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Abstract

Large fractions of urban populations around the globe are under an increased threat of

extreme heat events. Anthropogenic climate change, coupled with rapid urbanization,

have exacerbated these threats. Most of the current urban heat studies have relied

upon conventional data sources such as satellites and weather stations to map and

analyze the urban heat islands (UHIs). However, these data sources lack the spatial

and temporal resolutions required to accurately capture the temperature variations

in space and time.

Towards overcoming these limitations, this thesis explores the challenges of har-

nessing modern data collection paradigms, namely crowdsourcing (through human-

borne sensors) and drive-by sensing (through vehicle-borne sensors) for UHI analysis.

This thesis proposes a three-tier framework called Smart Community-Centric Ur-

ban Thermal Sensing (SCOUTS) for efficiently gathering temperature data through



crowdsourcing and drive-by sensing, integrating them with data from satellite and

weather stations and performing innovative analysis to map and study UHIs.

While crowdsourcing and drive-by sensing are inexpensive data collection strate-

gies, harnessing them in an efficient manner for UHI analysis poses several research

challenges. This thesis addresses two major challenges in crowdsourcing and drive-by

sensing for UHI analysis, respectively. The first is to detect human-borne temperature

sensors that are placed anomalously and hence fail to accurately represent the actual

outdoor environment. The proposed scheme for detection of anomalously placed sen-

sors is based on our novel feature selection and classification design.

The second major challenge that we address is to select public transportation

vehicles (city buses) for sensor deployment so as to maximize the spatio-temporal

coverage value of the data collected through the drive-by sensing paradigm for UHI

analysis. In this regard, we make two unique research contributions: formulating the

bus selection problem as an optimization problem and introducing our cost-aware

approaches to enhance the spatiotemporal coverage. This thesis reports a series of

experiments demonstrating the benefits and limitations of our approaches for detect-

ing anomalously placed sensors in thermal crowdsensing and for sensor deployment

in drive-by sensing.

Index words: Urban Heat Analysis, Crowd Sensing, Drive-by Sensing, Urban
Heat Island, Spatiotemporal Coverage
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Chapter 1

INTRODUCTION

1.1 URBAN HEAT ANALYSIS

Our planet is becoming increasingly warmer, more populated, and more urban-

ized. Due to global warming, deadly heat waves are becoming more common, and

heat stresses (e.g., on morbidity and mortality) are exacerbated in cities because

cities are warmer than surrounding rural areas. Unfortunately, urban heat phe-

nomena hit disproportionately vulnerable communities such as the people who

are living in poorly-planned neighborhoods, the communities who cannot afford

air conditioning, infants and older people, construction workers, and city outdoor

workers. Therefore, it is of crucial importance to meticulously track and analyze

urban heat hazards to come up with effective strategies to make urban areas more

livable.

Urban heat hazard has been studied well in low spatio-temporal resolution;
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however, there is a great need to study this phenomenon in high spatio-temporal

resolution. High-resolution urban heat analysis considerably helps city officials to

devise effective strategies to minimize heat-related health problems of various at-

risk communities. Specifically, it can help the vulnerable community of outdoor

workers such as those who are involved in construction, sanitation, public works,

and mail delivery [Gubernot et al., 2014]. Due to global warming, ambient heat

exposure is predicted to be a prominent safety concern for many employees in

the near future [Gubernot et al., 2014]. Therefore, it is vital to measure and

understand the urban heat hazard accurately.

1.2 MOTIVATIONS ANDRESEARCHOBJEC-

TIVES

To date, urban heat vulnerability research has mostly focused on generating

coarse-grained heat maps of cities using satellite images with low spatio-temporal

resolutions to quantify the heat hazard [Duan et al., 2018, Jacob et al., 2004,

Jiménez-Muñoz et al., 2014]. While some recent works propose incorporating

data from nearby static weather stations, they fail to reflect the spatial varia-

tions of air temperature in urban areas due to the limited availability of weather

stations.

The primary motivation behind this study is the importance of this avenue of

research and the impact of growing heat hazards on our lives. The increased heat

events have direct and indirect influences on our lives. As an example of their
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direct impact, the Center for Disease Control and Prevention (CDC) reported

that around 618 people in the United States are killed by extreme heat every year

[of Disease Control and Prevention, 2017]. This phenomenon leads to many heat-

related illnesses such as heat syncope, heat stroke, and heat exhaustion, which are

preventable [Luber and McGeehin, 2008]. Talking about the indirect impacts of

increasing heat events, studies show that when exposed to warmer temperatures,

plants grow more vigorously and produce more pollen than they otherwise would

[Schmidt, 2016]. This higher level of pollen triggers and exacerbates the allergic

effects on 400 million people in the world who suffer from allergic rhinitis and 300

million people who are dealing with asthma [Lake et al., 2016]. Therefore, this

phenomenon has many direct and indirect impacts on our lives, and due to their

ever-growing trends, the global research community has focused on understanding

and mitigating their effects on our cities and our planet as a whole.

The primary objective of this thesis is to test the viability and effectiveness

of harnessing smart devices and low-cost sensors to incorporate different sens-

ing technologies and generate heatmaps with high spatiotemporal resolution. In

this regard, we have proposed and implemented software and hardware solutions

to address the limitations. Furthermore, we proposed approaches to add smart

features into our design, which could be leveraged by various sensing frameworks.

In this study, we present a hybrid framework to incorporate the observations

from remote sensing, in-situ-based sensing, crowd sensing, and drive-by sensing

technologies. For this purpose, a scalable and robust smart sensor-based archi-

tecture is designed to leverage a variety of human and vehicle-borne sensors.
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Although each sensing paradigm has its intrinsic limitations, our proposed ar-

chitecture leverages the synergy provided by them. As a result, it can generate

hyper-local heatmaps of cities. One of the major contributions of this study is

demonstrating the inability of conventional UHI mapping approaches to capture

the spatio-temporal variations within the heatmaps, compared to high-resolution

heatmaps generated by the hybrid sensing approach. The results from this study

help researchers to find a correlation between biophysical parameters of different

geographical areas and the heat events associated with those locations.

1.3 PROBLEM STATEMENTS AND CONTRI-

BUTIONS

To be specific, there are three main problems which have been addressed in this

dissertation. In the following paragraphs, we first explain each problem, then the

contributions of this study to resolve those problems are discussed.

The first problem is the lack of a comprehensive and scalable framework to

accurately capture the temperature variations and to create hyperlocal heatmaps

with high spatiotemporal resolution. Therefore, we propose and implement a

three-layer framework called Smart Community Centric Urban Thermal Sensing

(SCOUTS). SCOUTS incorporates the results of four different sensing paradigms:

remote sensing, in-situ-based sensing, crowd sensing, and drive-by sensing to pro-

vide heatmaps with high spatiotemporal resolution. In particular, different soft-

ware and hardware solutions are designed and implemented to integrate crowd

4



sensing and drive-by sensing paradigms into our framework.

The second problem is the absence of a mechanism to detect anomalous place-

ment of sensors in temperature crowd sensing, which significantly limits crowd

sensing-based approaches by enforcing the participant to follow specific instruc-

tions. To address this problem, a lightweight filtering approach is proposed and

implemented to detect anomalous placement of temperature sensors. By using

low-cost temperature sensors, the proposed technique can be leveraged into var-

ious crowd sensing frameworks which focus on collecting different environmental

features.

The third problem is the budget limitation in drive-by sensing approaches,

where there is a limited number of sensors, and we need to select a subset of

vehicles to mount the sensors to maximize the sensing coverage. To address this

issue, we formulated the problem as an optimization problem. Then, our cost-

aware approach is proposed and implemented to efficiently select a subset of buses

for sensor mounting to maximize the spatiotemporal sensing coverage, considering

that there are some dynamic hotspots in the cities where their continuous sensing

is of greater importance compared to other areas.

1.4 DISSERTATION ORGANIZATION

Chapter 2 provides background material and related works about Urban Heat

Islands and different sensing paradigms. Chapter 3 focuses on our framework, the

implementation details, and its preliminary results. In chapter 4, the anomalous
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sensor placement, which is a prevalent problem in environmental crowd sensing

applications, is discussed. It is followed by explaining our proposed approach

to effectively detect and filter these anomalies. Chapter 5 focuses on enhancing

spatiotemporal coverage in drive-by sensing, where we propose our near-optimal

cost-aware approach. The dissertation concludes in chapter 6 with a summary of

this study, followed by future directions for this research.
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Chapter 2

MOTIVATION,

BACKGROUND, AND

RELATED WORK

2.1 URBAN HEAT ISLANDS

Urban Heat Island (UHI) is an urban area that is noticeably warmer compared

with the adjacent rural areas due to urbanization. This phenomenon was first

described by an amateur meteorologist named Luke Howard about two hundred

years ago, although he was not the one to name the phenomenon. He published

his findings in a book titled The Climate of London in the 1810s [Howard, 1820].

Different factors are contributing to a city's UHI such as the increased surface

area of buildings, decreased moisture and vegetation, greater heat capacities of
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Figure 2.1: Urban Heat Island

building material, and anthropogenic heat waste from vehicles and different types

of machinery [Taha, 1997]. The heat absorbed during the day is radiated out at

night, which ultimately leads to an increase in the relative nighttime temperatures

[Kuras et al., 2015]. Therefore, this phenomenon has altered the urban climate

not only during the daytime but also in the nighttime.

Although the UHI has been widely studied in large cities around the world,

findings show that this phenomenon also exists in smaller scales [Buckley et al.,

2008, Grathwohl et al., 2006, Pinho and Orgaz, 2000]. To make it more clear,

Figure 2.1 depicts the UHI phenomenon. We can see that the temperature expe-

rienced in urban areas are higher than the suburban and rural areas. The focus

of most studies has been on the orange semicircle of this figure, while the red

line which depicts the variations in smaller scales has been underestimated in the

research community. One of the main reasons is the fact that low-resolution satel-
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lite imageries have been the primary source to generate heatmaps and to analyze

the UHI phenomenon. Therefore, there is a need to leverage different technologies

which enable us to capture the temperature variations in high resolution and to

perform hyperlocal analysis on the urban heat phenomena.

2.2 REMOTE SENSING METHODOLOGIES

Remote sensing is the primary sensing paradigm to analyze UHIs. Different mod-

els have been introduced to derive the Land Surface Temperature (LST) using

satellite data [Jin and Dickinson, 2010]. In these methods, researchers use the

thermal bands of the satellite imagery that captures the reflectance data from the

earth. Then, they perform atmospheric correction procedure [Hadjimitsis et al.,

2010], which is the process of removing the effects of unsteady atmosphere on the

reflectance values of the images taken by satellite sensors. Finally, they use exist-

ing land cover/ land use (LCLU) maps along with the emissivity (a measure that

shows the effectiveness of emitting energy as thermal radiation) values associated

with different land surfaces to derive the heat maps of different geographical areas.

There are different satellites with Thermal Infrared Sensor (TIRS) that provide

images with thermal bands to be used as the input for the heatmap generation

models [Kuenzer and Dech, 2013]. For example, Landsat 8 satellite which has been

widely used by the research community has TIRS with two spectral bands in the

longwave infrared region [NASA, 2019]. It provides images with 100-meter spatial

resolution every sixteen days for any given area on the earth. The Advanced
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Spaceborne Thermal Emission and Reflection Radiometer (ASTER) [JPL, 2016]

and the Moderate Resolution Imaging Spectroradiometer (MODIS) [EOS, 2013]

are two other satellite sensors with 90-meter and 1000-meter spatial resolution,

and 16-days and daily temporal resolution, respectively. All these images have

been the primary data source for remote sensing researchers to apply their models

and to generate heatmaps.

Yuan et al. [Yuan and Bauer, 2007] used Landsat Thematic Mapper (TM) and

Enhanced Thematic Mapper Plus (ETM+) data to estimate the LST of different

seasons for Twin Cities in Minnesota. They compared the normalized difference

vegetation index (NDVI) and percent impervious surface as indicators of surface

urban heat island effects in Landsat imagery by investigating the relationships

between the land surface temperature (LST), percent Impervious Surface Area

(%ISA), and the NDVI. Their findings show a robust linear relationship between

the LST and %ISA, which suggests that impervious surface area accounts for most

of the variation in land surface temperature dynamics. Although their study

showed impressive results, their conclusion is based on only one area and four

different dates.

In another study, based on the Landsat 8 images, authors [Tan et al., 2017],

used the mono-window algorithm proposed by Qin et al. [Qin et al., 2001] back in

2001 as the base algorithm to make some improvements. The improved algorithm

is based on the radiative transfer equation, which states that the sensor-observed

radiance is always impacted by atmospheric transmittance and ground emission.

Other than coming up with new parameters for the original equation, they recal-
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culate the land surface emissivity values of the original study. In the same study,

Tan et al., modified the algorithm proposed by Mao et al. [Mao et al., 2005] to

make a comparison between the two modified algorithms.

We implemented both models and compared the results with our in situ-based

data collection happened at the same time when satellite images were taken.

Although the Qin's model worked better for the few cloud-free dates compared

to the Mao's algorithm, we could not find any consistency between the heatmaps

generated by the models and the on-the-ground readings using either Industrial

Infrared (IR) guns or our temperature data loggers. For example, when we ran

the Qin's model on the satellite image of 27 July 2017, although it was a cloud-

free day, the heatmap showed temperatures ranging from 0 ◦C to 22 ◦C, while the

weather station's sensor showed around 31 ◦C. Figure. 2.2 shows a part of the

heatmaps generated by the two discussed models, and we can observe how the

two models produced heatmaps differently.

11



Figure 2.2: Heat Map Retrieved by Different Models

2.3 IN-SITU-BASED METHODOLOGIES

In in-situ-based techniques, researchers mainly rely on readings from weather sta-

tions to measure the temperature of different areas, and the spatial resolution of

the network of weather stations is their main limitation. The ambient air temper-

ature can be affected by microclimate differences due to the density of vegetation,

buildings material, and street orientation. Thus, a limited number of weather

stations cannot capture the heterogeneity of ambient air temperature. A study

[Kuras et al., 2015] suggests that heterogeneity in heat exposure exists even within

an urban neighborhood. In another study, authors [Bernhard et al., 2015] raised

the same issue of the difference between readings from the nearest weather station

and the experienced individual heat exposure.
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In order to better understand the spatial variation of the ambient air tem-

perature, we collected data on different dates using standard temperature sensors

during the year of 2017. For instance, we conducted an experiment on 10 July

2017 when 25 temperature sensors (Kestrel DROP environmental data loggers

with 0.5 ◦C accuracy) were installed in an area of about 0.16 km2 at the Univer-

sity of Georgia (UGA) campus for 90 minutes in the morning between 9:45 AM

and 11:15 AM. For accurate measurement of the ambient air temperature, sensors

were installed about one meter above the ground over different surfaces such as

asphalt, grass, sand, and concrete. Figure 2.3 illustrates the exact location of each

sensor on the map.

Figure 2.3: Temperature Sensors Locations
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Figure 2.4: Highest and Lowest Sensor Recoding vs Nearest Weather Station
Reading

Collected data shows the high variation of air temperature within a small

area. On average, there was a 9.5 ◦C difference between the highest and the lowest

recorded temperature at the same given points of time. As depicted in Figure 2.4,

we also compared the sensor readings with that of the nearest weather station

(1.75 km away from the study area), and we observed an average of 5 ◦C difference

between the recorded mean temperatures. These measurements represent the high

variation of ambient air temperature in response to different factors such as the

land cover or shading, which is not obtainable by a limited number of weather

stations.

However, it is impractical, at least in the near future, to have tens of thousands

of sensors installed on different parts of any given area because of the exorbitant

cost that it would impose. Therefore, crowd sensing technologies emerged to fill

this gap. For this purpose, Michael Goodchild [Goodchild, 2007] introduced the

term Volunteered Geographic Information (VGI), as a particular case of mobile
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crowd sensing. VGI, which utilizes the user-generated geospatial contents, is even

more prominent when monitoring of highly dynamic features such as the ambient

air temperature is required.

2.4 CROWD SENSING

The proliferation of mobile devices in recent years has enabled smart crowd sensing

approaches which could be used as a practical approach for the UHI studies.

Mobile Crowd Sensing (MCS) term was first introduced by Ganti et al. [Ganti

et al., 2011] as an application of the Internet of Things, where the individuals

who carry sensing devices share some data to measure and map a phenomenon.

Based on the type of phenomena being monitored, MCS can be classified into two

categories of individual and community-sensing. In urban heat analysis domain,

individual heat exposure map is the result of the first category, while integrated

urban heat exposure map pertains to the second category. Community-sensing,

which is also referred to as participatory sensing [Burke et al., 2006], has been used

in different environmental studies. For example, Hasenfratz et al. [Hasenfratz

et al., 2012] implemented GasMobile as an air quality measurement system. They

attached low-cost sensors to mobile phones to measure the ozone concentration of

the air and consequently create air pollution maps.

Crowd sensing has many advantages over traditional sensor networks. First,

due to the mobility of users, broad areas can be covered [Zhang et al., 2015].

Secondly, more often than not, there is no need to deploy and maintain sensors as
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Figure 2.5: Conventional Model for Crowd Sensing Application

they are integrated into mobile phones [Aoki et al., 2008]. Lastly, the availability of

software development tools for mobile phones makes application development and

deployment relatively easy [Heggen et al., 2013, Kanhere, 2011]. Advantages of

crowd sensing have led to an increase in mobile sensing applications. On the other

hand, there are some challenges associated with the design and implementation

of such applications. Data quality, filtering, anomaly detection, effective and

adaptive sensor installation, and resource consumption management are different

research challenges in various crowd sensing frameworks.

A conventional model for crowd sensing applications is depicted in Figure 2.5

where the mobile devices carried by participants send the data to the server, which

later on will be used by domain scientist to study the target phenomena. In these

applications, domain scientists usually specify their areas of interest on the map

so that the crowd sensing agents would know which areas are targeted for sensing

purposes [OGrady et al., 2016].
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One of the best examples of crowd sensing in the context of heat monitor-

ing is the project done by researchers at Wageningen University in Netherlands

[Overeem et al., 2013]. They proposed a crowdsourcing method to measure air

temperature using smartphone battery temperatures. They failed to take the fact

into account that temperature of smartphone batteries can be impacted by many

different factors, including the phones model, screen size, number of running ap-

plications, and the OS version. They assumed that phones are usually carried

inside the pockets close to the users body and introduced a heat transfer model.

Their model is based on some certain assumptions which make it limited and

non-scalable.

In another studies, [Chapman et al., 2017] and [Meier et al., 2017] implemented

two different case studies by using low-cost weather stations to quantify the urban

heat island of London and Berlin, respectively. They used the network of amateur

weather stations called Netatmo, which is configured to monitor the temperature

of the local environment. Although they aimed to motivate atmospheric scientists

towards the use of crowdsourcing in urban meteorology, they only used static

sensors. Their study fails to measure and analyze the community-centric and

personalized heat exposure. More importantly, their approach is limited to a

network of specific stationary sensors, which makes it non-scalable. Also in the

first study [Chapman et al., 2017], they did not have access to metadata to analyze

the quality of their crowd-sensed data (e.g., quality of instrumentation and station

location).
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2.5 DRIVE-BY SENSING

Drive-by sensing was first introduced as a new network paradigm and predicted to

be a viral sensing approach. This sensing technology, which adopts different vehi-

cles as its sensing agents, is very practical in cases where a vast number of sensors

are required to be deployed in an area, or the sensors are very costly [Hull et al.,

2006, Lee and Gerla, 2010]. The prevalence of portable sensors and ubiquitous

devices had made this platform even more attractive due to its cost-effectiveness

and the unique sensing opportunities. This approach can either employ cars [Hull

et al., 2006], buses [Gao et al., 2016], taxis [Eriksson et al., 2008], or vans [Li et al.,

2016]. Considering that many vehicles are commuting all around the cities, this

platform has many potentials in various urban studies.

Drive-by sensing agents could be categorized into two groups of dedicated and

non-dedicated vehicles [Genc et al., 2013, Habibzadeh et al., 2017]. Dedicated

vehicles are driven solely for data collection purposes, such as the ones used in

Google Street View. On the other hand, non-dedicated vehicles are the ones that

have their own schedule, such as city buses. For instance, in the City Scanner

project [Anjomshoaa et al., 2018], portable sensors are deployed on top of the

existing garbage trucks to collect data in Cambridge, Massachusetts. Considering

that the schedule of the hosting vehicles in the latter approach remains unaltered,

it would be a much cheaper choice compared to having dedicated vehicles.

We incorporated drive-by sensing paradigm into our framework and mounted

our sensors on 30 different buses of Athens Clarke County Transit and UGA Cam-

pus Transit, during the Summer of 2018 and 2019. We also mounted our sensors
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on the 5 different shuttles of Arizona State University (ASU) for two weeks dur-

ing August 2018. The ASU shuttles travel around the Tempe and Phoenix area

in Arizona. The two images in Figure.2.6 show Athens buses and ASU shuttles,

respectively.

Figure 2.6: Athens Clarke County and Arizona State University Buses

2.6 CHAPTER SUMMARY

Considering that remote sensing approaches fail to capture the highly dynamic

nature of urban heat islands, some researchers tried to incorporate in situ-based

methodologies to overcome the limitations. In these studies, researchers mainly

analyze the readings from weather stations to measure the temperature of different

areas. Most of these stations provide data every a few minutes, but the spatial

resolution of the network of weather stations is their main limitation.

There are a few studies trying to measure and analyze the urban heat tem-
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perature through crowd sensing. [Overeem et al., 2013] proposed a crowd sens-

ing method to measure air temperature using smartphone battery temperatures.

Their offered method suffers from inherent problems. Their model is mainly

based on certain assumptions, which makes it non-scalable. Two other stud-

ies, [Chapman et al., 2017] and [Meier et al., 2017] failed to measure and analyze

the community-centric and personalized heat exposure. More importantly, their

approach is limited to a network of specific stationary sensors, which makes it

non-scalable.

In summary, considering that each sensing approach has its own shortcomings,

there is a need to come up with a comprehensive and hybrid approach to leverage

the synergy provided by different sensing technologies.
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Chapter 3

SCOUTS FRAMEWORK

Chapter Overview1

In this chapter, we present a multi-layer approach to tracking the actual heat

experienced by individuals and communities with very high spatiotemporal reso-

lution. The proposed framework, Smart Community-centric Urban Thermal Sens-

ing (SCOUTS), seamlessly support a variety of human, and vehicle-borne sensors

in conjunction with satellite and weather station data to accurately map the heat

hazards of urban regions and communities.

1This chapter partially appears as:
N. H. Tonekaboni et al., ”SCOUTS: A Smart Community Centric Urban Heat Monitoring
Framework.” In Proceedings of the 1st ACM SIGSPATIAL Workshop on Advances on Resilient
and Intelligent Cities. ACM, 2018.
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3.1 FRAMEWORK OVERVIEW

The overarching goal of this framework is to efficiently integrate and analyze

data from multiple diverse sources such as human, and vehicle-borne sensors,

satellites and weather stations for effective identification and tracking of heat

stress risks of individuals and urban communities. Mobile Crowdsensing is an

essential component of the SCOUTS as it helps us gather data at much finer

spatiotemporal granularities compared to traditional sources. Since the framework

has to support highly heterogeneous data sources seamlessly, it adopts the concept

of data virtualization. The key strength of data virtualization is that it allows

the users of the framework to retrieve and analyze data from diverse sources

without needing to know the technical details about the data or its source. The

framework is composed of three layers, namely physical, virtualized data, and

modeling/ notification layers. Figure .3.1 shows the high-level architecture of this

framework based on a multi-layer bottom-up model.

The physical layer is composed of the actual data sources such as temperature

sensors, mobile devices, satellites, and weather stations. SCOUTS is designed

to support a variety of small temperature and humidity data loggers (such as

Kestrel DROP) which can be attached to clothing or backpacks. We have devel-

oped iOS and Android applications to communicate with the sensors and upload

the data to the cloud. Weather stations are another data source providing us with

readings of environmental features such as temperature and humidity. GPS infor-

mation, temperature, and humidity are continuously uploaded to the virtualized

data layer.
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Figure 3.1: High level architecture of the SCOUTS framework

Virtualized data layer consists of cloud-based data stores along with data an-

alytics and data fusion tools. In conjunction with cloud storage which ensures

data accessibility, data analysis tools enable spatiotemporal data mining. Access

to frequent arrays of geo-located and time-stamped data enables this layer to send

quality-aware sensing feedbacks and calibration information to the physical layer.

For instance, based on the heat hazard probability of a given area, configuration

information will be sent to the physical layer to update the data collection fre-

quency of sensors accordingly. Moreover, this layer integrates data streams coming

from heterogeneous sources and perform anomaly detection techniques to assure
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the integrity of data.

The third layer is the modeling and notification layer, to which the analyzed

and filtered data is fed. Data plotting and visualization are the two main tasks of

this layer which yields urban heat maps, individual, and community-centric heat

exposure maps with high spatio-temporal granularities. It also generates heat

hazard notifications, sending alerts to individuals or communities who are at the

risk of extreme heat events.

There are some research challenges associated with the full implementation of

this framework. Other than the data quality measures and calibration methods,

mechanisms to detect misplacement of sensors and filter out the sensor readings,

which are not the true representative of the outdoor air temperature is of crucial

importance. In other words, the sensors which are not exposed to the outdoor

environment in the crowdsensing procedure needs to be detected and filtered out.

Community-centric clustering of heat stresses is another challenge where orga-

nizations can devise insightful strategies to mitigate heat hazard effects on their

respective communities. Considering that the data from this framework correlates

with health-related issues, a new level of privacy consideration, beyond anonymity,

is required so that businesses such as insurance companies will not be able to take

advantage of the heat exposure profile of communities to impose higher health

insurance rates. Incentivization mechanism is the other challenge to motivate vol-

unteers to participate, especially in the areas with more potential extreme heat

events.
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3.2 IMPLEMENTATION DETAILS

3.2.1 Crowd Sensing: Mobile Applications and Kestrel

DROP Sensors

For the crowd sensing section of our framework, we used Kestrel DROP sensors,

which are small and accurate environmental data loggers. As shown in Figure 3.2,

these sensors can be easily attached to the backpack or the belt loop of volunteers

to collect data. These waterproof sensors use Bluetooth Low Energy (BLE) to

communicate and have 0.5 ◦C accuracy with 0.1 ◦C resolution. Although these

sensors can efficiently work with Kestrel Connect mobile applications to report the

data, there are some limitations associated with them. First, they do not provide

location information, which is an essential element of crowd sensing to map each

temperature reading to its location. Secondly, data reporting of their mobile

application is manual, meaning that each user needs to send the data via email or

text manually. Then, they have to clean the memory; otherwise, the memory of the

sensor gets full, and they stop working. Lastly, participants are allowed to change

the configurations such as the logging frequency, or even disconnect from a sensor

and connect to another Kestrel sensor within their Bluetooth range. Having access

to these configurations make the data collection process much harder because extra

efforts are required to train the users and ask them to follow the instructions

strictly.

In order to solve the limitations mentioned above, we developed our own iOS

and Android mobile applications (Figure 3.3). These mobile applications connect
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Figure 3.2: Kestrel DROP human-borne sensors

to the Kestrel sensors through BLE, read the data from them, get the GPS data

from the mobile devices, integrate the location information to each temperature

data point, and finally send the data to our server. For our server, we have used

Google Cloud Platform and implemented the services to work with the mobile

applications using Java Servlet. Our applications are designed to be very simple,

and no configuration option is given to the users so as to minimize participants'

intervention in the data collection process. In our implementation, admin sets

the required configurations such as the data logging frequency through our server.

Each participant is provided with a sensor, and only for the first time, the app

asks for their sensor ID. After that, participants simply need to open the app,

and it automatically connects to the sensors to start the data collection process.

The applications do not require the mobile devices to have an active Internet con-
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nection; they store the data on the devices until there is network connectivity to

send the stored data to the server.

Figure 3.3: SCOUTS iOS and Android Mobile Applications
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3.2.2 Drive-By Sensing: Vehicle-borne sensors and GPS

Data

For drive-by sensing, we designed and assembled our own standalone temperature

sensors with enhanced battery and memory. Our DIY sensors are constructed us-

ing Arduino microcontroller boards, DS18B20 1-wire digital temperature sensors

with 0.5C accuracy, low-power GPS FeatherWing boards, and lithium-ion bat-

teries. Figure 3.4 shows the process of soldering, assembling, and mounting our

sensors on the buses. Considering that the engines are in the back of the buses,

we found the bike racks in front of the buses to be the best place to mount our

sensors.

Our vehicle-borne sensors worked pretty well; however, we learned that having

the GPS sensors active all the time to get the location data every 5 seconds is

pretty battery intensive. To solve this problem, we implemented a web service

architecture, as shown in Figure 3.5, to minimize the number of calls to the GPS

sensor. For this purpose, we called the APIs provided by the two companies, Avail

Technologies and GMV Synchromatics, which provides integrated transportation

solutions for Athens Transit and UGA Campus Transit, respectively. SCOUTS

call their services through HTTP requests, then their reply in JSON format is fed

into SCOUTS endpoint. In the next step, the JSON data is parsed and inserted

into a MySQL database every five seconds. We used Apache web server to host

our Java code.
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Figure 3.4: DIY Vehicle-borne Sensors

Figure 3.5: Web Service Architecture for GPS Data Collection

29



In order to support extensibility as an essential principle of software design,

we used REST service so that different components such as mobile applications

in crowd sensing can be easily replaceable. Another reason to choose REST over

SOAP is its simplicity. In our implementation, we only used GET method of the

REST service to retrieve a simple textual data in short intervals. Therefore, the

current implementation can be easily extended for future developments.

Using this solution, we have extended the battery life of our drive-by sensing

sensors from five days to more than twenty days. We still use the GPS boards

in our sensors; however, we call them once every six hours to make sure the

clock is synchronized. In other words, the GPS sensors are used to make sure all

the geo-tagged data from buses precisely match the temperature data using their

timestamps.

3.3 PRELIMINARY RESULTS

To have a comprehensive understanding of the heat hazards and the effectiveness

of such a crowd sensing framework, we had a couple of rounds of data collection.

The most cloud-free day we could find was 28 Sept 2017, when four individuals

were walking around the UGA campus with sensors attached to their backpacks

around noon time. The heat exposure map in Figure.3.6 shows different walking

routes and the experienced air temperature by individuals during the 45-minute

course of data collection. The range of temperature experienced by each person

shows the high spatio-temporal heterogeneity in the air temperature.
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Figure 3.6: Temperature Map of 28 Sept 2017

The only weather station in the area is located on the map, as well as the exact

location of each person at 12:05 PM (the time when Landsat 8 satellite image

was taken). Although the individuals experienced up to about 14 ◦C variation in

the highlighted routes, the stationary weather station recorded only around 1 ◦C

variation during the same period. The experiment underlines the unreliability of

weather stations for measuring the precise individually experienced temperature,

which is a crucial factor in heat-related health issues.

Now, we compare the crowd-sensed data with the satellite-based heatmap

data. Figure.3.6 shows the zoomed location of person B in the heat map gener-

ated using Landsat 8 image. While each 30-meter by 30-meter re-sampled pixel

represents a single temperature value, the actual recorded temperature values are

denoted on the yellow line. Although this cloud-free experiment shows around

3 ◦C difference between the two approaches, there is no consistency in this dif-
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ference among different locations and dates. Therefore, there is an uncertainty

in satellite-based heatmaps, and they may not represent the precise temperature

values. For instance, we recorded up to 21 ◦C difference between the temperature

values in satellite-based heatmaps as opposed to the crowd-sensed readings.

In the left diagram of Figure. 3.7, we make a comparison between the temper-

ature values derived from the crowd sensing approach (the four volunteers), the

remote sensing-based approach (the heat-maps generated from Landsat 8 satel-

lite, at 12:05 PM), and the in-situ-based approach (the nearest weather station)

in a 30-minute window of 15 minutes before and after the time when the satellite

image was taken. The Landsat readings correspond to the cell values of the heat-

maps where each volunteer was at 12:05 PM, exactly when the satellite image was

captured. For instance, the temperature recorded by person D was about 37 ◦C,

while the satellite-based heat-map shows 33 ◦C for that location. Although the

latter represents LST, the temperature difference is considerable. Another inter-

esting observation is the temperature range experienced by each individual where

there is no consistency in what different individuals experienced. While person A

experienced around 2 ◦C variation in the 30-minute period, person B experienced

a temperature range of around 9 ◦C.

The right diagram in Figure. 3.7 represents the average temperature experi-

enced by the four volunteers walking around the campus compared to the average

temperature reading of the weather station in the same 45-minute period. This

graph clearly shows that a static weather station cannot accurately capture the

variability of the experienced temperature by individuals in an area. While one of
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the volunteers experienced a slightly lower temperature compared to that of the

weather station, three other volunteers were exposed to a higher temperature.

Figure 3.7: Comparison between Weather Station Readings, Landsat8 Heatmap,
and the Actual Heat Exposure

We have also had the same observation of having distinct temperature readings

from the nearest weather stations and the experienced individual heat exposure.

The two maps in Figure 3.8 depict the variation in experienced temperature in

New York City and Boston, respectively. Similarly, we observed that the nearest

weather stations were not able to capture the actual temperature variation expe-

rienced by people in their daily life.

Figure 3.8: Temperature Crowd Sensing in Boston and New York City
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Furthermore, we have integrated and analyzed our drive-by sensing data for

different locations and dates so as to demonstrate the scalability of our framework.

The following results generated by comparing drive-by sensing data and remote

sensing-based data restate our claims that a comprehensive and hybrid framework

like SCOUTS is needed to be able to accurately analyze different urban heat

phenomena with high spatiotemporal resolution.

Figure 3.9 enables us to make a comparison between the heatmap generated

from Landsat 8 satellite imagery and 20 minutes of drive-by sensing data (10

minutes before and after the time when the satellite passed the Athens area)

on 14 August 2018. It is clearly shown that on this date, the satellite-based

heatmap represents a higher temperature compared to the vehicle-borne sensors,

which were placed very close to the land surface. Considering that the buses

were consistently on the roads, all their data belong to the same land cover type

of asphalt. Therefore, we tried to find a correlation between the drive-by sensing

data and that of the satellite-based data; however, we could not find any consistent

relationship between them. In Figure 3.10, we can see two zoomed-in areas of the

same map of Figure 3.9. For instance, while the satellite-based heat-map cells of

the left figure shows 39 ◦C, the drive-by sensing readings from the same cells are

5 ◦C to 9 ◦C lower.
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Figure 3.9: Drive-by Sensing Heatmap vs Remote Sensing-based Heatmap of
Athens on 14 August 2018

Figure 3.10: Drive-by Sensing Data Points vs Remote Sensing-based Heatmap
Cells in Athens
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In order to show that our observations do not belong to a given geographical

area, we also mounted our drive-by sensing sensors on the shuttles of Arizona State

University. Figure 3.11 generated by comparing the satellite-based heatmaps and

the drive-by sensing data collected from Arizona. Figure 3.11 shows an area in

Tempe, close to the Arizona State University campus. Similarly, the drive-by

sensing data in the figures belong to 10 minutes before and after the time when

the satellite passed the Tempe area. In this area, there was only one bus with

sensors, which is highlighted on the map. Although it is not always the case, in

this date we again saw that the satellite-based data represent higher temperature

readings compare to drive-by sensing data.

Figure 3.12 shows two zoomed-in locations within the same area. These

heatmaps show that our claim about inconsistency in different sensing approach

applies to other geographical areas while they may have completely different land

cover types. For instance, the satellite-based heatmap cells on the right image

show the temperature of 50 ◦C, while the drive-by sensing readings within the

same cells reported around 10 ◦C lower temperature values. It should be men-

tioned that the color legend used for Figure 3.12 is the same the one used for

Figure 3.11.
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Figure 3.11: Drive-by Sensing Heatmap vs Remote Sensing-based Heatmap of
Tempe on 3 August 2018

Figure 3.12: Drive-by Sensing Data Points vs Remote Sensing-based Heatmap
Cells in Tempe
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3.4 CHAPTER SUMMARY

Extreme heat events are increasingly becoming a threat to human health and well-

ness in many countries around the world. It is of crucial importance to analyze

and mitigate them in a practical way using the available technologies. In this

chapter, we first demonstrate the limitations of current approaches to quantify

heat hazards. Then, we present the SCOUTS framework, to address the limi-

tations, and to create heat exposure maps with high spatio-temporal resolution.

SCOUTS helps city officials to understand the heat variation in urban areas bet-

ter and devise mechanisms to make the cities more resilient. Finally, we present

preliminary results to show the effectiveness of such a framework to analyze and

mitigate urban heat hazards.
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Chapter 4

ANOMALY DETECTION IN

CROWD SENSING

Chapter Overview1

Although crowd sensing is a powerful sensing paradigm, we identified an essential

limitation in sensing environmental features. There is no mechanism to detect

the wrong placement of sensors in crowdsensing, and this problem significantly

limits the applications of this sensing paradigm by enforcing participants to fol-

low strict instructions. In other terms, if users misplace the sensors in a way that

they are not exposed to the natural outdoor environment, they report wrong in-

formation to the system. Therefore, there should be a mechanism to detect and

filter out the erroneous data. To resolve this problem, we developed a new ap-

1This chapter partially appears as:
N. H. Tonekaboni et al., ”Edge-Based Anomalous Sensor Placement Detection for Participatory
Sensing of Urban Heat Islands.” 2018 IEEE International Smart Cities Conference (ISC2).
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proach to detect wrongly-placed temperature sensors in a semi-real-time manner.

We introduce a sliding window technique in conjunction with supervised learning

classifiers to detect anomalously-placed sensors. This approach is based on the

empirical observation that temperature readings show more frequent fluctuations

while exposed to the outdoor environment. We conduct a series of comparative

performance analysis on different classifiers, including SVM, Logistic Regression,

and Random Forest. Our approach can be integrated into different participatory

sensing applications by adding low-cost temperature sensors.

4.1 INTRODUCTION

The recent proliferation of mobile devices has enabled crowd sensing (also referred

to as participatory sensing) as a paradigm for sensing environmental phenomena

[Ganti et al., 2011]. Crowd sensing can facilitate environmental monitoring stud-

ies such as ambient air temperature, humidity, noise, and air pollution analysis.

Although crowd sensing research studies have considerably increased due to the

ever-increasing prevalence of low-cost sensors, data integrity has become one of

the major challenges. Sensor failure, transmission error, and infrequent system

behavior can affect the integrity of data. Therefore, there is a need for effective

mechanisms to ensure the quality of data coming from multiple resources.

Urban Heat Islands (UHI), which is the result of changes in urban climate

compared with adjacent rural areas due to urbanization, has been an issue of in-

creasing significance in recent years. Consequently, environments have been trans-
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forming from native vegetation to human-made infrastructure with much higher

thermal-storage capacity [Luber and McGeehin, 2008]. Even at a smaller scale,

some city blocks or buildings can create their own UHIs. Factors contributing to

these heated areas are the increasing surface area of buildings, anthropogenic heat

waste from vehicles, the higher heat capacity of building materials, and decreasing

vegetation.

Most of the current approaches use satellite-based remote sensing and weather

stations for monitoring and analyzing UHIs. These data sources fail to capture the

highly dynamic nature of this phenomena due to their limitations, such as cloud

coverage and low spatiotemporal resolution. Recently, researchers have started

to explore human and vehicle-borne sensors as a newer approach to augment

traditional data sources.

A major challenge of crowd-sensed temperature data is that sensors might not

be situated according to the given instructions [Kuras et al., 2017]. For exam-

ple, a temperature sensor might be inside an air-conditioned car or inside a bag,

which affects the integrity of the collected data. It is crucial to design effective

mechanisms for detecting anomalous sensor placements to ensure the integrity

of the crowd-sensed data. On the other hand, deployment of these techniques

close enough to the source of data (i.e., at the edge) helps avoid unnecessary data

transmission.

Anomalies are defined as subsets of observations inconsistent with the data

set which are categorized into three groups: point anomalies, contextual anoma-

lies, and collective anomalies. Point anomalies are individual data instances that
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are anomalous compared with the remainder of the dataset. If a data instance

is anomalous in a specific context, but not otherwise, it is called a contextual

anomaly. Collective anomalies are defined as the collection of data instances

which are anomalous with respect to the entire data set. In these kinds of out-

liers, individual data instances may not be anomalies by themselves, but their

joint occurrence as a collection creates the anomalies [Chandola et al., 2009]. In

this chapter, we are mainly focusing on detecting collective anomalies caused by

anomalous sensor placements.

Due to the highly dynamic nature of temperature and ever-changing ambient

conditions, there is no gold standard reference to verify the data integrity of sensor

readings. The most efficient way is to find patterns in the sensor data streams so as

to filter the input data. In this chapter, we focus on the ambient air temperature

measurements to show the feasibility of using lightweight models at the edge to

filter out the outliers in a semi-real-time manner. In other words, the focus is on

collective outlier detection using our proposed approach.

Most of the current crowd sensing systems primarily rely on the users to follow

the provided instructions for data collection. In this chapter, we introduce a novel

anomalous sensor placement detection technique that analyzes temporal patterns

in the sensor data streams. Our approach is based on temperature readings,

which show more frequent fluctuations while exposed to the outdoor environment.

Furthermore, our technique is very lightweight, making it appropriate for the

edge deployments. We also report a series of experiments to demonstrate the

effectiveness of the method.
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4.2 BACKGROUND AND RELATED WORK

4.2.1 CROWD SENSING FOR UHI ANALYSIS

UHI studies have traditionally relied upon data from satellites and weather sta-

tions. Researchers have used satellite images with thermal infrared bands to derive

heat maps for different areas. They utilize different models based on the emissiv-

ity of land surfaces, as a measure of effectiveness in emitting energy as thermal

radiation, to calculate the land surface temperature. As mentioned in the intro-

duction, these traditional data sources have some limitations. For instance, the

Landsat 8 satellite, which has been widely used in the research community takes

an image from a given geographical area every sixteen days. These images also

suffer from the coarse spatial resolution of 100 meters. Also, the limited number

of weather stations fails to capture the heterogeneity of air temperature in urban

areas.

In order to overcome these limitations, researchers have recently explored aug-

menting traditional data sources with participatory sensing. In participatory sens-

ing approaches, small and low-cost sensors (samples shown in Figure. 4.1) are used

by participants to collect data with high spatiotemporal resolution.

In the ambient air temperature studies, we are only interested in data coming

from correctly-placed sensors. Therefore, there is a need to have mechanisms to

identify the anomalously-placed sensors such as the ones inadvertently put inside

a users pocket or bag. In addition, any data collected within the buildings, cars,

and any other temperature-controlled environment needs to be detected.
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Figure 4.1: Kestrel DROP and iButton temperature sensors.

4.2.2 RELATED WORKS

Some researchers [Klepeis et al., 2001, Kuras et al., 2017, Middel et al., 2016]

have done a comprehensive study on the challenges of personal heat exposure

research. They claim that the sensor placement is a primary factor to consider in

designing data collection protocols for measuring heat exposure. For this purpose,

thermal sensors need to be mounted as an external attachment to a backpack,

exposed to the outdoor environment. In another study [Bourgeois et al., 2003]

equipped research participants with temperature-logging sensors called iButton

to measure the air temperature surrounding individuals as they went about their

daily lives. Participants were asked to record the time periods when they were

not carrying the sensor. This manual approach is not a scalable solution for large

crowd sensing frameworks. The imposed limitations, mainly due to unscalability

of their approach, did not allow them to do a comprehensive study.
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In a separate participatory sensing research study, [Hasenfratz et al., 2012]

introduced GasMobile, a portable air quality measurement system based on off-

the-shelf components to be used by a large number of people. To ensure the

accuracy of the collected data, they have exploited the sensor readings near static

reference stations to recalibrate their sensors frequently. Although it is a rea-

sonable strategy, they failed to consider the problem of sensor misplacement as

a significant factor resulting in erroneous data collection. Interestingly, there is

an on-board temperature sensor on their designed hardware, which provides the

opportunity of analyzing temperature data stream simultaneously to detect the

outliers caused by sensor misplacements.

It should be mentioned that the detection model we are proposing is designed

based on experimental data, where the same behavior is observed in different low-

cost temperature sensors. In general, temperature sensors which are exposed to

ambient atmosphere show more frequent fluctuations in their temperature read-

ings, compared to those from the sensors placed in climate-controlled settings.

Wind effects, solar radiation, and longwave radiation, which is the radiation emit-

ted from the Earth's surface [Erell et al., 2005] are different factors which influence

a sensors behavior. As a result, each U.S. Climate Reference Network (USCRN)

station contain three thermometers in a shielded setting, and the observed tem-

perature values from all these three sensors are used to come up with a single

official USCRN temperature value every hour. This single official value is either

the median or the average of the three recorded values [Shlain, Accessed: 2018].

Exploiting statistical and data mining techniques is the best way to detect
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anomalously-placed sensors. Finding patterns in subsequences of temperature

time series and consequently identifying the structural similarities between those

patterns is an effective way to separate different classes of data [Singh and Upad-

hyaya, 2012]. Considering that there are only two classes (i.e., correctly-placed and

anomalously-placed sensor readings), supervised machine learning models based

on the historical data enable us to perform binary classification of subsequences

of temporal temperature data. Therefore, we are primarily dealing with a binary

classification problem.

4.3 OVERVIEW OF OUR APPROACH

Figure.4.2 shows the high-level architecture of the participatory air temperature

sensing and the anomaly detection model. This system utilizes low-cost ambient

air temperature sensors to collect data with high spatiotemporal granularity. We

used Kestrel temperature sensors (environmental data loggers) in our research.

The system architecture is scalable and can be extended to support different tem-

perature sensors via Bluetooth. Sensors are carried by users or mounted on the

vehicles for data collection, and the mobile application acts as an intermediary

component to communicate with the sensor and the cloud server. The commu-

nication between sensors and mobile devices is handled using the Bluetooth Low

Energy protocol; on the other hand, the communication between mobile devices

and the server is done using web services over the Internet. Temperature readings

are synchronized with GPS sensors on mobile devices based on their timestamps,
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Figure 4.2: High level system architecture.

and then the spatiotemporal temperature readings will be sent to the server.

As illustrated in Figure.4.2, the lightweight binary classification model uses

the incoming sequence of temperature data to do the semi-real-time filtering at

the edge nodes. The anomaly detector model can be deployed either on the mobile

devices or on the local edge servers to filter out the unwanted data.

The non-anomalous data stream will be sent to the cloud server once a mobile

device connects to the Internet, either via WiFi or cellular network. As depicted

in Figure.4.2, multiple users can simultaneously collect temperature data and

upload them to the server. Anomaly detection model is used to mark anomalous

47



subsequences of temperature time-series data, and the filtered data will be stored

for further analysis.

We primarily used Kestrel DROP D2 sensors for temperature data collection.

These sensors record temperature readings with (+/−)0.5 ◦C accuracy, have 0.1 ◦C

resolution, and cover the temperature range of −10 ◦C to 55 ◦C [Steffensen, n.d].

These small sensors communicate with our mobile applications through Bluetooth

Low Energy.

4.3.1 DATA COLLECTION

In order to analyze the impact of temperature sensor placements, we collected

the data from August 2017 to October 2017 by four volunteers using 12 different

sensors. Data samples were collected from the morning to the evening on different

dates over a span of three months. In total, we have collected 131 time-series data

samples, equal to 77 hours of temperature data; and 5-second data logging rate

was used during data collections. These collections involved temporal temperature

reading samples from human-borne, vehicle-mounted, and stationary sensors. We

labeled the data collected in climate-controlled settings as Class A (Anomalous),

and the data collected by the sensors which were exposed to the outdoor environ-

ment as Class NA (Non-Anomalous). Table 4.1 shows the labels associated with

each data sample.

As can be seen in Table 4.1, we further sub-categorize the data based on

the traveling mode and the sensor placement to cover different possible erroneous

situations where temperature data were collected. The sub-categorization helps us
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Table 4.1: Data Collection Subcategories

understand the possible common patterns and variations in temporal temperature

readings used for anomaly detection.

To better understand the behavior of time series data in different scenarios,

we have plotted data from different classes to do a comparative analysis. For

example, in the car experiment shown in Figure. 4.3, a user carried four different

sensors while traveling in a car. One sensor was placed correctly outside the car

and exposed to outdoor ambient air temperature. The other three sensors were

anomalously placed inside the car, one placed beside the gear, the other one in

the drivers pocket, and the third inside a backpack.
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Figure 4.3: Experimenting Different Scenarios

4.3.2 KEY OBSERVATION

Based on the data plotted in Figure.4.3, we observed that when temperature sen-

sors are placed correctly, the data show frequent fluctuations, while the otherwise

placed sensors produce much smoother plots. For example, the data from the car

experiment on 9 Sept 2017 shows that the correctly-placed sensor yielded much

more fluctuations compared to the other three misplaced ones.

The same behavior has been observed during different experiment scenarios:

sensors inside a bus, sensors moving at walking speed, and stationary sensors. We

hypothesize that these fluctuations occurred because of wind effects, air flows,

solar radiation, and longwave radiation from the Earth.
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4.3.3 SLIDING WINDOW FOR TEMPERATURE TIME

SERIES DATA

Domain plays an essential role in defining anomalies in time series data. In specific

anomaly detection problems, properties of a subsection of time series data can

be more critical than properties of the entire data stream. The sliding window

algorithm helps to extract all such subsequences in a given stream of data [Yu

et al., 2014]. Moving the window with a small offset, lets us extract a higher

number of subsequences from time-series data. The sliding window is used to

convert a window of sequential data to a single output, then all the subsequences

in the time series are mapped to their respective values where supervised learning

algorithms can be applied. Thus, with the help of the sliding window method, we

can utilize conventional machine learning algorithms to solve sequential pattern

recognition problems [Dietterich, 2002].

The window size plays a vital role in our anomaly detection analysis. On the

one hand, smaller windows would lead to faster algorithms to provide real-time

filtering. On the other hand, larger window sizes provide us with more data to

better understand the temperature variations. We found that 5-minute and 10-

minute window sizes are the best choices which satisfy the needs from both ends.

In other terms, these window sizes contain sufficient temperature readings and

are small enough to perform semi-real-time anomaly detection.
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4.3.4 FEATURE SELECTION

The discussed feature extraction approach is used to classify patterns in the tem-

perature data stream. For instance, let’s consider a temperature time series with

starting index as 1: D = {24, 25, 24, 24, 23, 25, 25, 26}. Therefore, series of consec-

utive temperature differences can be defined as: C = {1,−1, 0,−1, 2, 0, 1}, where

each value represents the difference between the two adjacent temperature read-

ings. The following features that are discussed in this section use the series C and

D stated above:

1. STANDARD DEVIATION OF CONSECUTIVE TEMPERATURE DIF-

FERENCES (StdDevTempDiff): The high value of the standard deviation

of a consecutive temperature difference (e.g., series C) in a given window

represents the fluctuations in the temperature time-series data. This feature

plays an essential role in our algorithm by separating the anomalous from

non-anomalous sensor data.

2. ZERO-CROSSING RATE (ZeroCrossRate): Zero-crossing is defined as a

change in sign from positive to negative or vice versa in sequential data

[Bachu et al., 2008]. Therefore, zero-crossing points in a consecutive tem-

perature difference (e.g., series C) are the points where a change in sign

occurs. This measure signifies the change in surrounding conditions caused

by solar radiation, wind speed, or longwave radiation.

Zero-crossing rate [Gouyon et al., 2000] is the total number of zero-crossings

in a sequential data divided by the total number of instances in that se-
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quence. This rate for a given subsequence shows variations in the surround-

ing environment, and the high value of zero-crossing rate represents the

fluctuations in temperature time series data. For instance, the zero-crossing

indexes of series C are Z = {1, 4}, and the zero-crossing rate will be the total

instances in series Z divided by the total instances in series C, therefore, the

zero-crossing rate = 2/7 = 0.28

3. STANDARD DEVIATION OF ZERO-CROSSING POINT WEIGHTS (Ze-

roCrossWtStdDev): The anomaly detection problem is not that simple. We

observed that in many cases, although the sensors are not exposed to the

outdoor natural environment, there are some fluctuations for a small amount

of time. For example, sensors might record different values due to the air

circulation in indoor environments. As depicted in the second experiment of

Figure.4.3, the time series indicated by in ac home stationary show small

fluctuations at around 15:15 which result in a high zero-crossing rate that

might wrongly be classified as a non-anomalous sensor data.

We define zero-crossing point weight as the difference between temperature

reading at the zero-crossing point and the mean of the temperature read-

ings in the given subsequence. Temporal temperature subsequence is then

reconstructed by replacing temperature readings at zero-crossing points with

corresponding zero-crossing point weights, and other temperature readings

are replaced by zero. The score representing zero-crossing point weights in

the subsequence is then calculated by taking the standard deviation of the

reconstructed subsequence.
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Using the example series of C, D, and Z, series containing zero-crossing

point weights are defined by: Mean of series D = 24.5; zero-crossing point

indexes of series D are T = {2, 5}; series of zero-crossing point weights are

W = {0, 0.5, 0, 0,−1.5, 0, 0, 0}; and the feature value is standard deviation

of values in series W.

A high value of standard deviation for zero-crossing point weights indicates

fluctuations in temperature time series and appear as high peaks and low

valleys. The feature helps in reducing the total number of false negatives.

4. NON-ZERO TEMPERATURE DIFFERENCE RATE

(NonZeroTempDiffRate): Non-zero temperature difference rate indicates the

total number of non-zero temperature differences in consecutive temperature

difference series, which is divided by the total number of instances in the

series. From series C, the total number of non-zero temperature differences

equals 5, and the total number of instances in series C is equal to 7. Hence,

the non-zero temperature difference rate is 5/7 (0.71).

In some cases, when the temperature is either increasing or decreasing in a

particular direction, correctly-placed temperature readings show fewer fluc-

tuations. As a result, the corresponding subsequence may get wrongly clas-

sified as anomalously-placed. The high value of non-zero temperature dif-

ference rate indicates the frequent changes in temperature values. This

feature helps in reducing the total number of false positives [Mahadevan

et al., 2010]. Finally, to train the classifiers, feature extraction module ex-

tracts the features using the sliding window technique from crowd-sensed
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temporal temperature data and converts the subsequences into data points.

4.3.5 ANOMALY DETECTION WORKFLOW

Our proposed model is designed to recognize the anomalous subsequences in the

temperature time series {T1, T2, T3, · · · , Tn}. For this purpose, we used the slid-

ing window approach to convert the time series outlier detection problem into a

binary classification problem. Then, supervised learning models are used to de-

tect anomalous subsequences. Figure. 4.4 represents the steps of our anomaly

detection workflow.

Based on the data logging rate of a sensor, and also the size of the sliding

window, a subsequence of the temperature data stream will be chosen. Next,

the features mentioned earlier will be extracted. Then, our supervised learning

models classify the subsequences using the extracted features. If the subsequence

is classified as an anomalous, it will be filtered out. Otherwise, it will be sent to

the server for further analysis. In the next step, based on the defined offset, the

sliding window will move forward, and the next subsequence will be chosen for

classification. This process continues to the end of the temperature data stream.
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Figure 4.4: Anomaly Detection Based on Sliding Window.
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4.4 EXPERIMENTAL RESULTS

4.4.1 EXPERIMENTAL SETUP

In order to generate the training and testing data sets, five different data logging

rates of 5, 10, 20, 30, and 60 seconds are used. We also came up with 5-minute

and 10-minute sliding windows with an offset of one for the feature extraction. We

developed a feature extraction module in Python programming language, which

chooses a subsequence of time series data based on the window size and offset,

then extracts statistical features to generate the data sets for classification.

In this chapter, we study the performance of three common statistical binary

classification methods, i.e., Support Vector Machine (SVM), Linear Regression,

and Random Forest, to detect anomalous subsequences in temperature time series

data. To train the models, classifiers in scikit-learn Python package [Steffensen,

2019] are used. The details of the performance comparison analysis will be dis-

cussed later in this section.

A linear kernel with standardized input data is used to train the SVM clas-

sifier. Standardization is the process through which variables are re-scaled to

have a mean of zero and a standard deviation of one. It brings data into a stan-

dard format, which enhances the comparison process. Based on the analysis of

underlying data distribution, we used the linear kernel to train SVM. Nonlinear

kernel functions map data points to higher dimensional feature spaces to achieve

linear separability [Widodo and Yang, 2007], which increase their computational

complexity and make them unsuitable for resource-constrained edge devices.
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For training Logistic Regression classifier, training data are standardized, and

12 penalty parameters are used. For the Random Forest classifier, 100 trees are

used as estimators and split quality is measured based on gini criterion; as a

statistical measure of the degree of variation represented in a set of values.

In our data set, 71% of the data were collected from anomalously-placed sensors

as opposed to 29%, which were placed correctly. To understand the feature-wise

class distribution, we plot the four selected features to know how these features

have been distributed. Considering that feature values depends on the size of the

sliding window, based on some experiments, we came up with two window sizes

of 5-minute and 10-minute. In the following sections, we mainly focus on the

5-minute window size, as it is promised to be both lightweight and accurate.

Figure.4.5 shows the class-wise distribution of features. As can be observed in

the box plots, data points between the lower quartile and the upper quartile of

the two classes do not overlap with each, which makes the data linearly separable.

Figure 4.5: Class Distribution of Features

In addition, Figure.4.6 represents the distributions in a 2D feature space. Al-

though class boundaries overlap with each other, anomalous data have lower val-
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Figure 4.6: Distributions in Feature Space

ues and are prominently clustered around the origin. On the other hand, non-

anomalous data points have higher values and are spread away from the origin.

4.4.2 PERFORMANCE METRICS

In our approach, we use binary classification to identify anomalous sub-sequences.

Sensitivity, specificity, and macro F1-score are three performance measures that

we have used to evaluate the performance of classifiers [Parambath et al., 2014,

Van Asch, 2013]. Anomalous temporal temperature subsequences are defined as

positive class and non-anomalous ones as the negative class. Sensitivity helps us

understand the probability with which the proposed method identifies the unex-

posed subsequences. Mathematically, sensitivity is defined as [Yu et al., 2014]:

Sensitivity = TruePositives/(TruePositives+ FalseNegatives)

Specificity gives us an idea of how effectively a classifier identifies negative classes,

and it is defined as [Sokolova and Lapalme, 2009]:
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Specificity = TrueNegatives/(TrueNegatives+ FalsePositives)

Macro F1-score is defined as the arithmetic mean of F1-score of both positive and

negative classes [Sokolova and Lapalme, 2009, Yang et al., 1999] which represents

a more balanced and less biased view compared to the other metrics. The F1-score

formula is:

F1− score = 2 ∗ (Precision ∗Recall)/(Precision+Recall)

The three aforementioned testing metrics provide a comprehensive understanding

of the models' performances.

4.4.3 CLASSIFICATION USING ALL FEATURES

We trained the SVM, logistic regression, and random forest classifiers with all the

four extracted features and evaluated their performance using sensitivity, speci-

ficity, and macro F1-score. As we can see in the plots of Figure.4.7, SVM with

20 seconds logging rate shows an overall better performance using different per-

formance metrics. Based on the comparative analysis, we noted that the best

model which makes a balance between performance, data logging frequency, and

the sliding window size to satisfy the semi-real-time characteristic of the system

is SVM with 20 seconds frequency and 5-minute window size.
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Figure 4.7: Performance of the models trained on all features
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Figure 4.8: Performance of the models using only zero-crossing rate
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Figure 4.9: Performance of SVM classifier
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4.4.4 CLASSIFICATION USING ONLY

ZERO-CROSSING FEATURE

In another experiment, we trained the model using only the zero-crossing rate

feature. This feature effectively captures fluctuations observed in the readings of

temperature sensors exposed to the outdoor environment. Figure.4.8 depicts the

accuracy of the model using different metrics.

4.4.5 PERFORMANCE OF SVM

Overall, we observed that SVM is the best classifier for our anomaly detection

purpose. In this section, we are comparing the performance of this classifier using

all four features as opposed to using only the zero-crossing rate feature. We are also

extending our analysis to compare the 5-minute window size with 10-minute ones.

In Figure.4.9, we can observe that SVM classifier trained with 5-minute window

size with all the four features on the data collected with 20 seconds frequency

shows a reasonable performance regarding the sensitivity and the macro F1-score,

while its specificity is slightly lower than the 10-minute window. It suggests that a

comparable performance can be achieved by using all features with smaller window

size, which help our model respond faster.

4.5 CHAPTER SUMMARY

Due to many limitations of traditional data sources such as satellites and weather

stations, crowd-sensed temperature data have been increasingly leveraged for an-
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alyzing the Urban Heat Islands (UHI) phenomena. However, one of the main

challenges in using human-borne sensors for UHI studies is that the sensors might

be erroneously placed, which will heavily compromise the integrity of the collected

data.

In this chapter, a semi-real-time approach towards detecting anomalously-

placed sensors is developed, which is based on the key observations in which the

temperature readings from correctly-placed sensors show frequent fluctuations.

Using the sliding window approach, we introduce zero-crossing point weight and

non-zero temperature difference rate to quantify the fluctuations in time series

data. Our technique utilizes standard binary classification methods such as SVM,

logistic regression, and random forest for identifying the anomalous subsequences

of data. We performed a number of participatory sensing experiments to analyze

the performance of our approach. The results prove the effectiveness of our method

in identifying anomalous sensor placements.
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Chapter 5

COVERAGE MAXIMIZATION

IN DRIVE-BY SENSING

Chapter Overview

Many natural phenomena and physical properties such as sound, temperature,

and magnetic fields on the earth are continuous signals, both spatially and tem-

porally. To study these environmental features accurately, we need to have a

consistent monitoring infrastructure to capture their spatiotemporal variations.

On the other hand, public transportation vehicles such as city buses provide a

cost-effective platform for environmental sensing. Based on different applications,

various types of sensors and cameras could be mounted on these vehicles to provide

constant monitoring of the target features such as noise pollution, temperature,

and air pollution in different urban areas. In this chapter, we propose and develop
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our efficient approach to mount a limited number of sensors on the buses, given

their trajectory data to maximize their spatiotemporal sensing coverage. We con-

sider that there are some pre-defined hotspots in the cities where their continuous

sensing is of greater importance compared to other areas. First, we formulate this

vehicle selection problem as an optimization problem, then explain our proposed

method while adhering to cost constraints. Finally, we evaluate our approach

using the real-world trajectory data collected from more than twenty buses in the

city of Athens, Georgia.

5.1 INTRODUCTION

Drive-by sensing is a category of mobile sensing [Lee and Gerla, 2010] in which

the participants are vehicles. This sensing paradigm provides an excellent op-

portunity, especially where there are cost constraints, and the target properties

are dynamic. Public transportation vehicles move around the cities frequently,

so they provide an excellent infrastructure to have systematic sensing from dif-

ferent areas at different times of the day. Furthermore, the predefined paths of

the public transportation vehicles are close to the daily commute routes of city

dwellers. Therefore, drive-by sensing paradigm provides a more accurate read-

ing from environmental features compared to other sensing technologies such as

remote sensing.

Apart from the cost associated with sensors and the sensing infrastructure,

the process of mounting sensors on the buses and maintaining them impose a
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separate cost. For instance, in the City Scanner project [Anjomshoaa et al.,

2018], researchers proposed a modular sensing architecture to be mounted on

top of the garbage trucks to collect a multitude of city features. Most of these

sensors are expensive, so there should be some selection mechanisms to choose

a subset of running vehicles for mounting the limited number of sensors. On

the other hand, there are some Areas of Interest (AOIs) in the cities where their

continuous monitoring has a higher priority. For example, in the context of urban

heat analysis, the locations with a high variation in temperature create AOIs, and

their continuous sensing is more important compared to other areas.

Although leveraging this sensing paradigm for monitoring purposes is beneficial

for different applications, there is a need for cost-aware sensing mechanisms. In

this study, we focus on this addressing problem, which is common in various

sensing applications. Our specific contributions in this domain can be summarized

as follows:

• Formally defining and formulating the cost-aware bus selection problem as

an optimization problem.

• Providing an efficient approach to select a near-optimal subset of buses given

the cost constraints.

• Addressing the problem of dynamicity of the hotspots and taking the impor-

tance of their continuous monitoring into consideration within the decision

process.

The rest of the chapter is organized as follows. In Section 2, we present some
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backgrounds and related works in this domain. In section 3, the sensor placement

problem is defined and formulated. Then, two simple selection approaches are

discussed. Section 4 focuses on cost-aware sensing approaches where our methods

are introduced. In section 5, we perform experimental evaluations to analyze the

performance of the proposed algorithms. In the last section, we conclude this

chapter and discuss future directions for this study.

5.2 BACKGROUND AND RELATED WORKS

Multiple studies focus on maximizing the sensing coverage in mobile crowdsens-

ing given different scenarios. These studies assume that all the participants are

already equipped with the required sensing devices, and they investigate various

approaches to distribute sensing tasks while minimizing recruitment costs.

Guo et al. [Guo et al., 2016] propose a worker selection approach under two

situations: either based on the intentional movement of sensing agents for time-

sensitive tasks or based on their unintentional movement for tasks which are not

time-sensitive. They evaluate their algorithms using D4D dataset [Blondel et al.,

2012] which contains individual call detail records for customers of Orange Group

during two weeks in Ivory Coast. Each data point has its id, latitude, and lon-

gitude, so the authors extracted the users mobility traces corresponding to the

cell towers. Then, they show how their algorithm outperforms the previous ap-

proaches like that of discussed in [Engelbrecht, 2014] as a particle swarm opti-

mization (PSO) solution.
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Campioni et al. [Campioni et al., 2018] study recruitment algorithms aimed

at selecting participants within a crowdsensing network in a way that the most

sensing data is obtained for the lowest possible cost. However, like many other

studies in this domain, they assumed all the participants are equipped with the

sensing devices. They developed different approximation solutions to solve the

vehicle recruitment problem for both the temporal and spatiotemporal variants.

He et al. [He et al., 2015] present a new participant recruitment strategy for

vehicle-based crowdsourcing by predicting the future trajectory of participants.

They evaluated the two proposed algorithms by comparing to other existing meth-

ods with unpredictable mobility patterns, and they were able to achieve an average

of 15% improvement in terms of crowdsourcing quality.

In another study, Yi et al. [Yi et al., 2017] propose a fast algorithm for vehicle

participant recruitment problem, which achieves a linear-time complexity at the

sacrifice of a slightly lower sensing quality. They claim that their method is 50

times faster than the state-of-art algorithms while it only sacrifices 5% of the

sensing quality by testing on more than 1000 vehicles.

Wang et al. [Wang et al., 2018] proposed a system model based on the pre-

dictable trajectory of public transports through a cloud management platform

which interacts with static based stations for distributing the sensing tasks to

buses with embedded sensors. In their design, they assume that each public

transport vehicle needs to be paid a sensing reward to perform the crowdsensing.

Accordingly, their approximate algorithm called efficient combination query algo-

rithm adopts a greedy approach to efficiently distribute the sensing reward until
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it reaches the limited budget. This research, like the other studies discussed in

this section, assumes that all the drive-by sensing vehicles are equipped with the

required sensors and receive a reward per each sensing task.

5.3 SENSOR PLACEMENT PROBLEM

The objective of this chapter is to find an optimal bus selection approach to

mount a limited number of sensors on the buses to maximize their spatiotemporal

coverage. For this purpose, there are two main assumptions:

1. Trajectory data of the buses are available. In other terms, the routes that

each bus traverse is known. Using the GPS data and the timestamps asso-

ciated with them, we can estimate the location of each bus at a particular

point of time.

2. There are some hotspot locations where their continuous sensing is of higher

importance compared to other areas.

To formulate the sensor placement problem, we model the study area as a grid

of square cells, as shown in Figure.5.1. The dimension of each cell is a configurable

parameter and represents the spatial granularity of the sensing. We define matrix

A, where an arbitrary cell of the grid is represented as aij:

A =


a11 ... a1n

: :

am1 ... amn


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Figure 5.1: A sample grid representation

To consider the hotspot locations, we should be able to assign different weights

to the cells. Therefore, matrix W is defined where each grid cell is associated with

a weight:

W =


w11 ... w1n

: :

wm1 ... wmn


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Time is modeled as a vector of T = {t1, t2, ..., tl} where each tk is a time slot

with configurable duration. The sum of these time slots is 24 hours (1 day), and

the duration of each slot represents the granularity along the temporal dimension.

For example, if we need to have a reading of an environmental feature every 30

minutes, each tk denotes a 30-minute time slot.

The set of B = {b1, b2, ..., bp} represents all the buses available in the city where

each bλ represents an individual bus. If a bus bλ carries a sensor (i.e., it is selected

for sensor deployment), it can obtain a reading from the cell aij in the time slot

tk if and only if bλ is present within aij's boundaries for at least some duration of

time slot tk (i.e., bλ has traversed through aij in time slot tk). Please note that

a bus can traverse through multiple cells during a time slot. Also, multiple buses

can traverse through a given cell during a given time slot (in which case, we obtain

duplicate values).

Considering the limited Number of Sensors (NS), we define BS:

BS = {BS1, BS2, ..., BSq}

as the set of all possible bus combinations, where: BS ⊆ B & |BS| ≤ NS.

For instance BS1 can be represented as:

BS1 = {b5, b18, b24}
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OBJECTIVE FUNCTION

In this section, we define our objective function. For this purpose, let’s suppose

that the Selected Bus Set of SBS∗ = {bl, bk, bp} represents the set of 3 buses

selected for sensor deployment. ( SBS ⊆ B ξ |SBS| ≤ NS)

Having laid out the model, we now define the Coverage Value (CV) of the

selected bus set (SBS∗) with respect to a cell aij at a time slot tk as follows:

CV (BSx, aij, tk) =


wtkij , if {∃bi ∈ BSx|bi is in aij at tk}

0, otherwise

(5.1)

And the Cumulative Coverage Value of SBS∗ is defined as:

CCV (BSx) =
∑
tk∈T

∑
∀aij∈A

CV (BSx, aij, tk) (5.2)

Furthermore, we define Minimum Coverage Value as:

MinCV (BSx) = min
∀tk∈T

(
∑
∀aij∈A

CV (BSx, aij, tk)) (5.3)

MinCV denotes the lowest coverage value gained in all the time slots, which

plays an essential role in our objective function to choose the SBS∗ with highest

spatial coverage during the whole sensing period. Finally, our objective function
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is defined as follows:

SBS∗ =



SBx, if (CCV (BSx) >
∧

BS−{BSx}
CCV (BS))

SBx, if (CCV (BSx) =
∑

∀BSi∈BS

CCV (BSi) ∧

MinCV (BSx) =
∑

∀BSi∈SB

MinCV (BSi))

(5.4)

In other words, the objective function chooses a bus set if its CCV is higher

than all the CCV of other bus sets. If more than one bus set had the same CCV,

the SBS∗ with the highest MinCV would be selected.

In order to better understand the definitions mentioned above, we provide

some examples in the following paragraphs. In the example shown in Figure 5.2,

we have a grid with 16 cells without any hotspot. The routes that each bus passed

during a time slot is depicted using the dotted lines. Let's suppose that there are

two bus selections named BS1 and BS2, where:

BS1 = {bus1, bus2, bus3}

BS2 = {bus3, bus4, bus5}
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Figure 5.2: An Example of a Bus Selection Coverage in One Time Slot

We can see that bus3 is selected in both sets, while the other two buses are

different. Table 5.1 represents the number of cells passed by each bus during a

given time slot. For instance, bus1 passed three different cells (E,F, and I); there-

fore, it gets the value of 3 in Table 5.1.

Table 5.1: Calculating Bus Coverage Value at tl
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Table 5.2: Total Sensed Cells Per Each Sensing Period

Considering that some of the covered cells by different buses in a bus selection

might be the same, we generate Table 5.2 from the previous table, where the union

operator is used to exclude the overlaps. In other words, we only need to know

whether a bus selection, as a whole, has a reading from a cell in each time slot or

not. Therefore, the union operator allows us to exclude the additional readings

from the same cell. As it can be seen in Table 5.2, although the sum of the cells

in the first row of Table 5.1 is 12, the union of them equals to 10; because cells F

and J are covered by two separate buses of the same bus selection of BS1. The

first two bolded cells of Table 5.2 are generated based on Table 5.1, and the other

cells are assumed to have the other values to be used for explaining the next steps.

The example we saw in Figure.5.2 was for one time slot. In the next step,

we want to continue with the same example but for three consecutive time slots.

In Figure.5.3 the grid on the back corresponds to the same bus selection of BS1

which we had in Figure.5.2. Considering that during the first time slot, BS1 met

10 different cells, this selection gains the coverage values of 10 for t1. During the

second time slot, the three buses (bus1, bus2, and bus3) continued their routes and

sensed 12 different cells. Although some of the cells were already sensed during t1,
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these cells are counted again in t2, because we only consider the overlaps within

a same time slot. Therefore, BS1 gets the coverage value of 12 in t2. Using the

same logic, BS1 collects 9 coverage values during t3. Looking back at Table 5.2,

we can see these coverage values corresponds to the first row of the table. Figure

5.4 provides a comprehensive overview of the example discussed above. We can

see all the cells that are sensed during the whole time period.

Figure 5.3: An Example of Bus Selection (BS1) Coverage in Three Consecutive
Time Slots
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Figure 5.4: Bus Selection BS1 in Whole Time Period of t1 to t3

Figure 5.5 shows the coverage of our third bus selection BS3 in the time period

of t1 to t3, which correspond to the third row of Table 5.2. This bus selection

earned coverage value of 10 in t1, coverage value of 11 in t2, and coverage value

of 10 in t3. Similarly, we consider the overlapped cells within each time slot;

however, BS3 collected some coverage values from the same cells in different time

slots. The cells which are counted more than once are shown in Figure.5.6 where

more than one ti is written in a same cell.
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Figure 5.5: An Example of Bus Selection (BS3) Coverage in Three Consecutive
Time Slots

In the next step, we generate the Total Coverage Value for each bus selection

during the whole time period. The first column in Table. 5.3 represents this total

coverage value for each BSi. Because of the fact that we used union operator in

the previous steps to exclude the overlaps, the values of this column are basically

the sum of the values in each row of Table 5.2. The second column of Table.

5.3 shows the minimum value of each row of Table 5.2. In other terms, this

column shows the minimum coverage values that each bus selection was able to
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Figure 5.6: Bus Selection S3 in Whole Time Period of t1 to t3

earn during each time slot. The minimum coverage values will be used later in

our objective function, where we want to choose the most optimal bus selection

with the best spatiotemporal coverage.

Table 5.3: Total Sensing Coverage Value for Each Bus Selection During the Whole
Time Period
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To better understand how the different weights of hotspots can affect the total

sensing coverage value, Figure 5.7 depicts the previous example with BS1 and

BS2 while the grid cells have different weights. Table 5.4 shows the updated bus

selection coverage values at t1. Furthermore, Table 5.5 represents the updated

total coverage value during the first time slot.

Figure 5.7: An example of a grid with AOIs of different weights

Table 5.4: Calculating Bus Selection Coverage Value at tl with AOIs
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Table 5.5: Total Sensed Cells Per Each Sensing Period with AOIs

5.3.1 SIMPLE APPROACHES

NAIVE APPROACH

The simplest approach to solve the problem is to mount sensors on a randomly

selected set of buses. Considering that the random selection fails to consider the

requirements defined by our objective function, we cannot have any conclusion on

their effectiveness.

EXHAUSTIVE APPROACH

The other approach which considers our discussed objective function is the ex-

haustive method. In this approach, all the possible combinations of n buses taken

r at a time, where r is equal to the number of sensors (NS), is computed. Then,

the bus combination with highest CCV will be chosen.

As shown in pseudocode of our exhaustive algorithm in Figure.5.8, we first

need to create the grid structure based on the given size for each cell by using

the latitude and longitude of the area. Next, the algorithm generates the matrix

W, where the weights associated with each grid are provided by domain scientists

based on the target phenomena to be monitored. Besides, this algorithm creates

all the possible bus selections with X different buses where X is equal to or less
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than the number of sensors. Furthermore, it calculates the set of time slots within

the total sensing period. All the data mentioned above provide the inputs of our

primary exhaustive function. This main function is responsible for choosing the

most optimal bus selection, which has the highest spatial and temporal coverage.

This algorithm calls two other functions. The first function, which is called

CCV Calculation, determines the cumulative coverage value earned by each given

bus selection by looping through the set of buses, the cells within the grid struc-

ture, and the weights associated with each grid cell. Furthermore, it calculates

the minimum coverage value during different time slots for each grid cell. The

second function, called SBS, chooses the best selection by applying the objective

function. In other terms, it finds the bus selection with the highest cumulative

coverage value, and if this value happens to be the same for more than one selec-

tion, it chooses the selection which its minimum coverage value is maximum.

Although this method is computationally expensive (its runtime grows facto-

rially in terms of the number of bus combinations), it is guaranteed to choose

the best possible bus combination where the cumulative coverage value is greater

than all other bus selections.
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Figure 5.8: Pseudocode of Our Exhausitve Approach

5.4 COST-AWARE APPROACHES

Considering that the exhaustive approach calculates all the r–combinations of the

set of buses where r is the limited number of sensing devices, running the algorithm

for large data sets leads to extremely long processing time. There are many

applications where the sensing parameters, such as the coverage values associated

with each hotspot, changes quickly. Thus, we have to unmount and mount our
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sensors on a new subset of buses to monitor the target environmental features in a

dynamic setting. For instance, a football game may necessitate extra surveillance

coverage. Therefore, there should be mechanisms to select an optimal subset of

buses to mount surveillance cameras and monitor the areas around the stadium

for that particular day. As a result, there is a need for cost-aware approaches

with a fast decision process to choose the optimal subset of public transportation

vehicles to cover the target areas.

To provide a better understanding of the scale of real-world applications, Table

5.6 provides the number of buses in some selected cities around the world. It also

represents the number of different bus combinations if 5%, 10%, or 20% of the

buses were supposed to be selected. For instance, there are 639 buses in Atlanta.

If we want to select 32 buses out of 639 which traverse around this city, we

need to calculate the cumulative coverage value of around 1.03E+54 different bus

selections.

Furthermore, Figure. 5.9 provides a graph in blue showing how the number of

combinations grows compared to the graph in orange which represents the linear

growth. The huge growth of bus combinations makes the exhaustive approaches

impractical for real-world applications.
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Table 5.6: Combinations of Different Bus Selection in Selected Cities

Figure 5.9: Growth of Bus Selection Combinations
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To resolve the limitations associated with the exhaustive approach, in this

section, we propose our cost-aware sensing approach, which can be used by various

sensing frameworks where selecting a subset of vehicles is required.

5.4.1 HOTSPOT-BASED APPROACH

The hotspot-based approach is designed based on the relative importance of var-

ious areas in an urban region. The importance of a particular area is indicated

by the weight (wij) assigned to the corresponding grid cell. The default weight of

each grid cell is assumed to be one.

In this approach, instead of running the aforementioned exhaustive algorithm,

we only consider cells that are hotspots, i.e., cells that correspond to areas with

higher importance levels as indicated by their respective weight values. The

threshold of the weight values for a cell to be considered a hotspot is a con-

figuration parameter, and it is specified at the time of running the algorithm.

In other words, this approach excludes buses that do not pass through any

hotspot cells. We then execute the exhaustive algorithm on the reduced set of

buses. Excluding buses that do not pass through hotspots significantly reduces

the number of bus combinations that need to be considered, thus making the

algorithm more efficient.

As shown in pseudocode of our hotspot-based algorithm in Figure.5.10, the

grid structure, the matrix of weights, the list of timestamps, and the list of all

available buses are fed into our main function. Next, it filters the list of available

buses to exclude the ones which do not pass any of the hotspots. Then, it generates
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Figure 5.10: Pseudocode of Our Hotspot-based Approach

all the possible combinations from the updated list of buses. The main procedure

of this algorithm invokes two other functions to calculate the new coverage values

and choose the best selection.

The method called Calculate HS Scores calculates the new cumulative cover-

age value for each bus selection. This function loops through the set of buses, the
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hotspot cells within the grid, and the matrix of weights. Besides, it calculates the

minimum coverage value during different time slots for each hotspot cell. On the

other hand, SBS select the most optimal subset of buses by comparing the new

cumulative coverage value associated with each bus selection. It also considers

the second condition of our objective function for cases where more than one bus

selection gained the highest cumulative coverage value. In that condition, this

function chooses the selection which its minimum coverage value is maximum.

Our hotspot-based approach is considered as the first stage of our solution. In

other terms, this algorithm can be either used standalone or act as the initial step

of our near-optimal solution, which runs slightly slower, but is more rewarding.

Our genetic algorithm, which is founded on top of this hotspot-based algorithm,

is discussed in the following section.

5.4.2 COST-AWARE GENETIC ALGORITHM

Considering that our hotspot-based approach only focuses on the hotspot locations

to make the decision, we propose a genetic algorithm approach geared toward our

coverage maximization problem, which allows the algorithm to consider locations

other than the hotspots. This algorithm uses the output of our hotspot-based

algorithm as its input and provides the algorithm with the chance to explore the

bus selections which have not passed any hotspot, but gained higher total coverage

values.

In our genetic algorithm, chromosome representation is used to encode the

candidate buses to be chosen for a bus selection. For instance, if we wanted to
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select three buses out of twenty, we would have a chromosome representation like

that of Figure 5.11, where there are exactly three 1s. This condition guides the

algorithm to always select the number of buses proportional to the number of

sensors.

Figure 5.11: A sample chromosome representation

The crossover (recombination) operator combines the genetic representation

of two parents to create a new generation. In our design, the algorithm randomly

selects a single crossover point in the chromosome representation of the two parents

and recombine them like the example shown in Figure 5.12. Thus, the bits to

the right of the selected crossover point are swapped between the two parent

chromosomes to generate two new chromosomes.

Figure 5.12: A sample crossover operation

After each crossover operation, our algorithm checks whether the number of 1s

in each new child chromosome still corresponds to the number of sensors or not. If

the condition is not met, the mutation operation will be used to randomly flip bits

in each child until the condition is satisfied. Figure 5.13 depicts a crossover which

invalidates the condition as mentioned earlier; therefore, the mutation operation

comes into the picture to solve the inconsistency.
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Figure 5.13: A sample mutation operation

The fitness function is the same as the objective function of our exhaustive

algorithm. So, the fitness function is to find the bus selection with the highest

consecutive coverage value. Moreover, if the consecutive coverage value happens

to be the same for different bus selections, the one which its minimum coverage

values in different time slots are higher than the others will be chosen as the best

selection.

In the selection and replacement phase, our initial population is chosen from

the results of our hotspot-based approach. In other terms, we first calculate the

actual consecutive coverage value for the bus selections generated by the hotspot-

based approach and sort them. Next, based on the experimental setup, we select

our initial chromosome population from the sorted list. Then, in each iteration,

based on the coverage values, we discard the worst 20% of the population and

replace them with new children generated from the parents coming from the top

20% of the population.

As shown in the pseudocode of our cost-aware genetic algorithm in Figure.5.14,

the grid structure, the matrix of weights, the list of timestamps, the list of all avail-

able buses, and the number of sensors are the input parameters for this algorithm.

The algorithm initializes with the population of bus selections which are the top

selections of our hotspot-based algorithm. Next, it performs the crossover opera-

tion based on the replacement criteria (and mutation, if required). The crossover
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and mutation steps provide the algorithm with the chance to consider new bus

selections that were disregarded by the hotspot-based algorithm. The coverage

values for the new generation is recalculated, and the algorithm continues the

iteration until the termination condition is satisfied. We designed the termination

condition using the OR operator. We stop the iteration if the algorithm starts

converging; otherwise, it continues until the assigned iteration threshold is met.

It should be mentioned that our genetic algorithm design can easily integrate

an incremental setting of sensors. In other words, if there would be a scenario

where there is a need to mount new sensors, while there are already some sensors

mounted on the buses, we can fix the bits (1s) associated with those buses in the

chromosome representation throughout the selection and replacement phase.

Figure 5.14: Pseudocode of Our Hotspot-Based Genetic Algorithm Approach
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5.5 EVALUATION EXPERIMENTS

5.5.1 EXPERIMENTAL SETTINGS

To solve the coverage maximization problem, we create a grid covering the whole

area while each cell corresponds to a 90-meter by 90-meter area on earth. In this

case study for urban heat analysis, the hotspots and their corresponding weights

are determined by the heatmaps generated from satellite imagery. In other terms,

the importance of each hotspot to be targeted by drive-by sensing vehicles is

defined by analyzing the history of heatmaps generated by Landsat 8 satellite

imagery.

Considering that all the bus routes were within the Athens Clarke County, we

chose the four corners of the triangle to represent the boundaries of our grid as

depicted in Figure 5.15. Then, we created a grid like that of Figure 5.16 to cover

the whole area.

In this experimental setup, we assume that there are only three sensors and

tested our proposed algorithms on 5-hour trajectory data collected from twenty

buses of the Athens Transit public bus system. Our real-world dataset has more

than 61,000 data points and provides the GPS data of each bus every 5 seconds.

In the setup, there were seven different hotspots, and their weights varied between

2 to 8. It should be mentioned that these hotspots covered less than 0.075% of

the whole grid. Some selected hotspots in Athens Clarke County area and the

weights assigned to each of them is depicted in Figure 5.17.
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Figure 5.15: The Boundaries of Our Grid for Athens Clarke County

Figure 5.16: The Grid Structure for Athens Clarke County
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Figure 5.17: Selected Hotspots (AOIs) in Athens Clarke County
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5.5.2 RESULTS

We tested the three approaches called: 1) the exhaustive approach, 2) the hotspot-

based approach, and 3) the cost-aware genetic algorithm approach on the real-

world data collected from the city buses of Athens Clarke County. In this section,

we compare the results of different approaches.

Figure 5.18 shows the result of our exhaustive algorithm on all the possible

bus combinations, i.e., the combination of 20 buses taken 3 at a time which is

equal to 1140. The x-axis represents the CCV range, and the y-axis represents

the number of bus selections which belong to each range.

Figure 5.18: Results from the Exhaustive Approach

The exhaustive algorithm chooses the best bus selection (B741, B764, B766)

that gained the highest CCV of 1489. Figure 5.19 shows the trajectory data of

this bus selection on the map, which illustrates how well our proposed objective
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Figure 5.19: Trajectory Map of the Bus Selection: {B741, B764, B766}

function was able to select buses with the highest spatiotemporal coverage and

the lowest amount of overlaps. The height of the bars in this map depicts the

frequency of GPS readings in those cells.

Figure 5.20 depicts the result of our hotspot-based approach. In this algorithm,

only the grid cells which correspond to hotspots are counted, and all other cells are

assigned to have a weight of zero. Therefore, the graph shows lower CCVs. This

approach selects a bus selection (B753, B754, B766) with the CCV of 1411 (the

hotspot-based CCV is 460). Although this CCV is not as good as the one chosen

by the exhaustive algorithm, it runs more than 79 times faster. Considering that
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Figure 5.20: Results from the Hotspot-based Approach

the exhaustive approach has a runtime with factorial growth (in terms of number

of bus combinations), the efficiency of our hotspot-based algorithm is even more

pronounced as the size of our dataset grows.

Figure 5.21 depicts the final population of an example run of our genetic algo-

rithm. We set the population size to be 40. Although we specified the maximum

iteration of 20, on average the algorithm converged after 7 iterations. Our al-

gorithm was able to find five bus combinations (black dots) with higher CCVs

compared to the best selection in the initial chromosome population (red dots).

Therefore, it was able to increase the CCV from 1411 to 1446. In this experimental

setup, our algorithm works 6 times faster than the exhaustive algorithm.
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Figure 5.21: Visualization of an Example Run of the Cost-Aware Genetic Algo-
rithm

In order to compare the performance of our three algorithms, we tested them

for a varying number of sensors (3,4, and 5). In other terms, we ran the al-

gorithms for different bus combination sizes. Figure 5.22 shows the cumulative

coverage value earned by each algorithm. Although the exhaustive approach pro-

vides the highest CCV, the coverage values gained by the other two algorithms

are comparable. On the other hand, the runtime of the two latter approaches

is considerably lower. Figure 5.23 depicts the runtime comparison for these four
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bus combination sizes. It shows how fast the runtime of our exhaustive approach

grows compared to the other algorithms. Furthermore, we tested the algorithms

for a varying number of buses (20, 16, 12, and 8) and a fixed number of sensors

(4). Figure 5.24 shows the cumulative coverage value earned by each algorithm,

and Figure 5.25 shows the runtime comparison of the three algorithms.

Figure 5.22: CCV Comparison for Different Number of Sensors
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Figure 5.23: Runtime Comparison for Different Number of Sensors

Figure 5.24: CCV Comparison for Different Number of Buses
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Figure 5.25: Runtime Comparison for Different Number of Buses

To elaborate on the efficiency of our proposed genetic algorithm with a near-

optimal solution, Table 5.7 provides the runtime data under two conditions: se-

lecting 3 buses out of 20 versus selecting 5 buses out of 40 (we have 40 buses just

in Athens Clarke County). It also provides the runtime results while the algorithm

ran in parallel on 6 cores. For instance, we can see that in the parallel mode, our

cost-aware genetic algorithm runs 144 times faster than that of the exhaustive

algorithm.
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Table 5.7: Runtime Comparison of the Algorithms

5.6 DISCUSSION

Greedy approaches are based on the intuitive decision-making heuristic of choos-

ing the best solution at each step. These approaches are promised to find locally

optimal choices while they might fail to find the globally optimal solution. Al-

though these algorithms can be quite successful in solving some problems, their

solutions may not lead to the best global answer. One way of addressing the bus

selection problem would be a greedy strategy. The algorithm can be designed

as follows: in the first step, the bus which goes through the highest number of

hotspots is selected. In the next step, the algorithm chooses the second bus from

the set of remaining buses. This selection is made in a way to maximize the num-

ber of sensed hotspots, excluding the ones which were already covered by the first

bus. This approach follows the same logic to choose one bus at a time until it

reaches the limit imposed by the number of sensors.
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5.7 CHAPTER SUMMARY

There are various monitoring applications in which continuous sensing, both spa-

tially and temporally is essential. Rather than implementing the sensing infras-

tructure, we can leverage available platforms such as public transportation systems

which can carry different sensors and provide us with a systematic data collec-

tion paradigm. Drive-by sensing paradigm provides many sensing opportunities,

especially in urban areas where the routes of public transportation vehicles are

close to the daily commute paths of city residents. So, drive-by sensing can be a

reliable substitute for crowd sensing. Unlike crowd sensing frameworks in which

the mobility patterns of the agents can be unpredictable, drive-by sensing through

public transportation allows us to have much more consistent monitoring of the

target phenomena in cities.

In this chapter, we first defined and formulated the problem of choosing a

subset of buses as an optimization problem. Our objective function is imple-

mented using three different algorithms: an exhaustive approach, a hotspot-based

approach, and a cost-aware genetic algorithm. Then, we compared their perfor-

mance and provided experimental results. We showed how the genetic algorithm

outperforms in terms of runtime as the size of our dataset grows. For instance,

if we want to select 15 buses out of 60, the number of calculations required for

the exhaustive approach will be more than 13 million times higher than that of

the genetic algorithm. Therefore, the latter approach is very instrumental for

real-world applications where the target hotspots are dynamic.
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Chapter 6

CONCLUSIONS

As a result of the rapid growth of buildings, depletion of green cover, and cli-

mate change, extreme heat events are posing an increasing threat to many urban

communities around the world. Subsequently, deadly heat hazards are becoming

more common, and heat-related morbidity and mortality are increasing in differ-

ent urban areas. So far, most urban heat vulnerability studies have focused on

generating low-resolution heat maps of cities using satellite images to analyze the

heat hazards. While some recent works tried incorporating data from the nearest

static weather stations, they could not reflect the precise spatial variation of the

air temperature in urban areas due to the limited availability of these stations.

We proposed SCOUTS framework to address the limitations associated with

conventional urban heat analysis approaches. Besides, we discussed its implemen-

tation challenges along with our solutions, followed by some preliminary results

from the States of Georgia and Arizona. These results confirm our claims about
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the importance of hyperlocal and high-resolution heatmaps due to the high spa-

tiotemporal variability of the ambient temperature in urban areas.

Although crowd sensing is a scalable sensing paradigm, we identified an essen-

tial limitation in the temperature data collection, which also applies to many other

environmental crowd sensing applications. The limitation is that if participants

misplace the temperature sensors in a way that are not exposed to the natural

outdoor environment, they report wrong information to the servers. To address

this problem, we developed a lightweight model to detect anomalously-placed sen-

sors. Considering that our design is based on analyzing the temperature data, we

can leverage the same approach to identify the misplacement of other types of

environmental sensors by adding a low-cost temperature sensor to them. To the

best of our knowledge, this is the first study on detecting the anomalously-placed

sensors in the temperature crowd sensing applications.

Finally, we recognized a problem which is common in various drive-by sensing

applications. The problem is how to choose an optimal combination of buses

to mount the sensors so as to enhance the spatiotemporal coverage in drive-by

sensing. Given the trajectory data of buses and also the boundaries of the hotspot

locations in an area, we first parametrize all the variables and formulate the

problem as an optimization problem. Next, we define our objective function in

a way that considers the hotspots areas where their continuous monitoring is of

higher importance. Then, we propose a cost-aware genetic algorithm to choose a

near-optimal bus selection with high spatiotemporal coverage.
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6.1 FUTURE WORK

Regarding the SCOUTS framework, we were able to design and implement crowd

sensing and drive-by sensing approaches and produce high-resolution heatmaps.

However, these data are first stored in our servers, and then the heatmaps are

produced. There is the potential to implement the streamline of processes in

order to come up with a semi-real-time framework to instantly map and ana-

lyze the temperature readings from various sensors. As a result, personalized

and community-based urban heat hazard notification can be implemented which

significantly benefits different at-risk communities.

Regarding our anomalous sensor placement detection approach, although we

designed a lightweight algorithm which is suitable for edge devices, we have not

implemented the proposed classification models on mobile devices. Therefore,

there is an excellent opportunity to develop a mobile application for real-time

detection and filtering of the data coming from the wrongly-placed sensors using

our proposed models.

Finally, regarding our cost-aware approach to enhance the spatiotemporal cov-

erage in drive-by sensing, our objective function is designed in a way to minimize

the location-based overlaps of different sensor readings. However, we have not

considered the land-cover type similarities into consideration. In other words,

there is a research opportunity to address the same problem by minimizing the

readings from similar land surface types. Thus, the objective function can be

updated to gear toward covering different land cover types. Considering that the

land cover type has a significant influence on the remote sensing-based heatmaps,
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this new research opportunity can be very beneficial in finding a correlation be-

tween remote sensing-based heatmaps and the heatmaps which are produced from

the drive-by sensing data.
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