic prediction not only depends 

on LD and population structure but also on the type of method used to implement genomic 

selection (Hoze et al., 2014). 

Population stratification is a hot area of research in both human genetics and in animal and plant 

breeding and genetics. Several methods have been proposed to deal with this issue.Genomic 

selection is based on estimating genetic merit based on a large number of SNP markers spread 

across the genome (Meuwissen et al., 2001). The accuracy of genomic selection depends on 

different factors. A major factor is the size of the reference population (VanRaden et al., 2009; 

Schenkel et al., 2009; Zhou et al., 2013). For instance, VanRaden et al. (2009) showed an 
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increase in coefficient of determination with increasing the number of bulls in the reference 

population. 

 One of the main limitations of genomic selection is prediction across different breeds or lines. 

SNP markers estimated in one breed are poor predictors of genomic estimated breeding values in 

other breeds. This is due to several genetic parameters changing across breeds,   1) linkage 

disequilibrium 2) allele frequencies and 3) linkage phase.  The best scenario of carrying out 

genomic selection is training and validation on the same breed. However, in some cases the 

reference population consists of a mixture of different breed or/and crossbred animals with some 

of the components of the population have limited number of phenotypes and SNP marker 

genotypes. In such scenario, within breed genomic selection is limited or not possible. One 

potential solution that has been proposed was to  to pool data from different breeds into one large 

multi-breed reference population. De Roos et al. (2009) assessed the accuracy of genomic 

prediction using a simulated multiple breed training population consisting of two divergent 

breeds. The results showed an increase in accuracy when the two breeds were pooled together to 

construct the training population. This could be beneficial when one of the breeds is too small for 

population specific analysis. In the case of training on one population and validating on another 

one, the accuracy of genomic prediction was extremely  low indicating low to no predictive 

power. Furthermore, the study revealed that heritability and marker density has a strong impact 

on the accuracy of genomic predictions. In an another simulation study Toosi et al. (2010) 

assessed the impact of the training population structure on the accuracy of genomic predictions. 

Their results showed that training and validating on the same population yielded the highest 

accuracy, and the lowest accuracy was observed when training on one population and validating 
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on a different one. Pooling populations in the training population resulted in accuracies in 

between the two previous described scenarios.  

Genomic selection is often conducted on purebred animals to improve commercial animals 

which are crossbred animals. In a study by Kizilkaya et al. (2010), accuracy of genomic 

prediction was compared between two scenarios, the first scenario is training on purebred 

animals and validating on muli-breed animals and the second scenario is training on multi-breed 

and validating on purebred animals. The results showed  that the accuracy of genomic prediction 

was higher when training on purebred animals and validating on multi-breed animals than 

training on multi-bred and validating on purebred population. Their argument was that  purebred 

animals have greater levels of linkage disequilibrium in purebred populations than multi-breed 

populations. Also, they argued that in order to increase genomic prediction accuracy across 

different breeds, a higher number of markers is required.  

More recently, Kachman et al. (2013)  compared the accuracy of genomic prediction using single 

and multiple breed training population in real beef cattle data. The study showed that prediction 

accuracy of genomic breeding values for breeds that were not in the training population was low. 

In the case of breeds included in the training population, the accuracies did not differ between 

using single breed training population or multiple breed training population. Similar results were 

reported by Weber et al. (2012). Genomic prediction accuracy when training on multi-breed 

populations was higher for Angus and Herford since they had large number of records in the 

training population. On the other hand, accuracies were lower when training on single breed due 

to the small number of records in the training population. 
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In dairy cattle, Olson et al. (2012) investigated three different methods of genomic evaluation 

using three dairy breeds (Holstein, Jersey and Brown Swiss). The first method used a single 

breed training population and validate on a different breed. The second method uses a multi-

breed training population and the third method is a multi-trait model considering each breed as a 

different trait.  The first method performed poorly, the accuracy of genomic prediction was low 

and even negative in some cases.  The second method performed better than the first one due to 

the increase in the training population size especially for Brown Swiss because of its small size. 

Method three slightly increased the accuracy for all three breeds compared to the other two 

methods. 

Pooling multiple breeds to construct a large training population is an attractive approach; 

however it suffers from several limitations due to its strong genetic assumptions. 

 Correcting For Population Stratification 

As mentioned earlier, there are two main approaches to conduct genomic selection. Population 

stratification is a problem that arises using either of the two approaches.  Hayes et al. (2009) 

showed that genomic selection using a genomic relationship matrix does not perform as well as 

Bayesian based methods in the case of multi-breed reference population. 

Using a multiple breed training population intrinsically assumes that SNP marker effects are the 

same across breeds. This assumption is seldom true. Ibanez-Escriche et al. (2009) proposed a 

method to model breed specific SNP markers. They compared the proposed model with  the 

classical across breed genomic selection. The results showed that using a breed specific SNP 

model performed better than the classical model that ignores differencesbetween breeds only 

when the number of markers was small. The divergence of the breeds and the size of training 
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population affected the results. As the breeds diverged, the breed specific SNP model performed 

better. 

A study by Makgahlela et al. (2013) proposed a model to correct for the existence of multiple 

breeds when conducting genomic selection. The proposed model is a random regression like 

approach that accountsfor the percentage of the four breeds considered in the training population, 

their model was:  

i

j

ijijj

j

iji eacbcy  


4

1

4

1

  

Where yi is the deregressed proof of the ith bull, µ is the overall mean, bj is the fixed regression 

effect of breed j (j=1, 2, 3, 4), cij is the breed proportion of bull i, aij is genomic breeding value 

and ei is the residual. 

Their results showed that the model accounting for breed specific SNP marker effects did not 

perform better than the classical genomic model ignoring breed specific marker effects which 

was GBLUP in their case.  

Using a variance components approach, Harris and Johnson et al. (2012) proposed a method to 

adjust the genomic relationship matrix in the case of multiple breed populations. In their study, 

the genomic relationship matrix was extended to multi-breed population by taking into account 

the differences in allele frequencies among breeds. The regression method used to estimate the 

genomic matrix by VanRaden (2008) was extended to a multiple regression to adjust co-

variances between relatives in multi-breed populations. This study showed that ignoring breed 

differences resulted in a biased genomic relationship matrix differing significantly from the 

expected value, the relationship matrix A. 
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Abstract 

Genome wide evaluation methods are often conducted using purebred populations. Estimation 

and often validation are carried out using primarily select elite animals. This process is 

successful when estimated SNP effects are used to predict genomic breeding values of animals of 

similar breed. This approach fails when SNP estimates in one breed are used for genomic 

prediction in other breeds. In this study, we proposed a multi-compartment model where the 

effect of an SNP marker could differ between breeds. A simulation was carried out using an 

admixed population of two divergent lines (A and B) genotyped for 300 markers. Divergence 

between the two lines was artificially created by multiplying marker effects in one line by a 

variable α which was sampled from different uniform or normal distributions. The proposed 

method was compared to the pooled data approach based on the accuracy of predicting the true 

breeding values. The prediction accuracy using the pooled data approach for line A, was 0.40, 

0.39 and 0.38 when α was generated from a uniform distribution between [-2, 2], [-4, 4] and [-8, 

8] respectively. Using our proposed method, the corresponding accuracies were 0.47, 0.46 and 

0.46, respectively. A similar trend was observed for line B with a clear superiority of the multi-

compartment model over the pooled data approach with an increase ranging from 17 to 47% and 

increases as the divergence between lines increases. 

 

Keywords: Genomic selection, Admixed population, SNP 

 

Introduction 

Recent advances in molecular genetics, especially large scale genotyping for single 

nucleotide polymorphisms (SNPs) have provided an unprecedented resource to study association 
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between traits of interest and genomic variation, to compute genomically enhanced breeding 

values, and to ascertain population heterogeneity and relationships between its members. 

Undeniable success was observed in all fronts. In fact, several studies have been successful in 

identifying relevant associations between complex responses and genomic variation for human 

diseases (Visscher et al., 2012), and livestock and plant traits of economic interests (Bennett et 

al., 2010; Bolormaa et al., 2010; Snelling et al., 2010). Although a detailed dissection, at the 

genetic level, of these complex traits is still largely elusive, continuous improvement in the 

quality and diversity of high-through put data as well as the development of more sophisticated 

statistical, bioinformatics, and computational tools are quickly moving us towards the ultimate 

goal. In livestock and plant applications, the benefit of using genomic information is not limited 

to the genetic dissection of complex traits and the potential discovery of relevant or functional 

variants, but also to enhance the estimation of breeding values and ultimately the increase of the 

genetic progress through so called genomic selection. The later uses genomic markers that are in 

linkage disequilibrium (LD) with Quantitative Trait Loci (QTLs) to estimate breeding values. 

Genomic selection is currently implemented either through a multiple regression (RM) or 

variance component (VC) based models. RM approach consists in a multiple step procedure 

where SNP effects are first estimated in a training population and then validated in separate data 

set. Several procedures including single marker analyses (Habier et al., 2007), ridge regression 

(Xu, 2003), non and semi parametric methods (Bennewitz et al., 2009), and Bayesian approaches 

(Meuwissen et al., 2001) have been developed and used to implement the RM. Although these 

methods have different statistical and biological assumptions regarding the data generating 

process, they tend to yield similar results in the majority of the cases and differences are largely 
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due to the genetic architecture of the trait, the genetic relationships between individuals in the 

sample, and the chosen prior information. 

Benefit of genomic selection is a more accurate pre-selection of animals that inherited genes 

or chromosome segments of superior merit (Meuwissen et al., 2001). In Dairy cattle, for 

example, accuracy of the genomically estimated breeding values (GEBVs) are 30 to 70% higher 

than their counterparts obtained used the classical BLUP approach (VanRaden et., 2009; Harris 

and Johnson 2010; Su et al., 2012). Additionally, genomic selection allows for a significant 

reduction of generation interval as young animals could be genomically evaluated at birth or 

even before; thus reducing or even eliminating the need to wait for several years (depending of 

the specie and the trait) until enough phenotypic information is collected and a reliable genetic 

evaluation is conducted. Thus, it is not surprising that genomic selection is quickly becoming the 

method of choice for genetic evaluation, encouraged by the continuous decrease in genotyping 

costs despite the substantial increase in the density of commercial single nucleotide 

polymorphism (SNP) marker panels. Currently, genome wide association studies and genomic 

selection are often conducted using purebred populations. Estimation and often validation of 

SNP are carried out using a select elite set of pure bred animals (i.e. proven sires). This process 

was successful when estimated SNP effects were used to predict genomic breeding values (or 

pseudo-phenotypes) on animals of the same breed. However, when these SNP estimates are used 

for genomic prediction in other breeds or crossbred animals, it fails at different degrees 

depending on the genetic similarity between breeds in the mixture (Pryce et al., 2011). 

Unfortunately, this situation is not rare in several segments of livestock industry (beef cattle, 

swine or poultry) where the traits of interest are measured in crossbred or mixed populations 

with uncertain breed composition (Toosi et al., 2010). The main reasons that genomic selection 
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is not as successful when predicting genetic merit in admixed or crossbred populations are the 

change in linkage disequilibrium (LD) between markers and QTLs, inconsistency of linkage 

phase across subpopulations, and variation in allele frequencies between breeds (De Roos et al., 

2008; Kizilkaya et al., 2010).  

Accuracy of genome wide evaluation methods crucially depends on the extent of LD 

between markers and QTLs as well as the size of the reference population (De Roos et al., 2009; 

Lund et al., 2011; Brondum et al., 2011). Availability of large enough reference population is not 

always possible especially for breeds with limited number of genotyped and phenotyped animals 

(VanRaden et al., 2009; Hayes et al., 2009). To deal with these limitations, one plausible solution 

is to pool data from different breeds; thus creating a large enough reference population. Although 

this approach will resolve or at least alleviate the lack of power due to limited size of the training 

population, it intrinsically assumes that the SNP effects are constant across all breeds in the 

admixed population. This assumption is seldom true due to changes in several population 

parameters such as minor allele frequencies, strength of LD between markers and QTLs and 

linkage phases across sub-populations. Several simulation and real data studies have been 

conducted to evaluate the adequacy of different pooling strategies for the training and validation 

sets (Toosi et al., 2009; Daetwyler et al., 2012; Olsen et al., 2012). Their results were mixed and 

even contradictory. In general, prediction accuracy increased when subpopulations are 

genetically close and decreases as the genetic distance between components of the admixed 

population increased. More recently, (Kachman et al., 2013) showed that using a multi-breed 

training population did not increase prediction accuracies compared to single breed analysis 

when reasonable number of animals are available in each breed. However, prediction accuracy 

increased for breeds with small number of genotyped animals.  
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Given the limitations of the pooled data approach, several other methods have been 

proposed. These methods can be clustered into two broad groups based on their mode of 

accommodating differences between breeds; either through SNP effects or the genomic 

relationship matrix. Ibanez-Escriche et al. (2009) proposed a method where marker effects were 

estimated based on their population of origin. Unfortunately, this method was not successful for 

high density SNP panels. Karoui et al. (2012) proposed using a multi-breed training population 

that accounts for the difference in genetic correlations between breeds. Their results showed little 

to no increase in accuracy compared to the classical data pooling approach. Through 

modifications to the genomic relationship matrix, Harris and Johnson (2010) proposed a 

generalization of the regression technique used to derive the relationship matrix and Makghlela 

et al. (2012) adopted a random regression type approach that account for breed proportions in the 

population which performed slightly better than models ignoring breed-specific effects. In plant 

breeding, Shculz-Streeck et al. (2012) proposed a model that combines marker main effects that 

are consistent across sub-populations and population-specific marker effects. Although in 

general their results showed a slight increase in accuracy using population specific marker model 

compared to main marker effects model, however there are some cases in which population 

specific model performed worse than main marker effects model. 

It is clear that current approaches for dealing with admixed and crossbred populations in 

genomic selection are far from providing a global answer of this relevant issue. Their results are 

data dependent and could lead to reduction in accuracies for animals in the pure breed 

populations. The objective of this study is to develop a model where the effect of an SNP could 

be different between breeds or lines and parameterized as a function of its effect on one of the 

breeds in pooled population through a one to one mapping function. 
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Materials and Methods 

SNP effects often change between breeds or crossbred groups due to several factors 

including, change of minor allele frequency, strength of LD between markers-QTLs, and linkage 

phase between marker and QTL alleles. From hereafter we will refer to breeds or crossbred 

groups (F1, F2, etc.) in an admixed population as lines. Our idea is based on the possibility of 

inferring change in SNP effects between lines as a function of their genetic similarity. Our 

hypothesis is that the genetic similarity between two lines could be either directly modeled 

through a one to one mapping function between SNP effects or indirectly by using information 

already available in the SNP genotype data. Without loss of generality, assuming an admixture 

population with two lines, the pooled data approach postulates that the SNP effects to be constant 

across lines which is seldom true and depends on the genetic similarity between the lines. Using 

such approach the combined data will be analyzed using the following model: 

ijk

p

k
ikij egxy 

1

       [1] 

where ijy  is the phenotype (or pseudo-phenotype) for animal i in line j (j=1,2),  is the overall 

mean, ikx is the genotype for animal i at locus ),...,2,1( pkk  , kg  is the thk  SNP effect, and 

ije is the residual term. A more realistic model will be to assume different SNP effects between 

the two lines. Assuming that animal i belong to breed 1 and animal j is a member of breed 2, and 

both animals were genotyped for the same set of SNP markers. Their phonotypes could be 

modeled as:  
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where ),...,,( 112111 nyyyy  and ),...,,( 222122 nyyyy  are the vectors of observations for lines 

1 and 2, respectively, kg and *
kg are the effects of the thk SNP effects in lines 1 and 2, 

respectively. 

Furthermore, *

kg  can be written as a linear function of kg  

kkk gg *         [4] 

and equation in [3] becomes  
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where k is an unknown real number indicating the similarity of the effect of SNP k between the 

two lines with: 

 

 

 

Consequently, model in equations [2] and [5] can be rewritten in matrix notation as: 

egX1y  *n        [6] 

where y is the vector of observations for both lines, g is the vector of SNP effects in line 1; X
*
 is 

a modified matrix of SNP genotypes where the elements in rows corresponding to individuals in 

line 2 are multiplied by their respective k . If all k  are equal to one, the matrix X
*
 will be 

identical to the original matrix of SNP genotypes, X, as is the case in the pooled data approach. 
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If the vector α is known, the implementation of model in [5] is straightforward using any of the 

existing methods for genome wide association. Unfortunately, the vectorα is unknown and the 

model in [6] is not fully identifiable. Thus, α and g cannot be uniquely estimated. In order to deal 

with this non-identifiability of the model, a hierarchical Bayesian approach was adopted. 

In the first stage of the hierarchy, the conditional distribution of the data given the 

parameters of the model was assumed to be normal 

 ),*(~,,,,| 22

enne N  IgX1gαXy    

In the second stage, the following priors will be assumed for the model parameters 
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These priors will lead to an implementation similar to BayesA. Although our main 

interest is to estimate the SNP effects in both lines, the fact that the vector α was assumed to be 

unknown preclude us from using the classical flat or uniform prior for the later which will lead to 

a non-identifiable model. To overcome this problem an informative prior for α is needed. The 

following hierarchical prior was assumed: 
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The hierarchical prior in [7] indicates that i follows a mixture of normal distributions 

with unknown variances and that the later follows a half-Cauchy prior distribution. Other than 
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specifying the mean, ,i all remaining hyper-parameters are intrinsically estimated and require 

no user intervention. A reasonable assumption in livestock applications is to set i equal to 1 and 

let the data modify that prior believe based on the level of genetic dissimilarity between the lines 

(breeds) considered in the admixed population. 

Finally, the hierarchy is finalized by specifying prior for the SNP variance 

 ),(~ 222

aai s   

The implementation of the proposed hierarchical model is straightforward as all 

conditional distributions are in closed form being normal for the position parameters and scaled 

inverted Chi square for the dispersion components. The estimates of the SNP effects in line 2 are 

obtained as a by-product of the sampling process of SNP effects in line 1, g, and the elements in 

the vector α as indicated in equation [4]. 

In order to assess the adequacy of the proposed method, simulated and real data sets were 

used. Performance of the proposed method was evaluated based on the accuracy of the estimated 

molecular breeding values (MBV) calculated as: 

𝑀𝐵𝑉𝑖 = 𝜇 + ∑ 𝑥𝑖𝑗𝛼𝑖𝑗𝑔𝑗
𝑝
𝑗=1       [8]  

For simulated data, accuracy was computed as the correlation between the MBV and the 

true BVs. Using real data, a fivefold cross validation was carried out based on the correlation 

between the estimated BVs and MBVs. 

It is worth mentioning that when more lines are included in the admixed population, the 

process presented above is still valid and the only modification is to add an extra vector α for 
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each additional line. SNP effects for additional lines will be estimated as indicated in equation 

[4]. The proposed method was implemented and evaluated using simulated data sets. 

Simulation 

A real data based simulation was carried out. The population consisted of two lines with 

2,799 animals (1,989 in the first line and 810 in the second line) and a pedigree file of 2,799 

animals. Genomic data consisted of SNP genotypes for 300 SNPs. SNP effects, g, for the first 

line were sampled from a normal distribution with mean zero and variance 2

g  equal to 0.01. 

The true genetic merit of each animal was computed as the sum (over all SNPs) of the product 

between each SNP effect and its associated genotype ( k
k

ik gx


300

1

). Phenotypes were simulated by 

adding an error term to the genetic merit. The error terms were simulation for normal distribution 

with mean equal to zero and variance calculated based on a heritability of the trait being either 

0.3 or 0.5.  

To create divergence between the two lines, SNP effects of the second line were 

generated as the product between their counterparts in line 1 and a vector of constants, α. Three 

distributional forms were assumed to generate α: 1) Uniform distributions, 2) normal 

distributions, and 3) mixture of normal and degenerative distributions. Hyper-parameters of these 

distributions control the level of similarity (divergence) between the two lines. 

Results and Discussion 

In order to establish a base for comparison, the two lines were analyzed separately. When 

training and validation were conducted within line, accuracy was 0.47 and 0.29 when heritability 

was equal to 0.3 and 0.67 and 0.40 when heritability was equal to 0.50, for lines A and B, 

respectively. When validation was conducted in the line that was not used in the training, the 
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accuracy was -0.01 for line B and from -0.16 to -0.06 for line A (Table 3.1) when α was sampled 

from U[-2,2] and similar results were observed for the other two intervals (results not shown). 

These results are well in line with those reported in the literature (Hayes et al., 2009; Kachman et 

al., 2013). Correlations between TBV and estimated MBV using pooled data (A+B) for training 

when heritability was equal to 0.30 are presented in Table 3.2. Using uniform distributions to 

create divergence between lines, the correlation decreased with the increase in the variability of 

α. This is expected because the further α deviates from 1 the smaller the genetic similarity is 

between the components of the admixed population.  In fact, when α was sampled from U[-2.2], 

accuracy for line A (B) was 0.40 (0.23), it decreased to 0.39 (0.21) when α was sampled from 

U[-4,4] and then a larger decrease when α was sampled form U[-8,8]. The divergence created 

using the specified uniform distributions is large especially when α was sampled from either a 

U[-4,4] or a U[-8,8]. When α was sampled from a normal distribution N(1,0.01) or an admixture 

of a normal distribution N(1,0.01) and a degenerative distribution on 1, the pooled data approach 

yielded results similar to those obtained using within line analysis for line A and a substantial 

increase for line B (Table 3.2). These results are not surprising given the small variance of the 

normal distribution used to simulate α (0.01). In fact, a close inspection of the simulated values 

for α revealed that they are very close to 1 (Figure 3.1) indicating little to no divergence between 

the two lines. Thus, pooling the data of both lines in this case will increase power with little to no 

bias on the estimation of the SNP effects given the limited divergence between lines. When a 

normal distribution with variance equal to 0.05 was used for simulating α, more divergence was 

created between the two lines (Figure 3.1) leading to a small decrease in accuracies (Table 3.2). 

However, the divergence was not large enough to affect the accuracies obtained using the pooled 

approach. Using the proposed procedure when α was sampled from normal distributions showed 
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similar trend to the pooled approach with an additional again of 4-6% (Table 3.2). The same 

trend was observed when the heritability was equal to 0.5 and α was sampled from uniform 

distributions with different bounds (Table 3.3). As expected there has been an increase in 

accuracies across all simulation scenarios due to the increase in heritability. More importantly, 

the proposed procedure yield results similar to those obtained using the within line analysis for 

line A and a slight increase of accuracies for line B except the case when α was sampled form 

U[-8,8]. Better results were observed for line B, due to its small size (810 records) thus 

benefiting more from the increased power using our proposed compartment model.  

As the two lines diverge, LD profiles are likely to differ or even breakdown. Additionally, LD 

phases between some markers and QTLs may be reversed across lines (de Roos et al., 2008; 

Pryce et al., 2011). Under all simulation scenarios when α was sampled from uniform 

distributions with wide ranges, data pooling approach has resulted in lower accuracies in both 

lines compared to the within line analyses as indicated in Table 3.5. In fact, accuracies dropped 

by 14 to 19% for line A and 20 to 37% for line B depending of the bounds of the uniform 

distribution when heritability was equal to 0.3 and 11 to 20 for line A and 25 to 35% for line B 

when heritability was equal to 0.5. For the same comparisons and using our proposed method, 

there has been little to no drop in accuracies for line A when heritability was equal 0.3 (0 to 2%) 

or 0.5 (0 to 13%). However for line B, our proposed method led in general to a significant 

increase in accuracies ranging 13 to 17% when heritability was equal to 0.3 and from -2 to 5% 

when heritability was equal to 0.5. As indicated before, when α was sampled from normal 

distributions with small variances and heritability was equal to 0.3, both the pooling data 

approach and our proposed procedure have led to an increase in accuracies compared to the 

within breed analyses with a slight superiority of the multi-compartment model (Table 3.2). The 
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results of this simulation are of practical importance and could shed a light into the discrepancies 

of results reported in the literature regarding the performance of the pooled data approach. In 

fact, Kachman et al. (2013) and Weber et al. (2012) reported that the pooled data approach leads 

to a decrease in accuracies for the components of the admixed population, whereas Hayes et al. 

2009, Lund et al. 2011 and Brondum et al. 2011 reported that some component of the admixed 

population could see their accuracy increased using the pooled data approach. Based on our 

results it is likely that these contradictory conclusions could be both true depending on the level 

of divergence between the components of the admixed populations used in these studies. For 

highly divergent lines, the pooled data approach will likely lead to a decrease in accuracies, 

especially for the components of the admixed populations with small number of records. As the 

divergence between lines decreases, the accuracies obtained using the pooled data method will 

approach those obtained using the within line analyses and even leads to increase in accuracy 

when the lines are genetically close.  

In practice, one of the reasons for pooling data from different lines using either the classical 

approach or our proposed procedure is to gain power. When the components of admixture are 

genetically close, the pooling approach is recommended, independently of the size of each line, 

and it will lead to an increase of accuracies. However, when the lines are genetically dissimilar 

data pooling is justified only if all or some components of the admixture are of a small size that 

precludes a within line analysis. To investigate the performance of the proposed method 

compared to classical data pooling approach, different sample size for two divergent lines was 

simulated. When line B has only 400 observations, the proposed method was 15% superior to 

classical data pooling approach for line A and 60% for line B (Table 3.4). Even when both lines 
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have limited number of records (810 observations per line), the proposed approach performed 

better with an increase of accuracies of 14% for line A and 50% for line B.  

The advantage of the proposed method over the pooled data based method is that our method 

does not assume constant SNP effects across the two lines. The assumption of constant SNP 

effects across sub-population is seldom true, due to change in several parameters as mentioned 

earlier.  

Conclusions 

Pooling data from lines or breeds in the training set when conducting genome wide evaluation 

studies seems an attractive approach since it benefits from the increase in power. Its performance 

is variable and depends largely on the genetic similarity between the sub-populations in the 

mixture. When the sub-populations are very close genetically, the pooled data approach even in 

its basic form will result in an increase of accuracies, especially for the lines with limited 

recording. As the genetic similarity between lines decreases, the classical pooled data approach 

becomes inefficient with substantial decrease in accuracies for all components of the admixed 

populations. Thus, in such scenario it is not recommended. However, the proposed multi-

compartment model and based on the simulation results is clearly superior as it allows 

systematically for the accounting of the difference in SNP effects across divergent lines. Its 

superiority compared to the pooled data approach ranged from approximately 17 to 47% and 

increases as the divergence between lines increases. Independently of the genetic similarity 

between lines, the pooled data approach is justified only when not enough data is available for 

each of the components of the admixed population to conduct within line analyses. The current 

simulation parameters do not reflect the actual SNPs density in commercially used panels. Thus, 



38 

 

it is needed that the performance of the proposed model be evaluated when large numbers of 

SNPs are genotyped. Additionally, the proposed method should be evaluated in presence of more 

than two lines and/or crossbreed animals.  
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Table 3.1: Correlations between true and molecular breeding values using different training and 

validation datasets using heritability of 0.3 and 0.5 for lines A and B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Training Data Set Validation h
2
=0.3 h

2
=0.5  

A  A 0.47 0.67  

B  B 0.29 0.40  

A  B -0.01 -0.01  

B  A -0.06 

 

-0.16  
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Table 3.2: Correlations between true and molecular breeding values using pooled data method 

and multi-compartment model for heritability 0.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Pooled data Model Multi-compartment model 

Distribution of α A B A B 

α ~ [-2,2] 0.40 0.23 0.47 0.34 

α ~ [-4,4] 0.39 0.21 0.46 0.33 

α ~ [-8,8] 0.38 0.18 0.46 0.33 

α ~ N(1,0.01) 0.48 0.47 0.50 0.49 

50% α ~ 

N(1,0.01) 50% 

α=1 

0.48 0.46 0.48 0.46 

α ~ N(1,0.05) 0.46 0.44 0.48 0.46 
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Table 3.3: Correlations between true and molecular breeding values using pooled data method 

and multi-compartment model for heritability 0.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              Pooled data Model                     Multi-compartment model 

Distribution of α A B A B 

α ~ [-2,2] 0.59 0.30 0.67 0.42 

 

α ~ [-4,4] 0.56 0.28 0.60 0.42 

α ~ [-8,8] 0.53 0.26 0.58 0.39 
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Table 3.4: Correlations between true and molecular breeding values using pooled data method 

and multi-compartment model for different population size in the case of α~ U [-2, 2] and a 

heritability of 0.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Population Size: A=1989, B=400 Population Size: A=810, B=810 

 Pooled data 

Model 

Multi-

compartment 

model 

Pooled data 

model 

Multi-

compartment 

model 

 

A 

 

0.40 

 

0.46 

 

0.34 

 

0.39 

B 0.10 0.16 0.21 0.32 
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Table 3.5: Gain (loss) in prediction accuracy using pooled data model and multi-compartment 

model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 h
2
=0.3 h

2
=0.5 

Lines Pooled data 

model 

Multi-

compartment 

model 

Pooled data 

model 

Multi-

compartment 

model 

 A (-19%, -14%) (-2%, -0%) (-20%,-11%) (-13%, -0%) 

B (-20%, -37%) (+13, +17%) (-35%, -25%) (-2%, +5%) 
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Figure 3.1 
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CHAPTER 4 

A STRUCTURAL MODEL FOR GENETIC SIMILARITY IN GENOMIC SELECTION OF  

ADMIXED POPULATIONS 
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 Hay, E. and R. Rekaya. 2014. To be submitted. 



49 

 

Abstract 

Current approaches for dealing with admixed and crossbred populations in genomic selection 

rely on using different groups of animals in training sets. These approaches benefit from 

increased power as a result of increasing the size of the training set. However, the performance 

largely depends on the genetic similarity between the sub-populations of the admixed population. 

Our proposed multi-compartment model where the effect of an SNP could be different between 

breeds and parameterized as a function of its effect on one of the breeds in admixed population 

through a one to one mapping function, was able to remediate some problems of the pooled data 

approaches but still suffers from the high dimensionality of the unknown parameters to estimate. 

To overcome this problem, we propose not to estimate the mapping parameter α for each SNP 

but rather to build a model for α as a function of information already available in the genotype 

data via a hierarchical structural model. In this study, α was modeled as a function of the change 

in linkage disequilibrium. An admixed population (A and B) and crossbred populations (AB, 

BA, BxAB, BxBAB) were simulated. Individuals were genotyped for 300 SNPs and measured 

for a quantitative trait with 0.5 heritability. Three analyses were conducted: 1) classical pooled 

data (M1); 2) pooled data using the multi-compartment model and α for each SNP (M2); and 3) 

pooled data using multi-compartment model and our structural model for α (M3). The accuracy 

of (M1) tended to be much lower than using models M2 or M3. The prediction accuracies for 

line A using model M1 was 0.39 compared to 0.56 and 0.43 using M2 and M3, respectively. The 

accuracies using the structural model (M3) resulted in intermediate to those obtained using M1 

and M2. The relatively good performance obtained using M2 indicates that it is possible to 

model α as a function of the information already available in the genotype and to substantially 

reduce the number of parameters to be estimated.  

Key Words: genomic selection, admixed population 
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Introduction 

Genomic selection benefit is a more accurate pre-selection of animals that inherited genes 

or chromosome segments of superior merit (Meuwissen et al., 2001). In livestock, genomic 

selection is becoming a routine technique, mainly due to the decreasing cost of genotyping for 

large number of single nucleotide polymorphism (SNP) markers. Genomic selection uses 

markers that are in linkage disequilibrium with QTLs to estimate breeding values. Currently, 

genomic selection is conducted on purebreds, and training and validating on such data is 

successful. However, when training on purebreds and validating on admixed or crossbred 

animals, this method fails at different degrees depending on the genetic similarity between 

breeds in the mixture (Habier et al., 2010; Wientjes et al. 2013). The main reason genomic 

selection is not as successful when predicting genetic merit of admixed or crossbred  animals is 

the change in linkage disequilibrium (LD), linkage phase, and allele frequencies between breeds 

(De Roos et al., 2008).  

Accuracy of genome wide evaluation methods crucially depends on the extent of LD 

between markers and QTLs (De Roos et al., 2009) as well as the size of the reference population 

(Goddard, 2009). Availability of large reference population is not always guaranteed especially 

for breeds with limited number of genotyped and phenotyped animals (VanRaden et al., 2009; 

Hayes et al., 2009). A plausible solution is the pooled data approach where multiple breed data is 

pooled to create a large reference population (Lund et al., 2011; Brøndum et al., 2011; Kizilkaya 

et al. 2010). Intrinsically, the pooled data method assumes constant SNP effects across breeds. 

This assumption is seldom true due to changes in several parameters such as minor allele 

frequency, strength of LD between markers and QTLs and linkage phases across sub-

populations. Several simulation and real data studies have been conducted to evaluate the 

accuracy of using different training population pooling strategies (Toosi et al., 2009; Heringstad 



51 

 

et al., 2011; Daetwyler et al., 2012; Olsen et al., 2012; Zhou et el., 2014a). Their results showed 

an increase in prediction accuracy when subpopulations are genetically close. Kachman et al. 

(2013) showed that using a multi-breed training population did not increase prediction accuracies 

than single breed training population when the breed had a reasonable number of animals; 

however the prediction accuracy increased for breeds with small number of genotyped animals.  

Similar results have been reported in dairy cattle (Pryce et al., 2011; Hoze et al., 2014). 

Furthermore, accuracies tend to drop when breeds other than the one used in the validation were 

included in the training set (Toosi et al., 2009; Hayes et al., 2009; Ibanez-Escriche et al., 2009). 

More recently, Hay and Rekaya (2014) presented a multi-compartment model to analyze 

genomic information with pooled multi-breed data. Although their approach yielded better 

accuracies in general, it suffers from the high dimentionality of the model and numerical 

instabilities when the number of SNPs is large. This is due to fact that an additional unknown 

parameter is estimated for each SNP in the panel. Numerical instabilities occur when the effect 

of an SNP in one line is very small (close to zero) which in turn leads to an estimate of the 

mapping parameter that tends towards infinity. 

The objective of the present study is to expand the multi-compartment approach for 

admixed populations presented by Hay and Rekaya (2014) through the reduction of the 

dimensionality of the model and the elimination of the numerical instabilities. This will be 

achieved by modeling the mapping parameter as a function of some characteristics of the 

observed SNP genotypes. 
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Materials and Methods 

Statistical method 

Multi-compartmental model for genomic selection in admixed populations:  

The model proposed by Hay and Rekaya (2014) postulates that changes in SNP effects between 

breeds or crossbred groups can be accommodates through a one to one mapping function. Such 

function allows for the expression of SNP effects for all components of the mixture population as 

a function of the estimates of those SNPs in only one of the breeds (lines). Although such model 

showed a clear superiority compared to the pooled data approach using relatively small number 

of SNPs, it suffers for high dimentionality and numerical instabilities. This is true especially 

when high density SNP panels are considered. Similarly to other proposed methods for dealing 

with admixed populations, the approach proposed by Hay and Rekaya (2014) does not allow for 

the estimation of genomic breeding values for non-phenotyped sub-populations. To deal with 

these issues, we hypothesize that the changes in SNP effects between the components of an 

admixed population could be inferred based on criteria already available in the observed SNP 

marker genotypes. 

The multi-compartment model presented by Hay and Rekaya (2014), assuming an 

admixture population of two lines, postulates that any genetically heterogeneous pooled data set 

is generated by different data generating processes governed primarily by the SNP genotypes and 

the effects of associated QTLs. Thus, a simple model to reflect such reality will consists of as 

many compartments as number of components in mixture. Following Hay and Rekaya (2014), 

the model could be presented as: 

1
1

1 ik

p

k
iki egXy 



   [1] 
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1
2 ik

p

k
ikj egXy 



   [2] 

where ),...,,( 112111 nyyyy  and ),...,,( 222122 nyyyy  are the vectors of observations for lines 

1 and 2, respectively.  is the overall mean, ikx is the genotype for animal i at locus 

),...,2,1( pkk  , kg and *
kg are the effects of the thk SNP effects in lines 1 and 2, respectively, 

and ije is the residual term. 

Furthermore, *

kg  can be written as a linear function of kg  

kkk gg *     [3] 

and equation in [2] becomes  

2
1

2 )( ikk

p

k
iki egXy 



   [4] 

where k is an unknown real number indicating the similarity of the effect of SNP k between the 

two lines. 

From the presentation in equations [2] and [4], it is clear that a parameter alpha must be 

estimated for each SNP. Furthermore, such parameter indirectly captures the change of LD 

between the marker and the potential associated QTL(s). Thus, it is reasonable to postulate that 

such change of LD between the SNP markers and QTLs (∆𝐿𝐷𝑀−𝑄 ) could be predicted or at least 

approximated using change in LD structures across markers (∆𝐿𝐷𝑀−𝑀) between different 

components of an admixed population. Although the relationship between ∆𝐿𝐷𝑀−𝑄 and ∆𝐿𝐷𝑀−𝑀 

could be complex (non-linear), some heuristically defined models could be developed. In this 

study, the following model was used to model the relation between of between ∆𝐿𝐷𝑀−𝑄 and 

∆𝐿𝐷𝑀−𝑀. 
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 kkk samaaQMLD 210)__(   [5] 

where kQMLD )__( αk is the change in LD between SNP marker k and the linked QTL(s) 

across the two lines, mk and sk are the mean and standard deviation of the difference of LD 

between marker-marker in the  two lines respectively.  

 Using small simulated data sets where marker and QTL genotypes were known for two 

divergent lines (see next chapter), the model presented in equation [5] was able to predict

kQMLD )__( with sufficient accuracy. In fact, the R
2
 of the model ranged from 0.54 to 0.67. 

Although the prediction was not perfect, it is high enough to warrant its consideration to model 

the change in alpha. Additionally, modeling alpha using equation [5] will reduce the 

dimentionality of the model considerably. In fact, rather than estimating one alpha for each SNP, 

only three parameters (a0, a1, and a2) will be needed using this new parametrization. Furthermore, 

modeling alpha using equation [5] will provide an easy and straightforward way to predict 

genomic breeding values for non-phenotyped lines or crossbred groups and it suffice to calculate 

mk and sk. 

As indicated earlier, the parameter alpha in equation [4] tries to directly model the change 

of LD between markers and QTLs across breed or lines. Thus, it seems reasonable to assume 

equation [5] could be used to model alpha, leading to: 

kkk samaa 210    [6] 

And equation in [4] can be rewritten as: 

𝑦𝑖2 = 𝜇 + ∑ 𝑥𝑖𝑘
𝑝
𝑘=1 (𝑎0 + 𝑎1𝑚 + 𝑎2𝑠)𝑔𝑘 + 𝑒𝑖2 [7] 
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In order to evaluate the adequacy of this new reparametrization, three models were implemented 

and compared using simulated data: 1) classical pooled data (M1), multi-compartment model as 

presented by Hay and Rekaya (2014) where alpha was directly modeled (M2); and 3) the new 

model as presented in equation [5] where alpha is indirectly modeled (M3). All three models 

were compared based on the accuracy of the predicted genomic breeding values defined as the 

correlation between the latter and the true BVs. Additionally, the new method (M3) was 

compared with the classical pooled data approach (M1) in predicted genomic breeding values for 

non-phenotyped crossbred populations. The GEBVs were computed as follow: 

𝐺𝐸𝐵𝑉𝑖 = ∑ 𝑥𝑘𝑖  
𝑚
𝑘=1 𝑔𝑘   [8] 

where xki is the genotype of animal i, gk is the effect of genotype k 

Simulation 

QMSim software (Sargolzaei and Schenkel. 2009) was used for data simulation. A 

randomly mated historical population was generated and used as a base population in order to 

create two pure divergent lines (A and B) with 16,790 and 16,776 animals, respectively. A 

genome of 100cM in length and harboring 300 evenly spaced SNP markers and 3 QTLs was 

simulated. Minor allele frequency of simulated markers was greater or equal to 0.05. QTL 

additive effects were sampled from a gamma distribution with shape and scale parameter equal 

to 0.4. Phenotypes were simulated based on a heritability of 0.5. A descriptive summary of the 

simulated data and genotypes is presented in Table 4.1. 

Several crosses were generated using selected sets of males and females from the two 

lines. Reciprocal F1 crosses (AB and BA) were generated using 200 males from the first line and 

4000 females from the second. Similarly, two backcrosses (BxAB; and BxBAB) were generated 
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using the same approach used for F1 crosses, except that only 2,000 and 1,000 females were 

used, respectively. 

Linkage disequilibrium between different populations was calculated and then used in the 

implementation of the structural model in M3. Linkage disequilibrium between pair of SNP 

markers was computed using the r
2
 coefficient which is a statistical measure of the correlation 

between a pair of loci. 

 

Results and Discussion 

To provide a basis for comparison and to evaluate the performance of the proposed model 

(M3), correlations between estimated and true breeding values when training and validating on 

the same population were calculated and are shown in Table 4.2. Accuracies were reasonably 

high for all populations as expected in the case of training and validating on the same population. 

Accuracies were slightly higher for pure lines A and B (0.85 and 0.88) then crossbred 

populations due to a larger number of individuals in the pure lines. In order to test performance 

of the multi-compartment model (M2) and the structural model (M3) compared to the pooled 

data approach (M1) using a multi-breed population, a reference population comprised of the two 

divergent lines A and B was used. As shown in Table 4.2, when pooling both lines without 

accounting for differences between sub-populations (M1) accuracies tended to be much lower 

than using models M2 or M3. The prediction accuracies for line A using model M1 was 0.39 

compared to 0.56 and 0.43 using M2 and M3, respectively. The accuracies using the structural 

model (M3) resulted in intermediate performance between M1 and M2. This is very likely due to 

the fact that the model used to explain the change in LD between marker and QTLs has an R
2
 

smaller than one. However, a substantial increase in accuracy was still seen compared to M1. In 
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fact, using M3 resulted in an increase in prediction accuracy compared to M1 by 10% and 18% 

for lines A and B, respectively. The largest increase in prediction accuracy, as expected, was for 

the multi-compartment model (M2). In fact, for line A the accuracy increased by 43% (from 0.39 

to 0.56) and 62% (from 0.32 to 0.52) for line B compared to M1. Comparing the two models 

which account for differences between the two sub-populations (M2 and M3), the multi-

compartment model (M2) has results in 30% and 36% superiority for lines A and B, 

respectively. 

These results indicate that when sufficient number of observations are available in the 

training set, as it is the case in this study, and sufficient genetic dissimilarity exists between the 

sub-population, pooled data approaches will result in a decrease of accuracies for some 

components of the population as it was observed in previous studies (Hayes et al., 2009; Erbe et 

al., 2012; Kachman et al., 2013). However, the rate of loss of accuracies depends on the ability 

of the approach to accommodate the genetic differences between components of the population. 

It is clear that M2 has a better handle of the genetic dissimilarity. However, when the size of one 

or all sub-populations is limited, pooled data approached will often result in an increase of 

accuracy for at least some components of the population. Such increase is a function of the 

genetic similarity. As clearly shown in Hay and Rekaya (2014), M2 will result in a better 

performance even in the presence of limited data and extensive genetic dissimilarity  

One of the limitations of M1 and M2 is their inability of predict accurate GEBV for non-

phenotyped populations. To test the ability of the proposed method (M3) to deal with this issue, 

different genotyped but non-phenotyped crossbred populations were used as validation sets to 

mimic real applications, in the sense that phenotypes are not always available for crossbred or 

commercial animals.  As shown in Table 4.4 prediction accuracies are substantially higher for 
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M3 compared to M1 across all validation populations. For example, validating on crossbred 

population (AB) using M1 resulted in an accuracy of 0.11 compared to 0.28 when using model 

M3. The same behavior was seen across all crossbred populations, with a substantial superiority 

of model M3 ranging from 71% to 154%. As expected, as the percentage of line B in the 

crossbred populations increased so did the prediction accuracy using either models M1 or M3. 

This is due to fact that the pooled data of lines A and B were used in the training. Furthermore, 

for (BxBAB) cross (87.5% B), the accuracy (0.36) was very similar to the one obtained for line 

B (0.38) when using M3 but was substantially smaller (0.21) compared to 0.32 (Table 3) using 

M1. 

In general, although the proposed method resulted in a substantial increase in accuracies 

for the non-phenotyped sub-populations compared to M1, its performance is roughly 50% lower 

than the results obtained when training and validation were conducted within the same crossbred 

population. However, this could still be of substantial practical and commercial importance 

especially in situation where no other alternatives are available. 

This study shows that using models which adjust for different sub-populations have a 

positive impact on the prediction accuracy of GEBV. Although the structural model (M3) did not 

perform in the same level as the multi-compartment model (M2), it did however increase 

prediction accuracy compared to the pooled data approach. This increase in prediction accuracy 

was most apparent when crossbred populations were considered as shown in Table 4.4. Pooling 

data approach could be beneficial when the sub-populations are genetically similar. In fact, 

Olsen et al. (2012) reported an increase in the accuracy of genomic prediction using a multiple 

breed reference population, especially for breeds with limited records. Further, Lund et al. (2011) 

and Brøndum et al. (2011) showed a notable increase in accuracy when pooling multiple breeds 



59 

 

in the reference population. Unfortunately, few other studies reported no benefit in genomic 

prediction accuracy when pooling breeds in the reference population (Kachman et al., 2013; 

Weber et al., 2012). However, as discussed earlier, the pooled data approach makes a strong 

assumption of constant SNP marker effects across sub-population (Hayes et al. 2009). The 

proposed model M3 and model M2 tend to relax such assumption. In all simulation scenarios, 

M2 and M3 resulted in higher prediction accuracies compared to M1. As presented in Table 4.2, 

an increase of 10% and 18% in accuracy was observed in line A and line B respectively using 

M3. Genomic selection is primarily conducted in purebred animals. It is of great importance to 

investigate the performance of genomic selection in non-phenotyped commercial animals, such 

as crossbreds and animals with unknown genetic composition. Ignoring differences in the genetic 

parameters (i.e. linkage disequilibrium) between crossbred populations could lead to low 

genomic prediction accuracy or spurious associations. It has been reported that linkage 

disequilibrium is stronger and extends over longer intervals in pure populations than outbred 

populations (Shifman et al., 2003; Lindblad-Toh et al., 2005). To investigate this, genomic 

prediction accuracy was computed validating on four crossbred populations. As Table 4.4 

displays, using the pooled data approach (M1), resulted in low prediction accuracies for all four 

crossbred animals. Accounting for population structure by using model M3, which estimates the 

change of SNP marker effects using the difference in linkage disequilibrium between the 

different crossbred populations increased prediction accuracy substantially.  

Conclusions 

Using a model which allows for SNP marker effects to change across sub-populations did 

improve the prediction accuracy of GEBVs. Pooling data approaches are attractive methods 

since they benefit from the increase in power due to the increase of the size of the training set. 
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However, their performance is variable and depends largely on size and the genetic similarity 

between the sub-populations in the mixture. One of the limitations of current methods for 

genomic prediction in is their inability of predict accurate GEBV for non-phenotyped 

populations. Our proposed method resulted in a substantial increase in accuracies for the non-

phenotyped sub-populations and it could be of substantial practical and commercial importance 

especially in situation where no other alternatives are available. Further, the presented structural 

model could be improved through the inclusion of other explanatory variables that could be 

calculated based on already available data. 
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Table 4.1. Simulation parameters 

Parameter  

Population structure 

Heritability  

Phenotypic variance 

QTL heritability 

Genome size 

Number of Chromosomes 

Number of markers 

Minor allele frequency  

Two divergent Lines (Line A, Line B) 

0.50 

1.0 

0.5 

100 cM 

1 

300 

0.05 
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Table 4.2: Accuracy
1
 of genomic prediction using the pooled data (M1), the multi-compartment 

(M2) and the structural (M3) models
 

Lines M1 M2 M3 

A 0.39 0.56 0.43 

B 0.32 0.52 0.38 
1
The accuracy was calculated as the correlation between the GEBV and EBV, averaged over five 

replications 
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Table 4.3: Genomic prediction accuracy
2
 when training and validating are conducted on the same 

sub-population
 

Sub-population Accuracy 

A 0.85 

B 0.88 

(AB) 0.74 

(BA) 0.75 

(BxAB) 0.78 

(BxBAB) 0.78 
1
The accuracy was calculated as the correlation between the GEBV and EBV, averaged over five 

replications 
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Table 4.4. Accuracy
1
 of genomic prediction in different crossbred sub-populations (Line A and 

Line B were used for training)
 
 

Validation data set Model estimating α Pooled data method 

(AB) 

(BA) 

(BxAB) 

(BxBAB) 

0.28 

0.32 

0.35 

0.36 

0.11 

0.16 

0.18 

0.21 
1
The accuracy was calculated as the correlation between the GEBV and EBV, averaged over five 

replications 
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CHAPTER 5 

USE OF OBSERVED GENOMIC INFORMATION TO INFER LINKAGE DISEQUILIBRIUM 

BETWEEN MARKERS AND QTLS 

 

 

 

3
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1
 Hay, E. and R. Rekaya. To be submitted 



69 

 

Abstract 

Conducting genomic selection in admixed populations is challenging and its accuracy in 

this case largely depends on the persistence of linkage disequilibrium between markers and 

QTLs. Inferring linkage disequilibrium between markers and QTLs could be important in 

understanding the change of SNP marker effects across different breeds. Predicting the change in 

linkage disequilibrium between markers and QTLs across two divergent breeds was explored 

using information from the genotype data.  Two different models (M1, M2) that differ in the 

definition of the explanatory variables were used to infer the level of LD between SNP markers 

and QTLs using all markers in the panel or windows of fixed number of markers. Three 

simulation scenarios were conducted using different number of SNPs and QTLs. In the first 

scenario, the resulting coefficient of determination (R
2
) was 0.65 and 0.52 using M1 and M2, 

respectively. In the second scenario, average R
2
 equaled 0.12 using all markers in the panel and 

0.25 using 100 marker windows. Across the three simulation scenarios, it was clear that a 

significant portion of the variation in the change in LD between SNP markers and QTLs could be 

explained by information already available in the observed SNP marker data. 

  

Key words: genomic selection, linkage disequilibrium, SNP.  

 

Introduction 

Genomic selection is a type of marker assisted selection which involves the estimation of 

genomic breeding values (GEBV) based on a large number of markers across the genome 

(Meuwissen et al., 2001). Genomic selection relies on the assumption that all relevant 

quantitative loci (QTL) are in linkage disequilibrium (LD) with genotyped SNP markers. Thus, 
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linkage disequilibrium or the non-random association of alleles at different loci (Hill and 

Robertson, 1968) across genotyped markers and between the later and QTLs will fundamentally 

condition the efficiency of the association analysis and it is of great importance in QTL mapping, 

genomic selection and genome wide association studies. Although the strength of LD between 

genotyped SNP markers is easy to calculate, inferring the level of LD between SNP markers and 

QTLs is a complex problem due to the unavailability of QTL genotypes in the majority of 

genomic association studies. Although the knowledge of the QTL(s) genotypes or their LD with 

SNP markers in the panel is not needed in association studies, such information could be of great 

interest in some applications such as multi-breed and crossbred genomic selection.  

Genomic selection has been successful in prediction of genomic breeding values. 

However this success did not extend to admixed breeds or crossbreds. Several studies showed 

that the structure of the reference population strongly impacts the accuracy of genomic 

predictions (VanRaden et al., 2009; Hayes et al., 2009; Thomasen et al., 2012; Erbe et al., 2012). 

Moreover, SNP marker estimates derived from one breed have little to no predictive power of 

GEBVs of animals in a different breed (Pryce et al., 2011; Hayes et al., 2009). A potential 

solution would be to use a pooled multi-breed reference population to predict GEBV of animals 

in other breeds or crossbred animals (Heringstad et al., 2011; Daetwyler et al., 2012; Olsen et al., 

2012; Zhou et al., 2013; Hoze et al., 2014). This method showed promising results in improving 

prediction accuracy in the case when a breed has a limited number of records. However, the 

performance of this approach, as expected, depends largely on the genetic similarity between 

components of the admixed population.  

Although simple in its concept, the multi-breed reference population approach makes 

strong genetic and population structure assumptions. In its most basic formulation, it assumes a 
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genetically homogenous population where SNP marker effects are constant across sub-

populations or breeds. Furthermore, it assumes that linkage disequilibrium (LD) between SNPs 

and QTLs is the same across the reference and validation populations. Although that is the case 

for within breed genomic selection, such assumption is often violated when breeds with different 

genetic structure and background are being considered.  This genetic difference between breeds 

is manifested by varying allele frequencies for markers and QTLs, change in LD strength and 

structure, and linkage phase (Goddard et al., 2009; De Roos et al., 2008; Kizilkaya et al., 2010; 

Wientjes et al., 2013).  Furthermore, several studies have evaluated LD blocks in various 

population structures and reported differences in the extent of LD. For example, Thomasen et al. 

(2012) reported differences in LD between the Danish Jersey population and the North American 

Jersey population. In addition, Shifman and Darvasi (2001) showed that LD was several folds 

higher in isolated population than outbred populations very likely due to higher inbreeding. 

Similarly, Lindbladtoh et al. (2005) reported, as expected, larger LD blocks within breeds than 

across breeds. Hay and Rekaya (2014a and 2014b) showed that accommodating the potential 

change in SNP effects between the different components of an admixed population, increased 

accuracies of genomic prediction. When change in SNP effects was directly modeled, substantial 

increase in accuracies was observed compared to the classical pooled data approach. 

Unfortunately, such model suffers from high dimensionality and numeral instability especially in 

presence for large number of SNPs. Their indirect approach to account for change in SNP effects 

was based on heuristically developed structural model using available information on marker 

genotypes.  Although it remedies the problems associated with the direct approach and yields 

better results than the classical pooled data model, its performance are significantly lower than 

the direct approach. These results indicate that change in the distribution of SNP marker 
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genotypes between sub-populations is likely to carry relevant information about change of LD 

structure and strength between markers and QTLs across components of the admixed population 

that could be garnished to account for change in SNP effects.  Since genomic selection largely 

depends on LD structure, it is of great importance to be able to evaluate and infer the magnitude 

of change in LD between SNP markers and QTLs in different populations. This information 

might shed some light on the change of SNP effects across different breeds or lines and how to 

adjust for this change. The objective of this study is to evaluate and infer the change of LD 

between markers and QTLs across two breeds using simulated data sets.  

Materials and Methods 

As indicated in the introduction section, genetic heterogeneity between sub-populations 

leads to change in estimates of SNP effects due to change in LD between observed markers and 

putative QTLs.  The foundation of genome wide associations is that QTL effects can be inferred 

indirectly through their correlation (LD) with genotyped markers. Across sub-population, LD 

structure between markers as well between markers and QTLs changes. Consequently, it is 

reasonable to postulate that change in LD between SNP markers across two sub-populations 

(∆𝐿𝐷𝑀−𝑀) could explain, at least partially, the change in LD between markers and QTLs 

(∆𝐿𝐷𝑀−𝑄). 

 In order to evaluate this hypothesis, several small scale simulations were carried out. In 

these simulations, the genotypes of the QTL(s) and associated SNPs markers were all assumed 

known. Thus, LD between SNP markers and QTL(s) was available. In all cases our goal was to 

test the ability of ∆𝐿𝐷𝑀−𝑀 to predict ∆𝐿𝐷𝑀−𝑄. 
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Simulation scenarios: Three simulation scenarios with varying number of SNP markers and 

QTLs were carried out to test the postulated hypothesis. In all cases, two divergent sub-

populations for a trait with heritability equal to 0.5 were generated. A full description of the 

simulation parameters are presented in the next section. Two models (M1, M2) were evaluated in 

their ability to predict the change in ∆𝐿𝐷𝑀−𝑄: 

∆𝐿𝐷𝑀𝑘−𝑄 = 𝑎0 + 𝑎1Mk + 𝑎2Sk + ek   (M1) 

∆𝐿𝐷𝑀𝑘−𝑄 = 𝑏0 + 𝑏1𝑀𝑅k + 𝑏2SRk + ek            (M2) 

where ∆𝐿𝐷𝑀𝑘−𝑄 is the difference of LD between marker k and the QTL across the two 

sub-populations, Mkand Skare the mean and standard deviation of the difference of LD between 

marker k and the remaining SNPs or a specified numbers of markers with a fixed genomic 

window (for example 100 adjacent SNP markers), respectively. MRkand SRkare the same as 

Mkand Sk, except they represent the relative mean and standard deviation of the difference in 

LD. ajand bj(𝑗 = 0, 1, 2)are unknown regression coefficients.  

Linkage disequilibrium across SNP markers and between SNP markers and QTLs in both 

lines was calculated using the 𝑟2coefficient as proposed by (Hill and Robertson 1968) using the 

following general equation.  

𝑟2 =
𝐷2

𝑓(𝐴)𝑓(𝑎)𝑓(𝐵)𝑓(𝑏)
 

where D is calculated as D= f(AB) – f(A)f(B) and f(AB), f(A), f(a), f(B) and f(b) are observed 

frequencies of haplotype AB and of alleles A, a, B, and b, respectively. 

 For all cases and for both models, unknown coefficients were estimated using the proc 

glm of SAS software (SAS Institute, Cary NC). 
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Data simulation: QMSim software (Sargolzaei and Schenkel. 2009) was used for data 

simulation. A historical population of unrelated individuals was simulated and used as a base 

population for two pure breeds (A and B). Breeds A and B consisted of 1677 and 1668 

individuals respectively. The simulated genome consisted of 1 chromosome, with varying 

number of QTLs and varying number of SNP markers with equal spacing of an average 50Kb. 

Minor allele frequency was set to 0.05. QTL additive effects were sampled from a gamma 

distribution with shape and scale parameter equal to 0.4. Phenotypes were simulated based on a 

heritability of 0.5. Three simulation scenarios were carried out. In the first scenario, 10 SNP 

markers and 1 QTL were considered. The QTL was positioned in close proximity to SNP marker 

5. In the second scenario the number of markers was increased to 300 SNP markers and also 

increased the number of QTLs to 3. Finally, in the last simulation scenario, the number of SNP 

markers was increased to 3000 SNPs and the number of QTLs increased to 30. These QTLs were 

randomly positioned across the genome. 

Results and Discussion 

Linkage disequilibrium between the SNP markers and the QTL for lines A and B as well 

as ∆𝐿𝐷𝑀−𝑄 for the first simulation scenario are presented in Table 5.1. Since the QTL was 

placed in the center of the simulated segment, the LD_M_QTL was, as expected, higher for 

markers 4, 5 and 6.  Figure 5.1 shows the trend of LD between the SNP markers and QTL for the 

two lines. Similarly, the LD between markers (LD_M_M) for the two lines as well as the 

difference in LD (ΔLD_M_M) were calculated. In order to infer ∆𝐿𝐷𝑀−𝑄 between the two 

breeds, the mean and standard deviation of ΔLD_M_M were calculated and later used as 

explanatory variables in the regression model (Table 5.2). Fitting model M1 resulted in an R
2
 of 

0.65; indicated that the mean and standard deviation of ΔLD_M_M explained around two thirds 
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of the variation in ∆𝐿𝐷𝑀−𝑄 between breeds A and B. On the other hand, fitting model M2 

resulted in 25% decrease in R
2
 (0.52). Although M2 resulted in a decrease in R

2
, the model still 

was able to explain a significant portion of the variation in ∆𝐿𝐷𝑀−𝑄 across the two breeds. When 

the number of SNP markers and QTLs were increased to 30 and 3, respectively (second 

simulation scenario), the coefficients of determination tended to decrease using either all the 

SNP markers (300) or fixed size widows of 100 SNPs to calculate the parameters of the 

regression model. Table 5.3 shows the resulting coefficients of determination (R
2
) for models 

M1 and M2 using all markers and using fixed windows of 100 SNPs. Using M1 resulted in R
2
 

equal to 0.14, 0.12 and 0.12 for QTLs 1, 2 and 3 respectively using all 300 markers. In the case 

of using 100 marker windows, R
2
 increased to 0.26 for QTL 1, 0.24 for QTL 2, and 0.27 for 

QTL 3.  This increase in R
2
 is due for at least two reasons: 1) a QTL was positioned in each 100 

SNP marker window, and 2) including all 300 SNP markers where a large portion of them has no 

LD with the QTL, resulted in a less informative mean and standard deviation of ΔLD_M_M to 

explain variation in ∆𝐿𝐷𝑀−𝑄. The highest increase in R
2
 was for QTL 3, from 0.12 to 0.27. 

Using M2, a substantial decrease in R
2
 was observed across all QTLs using either 100 marker 

windows or all markers. Table 5.4 shows the average R
2
 across all 3 markers, it is clear that M1 

performed better than M2 in this simulation scenario.  

In the third simulation scenario, a larger SNP panel (3000 SNPs), and a higher number of 

QTLs (30) were simulated. Table 5.4 shows the average R
2
 obtained using M1and M2. Clearly, 

M1 performed notably better than M2 using either all markers or 100 marker windows. For 

example, fitting M1 using all markers resulted in an average R
2
 of 0.27 compared to 0.01 for M2. 

It should be mentioned that M2 did not explain any variation in the change of LD_M_QTL 

across breed A and B.  
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Across the three simulation scenarios, it is clear that a significant portion of the variation 

in variation in ∆𝐿𝐷𝑀−𝑄 could be explained by information already available in the observed SNP 

marker data. Furthermore, the statistical model as well as the extent of the window of SNPs 

considered in the calculation of the parameters of the regression line plays a crucial role in 

estimating change in LD between markers and QTLs in both breeds. Based on the results of this 

simulation study and the structure of LD generated, it seems that small windows are preferable. 

This is true because including large number of SNPs with little to no LD with the QTL(s) will 

render the mean and standard deviation non-informative about the variation in ∆𝐿𝐷𝑀−𝑄. Using 

real data, the situation will be more complex due to a larger number of SNP markers and QTLs 

where the latter have a random and unknown distribution. In such case, information about LD 

blocks should be used in determining the length of SNP windows to be used. Additionally, the 

relationship between ∆𝐿𝐷𝑀−𝑄 and the observed information in the SNP genotypes could be non-

linear and cannot be approximated well with simple regression models.  

Conclusions 

In this simulation study, inferring change of linkage disequilibrium between marker and 

QTL between two pure breeds proved to be possible. This might help in inferring the change of 

SNP marker effects when having different breeds or lines in the population. Whether or not this 

could be used to in genomic selection in the case of admixed populations, further testing and 

research is required.   
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Table 5.1: Linkage disequilibrium between markers and QTL for breed A and B 

LD_M_QTL A
1 

LD_M_QTL B
2 

ΔLD_M_QTL
3 

0.131 

0.107 

0.107 

0.758 

0.999 

0.622 

0.296 

0.132 

0.128 

0.005 

0.101 

0.008 

0.008 

0.333 

0.649 

0.363 

0.222 

0.195 

0.172 

0.106 

0.029 

0.026 

0.024 

0.419 

0.350 

0.259 

0.074 

-0.063 

-0.043 

-0.051 
1
LD between marker and QTL for breed A; 

2
LD between marker and QTL for breed B, 

3
Difference in 

marker and QTL LD between breed A and B. 
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Table 5.2:  Mean and standard deviation of change of LD between markers
1 

ΔLD_M_M
1 

mean SD 

0.010 

0.018 

0.019 

-0.044 

0.014 

-0.091 

-0.134 

-0.082 

-0.087 

-0.072 

0.187 

0.166 

0.167 

0.198 

0.259 

0.225 

0.197 

0.095 

0.088 

0.120 
1
Difference in LD of marker and marker between breeds A and B.  
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Table 5.3: Coefficient of determination for models M1 and M2 in the second simulation scenario   

 M1                   M2  

ΔLD_M_QTL All markers 100 marker 

window 

All markers 100 marker 

window 

QTl_1 0.14 0.26 0.07 0.03 

QTL_2 0.12 0.24 0.02 0.02 

QTL_3 0.12 0.27 0.01 0.01 
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Table 5.4: Average coefficient of determination over all QTLs for models M1 and M2 in the 

second and third simulation scenarios  

                        M1                   M2  

Genome All markers 100 marker 

window 

All markers 100 marker 

window 

300 SNP,3 QTLs 0.12 0.25 0.05 0.03 

3000 SNP, 30 QTLs 0.27 0.10 0.03 0.01 
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Figure 1: Linkage disequilibrium between markers and QTL for breeds A and B 
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CHAPTER 6 

CONCLUSIONS 

Current genomic selection methods for dealing with admixed populations assume 

homogeneity of the population and ignore the change in genetic parameters. Few approaches 

have been proposed to account for sub-population differences; however most of these studies 

only slightly improved the accuracy of genomic prediction and similar in some cases to 

approaches assuming homogeneity.  

The pooled data approach is an attractive method since it increases the size of training 

data, therefore increasing power. However, this approach only works when the sub-populations 

are genetically similar. In this study, both proposed models do not assume homogeneity of the 

population and allow SNP marker effects to differ across sub-populations. Given the  results of 

this study, it is evident that both proposed models performed notably better than classical pooled 

data approach. As presented in chapter 3 the proposed multi-compartment model is clearly 

superior then pooled data approach as it accounts for the difference in SNP effects across sub-

populations. Its superiority compared to the pooled data approach ranged from approximately 17 

to 47% and increases as the divergence between lines increases. In chapter 4, the multi-

compartment model resulted in 43%-62% increase of prediction accuracy. The structural model 

also performed better than the pooled data method increasing the prediction accuracy by 10%-

18%. The results from the structural model suggest the possibility to model the change of SNP 

marker effects as a function of the information already available in the genotypes data such as 

change in linkage disequilibrium. Furthermore, the major benefit from the proposed structural 
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model is its ability to predict genomic breeding values for non-phenotyped individuals as is the 

case for some commercial animals. Although promising, the results from this study are largely 

based on small simulated data sets and thus their testing and validation on real data are needed. 

Furthermore, the proposed models to explain change in LD between lines were rather simplistic 

and could be easily. Improved of these models could be achieved through the refinement of the 

sets on explanatory variables included or by the assumption of non and semi parametric 

approaches including machine learning based methods.   

 

 

 

 

 


