
 

MODELING SEIZURES WITH A CONDUCTANCE-BASED INTEGRATE-AND-FIRE NEURONAL 
NETWORK MODEL 

 
by 
 

REBECCA J GAFF 
(Under the direction of Andrew Sornborger) 

 
ABSTRACT 

  

 Imaging research of seizures in Zebrafish brains involves tracing calcium levels 

as a by-product of neuronal firing using genetically encoded fluorescent calcium 

indicators. The imaging data suggests the seizures move in a wave-like pattern through 

the various parts of the brain. Using this data, researchers can predict the frequency of 

firing rates within the brain.  

 The purpose of this thesis is to create a mathematical model that demonstrates a 

similar wave-like pattern at similar firing rate frequencies using a neuronal network of 

integrate-and-fire neurons. Calcium and its emission ratio are also modeled to connect 

the simulated data with the experimental data. 

 
 
INDEX WORDS:  
Seizures; Neuronal Networks; Integrate-and-fire neurons; mathematical modeling; 
Zebrafish brain imaging; Calcium levels and emission ratios 
 



 

MODELING SEIZURES WITH A CONDUCTANCE-BASED INTEGRATE-AND-FIRE NEURONAL 
NETWORK MODEL 

 
by 
 

REBECCA J. GAFF 
 

B.S., University of Florida, 2006 
 
 
 
 
 
 
 

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial 

Fulfillment of the Requirements for the Degree 

 
 
 

MASTERS OF ARTS 
 
 
 
 
 

ATHENS, GEORIGA 
2010 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2010 
Rebecca J. Gaff 

All Rights Reserved 
 
 
 



 

MODELING SEIZURES WITH A CONDUCTANCE-BASED INTEGRATE-AND-FIRE NEURONAL 
NETWORK MODEL 

 
by 
 

REBECCA J GAFF 
 
 
 
 
 

    
      Approved: 
 
      Major Professor:  Andrew Sornborger 
 
      Committee:  Malcolm Adams 
         Caner Kazanci 
 
 
 
 
Electronic Version Approved: 
 
Maureen Grasso 
Dean of the Graduate School 
University of Georgia 
July 2010 
 



 

 

iv 

 

TABLE OF CONTENTS 

             
  PAGE 

LIST OF FIGURES ............................................................................................................... VI 

CHAPTER 

1       INTRODUCTION AND LITERATURE REVIEW......................................................................1 

 1.1 THE NEURON .................................................................................................  2 

1.2 THE HODGKIN-HUXLEY MODEL.........................................................................4 

1.3 THE FITZHUGH-NAGUMO MODEL......................................................................8 

1.4 THE INTEGRATE-AND-FIRE MODEL ..................................................................12 

2 THE MODEL.............................................................................................................  15 

2.1 MODELING MEMBRANE POTENTIAL ................................................................  15 

2.2 MODELING CONDUCTANCE ............................................................................  17 

2.3 RUNGE-KUTTA METHOD AND ESTIMATING SPIKE TIMES ..................................  19 

2.4 MODELING CALCIUM AND RATIOS...................................................................  24 

3 THE CONNECTION MATRIX.........................................................................................29 
      

 3.1 ORIGINAL CONNECTION MATRIX: RANDOM WEIGHT CONSTRUCTION ................29 

 3.2 FINAL CONNECTION MATRIX: SPATIALLY ORGANIZED  ......................................32           

4 THE RESULTS...........................................................................................................35 

4.1 TWO NEURONS..............................................................................................35   

4.2 TWO POPULATIONS OF NEURONS ...................................................................38 

4.3 NETWORK OF NEURONS SPATIALLY CONNECTED .............................................44 

5  CONCLUSIONS ..........................................................................................................56 



 

 

v 

REFERENCES...................................................................................................................  58  

APPENDIX.........................................................................................................................61 

A1 MATLAB CODE – CONNECTION MATRIX FROM 3.1 ...................................................61 

 A2 MATLAB CODE – CONNECTION MATRIX FROM 3.2 ...................................................62 

 A3 MATLAB CODE – RK4 ..........................................................................................63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

vi 

 

LIST OF FIGURES 

       PAGE 

1.1 STRUCTURE OF A NEURON ...........................................................................................  3 

1.2 ACTION POTENTIAL FROM HODGKIN-HUXLEY EQUATIONS ................................................8 

1.3 GATING VARIABLES AND ACTION POTENTIAL FROM 1.2 ....................................................8 

1.4 PHASE PLANE DIAGRAM FOR GENERAL FITZHUGH-NAGUMO MODEL.................................9 

1.5 CIRCUIT REPRESENTATION OF FITZHUGH-NAGUMO MODEL .............................................9 

1.6 STABLE PHASE PORTRAIT FOR FITZHUGH-NAGUMO MODEL...........................................11 

1.7 SOLUTIONS TO FITZHUGH-NAGUMO SYSTEM FROM 1.6 .................................................11 

1.8 UNSTABLE PHASE PORTRAIT FOR FITZHUGH-NAGUMO MODEL ......................................12 

1.9 SOLUTIONS TO FITZHUGH-NAGUMO SYSTEM FROM 1.8 .................................................12 

1.10 PERFECT AND LEAKY INTEGRATE-AND-FIRE MODELS ....................................................13 

2.1 SYNAPTIC TRANSMISSION ............................................................................................25 

2.2 USING FRET TO MEASURE CALCIUM.............................................................................26 

2.3 GRAPH OF CALCIUM RATIOS DURING AN INCREASE IN CALCIUM.......................................27 

3.1 CONNECTION MATRIX WITH TWO POPULATIONS ............................................................30 

3.2 DIAGRAM OF CONNECTION MATRIX...............................................................................31 

3.3 VIEWS OF CONNECTION MATRIX AND SPATIAL GRID ......................................................33   

4.1 TWO-NEURON SIMULATION..........................................................................................36 

4.2 SPATIAL GRID FOR TWO NEURONS ..............................................................................37 

4.3 VOLTAGE AND CONDUCTANCE OF TWO NEURONS ........................................................37  

4.4 TWO POPULATION MODEL: FIRING AND SVD ANALYSIS .................................................39 

4.5 TWO POPULATION MODEL: FIRING PROPAGATION THROUGH POPULATIONS....................  40 



 

 

vii 

4.6 TWO POPULATION MODEL: EIGENVALUES AND FIRING RATE FREQUENCY .......................41 

4.7 TWO POPULATION MODEL: CALCIUM AND YFP/CFP RATIO LEVELS ...............................42 

4.8 TWO POPULATION MODEL: FIRING PROPAGATION THROUGH POPULATIONS.....................43 

4.9 TWO POPULATION MODEL: EIGENVALUES AND HIGH FIRING RATE FREQUENCY...............43 

4.10 ONE POPULATION MODEL: FIRING PROPAGATION THROUGH SIMULATION......................46     

4.11 ONE POPULATION MODEL: EIGENVALUES OF VARIANCE ..............................................48 

4.12 ONE POPULATION MODEL: FIRST EIGENVECTOR ANALYSIS ..........................................49 

4.13 ONE POPULATION MODEL: THIRD EIGENVECTOR ANALYSIS..........................................50 

4.14 ONE POPULATION MODEL: FOURTH EIGENVECTOR ANALYSIS ......................................51 

4.15 ONE POPULATION MODEL: FOURTEENTH EIGENVECTOR ANALYSIS...............................52 

4.16 ONE POPULATION MODEL: EIGENVECTORS OF CALCIUM LEVELS ..................................54 

4.17 ONE POPULATION MODEL: MAXIMUM YFP/CFP RATIOS..............................................55 

 



 

 

1 

 

CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

  Seizures have been studied for decades and yet there is still a lot of 

mystery surrounding them. We know seizures in the brain are caused by too much 

excitation in the electrical activity of its neurons. Beginning with Hodgkin and Huxley, we 

have mathematical models that represent neurons as an electrical circuit giving insight 

to its electrical activity. Using these models, we can calculate a neuron’s voltage and 

conductance over time. We can also model populations of neurons and see how these 

connections can cause changes in voltage and conductance of surrounding neurons.  

 Looking at populations of neurons, there are still some questions to be answered. 

We want to know how neurons communicate with one another during a seizure. And 

since there are different ways to model the connections between and within populations 

of neurons, what is the effect of the connectivity structure on how seizures move 

through the brain? Recent developments in brain imaging techniques have allowed 

researchers to observe the propagation of seizures by imaging calcium released during 

neuronal firing.  

 The motivation for my thesis stems from research on seizure imaging in the larval 

Zebrafish brain conducted by Andrew Sornborger and James Lauderdale at the 

University of Georgia. Using transgenic Zebrafish with a genetically encoded calcium 

indicator, Sornborger and Lauderdale are able to visualize the movement of a seizure 
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by imaging the released calcium, a by-product of neuronal firing. The results suggest 

that the seizure propagates as a wave through different parts of the brain. In the 

research presented here, I attempt to use proven models of neuronal networks and 

recently developed techniques to investigate seizure propagation in a neuronal network.  

 In this chapter I will present background literature on the properties of neurons 

and how they are modeled. I will describe the structure of a neuron and present three 

sets of equations of varying complexity that model the electrical activity of a neuron in 

varying levels of detail.  

 

1.1 THE NEURON 

 The neuron is the elementary processing unit in the brain. Its main function is to 

transmit and receive information. The structure of the neuron with its axon, synapse, 

and dendrite components give it this ability [1]. 

 The purpose of the axon is to transmit electrical activity from the cell body to the 

synapses. The axon is connected to the soma at the axon hillock. The axon hillock is 

where neuronal signals begin. Neuronal signals consist of short electrical pulses, also 

known as action potentials or spikes, which propagate along the axon. The number and 

timing of these spikes is what is most important since the action potentials themselves 

to do not retain any information. The axon’s long, tube-like structure, often with a myelin 

coating, allows it to quickly transmit the action potentials to its pre-synaptic terminal that 

is located at the distal end of the axon [1,2,3]. 
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FIGURE 1.1 STRUCTURE OF A NEURON. The tube-like structure of the axon is built to easily 
receive and transfer information. The synapse is where information is transferred from 
the pre-synaptic neuron to the post-synaptic neuron [1,3]. 

 

 The synapse is the junction where communication between the pre-synaptic 

neuron and the post-synaptic neuron is transmitted. When a series of spikes arrive at 

the synapse, it causes neurotransmitters to be released across the synaptic cleft (the 

space between the pre- and post- synaptic neuron). Once the neurotransmitters have 

reached the post-synaptic neuron, they attach themselves to receptor sites opening ion 

channels. This ion influx inevitably leads to changes in the membrane potential of the 

post-synaptic neuron [1,2,3]. 

 Dendrites are thin branch-like projections stemming from the cell body and are 

mainly responsible for receiving signals from a spiking neuron. Dendrites contain 

special “receptor sites” which allow the neuron to receive information from other 

neurons. The information in the form of post-synaptic conductances then gets 

transmitted to the cell body where the conductances are combined. Once the combined 
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conductances reaches a threshold, the cell sends out an action potential (spike) through 

the axon to once again propagate the information to other neurons [1,2,3]. 

 

1.2 THE HODGKIN-HUXLEY MODEL 

 In the 1950s, Alan Hodgkin and Andrew Huxley developed the first mathematical 

model for measuring the electrical potential of the neuronal cell membrane in an axon. 

Their model was initially designed to predict the dynamics of action potentials in the 

giant axon of a squid. Since their work and ideas are so commonly used among other 

excitable cell models, it is considered the foundational model of computational 

neuroscience [4,5]. In 1963, Hodgkin and Huxley were recognized for their contribution 

as recipients of the Nobel Prize in Medicine [6].  

 From the Hodgkin-Huxley equations, simpler models such as the FitzHugh-

Nagumo and Integrate-and-Fire models have been developed that are more conducive 

to mathematical analysis [4,5]. In this section we will introduce and give a brief overview 

of the Hodgkin-Huxley equations.  

 A cell membrane can be modeled as a capacitor in parallel1 with an ionic current 

     

€ 

Cm
dv
dt

= −Iion (v, t) + Iapp
  

  (1.2.1) 

                                                        
1 Circuits are connected in parallel if voltage drops across them are the same. 
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where 

€ 

Cm  is membrane capacitance, 

€ 

dv
dt

 is the rate of change of voltage1 across the 

capacitor, 

€ 

Iion  is the ionic current due to active ion channels in the cell membrane, and 

€ 

Iapp  is an applied current that can drive the voltage. Hodgkin and Huxley described two 

main ionic currents in their model: sodium, 

€ 

INa , and potassium, 

€ 

IK . They lumped the 

others together into one term, the leakage current, 

€ 

IL , because of the minor impact they 

had on the system. Using Ohm’s2 Law and the fact that conductance, 

€ 

gion , is the inverse 

of resistance, we can write (1.2.1) as 

   

€ 

Cm
dv
dt

= −gNa (v −VNa ) − gk (v −Vk ) − gL (v −VL ) + Iapp    (1.2.2) 

Results from experiments with the squid giant axon did not quite follow this model for 

stronger applied currents. Therefore, Hodgkin and Huxley determined that the 

conductance of the potassium and sodium ions were not constant but instead were 

dependent on voltage [5]. 

 The development of the voltage clamp was important to further investigation. The 

voltage clamp had the ability to fix membrane potential, and then measure the amount 

of current needed to keep the voltage constant. This allowed Hodgkin and Huxley to 

eliminate voltage changes while measuring ionic conductance changes. Hence, the 

conductance was only dependent on time. After some assumptions about the nature of 

the sodium and potassium currents, they were able to measure the total ionic currents 

                                                        
1 Note: v represents membrane potential, i.e. the difference between internal and external cell voltage. 
2 Ohm’s Law states the relationship between voltage, resistance, and current is 

€ 

v = IR . 
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and the ratios of each current1. From these currents, and the known voltages, they 

obtained conductance values for sodium and potassium. Based on experimental data, 

they were able to define equations to replicate potassium and sodium conductance 

changes [5]. 

 Potassium conductance behavior follows a sigmoidal increase during increased 

voltage and then an exponential fall during a decrease. Hodgkin and Huxley proposed 

that the potassium conductance takes on the form 

         

€ 

gK = g K n4 

where 

€ 

g K  is some constant and 

€ 

n, known as the potassium activation, obeys the 

differential equation, 

             

€ 

τ n (v)
dn
dt

= n∞(v) − n  

also written as,  

           

€ 

dn
dt

=αn (v)(1− n) −βn (v)n     (1.2.3) 

 for  

             

€ 

τ n (v) =
1

αn (v) +β n(v)
 , 

             

€ 

n∞(v) =
αn (v)

αn (v) + βn (v)
  

                                                        
1 See [5] for a more detailed explanation of assumptions and conclusions. 
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and 

€ 

v =V −Vrest , the difference between the membrane potential and the resting 

potential. The functions n∞ and τn are determined from experimental data [5]. 

 Sodium conductance follows a different pattern from potassium. During the same 

time step of increased constant voltage, 

€ 

gNa  increases at the beginning and then begins 

to decrease. Therefore, Hodgkin and Huxley proposed that the sodium conductance 

takes the form 

        

€ 

gNa (v) = g Nam3h  

where the time-dependent behavior of sodium activation,

€ 

m , and sodium inactivation,

€ 

h, 

obey the differential equations 

     

€ 

dm
dt

=αm (1−m) −βmm     (1.2.4) 

     

€ 

dh
dt

=αh (1− h) −βhh  .     (1.2.5) 

For any fixed voltage step, αm (αh) and βm (βh) are found by fitting a function to 

experimental data [5].  

 The collection of differential equations (1.2.2) – (1.2.5) is a four dimensional 

system. The dynamics of this system depend on the variables m, n, and h and the 

difference in time constants, 

€ 

τm,τ n , and 

€ 

τ h . The time constant 

€ 

τm  is smaller than the 

other time constants and it causes 

€ 

m(t) to respond more quickly to changes in potential. 

For example, if the potential 

€ 

v  is raised only slightly, the system will return to its 

equilibrium. However, with a strong enough stimulating current, the potential will rise 
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above threshold and before returning to rest will have an increase in sodium activation, 

m. To summarize the influences of  m, n, and

€ 

h, Figure 1.2 shows the action potential 

following a superthreshold stimulus (a stimulus that causes a spike) and Figure 1.3 

demonstrates the changes in m(t), n(t) and 

€ 

h(t)during the same action potential [5].  

  

FIGURE 1.2      FIGURE 1.3 
Action potential of the Hodgkin-Huxley  Plot of the gating variables during the 
equations during a superthreshold   same action potential from Fig 1.2 [5]. 
stimulus [5].   

 A four dimensional system is very difficult to analyze quantitatively. FitzHugh 

among others, was able to reduce the dimension of the system and still preserve the 

qualitative features of the Hodgkin-Huxley equations. In the next section we will take a 

closer look at the development of the FitzHugh-Nagumo Model. 

 

1.3 FITZHUGH-NAGUMO MODEL 

 FitzHugh attempted to reduce the dimensions of the Hodgkin-Huxley equations 

while maintaining the qualitative behavior of the fast-slow phase-plane. Since both the 
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membrane potential, 

€ 

v , and sodium activation, 

€ 

m , activate quickly, while the sodium 

inactivation, 

€ 

h, and potassium activation,

€ 

n, act slowly, his strategy was to combine the 

fast and slow variables together. Hence, the model reduces to two variables, one fast,  

€ 

v , and one slow, 

€ 

w. The fast variable, which causes excitation, has a cubic nullcline 

given by a cubic function, f(v,w) . The slow variable, known as the recovery variable, has 

a strictly increasing nullcline given by a linear function, g(v,w). Figure 1.4 shows a 

schematic diagram of the phase plane [5].  

 The FitzHugh-Nagumo model comes from the model of the cell membrane as a 

circuit. Nagumo built a circuit consisting of a capacitor, a current-voltage device to 

represent the behavior of

€ 

v , and a resistor, inductor, and battery combination to 

symbolize the behavior of 

€ 

w. He used a tunnel diode1, which is a  

 

 

FIGURE 1.4. A schematic diagram of the general      FIGURE 1.5 Diagram of the circuit  
phase plane for the FitzHugh-Nagumo model.        modeled by Nagumo to represent the  
                                FitzHugh-Nagumo equations [5]. 

 

                                                        
1 See [7] pg. 417-420 for more information on tunnel diodes. 
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type of semi-conductor diode capable of very fast operation, to characterize the 

nonlinear element [5,7]. Figure 1.5 shows the diagram of his circuit. Kirchhoff’s Laws, 

which characterize conservation of charge and energy for circuits [8], can be used to 

write equations for the cell membrane circuit diagram given in Figure 1.5: 

     

€ 

Cm
dV
dτ

+ F(V ) + i = −Iapp     (1.3.1) 

                        

€ 

L di
dτ

+ Ri =V −V0    (1.3.2) 

where 

€ 

i  is the resistor-inductor current, 

€ 

V =Vi −Ve  is the membrane potential, 

€ 

Iapp  is the 

applied external current, and 

€ 

V0  is the potential gain in voltage across the battery. The 

function

€ 

F(V )  is cubic and has stable solutions to the differential equation,

€ 

dV
dτ

= −F(V ), 

at it’s largest 

€ 

(V =V1) and smallest 

€ 

(V =V0)  zeros. Letting 

€ 

R1 be the passive resistance 

of 

€ 

F(V ) , 

€ 

R1 =
1
′ F (0)

, and non-dimensionalizing the equations (1.3.1) and (1.3.2) with 

€ 

v =
V
V1
,w =

R1i
V1
, f (v) =

−R1F(V1v)
V1

, and 

€ 

t =
Lτ
R1

, we get the FitzHugh-Nagumo equations 

    

€ 

dv
dt

=
1
ε
( f (v) − w − w0) (1.3.3)

dw
dt

= v − γw − v0 (1.3.4)
 

where 

€ 

ε =
R1
2Cm

L
,w0 =

R1I0
V1
,v0 =

V0
V1
, 

€ 

γ =
R
R1

 , and I0 is the applied external current [5]. Since 

the only condition on

€ 

f (v) is that it be of cubic form, the easiest choice to pick is a cubic 

polynomial 
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€ 

f (v) = v(v − a)(b − v)   with 

€ 

a <1 and 

€ 

b > 0  (1.3.5) 

 Now that we have our FitzHugh-Nagumo model with equations (1.3.3) and 

(1.3.4) we can use phase plane analysis to characterize the different possible phase 

portraits. The fixed points occur when 

€ 

dv
dt

= 0 and 

€ 

dw
dt

= 0 . Therefore, 

€ 

w* = v*(v* − a)(b − v*) and 

€ 

v* = γw*. Assuming f(v,w) and g(v,w) has exactly one point of 

intersection, we can assume without loss of generality that 

€ 

w0 = 0 and 

€ 

v0  = 0 since this 

is just a shift in coordinates. We can therefore conclude that the only fixed point is 

€ 

v* = w* = 0.  Plotting the two distinctive phase portraits, we can see that either the 

system is excitable and converges to a stable rest point (Fig 1.6) or a Hopf Bifurcation 

occurs (Figure 1.8) when the fixed point lies on the middle branch of the cubic nullcline, 

where it is unstable. 

          
FIGURE 1.6. Stable phase portrait for     FIGURE 1.7. Solutions to FitzHugh-Nagumo 
w0=v0=0, γ = .5, a=.1, and b = 1.     using parameters from Fig 1.6. 
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FIGURE 1.8 Unstable phase portrait for             FIGURE 1.9 Solutions to FitzHugh-Nagumo 
w0=v0=0, γ = .5 , a=-.1, and b=1.          using parameters from Fig 1.8. 

 The FitzHugh-Nagumo equations were able to reduce the dimension of the 

Hodgkin-Huxley equations to a two dimensional system. We’ve seen that with a two-

dimensional system analysis is relatively simple. However, the integrate-and-fire model 

is a further simplification that further simplifies the fast-slow time scale in the membrane 

potential. 

 

1.4 INTEGRATE-AND-FIRE MODEL 

 The integrate-and-fire model is a simple spiking cell model that was first 

investigated by Louis Lapicque. His ideas were published in an article in 1907 [9]. 

Integrate-and-fire has become a standard model for neuronal network dynamics in 

large-scale simulations due to its simplicity. It still captures the essence of the more 

complicated models by retaining an integrating threshold and the generation of spikes 

after the membrane potential crosses the given threshold.  
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  FIGURE 1.10 THE PERFECT AND LEAKY INTEGRATE-AND-FIRE. When V(ti) = Vth 
an action potential is generated and modeled by the delta function, δ(t-ti). [9] 

  

 Several types of integrate-and-fire models exist. Two of these models are the 

perfect and leaky integrate-and-fire (IF) models (see Figure 1.10). The perfect IF model 

consists of a single capacitance for integrating the input current. Once the membrane 

potential reaches threshold, a spike, in the form of a delta function, occurs. Then the 

voltage is reset to rest before it begins integrating again. A refractory period, tref, can 

also be added into the model after a spike. The perfect IF neuron can be modeled using 

the following first order differential equation: 

      

€ 

C dv
dt

= I(t)      (1.4.1)  

where C is capacitance, v is the membrane potential,  and I(t) is the input current [9]. 

Once the membrane potential reaches threshold, the membrane potential is reset and 

once again follows the dynamics given by Equation 1.4.1. One shortcoming to the 

model is that it has no account for a leak. If the model receives subthreshold inputs, it 
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will maintain the voltage level produced by these inputs with no resistance. The Leaky 

IF model incorporates a leak resistance term to make the behavior more realistic [9].  

 The Leaky IF model is the most commonly known current-based integrate-and-

fire model. The basic model consists of a capacitor C in parallel with a resistor R driven 

by a current, I(t) [3]. The added resistance accounts for the leakage currents through 

the membrane and is modeled by: 

      

€ 

C dv
dt

+
v
R

= I(t)
     

(1.4.2) 

Rewriting this equation and multiplying by R, 

     

€ 

τ
dv
dt

= −v(t) + RI(t)
 

    (1.4.3) 

where τ = RC is the time constant of the neuron. Equation (1.4.3) describes the 

dynamics of a neuron until the membrane potential reaches threshold indicating a spike 

has occurred (i.e. for v < vthres). Once the potential is reset, it takes on these dynamics 

once more until the next spike occurs [3]. 

 In the previous models, the synaptic input is viewed as a fluctuating current. 

However, a more correct physiological way to model the synaptic input is as a 

conductance. Increases in conductance are the physiological mechanisms that affect 

the integrating properties of the neuron. This is something current-based models 

overlook. Therefore we choose our model for membrane potential to be a conductance-

based leaky IF model. In Chapter 2.1, we will discuss a conductance-based integrate-

and-fire model. 
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CHAPTER 2 

THE MODEL 

 To model a neuron or a population of neurons we need to keep track of the 

membrane potential, and changes in conductance. When modeling a population of 

neurons, the dynamics of the changes in conductance depend on the strength of 

connections to other neurons within the population as well as any external input. Being 

able to estimate accurate spike times is also important in correctly representing these 

conductance changes. Not only do we want to model membrane potential and 

conductance, but since the goal is to be able to match experimental brain imaging data, 

we also need to decide how to model calcium as well as keep track of the calcium 

ratios. In the following sections, we will discuss the models of membrane potential, 

conductance, calcium, and YFP/CFP ratios. 

 

2.1 MODELING MEMBRANE POTENTIAL 

 In the previous chapter, we discussed current-based IF models. However, since 

we want a more physiological model, we decide to use a conductance-based IF model. 

The dynamics of a single integrate-and-fire, conductance-based point neuron is given 

by the following: 

   

€ 

C dv
dt

= −gleak (v −Vr ) − ge (t)(v −VE ) − gi(t)(v −VI )    (2.1.1) 
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where v represents the membrane potential or voltage of the neuron, gleak is the leakage 

conductance, Vr is the rest potential of the neuron, VE and VI are the excitatory and 

inhibitory reversal potentials, and ge(t) and gi(t) are the time-dependent conductances 

whose dynamics will be described in section 2.2 [10]. The conductances (gleak, ge, gi ) are 

normalized by the membrane capacitance, C, giving them dimensions of inverse time 

(i.e. gleak= 50/second) [20]. Once the membrane potential, v, reaches threshold, 

€ 

v , the 

neuron generates a spike (fires). Immediately after the neuron fires, its membrane 

potential is reset to its reset potential, 

€ 

ˆ v , which we take to be the same as the rest 

potential, Vr [10]. Then there is a three-millisecond refractory period until the voltage 

begins to integrate again. This is done to make the model more realistic since neurons 

cannot fire faster than once every 2 to 3 milliseconds. Once the refractory period is 

over, the membrane potential of the neuron once again takes on the dynamics given in 

equation 2.1.1.  

 We let the rest or reset potential, 

€ 

Vr = ˆ v = 0, and the threshold, 

€ 

v =1. Since we are 

taking the rest and reset potential to be the same, we can consider the difference 

between 

€ 

v  and 

€ 

ˆ v  to nondimensionalize the membrane potential [10]. We then use 

commonly accepted values for various biophysical parameters to obtain the values for 

the reversal potentials: 

€ 

VE =
14
3

 and 

€ 

VI = −
2
3
 [9,10,20]. Now the only variable left with 

dimension is time, t. We can therefore rewrite equation 2.1 in the form 

     

€ 

dv
dt

= −α(t)v + β(t)      (2.1.2) 

where  
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€ 

α(t) = 50 + ge (t) + gi(t)    (2.1.3) 

     

€ 

β(t) =
14
3
ge (t) −

2
3
gi(t)     (2.1.4) 

Equation 2.1.3 represents the nondimensionalized conductance of the neuron and is the 

inverse of an effective integration time scale [10]. Equation 2.1.4 can be seen as a 

difference current since it involves the difference between the excitatory and inhibitory 

currents [10]. We can easily extend this model for one neuron into a population of 

neurons by noting that each neuron within the population will follow the dynamics of 

equation 2.1.2. The interaction between neurons in the population comes from changes 

in conductance due to spikes propagating via synaptic connections with other neurons.  

 We now need to decide how to model the conductance. The changes in 

conductance of a given neuron arise from pre-synaptic, spike-induced neurotransmitters 

released at the neuron’s synapses. In the following section, we discuss how we model 

changes in conductance. 

     

2.2 MODELING CONDUCTANCE 

 In a population of neurons, changes in conductance can occur from any external 

input into the neuronal population as well as from the network activity within it. 

Therefore, our model for time-dependent excitatory and inhibitory conductance for the jth 

neuron in the population is given by 



 

 

18 

    

€ 

ge
j (t) = ge0

j (t) + A j ,k Ge (t − tl
k )

l
∑

k
∑     (2.2.1) 

    

€ 

gi
j (t) = gi0

j (t) + B j ,k Gi(t −Tl
k )

l
∑

k
∑     (2.2.2) 

where 

€ 

ge0
j (t)  and 

€ 

gi0
j (t) represent external input conductance for excitation and inhibition 

respectively. To calculate the changes in conductance due to network activity we have 

excitatory and inhibitory postsynaptic conductance functions, Ge and Gi where 

€ 

tl
k  and 

€ 

Tl
k  

represent the time of the lth spike of the kth excitatory or inhibitory neuron. The synaptic-

induced conductance function is given by 

   

€ 

G(t − tspike ) =
(t − tspike )

τ 2
e−(t− tspike ) τΘ(t − tspike )    (2.2.3) 

Ge and Gi are given by equation 2.2.3 with corresponding time constants τ = .001 and     

τ = .002 [10]. The function, Θ(t), denotes the Heaviside Function which is zero when t - 

tspike is negative and one when t - tspike is positive. 

 We derive the equation above from the following system of differential equations: 

     

€ 

dg
d ′ t 

= −
g
τ

+
w
τ

dw
d ′ t 

= −
w
τ

+
δ( ′ t )
τ

     (2.2.4) 

where δ(t’) is the Dirac delta function1. Solving this system of equations and taking        

t’ = t - tspike, we get the following solutions: 

                                                        
1 The Dirac Delta Function is a distribution that is zero everywhere except for one point, where it is 
infinitely big. The integral of a delta function from -∞ to ∞ is 1. 
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€ 

g(t − tspike ) = C1e
−(t− tspike ) τ + C2

(t − tspike )
τ

e−(t− tspike ) τ +
(t − tspike )

τ 2
e−( t− tspike ) τΘ(t − tspike )

w(t − tspike ) = C2e
−(t− tspike ) τ +

e−(t− tspike ) τ

τ
Θ(t − tspike )

   (2.2.5) 

Starting at time zero (t0 = 0) such that C1 = g(t0) = 0 and C2 = w(t0) = 0, we see the initial 

change in conductance follows the dynamics of equation (2.2.3). During the simulation 

of the model, we keep track of both equations in 2.2.5 as we integrate through time to 

accurately measure changes in conductance.  

 As seen in the models for membrane potential and conductance it is very 

important to precisely estimate the time of a spike. The dynamics of both variables 

highly depend on the spike time. In the following section, we will discuss a fourth order 

and second order Runge-Kutta method for numerically simulating this system of 

equations. 

 

2.3 RUNGE-KUTTA METHOD AND ESTIMATING SPIKE TIMES  

 Runge-Kutta (RK) is an algorithm designed by Carl Runge and Wilhelm Kutta. 

RK methods are used to numerically integrate ordinary differential equations over time. 

It was built to resemble the Taylor Series Method without having to determine any 

derivatives. The second order Runge-Kutta (RK2) and fourth order Runge-Kutta (RK4) 

methods are the most common forms used in simulations [18]. 
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 The RK2 method requires two function evaluations at each time step and is 

accurate up to two terms in the Taylor series expansion. Therefore, it has an error of 

ϑ(h3). Given an initial value problem,  

     

€ 

x'(t) = f (t,x)
x(t0) = x0       (2.3.1) 

a RK method is used to numerically approximate its solution. The formula for RK2 is as 

follows: 

    

€ 

x(t + h) = x(t) +
h
2
(k1 + k2)     (2.3.2) 

where            

€ 

k1 = f (t,x)
k2 = f (t + h,x + k1)

  

For each fixed time step h, the second order method uses a trial step at the midpoint, 

and then it uses the values of t and x at the midpoint to make the real step over the 

interval to estimate x(t+h). The trial step cancels out the lower order terms, resulting in 

an error of ϑ(h3) [18]. The second order method is fast in computation but may lack in 

precision for many simulated models. Therefore, higher order Runge-Kutta methods 

have been developed.  

 The most commonly used RK method is the fourth order method. The fourth 

order method is obtained at the cost of four function evaluations, but has error in the 

order of ϑ(h5).  This means that the improved formula agrees up through four terms of 

the Taylor series expansion. The balance between costs of computation versus 

precision per time step is the reason that RK4 is most often implemented.  
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 At each time step, there are three trial steps. The two extra trial steps (versus 

RK2) provide a better approximation to the behavior surrounding the midpoint of the 

interval. We have the following formula for the RK4 method: 

    

€ 

x(t + h) = x(t) +
h
6
(k1 + 2k2 + 2k3 + k4 )   (2.3.3) 

where               

€ 

k1 = f (t,x)
k2 = f (t + 1

2 h,x + 1
2 k1)

k3 = f (t + 1
2 h,x + 1

2 k2)
k4 = f (t + h,x + k3)

 

The method is relatively simple and has a higher precision than the RK2 method [18]. 

Now that we have the formulas, we can use RK methods to integrate the voltage of a 

neuron. 

 Standard RK methods will calculate the membrane potential at the beginning of 

each time step. However, this can cause numerical errors to the membrane potential 

after a spike since the neuron may have fired at any point within the time step. To avoid 

such errors, we follow from Shelley and Tao to improve the typical RK2 and RK4 

methods by using linear (RK2) and cubic (RK4) interpolants to better approximate firing 

times between the time steps [10].  

 Using equation (2.1.2) for membrane potential, a single step of RK2 would look 

like: 

       

 

            (2.3.4) 

€ 

vn+1 = vn +
h
2
(k1+ k2 ),

k1 = f ( t,vn ) = −α0vn + β0 ,
k2 = f ( t+ h,vn + k1h)

= −α1[vn + h(−α0vn + β0 )]+ β1



 

 

22 

where 

€ 

α0 =α(t), α1 =α(t + h)  and 

€ 

β0 = β(t), β1 = β(t + h) [10]. If the voltage at vn+1 is less 

than the threshold, we use the already calculated vn+1 in the next time step. If the 

voltage at vn+1 is greater than the threshold value, then we know the neuron has fired at 

some point over the time step. This means at the next time step, we will start from rest. 

However, we want to be more accurate when estimating the actual spike time.  We 

accomplish this during a time step by using a linear interpolant since RK2 is only of 

second order:  

     

€ 

v(t) = vn +
(vn+1 − vn )

h
t     (2.3.5) 

assuming, without loss of generality, tn=0 [10]. We know a spike occurs when v(t)=vthres. 

So we estimate the spike time, tspike, by solving equation (2.3.5) for     

    

€ 

v(tspike ) = vthres = vn +
vn+1 − vn

h
tspike      (2.3.6) 

whenever vn+1 is above threshold. Having found tspike, we can use it to find a new vn 

estimate and new vn+1 estimate to more accurately estimate the post-synaptic 

membrane potential.  With one RK2 step we can recalculate the membrane potential 

after a spike. This continues for each time step throughout the simulation [10].  

 Given the formula for the RK4 method (2.3.3) we get the following 

 

 

 



 

 

23 

      

            (2.3.7) 

    

 

 

where h is the time step, 

€ 

α0 =α(tn ) , 

€ 

α1 2 =α(tn + 1
2 h), and 

€ 

α1 =α(tn + h). The β’s follow 

similarly. For a fourth order method, we need a cubic interpolant instead of a linear 

interpolant. Therefore, we use a cubic Hermite polynomial as the interpolant [10]. A 

Hermite polynomial is used instead of a Newton polynomial since we already know the 

approximations of vn and vn+1, and have their derivatives using the α’s and β’s from the 

RK4 method 

     

€ 

′ v n = f (tn ,v) = −α0v + β0       (2.3.8) 

    

€ 

′ v n +1 = f (t + h,vn +1) = −α1vn +1 + β1    (2.3.9) 

Hermite polynomial interpolation with two data points and two derivatives may have at 

most degree 3, which will give us the cubic interpolant we want for our simulation, 

€ 

v(t) = vn + ′ v nt +
3(vn +1 − vn ) − h(2 ′ v n − ′ v n +1)

h2
 

  
 

  
t 2 +

−2(vn +1 − vn ) + h( ′ v n + ′ v n +1)
h3

 

  
 

  
t 3

             (2.3.10)
 

€ 

vn+1 = vn +
h
6
(k1+ k2 + k3 + k4 )

k1 = f ( tn ,vn ) = −α0vn + β0
k2 = f ( tn + 1

2 h,vn + 1
2 k1h)

= −α1 2(vn + 1
2 k1h)+ β1 2

k3 = f ( tn + 1
2 h,vn + 1

2 k2h)
= −α1 2(vn + 1

2 k2h)+ β1 2
k4 = f ( tn+h,vn + k3h)

= −α1(vn + k3h)+ β1
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We want to solve (2.3.10) for v(tspike)=vthres so we numerically determine the zero of the 

function corresponding to tspike (using the fzero command in MATLAB)1.  From here, we 

once again get a new estimate for vn and then use our RK4 method to find the new 

estimate for vn+1. This method is used for each time step where a spike has occurred 

[10]. 

 It is possible to use the second or fourth order RK method in the simulation of a 

population of neurons and have a reasonable estimate for the actual spike time. In our 

simulations we choose to use the fourth order RK method. 

  The Runge-Kutta algorithm is also used to integrate the model for calcium. In the 

following section, we will discuss why and how we model calcium and its ratios within 

the cell.  

 

2.4 CALCIUM AND RATIOS 

 The human brain is considered to be one of the most complex objects to study 

[13]. It is made up of approximately 100 billion neurons and 100 trillion synapses with 

tens of thousands of connections to surrounding neurons [12]. Luckily for researchers, 

the neural activity in the human brain is similar to the neural activity in the brains of 

other animals with less complex brain structures. One of these animals is the Zebrafish. 

The Zebrafish brain has around 10,000 neurons, which is significantly smaller than the 

human brain, and develops quickly (growing from a single cell to larva in less than 3 

                                                        
1 The fzero command uses a combination of bisection, secant, and inverse quadratic interpolation 
methods to find the zero associated with the value of the spike time. 
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days) making it useful for studying brain activity. Zebrafish are also translucent for 

certain wavelengths of light allowing researchers to view what is going on in the brain 

[13].  

To induce seizures, researchers bathe the Zebrafish in a solution containing a drug 

called Pentylenetetrazole (PTZ), which is a GABAA,C antagonist.  GABA is the main 

inhibitory neurotransmitter and GABAA,C is the receptor site for these neurotransmitters. 

By blocking these receptor sites, PTZ reduces the amount of inhibition in the brain 

causing runaway bursting activity.  

 FIGURE 2.1 SYNAPTIC TRANSMISSION. Shows 
release of calcium through the voltage-gated calcium channels during an action 
potential. It also shows the transmission of neurotransmitters over the synaptic cleft 
[11]. 
 

 So why do we image calcium? As an action potential or spike moves across the 

axon terminal, it opens voltage-gated calcium channels. Calcium is then released into 

the terminal allowing synaptic vesicles containing neurotransmitters to attach 

themselves to the terminal membrane. This allows the neurotransmitters to travel 

Ca2+ 

Ca2+ 
cameleon 
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across the synaptic cleft to activate receptors on the postsynaptic membrane [13]. 

Hence, calcium is a by-product of neuronal firing. An influx of calcium is therefore a 

good indicator of neuronal firing. 

 
FIGURE 2.2 USING FRET TO MEASURE CALCIUM. Diagram shows how FRET between CFP 
and YFP can measure calcium concentration [14].  
 

  To visualize neural activity during a seizure, researchers use a genetically 

engineered protein called Cameleon. Cameleon serves as a fluorescent indicator for 

calcium.  It is based on the green fluorescent protein (GFP), which emits green 

fluorescence, and calmodulin (CaM), a calcium binding protein [14].  More specifically, 

we use Cameleon YC2.1, which is a molecular complex whose structure is based on 

two GFP mutants, cyan fluorescent protein (CFP) and a yellow fluorescent protein 

(YFP) separated by CaM and a calmodulin-binding peptide, M13 [16]. Cameleon YC2.1 

is created to detect increases in calcium by Förster resonant energy transfer (FRET). If 

there is no bound calcium in the cell, cyan fluorescence will be emitted under blue-violet 

light (440 nm). However when calcium ions are bound (i.e. calcium is in the cell), CaM 

wraps around the binding peptide bringing the CFP and YFP closer together (see Fig 

2.2). This increases the FRET between the two fluorescent proteins. Under blue-violet 
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light, the cell will emit a yellow fluorescence in the presence of calcium (see Fig 2.2). 

Therefore, the degree of FRET in the cameleon can be used as a measurement of 

calcium in the cell [14,15,16]. When there is an increase of calcium in the cell, as seen 

in Figure 2.3, there is an increase in YFP and a decrease in CFP. And the maximum 

ratio occurs during an increase of calcium. 

 
FIGURE 2.3 Graph of Calcium ratios during an increase of calcium in the cell.  (Graph by 
Andrew Sornboger) 
 
 
 
 During a seizure there is an excess of calcium due to the rapid neuronal firing. 

Therefore it is possible to use these genetically engineered fluorescent proteins to 

observe seizure-related calcium activity in the brain. It also provides a ratiometric 

measurement of the calcium. Since experimenters use these methods to understand 

seizures from the brain imaging point of view, it is also important to predict calcium 

concentrations and YFP/CFP ratios.  

 We model calcium concentration within a cell, c, with a simple linear differential 

equation, 
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€ 

dc
dt

= −τ c
−1c + φcIc       (2.4.1) 

The constant τc represents the time constant that regulates the decay of calcium 

transients. Ic is the calcium current across the membrane and the constant ϕc scales the 

amplitude of the calcium transients during a spike [3]. Therefore, fitting this equation to 

experimental results [17], the resulting equation is given by 

     

€ 

dc
dt

= −
1
2
c +10−5δ(t)      (2.4.2)  

 The emission ratio, R, of cameleon is modeled by the equation 

     

€ 

R =
crmax + ′ K d rmin

′ K d + c
     (2.4.3) 

where c is calcium,

€ 

′ K d =10−6.5  represents the apparent dissociation constant, and rmax = 1 

and rmin = 0 are the maximum and minimum values of the emission ratio. Equation 2.4.3 

is based on experimental results from Miyawaki, [15]. 

 Now that we have our models for the simulation, we need to decide how to 

connect the neurons in the population. There are several ways to view these 

connections. In the next chapter we will discuss two ways we constructed the 

connection matrices for a population of neurons. 
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CHAPTER 3 

THE CONNECTION MATRIX 

 To model a population of neurons, it is important to consider how the neurons 

within the population are connected to each other. The main way neurons communicate 

is via synapses. So, with a conductance-based integrate-and-fire model these synaptic 

connections within the network and their strengths drive the membrane potential for 

each neuron to spike. We describe these connections in the network through a 

connection matrix. In the following sections we will describe two different ways we 

modeled the connection matrix. 

 

3.1 ORIGINAL CONNECTION MATRIX: RANDOM WEIGHT CONSTRUCTION 

The results from experimental imaging data suggest the movement of a seizure in the 

Zebrafish brain as wavelike, moving from one part of the brain to the next. Hence, the 

original connection matrix for the model is based on two populations of neurons 

interacting with each other. In the connection matrix, the rows represent neurons and 

the columns represent the connections that a neuron has with other neurons in both 

populations (see Figure 3.1). A main goal of the simulation is to produce a wave of 

spikes from the first population to the second population. 
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FIGURE 3.1 CONNECTION MATRIX WITH TWO POPULATIONS. Visualization of connection 
matrix. Each row represents a neuron. The columns represent the connection to the 
other neurons within the two populations. 

 

 Using this connection matrix, we simulated two excitatory neurons interacting 

with each other as well as two populations of fifty excitatory1 neurons interacting with 

each other. In the simulation of the two populations, we assume we have more intra-

connections than inter-connections in our model. This is represented by having each 

neuron randomly connected to 10 neurons within their population and to three random 

neurons in the other population (see Figure 3.2). Also, no neuron is connected to itself. 

Finally, five neurons in the middle of the first population receive external input allowing 

them to spike on their own. Hence, a neuron in the second population can only spike in 

response to the excitation in the first population. 

                                                        
1 We assume there is no inhibition in the system since most of the inhibition has been wiped away in the 
Zebrafish by PTZ.  
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FIGURE 3.2 DIAGRAM OF CONNECTION MATRIX. External input is connected to the 36th, 39th, 
44th, and 48th neuron in the first population. Connections within the first population are 
blue and the connections from the first population to the second are red. Connections 
within the second population are cyan and the connections from the second population 
to the first are green. 

 

 The strengths of synaptic connections are also based on whether the connection 

is within one population or between two populations. In our model, we assume the intra-

connections are stronger than the inter-connections. Also, due to the intrinsic variability 

of synapses, we assume these synaptic strengths follow a random uniform distribution.  

 After reviewing the results using this connection matrix, we were having trouble 

finding a combination of synaptic strengths to produce the results similar to those seen 

in experimental data (see Chapter 4.2). Therefore, we began to look at a more realistic 
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spatial arrangement for the connection matrix. This connection matrix and the spatial 

grid are described in the next section. 

 

3.2 FINAL CONNECTION MATRIX: SPATIALLY ORGANIZED 

 The previous connection matrix allowed for too much excitation within the system 

to get the wave-like pattern we were looking for in the simulation. To improve our model, 

we decided to add some inhibition into the system and change the structure of our 

connection matrix. Following Ursino and La Cara ([19]), we considered the arrangement 

of our population of neurons in terms of a spatial grid or lattice where each element 

represents a neuron.  Once we determined the connections and their strengths, we 

constructed a new connection matrix based on the spatial grid. 

 For the synaptic connections, we assume a classical Mexican-hat disposition 

where the spatial extension of the inhibitory synapses has been taken greater than that 

of the excitatory synapses. In terms of strength of connections, we assume it decreases 

with distance. And as in the previous model, to account for the natural variability of the 

synapses, we assume the synaptic strengths follow a random uniform distribution 

between a maximum and minimum value [19]. Therefore our equations to signify the 

synaptic connections to the ijth neuron by excitatory (Ex) and inhibitory (In) synaptic 

inputs are given by 

    

€ 

Exij = Wex0ρije
−d ij ,lm

2 σ ex
2

l,m=1

N

∑      (3.2.1) 
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€ 

Inij = Win0ρije
−d ij ,lm

2 σ in
2

l,m=1

N

∑      (3.2.2) 

    

€ 

d = (i − l)2 + ( j −m)2      (3.2.3) 

where Wex0 and Win0 are the strength of the excitatory and inhibitory synapses; σex and σin 

are the standard deviations, which imitate the decrease of strength due to increases in 

distance; ρij is a random variable with uniform distribution between 0.5 and 1.5; and d 

represents distance between neurons [19]. We also assume the spatial grid has 

periodic boundary conditions (see figure 3.3).                                          

       
FIGURE 3.3 VIEWS OF CONNECTION MATRIX AND SPATIAL GRID. A) 900-neuron connection 
matrix; B) 558th neuron’s connections on spatial grid 
 

With this outline for our spatial grid, we simulate a population of 900 neurons using a 30 

x 30 interconnected network of neurons (see Fig 3.3). Throughout part of the simulation, 

a 3 x 3 cluster of neurons in the center of the grid receive external input allowing these 

neurons to spike. Noise can also be added into the system [19].  
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 The construction of the spatial grid and the strengths of the synaptic connections 

determine the impact synaptic-induced conductance changes have on other neurons 

within the connection matrix. In the next section we will see just how these connections 

affect the membrane potential of each neuron.  
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CHAPTER 4 

THE RESULTS 

 In the following sections we will discuss results from various simulated models. 

First we will look at two neurons. We will see how one neuron affects the voltage and 

conductance levels of another neuron. Then we will consider two populations of 

neurons with the original connection matrix presented in section 3.1. Finally, we will 

discuss results from our larger population of neurons with a connection matrix based on 

the spatial grid presented in section 3.2.  

 

4.1 TWO NEURONS 

 We wanted to understand how the action potentials of one neuron affected the 

voltage and conductance of another neuron through its synaptic connections. In our 

simulation, we assumed the first neuron had only a constant external input of 14 hertz. 

The strength of this input allowed Neuron One to spike on its own. Neuron Two had no 

external input. It had a one-way connection to the Neuron One. Neuron Two’s voltage 

and conductance changed based on the number of spikes from Neuron One, but it did 

not contribute to the changes in membrane potential of Neuron One. 

 The synaptic connections between neuron 1 and neuron 2 were both excitatory 

and inhibitory and were based on the spatial grid (see Chapter 3.2) with a distance of 
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one. The excitatory synaptic strength was 1.5 and the inhibitory synaptic strength was 

.6. After 200 milliseconds, Figure 4.1 shows a set of these results. We saw Neuron One 

spike consistently given the constant conductance. Once Neuron One spiked, it then 

caused Neuron Two to spike. We saw the dynamics of the voltage of the postsynaptic 

neuron vary from that of Neuron One. This simulation gave us a view of the impact 

synaptic-induced conductance changes have on connected neurons.  

 

 
FIGURE 4.1 TWO-NEURON SIMULATION. Voltage and Conductance of neuron 1 and neuron 
2 with Wex0=1.5, Win0=.6. Neuron 1 has gext=14 hertz. Neuron 2 is distance 1 away from 
neuron 1. 
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 It is evident that the strength of the synaptic connection between two neurons 

influenced the impact of the conductance changes. Since the strength of connection 

was based on distance, in our next simulation we considered two neurons that were 

FIGURE 4.2 SPATIAL GRID FOR TWO NEURONS:  
        Neuron A and B. 

farther away from each other. Neuron A and Neuron B are seen on the grid in Figure 

4.2.  We asked the question: How will this affect the conductance and voltage of neuron 

B? We discovered that an increase in distance (i.e. decrease in connection strength) 

reduced the impact of a spike in neuron A on the membrane potential of neuron B. 

Looking at figure 4.3, we see that neuron B does not even fire. The conductance 

changes due to the synaptic connection were not strong enough to cause the 

membrane potential to reach threshold. 

       
FIGURE 4.3 VOLTAGE AND CONDUCTANCE OF TWO NEURONS: Neuron B with distance 4.42 
from Neuron A. 



 

 

38 

 Now that we have seen how the spiking of one neuron influences the membrane 

potential of another, we wanted to simulate how a population of neurons influenced 

another population of neurons. In the next section we will discuss the results from the 

two-population model. 

  

4.2 TWO POPULATIONS OF NEURONS 

 Since we’ve seen how two single neurons communicate, the next step is to see 

how two populations communicate. The imaging of calcium suggests that a seizure 

moves through parts of the brain in a wave-like pattern. And from this data firing rate 

frequencies are also predicted.  In this simulation, we decided to think of the different 

parts of the brain as different populations of neurons. With our model, we attempted to 

simulate a similar wave pattern and produce similar firing rate frequencies and calcium 

levels as seen in the experimental results. 

 In the experiments with Zebrafish, PTZ wipes out the inhibition in the brain so we 

only considered populations of excitatory neurons. We simulated 400 neurons with 200 

neurons in each population. We ran the simulation for one second with a time step of .1 

milliseconds. The first population had five neurons that received a constant external 

input of 20 hertz. The remaining neurons would produce spikes due to their synaptic-

connections to these neurons. The connection matrix followed the model in Chapter 3.1 

and no neurons in the second population had a direct connection to the five neurons in 

population 1 with the external input (see Appendix for MATLAB code).  
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 In our first example we examined the effect of varying the intra-connection 

strengths for the first and second population. The inter-connection strength for 

population 1 and 2 was equal to .3. The external input was turned on for one thousandth 

of a second and then turned off for the remaining time period. First, we were looking for 

a low threshold in which the spiking activity of the stimulated neurons in population 1 did 

not propagate toward surrounding neurons. We found this threshold with intra-

connection strength of .1 as seen in figure 4.4. The simulated neurons fired but did not 

cause other neurons to spike. Since there was some randomness in the connections of 

the network, extreme differences in behavior can sometimes be observed. However, 

these parameters on average maintained the observed behavior as a threshold.  

     
FIGURE 4.4 TWO POPULATION MODEL: FIRING AND SVD ANALYSIS. A) Population firing at 
.609 sec. The five neurons with external input fire and then dissipate. They do not affect 
the surrounding neurons.  

 

 We also wanted to see how an increase in intra-connection strengths changed 

the movement of the propagating waves. With an increase of intra-connection strengths 

for both populations to .2, we saw that the stimulated neurons do affect the firing rate of 
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surrounding neurons in population 1. Then, once population 1 begins firing, it caused a 

few of the neurons in population 2 to fire. Once population 2 had intra-firing, it 

influenced more of its neurons to fire until it died out.  This type of behavior continued 

throughout the simulation. 

 
 

 
FIGURE 4.5 TWO POPULATION MODEL: FIRING PROPAGATION THROUGH POPULATIONS. 
Glimpses of the propagation of neuronal firing over time from population 1 (first 10 by 
20) to population 2 (second 10 by 20) with intra-connection strengths of .2. 

 To understand the data more clearly, we calculated the singular value 

decomposition (SVD). Finding the SVD provides us with the eigenvectors that contribute 

the highest variance in the network. From this, we can eliminate a large portion of the 

data and focused on the most influential eigenvectors. An SVD lists the eigenvalues and 

corresponding eigenvectors in order from producing the most variance to the least 

variance. In figure 4.6A, we plotted the corresponding eigenvalues and determined 

where to truncate the data. Taking a look at just the first eigenvector, we graphed the 
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firing rate frequency over time (4.6B). The graph showed strong low frequency firing 

rates. The base frequency was around 75 hertz. In experimental data, researchers 

predict firing rate frequencies around 50 – 60 hertz. Therefore, in this example our 

results were similar to those from the brain imaging data.  

       
FIGURE 4.6 TWO POPULATION MODEL: EIGENVALUES AND FIRING RATE FREQUENCY. A) Log 
scale for y-axis vs. eigenvalues plot of singular valued decomposition (SVD). Allows 
researcher to identify the eigenvectors involved in the highest variation in the system. B) 
Grayscale plot of firing rate frequency of the first eigenvector over time. Shows low 
frequency firing rates. 
 

 Since we had similar firing rate frequencies, the next data we reviewed was the 

calcium and ratios data to see how it compared to what was seen in the experimental 

data. We expected to see levels of calcium to be around 10-7 to 10-5 and the maximum 

emission ratio of cameleon to be between 40 and 60 percent. Figure 4.7 shows the 

results from the simulation. In 4.7A we see that the recorded maximum ratios for both 

populations were up to around 45 percent by the end of the simulation.  We took the 

SVD of the calcium data and analysis showed that roughly the first seven eigenvalues 

caused the most variation in the system. Due to space, we present the spatial and time 

series data for the first four eigenvectors in 4.7B-E. 
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FIGURE 4.7 TWO POPULATION MODEL: CALCIUM AND YFP/CFP RATIO LEVELS A) Maximum 
Ratios of population 1 and population 2 over time. B-D) Spatial and time series data for 
the first four eigenvectors over time. These eigenvectors cause the most variation in the 
network. 
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 When we continued to pump up the intra-strengths of the neurons we saw more 

structure to the propagation of spiking activity from population 1 to population 2. Along 

with this structure, however, we got higher frequency of firing rates (see figure 4.8 and 

4.9). In these simulations, we also lengthened the time of external input pumping into 

the system, however, we did not see significantly different results (time period for 

simulation is one second). Therefore, these results are not presented in figures. 

    
FIGURE 4.8 TWO POPULATION MODEL: FIRING PROPAGATION THROUGH POPULATIONS. 
Glimpse of propagation of spiking activity with intra-connection strength of .5. 
  

                      
     
FIGURE 4.9 TWO POPULATION MODEL: EIGENVALUES AND HIGH FIRING RATE FREQUENCY. A) 
Log plot of eigenvalues. Shows most important eigenvalues to the system are the first 
28 eigenvalues and corresponding eigenvectors. B) Frequency over time plot of first 
eigenvector. Shows high frequency firing rates. (Similar plot for the other 27 most 
influential eigenvectors.) 
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 Given the two-population model, we did see the oscillation of spiking activity from 

one population to the next. However this oscillation was much faster than seen in 

experimental results. Also, there was too much excitation in the system. Once the first 

population began firing, the whole network continued to fire no matter what time the 

external input was turned off. Therefore, some inhibition is needed. It was also difficult 

to find appropriate intra- and inter- connection strengths to closely match results from 

experimental data and maintain low frequency firing rates.   

 In this model we were not considering connections with any spatial organization. 

We found a paper by Ursino and LaCara ([19]) where a spatial structure of connections 

was used that produced wave patterns with low firing rate frequencies. We therefore 

changed our focus to this model and its results will be discussed in the following 

section.  

 

4.3 NETWORK OF NEURONS SPATIALLY CONNECTED    

 In this section we present results from a set of simulations using the spatially 

connected network of neurons presented in Chapter 3.2. In the previous section we 

were not considering space when formulating the synaptic connections of the neurons. 

We felt this was important to consider when looking at the propagation of spiking activity 

through a neuronal network. We also needed to include some inhibition into the system. 

 In this set of simulations we looked for a low threshold in which the stimulated 

neurons did not cause sustaining spiking activity of surrounding neurons. Once we 
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located the threshold, we concentrated on the increase of excitation strength, Wex0, and 

varying the length of time external input was on during the simulation. Both the strength 

of inhibition and external input were kept fixed. Our current simulation did not contain 

Gaussian noise, but it could be added to the system if desired.  

 For the following results, we used a neuronal network of 900 neurons with 

inhibitory strength, Win0, equal to 0.2, and input conductance, gext, equal to 14 hertz. The 

simulation ran for two seconds with a time step of .1 milliseconds. We varied the length 

of time (.1 sec, .3 sec, .5 sec, .7 sec, .9 sec) the input conductance was turned on and 

the strength of excitatory synapses (.2, .3, .4, .5, .6). We found our lower bound when 

Wex0 = 0.2. With this parameter (depending on when the input was turned off) the 

stimulated neurons initiated minimal spiking activity within the network. Once the input 

was turned off, the spiking activity diminished. After finding this threshold, we 

concentrated on the behavior of the network with increased excitation. In the following 

discussion we will present findings with parameters Wex0 = 0.4 and input time = .9 

seconds. The results using other parameters followed similar behavior.  

 First we observed the general spiking activity of the network. In figure 4.10 we 

highlight interesting activity that occurred throughout the two-second simulation. In 

4.10A we see the progression of the initial spiking behavior for the network over .08 

seconds. The nine neurons in the center of the frame first fired at .609 seconds. Once 

these neurons fired, the surrounding neurons were also stimulated to fire. After this 

firing took place, there was enough excitation in the system (and regular input from 

stimulated neurons) to maintain random firing within the network (see 4.10B).  



 

 

46 

   

 

 

 
FIGURE 4.10 TWO-POPULATION MODEL: EIGENVALUES AND FIRING RATE FREQUENCY  
A) Glimpses of initial spiking at .609 seconds through .683 seconds. B) Random firing 
throughout population. C) First circular structured pattern of firing at .1532 seconds. 
Similar pattern occurring at .1563, .1564, .1565, and .1600 seconds with less strength. 
D) Stronger circular structured firing pattern occurring at .3632, .3663, .3694 seconds. 
Similar pattern occurring at .3725, .3787, .3818, .3850 with less impact. E) Last 
structured firing pattern occurring at .4340 seconds. Similar pattern occurring at .4371, 
and .4402. As seen in last frame, spiking activity restricts itself to small population within 
the confines of the last firing pattern. 
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 The next interesting spiking behavior came at .1532 seconds in 4.10C. Here the 

network experienced a circular-structured multi-neuron burst within the network. The 

initial burst was the strongest with smaller bursts occurring after the elapsed refractory 

period of 3 milliseconds. After this burst of activity, the spiking activity within the network 

remained mostly within the bursting region. This observation led us to believe that not 

only did the excitation increase in certain neurons during this event, but the inhibition 

also increased in other neurons. 

 At  .3632 seconds there was a different circular-structured multi-neuron burst of 

excitation that changed the regions in which we saw spiking activity (see 4.10D). This 

long burst maintained its strength through two refractory periods; occurring with the 

same strength at .3663 and .3694 seconds. Then, the bursting began to diminish 

throughout the next four refractory periods. Just like the previous case, the major 

spiking activity within the network confined itself within the recent bursting region due to 

increased inhibition in surrounding neurons.  

 The final interesting spiking behavior occurred at .4340 seconds. This bursting 

pattern faded away quickly but affected the location of spiking activity for the remainder 

of the simulation. Only small clusters of neurons within this region (see figure 4.10E) 

continued to fire.  

 We visually identified the interesting behavior throughout the simulation but in 

order to understand why this behavior may be occurring we needed to calculate the 

SVD of the data. Figure 4.11 plots the eigenvalues of the SVD. The eigenvalues that 
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caused the most variance in the network are around the first fifteen eigenvalues. Each 

of these eigenvalues has corresponding spatial and temporal eigenvectors. The four  

 
FIGURE 4.11 ONE POPULATION MODEL: EIGENVALUES OF VARIANCE A) Plot of Eigenvalues 
from SVD. B) A closer look of the plot of eigenvalues. Here we see which eigenvalues 
contribute to the most variance in the system.  

 

general types of behavior seen in the temporal eigenvectors from the first fifteen 

eigenvalues are shown in Figures 4.12 – 4.16.  

 Figure 4.12 revealed the details behind the bursting activity in the visual 

simulation. Part A plots the first spatial eigenvector and we can see which neurons 

contributed to the most variance in the network. We clearly see the patterns from this 

eigenvector matching the bursting events from the simulation. In 4.12B we plot the first 

temporal eigenvector. It shows small oscillations of activity leading to three larger 

events. The largest event happened just before .4 seconds which correlates to the 

event seen in Figure 4.10D. We believe this event was similar to an ictal event seen in 

experimental results. The firing rate frequency for this eigenvector (see Fig. 4.12C) is 

low on average with a high frequency spike during the ictal event.  
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 The third eigenvector’s (see Fig. 4.13) spiking behavior was onset by the 

stimulated firing. The spiking activity maintained a steady oscillation throughout the  

 

 
FIGURE 4.12 ONE POPULATION MODEL: FIRST EIGENVECTOR ANALYSIS. A) Shows first 
spatial eigenvector for firing rates B) first temporal eigenvector for firing rates C) firing 
rate frequency for first eigenvector 
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simulation. There is one spike seen in the time series data (Fig 4.13B) correlating to the 

first bursting event seen in Figure 4.10C. This eigenvector describes the small cluster of 

neurons that continue to spike throughout the length of the simulation. The base firing 

rate frequency is still small (around 70-80 hertz), but there is more high frequency 

activity. The intensity of low frequency firing rates (Fig 4.13 C) diminished after the ictal  

 

 
FIGURE 4.13 ONE POPULATION MODEL: THIRD EIGENVECTOR ANALYSIS. A) Shows third 
spatial eigenvector for firing rates B) third temporal eigenvector for firing rates C) firing 
rate frequency for third eigenvector 
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event around .4 seconds in the simulation.  

 The fourth eigenvector revealed there were also periods of high oscillation over 

time (see Figure 4.14) that weakened near the bursting events. As the first bursting 

event occurred, the activity died out and then began again after the event was over.  

 

 
FIGURE 4.14 ONE POPULATION MODEL: THIRD EIGENVECTOR ANALYSIS. A) Shows third 
spatial eigenvector for firing rates B) third temporal eigenvector for firing rates C) firing 
rate frequency for third eigenvector 
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Once the third bursting event (see Fig 4.10E) was finished, the stronger oscillations 

weakened for approximately .1 seconds. Then the oscillations returned and continued 

through the length of the simulation. The low frequency firing rates (around 75 hertz) 

were strongest at the beginning of the simulation and faded away for a long period of 

time after .4 seconds. The low frequency firing rates strengthened again at 

approximately 1.1 seconds within the simulation.  

 The SVD for the fourteenth eigenvector showed that once the external input was 

turned off at .9 seconds, the firing rates slowed down. This confirmed what was seen 

during the simulation where most of the network stopped firing by the end of the 

simulation.  Looking at the times series plot of the eigenvector (Fig. 4.15 B) we saw 

spiking activity until just after the one second mark. The firing rate frequency (4.15 C)  
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FIGURE 4.15 ONE POPULATION MODEL: FOURTEENTH EIGENVECTOR ANALYSIS. A) Shows 
third spatial eigenvector for firing rates B) third temporal eigenvector for firing rates C) 
firing rate frequency for third eigenvector 

    
  showed low to high frequencies occurring during the high amplitude activity seen in 

figure 4.15B.  

 After looking at the firing rate data, we needed to analyze the changes in calcium 

concentrations. We expected the changes in calcium to increase when neuronal firing 

increased. By examining the SVD data of the same eigenvectors seen in Figures 4.12 – 

4.15 we were able to identify whether or not we were accurately predicting calcium 

concentrations. We discovered that the pattern of neurons within the network with the 

highest variability in calcium matched the pattern of neurons with the highest variability 

in firing rates (see Figure 4.12 and Figure 4.16).  

 The first eigenvector (4.16A, B) showed the increases in calcium throughout the 

simulation. The amount of calcium slowed to a steady state over the length of the  
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FIGURE 4.16 ONE POPULATION MODEL: EIGENVECTORS OF CALCIUM LEVELS. A) Shows first 
spatial eigenvector for calcium B) first temporal eigenvector for calcium C) Shows third 
spatial eigenvector for calcium D) third temporal eigenvector for calcium E) Shows 
fourth spatial eigenvector for calcium F) fourth temporal eigenvector for calcium G) 
Shows fourteenth spatial eigenvector for calcium H) fourteenth temporal eigenvector for 
calcium 
 

simulation. This makes sense since only the one small population continued to 

consistently fire. The three remaining eigenvectors (3rd, 4th, and 17th in 4.16 C-H) 

demonstrated events during the simulation where parts of the population experienced 

increases or decreases in calcium concentration.    

 The final set of data we investigated was the YFP/CFP ratios. Based on 

experimental results, we expected the YFP/CFP ratios for the network to be between 

forty and sixty percent. Figure 4.17 shows the maximum ratio of YFP to CFP at each 

time step throughout the simulation. Around .8 seconds within the simulation we 

reached the projected range and stayed within the forty to sixty percent range through 
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the rest of the simulation. The graph also reveals how the YFP/CFP ratio was affected 

by the external input being turned off at .9 seconds.  

 

FIGURE 4.17 ONE POPULATION MODEL: MAXIMUM YFP/CFP RATIOS. Maximum ratios are in 
expected range of 40 to 60 percent by .8 seconds through the end of the 2-second 
simulation. 

 

 The results of the one population model produced propagating waves, long 

bursting activity, and reasonable firing rate frequencies, which were the goals of this 

simulation. We found a lower threshold of activity and explored how an increase in 

excitation affected the behavior of the network. In the following chapter, we will discuss 

conclusions and improvements to the model to more accurately represent the network 

activity within the brain of a Zebrafish. 
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CHAPTER 5 

CONCLUSIONS 

 The purpose of this thesis was to create a simulation based on a mathematical 

model to recreate behavior seen in imaging research on seizures in the brain of a 

Zebrafish.  The results from the previous chapter suggest that it was possible to obtain 

low frequency firing rates while calcium moved from one part of the population of 

neurons to the next. The calcium levels and emission ratios were inline with 

experimental data as well. However, there are improvements that can be made to the 

model to better represent seizure behavior in the Zebrafish.  

 In our model we used two different ways to represent synaptic connections within 

the brain. Each of these representations produced different results. Recent research 

has made it possible to predict the blueprint of synaptic connections within the Zebrafish 

brain. Therefore, an improvement to the model would be to create a connection matrix 

that followed this blueprint. By using a more accurate model for synaptic connections, 

we expect to see more precise results from the simulation. 

 For some parameters, the spiking activity for the neuronal network quickly died 

out or slowly died out throughout the length of the simulation. However, when there is a 

lot of excitation in the system results showed that the spiking activity of neurons could 

sustain itself indefinitely. This presents a problem with the model since neurons can 

only fire in relation to how much energy is available for action potentials. Once the 
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energy is depleted, the neuron is no longer able to fire. So an improvement to the model 

would be to keep track of this energy (known as Adenosine triphosphate (ATP)). Once 

ATP has been depleted, the neurons can no longer fire until more energy is stored. This 

would allow the simulated seizure to stop at a similar time period as an actual seizure.   

 The model in this thesis was a stepping-stone toward an accurate simulated 

model for seizures in the brain of a Zebrafish. With the improvements presented, this 

mathematical model will be more accurate and should produce more reasonable results 

in comparison to experimental data.   
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APPENDIX 

A1. MATLAB CODE – CONNECTION MATRIX FROM 3.1 
 
%Creates connectivity Matrix  
function [k]=connectivity(d,e,c1,c2,c3,c4,randneuron) 
k=zeros(d,d); 
 for u=1:d/e 
     r1=randperm(d/e); 
     itself_1=r1==u; 
     r1_new=r1; 
     r1_new(itself_1)=[]; 
     rr1=r1_new(1:10); 
      
     r2=randperm(d/e); 
     del_1=randneuron(1); 
     del_2=randneuron(2); 
     del_3=randneuron(3); 
     del_4=randneuron(4); 
     indx_1=r2==del_1 | r2==del_2 | r2==del_3 | r2==del_4; 
     r2_new=r2; 
     r2_new(indx_1)=[]; 
     rr2= r2_new(1:3); 
     
    rp1=d/e + randperm(d/e); 
    itself_2=rp1==u+d/e; 
    rp1_new=rp1; 
    rp1_new(itself_2)=[]; 
    rrp1=rp1_new(1:10); 
     
    rp2=d/e + randperm(d/e); 
    indx_2=rp2==del_1|rp2==del_2 | rp2==del_3 | rp2==del_4; 
    rp2_new=rp2; 
    rp2_new(indx_2)=[]; 
    rrp2=rp2_new(1:3); 
      
    %intra-connections (within a population) 
    for tt=1:10   
        k(u,rr1(tt))=abs(c1 + (c1/2)*randn);   
        k(d/e+u,rrp1(tt))=abs(c3 +(c3/2)*randn); 
    end 
     
    %inter-connections (between different populations) 
    for vv=1:3 
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        k(u,rrp2(vv))=abs(c2 +(c2/2)*randn); 
        k(d/e+u,rr2(vv))=abs(c4 +(c4/2)*randn); 
    end   
 end 
   

 

A2. MATLAB CODE – CONNECTION MATRIX FROM 3.2  

%Here we create the connection matrix for excitatory connections 
%*based off of Ursino paper 
function [Ex]=ConnectSpaceExcite(d,e,w_ex) 
%**We are assuming e is even 
  
format long 
A=zeros([e e e e]); 
for i=1:e 
  for j=1:e 
    k=rand; 
    p=i-(e/2); 
    q=j-(e/2); 
    for l=p:e+p-1 
     for m=q:e+q-1 
         dist=sqrt((i-l)^2+(j-m)^2); 
         if 0~=mod(l,e) 
           if 0==mod(m,e)                        
 A(i,j,mod(l,e),e)=w_ex*(.5+k)*exp(-(1/4)*dist^2); 
           else 
   A(i,j,mod(l,e),mod(m,e))=w_ex*(.5+k)*exp(-(1/4)*dist^2); 
           end 
         else 
           if 0==mod(m,e) 
            A(i,j,e,e)=w_ex*(.5+k)*exp(-(1/4)*dist^2);               
   else 
          A(i,j,e,mod(m,e))=w_ex*(.5+k)*exp(-(1/4)*dist^2);  
           end 
        end 
      end 
    end 
  end 
end 
Ex=reshape(A,[d d]); 
for ii=1:d 
    Ex(ii,ii)=0; 
end 
  
end 
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%Here we created the connection matrix for inhibitory 
connections 
function [In]=ConnectSpaceInhibit(d,e,w_in) 
%**We are assuming e is even 
  
format long; 
A=zeros([e e e e]); 
for i=1:e 
 for j=1:e 
    k=rand; 
    p=i-(e/2); 
    q=j-(e/2); 
   for l=p:e+p-1 
     for m=q:e+q-1 
         dist=sqrt((i-l)^2+(j-m)^2); 
        if 0~=mod(l,e) 
         if 0==mod(m,e) 
         A(i,j,mod(l,e),e)=w_in*(.5+k)*exp(-(1/16)*dist^2); 
         else 
  A(i,j,mod(l,e),mod(m,e))=w_in*(.5+k)*exp(-(1/16)*dist^2);  
         end 
       else 
         if 0==mod(m,e) 
            A(i,j,e,e)=w_in*(.5+k)*exp(-(1/16)*dist^2); 
         else 
         A(i,j,e,mod(m,e))=w_in*(.5+k)*exp(-(1/16)*dist^2);  
         end 
      end                   
    end 
  end 
end 
end 
In=reshape(A,[d d]); 
for ii=1:d 
    In(ii,ii)=0; 
end 
end 
 

 

A3. MATLAB CODE – RK4 

function [t,count_t_spike,calcium,ratios]= 
PopNeurons_Final_revised(a, b, N,lim, d, e, w_ex, w_in, 
external,refract) 
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feature accel on 
format long 
  
%h=time step, t=time, vthres= voltage threshold for spiking, 
vrest= voltage reset value tau is time constant for excitation, 
tau_inhibit for inhibition 
  
h=(b-a)/N; 
t=a:h:b; 
vthres=1; 
vrest=0; 
tau=.001; 
tau_inhibt=.002; 
  
%v=voltage, u=estimate of voltage used in resetting after a 
spike, g,w = 2 dimensional conductance system of equations 
%g_e=conductance from excitation, g_i=conductance from 
inhibition 
 
v_old=zeros(d, 1); 
v=zeros(d,1); 
u_old=zeros(d,1); 
u=zeros(d, 1); 
  
g_old=zeros(d,1); 
g=zeros(d,1); 
w_old=zeros(d,1); 
w=zeros(d,1); 
g_e=zeros(d,1); 
  
g_inhibt_old=zeros(d,1); 
g_inhibt=zeros(d,1); 
w_inhibt_old=zeros(d,1); 
w_inhibt=zeros(d,1); 
g_i=zeros(d,1); 
  
local_g2=zeros(d,1); 
local_g_e2=zeros(d,1); 
local_g_inhibt2=zeros(d,1); 
local_g_i2=zeros(d,1); 
local_g3=zeros(d,1); 
local_g_e3=zeros(d,1); 
local_g_inhibt3=zeros(d,1); 
local_g_i3=zeros(d,1); 
  
%Variables for rk4 for finding voltage of each neuron 
k1=zeros(d,1); 
k2=zeros(d,1); 
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k3=zeros(d,1); 
k4=zeros(d,1); 
  
%Variables for rk4 for finding new voltage after a spike for 
each neuron 
j1=zeros(d,1); 
j2=zeros(d,1); 
j3=zeros(d,1); 
j4=zeros(d,1); 
  
%Calcium  
cal=zeros(d,1); 
calcium=zeros(d,N); 
  
%Variables for rk4 to find calcium for next time step 
y1=zeros(d,1); 
y2=zeros(d,1); 
y3=zeros(d,1); 
y4=zeros(d,1); 
  
%dummy substitution variables 
s1=zeros(d,1); 
s2=zeros(d,1); 
s3=zeros(d,1); 
s4=zeros(d,1); 
s5=zeros(d,1); 
s6=zeros(d,1); 
s7=zeros(d,1); 
s8=zeros(d,1); 
s9=zeros(d,1); 
s10=zeros(d,1); 
s11=zeros(d,1); 
s12=zeros(d,1); 
  
%stores the ratios 
ratios=zeros(d,N); 
r_min=0; 
r_max=1; 
  
%g_ext= External conductance into system; 3x3 matrix of neurons 
in center 
g_ext=zeros(d,1); 
%Trying to determine the middle to give external conductance to 
a 3x3 
%matrix of neurons 
Marray=1:d; 
Matrix=reshape(Marray,e,e)'; 
mid= size(Matrix,1)/2; 
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pre_mid=mid-1; 
post_mid=mid+1; 
neu=Matrix(pre_mid:post_mid,pre_mid:post_mid); 
  
%Counter for spikes for each neuron. Firing rates are calculated 
over each time step as the number of spikes per time step 
t_spike=zeros(d,N); 
count_t_spike=zeros(d,N); 
  
%Finds the connectivity matrix Ex for excitatory and In for 
inhibitory connections 
Ex=ConnectSpaceExcite(d,e,w_ex); 
In=ConnectSpaceInhibit(d,e,w_in); 
  
for i=1:N %Outermost for-loop for time 
    %noise for the system right now we are having no noise 
    noise=zeros(d,1); 
     
    %noise=poissrnd(.1,d); 
     
%if/else statement to cut on/off the external conductance  
    if i <= lim    
        for p=1:9 
         g_ext(neu(p))=external; 
        end 
  
    else 
        for p=1:9 
         g_ext(neu(p))=0; 
        end 
    end 
        
    %now we calculate the conductance and the voltage at the 
beginning of the time step for each neuron influenced by the 
external current and synaptic connections. The inhibitory 
connections have added noise in the calculation and are not 
connected to an external current. It uses rk4 to find the 
voltage for the next time step.  
     
    g_e(1:d)=g_ext(1:d)+(Ex(:,:)*g(:)); 
    g_i(1:d)=(In(:,:)*g_inhibt(:))+noise; 
     
        v_old=v; 
         
        alph=50*ones(d,1); 
        alpha1=(alph+g_e+g_i); 
        beta1=(14/3)*g_e-(2/3)*g_i; 
        k1(1:d)=-alpha1.*v_old(1:d)+beta1; 
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        local_g2(1:d)=exp(-((h/2))/tau)*g+((h/2)/tau)*exp(-
((h/2))/tau)*w; 
        local_g_e2(1:d)=g_ext(1:d)+Ex(:,:)*local_g2(:); 
        local_g_inhibt2(1:d)=exp(-
((h/2))/tau_inhibt)*g_inhibt+(((h/2))/tau_inhibt)*exp(-
((h/2))/tau_inhibt)*w_inhibt; 
        local_g_i2(1:d)=In(:,:)*local_g_inhibt2(:)+noise; 
        alpha2=(alph+local_g_e2+local_g_i2); 
        beta2=(14/3)*local_g_e2-(2/3)*local_g_i2; 
        k2(1:d)=-alpha2.*(v_old(1:d)+k1(1:d)*(h/2))+beta2; 
         
        k3(1:d)=-alpha2.*(v_old(1:d)+k2(1:d)*(h/2))+beta2; 
         
        local_g3(1:d)=exp(-((h))/tau)*g+((h)/tau)*exp(-
((h))/tau)*w; 
        local_g_e3(1:d)=g_ext(1:d)+Ex(:,:)*local_g3(:); 
        local_g_inhibt3(1:d)=exp(-
((h))/tau_inhibt)*g_inhibt+(((h))/tau_inhibt)*exp(-
((h))/tau_inhibt)*w_inhibt; 
        local_g_i3(1:d)=In(:,:)*local_g_inhibt3(:)+noise; 
        alpha3=(alph+local_g_e3+local_g_i3); 
        beta3=(14/3)*local_g_e3-(2/3)*local_g_i3; 
        k4(1:d)=-alpha3.*(v_old(1:d)+k3(1:d)*h)+beta3; 
               
         
        
v(1:d)=v_old(1:d)+(h/6)*(k1(1:d)+2*k2(1:d)+2*k3(1:d)+k4(1:d)); 
         
         
%Refractory Period so a neuron doesn't spike more than 
physically possible  
        if i>refract 
          idx=logical(sum(t_spike(1:d,i-refract:i),2)~= 0); 
          v(idx)=vrest;    
        end 
        if i<refract  
            idx=logical(sum(t_spike(1:d,1:i),2)~=0); 
            v(idx)=vrest; 
        end     
    %This section searches through the voltage level for each 
neuron at the current time step to determine if the voltage has 
passed the threshold. If it has, then we know a spike has 
occurred during the time step. The code below finds the 
estimated spike time (t_spike) and recalculates the voltage, 
conductance, and calcium levels for that neuron.  
     
%If a spike has not occurred, no new calculation is needed. 
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    %Identifies whether voltage is above threshold 
    idx2=find(v(1:d)>=vthres); 
    idx3=find(v(1:d)<vthres); 
     
     if (~isempty(idx3))         %no spike               
%Calculated conductance for excitatory based on original voltage 
           g_old(idx3)=g(idx3); 
           w_old(idx3)=w(idx3); 
           g(idx3)=exp(-((h))/tau)*g_old(idx3)+((h)/tau)*exp(-
((h))/tau)*w_old(idx3); 
           w(idx3)=exp(-(h)/tau).*w_old(idx3); 
            
%Calculated conductance for inhibitory based on original voltage 
           g_inhibt_old(idx3)=g_inhibt(idx3); 
           w_inhibt_old(idx3)=w_inhibt(idx3); 
           g_inhibt(idx3)=exp(-
((h))/tau_inhibt)*g_inhibt(idx3)+(((h))/tau_inhibt)*exp(-
((h))/tau_inhibt)*w_inhibt(idx3); 
           w_inhibt(idx3)=exp(-
(h)/tau_inhibt).*w_inhibt_old(idx3); 
             
           %Calculated calcium levels 
            cal_old=cal; 
            y1(idx3)=dcaldt(0,cal_old(idx3)); 
            y2(idx3)=dcaldt(h/2, cal_old(idx3)+y1(idx3)*h/2); 
            y3(idx3)=dcaldt(h/2, cal_old(idx3)+y2(idx3)*h/2); 
            y4(idx3)=dcaldt(h, cal_old(idx3)+h*y3(idx3)); 
            
cal(idx3)=cal_old(idx3)+(h/6)*(y1(idx3)+2*y2(idx3)+2*y3(idx3)+y4
(idx3)); 
                         
     end 
     
     if (~isempty(idx2))        %we have a spike! 
           indx=size(idx2,1);    
         
       for c=idx2'           
          t_spike(c,i)=fzero(@(x) vthres -(v_old(c)*(1-
alpha1(c)*x-3*x^2/(h^2)+2*x^2*alpha1(c)/h+2*x^3/(h^3)-
x^3*alpha1(c)/(h^2))+v(c)*(3*x^2/(h^2)-x^2*alpha3(c)/h - 
2*x^3/(h^3) -x^3*alpha3(c)/(h^2))+ beta1(c)*x - 2*x^2*beta1(c)/h 
+ x^2*beta3(c)/h + x^3*beta1(c)/(h^2) + 
x^3*beta3(c)/(h^2)),.0001); 
       end 
        
%Calculated conductance for excitatory connections after a spike       
           g_old(idx2)=g(idx2);  
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           w_old(idx2)=w(idx2); 
           g(idx2)=exp(-(h)/tau).*g_old(idx2)+((h)/tau).*exp(-
(h)/tau).*w_old(idx2)+((h-t_spike(idx2,i))/tau^2).*exp(-(h-
t_spike(idx2,i))/tau); 
           w(idx2)=exp(-(h)/tau).*w_old(idx2)+(1/tau).*exp(-(h-
t_spike(idx2,i))/tau);           
  
%Calculated conductance for inhibitory connections after a spike 
           g_inhibt_old(idx2)=g_inhibt(idx2); 
           w_inhibt_old(idx2)=w_inhibt(idx2); 
           g_inhibt(idx2)=exp(-
(h)/tau_inhibt).*g_inhibt_old(idx2)+((h)/tau_inhibt).*exp(-
(h)/tau_inhibt).*w_inhibt_old(idx2)+((h-
t_spike(idx2,i))/tau_inhibt^2).*exp(-(h-
t_spike(idx2,i))/tau_inhibt); 
           w_inhibt(idx2)=exp(-
(h)/tau_inhibt).*w_inhibt_old(idx2)+(1/tau_inhibt).*exp(-(h-
t_spike(idx2,i))/tau_inhibt); 
  
 %If tspike < h/2, need to calculate alpha and beta as if a 
 %spike has occurred by half way 
            alph4=50*ones(indx,1); 
            g_half(1:d,1)=exp(-
(h/2)/tau).*g_old+((h/2)/tau).*exp(-(h/2)/tau).*w_old+(((h/2)-
t_spike(:,i))/tau^2).*exp(-((h/2)-t_spike(:,i))/tau); 
            g_e_half(1:indx,1)=g_ext(idx2)+Ex(idx2,:)*g_half(:); 
            g_inhibt_half(1:d,1)=exp(-
(h/2)/tau_inhibt).*g_inhibt_old+((h/2)/tau_inhibt).*exp(-
(h/2)/tau_inhibt).*w_inhibt_old+(((h/2)-
t_spike(:,i))/tau_inhibt^2).*exp(-((h/2)-
t_spike(:,i))/tau_inhibt); 
            
g_i_half(1:indx,1)=In(idx2,:)*g_inhibt_half(:)+noise(idx2); 
            
alpha4=(alph4+g_e_half(1:indx,1)+g_i_half(1:indx,1)); 
            beta4=(14/3)*g_e_half(1:indx,1)-
(2/3)*g_i_half(1:indx,1); 
             
%Tells us which alpha and beta to use when re-calculating 
            %voltage 
           if t_spike < h/2 
            alpha2=alpha4; 
            beta2=beta4; 
           end 
            
%Calculating alpha and beta at end of time step after a spike 
            local_g_e5(1:indx,1)=g_ext(idx2)+Ex(idx2,:)*g(:); 
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local_g_i5(1:indx,1)=In(idx2,:)*g_inhibt(:)+noise(idx2); 
            
alpha5=(alph4+local_g_e5(1:indx,1)+local_g_i5(1:indx,1)); 
            beta5=(14/3)*local_g_e5(1:indx,1)-
(2/3)*local_g_i5(1:indx,1); 
        
%dummy variables to help me calculate voltage 
           s1(idx2)= -alpha1(idx2); 
           s2(idx2)=beta1(idx2); 
           s3(idx2)=-alpha2(1:indx)-
(alpha2(1:indx).*s1(idx2))*h/2; 
           s4(idx2)=(-alpha2(1:indx)*(h/2).*s2(idx2)) + 
beta2(1:indx); 
           s5(idx2)= -alpha4(1:indx)- 
(alpha4(1:indx)*(h/2).*s3(idx2)); 
           s6(idx2)=(-alpha4(1:indx)*(h/2).*s4(idx2)) 
+beta4(1:indx); 
           s7(idx2)= -alpha5(1:indx)-alpha5(1:indx)*h.*s5(idx2); 
           s8(idx2)= -alpha5(1:indx)*h.*s6(idx2)+ beta5(1:indx); 
           s9(idx2)= ones(indx,1) + (h/6)*s1(idx2) + 
(h/3)*s3(idx2) + (h/3)*s5(idx2) + (h/6)*s7(idx2); 
           s10(idx2)= (h/6)*s2(idx2) + (h/3)*s4(idx2) + 
(h/3)*s6(idx2) + (h/6)*s8(idx2); 
           s11(idx2)= -alpha3(idx2).*s9(idx2); 
           s12(idx2)= -alpha3(idx2).*s10(idx2) + beta3(idx2); 
            
           %re-calculating v_n 
           u_old(idx2)=(vrest*ones(indx,1) - 
s2(idx2).*t_spike(idx2,i) - 
(3*s10(idx2).*(t_spike(idx2,i)).^2)*(1/h^2) + 
(2*s2(idx2).*(t_spike(idx2,i)).^2)*(1/h) - 
(s12(idx2).*(t_spike(idx2,i)).^2)*(1/h) + 
(2*s10(idx2).*(t_spike(idx2,i)).^3)*(1/h^3) - 
(s2(idx2).*(t_spike(idx2,i)).^3)*(1/h^2) -
(s12(idx2).*(t_spike(idx2,i)).^3)*(1/h^2))./(ones(indx,1) + 
s1(idx2).*t_spike(idx2,i) + 
(3*s9(idx2).*(t_spike(idx2,i)).^2)*(1/h^2) -
(3*(t_spike(idx2,i)).^2)*(1/h^2) - 
(2*s1(idx2).*(t_spike(idx2,i)).^2)*(1/h) + 
(s11(idx2).*(t_spike(idx2,i)).^2)*(1/h) - 
(2*s9(idx2).*(t_spike(idx2,i)).^3)*(1/h^3) + 
(2*(t_spike(idx2,i)).^3)*(1/h^3) + 
(s1(idx2).*(t_spike(idx2,i)).^3)*(1/h^2) + 
(s11(idx2).*(t_spike(idx2,i)).^3)*(1/h^2)); 
             
%The v below is the newly calculated voltage (v_n+1) 
           j1(idx2)=-alpha1(idx2).*u_old(idx2)+ beta1(idx2); 
           j2(idx2)=-
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alpha2(1:indx).*(u_old(idx2)+j1(idx2)*(h/2))+ beta2(1:indx); 
           j3(idx2)=-
alpha4(1:indx).*(u_old(idx2)+j2(idx2)*(h/2))+ beta4(1:indx); 
           j4(idx2)=-alpha5(1:indx).*(u_old(idx2)+j3(idx2)*h)+ 
beta5(1:indx); 
           
u(idx2)=u_old(idx2)+(h/6)*(j1(idx2)+2*j2(idx2)+2*j3(idx2)+j4(idx
2)); 
           v(idx2)=u(idx2);       
            
%This is the newly calculated level of calcium released. 
           cal_old=cal; 
           y1(idx2)=dcaldt1(0,cal_old(idx2),indx); 
           y2(idx2)=dcaldt1(h/2, 
cal_old(idx2)+h*y1(idx2)*(1/2),indx); 
           y3(idx2)=dcaldt1(h/2, 
cal_old(idx2)+h*y2(idx2)*(1/2),indx); 
           y4(idx2)=dcaldt1(h, cal_old(idx2)+h*y3(idx2),indx); 
           
cal(idx2)=cal_old(idx2)+(h/6)*(y1(idx2)+2*y2(idx2)+2*y3(idx2)+y4
(idx2)); 
            
    end 
                      
           %finds firing rate for each time step 
          for mm=1:d 
           if t_spike(mm,i)~=0 
           count_t_spike(mm,i)=1; 
           end 
          end 
           
%holds onto calcium levels 
    calcium(:,i)=cal(1:d); 
     
% finds ratios 
   ratios(:,i) = (cal(1:d)*r_max + 10^(-
6.5)*ones(d,1)*r_min)./(10^(-6.5)*ones(d,1)+ cal(1:d)); 
end 
  
end 
   
%Calcium diff equations. When a spike has not occurred, dcaldt 
is used. When a spike has occurred, dcaldt1 is used to evaluate 
calcium. 
function dcaldt=dcaldt(t,cal) 
%if t==0 
dcaldt=-cal*(1/2); 
%else 
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%end 
     
end 
function dcaldt1=dcaldt1(t,cal,indx) 
delta=.00001*ones(indx,1); 
dcaldt1=-cal*(1/2) + delta; 
end 
 

 


