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ABSTRACT

This study investigated college students' knowledge of functions before and after
instruction using the Rule of Three. The Rule of Three is the dictum that functions should
be taught symbolically, graphically and numerically, and as many examples as possible
should combine all three views. O’Callaghan (1998) and Markovits, Eylon, and
Bruckheimer’s (1986) frameworks for examining components of the concept of function
were used to investigate the students’ knowledge.

Four students were chosen based on pretest scores, written responses, and
scheduling conflicts. Data were collected from sorting and translating tasks, three
interviews and two tests, and an ongoing comparative analysis was used (Glaser &
Strauss, 1967).

Initially, the students were tied to their calculators and used them extensively. The
completion of any task depended on the students’ skill with the calculator. After
instruction, the students were less reliant on technology. Calculators were now used to
confirm solutions acquired using a combination of procedures.
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CHAPTER 1

 INTRODUCTION

Many mathematicians have asserted that functions play a fundamental and

essential role in mathematics and are critical throughout the entire spectrum of

mathematics from high school through college (O’Callaghan, 1998). Since the concept of

function is present in every branch of mathematics, it should be an important unifying

idea central to the organizing of secondary and higher mathematics curricula (National

Counsel of Teachers of Mathematics, 1989; O’Callaghan, 1998). In addition, functions

should provide the medium through which mathematics courses are developed and taught

(Haimes, 1996).

The belief that the concept of function should be a focal point in mathematics or

in its instruction is not a recent or unique idea. During the late nineteenth and early

twentieth centuries, several mathematics educators concluded there was a need for a

greater emphasis on the concept of function in school mathematics (Breslich, 1928;

Hedrick, 1922; Townsend, 1915). The German mathematician Felix Klein in 1904 (cited

in Hamley, 1934, p. 52) alluded to functions as the “soul” of mathematics and said the

elementary treatment of functions should be in the regular course material of all types of

high schools.

During the 1920s numerous recommendations suggested the concept of function

should be emphasized in every area of high school mathematics to strengthen the efforts

to unify the mathematics curriculum (Breslich, 1928; Hedrick, 1922). In addition,
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Breslich (1928) said that since mathematics deals with functional relationships between

quantities, it would be difficult to have any reliable understanding or an appreciation of

mathematics without functional thinking. Hedrick (1922) also stated that functions or

functional relations, in one form or another, are present on each page of every textbook

on mathematics unless we suppress or overlook them. Although efforts have been made

to understand why many students regularly do not understand the concept of function, the

issue is unresolved in spite of its historical and current prominence in mathematics (Even,

1996; Tall & Vinner, 1981; Vinner, 1991; Vinner & Dreyfus, 1989).

One useful area of investigation in helping students understand the concept of

function is instruction using a new statement for the Rule of Three from the Harvard

Consortium, a reform calculus project funded by the National Science Foundation. The

current statement or dictum for the Rule of Three is that functions should be viewed or

taught not only symbolically (analytic/algebraic), as is typical in traditional calculus

courses, but also graphically (geometric) and numerically (tabular), and that as many

examples and problems as possible should combine all three views (Hughes-Hallett,

Gleason, Flaith, Lock, Gordon, Lomen, Lovelock, McCallum, Quinney, Osgood,

Pasquale, Tecosky-Feldman, Thrash, Tucker, & Bretscher, 1998). Historically, the Rule

of Thee commonly referred to the rule for finding the unknown fourth term in a

proportion or equation given any three of the four terms (Hughes-Hallett et al., 1998).

Many mathematicians believe the calculus reform movement began with the

Tulane Conference in 1986 (Douglas, 1987) and the subsequent Washington Conference

(Douglas, 1987). The consensus among the mathematics educators and mathematicians

who attended the conferences was that several problems were associated with the
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teaching of traditional calculus (Tucker & Leitzel, 1995). Of the several problems

expressed by the conference participants, some were: (1) very few students were prepared

for calculus; (2) the percentage of students who passed calculus was low; (3) calculus

was being used as an unwarranted gatekeeper in too many disciplines that did not require

the use or application of this knowledge; (4) technology applicable to the teaching of

calculus was not being utilized, or it was being utilized inefficiently; and (5) few students

had any understanding of the fundamental calculus concepts (Douglas, 1987; Smith,

1994; Tucker & Leitzel, 1995).

Of the problems expressed by the participants at the Tulane and Washington

conferences, I was most concerned with the opinion that very few students are prepared

for calculus. One factor leading to the successful completion of calculus may be

knowledge of the concept of function, or lack thereof, held by college students. Wheeler

(1982) argued that both College Algebra and Precalculus, the main curriculum content of

which is the topic of functions, are traditionally taught for their importance as a tool

needed to handle the mathematics that is to come later—calculus. Most of the examples

in which calculus concepts are seen and understood in terms of objects and processes

have to do with functions (Dubinsky, 1992), and functions are the mathematical tools

used to describe relationships among variable quantities. They are at the heart of

mathematics (Thompson, 1985). In addition, the Curriculum and Evaluation Standards

for School Mathematics (NCTM, 1989) called for the concept of function to be the main

organizing standard for secondary and higher mathematics curricula (O’Callaghan,

1998).
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Rationale

The purpose of this study was to investigate college students’ knowledge of the

concept of function, before and after instruction, when functions are presented using Rule

of Three. Since the use of different instructional formats or presentations (like the Rule of

Three) along with a function approach to teaching introductory concepts in calculus is

comparatively new, there is a need for studies concerning the impact of different

instructional formats in the classroom (Haimes, 1996).

According to Cooney and Wilson (1993), more research has been conducted on

the knowledge of concept of function than on how it evolves among college students. For

instance, some research has answered questions such as: Can college students define a

function? Can college students identify functions? If so, what types of functions are

students the most knowledgeable? What types of functions are problematic? Several

studies (Even, 1996; Haimes, 1996; Markovits, Eylon, & Bruckheimer, 1986; Vinner,

1990) investigated students’ and pre-service teachers’ knowledge of functions from

mathematics classes. The results of the research by Markovits et al. are that many pupils

do not hold a modern definition of a function. In addition, they added that many students

appear to view most functions as linear functions and their conceptual knowledge seemed

to trail far behind their procedural knowledge. Vinner and Dreyfus (1989) found the

results of the research by Markovits et al. (1986) to hold even when students could

provide a correct modern definition. Even (1996) stated that many students expect graphs

of functions to be “reasonable” smooth curves and functions to be represented by a

formula or equation over their entire domain.
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Additionally, not many years ago, the results from research commonly defined

students’ subject matter knowledge in quantitative terms: by the number of courses taken

in college, scores on standardized tests, or course grades rather than by qualitative

descriptions (Ball, 1990). Taking several mathematics courses in a given area or

obtaining good final grades in mathematics courses did not necessarily imply that

conceptual knowledge rather than procedural knowledge was obtained or understood

(Selden & Selden, 1992). The measures were problematic since they may not have

represented the students’ knowledge of the subject area, or knowledge and understanding

of facts, concepts, or theorems (Even, 1996).

Research Questions

A qualitative basis for research is provided by the quantitative nature of past

studies regarding pre-service teachers’ and students’ knowledge of functions (Ball, 1990),

along with the call for a deeper understanding of how their knowledge is affected by

using different instructional formats (Haimes, 1996). Therefore, the Rule of Three may

allow students to increase or modify their knowledge of functions. In order to increase or

modify students’ knowledge, we must first explore the nature of their knowledge of

functions. The research questions were asked before and after instruction using the Rule

of Three:

1. What type of relations in symbolic, graphical or numerical form do college

students recognize or identify as functions before and after instruction using

the Rule of Three? What characteristics or tools, do college students use to

classify symbolic, graphical or numerical representations of relations as

functions before and after instruction using the Rule of Three?
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2. Before and after instruction using the Rule of Three, what types of functions

are college students able to translate from one representation to another?

What characteristics or tools do college students use to match or translate

from one representation to another before and after instruction using the Rule

of Three?

3. Given a set of functions in symbolic, graphical or numerical form, what new

functions do college students construct or create, before and after instruction

using the Rule of Three?

Theoretical Background and Definitions

The theoretical framework for this study evolved from a modification of O’Callaghan’s

(1998) framework by combining the two concepts of recognition and classification—

from the framework of Markovits et al (1986) that O’Callaghan used but did not state in

his framework— into one concept, recognizing, and adding it to O’Callaghan’s

framework. O’Callaghan’s framework evolved from Kaput’s (1989) sources on meaning

in mathematics. Kaput designated sources on meaning in mathematics as divided into two

paired categories. The first category is called referential extension and is composed of (1)

translations between mathematical representation systems and (2) translations between

mathematical and non-mathematical systems, such as natural languages. The second

category, consolidation, contains: (1) pattern and syntax learning through transforming

and operating within a representation system and (2) building conceptual entities through

reifying actions and procedures. O’Callaghan reformulated Kaput’s sources of meaning

in mathematics to obtain the components, modeling, translating, and reifying, into terms

specific to functions. He then studied students’ understanding of the concept of functions
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by examining the components of the concept of function, which he called competencies,

and used them to describe functional knowledge.

•  Modeling is the ability to represent raw data, usually in numerical or tabular form,

using functions to form either a symbolic or graphical representation of the

relationship or of the data. For example, suppose an individual’s checking account

was five dollars overdrawn for January, was empty at the end of February, but had a

surplus of three dollars for March. There was a surplus of four dollars for April and a

surplus of three dollars for May. It was empty for June and overdrawn five dollars

once again for July. What function describes the checking account balances for the

first seven months of the year?

The capacity to represent a problem situation using functions is an important

component in students’ understanding of the function concept (O’Callaghan, 1998).

Selden and Selden (1992) noted that modeling real-world situations helps one organize

the physical world and is one of the most frequent uses of functions. The view of

functions as a suitable tool in this regard is referred to by Sierpinska (1992) as a sine qua

non for understanding the function concept.

•  Translating is the ability to move from one representation of a function to another or

one context to another. For example, consider the function represented as table of

values depicted in table1.

Table 1: The numerical representation of a function

2
3

75.
5.

0
1

8
3

3
2 −

−
−−

y
x
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 Now determine its symbolic and graphical representation. Verstappen (1982) referred to

the three-core representation system—symbolic, numerical, and graphical— as the

algebraic arithmetic when moving from one depiction or representation of a function to

another.

•  Reifying is defined as the construction or creation of a mental object from what was

initially perceived as processes, examples, definitions, or procedures. Through

reifying, new functions can be constructed or created from a given set of functions by

mathematical processes such as transformations (which may be compositions, adding,

subtracting, multiplying, or dividing of functions), differentiation, or integration. For

example, given the functions xxxf += 2)(  and 2)( += xxg , a student may be able

to construct the new functions )2)(()( 2 ++= xxxxh or )2()2()( 2 +++= xxxs by

multiplying f (x) times g (x) and using the composition of functions, f (g (x)).

Markovits et al. (1986) said in their theoretical framework that an understanding

of the concept of function has many aspects, such as (I) the knowledge to recognize and

classify functions and non-functions, and (II) the knowledge to use the concept in

different contexts along with the ability or knowledge to transfer information from one

context to another in mathematics. Markovits et al. subdivided aspect (I) above into

components (a) and (b) below. Similarly, aspect (II) above was subdivided into

components (c) through (g) below. To determine students’ knowledge of functions,

Markovits et al. investigated components of the function concept—(a) through (g)

below—and analyzed the participants’ responses to determine their understanding of the

concept of functions. The components are as follows:

(a) the ability to identify relations as functions or non-functions;
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(b) the ability to classify similar functions and similar non-functions;

(c) the ability to state examples of functions and non-functions;

(d) the ability to transfer from one representation to another;

(e) the ability to state the domain and range of functions and non-functions and

find the pre-images and images;

(f) the ability to state a definition of a function; and

(g) the ability to give or construct an example of a function satisfying some

constraints.

The term ability is used by Markovits et al. and O’Callaghan and is defined below.

•   Ability is defined to be knowledge and procedural skills, such as transformations,

along with other procedures that allow students to operate within a mathematical

representation system (Markovits et al. 1986; O’Callaghan, 1998). More succinctly,

ability can be thought of as the skills and knowledge necessary to perform a task.

Sierpinska (1992) said that a certain amount of algebraic awareness, procedural skills,

and knowledge of algebraic methods is necessary for studying functions.

Recognition and classification are concepts from the framework of the research

by Markovits et al. (1986) that were used also by O’Callaghan (1998) in his research but

not explicitly or formally stated in his theoretical framework. Recognition and

classification, which are already specific to functions, were combined in the present study

and renamed Recognizing, and formally stated as part of O’Callaghan’s model.

•  Recognizing, based on concept definitions and concept images, is defined to be the

ability to identify or classify relations, in their various forms, as functions and non-

functions, as well as state their names and the corresponding names of their graphs
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when appropriate. Also included is the ability to state or give examples of functions

and non-functions.

Concept definitions are comparable to conventional mathematical definitions, and

concept images consist of all the cognitive structures that are associated with a given

concept, including mental pictures, properties and processes (Tall & Vinner, 1981). For

example, all the mental pictures, sounds, and smells that come to one’s conscience when

asked to imagine a fire engine or a landfill are concept images. One can never know a

student’s concept image for a specific topic. However, if an answer was given repeatedly,

I assumed that it represented one of the student’s concept images for that topic. Thus,

concept images created by the student might contain factors that conflict and interact with

concept definition, and these conflicts and interactions might not lead to a harmonious or

correct match, with each influencing or shaping the other and often yielding

misconceptions (Vinner, 1991, 1992). This inconsistent behavior, described by Vinner

and Dreyfus (1989), is a specific case of the compartmentalization phenomenon, and it

occurs when a person has conflicting schemes in his or her cognitive structure (Even,

1996).

For example, let us first consider the vertical line test—the concept that if a

vertical line intersects the graph of an equation more than once, the graph is not a

physical representation of a function. Suppose a student knows this concept. Now assume

that the student thinks the graphs of all quadratic equations are parabolas (which is true

and may be tied to their concept image) and that all parabolas, not just the ones opening

up or down, represent functions (which is not true but again may be tied to the concept

image) and classifies the graph of the quadratic equation, 2yx = , as a parabola and hence
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a function. The knowledge about the vertical line test and the knowledge that all

parabolas are representative of functions may each be contained in its own compartment,

with neither perspective influencing or overriding the other (Vinner & Dreyfus, 1989).

My theoretical framework is a modification of O’Callaghan’s (1998) framework

and contains the components modeling, translating, reifying, and recognizing.

Recognition and classification are not the only points of intersection between the

frameworks of Markovits et al. (1986) and O’Callaghan. Another point of similarity is

between Markovits et al.’s component of ability to transfer from one representation to

another and O’Callaghan’s translating component. These two components have similar

definitions. Still another point where the frameworks are related is O’Callaghan’s

reifying component and Markovits et al.’s component of the ability to give or construct

an example of a function satisfying some constraints. These are similar because they both

deal with the construction of mental objects or functions.

The first two statements below are definitions of a function taken from a

traditional textbook (before the calculus reform movement of 1986) and reform calculus

textbook (after the calculus reform movement), respectively. The last two statements are

definitions of algebraic and transcendental functions, respectively. Without defining an

algebraic function, some authors have chosen to classify it as an elementary function

along with the trigonometric, inverse trigonometric, exponential, and logarithmic

function, and any simple combination of this functions (Taylor & Mann, 1972). Other

authors have chosen to define an algebraic function as any function that can be

constructed from polynomial functions using the operations, additions, subtraction,

multiplication, division, and taking roots (Lial & Miller, 1989). I chose to use a definition
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for an algebraic function that is different from either of the two previous ones.

•  A function f from a set A to a set B is a well-defined subset of ordered pairs of the

Cartesian product of A and B, such that for every a ∈ A there is exactly one b ∈ B

such that (a, b) ∈  f. Since the definition of a function relies on the concept of a set, it

is natural to call the set of all first elements of a function the domain and the set of all

second elements the range (Stewart, 1991, p. 28).

•  A function is a rule that takes certain numbers as inputs and assigns to each a definite

output number. The set of all input numbers is called the domain of the function, and

the set of resulting output numbers is called the range of the function (Hughes-Hallett,

et al., 1998, p. 2).

•  An algebraic function is the ratio of two or more functions where at least one of the

functions is not a polynomial (Stewart, 1991, p. 43). For example, both
1

)(
−

=
x

x
xf

and 2

1)(
x
xxg −=  are algebraic functions.

•  Transcendental functions are logarithmic, exponential and trigonometric functions

(Stewart, 1991, p. 43).

In conclusion, the components of my framework evolved from O’Callaghan’s

(1998) applying Kaput’s (1989) theory about the sources of meaning in mathematics to

function concept. The component of recognizing, which O’Callaghan used but did not

include in his framework, corresponds to the sources Kaput categorized as referential

extension, along with modeling and translating, whereas reifying corresponds to Kaput’s

sources in his consolidation category. O’Callaghan stated that his framework contains the

sources of meaning for the function concept or describes the component of a conceptual
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knowledge of functions. He also said that an important feature of his model is the close

correlation between these behaviors and the abilities associated with function, as

described in NCTM’s (1989) Curriculum and Evaluation Standards for School

Mathematics.

Outline of the Study

I have attempted to outline the nature of my study in the introduction by

discussing its background and rationale, along with delineating the research questions and

definitions used with my theoretical framework. A review of related literature is

presented next, followed by the methodology, which is organized into sections that

discuss the design of data collection and the analysis, including a description of the

analysis.
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CHAPTER 2

 REVIEW OF LITERATURE

The purpose of this study was to investigate the knowledge of the concept of

function held by college students before and after instruction using the Rule of Three, the

dictum from the Harvard Consortium. Along with my framework, I reviewed other

literature pertaining to different perspectives on functions and functional knowledge,

teaching mathematics, and the historical aspect of functions.

Alternative Theoretical Frameworks

Some mathematics educators have offered alternative theoretical frameworks on

viewing functions and functional knowledge. Several have focused on the dual nature of

the concept of function, noting that it can be viewed as either a process or an object

(O’Callaghan, 1998). Sfard and Thompson (1994) described a theory of reification

involving a transition from an operational (process-oriented) conception to a structural

(object-oriented) vision of a concept, in particular, that of a function. Dubinsky and Harel

(1992) expressed a similar perspective in their discussion of action versus process

conceptions of functions, and Sierpinska (1992) stressed the idea that an object

conception is required for an understanding of the notion of a function.

Schwarz and Dreyfus (1998) noted another framework for considering functional

knowledge. They asserted that acquisition of the concept of function is intimately linked

to action on objects and the conservation of invariants (properties of functions) under

actions. Confrey and Smith (1991) presented a somewhat analogous framework for
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viewing and reviewing functions. It involved the study of prototypes (families of

functions like polynomials and transcendental), multiple representations, and

transformations.

Teaching of Mathematics

Learning is part of everyday life. Typically the process of acquiring knowledge in

an educational context involves two key elements: the educator who actively imparts

knowledge and the student who actively gains knowledge. Both elements are equally

essential for successful learning. Thus, mathematics teaching is engaging in mathematics

with students in order to enrich their understanding (Wittmann, 1984).

Conventional approaches to the teaching of preliminary concepts in mathematics

have focused on the development of the variable concept through interpretations and

generalizations of mathematical expressions and statements (Haimes, 1996). These

approaches have stressed the development of algorithms and of manipulation and

simplification skills for factoring and solving polynomials, rational expressions, and

equations. Ultimately, students are introduced to the concept of a function, albeit in a

formal setting (Haimes, 1996), while the teaching of functions in algebra classes has

tended to emphasize structural rather than procedural interpretations (Kieran, 1992). In

more contemporary curriculum developments, the focus has changed, with the concept of

variable being developed by having students manipulate functions, and functions are

introduced by way of a modern definition (Haimes, 1996).

A recommendation of the Calculus Reform Movement was that instruction in

calculus should center on the conceptual understanding of functions, using a combination

of different modes of instruction along with encouraging an inclusive spirit of
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cooperation (Tucker & Leitzel, 1995). In most calculus reform courses, the lecture is

being partially or totally replaced by multiple classroom and laboratory activities. The

key word here is activity: active involvement of the students as learners and participants,

while also emphasizing discovery, sharing, and invention (Smith, 1994).

One program in widespread use that has been developed to improve instruction in

calculus is the Professional Development Program (PDP). This program was first

implemented by Uri Treisman at the University of California at Berkeley (Taylor, 1996).

Taylor stated:

Recently at the University of California, Uri Treisman conducted a study
of factors that determined success of calculus students at the Berkeley
campus. He observed that race, sex, and socioeconomic status …[were]
not critical factors. The critical factor was whether the students
participated in study groups. He observed that whereas Asian students
tended to work together in study groups, black students tended to study
alone. He was able to get black students to work together through forming
the Black Honors Calculus Society, and members’ grades increased
dramatically. (p. 47)

Some of the components of PDP are as follows: (1) a workshop environment

using small study groups, (2) faculty leadership for these groups, (3) challenging

mathematical materials to facilitate learning in a non-threatening, non-remedial manner,

and (4) peer support networks. The workshops supplement and complement the usual

three to four hours of classroom time. An important component of PDP is time spent in

workshops under the supervision or guidance of    faculty (Taylor, 1996). One of the most

important components of PDP seems to be time spent on tasks under faculty supervision

with peer support and feedback.
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Historical Perspectives of the Concept of Function

Around the beginning of the twentieth century, many mathematics educators said

that the concept of function should receive greater emphasis in school mathematics

(Breslich, 1928; Hedrick, 1922; Townsend, 1915). In an effort to unify the secondary

mathematics curriculum, the National Committee on Mathematical Requirements of the

Mathematical Association of America recommended in 1921 (Hedrick, 1922) that the

concept of a function be the unifying principle of secondary mathematics. Another

consideration that gave impetus to the importance of functions in mathematics

curriculums in the first half of the twentieth century was the opinion that functions

occurred prominently in the real world (Hedrick, 1922). Equally important, there were no

constraints in the definition of a function that prevented the presentation of applicable,

real-world examples. The various recommendations began to show results, although the

results were infrequent and uneven (Schorling, 1936).

Bulter and Wren (1941), Schorling (1936), and Young (1927) each had a

mathematics methods textbook that encouraged teachers to stress functions as the

unifying principle of school mathematics. Some textbooks published in the 1930s, one in

particular by Betz, tried to unify a course around functions. A companion Algebra II

textbook (Welchons & Krickenberger, 1949b) did provide some emphasis on functions.

The 1950s and 1960s brought recommendations stressing mathematical structure

while defining functions in terms of a set of ordered pairs. In 1959 the College Entrance

Examination Board (CEEB) recommended that increased attention and importance be

given to functions in high school mathematics, and the central theme of functions

continued as a unifying idea. The CEEB even recommended a separate course on
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functions. Between 1960 and 1967 the School Mathematics Study Group (SMSG)

produced a series of high school textbooks designed to implement the CEEB’s 1959

recommendations. The SMSG (1965) designed one textbook, particularly, as a high

school function course. A dominant theme of the SMSG materials was that all

mathematics should be considered as a unified whole (SMSG, 1985).

The 1970s saw the end of the new math era, as indicated by the report of the

National Advisory Committee on Mathematics Education (NACOME, 1975) and the

beginnings of numerous criticisms of college and high school mathematics along with

several calls for reforms of their respective curriculums. The signals for reforms in the

teaching and learning of mathematics persisted, with proclamations from the National

Council of Teachers of Mathematics (1980) and the National Commission on Excellence

in Education (1983). In fact, nearly a dozen additional major reports on U. S. schools

emerged in 1983 alone, and the educational reform movement continued to gain

momentum in the mid-1980s, beginning with the Reagan administration’s report A

Nation at Risk by the National Commission on Excellence in Education (1983). The

common thread throughout these reports was the demand for a national commitment to

excellence in education (Mathematical Association of America, 1981) with at least one

proclamation calling for the concept of function to be central theme for the organizing of

secondary and higher mathematics curricula (NCTM, 1989).

While mathematicians and mathematics educators were calling for a greater

emphasis on the concept of function during the late nineteenth century and the first part

of the twentieth century, the definition of the function concept was changing (Kleiner,

1989). In the middle of the nineteenth century, the work of the mathematician, Dirichlet,
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illustrated the idea that functions could include arbitrary correspondences. Yet many

prominent mathematicians in the early 1900s (Lebesgue, Baire, and Borel) thought of

functions as dependent relations or supported the requirement of a correspondence

between variables in the function definition as some type of rule or law. The acceptance

of a definition of functions that included arbitrary correspondences was gradual (Kleiner,

1989). A standard definition of a function early in the twentieth century was: “If for each

value of a variable x there is determined a definite value or set of values of another

variable y, then y is called a function of x for those values of x” (Townsend, 1915).

There was little change between the accepted definition of a function in the early

1900s and the accepted definition of the 1950s. However, the definition was refined

somewhat to include an increased emphasis on the concept of a set, the acceptance of

functions as arbitrary correspondences, and the requirement that each value of the

independent variable has a unique image as a dependent variable. This characteristic was

missing from Townsend’s definition. Definitions of functions in the early part of the

twentieth century usually centered on dependence and correspondence with an emphasis

on formulas and graphs. Later, refined definitions in the late 1950s referred to functions

as a set of ordered pairs. The contemporary definitions of relations and functions

represented a fundamental change in the way people thought about functions. Defining

the concept of a relation as a set of ordered pairs gave a previously vague term a precise

mathematical meaning (May & Van Engen, 1959).

The concept of a function as a set of ordered pairs for which certain conditions

were satisfied gave a new generality and precision to the meaning of a function. It was

more precise to refer to a function as a set of ordered pairs represented by a table, a
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graph, a rule, or a description. For example, the function symbolized by the formula

2xy = could be more accurately referred to as the set of ordered pairs of the form {(x, y):

2xy = }. Since the definition of a function relied on the concept of a set, it was natural to

call the set of all first elements of a function the domain and the set of all second

elements the range. These ideas gave rise to the modern definition of a function: A

function f from A to B (in two-dimensions) is a well-defined subset of ordered pairs of

the Cartesian product of A and B, such that for every a , A there is exactly one b , B

such that (a, b) , f (Cooney and Wilson, 1993).

Because the function concept was rarely included in most textbooks from the late

nineteenth century to the middle twentieth century, it was seldom taught. Breslich (1928)

stated that many instructors were skeptical about teaching the function concept in high

school mathematics. He said some teachers insisted that functions should be saved for

higher mathematics courses. Yet, Wells and Hart (1929) introduced in their textbook the

function concept using a sequence of examples such as the following: The money earned

by a man who is being paid 50 cents per hour depends upon the number of hours he

works.

The Algebra II textbook by Welchons and Krickenberger (1949) asked students to

evaluate f (2) if 43)( 2 −+= xxxf . By the 1950s, functions were beginning to be taught

and used more in terms of symbols and ordered pairs. The Algebra I textbook by Dolciai,

Berman, and Wooton (1963) placed a strong emphasis on the graphs of functions,

identifying the domains and ranges of functions, and determining whether relations are

functions. From the 1960s through the 1970s, instruction of the function concept in

school mathematics became more prominent. Functions were still basically viewed
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symbolically, yet graphical representations had begun to emerge. In the 1980s, the

teaching of functions began to incorporate many, if not all, of the recent

recommendations because of the impetus of the reform movement in the mathematics

curriculum, in particular, the Calculus Reform Movement.
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CHAPTER 3

 METHODOLOGY

Pilot Study

I conducted a study during spring semester 1998 titled, College Students’ Subject–

Matter Knowledge of Quadratic Functions. My study investigated (1) college students’

knowledge of functions, particularly quadratic functions; and (2) the affect of their

college major had on their knowledge. Approximately 62% of the 35 students from my

MAT 191 calculus class volunteered for the study completed a questionnaire (Appendix

E) and a test (Appendix F). The use of graphing calculators was permitted on the test and

approximately 33% of the students passed with a grade of 70% or better.

One question on the questionnaire asked the students to state whether or not they

were mathematics majors. The results from this question were used to divide the students

into two disjoint groups, majors and non-majors. The students were also asked to list the

number of mathematics courses taken in high school and college. The criteria used for the

selection of each participant was the combined number of mathematics courses taken in

high school and college, and the availability for the study rather than the test scores.

Scheduling conflicts eliminate 9 students of the 22 students, five from the majors and

four from the non-majors. The 2 students with the most extensive mathematics

background were selected from each group, majors and non-majors, to be representatives

of their classmates and their test scores were a 66% and 59% for the majors and a 63%

and 55% for the non-majors, respectively.
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Data was gathered from the test, sorting activities and interviews. The sorting

activities consisted of the students distributing the 30 functions from the test into the

matrix below by assigned numbers. See figure 1. A comparative analysis was conducted

on data obtained form the majors and non-majors. Of the four students selected, two

withdrew from the study near its midpoint. Fortuitously, only one student withdrew from

each group, which did not prevent the intended form of analysis. The remaining students

had test scores of 59% and 55%.

Four one-hour audiotaped interviews, one concerning the test, one dealing

specifically with quadratic functions (Appendix G) and two dealing with sorting, were

obtained from each of the remaining students. A comparative analysis of the data showed

that neither the mathematics major nor the non-major had a complete or accurate concept

of functions, particular quadratic functions, or non-functions. In addition, the ability to

distinguish between functions and non-functions was displayed to a greater degree,

through the use of the vertical line test and graphing calculator, than the ability to identify

different types of functions by name.

Figure 1. Pilot Study Sorting Matrix

Functions

Non-
Functions

Quadratic Non-quadratic
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Upon reflecting on the pilot study, only focusing on the number of courses taken

in high school and college in the pilot study as a main criterion while ignoring the test

scores may have limited the scope of the research. Students with better test scores and the

same or less extensive mathematics backgrounds may have given different results. In

addition, they may have been more committed to the study. I also realized that some

criteria like the number of mathematics courses taken might need to be waved or

modified to best serve goals of the study.

Selection of Participants

Founded in 1833, Mercer University is a private university located in Macon,

Georgia. All participants were chosen from Calculus I (MAT 191), a reform calculus

class, held during spring semester 2001 in the College of Liberal Arts at Mercer

University. Calculus I has been a part of the general education requirement for years, at

Mercer University. It has served mathematics majors but also students from a wide

variety of disciplines. The members of the MAT 191 calculus classes were commonly

freshmen students, and they were frequently diverse with respect to race, ethnicity, sex,

and mathematical background.

The University of Georgia and Mercer University’s Internal Review Boards

granted permission for human subjects research during the spring semester of 2001. This

MAT 191 calculus class contained 29 students, and all students were asked to participate

voluntarily in the study. Based on the percentage of students who completed consent

forms from a pilot study conducted during the last few weeks of spring semester 1998, I

expected about 62 percent to volunteer for the study, approximately 17 or 18 students out

of the 29. However, there were 22 volunteers. Reflecting on the results of the pilot study,
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my goal was not to choose four students who would be representative of the class, but to

select students with strong academic background, especially in mathematics, who also

performed acceptable on the pretest.

The pretest for this study was a modification of the test given during the pilot

study. Adding graphical and numerical representations of relations and a request for the

definition of a function as well as requests for examples of functions and non-functions

altered it. Participants were given the option of taking the pretest in one 2-hour testing

period or two 1-hour testing periods. Everyone opted for the one 2-hour testing period.

Similar to the test given during the pilot study, graphing calculators were permitted, and

all tests were administered on Mercer’s campus. Unlike the pilot study, I chose a grade of

70% as a minimum cutoff score because I was as interested in studying students who

performed satisfactory on the pretest (Appendix A) as well as those who had an extensive

mathematics background.

Because approximately 33 percent of the participants from the pilot study made

grades of 70% or higher on the test during spring semester 1998, I expected to narrow the

22 volunteers to approximately 6 or 7 students. The actual number of students who

obtained a score of at least 70% on the pretest was 7. Next, I narrowed my selection to 4

potential participants by reviewing the following: (1) how informative and elaborate their

responses were to the questionnaire; (2) how they supported or justified their pretest

answers; (3) scheduling conflicts for interviews; and (4) a willingness and commitment to

continue with the study. Using the pilot study as a guide, criterion (4) above was as

important as any other was because it was used to insure that students would be less

likely to drop from the study. Again using the pilot study as template, I reserved the
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option waving a criterion and selecting a student whose pretest score was less than 70% if

he or she met all of the other requirements. After applying the minimum score of 70%

and the other four criteria, I had selected only two participants. Therefore, I waved the

minimum score of 70% and used only the four remaining criteria to select the last two

participants. All four selected participants were traditional college students, 18 to 22

year-olds who met the above four criteria. The four chosen students were Eddie, Kristin,

Whitney, and Buren and their pretest scores were 31, 83, 64, and 83, respectively.

Participants

Eddie. Eddie was classified as a sophomore, and he was a single male age 20

from the state of Georgia. He was a good student whose major field of study was

accounting and minor was finance. Eddie was a member of the basketball team and

attended Mercer full-time. He had graduated from high school in June 1998. Eddie took

Geometry, Trigonometry, Calculus and Algebra II in high school along with the honor

courses: Physics, Chemistry, Biology, English, Calculus, and History. He had an A

average in high school and an A cumulative grade point average in college. Eddie

described his experiences with mathematics as “having thoroughly enjoyed math my

whole life.” Calculus I (MAT 191) was his first college mathematics course, and he

claimed that he had a good background for calculus. Eddie was always on time to class,

consistently participated in class, and faithfully attempted the homework. His only

absences from class were out-of-town basketball games. Even though Eddie’s pretest

score was less than 70%, he met all the other criteria. Yet, he was selected in part based

on the courses taken in high school and his high school average which was used as a

means to compensate for a score of 31%.
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Kristin. Kristin was a native Georgian majoring in Spanish with a minor in

International Business. She was 20 years of age, a sophomore, and single. She was a

good student and took the following mathematics courses in high school: Advanced

Algebra, Trigonometry, Geometry, and AP Calculus. Other honor courses taken in high

school were Physical Science (9, 10, and 11), English Literature, AP United States

History, and AP Government. Kristin had an A average in high school and an A

cumulative average in college. She stated that she had a good background for MAT 191

and that this was also her first college mathematics course. Kristin described a bad

experience with mathematics from high school as “taking the AP Calculus [examination]

and realizing I actually had no clue how to do calculus.” She said the bad experience was

caused by “limited class time and crammed instruction due to block scheduling.” Kristin

was selected because her pretest score was 83% and she met all the remaining criteria.

Whitney. Whitney was 20 years of age, resided in Georgia, and was a good

student who had not yet decided on a major or minor. She took the following honors

courses in high school: Geometry, Algebra II, English I, II, and III, Chemistry, and

Biology. She also took Trigonometry, AP Calculus, Chemistry, and History. Whitney had

an A average in high school and an “A” cumulative average in college. She had mixed

experiences concerning mathematics in high school. Some of her courses were taught

well, and she learned the subject matter. In other courses, she was able to memorize the

information and perform well on tests because the students were actually told or given the

material that was going to be on the tests. In still other courses, she made some of her

lowest mathematics grades because “the teacher did not explain any of the concepts

beyond working problems on the board and assigning problems to be worked with
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partners.” Having met all the criteria except the minimum score of 70%, Whitney, like

Eddie, was selected in part based on her high school average and the courses taken.

Buren. Buren was a sophomore whose major was Biology. His minor was

Spanish. He resided in Georgia and was a 20-year-old single male. The courses he took in

high school were Algebra I, Geometry, Algebra II, and Gifted Precalculus. The honor

courses taken were Senior English, Physical Science, Biology, Spanish, Chemistry, and

AP Biology. Buren had an A average in high school and a B+ cumulative average in

college. He had good experiences with mathematics in high school. He said, “My high

school experiences … have been good. I’ve made A’s and B’s in all of my mathematics

courses. There were a few concepts that I did not understand, but I received help from my

teachers!” Buren, like Kristin, was selected because of he had a pretest score of 83% and

he met all the other criteria.

Data Collection

Classes for Calculus I met three days a week. On the first day of classes, a

Monday, the students were asked to participate in the study and were given human

subjects consent forms and a questionnaire to complete (Appendix D). The consent forms

and questionnaires were turned in the same day and a pretest was scheduled for the next

day at 10:00 a.m., 1:00 p.m., and 4:00 p.m. No one took the test scheduled for 4:00 p.m.

and all 22 pretests were graded by Wednesday, the second day of classes. The seven

participants who obtained pretest scores of at least 70% were reduced to four participants

by Friday, the third day of classes. Data collection continued on Friday and Saturday with

the pretest interviews. Monday and Tuesday of the second week of classes were devoted

to the sorting activities. The interviews for the sorting activities were conducted
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Wednesday and Thursday of the same week. The remainder of the week through

Saturday was reserved for translating tasks. The following Monday and Tuesday of the

third week were devoted to translating interviews. The remainder of the week was

reserved for any missed interviews, sorting activities or translating tasks.

First class day, Monday, January 8, 1998, the students were asked to participate in the
study. They were given consent forms and questionnaires to be completed and turned
in the same day.
Non-class day, Tuesday, January 9th at 10:00 a.m. and 1:00 p.m., the pretest was
given. I began grading the pretests.
Second class day, Wednesday, January 10th, I finished grading the pretests and
reduced to the number of participants from 22 to 7 using the 70% minimum score.
Non-class day Thursday, January 11th, I initially narrowed the number of participants
from 7 to 2 since only 2 students satisfied all criteria. The number of participants was
increased to 4 after the criterion of 70% was waved.
The third class day Friday, January 12th through Saturday, January 13th was scheduled
for pretest interviews.
Fourth class day Monday, January 15th through Tuesday, January 16th was scheduled
for sorting activities.
Fifth class day Wednesday, January 17th through Thursday, January 18th was
scheduled for sorting interviews.
Sixth class day Friday, January 19th through Saturday, January 20th was scheduled
translating tasks.
Monday January 22nd and Tuesday 23rd were scheduled for translating interviews.
Wednesday January 24th through Saturday 27th were scheduled for missed interviews,
sorting activities or translating tasks.
Monday, January 29th through Wednesday February 7th was devoted to studying
functions using the Rule of Three.
Thursday February 8th was scheduled for the posttest. All four posttest were graded.
Friday February 9th through Saturday 10th were scheduled for posttest interviews.
Monday February 12th through Tuesday 13th were scheduled for sorting activities.
Wednesday February 14th through Thursday 15th were scheduled for sorting
interviews.
Friday February 16th through Saturday 17th were scheduled for translating task.
Monday February 19th through Tuesday 20th were scheduled for translating interviews.
Wednesday February 21st through Saturday 24th were scheduled for any missed
interviews, sorting activities or translating tasks.

Figure 2: Time Line
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The fourth week and a half of the fifth week of classes were used to studying

functions, using the Rule of Three. Starting with Thursday of the fifth week of classes,

data collection began again in the form of a posttest scheduled from 10:00 a.m. until 12

noon. All four posttests were graded that day and the corresponding interviews began

Friday and continued through Saturday.

The sorting activities began Monday and continued through Tuesday of the sixth

week. Wednesday through Thursday was scheduled for sorting interviews. The remainder

of the week, Friday and Saturday, was reserved for translating tasks. The translating

interview began the following Monday and concluded that Tuesday of the seventh week.

The remainder of the week was scheduled for any missed sorting activities, interviews or

translating tasks. The study covered nearly the first seven weeks of Calculus I during the

spring semester of 2001 while the actual time devoted to studying functions using the

Rule of Three was a week and a half.

Before instruction using the Rule of Three to study and review functions, all four

participants were asked the questions in the interview protocol (Appendix B). Led by the

students’ responses, the interview protocol oftentimes deviated from the one in the

appendix. The participants were asked different but similar questions before and after

instruction using the Rule of Three. All interviews were audiotaped and transcribed. Data

were also collected from field notes taken by me and written responses by the participants

during interviews, translating tasks and sorting activities. The data collected before and

after instruction using the Rule of Three were compared and analyzed to obtain a

qualitative narration that was directly tied to my research questions on the concept of

function.
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Data Analysis

After an initial collection and examination of the data, categories or classes were

constructed (Owens, 1982). While categorizing data, I used an ongoing comparative

analysis throughout the study to find patterns within and across categories as opposed to a

final end-result analysis (Glaser & Strauss, 1967; Goetz & LeCompte, 1984; Patton,

1990).

Equally important, an ongoing comparative analysis provided direction to the

collection of data by indicating what should be sought, checked, or rechecked, and how

to broaden the scope of the data collection itself (Owens, 1982). In the early stages of the

study, most of the time and effort was consumed gathering data, and little time was given

to analysis. In the latter stages of the study, this trend was reversed. In addition, I was

prepared to look for unanticipated points of view arising from the ongoing analysis on the

data (Owens, 1982), and I continually scanned the data for patterns or changes in the

students’ knowledge through their written or oral responses (Goetz & LeCompte, 1984).

I used audiotaped interviews, along with notes and written responses from the

interviews, as a means of enrichment, clarity, and information and as indicators of

changes in the students’ knowledge (Goetz & LeCompte, 1984). The main objective of

this qualitative analysis was to identify, organize, categorize, and compare explanations,

ideas, and meanings common to the participants that were contained in the data into an

exposition that was understandable and tied to theory and previous research. The

identified, organized, and categorized explanations, ideas, and meanings constituted my

units of analysis. Connections and relationships among and between categories were

investigated through a continual process and analyzed with respect to current and
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previous data. Conclusions were based on the analyzed units of analysis, were based on

theory, and were supported by the data.

A fair question may be the following: “Did I capture what I was supposed to

measure?” I tried to minimize this potential problem by collecting the same data through

a triangulation process with multiple sources of data such as: (1) pretest; (2) interviews

(and any written work given during the interviews); (3) sorting activities; and (4) posttest.

This method of data collection helped to insure the validity of my research and

demonstrated that the propositions generated, refined, or tested matched what occurs in

human life (LeCompte & Preissle, 1993).

To what extent were my findings applicable across groups (Patton, 1990)? I

sought to minimize the non-applicability of my findings across groups by stating the

dependence, if any, of the data on the social setting, my social relationship with the

participants, the participants themselves, or any possible interactions. I attempted to

ensure applicability to other settings or groups of students by examining functions that

occurred in traditional and reform calculus textbooks. The use of, the Rule of Three in the

study was also applicable to other groups or settings. I do not think I had any instruments

or constructs that were specific or unique to the participants. I tried to minimize this

potential problem by collecting data that were as objective as possible.

One aspect of reliability refers to the extent to which studies can be replicated. I

identified and attempted to handle five problems that may have allowed the reliability of

the data to be enhanced: (1) researcher status position; (2) informant choices; (3) social

situations and conditions; (4) analytic constructs and premises; (5) and methods of data

collection and analysis (LeCompte & Preissle, 1993). Informant choices, social situations
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and conditions, and method of data collection were discussed under the heading,

Selection of Participants and Data Collection. All methods of analysis, assumptions,

theories, and choices of terminology were plainly stated. Definitions of concepts were

made clear and sufficiently lacking in idiosyncrasies. All observations were recorded

mechanically, notes were composed on location, and I explained how materials from

various sources were integrated into the study. Moreover, I identified and discussed the

data analysis processes. I thought these procedures increased the potential for subsequent

researchers to reasonably reconstruct my original analytic strategies.

Since all encounters, except the pretest and posttest, with the students were taped,

an audio-log was maintained throughout the study of all contacts in which verbatim

accounts of participant conversations and descriptions were used. The audio-log allowed

me to have what Guba and Lincoln (1981) called as an “audit trail” for qualitative

research. My audit trail allowed the documentation of the nature of decisions in the

research plan and the data, theory, and reasoning on which the decisions were based. The

audit trail usually permitted two important things. First, it allowed for an examination of

the procedures of the study, either in progress or after the fact, in order to verify the

study’s validity by independent, external auditors. Finally, the audit trail made it possible

for reproduction of the study, which in turn provided a check for reliability.

Researcher’s Role

First, I clearly identified my role and status within the group that was investigated

and any biases or perceptions I thought were caused by my professional status-- a college

mathematics instructor. I had three roles during this study: a collector of data, a

researcher, and a direct observer. All roles were arranged with the participants and
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seemed to have had a minimal effect on their classroom or laboratory behavior as I

sought to establish and maintain a friendly, informal environment that was also impartial

to the essential concerns of my research. However, my role of a direct observer spanned

the spectrum from that of a quiet, passive, uninvolved observer to that of an actively,

involved participant.

Researcher’s Bias

Biases based on my teaching experience, theoretical framework, previous research,

literature, and reading were clearly and fully documented. First and foremost, I was the

instructor to the participants. Since I subjectively interpreted and analyzed what I thought

the participant meant when he or she spoke or wrote, I attempted to clearly differentiate

between what was said or written, the symbols used, and my own interpretations. I

maintained a log of my interpretations, along with the taped interviews, direct

observations, and class presentations, which enabled me to remain vigilant regarding my

subjectivity.

Limitations

As with most research, there were limitations with this study. The first

limitation was the limited review time to study functions using the Rule of Three.

Next, I was only able to describe the participants’ knowledge by their responses

or answers while they were engaged in tasks. Therefore, a complete description of

their knowledge was difficult.
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CHAPTER 4

 RESULTS

Instruction Before Using the Rule of Three

This chapter reports data concerning college students’ knowledge of functions

before and after instruction, using the Rule of Three. Before instruction using the Rule of

Three, data was collected from a pretest, sorting activities, and interviews. After

instruction, using the Rule of Three, data was collected from a posttest, sorting activities,

and interviews. After initially collecting data, categories were constructed based on the

way the information was gathered (Owens, 1982). The two main categories were

Instruction Before Using the Rule of Three and Instruction Using the Rule of Three. The

partition seemed to be a natural way to divide the data. Subcategories constructed for the

category, Instruction Before Using the Rule of Three, were: (1) Definition of a Function;

(2) Examples of Symbolic, Graphical, and Numerical Representation; (3) Examples of

Non-functions; (4) Classification of Relations as Functions; (5) Recognizing Functions;

(6) Translations; (7) All Three Representation; (8) The Easiest Translations; (9) The Most

Difficult Translations; (10) Creating New Functions; (11) Creating Functions from Non-

functions; (12) Sorting Cards; (13) and Tools. Some of the subcategories were

partitioned, once again. For instance, the category, Recognizing Functions, was

subdivided into the smaller categories, Symbolic, Numerical or Graphical, while the

category, Sorting Cards was split into categories based on the students’ names for their

partition of the cards. These same subcategories and smaller categories were used once
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again for the category, Instruction Using the Rule of Three, since the data was collected

in a similar manner.

I began the reporting of the data with the students’ pretest scores and their

Definition of a Function, and ending with subcategory, Tools. The data collected in the

part of the study designated, Instruction Using the Rule of Three, was reported in a

similar manner. As the data collection phase of my research lessened and the analysis

process increased, some of O’Callaghan’s (1998) and Markovits et al.’s components of

the concept of function called competencies that were used by them to describe

functional knowledge emerged from the student’s data. To be more specific, evidence of

the students’ functional knowledge, and the strategies used by them to recognize,

classify, and translate from one representation of a function to another surfaced.

The pretest scores for Eddie, Kristin, Whitney, and Buren were 31, 83, 64, and 83,

respectively. The students’ definitions of functions are given after the bulleted

statements. The following bulleted statements below are definitions of a function that

were taken from a traditional and reform calculus textbook, respectively, and were stated

originally in chapter one. All functional definitions given by students were compared to

one of the textbook definitions and each other. Neither definition was given to any of the

students before the pretest or the first interview, and I had no expectations concerning the

type of definitions the students would give. In addition, I did not expect the students to

give an exact rendering of either definition, traditional or reform.

•  A function f from a set A to set B is a well-defined subset of ordered pairs of the

Cartesian product of A and B, such that for every a ∈ A there is exactly one b∈ B such

that (a, b)∈  f. Since the definition of a function relies on the concept of a set, it is
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natural to call the set of all first elements of a function the domain and the set of all

second elements the range (Stewart, 1991).

•  A function is a rule that takes certain numbers as inputs and assigns to each a definite

output number. The set of all input numbers is called the domain of the function and

the set of resulting output numbers is called the range of the function (Hughes-Hallett

et al., 1998, p.2).

Definition of a Function

Eddie: A function is an algebraic representation of an equation.

Eddie’s definition of a function did not look as if it corresponded to either of the

textbooks’ definitions. It seemed to be incomplete because he did not utilize any of the

words like “rule,” or the phrase like “a set of ordered pairs,” mentioned in the textbooks,

and he did not include the functional components, the domain and range. Yet, Eddie

demonstrated some knowledge of the domain and range of a function when he said, “Two

different y-values in the range can’t go with (be associated with) the same x-value in the

domain.” Later, during the same interviews, Eddie also said that every function has a

domain and a range. The Domain is the numbers placed in (a function) and the range is

the numbers gotten out.

When asked to define the term “algebraic representation,” Eddie did not give a

definition but, instead, gave the equations, 1232 =+ yx and xy =2 , as examples of

algebraic representations and functions. Although one of Eddie’s examples,

1232 =+ yx , was a symbolic representation of a function, the other one, xy =2 , was

not. Initially, based on his responses, it appeared that when Eddie used the phrase

“algebraic representation,” he was referring to equations that were just as likely to be a
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function as not. He seemed to think that any equation was an algebraic representation and

hence a function.

Later, Eddie appeared to realize that his definition was probably incomplete when

he solved 42 =y for y and got y = 2 or –2. Then he said, “Something is wrong because

one x-value yielded two y-values” which contradicted his earlier statement that two

different y-values cannot have the same x-value.

Kristin: A function is a relation in which there are no two coordinates with the
same x-coordinates and different y-coordinates.

There were no similarities between Eddie and Kristin’s definition. Kristin’s

definition seemed to parallel the definition from the reform textbook more so than the

definition from the traditional text. Nevertheless, when compared with the definition

from the reform textbook, Kristin’s definition, like Eddie’s, did not contain two

components of a function, its domain and range. Kristin used the word “relation” in her

definition of a function, but failed to define it on the pretest. During the interviews,

Kristin defined a relation as only “a set,” but she did not give a meaning for “a set” when

asked. Kristin’s use of the word “relation” in her definition appeared to mirror the

application of the word “rule” in the reform textbook’s definition—that of a tool use to

take certain numbers as inputs and allocate to each a distinct output number. Kristin said

a “relation” is the apparatus (tool) that assigns to each x-value the different or unique y-

value.

However, like Eddie’s definition, Kristin’s appeared to be incomplete.

Whitney: A function is a special type of relation in which for every unique value
of x, there is a unique value of y corresponding to it.
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Whitney’s definitions seemed to parallel Kristin’s as well as the definition from

the reform textbook more so than the definition from the traditional text. Since Whitney’s

definition was similar to Kristin’s, she also failed to include the domain and range in her

definition. Like Kristin, Whitney also used the word “relation” in her definition, failed to

define it on the pretest, and did not offer a definition for it during the interviews. Like

Eddie and Kristin’s definitions, Whitney’s also seemed incomplete.

Buren: A function is a set of ordered pairs whose coordinates cannot have the
same x-coordinate and different y-coordinates. A function also has a
domain and a range. The domain and range as the set of all input numbers
and the set of all output numbers.

Buren’s definition of a function also seemed to parallel the definition from the

reform textbook similar to Whitney and Kristin’s definition. Resembling the reform

textbook’s definition, but contrasting with Whitney and Kristin’s definition, was Buren’s

inclusion of the functional components, domain and range along with their meanings, in

his definition. In addition, he was also proficient in obtaining the corresponding y-value

in the range for a specific x-value in the domain and obtaining an x-value in the domain

for a given y-value in the range.

Furthermore, for the symbolic representation of a linear function like 1232 =+ yx , Buren

was able to state the domain and range—the set of all real numbers. Buren’s knowledge

of the domain and range of functions seemed to be different from Whitney’s and

Kristin’s, who did not mention the domain and range, and it appeared to be more than just

basic information but was it linked to linear functions? When supplied with the symbolic

representations of the rational and radical functions (non-polynomial

functions),
1−

=
x

xy and 42 −= xy , Buren continued to provide the set of real numbers
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as the domain and range. Even when furnished with the symbolic representations of

quadratic and constant functions, 12 += xy  and 2=y , Buren persisted in giving the set

of real numbers as the range. He seemed to be unable to supply an answer other than the

set of real numbers for the domain or range of any function presented to him. So I asked

Buren if he actually thought that most, if not all, functions had as their domains and

ranges—the set of real numbers. He said, “No, but the functions that I don’t know [the

domain or range], I guess the set of real numbers. I am familiar enough with functions to

know that this (the set of real numbers) is not a bad guess.” Buren’s comments were

informative because he seemed to make educated guesses when his knowledge failed

him. I was still curious concerning Buren’s knowledge of the domain and range, so on the

spur of the moment, I created the following equations (functions): 42 += xy ,

12 += xy , 2=y , 
1−

=
x

xy , 42 −= xy , and xy log= . I chose the first three functions

because I thought that he would be familiar with them and the last three functions

because I thought Buren may have less experience working with them. I also wanted

functions (the first three) whose domain was the set of all real numbers and functions (the

last three) whose domain was not the set of all real numbers because I desired to know

what his response would be for each type. Buren stated that the domain and range of each

function was the set of all real numbers. At least for the latter three functions, Buren

appeared to have given an educated guess.

Another difference between Buren’s definition and the definitions of Whitney and

Kristin was his use of the words “a set of ordered pairs” in his definition of a function

rather than the word, “relation.” Nevertheless, when asked to define “a set of ordered

pairs,” he said it was a relation and a relation was the tool that assigned each x-value its
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y-value. Although Buren did not use the word “rule” in his definition of a function, the

phrase, “a set of ordered pairs,” seemed to serve the same purpose. Buren’s definition

appeared to be the more complete than Whitney’s and Kristin’s because he was the only

student so far to mention and define the domain and range of a function.

Most of the students’ definitions seemed to resemble the definition from the

reform textbook. Although neither student used the word “rule” in their definition of a

function, the words, “relation or apparatus” or the phrase, “a set of ordered pairs”

appeared in most definitions and seemed to have been employed in their definitions as the

word “rule” was used in the textbook definition. Yet, their definitions appeared to be

incomplete since all students, except Buren, did not discuss the domain or range. Later

during the interviews, the students demonstrated knowledge of the domain and rang of a

function when they said the x- and y-axes corresponded to its domain and range

respectively. It also seemed that every student had some knowledge about the

components of a function such as the domain and range, but did not include them in their

definitions. Again, insight about the students’ knowledge concerning domains and ranges

was gained because it seemed they knew more about the domains and ranges of functions

than their definitions indicated.

Examples of Symbolic, Graphical, and Numerical Representations

The only representations given by students were those of polynomial functions.

Eddie, Kristin, Whitney, and Buren gave 22 += xy , 2)( xxf = , 2)( xxf = ,

and 22 += xy  as their symbolic representations, respectively. The students verified that

their symbolic representations were functions by identifying them by names like, linear

or quadratic functions. Furthermore, the ability to identify symbolic representations by
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name seemed to demonstrate some level of competency in the recognizing component of

the framework by the students. They used vertical line test to confirm that the graphical

representations were functions, and numerical representations were verified as functions

by insuring that no x-value was associated with more than one y-value.

                                 

Figure 3: Eddie, Kristin, Whitney and Buren’s graphical representations

Table 2: Eddie, Kristin, Whitney and Buren tables
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All students, except Buren, gave a numerical and a graphical representation that

corresponded to their symbolic representation of a function. Eddie, Whitney and Kristin

used their symbolic representation along with the graphing calculator, to obtain the

corresponding numerical and graphical representations. Perhaps, without knowing it, the

students had engaged in the translation of functions, a task that was to come later. In

addition, the students’ ability to give examples of functions seemingly demonstrated

some level of competency in the recognizing component of the framework. However, it

must be noted that the students seemed more comfortable or knowledgeable with

polynomials and only gave them as examples.
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Initially, Buren gave three representations—symbolic (quadratic), graphical

(constant), and numerical (no particular type of function)—that were all different from

each other. Buren was also asked to give representations that corresponded to each other,

like the other students, to see if he was able to perform this task and not rely on memory,

and he was successful. Buren, like the other students, had prematurely engaged in the

translation of functions. Furthermore, the fact that Buren was able to give three different

representations that did not correspond to each other as well as three representations that

did correspond may be indicative of his level of knowledge concerning functions which

seemed to be different from that of the other students.

Every student correctly identified each symbolic representation by name as either

a linear, constant, or quadratic again displaying competency in the recognizing

component. Graphical representations were verified as functions through the use of the

vertical line test, and numerical representations were verified as functions by insuring

that no x-value was associated with two different y-values.

On the initial examination, the two methods—the vertical line test, and the

procedure of insuring that no x-value was associated with two different y-values—used

by the students to verify graphical and numerical representations as functions appeared to

be different. However, the method used by the students to verify numerical

representations as functions was worded very similar to their statement of the vertical line

test. This same method, insuring that no x-value was associated with two different y-

values, is the process the students said the vertical line test allowed them to apply to

graphs. Although these two methods, one for verifying graphical representations as

functions and the other for verifying numerical representations as functions, were
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different in their names or wording, they were nearly the same in their application by the

students. Yet, the students said they were applying different procedures or processes.

Examples of Non-functions

Eddie and Whitney gave a numerical representation (table of values) for their

example of a non-function.

Table 3: Eddie and Whitney’s Tables
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Kristin did not give an example of a non-function even though there were

symbolic, graphical, and numerical examples of non-functions on the pretest that she had

correctly identified previously as non-functions. Amazingly, no one used any examples

of a non-function from the pretest. Buren gave the symbolic representation of the non-

function, xy ±= , which was a modified version of xy =2  from the pretest.

Table 4: Buren’s numerical representation of a non-function
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Instead of insuring that no x-value was associated with two different y-values, this

time, Eddie and Whitney intentionally linked an x-value in their numerical

representations (tables of values) with more than one y-value to verify that their

representation was a non-function. Buren’s numerical representation is depicted in table 4

above. Buren said he used the constant function, 1)( =xf , then switched the domain and
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range and took a subset of each. Buren was also asked to give a numerical representation

like the other students to ensure that he was capable of perform this task. Once again he

was successful.

Classification of Relations as Functions and Non-functions

Numerical

By insuring that no x-value was associated with two or more different y-values,

the students correctly identified each numerical representation of a non-function as a non-

function and again exhibited the recognizing component. Similarly, each student, except

Whitney, accurately classified each numerical representation of a function as function.

Whitney identified the function, shown in table 4, as a non-function. When asked her

representation was a non-function, she said, “Clearly it is a function. I just made a

mistake.” The students did not appear to have much difficulty distinguishing between

numerical representations of functions and non-functions. If they were careful, it seemed

that the students could have probably correctly recognized all numerical representations

of functions as functions and recognized all non-functions as non-functions.

Table 5: Whitney’s initial misclassification of the function as a non-function
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Symbolic

Most students correctly identified all symbolic representations of non-functions as

non-functions, except xy 32 = , which was classified as a function by Kristin. Although,

each student successfully classified at least 86% of the symbolic representations of
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functions as functions, all students, except Buren, had difficulty identifying the symbolic

representations of functions when the symbolic representations (equations) were not

already solved for the variable y in terms of the variable x. When distinguishing between

functions and non-functions, the students looked for symbolic representations of the form

somethingy = and classified them as functions, whether they were functions or not. On

the other hand, the symbolic representations of functions like 123 ++= xxy  and

12 =xy were usually designated as non-functions if an answer was given at all. The fact

that y was on the same side of the equation as x, or that y was on a different side of the

equation but raised to an odd integer power was problematic for each student except

Buren. He was the only student to solve symbolic representations like xy =2 ,

123 ++= xxy  and 12 =xy  for the variable y. Buren got xy ±= , 3 2 1++= xxy ,

and 
x

y
2
1= , respectively. He recognized and justified the altered three representations as

a non-function, a function and another function, respectively, and was even able to

recognize 3 2 1++= xxy  as a radical function but could offered no name for 
x

y
2
1= , a

rational function. Yet, the students would sometimes correctly recognize the

representations of functions in one part of the study and then fail to recognize the same

representations in another part. For instance, early in the study, Buren identified x = 5 as

a non-function, in fact he even classified x = 5 as the equation of a vertical line. However,

he later identified x = 5 as a constant function during an interview. Incorrect answers that

seemed to contradict earlier correct responses and the inability to identify rational
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functions like 
x

y
2
1= were some of the mistakes that frequently occurred in the first part

of the study, instruction before using the Rule of Three.

Graphical

The students had used and referenced the vertical line test several times by this

part of the study, and no one had trouble distinguishing between the graphical

representations of functions and non-functions. Each student applied it correctly to the

graphs of functions and non-functions. All graphical representations of functions were

identified as functions and similarly for non-functions.

Recognizing Functions

Distinguishing between functions and non-function regardless of the

representations (symbolic, graphical, and numerical) used seemed to be an easier task for

the students than recognizing functions based solely on their representations. This

apparent fact may have been indicated by the students’ lower identification rates. When

making a distinction between functions and non-functions, Eddie correctly identified

86% of the functions as functions, both Kristin and Whitney identified 93%, and Buren

identified 100%. However, given only functions to recognize, Eddie accurately identified

only 29% of the symbolic representations, Kristin identified 43%, Whitney identified

36%, and Buren identified 50%.

One reason may have been that the tools or strategies used previously to

distinguish between functions and non-functions were no longer applicable, like the

vertical line test or the procedure of insuring that no x-value was associated with two

different y-values. Since all the functions were already written as somethingy =  or

somethingxf =)( , there was no longer a need to solve any equations for the variable y. It
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seemed that the students probably relied more on their knowledge when recognizing

functions than when differentiating between functions and non-functions. Having to rely

more on their knowledge appeared to have made the task of recognizing functions more

difficult.

In addition, each student seemed to have a “core set” of functions that he or she

was able to recognize correctly using either representation. The “core set” was the largest

set of functions that the students were able to recognize using all three representations. In

other words, it was the set of functions obtained by intersecting the sets of functions

recognized in symbolic, numerical and graphical form.

Eddie and Whitney had core sets that contained five and four functions

individually. Whitney’s core set contained linear, quadratic, absolute value, tangent and

the identity functions. Eddie’s core set contained the linear, quadratic, tangent, and

constant functions. Kristin and Buren had the largest core sets of functions containing six

and seven functions, respectively. Kristin core set contained the linear, quadratic,

constant, absolute value, tangent, and identity functions. Buren’s core set contained the

linear, quadratic, absolute value, radical, tangent, constant, and the identity functions.

The majority of functions contained in any student’s core set were polynomials

and the number of function in the students’ core set appeared to correspond with their

pretest scores. The students with the largest number of functions in their core sets were

the ones with the highest pretest scores, 83, achieved by Kristin and Buren. Eddie and

Whitney had the lower pretest scores of 64 and 31 and fewer number of functions in their

core sets. Regardless of the representation presented to the students to identify, there was

little fluctuation in the number of functions contained in their core sets. For example, if a
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student was able to recognize the symbolic representation of a cubic function, he or she

was usually able to identify the other two representations.

Symbolic

The only symbolic representations of functions recognized by all students were

the linear, quadratic and tangent functions. However, the students could not explain how

they correctly identified the linear function but could not recognize the equation, y = x, as

a special type of linear function or as a 1st degree polynomial. The constant function was

often confused with the identity function or not identified at all. The fact that there is no

variable on the right hand side of constant functions of the form, cxf =)( , seem to

compound the uncertainty the students may have experienced with this type of function.

Only Kristin and Buren correctly recognized both the constant and identity functions.

Eddie recognized both the constant and identity functions as constant functions while

Whitney classified the identity function but did not recognize the constant function.

Excluding the linear, quadratic, and tangent functions, the only other functions

recognized by a majority of the students were the identity and absolute value functions.

Using their knowledge of the characteristics of the symbolic representations, at least

three-fourths of the students classified the following functions: linear, quadratic, tangent,

identity, and absolute value.

The quadratic, tangent and absolute value function were written as ,2)( 2 −= xxf

)tan()( xxf = and 3)( +−= xxf . The absolute value symbols enabled the students to

identify the absolute value function and word “tan” helped them recognize the tangent

function. In addition, they also recognized the general form of linear and quadratic

functions function and the identity function as being a special case of the linear function.
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Yet, not one student used the word “log” to classify the logarithmic function,

.log)( xxf −=  Their knowledge of functional characteristics for symbolic

representations seemed to be centered more on polynomial, trigonometric and absolute

values functions.

The functions that presented classification problems were usually non-

polynomials although the constant, cubic and identity functions sometimes presented

identification problems for some of the students. A few of the non-polynomial functions

that the students consistently did not recognize were the rational and algebraic functions.

Each student incorrectly classified the rational function as the algebraic function and the

algebraic function as the rational. Since both functions were written as ratios, the students

seemed to be unable to distinguish between the rational and the algebraic function. In

addition to the rational and algebraic functions, the other functions that every student

missed were the greatest integer, exponential, logarithmic, cubic, segmented and radical

functions. These functions were frequently not classified at all. Based on the interviews,

it appeared that the students were relying on their knowledge to enable them to identify

the symbolic representations of functions, but their knowledge seemed to fail them when

referencing information about non-polynomial functions or polynomials of third degree

or higher.

Numerical

The numerical representations of functions correctly recognized by each student

were similar to the functions that he or she recognized in symbolic form. There were little

if any deviation from this pattern. Recognizing functions not identified earlier, based only

on numerical representations, seemed to be a difficult task for the students who often
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relied on their interpretations of their hand-made graphs. The hand-made graphs were

often inaccurate probably because the students often plotted few points. The inaccurate

graphs likely produced misclassifications and the misclassifications may have prevented

students from recognizing additional functions outside of his or her core set. Eddie,

Kristin, Whitney, and Buren correctly identified only 21%, 36%, 29%, and 50% of the

numerical representations.

No student attempted to graph the table of values for the tangent function. Each

appeared to be unable to recognize the tangent function from the table of values when the

x-values in the table were originally given in radians. Once the change from radians to

degrees was made, no one experienced trouble classifying the tangent function. It seems

the numerical form of the x-coordinates, radians or degrees, influenced the students’

ability to identity logarithmic functions in numerical form. It is likely that when trying to

identify trigonometric functions from numerical representation, the students looked for x-

values given in degrees.

Graphical

Once again, each student recognized only the functions that he or she identified

earlier in symbolic and numerical representations. Previous knowledge appeared to be a

factor in performing this task because it seemed the students knew the appearances of the

graphical representations of the functions in their core set. For example, discussing the

functions in his core set, Eddie said that the graph of the linear function was a diagonal

line, the graph of a quadratic function was a parabola, the graph of a constant function

was a horizontal line, and the graph of a tangent function was the graph that had an

infinite number of vertical asymptotes. The other students’ performance in this task was
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similar to Eddie’s. Eddie’s recognition of the graphical representations of the functions

was, once again, consistent with his recognition of symbolic and numerical

representations of functions. For a third time, he correctly identified the constant, linear,

and quadratic functions, but he also added the identification of the tangent function.

Kristin, Whitney and Buren also roughly identified the same types of graphical

representations of functions that they had correctly identified before for symbolic and

numerical representations.

 When discussing the graphical representations of functions, the students used the

fact that the graph of a tangent function has an infinite number of vertical asymptotes.

This knowledge probably prevented them from confusing it with the graphs of rational or

algebraic functions, which contained only a finite number of asymptotes. Yet, the

students were unable to correctly recognize the rational or algebraic functions presented

to them using any representation. Finally, if the students were able to recognize a

function using one representation, they were usually able to recognize it using another

representation and these functions were almost always the functions in their core sets.

Translating

The data for this discussion were gathered from the sorting activities. The

students were given a stack of 42 cards that could be partitioned into three stacks,

consisting of fourteen cards each. One stack had only symbolic representations of

functions, another had only graphical representations and the last stack had only

numerical representations. The fourteen cards in each stack depict the functions: constant,

linear, quadratic, cubic (third degree polynomials), logarithmic, exponential, rational,
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radical, segmented (piece-wise), absolute value, greatest integer, the identity, algebraic

and trigonometric (tangent).

One card depicting a function in one representation (symbolic, graphical, or

numerical) will be given to the participant and he or she will be initially asked to match it

only to one of its other two representations chosen by the investigator. If the participant is

not successful, the activity begins anew and another card depicting the same initial

representation (not function) is given to the participant who will be asked to match the

card again to one of its other two remaining representations chosen by the investigator. If

the participant is successful in matching the first two initial representations, he or she will

immediately be also asked to match these two representations with its last remaining

representation.

Translating from one representation of a function to another appeared to be an

easier task than the task of recognizing individual functions in which the students usually

relied on their knowledge. As Eddie said, “Identification is hard because it requires that

you know something about the function. Matching (translating) is easier.” Using their

knowledge, calculators and a process of elimination, the students were able to translate

from one representation to another representation for some functions that they could not

previously identify using any representation. In other words, the students could

sometimes translate from one representation to another for functions not contain in their

core sets. For the individual student and a given translation, the functions translated from

one representation to another could vary from the ones contained in their core sets to all

functions. As a reminder, the “core” set was the largest set of functions consistently
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recognized by the students using all three representations during the part of the study

titled, The Classifications of Functions.

As the students translated functions from one representation to another, a new

“core” set of functions that contained most, if not all, of the same functions as the original

core sets emerged. This new “core” set for translating functions shall be called the

“expanded core set.” For the six translations: (1) symbolic to graphical; (2) symbolic to

numerical; (3) numerical to symbolic; (4) numerical to graphical; (5) graphical to

symbolic; and (6) graphical to numerical, the “expanded core set” will be the largest set

of functions correctly translated from one representation to another for each of the above

translations. In other words, it is the set that is obtained from the intersection of all of the

six translations.

Eddie’s expanded core set contained the linear, quadratic, identity and constant

functions. Kristin’s expanded core set contained the linear, quadratic, constant, absolute

value, cubic and identity functions. Whitney’s expanded core set contained the linear,

quadratic, absolute value, constant and the identity functions. Buren’s expanded core set

contained the linear, quadratic, constant, radical, absolute value, cubic, and the identity

functions.

A pattern that first seemed to emerge with the task of classifying functions and

continued through the task of translating functions was the reliance by the students on

their knowledge of the functions contained in their core sets for difficult tasks and later

on a reliance on their expanded core sets for difficult translations. The more difficult the

task, the greater the reliance on the core sets and expanded core sets appeared to be.

However, similar to recognizing different representation of functions earlier, the students
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were frequently able to translate functions that were not contained in their expanded core

sets. The types of functions usually translated that were not contained in the expanded

core sets were polynomials, zero degree (constant function), first degree (identity

function), and third degree (cubic function).

Symbolic to Graphical

The students used their calculator to obtain the graphs from the symbolic

representation. The number of functions each student was able to translate from symbolic

to graphical to representation exceeded the number of functions he or she had in his or

her expanded core sets. In fact, all students were able to translate from symbolic to

graphical for every function except the algebraic and segmented (piece-wise) functions or

about 86%. The algebraic and segmented functions were difficult translations for the

students because their knowledge or process of elimination or calculators seemed to have

provided little help. The students could not graph the algebraic or segmented function on

their calculators, so they resorted to hand-made graphs that were usually inaccurate

because only a few points were plotted. As Eddie said, “I didn’t know how to graph this

function…so I could not match them with their other forms.” So far in the study,

regardless of the task, algebraic, segmented were usually problematic for the students.

Symbolic to Numerical and Numerical to Symbolic

Translating from symbolic to numerical representation or from numerical to

symbolic representation did not appear to be a difficult task since every student did so

successfully for every function. When translating from symbolic to numerical

representation, the students initially chose a couple of numerical representations then

used their calculators to substitute the values from the numerical representations into the
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symbolic representations. The students modified the process when translating from

numerical to symbolic form. Given a numerical representation, the students chose two or

three symbolic representations as possible matches and then substituted the values into

the symbolic representations until a match was obtained. In performing either translation,

the students chose probable symbolic or numerical matches and then substituted values

into the symbolic representations. The difference between the processes used to translate

from symbolic to numerical representation and from numerical to symbolic

representation seemed to be the representations initially chosen as possible matches. The

use of the calculator appeared to have made task easy and seemed to have minimized the

reliance on their expanded core sets.

Numerical to Graphical

For each of the students, the task of translating from numerical to graphical

representation seemed to be more demanding than translating from either symbolic to

numerical, or from numerical to symbolic representation, or from symbolic to graphical.

One likely reason seemed to have been the use of inaccurate hand-made graphs. When

constructing graphs, the students usually plotted three points or less from the numerical

representations and tried to identify the corresponding graphical representation. For

example, Eddie only plotted the ordered pairs, (0, 1), (1, 3), and (2, 11), taken from the

table (numerical representation) of 13 +−= xxy and displayed in table 6 to graph it.

Table 6: The table Eddie used to graph 13 ++= xxy

1
1

29
3

9
2

31
3

11
2

3
1

1
0

−
−

−
−

−
−

y
x
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The graphical representation is depicted in figure 4.  However plotting his chosen three

points, Eddie obtained the graph show in figure 5 which he recognized as part of a

parabola.

.

Figure 4: The actual graph of 13 ++= xxy

Figure 5: The graph Eddie obtained

Eddie’s misclassification may have been the reason he was unable to translate from the

numerical representation depicted in table 6 to its graphical representation shown in

figure 4. Only one student, Buren, translated more than 50% of the functions from

numerical to graphical representation with Eddie, Kristin, and Whitney translating four,

six, and five functions, respectively.

The appearance that the task of translating from numerical to graphical

representation seemed more demanding for the students than any previous translations

was supported by the fact that each student was usually able to translate from numerical

to graphical representation only for functions in his or her expanded core set of functions
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and no additional functions. It appeared that demanding tasks caused the students to rely

on their knowledge about functions, and these functions were frequently the ones located

in their “core” or “expanded core” sets. The set of functions that Eddie actually translated

from numerical to graphical representation were the linear, quadratic, identity and

constant functions. As mentioned earlier, these functions became his expanded core set.

His “core” set of functions, the linear, quadratic, tangent, and constant functions, were

nearly the same functions as the ones contained in his expanded core set. The tangent

function, a member of Eddie’s core set, was not contained in his expanded set while the

expanded set contained the identity function which was not contained in his core set.

Kristin translated the linear, quadratic, constant, absolute value, cubic and identity

functions from numerical to graphical representation and these functions, as stated

previously, were designated her expanded core set. Her “core” set contained the linear,

quadratic, constant, absolute value, tangent, and identity functions. Similar to the

relationship between Eddie’s core and expanded core sets, Kristin’s core and expanded

core sets overlapped at every function except the cubic and the tangent functions which

were contained exclusively in the expanded core and core sets, respectively.

Whitney translated the linear, quadratic, absolute value, constant and the identity

functions from numerical to graphical representation, and these were designated her

expanded core set. Her “core” set for classifying functions contained linear, quadratic,

absolute value, tangent and the identity functions. The only functions contained in either

Whitney’s core or expanded core sets that was not contained in both sets were the

constant and tangent functions, and this pattern paralleled the relationship between
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Eddie’s and Kristin’s core and expanded core sets. The constant function was a member

of Whitney’s expanded core set, while the tangent function was a member of her core set.

 Buren translated from numerical to graphical form for the linear, quadratic,

constant, radical, absolute value, cubic, and the identity functions. These functions

formed his expanded core set, while his core set contained the linear, quadratic, absolute

value, radical, tangent, constant, and the identity functions. Buren’s expanded set

contained one function, the cubic, which was not a member of his core set, whereas the

tangent function was not an element of the expanded core set. Buren was the only student

whose expanded core set of functions contained the same number of functions as his core

set.

Previously, when recognizing functions, the representation that seemed to cause

the most recognition problems was numerical which showed the trouble the students

encountered with the modeling component of the framework. Similarly, the students

experience trouble translating from numerical to graphical representation, which again

reflected on their ability to model numerical data. Translating from numerical to

graphical representation also seem to be more challenging than translating for any

previous representation, especially from numerical to symbolic, which could be

accomplished by substituting values into the symbolic representations until a match was

found. Translating from numerical to graphical representation also seemed to be

problematic because the students probably had to recognize the numerical representation

and this task was already deemed difficult.

Yet, being able to identity the function was no guarantee that the students would

be able to translate it from one representation to another. For example, the numerical
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representation of the tangent function was contained in each student’s core set, and it may

have been the easiest representation to identify since the x-values were given in degrees,

but it was not translated from numerical to graphical representation by any student.

Graphical to Symbolic

Translating from graphical to symbolic representation seemed to be an easier task

than translating from numerical to graphical representation with Eddie, Kristin, Whitney

and Buren correctly translating 36%, 50%, 43% and 50% of the functions, respectively.

Although the task of translating from graphical to symbolic representation appeared to be

an easier task than numerical to graphical, all students, except Buren, were only able to

translate from graphical to symbolic representation for only one additional function that

was not contained in the expanded core set.

The functions translated by Eddie from graphical to symbolic representation were

the linear, quadratic, constant, tangent, and identity functions. This set of functions

represents his core set of functions with the identity function added or his expanded core

set with the addition of the tangent function. Kristin translated the linear, quadratic,

constant, absolute value, cubic, identity, and the tangent functions. The functions

translated from graphical to symbolic representation represented her core set with the

cubic function added or her expanded core set with the tangent function added. Whitney

translated the linear, quadratic, constant, absolute value, identity, and the tangent

functions. These functions represent her core set with the constant function added and her

expanded core set with the addition of the tangent function. Buren translated the linear,

quadratic, constant, absolute value, cubic, tangent and the identity function. The seven

functions Buren translated from graphical to symbolic representation were the same
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number of functions contained in both his core set and expanded core set of functions

even though some of the functions were different. His expanded core set contained the

cubic function while the core set contained the radical function.

Graphical to Numerical

Based on the interviews and observation, the students seemed to translate form

graphical to numerical representation by approximating points on the graph and then

trying to find corresponding point in the tables of values (numerical representation).

Every student, except Buren, was able to translate from graphical to numerical

representation for at least one more function than they were able to translate from

graphical to symbolic representation. Eddie added the absolute value function and the

exponential function to the set of functions he was able to successfully translate from

graphical to symbolic. Kristin added the exponential function to the set of functions she

translated from graphical to symbolic representation. Whitney added the logarithmic and

cubic to the set of functions so that she was able to translate graphical to symbolic

representation. Buren was unable to add any additional functions when translating from

graphical to numerical representation which may have prevented him from out-

performing his fellow students for one of the few times.

All Three Representations

Translating functions using all three representations in any order appeared to be a

less difficult task than sometimes translating from one representation to another. The set

of functions that each student was able to translate using all three representations,

symbolic, graphical, and numerical in any order, was frequently larger than their

expanded core sets. Previously, while translating from one representation to another, the
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students were sometimes able to translate more functions than those contained in their

expanded core sets and this pattern continued when all three representation were used.

Eddie translated the following functions, linear, quadratic, constant, tangent and

the identity functions. These functions represented his expanded core set which contained

the linear, quadratic, identity and constant functions with the addition of the tangent

function. Kristin translated the linear, quadratic, constant, absolute value, tangent,

identity, and cubic functions. These functions represented her expanded core set with the

addition of the tangent function.

Kristin and Eddie were each able to translate, using all three representation, for

only one more function than the number contained in their expanded core sets. This one

function was the tangent functions, which both students said they had become very

familiar. Whitney translated the liner, quadratic, constant, absolute value, tangent

functions and these functions would be identical to the ones contained in her expanded

core set if the identity function was substituted for the tangent function. She was the only

student who translated the same number of functions (not same functions) as those

contained in her expanded core set, but Whitney also did not translate for every function

in her expanded core set, namely, the identity function.

Buren translated the linear, quadratic, constant, absolute value, tangent and the

identity function, and his expanded core set contained the linear, quadratic, constant,

radical, absolute value, cubic, and the identity functions. Buren, like Whitney, did not

translate for every function, contained in his expanded core set. Whitney did not translate

the identity function and Buren did not translate the radical and cubic functions. Yet, like
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Eddie and Kristin, they probably have become familiar with all representations of the

tangent function because each student translated it also.

Another fact that seemed to be more visible was the types of functions contained

in the core and expanded core sets. Every student was able to translate the linear,

quadratic, constant, and tangent functions using all three representations. Most, if not all,

of these functions were contained in each student’s core sets, and, expanded core sets and

with the exception of the tangent function, all were polynomial functions. Based on the

analysis of the data so far, it seemed that polynomial functions were the types of

functions that the students had the most experience or knowledge.

The Easiest Translations

As a reminder, the easiest translations as ranked by the students using all three

representations were: (1) symbolic to graphical to numerical; (2) symbolic to numerical

to graphical; and (3) numerical to symbolic to graphical. The students actually translated

from one representation to another and then to another representation for only (3) the

numerical to symbolic to graphical translation—the one considered the most difficult of

the three easiest translations. Translating from one representation to another and then to

another may have been one reason the students found the last translation (3) to be the

most difficult of the three translations. Another possible reason was the fact that the

students had to translate from a numerical representation to a symbolic representation as

part of the entire three-fold translation. The translation from numerical to symbolic

required modeling which the students were unsuccessful with earlier.

For the easiest translation, (1), the students used their calculators to translate from

symbolic to graphical representation and then use the calculators again to substitute
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values from the tables (numerical representation) into the symbolic representations until a

match was obtained. The actual order of translation was symbolic to graphical and then

numerical to symbolic. The non-linear order of translation along with the use of

technology may be the reason translation (1) was ranked the easiest.

As it was with translation (1), the order of translation for (2) was non-linear also.

The students used their calculators to first translate from numerical to symbolic using the

same procedure displayed in translation (1). Then, the calculator was employed to find

the graph of the symbolic representation. The numerical to symbolic translation of the

entire three-part translation required modeling again and was probably the reason the

students ranked translation (2) as the second easiest translation.

The Most Difficult Translations

The three most difficult translations as ranked by the students were: (1) numerical

to graphical to symbolic; (2) graphical to numerical to symbolic; and (3) graphical to

symbolic to numerical. These translations, (1), (2) and (3) were originally designated by

the letters (c), (b), and (a), respectively, in Chapter Four under the heading, The Most

Difficult Translations. The students had trouble recognizing functions represented by

numerical and graphical representations. They also had trouble translating functions from

numerical representations to almost any other representations except symbolic which was

usually accomplished through a process of elimination and the aid of the calculator. In

addition, the numerical to graphical translation required modeling which was another task

with which the students were commonly unsuccessful. Therefore, it was not surprising

that the translations the students deemed to be the most difficult, using all three

representations, had either a numerical to graphical translation or a graphical to numerical
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as part of the entire translation. Amazingly, the students did not attempt to use any of the

non-linear translations for the above translations (1) and (2) as they did successfully for

translation (3). For translation (3), the students started with the symbolic representation

and used their calculators to obtain the graph. Then they translated from numerical to

symbolic. Once again, the use of technology and the non-linear translation may have

made (3) the easiest of the most difficult translations.

Creating New Functions

When creating new functions using symbolic representations, most students

frequently chose polynomials as their building blocks. Eddie, Kristin, Whitney, and

Buren chose 22 += xy ; 34 −= xy  and 4 1−= xy ; xxf 4)( =  and 34)( −= xxg ;

and xxf 4)( = and ,12122)( 2 ++= xxxg  respectively.

Table 7: Eddie and Kristin’s tables
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Table 8: Whitney and Buren’s tables
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The linear and quadratic functions (1st and 2nd degree polynomials) used by the

students to create new functions were the same type of functions, polynomials, that the

students were commonly successful with in earlier tasks. In spite of diversity of

operations and functions afforded them, the students only created polynomials.
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Since one of the requirements for the tasks of constructing new function was the

verification of the new function as a function, the construction of new functions from the

graphical representations of linear and quadratic functions was commonly accomplished

through vertical and horizontal shifts in the x-y plane or reflections about the x- or y-axes.

                                               

Figure 6: Eddie, Kristin, Whitney, and Buren’s graphs

The verification requirement, accomplished through the application of the vertical

line test, seemed to have directed the students to use no rotations (90 or 270 degrees)

when constructing new functions from graphical representations, especially the graphs of

parabolas that originally opened up or opened down. Although the students knew that the

graphical representations of parabolas that opened to the right or to the left were not

functions, they did not seem to know that the rotations (90, 180, 270, or 360 degrees) of

the graphs of diagonal lines yielded other diagonal lines which still would pass the

vertical line test. For instance, when given the graph of f (x) = x, each student was able to

graph its reflection about the x- and y-axes, but no one seemed to know that a reflection

of f (x) = x about the x-axis could be equivalent to a clockwise rotation of 90 degrees and

the reflections about the y-axis could be equivalent to a counter-clockwise rotation of 90

degrees. The students did not seem to know that for some graphs, reflections and

rotations were equivalent. The application of the vertical line test also seemed to have

hindered the construction of new graphs from two different graphs because no one
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seemed to know how to join the two graphs so that the vertical line test would be

satisfied. Therefore, no new graphs were created by combining two or more graphs.

The procedures used by the students to construct numerical representations of

functions were somewhat dissimilar to the procedure employed to construct graphical

representations. First, all the students, except Eddie, chose more than one numerical

representation and did not restrict their choices to polynomials. Having experienced

trouble earlier recognizing numerical representations of functions such as constant, linear,

quadratic, etc, may have made the students’ preference for choosing polynomials

unattainable and increased the diversity of their selections. Adding, subtracting, or

multiplying the corresponding x-values, the corresponding y-values or both modified

their representations. These procedures allowed the students to construct numerical

representations of functions that commonly passed the vertical line test. Other procedures

employed were switching the x- and y-values, multiplying all the y-values in a numerical

representation by the same specified constant, and adding the same specified constant to

each y-value in a numerical representation. Although the students could state why their

new “creation” was a function, usually they not identify what type of function it was and

did not seem to realize that the last set of procedures sometimes allowed their new

numerical representations to be vertical or horizontal shifts, or reflections of the original

numerical representations which the same procedures use to construct new graphical

representations of functions.

Creating Functions from Non-functions

When presented with the numerical representation of a non-function, each student

simply found the case(s) where one x-value was associated with more than one y-value
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and changed the succeeding x-values. Although this procedure could be seen as an

application of the vertical line test, not one student designated it to be. There seemed to

be an inability to recognize seemingly different, yet similar, procedures when they were

applied in dissimilar contexts—the vertical line test and the procedure of insuring that no

x-value was associated with more than one y-value—as parallel procedures.

An interesting approach was used to convert the graphs of non-functions into

functions. All students, except Buren, simply deleted all portions of the graphs that did

not pass the vertical line test. The portions deleted may have been the upper or lower half

of the graph.

                                                              

                                                                    

Figure 7: Non-functions used by the students to create functions

Buren performed the same procedure but somewhat differently. He obtained

equations for the numerical representations then took the square root of both sides and

finally dropped the minus signs. Buren’s procedure did not appear to be more efficient

but it did seem to be more complicated. The students also seemed to recognize that a

symbolic representation (an equation) that contained the variable y raised to an even
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power was frequently not a function. Attempts were made, sometimes correctly, other

times incorrectly, to remove the even exponent from the variable y. For example, Eddie

and Whitney changed an equation like xy 32 =  to xy 3=  without the intermediate

step, xy 3±= , because they did not appear to know there was an intermediate step.

                                                       

                                                       

Figure 8: Functions created by the students

Omitting this intermediate step may be the reason why some students viewed

xy 3=  as equivalent to xy 32 =  and since xy 3=  was a function, xy 32 =  was a

function too. Not surprisingly, Eddie and Whitney sometimes attained correct answers

even though their steps may have been incorrect. Similar to Eddie and Whitney, Buren

would also take the square root of both sides of the equations, but he would then delete

the negative sign. For example, to change xy 32 =  into a function, Buren would take the

square root of both sides to get xy 3±=  and then deleted the negative sign to obtain

xy 3= . Kristin’s procedure was similar to Buren’s in that she attained the square root
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of both sides too but instead of deleting the negative sign, she took the absolute value of

both sides.

Most students also seemed to know that an equation similar to x = c, where “c” is

some fixed constant, prevented it from being a function. However, based on the

interviews, no one seemed to know that x = c was the general equation of a vertical line

which does not pass the vertical line test. Usually when an equation similar to x = c

occurred, the x variable was frequently changed to a y, and the equation y = c was

attained. However, the students would sometimes in a contradictorily manner recognize x

= c a non-function in performing one task and then later recognize it as a constant

function in another. They seemed to have had a short memory span for recognizing

characteristics that would have allowed them to distinguish between relations that

appeared to be similar like x = c and y = c.

Sorting Cards

The students were given a new (different) stack of cards depicting the symbolic,

graphical and numerical representations of the constant, linear, quadratic, cubic (third

degree polynomials), logarithmic, exponential, rational, radical, segmented (piece-wise),

absolute value, greatest integer, the identity, algebraic and trigonometric (tangent) after

the Translations part of the study. They were asked to sort the cards into (1) two different

categories, (2) three different categories, and (3) four different categories where the cards

in each category shared similar characteristics. They were also asked to minimize (not

prevent) the likelihood of a card being correctly placed in more than one category. No

other restrictions were imposed on this task, and the students were encouraged to choose
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their own individual categorical titles. If a student wanted to use more categories than

specified for a given sorting task, he or she was allowed to use additional categories.

Eddie

When Eddie divided the cards into categories, Powers and Non-Powers, he did

not include any representation of the constant, linear, or identity functions in the

category, Powers. Eddie said, “Powers means any function with an exponent. When

Eddie said powers, I thought he meant functions with integer powers like polynomials—

and he did—but he also included exponential functions and segmented functions. I asked

Eddie why he included exponential and segmented functions in the categories, Powers

(Exponential), and he said, “that function (exponential) is a number raised to a power”

but gave no reason for the inclusion of segmented functions. When I pointed to the

symbolic representations of the constant, linear or identity functions, Eddie said, “I don’t

see any … powers. They (the linear, identity and constant functions) weren’t included

because they have no powers.” Like Buren, if no powers were written, it seemed that the

students did not perceive their existence.

Yet, Eddie placed the radical function in the category, Powers, and it, like the

constant, linear, and identity functions, had no visible exponents. During one of the

interviews, a reason was requested, but no justification was given for placing the radical

function in the category, Powers. Later, he placed the segment function in the category,

Powers, because “it seemed to fit.” This was the only explanation Eddie gave, but

examining the segment function revealed that one of its components was a radical

function, which could be rewritten without the radical symbol as a function raised to a

fractional exponent. This fact may have been the reason for its categorization by him. The
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rational function, which was a ratio of a constant and linear function and had no visible

exponents, was also sort in to the Power’s category while the linear, identity, and

constant functions contrastingly were not. Some of the functions Eddie sorted in the

category, Powers, clearly had numerical or variable exponents. Other functions sorted

into Powers did not. Furthermore, he did not appear to consistently apply the same logic

to every function to determine its category. Like Buren, Eddie did not acknowledge or

recognize exponents whose values were the integers one or zero.

Using the categories, Powers, Algebraic, and Linear to sort the cards into three

stacks, Eddie did not change any of the functions or their representations that were

previously contained in the Powers category. Algebraic was the title given for algebraic,

logarithmic, and absolute value functions. I thought his “definition” for Algebraic had the

potential to be informative because Eddie had not identified earlier in the study algebraic,

logarithmic, and absolute value functions. According to his definition, Eddie’s Algebraic

category correctly contained all representations of the logarithmic and absolute value

functions but no algebraic functions. When presented with this dilemma, Eddie said that

he still did not know the correct definition of an algebraic function and simply made a

guest in this case. The Linear category was not defined and appeared to be “default”

category because it contained most of the representation of the remaining functions.

However, using the Linear category as a default category still did not prevent Eddie form

leaving all representations of the constant and greatest integer functions as well as the

numerical representation of the identity function without a category. His explanation was

that they did not seem to fit any of the categories.
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The titles Powers, Algebraic, Linear and Arithmetic were used to sort the cards

into four categories. Eddie defined Arithmetic to be segmented and absolute value

functions. However, the number of functions in category remained the same or its

category retained a subset of its original set of functions. The functions that were not

retained in each of the categories were added to the new category, Arithmetic, which

Eddie appeared to use as a new default category. The symbolic, graphical, and numerical

representations of the rational, quadratic, cubic, radical and exponential functions were

placed in the Powers (Exponential) category. Except for some polynomials, Eddie was

consistent with the placement of functions into the Powers category because every

function fitted his definition or criteria or placed into the category during one of the

earlier partition of the cards. The symbolic, graphical, and numerical representations of

the logarithmic and trigonometric (tangent) functions were once again sorted into the

Algebraic category, while the absolute value function was deleted. The functions

contained in the Linear category remained unchanged and contained all the

representations of the linear function and the symbolic and graphical representations of

the identity function. The Arithmetic category contained the symbolic, graphical, and

numerical representations of the absolute value, constant, greatest integer and segmented

functions, the numerical representation of the identity function, which previously had no

categories. It seemed Eddie removed some functions from some categories if he was

unsure of their status and placed them into his latest default category, Arithmetic.

Kristin

Kristin divided the cards into two stacks using the same titles, Polynomials and

Non-Polynomials, as had Whitney. Amazingly, she sorted the exact same representations
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of the same functions into the two categories, as did Whitney. All the representations of

the cubic and quadratic functions were placed in Polynomials, and the remaining

representations of the other functions were placed in Non-Polynomials. Like Eddie before

her, Kristin did not seem to view the constant, linear, or identity functions as

polynomials. To determine if Kristin’s reasoning actually paralleled Eddie’s, I asked her

why the constant, linear, and identity function were not included in the category,

Polynomials. Kristin said, “They (constant, linear, and identity function) are not

polynomials because there are no powers.” Whitney and Buren made similar comments

about the constant, linear, and identity functions later on in the study. There seemed to be

insufficient knowledge about the degrees of polynomials that every student appeared to

have, and not viewing the constant, linear, or identity functions as polynomials was

probably one of them.

Kristin partitioned the cards into four rather than three stacks and used the titles

Polynomials, Non-Polynomials, Trigonometric, and Non-Trigonometric. Since the

students were allowed to choose any categorical titles, I made no comments to Kristin

about my thoughts concerning her four titles. If the titles were grouped in pairs like

(Polynomials and Non-Polynomials) and (Trigonometric, and Non-Trigonometric), the

categories in each pair are mutually exclusive and all inclusive. Therefore, it seemed that

at least two of the four titles should have been changed or replaced. For example, she

should have replace Non-Polynomials and Non-Trigonometric with different categorical

titles. Since any of the functions could be viewed as a polynomial or a non-polynomial

and similarly viewed as a trigonometric function or non-trigonometric function. I also
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made no comments concerning her titles because I was curious how her categories would

partition the cards and thought the result would be informative.

Only the representations of the tangent function were placed in Trigonometric.

The category, Polynomials, contained the same functions as it did previously. The

category, Non-Polynomials, retained all the representations of the linear function, the

symbolic representations of the logarithmic and segmented function, and the numerical

representations of the radical, absolute value, exponential, logarithmic, segmented, and

rational functions. Base on the way she sorted the cards, it appeared that Kristin did not

view the categories, Polynomials and Non-Polynomials, as mutually exclusive and all-

inclusive. Yet, every representation of any function that was placed into the category,

Non-Polynomials, except the linear function, was correctly sorted. In the category, Non-

Trigonometric, Kristin correctly sorted the all representation of the constant function,

identity, algebraic, and greatest integer functions, the graphical representations of the

segmented, logarithmic, rational, radical, absolute value, exponential, and the symbolic

representations of the exponential, radical, rational, and absolute value functions. The

categories, Non-Polynomials and Non-Trigonometric, did not contain all representations

of every function placed in them. Not placing all representations of the same function

into the same category may have made this task similar to the matching task with which

Kristin and the other students experienced difficulty earlier in the study.

When Kristin sorted cards into four stacks again, she used titles similar in nature

to the ones used by Whitney earlier. Kristin’s titles were: (1) Domain: All Real Numbers;

(2) Domain: All Real Numbers except the Number One; (3) Domain: All Positive Real

Numbers; and (4) Domain: All Real Numbers Greater Than or Equal to the Number Two.
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The only functions sorted into the categories, Domain: All Real Numbers except the

Number One, and Domain: All Positive Real Numbers were the representations of the

rational and logarithmic functions respectively. The radical function was placed into the

category, Domain: All Real Numbers Greater Than or Equal to the Number Two, and the

representations of the algebraic function was sorted into the category, Domain: All Real

Numbers not Equal to Zero. It seemed that Kristin was beginning to acquire information,

about the domain, from repeated exposure to certain functions that she could not

recognize earlier in the study like the rational and algebraic functions.

All representations of the cubic, linear, quadratic, exponential, absolute value,

segmented, constant and trigonometric (tangent) functions were sorted into the category,

Domain: All Real Numbers. Since the cubic, linear, quadratic, exponential, absolute

value, segmented, constant functions have a domain that is the set of all real numbers,

each was correctly sorted. The lone error was the tangent function. Equally informative

was the fact that Kristin included all representations of every function in the category.

However, as with Buren, Eddie, and Whitney, Kristin still sometimes confused one

representation of one function with the corresponding representation of another

function—like the numerical representations of the constant and linear functions.

Whitney

Whitney used the categories, Polynomials and Non-Polynomials, when sorting the

cards into two stacks. The Polynomials category only contained the representations of the

cubic and quadratic functions—two functions with visible exponents. Once again as with

Eddie and Buren, it was informative to see what type of functions Whitney did not

include in the category, Polynomials. Similar to Buren’s Polynomial and Eddie’s Powers
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categories, Whitney did not place any representation of the constant, linear, or identity

function into her category, Polynomials. As with Buren and Eddie, Whitney seemed to

recognize symbolic representations as polynomials only if an exponent was explicitly

written. With the exception of the constant, linear, and identity functions, all the

remaining functions were sorted correctly in the category, Non-Polynomials.

When sorting the cards into three categories, Whitney appeared to borrow terms

from the study and used the titles Graphical, Symbolic, and Numeric and sorted every

representation of every function correctly except for the symbolic representation of the

segmented function which was sorted into the Numeric category. I assumed her error was

a careless mistake rather than error in her logic or a lack of knowledge, and my

assumption was confirmed during the interviews when she was given a chance to change

the cards in each of the three categories. Whitney, without speaking, placed the symbolic

representation of the segmented function into the Symbolic category.

Whitney sorted the cards again into three stacks and used the titles, Second

Quadrant Only, Third and Fourth Quadrant Only, and Fourth Quadrant. Her

justification for this second partition was, “I felt like I fudged a little by using the titles,

Graphical, Symbolic, and Numeric, the first time.” The functions were divided into three

stacks based on graphical location of the function in the Cartesian plane, i.e. the

quadrants that contained the symbolic representations of the functions.

The functions sorted under the title Second Quadrant Only were all the

representations (symbolic, graphical, and numerical) of the logarithmic, exponential,

constant, segmented (piece-wise) trigonometric (tangent) and radical functions. The cards

sorted under the title, Third and Fourth Quadrant Only, were all representations of the
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rational, absolute value, cubic, linear, and identity functions. The cards sorted under the

title, Fourth Quadrant, were all the representations of the quadratic function. All of the

functions were sorted incorrectly into their respective categories and one functions, the

greatest integer, was not sorted into any category. For example considering the functions

sorted in the category, Second Quadrant Only, neither the logarithmic, exponential,

constant, segmented trigonometric or radical functions had a graph that was located

entirely within the second quadrant. After noticing what I thought appeared to be

inconsistencies, I asked Whitney if she wanted to modify the set of functions sorted under

any categorical title. She said, “No.” I also noticed that Whitney was not using her

calculator and when I offered her mine, she replied, “I have one” but she still did not use

it. I tried to get Whitney to graph a few of the functions to get a clear picture of the

graphical representations which may have alerted her that either she needed to rearrange

some functions or re-title her categories.

However, I still was intrigued that she had correctly grouped all representations of

some of the functions into the different categories since she was unable to match all three

representations of some of these functions previously. Had Whitney attained the ability to

match all representations of functions missed in earlier tasks together? During one of the

interviews, I discovered that she had become more familiar with the different types of

functions and their representations, but Whitney was still confusing certain

representations of one function with the representations of another. For instance, she

confused the graphs of the exponential and logarithmic functions. Yet, it seemed that

Whitney was gaining the ability to collectively group all representations of certain
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functions together in a given category even though she was still unable to match all

individual representations of a given function together.

The categories used for sorting the functions into four stacks were based on the

domains and ranges of the functions. All representations of the cubic function and the

symbolic and graphical representations of the linear function were sorted into the

category, Domain: All Real Numbers and Range: All Real Numbers. All representations

of the trigonometric (tangent), segmented (piece-wise), exponential, and constant

functions were sorted into the category, Domain: All Real Numbers and Range: All

Positive Real Numbers. The category, Domain: All Positive Real Numbers and Range:

All Real Numbers, contained only representations of the logarithmic function. The

category, Restricted Domains or Ranges, contained all representations of the rational,

absolute value, quadratic, and radical functions. The category, Restricted Domains or

Ranges, defined functions whose domains or ranges or both were not the set of all real

numbers.

Whitney sorted some of the representations of functions correctly. Some she did

not sort correctly, and some representations she did not sort at all into a category.

Observing the functions not placed into categories were as informative as the functions

included. Previously, Whitney was not able to recognize the identity function as another

linear function. This oversight may have prevented her from including it in the category

(or any other category), Domain: All Real Numbers and Range: All Real Numbers, as she

did with the symbolic and graphical representations of the linear function. The greatest

integer function which did not appear to fit any of Whitney’s four categories was left

without a category probably because she could not state its range, but she did state the
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domain to be the set of all real numbers. Her actions seemed consistent with earlier

partitions of the cards since the greatest integer had yet to be sorted into any category.

All the representations of the logarithmic function were sorted correctly into the

category, Domain: All Positive Real Numbers and Range: All Real Numbers. Earlier

when sorting the cards into three stacks, Whitney placed all representations of the

logarithmic function into the category, Second Quadrant Only, which would seem to

prevent the domain from being the set of all real numbers. Often times, Whitney and the

other students would give responses in one part of the study that would be invalidated or

contradicted by responses in a later but related part of the study.

Of the functions sorted into the category, Domain: All Real Numbers and Range:

All Positive Real Numbers, only the exponential function was placed correctly. Yet, even

this placement of the exponential function conflicted with its earlier placement in the

category, Second Quadrant Only, which would prevent the domain from being the set of

all real numbers once again. The next two functions, segmented and constant, sorted into

the category, Domain: All Real Numbers and Range: All Positive Real Numbers, had a

domain that was the set of all real numbers, but neither function had a range that was the

set of all positive real numbers. The tangent function was the remaining function

incorrectly placed in the category because it had neither a domain that was the set of all

real numbers or a range that was the set of all positive real numbers. The last category,

Restricted Domains or Ranges, contained all the representations of the quadratic and

absolute value functions, which were accurately placed in the category by Whitney.

Although both functions have a domain that is the set of all real numbers, neither function

has a range that is the set of all real numbers. Yet, Whitney did not know the range of the
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absolute value function or how to determine the range of a quadratic function when she

placed the functions in the category. She justified their selection by saying, “I don’t think

either has a range that is all real numbers.” I felt Whitney knew more information about

the ranges of the quadratic and absolute value functions but was unable or unsure about

expressing it. It appeared that her knowledge was often used to make informed guesses.

Buren

The capacity to sort cards seemed to rest of the students’ ability to recognize them

and this fact may have present the opportunity for earlier errors to be repeated because

the same or similar skills, abilities or knowledge were probably required again. When

sorting the cards into two categories, Transcendental and Non-Transcendental, Buren

clearly defined each category and sorted all the functions (each representation) correctly,

according to his definitions except for the representations of algebraic function, which he

misidentified as the representations of a rational function and sorted into the category,

Non-Transcendental. Buren and the other students would repeatedly misidentify the

algebraic function as a rational function as they did earlier when recognizing functions.

The headings, Very Little Learned-Middle School, Most Learned-High School,

and All Learned-College, were used when Buren sorted the cards into three categories.

Since Buren’s headings were well defined but not mathematically based, it was difficult

to analyze this date. However, it was informative to see which cards were placed in each

category. For instance, Buren claimed that he was introduced to the numerical

representation of the segmented (piece-wise) in middle school before he ever saw the

symbolic and graphical representation in high school. I mentioned to him that the order of

presentation for some of the functions did not seem to follow any curriculum with which
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I was acquainted. Still, he made no changes in any of his first category. Since Buren took

precalculus in high school and in college it is likely that he was exposed to at least some

of the symbolic representations of the other functions for which he claimed to have seen

in the categories, Most Learned-High School and All Learned-College.

The last titles used for sorting the cards into four categories were Polynomial,

Rational, Trigonometric, and Other. Other would contain all representations of functions

that were not polynomial, rational, or trigonometric. What was informative about Buren’s

partition of the cards into four categories was the type of functions that were missing

from the category Polynomial and included in the category Rational. No representation of

the constant, linear or identity functions was sorted into Polynomial. Previously in other

tasks, Buren correctly identified the constant and linear functions, but he nor the other

students were able to recognize the constant and linear functions could also be viewed as

zero and first degree polynomials.

Buren, upon seeing no written exponent for these functions, did not recognize

them to be zero or first degree polynomials. However, if a quadratic function were given

to him, Buren was always able to classify the functions as a polynomial. It seemed that

the students’ ability to recognize a function as a polynomial was based on whether or not

an integer exponent was explicitly written somewhere in the function. Even though being

able to recognize constants, linear, and the identity functions as polynomials functions

was not a goal of this study, the students’ inability to do so and their lack of explanations

was intriguing.

Still another pattern that repeated itself was the misclassification of the algebraic

and rational functions. As he did previously when recognizing functions and again when
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sorting cards into two categories, Buren continued to identify the algebraic function as a

rational function as did many of the other students and these two patterns— the

misclassification of the algebraic and rational functions, and the inability to recognize the

constant, linear, and identity functions as polynomials— continued with Eddie.

Tools

Experience

Experience was as a tool that all students said that they used in every task. For

certain concepts or topics covered in this study, their experience or knowledge could

range the spectrum from sufficient to incomplete to almost non-existent. If their

experience or knowledge was sufficient, the students usually gave a correct answer or an

appropriate response. If their experience or knowledge was incomplete or almost non-

existent, they used their experience as tool to “weed out” or eliminate possibilities or

made informed guesses. In the part of the study before the students were given instruction

using the Rule of Three, each student seemed to acquire some information about the

functions, their representations domains and ranges and were becoming more

knowledgeable with the tasks presented them. The acquisition of knowledge did not

appear to be consistent for any student or any particular type of function. Each student

would often be able to answer questions correctly in one task and miss similar questions

in related tasks or give responses that would conflict with or contradict previous answers.

Vertical Line Test

Each had prior experience with the vertical line test and used it as a tool to

distinguish between the graphs of functions and non-functions. Equally important, the

students understood why the vertical line test worked—that one x-value could not have
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two different y-values. Yet, the vertical line test’s effectiveness or applicability seemed

tied to the students’ ability to produce accurate graphs using the graphing calculator and

to a lesser extent by hand. The one-step-task of distinguishing between functions and

non-function when the graphs were provided became more troublesome when the

students had to construct the graphs for themselves and then apply the vertical line test.

The one-step-task became a more difficult two-step task especially for functions like the

greatest integer and segmented, and non-functions like circles and ellipses.

Definition of a Function

Even for students whose definitions were inaccurate or incomplete, the definition

of a function was a tool that every student used almost exclusively to decide whether or

not numerical representations (tables of values) were functions or non-functions. More

specifically, they examined the table of values to make sure that any given x-value was

associated with only one y-value, not seeming to realize that this procedure was similar to

their application of the vertical line test. Amazingly, imprecise or partial definitions did

not prevent students from almost always distinguishing between the numerical

representations of functions and non-functions correctly.

Graphing Calculator

The graphing calculator was used to construct graphs and then in conjunction with

the vertical line test to determine whether or not the graphical representations were

functions. It was also used to help determine the domains and ranges of relations by

producing graphs. This was an endeavor with which the students were rarely successful,

but they became more successful as their ability to interpret the graphs increased.
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The use of the calculator as a graphing tool was only limited by the students’

ability to graph various functions. During the interview, I discovered some the reasons

for some of the students’ graphing problems. For example, the students did not know how

to enter the absolute value symbols when graphing absolute value functions or how to

graph a version of the greatest integer function. In addition, parentheses were rarely used

or used incorrectly (not balanced) in graphing algebraic, rational, or logarithmic

functions. For instance, the Texas Instruments’ graphing calculator (TI-82) interprets and

graphs the symbolic representations, 1log += xy  and )1log( += xy differently. The

students would attempt to graph a function similar to )1log( += xy  but would enter

1log += xy  into their calculators and get a graph that did not match the numerical or

graphical representations on the cards. Common error like these appeared to affected

their ability to recognize functions which in turn may have affected their ability to

translate functions which seemed to have affected their ability to sort cards. Some graphs

were also not obtained because the students used the subtraction sign “-” when they

intended to use the negation sign “(-)” and received an error message. These graphing

errors may have seemed small and insignificant when pondered individually, but when

considered together they were significant and some times appeared to have a “domino

effect” in that they may have prevented the students from arriving at a correct recognition

or translation.

Solving for the Variable Y

The procedure of solving for the variable y in an equation to determine whether or

not the representation was that of a function was only used by Buren and he applied it

when distinguishing between functions and non-functions. When he solved an equation
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for the variable y, Buren was looking to see if he obtained “plus and minus” signs on one

side of the equation. If so, he stated that the equation was not the symbolic representation

of a function because one x-value would be associated with two y-values. By solving for

the variable y, it appeared that Buren was applying a version of his definition of a

function or the vertical line test because the main idea contained in both concepts was to

make sure that no x-value was associated with more that one y-value.

Plotting Points

Plotting points was a procedure used by the students to construct graphs. The

vertical line test was then used to determine whether or not the representation was that of

a function. Plotting points was not used as an alternative to the graphing calculator but in

lieu of the graphing calculator— because of their inexperience with this graphing

technology. The functions commonly graphed by plotting points were frequently, but not

exclusively, the algebraic, absolute value, greatest integer, piece-wise (segmented) and

functions given in table (numerical) form. These functions were the ones the students

consistently had trouble recognizing, translating and sorting.

When constructing graphs, the students rarely plotted more than three to four

points. Their position was that only three to four points were needed to construct an

accurate graph. Kristin echoed the other students’ remarks by saying, “You only need to

plot a couple of points until you see a pattern or have a picture of the graph.” The

students also plotted points in their attempt to translate from graphical to numerical

representation. They approximated points on the graphs and tried to find similar points

(x- and y-values) in the table of values. If matching points were found, they said that they

had obtained a match.



87

Instruction Using the Rule of Three

Along with instruction using the Rule of Three, the students were instructed how

to solve equations for the variable y, if possible, to help distinguish between functions

and non-functions. They were also instructed in the use of their graphing calculators. For

example, the students were instructed how to enter an absolute value and a greatest

integer function, advised to use and be careful with parentheses and to avoid mistaking

the subtraction symbol, “-” for the negation sign “(-).” It was also suggested to the

students that hand-made graphs containing more than three plotted points would probably

be more informative, especially for functions where their knowledge may be limited.

The definitions below were given to the students before the posttest and the

following interviews. I had no expectations concerning the type of definitions the

students would give because the definitions were not designated as either traditional or

reform. The posttest scores for Eddie, Kristin, Whitney, and Buren were 84, 91, 86, and

92, respectively.

•  A function f from a set A to set B is a well-defined subset of ordered pairs of the

Cartesian product of A and B, such that for every a ∈ A there is exactly one b∈ B such

that (a, b)∈  f. Since the definition of a function relies on the concept of a set, it is

natural to call the set of all first elements of a function the domain and the set of all

second elements the range (Stewart, 1991).

•  A definition of a function from a reform calculus textbook, “A function is a rule that

takes certain numbers as inputs and assigns to each a definite output number. The set

of all input numbers is called the domain of the function and the set of resulting
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output numbers is called the range of the function” (Hughes-Hallett, et al., 1998, p.

2). The following statements represent the students’ definitions of a function.

Definition of a Function

Eddie: A function is a set of ordered pairs where no two ordered pairs have the
same x-coordinates and different y-coordinates. The x-values are the
domain and the y-values are the range.

Kristin: A function is a well-defined relation in which each x-coordinate only has
one unique y-coordinate. The set of all x-coordinates is the domain and the
set of y-coordinates is the range.

Whitney: A function is a special type of relation in which no two ordered pairs
has the same x-values and different y-values. The domain the set of all
possible values for which the function is defined. The range is the set of
values that are the images of the values of the domain under the
function. In other words, the range depends on the domain and the
function.

Buren: A function is a rule that assigns to each input value x in the domain a
unique value y in the range. The domain is the set of all input values and
the range is the set of all output values.

Although neither of the students’ definitions, except for Buren’s, talked about or

defined the word “rule” similar to their non-mention of the word “rule” in their earlier

definitions, the students’ definition of a function did talk about a set of ordered pairs or a

relation rather than a “function f from a set A to set B” or “a well-defined subset or

ordered pairs of the Cartesian product of A and B.” Therefore, their definitions of a

function appeared to be more similar to the definition from the reformed textbook than

the one from the traditional textbook. Equally important, each student’s definition, when

compared with his or her previous one, seemed more complete since it stated: (1) the

domain and range along with defining them, and (2) that no two ordered pairs can have

the same x-coordinate and different y-coordinates. Previously, before instruction using

the Rule of Three, Buren’s definition was the only one to even mention—but not define-
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the domain and range of a function. Finally, the students seemed to prefer the definition

of a function from the reform textbooks for reasons probably similar to Buren’s

statement, “It was easier to understand and memorize.

Examples of Symbolic, Graphical, and Numerical Representations

As the students had done earlier, everyone was able to give a symbolic, graphical,

and numerical representation of a function and verified that their examples were

representative of functions through the vertical line test, their definitions, or by

recognition. Previously, the students only gave representations of constant, linear, and

quadratic functions. This time, the students gave representations of non-polynomial

functions or polynomials of degree three or higher.

                                           

Figure 9: Eddie, Kristin, Whitney and Buren’s graphs

Table 9: Eddie, Kristin, Whitney and Buren’s numerical representations
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The representations given were those of the cubic, absolute value, and radical

functions which may suggest that the students had broadened or diversified their view of

functions since no student gave a representation that he or she had used previously in the

first part of the study call, Instruction Before Using the Rule of Three. Eddie, Kristin,
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Whitney, and Buren gave 2)( 2 −= xxf , 3)( xxf = , xxf =)( , and xy = for their

symbolic representations.

Examples of Non-functions

Before instruction using the Rule of Three, Eddie and Whitney only gave numerical

examples of non-functions while Kristin did not give an example. Buren was the only

student who gave a symbolic representation. This time, everyone gave symbolic

representations rather than numerical of non-functions and these representations were

similar to the ones given on the posttest. Eddie, Kristin, Whitney, and Buren

gave ,1822 22 =+ yx ,1822 22 =+ yx  ,2 xy =  and 122 =− yx as examples of non-

functions.

Non-functions were recognized by name as circles, parabolas, and hyperbolas,

and it was shown that the graphs did not pass the vertical line test. Even as the students’

ability to recognize the representations of functions and non-functions grew, they still

seemed to gravitate more toward symbolic representations rather than numerical or

graphical. A reason for their affinity for symbolic representations, to use their own words,

may have been the repeated exposure to equations more so than graphs or tables

throughout high school and college along a certain level of comfort that the exposure to

equations brought.

Classification of Relations as Functions and Non-functions

Numerical

As they did formerly, the students identified each table of values (numerical

representations) correctly as a non-function by “making sure no x-coordinate had two

different y-coordinate.” Their ability to recognize tables as functions and non-functions
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seemed to be unaffected by instruction using the Rule of Three. Their ability was nearly

flawless before and after instruction.

Symbolic

Previously, most of the students could not recognize functions that were not

solved for the variable y in terms of x like 123 ++= xxy  more so than non-functions.

After instruction, no student had trouble deciding whether or not relations of the form,

123 ++= xxy , or, 122 ++= xxy , were functions or non-functions. As Buren usually

did earlier, this time they all solved equations of the form, 123 ++= xxy , or

122 ++= xxy  for y. If the solved equation had only a single sign, it was designated a

function. If there were more than one sign, the equation was called a non-function.

The non-functions that most of the students did not recognize, even after some

prodding, were relations of the form, xy =  and x = c where “c” was some number. The

relation, xy = , was frequently confused with the function, xy = , while the relation, x =

3, was viewed as the function, y = 3. Based on their responses during the interviews, it

seemed the similarities between xy =  and xy = , and x = 3 and y = 3 were too great to

enable the students to distinguish between the corresponding equations. Eddie and

Whitney misidentified both x = 3 and xy = as functions. Kristin correctly recognized x =

3 as a non-function. Only Buren recognized xy =  as a non-function, but he also

misidentified x = 3 as a function.

The students always seemed to encounter problems when functions like yx =

and yx =]][[  had their x and y variables switched to get non-functions similar to xy =



92

and xy =]][[ . It seemed that similar characteristics among relations, or among relations

and functions, or among functions were a factor that contributed to misidentifications.

Graphical

Similar to their performance with numerical representations, the students were

unerring when distinguishing between functions and non-functions using the vertical line

test. Once again, the students were able to distinguish relations as functions and non-

functions that they were unable to recognize by name when it was appropriate. For

example, they were able to recognize to graph of an algebraic function as a function but

could not state its name.

Recognizing Functions

Symbolic

Every student seemed to have performed better than he or she had previously

before instruction using the Rule of Three, and each increased the number of functions

that he or she was able to correctly recognize with Eddie’s 71% being the lowest.

However, the functions that were commonly not recognized by the students were the

same ones incorrectly identified earlier in the study—the algebraic and rational functions

with Eddie once again also misclassifying the identity function.

In spite of instruction, some functions were not recognized in both parts of this

study. Functions that may have been viewed by the students to be similar in appearance

to each other, like the rational and algebraic functions, were commonly confused with

each other as were the functions and non-functions like xy =  and xy = , and x = 3 and

y = 3, respectively. Similarity seemed to have been a factor that contributed to one

function being recognized as another function or a function being classified as a non-
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function. Still, each student increased the number of functions contained in his or her

“core set.” As a reminder, the “core set” was the largest set of functions that the students

were able to recognize using all three representations.

Previously, Eddie’s core set contained the linear, quadratic, tangent, and constant

functions. His core set after instruction contained the constant, linear, quadratic, absolute

value, cubic, logarithmic, exponential, radical, the identity function and cosine functions

which was an increase of 150%. The extra functions, the cubic, logarithmic, exponential,

radical, the identity function and cosine functions, had characteristics that seemed to have

made each of them more recognizable and somewhat easy additions after instruction. An

exponent with the value three may have allowed Eddie to identify the cubic function

while the words log and cos seemed to have facilitated the identification of the

logarithmic and cosine functions. The form of the exponential function, xby = , may

have aided in its classification since there were no other functions with similar

characteristics that could have been confused with it. The radical symbol of the radical

function also seemed to been an aid in its identification. Finally, Eddie seemed to have

just memorize the form of the identity function, y = x, and no longer confused it with

constant functions, y = c, or vertical lines, x = c.

Equally informative were the functions not added to his core set—the rational,

segmented, algebraic and greatest integer functions. Earlier in the study, the rational,

segmented, algebraic and greatest integer functions caused problems during the task of

recognition, translation, and modeling (which was a subset of translating). These same

functions were simply avoided altogether by Eddie and the other students during the task

of constructing functions. Even after instruction, the students had trouble becoming
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comfortable with functions written as ratios like the rational and algebraic functions.

Function with complicated symbolism like the greatest integer, y = [[x]], or more than

one part, like the segmented, also appeared unaffected by instruction.

Previously, before instruction, Kristin’s core set contained the linear, quadratic,

constant, absolute value, tangent, and identity functions. After instruction, her core set

contained the constant, linear, quadratic, absolute value, cubic, logarithmic, exponential,

radical, identity, cosine and rational functions, which was an increase of 83.33%. The

functions added to and omitted from Kristin’s core set were similar to the functions added

and omitted to the core sets of Eddie with the same probable reasons for their addition

and omission with the exception of the rational function. Kristin was one of the first

students who seemed to have acquired the ability to recognize rational functions and it

was added to her core set. As she said, “This [function] is a ratio of polynomials and I can

now identify polynomials.”

Earlier in the study before instruction, Whitney’s core set contained linear,

quadratic, absolute value, tangent and the identity functions. After instruction, the

following functions were added to her core set: cubic, constant, logarithmic, exponential,

and identity function. These additional functions increased the number of functions in her

core set by 100% and gave her the same core set as Eddie’s. As with Eddie, the functions

added had characteristics that probably made them more recognizable, while the

functions not added, like the algebraic, segmented, rational and greatest integer, were the

same functions that had been problematic for Whitney and the other students throughout

the study to this point, even after instruction.
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Buren’s core set contained the linear, quadratic, absolute value, radical, tangent,

constant, and the identity functions before instruction earlier in the study. After

instruction, his core set had expanded to contain every function except the greatest

integer, algebraic, and segmented functions. Buren’s core set increased by 57%, and the

additional functions gave him the same core set as Kristin’s. After instruction, like

Kristin, Buren also seemed to be able to recognize rational functions. Nevertheless, like

the other students, the functions added and omitted by Buren paralleled the ones added

and omitted by the other students, probably for similar reasons.

There may have been a connection between the posttest scores and the increase in

the number of functions contained in the core sets. The pretest and posttest scores of

Eddie, Kristin, Whitney, and Buren were {31, 84}, {83, 91}, {64, 86}, and {83, 92},

respectively.  As the students’ posttest scores increased, so did the number of functions

contained in their core set. The percent increases ranged from a high of 150% for Eddie

to a low of 57% for Buren. This result may have indicated that instruction using the Rule

of Three afforded the greatest help to students with the lowest pretest scores. For a

mathematics class, it could mean that instruction using the Rule of Three would be more

helpful to the students with weak or incomplete backgrounds.

However, even for students who scored reasonably well (a score of 80% or better)

on the pretest, there was still an increase in the number of functions contained in their

core sets. It seemed that instruction using the Rule of Three was beneficial to all the

students but more so to particular students. Yet there were certain types of functions that

instruction using the Rule of Three did not seem to help, at least initially. These functions

were usually rational, segmented, algebraic, and greatest integer. Only the two students
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with the highest pretest scores, Kristin and Buren, eventually assimilated the rational

function. As mentioned before, functions that had complicated symbolism or more than

one part or component or appeared similar to other functions or relations were

consistently problematic regardless of the task or instruction using the Rule of Three.

Numerical

The students also increased the number of numerical representations of functions

that they were able to correctly recognize with 71% being the lowest percent. Numerical

representations not recognized were usually the same type of functions that the students

had trouble recognizing in symbolic form. Rational functions were often misidentified as

either algebraic or segmented functions, and sometime the rational, algebraic or

segmented functions were not classified at all. The greatest function was not identified by

any student similar to its non-classification earlier in the study before instruction.

Graphical

The students appeared to be more successful identifying graphical representations

than symbolic or numerical representations with no student recognizing less than 86% of

the representations correctly. The fact was insightful and maybe contradictory because

every student said that he or she was more knowledgeable concerning symbolic

representations than any other type. Yet, the minimum accuracy rate for recognizing

symbolic was only 71%.

In addition to the frequent misclassification of algebraic functions as segmented

functions, the exponential function was sometimes confused with the logarithmic

function. In theory, exponential and logarithmic functions are inverse functions of each

other, and their graphs may have appeared similar to the students. Once again, similarity
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seemed to be a characteristic that may have induced the students to confuse one function

with another through out the study.

Translating

Symbolic to Graphical

Earlier in the study before instruction, the students were successful translating

from symbolic to graphical representation, while only missing functions that they could

not graph by hand or by using their calculators, which was the main tool used for this

task. Later in the study, the students had received instruction in the use of their graphing

calculators, and no one made an error translating from symbolic to graphical

representation with everyone achieving a 100%. This result seem to indicate the help

given by the calculator because the 100% accuracy rate was obtained even though

students could still not identify, by name, some of the symbolic, graphical, numerical

representations.

Symbolic to Numerical and Numerical to Symbolic

Through the use of the graphing calculator, every student seemed to translate

correctly from symbolic to numerical representation and numerical to graphical

representation which was an example of modeling. Once again, everyone obtained 100%.

Given a symbolic representation of a function first, the students selected several

numerical representations (table of values) as possible matches. X-values from the table

of values were substituted into the symbolic representations in an effort to match the y-

values in the table. If several ordered pairs (x- and y-values) obtained in this manner

matched ordered pairs in the table, a correct translation from symbolic to numerical was

said to have occurred. If neither of their chosen possible numerical representations gave a
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match with the given symbolic representation, each student discarded the previous

numerical representations and chose another numerical representation that may be a

match with the given symbolic representation. As I observed the students, this procedure

seemed to be more than just “trial and error” or “a process or elimination” because it

appeared that the students were trying to match symbolic representations with probable

numerical representations. To confirm or deny my suspicions, I asked each student what

procedure he or she used when translating form symbolic to numerical representation.

Their similar comments can be stated by Buren who said, “I choose the tables (numerical

representations) most likely to match my equation. If this table of values does not match,

I choose another one that I think will match. I continue (with this process) until I get a

match.”

If the students were given a numerical representation first then the process used

by them to model the numerical data was similar to the one employed to translate from

symbolic to graphical representations. The students chose several symbolic

representations as likely symbolic matches then placed x-values from the numerical

representations into the symbolic representations until a match was obtained. The

graphing calculator, once again, proved useful and facilitated the task of translating from

numerical to graphical representation.

Numerical to Graphical

Not overlooking the fact that every student increased the number of functions they

were able to translate from numerical to graphical representation using hand-made

graphs, there were still a few functions that continued to cause problems for the students,

even in this part of the study. They were the rational, algebraic, greatest integer and
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segmented functions. The students seemed not to be able to distinguish between the

rational and algebraic functions beyond the fact that they were both written as ratios, and

they commonly identified the segmented only by one of its components. The greatest

integer function was not translated at all. The students’ seemingly had a limited scope of

the greatest integer, rational, algebraic, and segmented functions, along with the fact that

the rational and algebraic looked like each other, made tasks dealing with these functions

difficult or unsuccessful. Nonetheless, Eddie and Whitney correctly translated 79% of the

function while Kristin and Buren translated 86%.

Another reason why the students may have experienced trouble with the

algebraic, greatest integer, rational, and segmented functions was the use of hand-made

graphs, even though they had received instruction in the use of the graphing calculator.

The students stated that they found some of the procedures too long, time consuming, or

tedious for graphing certain functions and routinely resorted to hand-made graphs. The

students plotted between seven and twelve points when constructing graphs with Eddie

and Whitney frequently located at the upper end of the spectrum and Kristin and Buren

commonly situated at the middle or the lower end. Although the hand-made graphs were

oftentimes only partially correct, when used in conjunction with the students’ knowledge,

the graphs were accurate enough to allow the students to translate from one

representation to another, especially numerical to graphical translations except for four

functions mentioned above.

Graphical to Symbolic

Of the rational, algebraic, and segmented functions, the students could translate

from graphical to symbolic for only the rational function because even Eddie and
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Whitney had come to recognize its graph as well as some general characteristics for the

graphs of rational functions similar to the ones used in this study. These characteristics

were usually vertical and horizontal asymptotes and a graph that appeared to be

somewhat hyperbolic in shape. However, as for algebraic and segmented functions, no

general characteristic seemed to have been acquired because their graphs were still being

confused with each other, or they were not being recognized as the graphs of any

functions.

Graphical to Numerical

The algebraic and segmented functions seem to be the only functions that were

problematic once again for the same reasons stated earlier above. Equally important was

the discovery that no student actually translated from a graphical to a numerical

representation without first translating to a symbolic representation as an intermediate

step. The process used was graphical to symbolic to numerical and may have been the

reason why the students were more successful translating from “graphical to numerical”

in the study after instruction. Earlier in the study, the students tried to translate from

graphical to numerical by approximating points on the graphs and then matching the

points to the ones in the table of values (numerical representations) which they found to

be difficult task. However, translating from graphical to symbolic and then to numerical

may have allowed the students to use any successes of the previous two tasks—(1)

translating from graphical to symbolic and (2) translating from symbolic to numerical. As

a reminder, every student correctly translated from symbolic to numerical for each

function while the only functions missed in translating from graphical to symbolic were

the segmented and algebraic functions.
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Before instruction using the Rule of Three, the students had “expanded core sets”

for the translating tasks which were defined to be the largest set of functions correctly

translated from one representation to another for each of the above translations. In other

words, it was the set obtained from the intersection of all of the six translations. The

expanded core set will be defined the same after instruction using the Rule of Three.

Previously, Eddie’s expanded core set contained the linear, quadratic, identity and

constant functions while Whitney’s expanded core set contained the linear, quadratic,

absolute value, constant and the identity functions. After instruction, Eddie’s and

Whitney’s expanded core sets contained the linear, constant, quadratic, cubic, absolute

value, greatest integer, logarithmic, exponential, rational, radical, and cosine functions.

Their expanded core sets, after instruction, showed an increase of 175% for Eddie and

83% for Whitney.

Earlier in the study, Kristin’s expanded core set contained the linear, quadratic,

constant, absolute value, cubic and identity functions, and Buren’s contained the linear,

quadratic, constant, radical, absolute value, cubic, and the identity functions. Later, after

instruction, Kristin’s and Buren’s expanded core sets contained the linear, constant,

quadratic, cubic, absolute value, greatest integer, logarithmic, exponential, rational,

radical, cosine and rational functions. Kristin and Buren’s expanded core sets showed an

increase of 100% and 71%, respectively.

The functions added to and omitted from each student’s expanded core set were

similar in nature to the functions added to and omitted from each student’s “core sets.”

Each function appeared to have characteristics that made them more recognizable. For

example, the students seem to recognize the form of polynomials and no longer had
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trouble with the cubic or identity functions. Words like log and cos aided the recognition

of the logarithmic and cosine functions. The form of the exponential function now

seemed to be easily recognizable. The radical symbol of the radical function, the double

brackets of the greatest integer function, and absolute value symbols of the absolute value

function seemed to been an aid in their recognition.

The functions not added to anyone’s expanded core set—the segmented and

algebraic functions—remained problematic. As the study progressed, other functions that

had been problematic for the students like the rational and greatest integer functions had

slowly but surely been assimilated. So there was hope that the students would eventually

obtain some sort of mastery over the segmented and algebraic functions before data

collection ended.

It also should be noted that each student’s expanded core set was at least as large

as his or her “core set.” This fact was true before instruction and after instruction using

the Rule of Three. As a reminder, the core set was defined and based on the students’

abilities to recognized functions. The fact that expanded core set was as large or larger

than the “core set” seemed to confirm earlier analysis and the students’ comments

concerning the effort required to perform the tasks of recognizing and translating

functions. It was easier to translate functions than to recognize them, which may have

been a reason for the larger expanded core sets. In addition, the larger expanded core sets

may be indicative of the students learning or acquiring knowledge about the functions.

The larger expanded core set could also be pinpointing their ability to use procedures like

a process of elimination or tools such as the graphing calculator rather than rely solely on

their knowledge.
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All Three Representations

Symbolic to Graphical to Numerical

Every student was able to translate from symbolic to graphical to numerical

representation for each function. However, their comments showed that this fact might

not have been the actual procedure used. During the interviews, I discovered that once the

students were given a symbolic representation, he or she used the calculator to obtain its

graph. Then, the calculator was used again to obtain the table of values (numerical

representation) from—the symbolic representations—rather than from the graphical

representations. Therefore, the order of translation was really from (1) symbolic to

graphical, then (2) back to symbolic and from there to numerical.

Symbolic to Numerical to Graphical

The students’ written work once again supplied results that Eddie, Kristin,

Whitney, and Buren correctly translated from symbolic to numerical to graphical

representations for every function. However during the interviews, each student said that

he or she first translated from symbolic to numerical representation and—starting over

again—he or she next translated from symbolic to graphical representation rather than

completing the process by translating from numerical to graphical. The complete process

was (1) symbolic to numerical and then (2) symbolic to graphical.

Numerical to Graphical to Symbolic

After instruction using the Rule of Three, the rational, greatest integer, algebraic,

and segmented functions were problematic in the numerical to graphical to symbolic

translation. They appeared to be the only such thought-provoking functions in this task.

The rational, greatest integer, algebraic, and segmented functions that Eddie and Whitney
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were unable to translate from numerical to graphical to symbolic were the same type of

functions they were unable to match when only translating from numerical to graphical.

Similarly, Kristin and Buren were not able to translate from numerical to graphical to

symbolic representation for the algebraic and segmented functions, and these were the

same functions that were problematic earlier for the numerical to graphical

representation. It should also be noted that no student previously was able to translate

from graphical to symbolic representation for the algebraic and segmented functions, and

this fact was demonstrated again.

In fact, functions that were demanding in one task were usually taxing in other

tasks for similar reasons. For the rational, segmented, greatest integer and algebraic

function the reasons may have been an inability to construct accurate graphs by hand or

using the calculator, or the non-recognition of functional characteristics. The students

were though to have some level of mastery or familiarity over the functions contained in

their expanded core sets. However, some functions like the greatest integer and the

rational function seem to be only transient members of the students’ expanded core

sets—figuratively removing themselves and reasserting their problematic natures for

certain tasks like translating from numerical to graphical to symbolic representation.

Numerical to Symbolic to Graphical

Translations for which the students were successful earlier, they were frequently

successful later on in other translations or in other tasks. No student encountered trouble

translating from numerical to symbolic to graphical representation for any function,

probably because every student correctly translated earlier from numerical to symbolic

for each function after instruction. Once the task of translating from numerical to
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symbolic was completed, the task of translating from symbolic to graphical was

accomplished through the use of the graphing calculator. As they did before, every

student had a 100% correction rate when translating from symbolic to graphical

representation.

Graphical to Numerical to Symbolic

After instruction, the students experienced trouble when translating from

graphical to numerical for the segmented and algebraic functions, and these functions

were again problematic when translating from graphical to numerical to symbolic— but

only for the graphical to numerical part— of the entire translation. No problems were

encountered now or earlier when translating for numerical to symbolic part of the whole

translation. Finally, if a particular task was difficult, it or similar tasks were usually

difficult when encountered again.

Graphical to Symbolic to Numerical

The students were able to translate from graphical to symbolic to numerical

representation for every function except the algebraic and segmented functions. The

algebraic and segmented functions, along with the rational function, were the same ones

that caused the students problems earlier when translating from graphical to symbolic

representation.

With few exceptions namely the sometime transient members, the set of functions

the students were able to translate using all three representations were their expanded

core sets. In other word, there appeared to be little difference between translating using

two representations and translating using all three representations. Eddie and Whitney

were able to translate using all three representations for every function except for the
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algebraic, segmented (piece-wise), and rational functions. As mentioned earlier, the

rational function was sometimes a transient member of the expanded core set for both of

them.

Kristin and Buren were able to translate using all three representations core for

every function except the algebraic and segmented (piece-wise) functions. These

functions were precisely the same ones contained in their expanded core sets.

The Easiest Translations

I was surprised that the students chose the numerical to symbolic to graphical

translation as the easiest, because I thought they would choose the symbolic to graphical

to numerical translation, even though they had 100% accurate rate for both translations.

The latter translation, initially, was more accessible to the graphing calculator, which

they used at every opportunity. However, the students did not really translate from

symbolic to graphical to numerical; they actually translated from symbolic to numerical

and then went back and translated from symbolic to graphical. This extra step place in

symbolic to graphical to numerical translation by the students may have been a reason

they chose the former translation as the easiest.

Although the students ranked the numerical to symbolic to graphical translation as

the easiest, I was amazed, after asking them to do so, that no one ranked the other two

translations—symbolic to graphical to numerical and symbolic to numerical to

graphical—as second and third. Once the numerical to symbolic to graphical translation

was chosen as the easiest, I thought that the symbolic to graphical to numerical

translation would be ranked second because everyone had 100% success rate for it, and

the symbolic to numerical to graphical translation would be ranked third because the
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students’ success rate for it was less than 100%. The latter two translations were ranked

the same. Furthermore, when prodded, no one offered an explanation.

As I searched for a possible reason, I examined the parts of the two translations

that the students had been exposed to in earlier tasks rather than the entire translations.

From the symbolic to graphical to numerical translation, the students had trouble,

previously, translating from graphical to numerical especially for algebraic and

segmented functions. However for the entire translation, translating from symbolic to

numerical, and then going back and translating from symbolic to graphical as mentioned

earlier circumvented this problem area. This may have been how the students were able

to obtain 100% success rate for the entire translation when part of it was problematic. For

the entire symbolic to numerical to graphical translation, the students also experience

trouble earlier translating from numerical to graphical for rational, segmented, and

algebraic functions. The problem areas of these two translations may have been a reason

why the students ranked them equally.

The Most Difficult Translations

After instruction, when translating, using only two of the three representations,

symbolic, graphical, and numerical, the students encountered difficulty when the

graphical representation was either one of the representations. Not surprisingly, the

students chose a translation where graphical was one of the first two representations.

However, I was surprised that they listed the graphical to numerical to symbolic

translation as the most difficult translation. Ranked second was numerical to graphical to

symbolic translation, and ranked third was graphical to symbolic to numerical translation.



108

Based on their preceding work, I thought the students would choose the numerical

to graphical to symbolic translation as the most difficult because they had trouble: (1)

recognizing numerical representations; (2) translating from numerical to graphical; and

(3) experienced trouble one again translating from graphical to symbolic. Yet, for the

graphical to numerical to symbolic translation, the students had 100% correction rate

translating from—numerical to symbolic—and only experience trouble translating

from—graphical to numerical. This result may have been the reason the students chose

the graphical to numerical to symbolic translation as the most difficult when only one

part of the entire translation was troublesome.

Creating New Functions

Symbolic

Even after instruction, the students chose only polynomials as their building

blocks when creating new symbolic representations of functions. Buren, like Kristin had

done before instruction using the Rule of Three, was the only student to choose a non-

polynomial. All functions created before instruction using the Rule of Three were

polynomials, even if some of building block functions were not. After instruction, the

students constructed rational, logarithmic, radical, and absolute value functions by taking

the ratio, log, square root and absolute value of polynomials. They seemed to have

broaden their perspective on functions by creating a more diverse group than the one

created before instruction. The students also seemed to diversify their methodologies for

creating new functions by using a combination of procedures or processes. Finally, they

were more likely to verify that the new function was actually a function by recognizing it

by name rather than relying on vertical line test as they did previously.
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Graphical

Before instruction when the students constructed graphical representations of

functions, they chose only linear or quadratic functions and created new functions by

vertical shifts or reflections about the x- or y-axes. After instruction, linear and quadratic

functions were once again the main building blocks with Kristin and Whitney adding

cubic and exponential functions, respectively. Whitney’s process for creating new

functions seemed more diverse than they were before instruction. Although she still used

reflections about the x- and y-axes she also use vertical shifts. Kristin along with Eddie

constructed new functions from cubic and quadratic functions by restricting the domain

and graphing the function over the restricted domain. No one attempted this process of

constructing new functions earlier in the study and this process may be indicative of a

more complete view of the relation between a function’s domain, range and its graph.

As he often did before instruction, Buren once set himself apart from the other by

the process he used to create graphical representations of functions. He did not use

vertical or horizontal shifts or reflections about the x- or y-axes. Instead, Buren chose the

graphs of a horizontal and diagonal line and translated them into symbolic

representations. Then he combined the equations through addition and subtraction to

obtain the first two new functions. The last new function was created by multiplying the

linear equation by the constant, “3.14.” To finish the process, Buren then translated the

symbolic representation back to graphical representations. It appeared that Buren had

taken his exposure to task of translating and use it in another endeavor. This procedure

was uniquely Buren’s. However, it was a common occurrence for the students to use a
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combination of procedures or processes acquired in one task in another endeavor after

instruction using the Rule of Three.

Numerical

As they did throughout the entire study, the students still consistently experienced

trouble recognizing, translating and modeling numerical representations more that any

other type. Even after instruction using the Rule of Three and the fact that the students

frequently used multiple procedures on many task, there seem to be something uniquely

difficult about working with numerical data without the use statistics or statistical

programs, both of which were beyond the scope of this research. For the most part, no

student was able to recognize the numerical representation chosen by name (constant,

linear, etc.) used as his or her building blocks. Yet, they had no trouble creating new

functions using addition, subtraction, or multiplication and verifying that the new

functions were actually functions, but they frequently could not recognize what type of

functions they had created.

Creating Functions from Non-functions

Before instruction, the students encountered minor trouble converting non-

functions into functions, even though their methods were not always correct. After

instruction, only two types of non-functions were problematic, x = c and xy = . As they

had done throughout the study, the students would call x = c a function in one task and a

non-function. I can only assert that maybe they could only retain differences between x =

c and y = c for a short time or did not spend enough time on the equations to learn how to

distinguish x = c from y = c permanently. It also seemed that equations that appeared to
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be similar were oftentimes confused with one another. For instance, xy =  was often

misidentified as xy = .

Sorting Cards

Eddie

Eddie correctly sorted all the cards into two stacks, using the titles, Polynomials

and Non-Polynomials, when he had earlier said, before instruction, that the constant,

linear, and identity functions “had no powers” and did not recognize them as

polynomials. This time, Eddie not only recognized the constant, linear, and identity

functions along with the quadratic and cubic as polynomials but designate them by their

degrees. The titles, Polynomials, Transcendental, and Others, were used to sort the cards

into three stacks with the categories, Transcendental, and Others, replacing the category

Non-Polynomials used previously. Similar to Buren, Eddie seemed to use material from

the review and again sorted each card correctly. When sorting the cards into four

categories, Eddie, once more, appeared to subdivide a prior used category, Others, into

Others and Rational. Amazingly, only the rational function was placed into the category,

Rational, since this type of function was consistently problematic for the students in both

parts of the study, along with the segmented and algebraic functions, which were also

sorted correctly. In addition, being able to sort all the functions accurately may be

indicative of another improvement in Eddie’s ability to recognize functions since he used

the calculator much less than Buren in sorting the cards.

Kristin

When sorting the cards into stacks using the titles, Domain: All Reals, and

Domain: Not All Reals, Kristin did not perform any work or use her calculator to help her
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find domains as Whitney had done earlier. She seemed to be relying solely on memory,

and she sorted each function correctly. Yet, there were several functions for which

Kristin seemed not to know the domain but was usually able to obtain them using her

calculator or information from the review. It seemed that sorting the functions into the

categories, Domain: All Reals, and Domain: Not All Reals, was an easier task actually

stating the domains.

Like the other students before her, Kristin also appeared to borrow concepts,

limits and domain, from the class and review lectures when she sorted the cards into the

three categories, Limits Over All Reals, Limits Over Its Domain, Limits at Some Points in

Its Domain. Based on observations and interviews, Kristin did not directly evaluate the

limit of the functions at various points to sort them. Instead, she seemed to use her

knowledge about the domains of functions and the calculator to obtain their graphs. Her

stated goal was to determine where the functions were continuous. She may have used

the following statement, which was mentioned in class on several occasions, “If a

function is continuous at a point, then the limit exists at that point.” A graph was obtained

for every function, and all the functions that had unbroken graphs over the real numbers

were placed in Limits Over All Reals. Functions with uninterrupted graphs over their

domains were sorted into Limits Over Its Domain, and the greatest integer function was

the only one placed in the category, Limits at Some Points in Its Domain. Using her

knowledge of the domains in conjunction with examining the graphs may have allowed

Kristin to sort every function correctly.

When Kristin sorted the cards into four categories, she used the titles, (1)

Increasing Over the Reals; (2) Decreasing Over the Reals; (3) Increasing and
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Decreasing Over the Reals; (4) Constant Over the Reals. Again, she used the calculator

to acquire graphs in addition to her knowledge about the domains of the functions to sort

the cards. The categories where functions were incorrectly placed were Decreasing Over

the Reals, and Constant Over the Reals. First, the categories may have been more

fittingly named as, Decreasing Over Its Domain and Constant Over Its Domain, since

only one function, the constant, sorted into either category had a domain that was the set

of all real numbers. Second, every function placed into the category, Decreasing Over the

Reals, was actually increasing over its domain. Instead of examining the graph of a

function by viewing it from “left to right,” Kristin may have reversed this process and did

not appear anymore adept at examining graphs than Buren was earlier. While both the

constant and algebraic functions were sorted in Constant Over the Reals, only the

constant function was constant over the reals. It is possible that Kristin mistakenly placed

the algebraic function in Constant Over the Reals because the graph of the algebraic

function was composed of one horizontal line segment, located in the first quadrant and

another horizontal line segment in the third quadrant.

Whitney

Whitney used a version of the calculus concept, continuity, when she sorted the

cards into stacks of two, three, and four. This concept may have come from the class

discussions since no student had used it in any prior to this task, before or after

instruction. Continuous Over the Reals and Discontinuous Over the Reals were used to

divide the cards into two stacks. Like Buren before her, Whitney used the calculator,

extensively, to determine the set of numbers over which a function was continuous by

examining the graphs. All functions placed into the category, Continuous Over the Reals,
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were sorted correctly and similarly for Discontinuous Over the Reals. The category,

Discontinuous Over the Reals, seemed to lack selectivity. Although it contained all

functions that were discontinuous over the entire set of real numbers, it also contained

functions that were continuous, but only over their domains, which was just subsets of the

real numbers. However, even these functions were correctly placed in Discontinuous

Over the Reals based on her definition and the instructions given for creating the

categories. It appeared that the category, Discontinuous Over the Reals, could have been

more discriminating even though the functions were correctly sorted into it.

When Whitney sorted the cards into three stacks, she used the titles, Continuous

Over the Reals, Continuous Over Its Domain, and Discontinuous Over Its Domain. The

last two titles seemed to be a refinement of the title, Discontinuous Over the Reals, used

earlier and afforded Whitney more selectivity than was displayed formerly. All the

functions previously placed in the category, Continuous Over the Reals, remained the

same and the only function sorted into the category, Discontinuous Over Its Domain, was

the greatest integer function. Since the greatest integer function is only discontinuous

over its domain but only at all integers, the category may have been more appropriately

called Discontinuous Over the Integers.

Whitney may have remembered some domains of the functions from the review

earlier and appeared to use procedures from the review to obtain others. However, she

still used the calculator to obtain the graphs of the functions, but now the graphs were

examined to find or confirm domains. All remaining functions, those not placed into

either Continuous Over the Reals, or Discontinuous Over Its Domain, were correctly

sorted into the category, Continuous Over Its Domain.
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Instead of sorting the cards into four stacks, Whitney divided them into five stacks

and said she simply made a mistake. She was not asked to resort the cards because her

“mistake” may have proved to be insightful. The titles used were Continuous Over the

Reals, Continuous Over Its Domain, Jump Discontinuity, Infinite Discontinuity, and

Missing Point Discontinuity. Based on her titles, Whitney like Eddie and Buren, appeared

to use material from the review or topics from the class. Again, the functions previously

placed in the category, Continuous Over the Reals, did not change. However, the rational

function was removed from Continuous Over Its Domain and placed in Infinite

Discontinuity, even though it could have been placed in either category. Nevertheless,

Whitney’s selection process seemed to indicate that functions kept in Continuous Over Its

Domain category were those functions that were actually continuous over their domains

but also had no vertical asymptotes. This appeared to be the criteria that prevented the

rational function from remaining. However, it did not stop the logarithmic function from

staying when the y-axis was a vertical asymptote. Yet, comparing the graphs of

logarithmic and the rational function revealed more information. The calculator explicitly

displayed the vertical asymptotes of the rational function, but the vertical asymptote of

the logarithmic function, which was the y-axis, was only displayed as the y-axis. Whitney

may not have realized that the y-axis and the vertical asymptote were actually the same,

in this case, and this may be the reason why one function was kept and another was

deleted. All representations of the greatest integer function was placed in Jump

Discontinuity which could be seen as a refinement of the previously used category,

Discontinuous Over Its Domain and gave Whitney a category that only contained the

representations of one function. No functions were placed into Missing Point
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Discontinuity, so in essence, Whitney just had four categories and all functions other than

the logarithmic were sorted correctly.

Buren

Buren used the titles, Polynomials and Non-Polynomials, when sorting the cards

depicting the symbolic, numerical, and graphical representations of functions into two

stacks. When sorting the cards before instruction into four categories, Polynomial was

one of the categories used, and it only contained the representations of the quadratic and

cubic functions because their degrees were plainly written. After instruction, Polynomials

contained all representations of the constant, linear, identity, quadratic, and cubic

functions. Buren now appeared to be able to recognize the general form of polynomial

functions, along with the fact that its degree need not always be explicitly written, which

was the reason he gave earlier for not classifying the constant, linear, and identity as

polynomials. All the remaining functions were correctly sorted into the category, Non-

Polynomials.

When the concept of function was reviewed during the study, functional

characteristics like even and odd were also covered. The titles, Even (symmetrical to y-

axis), Odd (symmetrical to the origin), and Neither (neither even or odd), used by Buren

may have borrowed from the review. It is also possible that Buren had seen these topics

before in an earlier mathematics course.

Using the graphing calculator and the conditions, f (x) = f (-x) and f (-x) = -f (x),

that an equation must satisfy to be classified as even or odd, respectively, Buren placed

all the functions correctly into each category except one, the cosine function. Even

though he had obtained an accurate graph, Buren fail to recognize that the graph was
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symmetrical to the y-axis. Buren classified the cosine function as an odd function

possibly because he made errors when applying one or both conditions, f (x) = f (-x) and f

(-x) = -f (x). Buren wrote cos(x) = cos(-x) = -cos (x) and obtained cos(x) = -cos(x) which

he claimed was even.

Buren once again seemed to have borrowed information from the review when he

used the titles, Increasing Over Its Domain; Decreasing Over Its Domain; Increasing

and Decreasing Over Its Domain; and Constant Over Its Domain, for sorting the cards

into four stacks. However, Buren was not as accurate when sorting the cards correctly as

he was earlier when using the titles, Even, Odd, and Neither. Buren’s failure to correctly

inspect the graph of the cosine function for symmetry may have been a precursor for

determining where a function was increasing and decreasing. It appeared that Buren’s

understanding of the functional characteristics, increasing and decreasing, were less

complete than his understanding of the characteristics, even, odd, and neither or he

misinterpreted the graphs. Buren inaccurately sorted the cosine function into the

category, Increasing Over Its Domain, even though the calculator was still being used

and accurate graphs were being obtained. Equally important, the class had been instructed

in the use of the first derivative to determine where a function is increasing and

decreasing. Yet, this was one the few times that, after instruction, Buren did not use a

combination of procedures or processes in completing a task. Of his four categories, the

cosine function seemed to fit best in the category, Increasing and Decreasing Over Its

Domain, which is exactly what the graph of this function does. The logarithmic and

exponential functions were both wrongly placed in the category, Decreasing Over Its

Domain. A better fit for these two functions may have been the category, Increasing Over
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Its Domain. The last remaining function, the constant function, was sorted correctly in the

category, Constant Over Its Domain.

Tools

Experience

Earlier in the study, the students’ functional knowledge seemed incomplete and

they rarely used more than one tool or procedure together which may have a reason for

lower pretest scores and the lower success rate on most tasks. After instruction, the

students seemed more knowledgeable concerning almost every endeavor connected with

the study which may have been evident by higher scores on the posttests and greater

success with most tasks. However, more than just memorized knowledge was displayed.

For instance, the students appeared to use their knowledge in conjunction with other tools

or procedures like the calculator, the vertical line test or plotting points to correctly

complete tasks such as translating, sorting, or distinguishing between functions and non-

functions. Equally important, the tools or procedures, regardless of their natures, were

used more frequently with each other rather than individually.

Vertical Line Test and the Definition of a Function

There was almost no changed in the application of the vertical line test. Before

instruction, the vertical line test had been primarily used successfully by all students to

decide whether or not the graph of relation was representative of a function or a non-

function. This time it was used once again to distinguish between functions and non-

functions but one difference was that it was used along with other tools or procedures. As

they had done previously, the students also applied a written version of the vertical line
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test to numerical representations—no x-values can be associated with two different y-

values—which was similar to their definitions of a function.

Graphing Calculator and Plotting Points

After instruction, the students were able to graph more functions than they were

able to graph previously, like the absolute value function for example. Earlier in the

study, the calculator was primarily used to produce graphs, and this was once again its

purpose as was the procedure of plotting points. Nonetheless, the obtainment of graphs,

be they calculator generated or hand-made, were no longer the only goal—but the

information that could be obtained from it as an aid in completing other tasks. For

instance, graphs were now utilized to help determine or confirm domains, to help sort

cards, to help classify functions, and to facilitate translating functions from one

representation to another. Even though the students were more successful in obtaining

accurate graphs by plotting points, there still was the occasional incomplete graph.

However, the possible detrimental effects an inaccurate graph may have had on a

particular task seemed minimized by the students using the information from the graph in

conjunction with other tools, concepts, or procedures. Using one tool with another tool or

concept or procedure appeared to be a rare event before instruction in the study.

Solving for the Variable Y and Substitution

Before instruction when distinguishing between functions and non-functions,

Buren was the only student to solve symbolic relations for the variable y in terms of x

correctly. After instruction when given the task of creating functions from non-functions,

everyone was able to solve for y in terms of x as an aid in distinguishing between

functions and non-functions or as an aid creating functions from non-functions or as an
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aid in obtaining graphs. The last usage was new for every student and it gave them the

opportunity to obtain the graphs of functions and non-functions that they previously had

been unable to acquire. Once the graphs were obtained, the students were often able to

gather information about concepts like increasing and decreasing, continuity, limits,

symmetry with respect to the origin or y-axis, and the domains and ranges.
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CHAPTER 5

 ANALYSIS

The Graphing Calculator

Before instruction using the Rule of Three, the students received no instruction in

the use of their graphing calculators but appeared tied to them and used the calculators in

nearly every task, even minor ones like evaluating f (2) for 42)( −= xxf  or just graphing

it. In addition, the root function key or trace key on the calculator was often used to find

or approximate zeroes of an equation like 34)( 2 +−= xxxf  that was factorable. It

seemed the graphing calculator was viewed as a lifesaver and the completion of any task

often depended on the student’s skill or versatility with this form of technology. During

the occasions when the calculator was not applicable or the knowledge of its use was

lacking, the students appeared lost and rarely made any attempts to complete the given

task.

Even though the graphing calculator was used extensively, the information gained

from its applications to particular tacks was specific rather than general in nature. For

example, when deciding whether or not the symbolic representation of the relation,

,)( 3 xxxf −=  was a function, the students obtained its graph using the calculator and

applied the vertical line test. Yet, while the graph of xxxf −= 3)(  was still displayed on

the calculator, the students did not examine it to determine the domain or range or to find

where the function was increasing or increasing. Often times the students appeared to be

more focused on using the calculator to help with a certain task, like producing a graph,
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without realizing it was also providing additional information about many other

characteristics. The almost magical powers of the graphing calculator seemed to facilitate

rather than eradicate the students’ single-minded approach to tasks, regardless of their

mathematical backgrounds or pretest scores.

Distinguishing between functions and non-function, translating from one

representation of a function to another, evaluating functional values and creating new

graphical representations of functions were the tasks that the graphing calculator was the

most helpful. As Eddie said, “the calculator did all the work.” Not surprisingly, these

were the tasks with which the students were the most successful.

However, if a task required prior or additional knowledge in conjunction with

technology, then the calculator was frequently less helpful. For example, the calculator

was of little use assisting the students to identify different types of functions. As Eddie

said, “Identification is hard because it requires that you know something about the

function.” The calculator was not beneficial in producing the graphs of algebraic, greatest

integer, and piece-wise functions because prior knowledge was again required to enter

these functions and this knowledge was often lacking. Similarly, it was also of little use

in constructing the graphs of numerical representations for related reasons. The tasks that

the students were the least successful were recognizing, identifying different types of

functions, and producing hand-made graphs. Each task required assistance or knowledge

beyond the calculator.

Along with instruction using the Rule of Three, the students were also instructed

in the use of the graphing calculator. The instruction seemed to cause the students to use

it more skillfully and differently. For example, they were able now able to graph
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functions like the absolute value and greatest integer functions that they were previously

unable to graph. The students no longer used the subtraction symbol, “-,” for the

negation, “(-)”, which caused numerous calculation and graphical errors.

Amazingly, the instruction did not cause the students to increase their reliability

on the calculator. In fact, its uses changed and decreased. Since instruction using the Rule

of Three seemed to have altered or increased the students’ knowledge about functions,

the graphing calculator was used more to confirm answers or assumptions rather than

obtain them. It seemed that the students were able to view a more complete picture rather

than focusing on one or two puzzle pieces as they did before. Now, the students

completed more tasks algebraically or mentally and then transferred their thoughts to

paper. When distinguishing between functions and non-functions, the students did not

pick up their calculators during the completion of this task. For example, asked to state

why 282 +−= xxy  was a function, the students first identified it by name as a quadratic

function. When pressed on the topic, they responded by hand drawing the graph of a

parabola that opened upward and said that any parabola that opened up always passed the

vertical line test. On another occasion, the students did not even bring their calculators

with them during the task of recognizing functions because they said the calculators

“would not help.” The calculator was still being used but sparingly, or used to complete

only one part of a task, or used as a tool to get new answers from previous ones. For

example when creating functions, the students used their calculators to graph some of the

same functions as before but this time the functions were graphed only over a subset of

its domain. As another example, when translating from numerical to symbolic to

graphical representation, the graphing calculator was used only during the symbolic to
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graphical part of the entire translation. They now said the numerical to symbolic part of

the translation was easy. However, it was problematic before instruction. It now seemed

that the graphing calculator was frequently being used only after other methods,

processes or procedures failed or in conjunction with other concepts or procedures.

Concepts

Before instruction using the Rule of Three, concepts, procedures, or processes like

the vertical line test, definitions, limits, continuity were often used independently of each

other, and when one procedure failed there did not seem to be a backup process or safety

net. A couple of notable exceptions to this pattern were the use of the vertical line test in

conjunction with the graphing calculator and using the calculator as an aid when

translating.

Solving an equation for the variable y was also used independently of any other

methods or technology if it was used at all. For example, the students commonly looked

for equations of the form somethingxf =)( or somethingy = to distinguish between

functions and non-functions. If equations like 123 ++= xxy or xy =2  were given the

students frequently could not decide whether or not it was a function, as they appeared to

rely solely on their knowledge. Unlike the other students, Buren was able to solve

equations such as 2522 =+ yx  (a circle) for y in terms of x, getting 225 xy −±= . He

said it was not a function because for every x-value there would be two y-values. The

same conclusion could have been acquired by applying the vertical line test to the graph

of 2522 =+ yx . However, Buren was unable to graph 2522 =+ yx  even though he had

obtained the correct form, 225 xy −±= , to enter into the calculator. He just did not
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appear to know that 225 xy −=  was the top half of the circle and 225 xy −−= was

the bottom half or that entering both equations into the calculator would have allowed it

to produce the graph of a circle.

As another example that processes were used independently, the students almost

always resorted to hand-made graphs when graphing piece-wise functions. In nearly

every case, they constructed graphs that were smooth and continuous without breaks or

points of discontinuity even though that had received lectures covering limits, continuity

and derivatives and had been tested on this material. Yet, the concept of limits, continuity

or derivatives was not used in the completion of these tasks. In addition, knowledge about

the domain and range of functions could also have been helpful when constructing hand-

made graphs. Yet, the only time students used domain and range of functions was to sort

cards. Furthermore, when constructing new graphical representations, the students often

employed vertical shifts, horizontal shifts, and rotations. Yet, no one use a combination

of any two of the three procedures.

Not only did the students frequently use concepts, procedures, and processes

independently of each other, sometimes the reliance on one concept or functional

characteristic seemed to be exaggerated. For example, the students correctly identified

xy = , ]][[xy = , and xy tan=  as an absolute value, greatest integer and tangent

function, respectively. However, 
x
x

y = , 
1
]][[

−
=

x
xy , and 

x
xy tan=  were also identified

as an absolute value, greatest integer and tangent function. Knowledge about the domain

of xy = , ]][[xy = , and xy tan=  or functional characteristics about their graphs or the
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fact that 
x
x

y = , 
1
]][[

−
=

x
xy , and 

x
xy tan=  are all ratios while xy = , ]][[xy = , and

xy tan=  are not, never seemed to have been considered to help distinguish one type of

function from another.

Finally, the students’ ability to recognize functions appeared to rest primarily on

their knowledge or memory of symbolic representations. Graphical and numerical

characteristics as well as the concepts of continuity and differentiability never seemed to

be employed in this task. For example, given xxy 93 −= , the students either identified it

as a cubic function or not at all. No one made statements similar to the following:

xxy 93 −=  has whole number exponents and no denominator, it might be a polynomial.

xxy 93 −=  has a graph that is unbroken over the set of real numbers and it might be a

polynomial. All the derivatives of xxy 93 −=  exist and are continuous. It might be a

polynomial.

After instruction using the Rule of Three, oftentimes if one procedure did not

work, the students had several backups. Equally important, solutions were frequently

acquired using a combination of procedures or concepts rather than one in which only

one scheme was used. For example, the students would frequently verify that an equation

was a function by identifying it by name, giving a hand drawing of its graph and even

giving a table of values.

The students displayed originality in several of the translating tasks. When

translating from numerical to graphical representation, which was previously almost

always problematic, the students would first construct a rough hand-made graph and then

use a process of elimination to select the correct graph. For example, as they translated
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from graphical to numerical representation, the students first translated from graphical to

symbolic representation, which was not required by the task. Then they translated from

symbolic representation to numerical which was one the easiest translations. One

constant that appeared to be intertwined with all the procedures and concepts was the

students’ knowledge, seemingly altered by instruction. As Eddie said, “Once I learned

[what] most of the functions were, it was easier to identify, translate and sort them.”

Finally, there was also less reliance on the vertical line test to distinguish between

functions and non-function. As Buren did before instruction using the Rule of Three, the

other students solved equations of the form, 123 ++= xxy or xy =2 , for the variable y

to determine if it was a function. Then they used the fact from their definitions that for

every x-value there can be only one y-value.
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CHAPTER 6

 SUMMARY AND CONCLUSIONS

This chapter summarizes the study, including its purpose, theoretical framework,

methodology and findings. It also contains implications for teaching calculus and

recommendations for future research.

Purpose of the Study

The purpose of this study was to investigate college students’ knowledge of the

concept of function before and after instruction using the Rule of Three in a reform

calculus class. Several factors motivated me to conduct this study. First, the concept of

function occurs in every branch of mathematics (NCTM, 1989; O’Callaghan, 1998), and

most of the examples in which calculus concepts are seen and understood in terms of

objects and processes have to do with functions (Dubinsky, 1992). Second, since the use

of different instructional formats or presentations (like the Rule of Three) along with a

function approach to teaching introductory concepts in calculus is relatively new, there is

a need for research concerning its impact in the classroom (Haimes, 1996).

Although some research has been conducted on students’ knowledge and

understanding of the concept of function, more research needs to be directed on how it

evolves among college students (Cooney & Wilson, 1993). Research investigating

students’ knowledge of functions (Even, 1996; Haimes, 1996; Markovits, Eylon, &

Bruckheimer, 1986; Vinner, 1990) and research investigating students’ understanding of

the concept of functions by examining the components of the concept of function
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(O’Callaghan’s, 1998) formed a foundation for this study. Of the problems expressed by

the participants from Tulane Conference in 1986 (Douglas, 1987) and the subsequent

Washington Conference (Douglas, 1987), the one I that captured my interest was the

concern that very few students were prepared for calculus, passed calculus or had any

understanding of the fundamental calculus concepts (Douglas, 1987; Smith, 1994; Tucker

& Leitzel, 1995).

My study extends previous research by examining whether or not the dictum, The

Rule of Three, used as an instructional approach, helps in understanding or the evolution

of the concept of function among college students. The study also addresses why some

functions may be more difficult for students to understand, classify, and translate.

Theoretical Framework

I chose to adopt as my framework a union of O’Callaghan’s (1998) and Markovits

et al’s (1986) framework for describing functional knowledge. O’Callaghan reformulated

Kaput’s (1989) sources of meaning in mathematics, referential extension and

consolidation, into terms specific to functions to obtain the components, modeling,

translating, and reifying, which he then examined and used to describe functional

knowledge.

Markovits et al. (1986) said that understanding functions had several aspects, such

as (a) the knowledge to recognize and classify functions and non-functions, and (b) the

knowledge to use the concept in different contexts along with the ability or knowledge to

transfer information from one context to another in mathematics. Aspect (b) is similar to

O’Callaghan’s definition of his translating component. I combined aspect (a), the

knowledge to recognize and classify functions and non-functions, into the new
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component, recognizing, and inserted it into O’Callaghan’s framework. O’Callaghan had

used the recognizing component but did not formally state it in his framework. My

theoretical framework contained the components of recognizing, modeling, translating,

and reifying. Recognizing helped me describe the students’ ability to distinguish between

functions and non-functions and to classify functions. Modeling allowed me to

characterized the students’ capacity to represent numerical data by a symbolic or

graphical representation. Translating helped me to portray the students’ ability to move

from one representation, and Reifying allowed me to describe their ability to create

functions.

Research Design

This study was conducted throughout a 15-week semester during the spring

semester of 2001. From the 29 students enrolled in a Mercer University calculus course, I

selected 4 students. Each of the four participated in all phases of the data collection. Data

for this study were collected through a pretest, a posttest, interviews, observations, and

sorting activities. The data collection procedures were designed to give meaningful

information concerning the students’ knowledge about functions and how their

knowledge was altered during the study.

Instruments

A pretest and questionnaire were given to all 29 calculus students enrolled in

MAT 191. Based on pretest scores, written responses to the questionnaire and pretest,

scheduling conflicts, and available time for interviews, four students were selected as

participants for the study whose pretest scores ranged from 31 to 83. A total of six hour-

long interviews were scheduled with each student.  One interview was scheduled to
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discuss the responses on the pretest, one for the posttest, one for the translating tasks

(before and after instruction) and one for the sorting activities (before and after

instruction). All interviews were audiotaped and transcribed, and field notes were taken

while observing the students sorting cards.

Analysis

An ongoing comparative analysis was used throughout the study to find patterns

within and across categories as opposed to a final end-result analysis (Glaser & Strauss,

1967; Goetz & LeCompte, 1984; Patton, 1990). Early in the study, most of the time and

effort were devoted to gathering data, and little time was given to analysis. In the latter

stages of the study, this trend was reversed. After initially collecting and examining data,

I constructed categories (Owens, 1982) such as functions classified by all students,

functions classified by most students, or functions rarely classified by any students.

Summary of Findings

Before the Rule of Three

My findings were based on an analysis of the data collected before and after

instruction using the Rule of Three. The 14 functions the students were exposed to were

as follows: constant, linear, quadratic, cubic (third degree polynomials), logarithmic,

exponential, rational, radical, segmented (piece-wise), absolute value, greatest integer,

the identity, algebraic and trigonometric (tangent or cosine).

Buren was the only student who gave a complete definition of a function.

Whitney and Kristin gave incomplete but serviceable definitions while Eddie’s was

incorrect. The students tended to be somewhat knowledgeable about the definition of a
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function and used their definition or a variation of it to distinguish between functions and

non-functions.

Research Question Results

Question 1. What type of relations in symbolic, graphical or numerical form do college

students recognize or identify as functions before and after instruction using the Rule of

Three? What characteristics, tools or tests, do college students use to classify symbolic,

graphical or numerical representations of relations as functions before and after

instruction using the Rule of Three?

Relations in graphical and numerical form were recognized as functions more

frequently than were relations in symbolic form. Students used the vertical line test for

graphs and made statements similar to “one x-value cannot be paired with two different y-

values.” This statement seemed to be a rewording of most of the students’ definition of a

function. Although Eddie’s definition was incorrect, he also used a version of the above

statement when determining whether or not a table of values was a function. Even though

the students had more success recognizing relations in graphical and numerical form as

functions, they usually did not classify what type of function the relations were. For

example, a graph was identified as representative of a function, but the type of function,

say radical, was not given.

However, the set of functions that the students were able to identify in one

representation was commonly the same set for another representation. Functions

identified by the students tended to be polynomial, constant, linear, quadratic, with the

occasional trigonometric, absolute value, or radical function. For symbolic and graphical

representations, experience was used to recognize the types of functions whereas trial and
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error was used to recognize numerical representations. The types of functions that all the

students were able to identify, regardless of representation, were the linear and quadratic

functions. Not surprisingly, linear and quadratic functions and, to a lesser extent, other

polynomial functions were the functions the students said they had the most experience

working with.

Question 2. Before and after instruction using the Rule of Three, what types of functions

are college students able to translate from one representation to another, or match, or

model? What characteristics or tools do college students use to match or translate from

one representation to another before and after instruction using the Rule of Three?

 The students’ ability to translate from one representation to another depended on

representations used. All the students translated from symbolic to graphical

representation using their calculators for nearly every type of function except the

algebraic and segmented functions. Utilizing their calculator again, all students were

100% successful translating from symbolic to numerical and numerical to symbolic for

every function.

For each of the remaining translations, the largest set of functions that all the

students translated correctly using only two representations was the one that contained

the linear, quadratic, constant, and identity functions. In addition, the set containing

linear, quadratic, constant, identity, and tangent functions was the largest set that each

student translated correctly using all three representations. Regardless of the translation,

the majority of the functions all the students consistently translated were polynomials and

the tools or aids used in these endeavors were experience and the calculator.
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Questions 3. Given a set of functions in symbolic, graphical and numerical form, what

“new” functions do college students construct or create, before and after instruction using

the Rule of Three, using any combination of the following operations?

 The operations used to construct new symbolic representations of functions were

usually addition, subtraction, and multiplication, and the functions commonly used as

building blocks were usually polynomial, linear, or quadratic. The new functions

constructed were almost always polynomial. Using the calculator, the students obtained

the graphs of only one building-block polynomial function and used it to create new

graphical representations. The new graphs were almost always reflections of the original

graphs about the x- or y-axis, and their symbolic representations were again polynomials.

More often than not, when the students created new numerical representations, they chose

a table of values from the pretest or constructed a table from the symbolic representations

used earlier. Addition, subtraction, and multiplication were the operations they used most

of the time to create new functions.

After the Rule of Three

Unlike their earlier responses, every student gave a complete definition of a

function, including the domain and range. They used their definitions, as they did before

instruction, to help them distinguish between functions and non-functions. The students

were again successful distinguishing between functions and non-functions in graphical

and numerical form, but even more successful than they were before instruction. Every

representation of a function was recognized as a function, and all graphical and numerical

representations of non-functions were classified as non-functions. To a lesser extent,

symbolic representations were sometimes problematic but for only two types of non-
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functions, those of the form, x = c and xy = . Each student recognized every

representation of a function as a function and again demonstrated that distinguishing

between functions and non-functions was an easier task than recognizing functions. Yet,

there was improvement by the students even in recognizing functions as each student

increased the number and type of functions contained in his or her core set.

Research Question Results

Question 1

First, the students moved beyond the point of only being able to classify mostly

polynomial functions. Regardless of the representation to be classified—symbolic,

graphical, or numerical—the success rate ranged from 71% to 100% on the 14 functions

(constant, linear, quadratic, cubic (third degree polynomials), logarithmic, exponential,

rational, radical, segmented (piece-wise), absolute value, greatest integer, the identity,

algebraic and trigonometric (tangent or cosine)) investigated by the study. Similar to the

results obtained before instruction using the Rule of Three, the identification of numerical

representations were more difficult than symbolic or graphical representations with no

one having a success rate higher than 79%. Graphical identifications were obtained

through the use of the calculator, hand-made graphs and “educated guesses.” Experience

was used to identify symbolic and graphical representations, with particular emphasis on

symbolic representation. The students seemed to have learned the general form or

characteristics of most functions. For example, if an equation contained just a single

variable and there were only integer exponents for this particular variable, the equation

was called a polynomial with a given degree. Functions with absolute value symbols,

radical signs, double brackets, and the words cos or log were called absolute value,
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radical, greatest integer, cosine and logarithmic functions, respectively. Similarly, the

graphs of certain functions were memorized. For instance, graphs like a horizontal line,

diagonal line, parabola, “a flight of sets” and one having a “v-shape” were deemed to be

representative of a constant, linear, quadratic, greatest integer and an absolute value

functions, respectively. As the students had done before instruction, if they recognized

one representation of a particular function, they were frequently able to recognize one, if

not both, of the other two representations. However, functions that were, in spite of

everything, consistently problematic were the algebraic, rational, and segmented (piece-

wise). The students claimed that the algebraic and segmented functions had no

characteristics that were common to each function, respectively, regardless of the

representations used. The students never seemed to recognize that the segmented function

was partitioned into at least two parts and did not use this fact to help identify it. Instead,

the segmented function was usually classified according to functions contained in one of

its parts, if it was classified at all. The rational function was often mistaken as the

algebraic function.

Question 2

Even though the students’ success rate rose again for every translation, compared

with their earlier performances before instruction, it still depended on the representations

requested and the usefulness of the calculator. Using the calculator, every student

translated from symbolic to graphical, symbolic to numerical, graphical to symbolic and

numerical to symbolic for almost every function. As the usefulness of the calculator

lessened, the students relied more on their knowledge and a couple of functions, the

algebraic and the segmented function, became problematic for the numerical to graphical
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and graphical to numerical translations. Because the graphs were provided, limiting the

calculator’s helpfulness, the algebraic and segmented functions became problem areas for

the numerical to graphical and the graphical to numerical translations.

Since the students stated that they saw no graphical characteristics that were

universal to all algebraic or segmented function, the translation from numerical to

graphical or from graphical to numerical was difficult. The students resorted to handmade

graphs for the above two translations, which sometimes allowed the rational function to

join the algebraic and segmented functions as problematic.

Question 3

As they did earlier in the study, the students chose mostly polynomials as their

building blocks for creating new functions from symbolic representations. Although the

operations of addition, subtraction, and multiplication were still used, other operations or

processes like division, taking the square root, absolute value, and logarithm of function

were also employed successfully. The functions created were no longer just polynomials

but were radical, logarithmic, rational, and absolute value, to name a few, as the students

diversified the types of functions created. Yet, no segmented or algebraic functions were

constructed by anyone.

Before instruction, the students chose the graphs of polynomials when

constructing new functions. After instruction, Whitney was the only student who did not.

Her choice was an exponential function. All students except Whitney refrained from

using previous methods to create new functions. Kristin and Eddie created new functions

by restricting the domains and only viewed parts of the original graphs. Whitney created

new functions by using reflections and vertical shifts but never together. Buren used only
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vertical shifts. Similar to the symbolic representations, the new graphical representations

were diverse group of graphs especially when compared to those produced before

instruction using the Rule of Three.

Limitations

There were limitations connected to my study. One limitation of the study may

have been the nature of the students’ mathematical backgrounds. All the students had

taken AP or honors mathematics courses in high school and had some experience using

the Texas Instrument TI-82 graphing calculator. This fact may have prevented their

backgrounds from being general enough to apply my results to other groups of students.

Students who had taken less mathematics in high school along with having more or less

experience using the TI-82 may have produced different results. The results may also

have been different if all the students would have had pretest scores of at least 70%

because they were more successful on most tasks before and after instruction. In addition,

the students were always willing to learn. They were enthusiastic about being part of the

study and energetic. Their answers on tests or tasks were not always correct, but there

never was a lack of effort. In contrast, students with dissimilar natures or personalities

from the students in the study may have simply gone through the motions and performed

differently on the tests and tasks.

Initially, I prodded the students during the first interview concerning only

incorrect answers on the pretest before I realized my actions. After the first interview, the

students were prodded throughout the remaining pretest interviews, the sorting activities

and the posttest responses for every problem or task. Analysis of the pretest data may

have been different without my actions. Although the students had some knowledge
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using the graphing calculator, I also gave no additional instruction in its use before

instruction because one of my goals was to ascertain what they could accomplish without

any help or instruction.

Methodological Reflection

My personal reflections on the research process are contained in this section.

Although I initially wanted to choose only students who had pretest scores of at least

70%, it became apparent this criterion would not be met. I expected about 11 or 12

(approximately 33%) to meet or exceed this threshold. However, only 20% or 7 students

attained a score of 70% or better. Kristin and Buren were chosen primarily on their

pretest scores while Eddie and Whitney were chosen more so on their availability for

interviews, a willingness to participate and continue in the study, and their responses on

the pretests rather than their pretest scores. The selection process would have been easier

if I had first determined the availability for interviews of the volunteers and next focused

on their pretest responses, and then finally examined the pretest scores.

I wanted the interviews to have an informal nature and by doing so, I developed a

long lasting relationship with the students that moved beyond that of teacher and

student—to one of student and mentor—and finally to one based on mutual friendship. I

have had similar relationships with students before, but they were rare. Earlier, I had

informed the students that our relationship with each other was going to be based on

mutual respect and trust. My relationship with the students put them at ease during the

interviews and sorting activities and they seemed much more relaxed during the posttest,

and this environment may have made them more responsive than what would be
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expected. They seemed willing to bare their souls, and I never felt that they were hesitant

or reluctant with their responses.

Recommendations for Future Research

Before instruction using the Rule of Three, there are recommendations that I

suggest for further research. We need to find out why the students were more

knowledgeable or familiar with polynomials, particular linear and quadratic functions.

My finding paralleled the results of Markovits et al. (1986), who found that many

students appeared to view most functions as linear—but why? Was their familiarity

developed because of repeated exposure to the symbolic representations of linear and

quadratic functions in middle and high schools? Are there characteristics that enable the

students to more readily identify linear and quadratic functions as opposed to other

functions? Was the students’ familiarity with linear and quadratic functions common to

all students? Are constants, linear and the identity functions initially not viewed as

polynomials common to all or most students? My analysis of the data led me to believe

that it was because the exponents were not explicitly written, but could there have been

another reason or reasons?

I also found that the students sometimes experienced trouble with constant

functions but almost always with segmented (piece-wise) functions and its graphs. These

findings were similar to the findings of Kieran (1992) and Even (1996), respectively, but

why were constant and segmented functions problematic? Why do students expect the

graphs of functions to be smooth, continuous flowing curves? What are some of the

characteristics of the segmented, rational, algebraic functions that made them

problematic, even after instruction using the Rule of Three? My analysis of the data led



141

me to believe that the students did not see any common characteristics for either the

segmented, rational or algebraic functions individually and hence had trouble identifying

any representation. Could other reasons, supported by research, be found, especially for a

study that focused on these functions? Finally, why were equations that were not initially

solved for y in terms of x more difficult to distinguish as functions or as non-functions?

Implications for Teaching

Instruction using the Rule of Three to study functions seemed to allow each

student to improve their performance on every task in the second part of the study when

compared to their earlier performances. It seemed to have its most pronounced effect on

the students with the lowest pretest scores. Along with instruction using the Rule of

Three, the students also received instruction in the use of the calculator, and most

graphical representations were usually provided by this technology. Even other members

of the class said the instruction in how to use the calculator was helpful.

Reviewing functions appeared to be beneficial in several ways. Knowledge about

the domains and graphs provided by the calculator appeared to help the students with the

concepts of limits and continuity by providing likely points where the limits may not

exist or points of discontinuity. The students became better at interpreting where graphs

to determine where they were increasing and decreasing or to find local extremum. This

endeavor became a way to confirm that the local maximum and minimum found

algebraically through the use of the derivative was correct.

A Final Thought

It seemed that the presentation of functions through instruction using the Rule of

Three in conjunction with technology might be beneficial in the learning of mathematics,
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particularly calculus. All students appeared to benefit from the instruction especially

students who may be unprepared or have weak mathematics backgrounds. More studies

are needed to answer the questions generated by this study because students’ knowledge

about functions are constantly changing and evolving, and the evolution may not follow a

linear path to the goal set by an educator.
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APPENDIX A

 PRETEST
Name____________________________
1. Define a function.

1b. Give an example of a symbolic, graphical, and numerical (tabular) representation of a
function.

1c. Give an example of a non-function using any representation, symbolic, graphical, and
numerical (tabular).

For each of the following relations, decide whether or not it represents a function. If the

relation is a function, write the word “function” and give its name, domain, range, also

give the name of its graph when applicable.  If the equation is not a function, write the

word “non-function” and describe or give an appropriate name for it. Discuss the reasons

for your decisions.

2. 42 −= xy 3. xy =2

4. x = 5 5. 282 +−= xxy
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6. 7=y 7. 2522 =+ yx

8. 142 22 =− yx 9. xy =

10. 123 ++= xxy 11. 1
169

22

=+ yx

12. 
2

3
75.
5.

0
1

8
3

3
2 −

−
−−

y
x 13. xxy −= 3

14. xy =  15. 2
2

5.
5.

0
0

3
3

2
2

−
−

y
x
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16. ]][[xy =  17. 12 =xy

18. xy log=   19. 21
7

10
5

60
6

19
3

12
7

y
x

20. 
x

y 1=  21. 
x
xy =

22. 32 −= xy 23. xy 6=

24. xy = 25. xy tan=
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26. 








+−
≥+

=
01

01
pKK

KK

xifx
xifx

y 27. ( )12 ++
=

xx
xy

28
88

29

30

31

32
33
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36

37

333333334
38 39
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40 41
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42

43
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APPENDIX B

 INTERVIEW PROTOCOL

Interview I: Pretest and Posttest Problems Revisited

The purpose of Interview I is to give the participants an opportunity to discuss,

rationalize, or explain their written responses to problems on the pretest and posttest. All

problems for both tests will be discussed to investigate in more depth the participants’

knowledge about functions and their symbolic, graphical, and numerical representations.

During Interview I, problems 1 through 43 will be discussed. The participants will be

reminded to think of this process as a conversation between friends and that I am

interested in why or how they answered a problem with a particular response and their

thoughts, knowledge, or reasoning that was the basis for their decision. The outline in

Format I will be used in Interview I. The outline contains some possible supplemental

questions based on the participants’ original responses on the pretest. Interview I is

intended to be friendly, informal, open-ended, and conversational. Therefore the actual

interview format of Interview I may vary from this outline.

Format I: Pretest Discussion

Problems 1-2.

If the participant did not give a written response to either Problem 1 or 2 on the

pretest/postest, give him or her a second chance to respond. If the participant is still

unable to create examples, proceed to Problems 3- 23. Return to Problems 1 and 2, if

time permits, after reviewing Problems 3-23.
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•  Why did you give the following statement, …., as the definition of a function? Have

you ever used your definition of a function to determine if a relation was actually a

function or non-function? If yes, elaborate (when, where, and how). If no, why not?

•  Why did you select this particular symbolic, graphical, or numerical representation to

be your example of a function? Can you give other representations of each form that

are also functions?

•  How do you know that each representation you gave is correct? If you are not sure

that a particular representation is a function, what functional characteristics (or lack

thereof) caused your uncertainty?

Problems 3-23

Ask the participant to discuss the basis or reasoning for his or her responses on the

pretest. For each of the first three bullets, ask each participant the two follow-up

questions: What are the properties or characteristics of this relation or its representation

that identified it as a function or non-function? Is one more important or useful than the

others?

•  How did you decide that relations in graphical form are function or non-functions?

How did you decide that relations in numerical form are functions or non-functions?

How did you decide that relations in symbolic form are functions or non-functions?

•  Did the representation of the relations—symbolic, graphical, or numerical—influence

your decision to decide that it was a function or non-function? If yes, how? If no, why

not?

•  Why is Problem ____ in symbolic form a function and Problem ____ in numerical

form a non-function?
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•  Choose three non-functions from the pretest, one in symbolic form, one in graphical,

and one in numerical form. How would you change each one to make it a function?

How do you know that your modified relation is actually a function?

•  If the vertical line test was mentioned on the pretest or during the interview, ask the

participant to discuss it (how and why it works).

•  Choose three of any pair of functions from the pretest: one pair in symbolic form, one

pair in graphical, and one pair in numerical form. Employ each pair of functions to

construct a new function with the same representation, using any combination of the

following operations addition, subtraction, division, multiplication, and composition.

Discuss your new function. How do you know it is a correct example for the given

representation?    

Interview II: Sorting and Matching Activities

The purpose of this interview is to identify college students’ knowledge about 14

functions— constant, linear, quadratic, cubic (third-degree polynomial), logarithmic,

exponential, rational, radical, segmented (piece-wise), absolute value, greatest integer,

identity, algebraic, and trigonometric (tangent or cosine)—along with their corresponding

representations that are likely to be encountered in a calculus course. The students will be

given a stack of 42 cards, with each card depicting 1 of the 14 functions in each of the

following three representations: symbolic, graphical, or numerical.  Since there will be

two sorting activities, I shall construct at least two different stacks of the 42 cards. One

symbolic depiction of the functions to be used is as follows:

22)( += xxf 1)( 3 ++= xxxf ]][[)( xxf = 1)5cos(.)( += xxf
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3)( +−= xxf 2)( += xxf 2)( 2 −= xxf xxf )5(.)( =

xxf =)( ∏=)(xf xxf log)( −=

1
5.)(
−

=
x

xf
1
1)(

−
−=

x
xxf











 ≤−

=
0...)(

0...)(
)(

fxifx

xifx
xf

Task 1

The 42 cards will be shuffled to introduce randomness and given to each participant. He

or she will then be given several minutes to skim through the cards. The participant will

then be asked to sort the cards in a manner that seems to represent a natural or logical

organization of the contents of the cards. After the cards have been sorted, the participant

will be asked the following questions.

•  Why did you sort the cards in this manner? (What criteria did you use to sort the

cards?)

•  Are you sure that all the cards in each category satisfy the criteria for it?

•  How would you designate or name your categories?

•  Can your categories be refined or further subdivided?

•  Are there any cards that caused uncertainty in sorting them? Are there any cards that

did not seem to belong to any of your categories? Are there any cards that could be

placed in more than one category?

Task 2

Ask the participant if there are other ways of sorting the cards into different categories?

Give him or her a few minutes to think and respond. If his or her answer is yes, ask him

or her to sort the cards and proceed again with the same five bullets above. If his or her

answer is no, ask him or her to discuss his or her reason for this decision.
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Task 3

Give each participant the set of cards depicting the 14 graphical representations of

functions and the set of cards depicting the 14 numerical representations of functions.

Then, ask him or her to place the set of 14 cards depicting graphical representations in a

row or column on a table separate from the 14 cards depicting numerical representations.

Next, one card depicting a function in symbolic form will be given to each participant,

and he or she will be initially asked to match it only to its corresponding graphical

representation. If the participant is not successful, the activity begins anew, and another

card depicting a symbolic representation is given to the participant, who will be asked to

match the card to its corresponding graphical representation.

If the participant is successful in matching the symbolic representation with the graphical

representation, he or she will immediately be also asked to match the two cards to their

corresponding numerical representation. Regardless of the outcome of the last matching

task, the activity begins anew. This activity will continue until the participant has been

given each of the14 cards depicting symbolic representations of functions: constant,

linear, quadratic, cubic (third-degree polynomial), logarithmic, exponential, rational,

radical, segmented (piece-wise), absolute value, greatest integer, identity, algebraic, and

trigonometric (tangent or cosine).

Tasks 4—8

The methodology for Task 4 through Task 8 is nearly identical to the methodology for

Task 3. The only difference among the tasks is the order of the matching, and the first or

base card to which all matches are to be made. The objective for Task 4 through Task 8 is

to determine if some representations—for example, numerical and graphical—are easier
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to match than others such as symbolic and graphical. I shall also try to determine if the

order of match is important to making a correct match. For example, is it easier for a

participant to match numerical with graphical or graphical with numerical? In Task 4,

participants are initially asked to match a numerical representation with a graphical one.

If he or she is not successful, the activity starts anew. If the participant is successful, he or

she is asked to match the numerical and graphical to their corresponding symbolic

representation. Regardless of the outcome of the last matching task, the activity begins

anew. This activity will continue until the participant has been given each of the 14 cards

depicting numerical representations of functions

Task 5

The participants are initially asked to a match graphical representation with a symbolic

one. If he or she is not successful, the activity starts anew. If the participant is successful,

he or she is asked to match the graphical and symbolic representations to their

corresponding numerical representation. Regardless of the outcome of the last matching

task, the activity begins anew. This activity will continue until the participant has been

given each of the14 cards depicting graphical representations of functions.

Task 6

The participants are initially asked to match a numerical representation with a symbolic

one. If he or she is not successful, the activity starts anew. If the participant is successful,

he or she is asked to match the numerical and symbolic representations to their

corresponding graphical representation. Regardless of the outcome of the last matching

task, the activity begins anew. This activity will continue until the participant has been

given each of the 14 cards depicting numerical representations of functions.
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Task 7

The participants are initially asked to match a graphical representation with a numerical

one. If he or she is not successful, the activity starts anew. If the participant is successful,

he or she is asked to match the graphical and numerical representations to their

corresponding symbolic representation. Regardless of the outcome of the last matching

task, the activity begins anew. This activity will continue until the participant has been

given each of the14 cards depicting graphical representations of functions.

Task 8

The participants are initially asked to match a symbolic representation with a numerical

one. If he or she is not successful, the activity starts anew. If the participant is successful,

he or she is asked to match the symbolic and numerical representations to their

corresponding graphical representation. Regardless of the outcome of the last matching

task, the activity begins anew. This activity will continue until the participant has been

given each of the 14 cards depicting symbolic representations of functions.

For each task, the following questions will be asked:

•  How did you match this representation (symbolic, graphical, or numerical) with this

representation (symbolic, graphical, or numerical) for this particular function? Were

there any special characteristics about this function that helped you with your match?

•  Why were you unable to match the first two representations with their corresponding

third representation for this function?

•  What characteristics helped you match all three representations for this function?

•  Was the order in which you were asked to match the representations helpful? If yes,

how? If no, why not? What order did you consider the least helpful?
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•  For which of the 14 functions do you understand the most or have the most

knowledge? Have the participant discuss a few of his or her choices. Were these

functions the easiest for you to match?

•  For which of the 14 functions do you understand the least or have the smallest

amount of knowledge? (Have the participant discuss a few of his or her choices).

Were these functions difficult for you to match?

Task 9

Task 9 will be a written task in which the participant will be asked to choose any two or

more of the 14 different functions to create “new” functions in each of the following

categories: symbolic, graphical, and numerical. He or she will be allowed to use any

combinations of the following operations: addition, subtraction, division, multiplication,

and composition. If the participant can only create “new” functions in only one or two

categories, focus on those functions.

•  What functions did you choose? Why did you choose these functions?

For every “new” function constructed in each category, symbolic, graphical, and

numerical, the following questions will be asked:

•  What type of new function did you create? How do know that your new function is

actually a function? Does it have a name?

•  What operation or combination of operations did you use to create your new

function? Why did you choose these operations or combination of operations?

•  What is the domain and range of your new functions? How are you sure your

information is correct? Discuss any other characteristics you know about your new

function.
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Is your new function similar to one of the fourteen functions or is it one that is not on the

list? Where or in what context have you studied or worked with your new function

before?
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APPENDIX C

 POSTTEST

Name____________________________
1. Define a function.

1b. Give an example of a symbolic, graphical, and numerical (tabular) representation of a
function.

1c. Give an example of a non-function using any representation, symbolic, graphical, and
numerical (tabular).

For each of the following relations, decide whether or not it represents a function. If the

relation is a function, write the word “function” and give its name, domain, range and the

name of its graph when applicable.  If the equation is not a function, write the word “non-

function” and describe or give an appropriate name for it. Discuss the reasons for your

decisions.

2. 043 =−+ yx 3. 014 2 =+− xy

4. 2x = 8 5. 01243 2 =+++ yxx
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6. 153 =y 7. 03222 22 =−+ yx

8. 0122 =−− yx 9. xy 77 =

10. 32 312960 yxx +++= 11. 02
16
2

9
2 22

=−+ yx

12. 
2

3
75.
5.

0
1

8
3

3
2 −

−
−−

y
x 13. yxx 48120 3 ++=

14. xy 82 =  15. 2
2

5.
5.

0
0

3
3

2
2

−
−

y
x
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16. ]]1[[ −= xy  17. 3xy = 6

18. xy ln2=   19. 21
7

10
5

60
6

19
3

12
7

y
x

20. 
x

y 1=  21. 
x
x

y
2

=

22. 1−= xy 23. xy 2=

24. 3 1−= xy 25. xy cos=
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26. 










 ≥

=
01

02

pKK

KK

xif
x

xifx
y 27. 

1−
=

x
xy

(28) (29)

(30) (31)
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(32) (33)

(34) (35)

(36) (37)
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(38) (39)

(40) (41)

(42) (43)
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APPENDIX D

 QUESTIONNAIRE

TITLE: STUDENTS’ KNOWLEDGE OF FUNCTIONS AS AFFECTED
BY REFORM CALCULUS ENVIRONMENT

Name_________________________

Please provide the following descriptive information. Fill in black or circle an answer
as requested.

1. My gender is (1) male (2) female

2. My ethnicity is (1) Black (2) White-Non Hispanic (3) Native American (4) Asian
American (5) Hispanic (6) Pacific Islander (7) Other.

3.  My home address is located in the following state or country.

4.  My age is                         

5. I am (1) married (2) single (3) divorced.

6. My classification is (1) freshman (2) sophomore (3) junior (4) senior.

7. My major and minor are respectively                                        and                                .

8. I understand mathematics (1) Usually (2) Sometimes (3) Rarely (4) Never.

9. The number of mathematics courses I have taken in high school is ____ .Their names
are:                                                                                                                                      

                                                                                                                                      

10. The number of mathematics courses I have taken or will take in college is ____ .Their

names are:

     Their course numbers are :
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11. I understood mathematics in high school. (1) Usually (2) Sometimes (3) Rarely (4)
      Never.

12. I understand mathematics in college. (1) Usually (2) Sometimes (3) Rarely (4) Never.

13. Most of my high school teachers explained mathematics well enough for me to
understand it. (1) Usually (2) Sometimes (3) Rarely (4) Never.

14. Most of my college instructors explained mathematics well enough for me to
understand it. (1) Usually (2) Sometimes (3) Rarely (4) Never.

15. Regardless of the setting, high school or college, I have always had trouble
understanding mathematics, regardless of my effort. (1) Usually (2) Sometimes (3)
Rarely (4) Never.

16. Since college algebra is a prerequisite for calculus, I consider my algebraic
background to be: (1) excellent  (2) good  (3) average  (4) below average (5) poor.

17. I have been taught functions using multiple representations, symbolic, graphical, and
numerical (1) Usually (2) Sometimes (3) Rarely (4) Never.

18. My high school grade point average was                     .

19. My current cumulative grade point average in college is                      .

20. The names of the honor courses I took in high school are:

21. In high school, I was usually taught mathematics from (1) traditional textbooks (2)
reform textbooks (3) both types (4) I do not know the difference between the two
types of textbooks                                                                                                                               

22. Describe your experiences (good and bad) with mathematics in high school and

college.
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APPENDIX E

 PILOT STUDY QUESTIONNAIRE

QUESTIONNAIRE
TITLE: WHAT DO COLLEGE STUDENTS REALLY THINK/KNOW ABOUT

QUADRATIC FUNCTIONS?

Name_________________________

Please provide the following descriptive information.

1. Are you a mathematics major?  If not, what is your major?
  

2. I understand mathematics. Circle one: (1) Usually; (2) Sometimes; (3) Rarely; (4)
Never.

3. I enjoy mathematics. Circle one: (1) Usually; (2) Sometimes; (3) Rarely; (4) Never.

4. The mathematics courses I have taken in high school are:

5. The last mathematics coursed I took in college was:

6. I understood mathematics in high school. Circle one: (1) Usually; (2) Sometimes; (3)
Rarely; (4) Never.

7. I understand mathematics in college. Circle one: (1) Usually; (2) Sometimes; (3)
Rarely; (4) Never.

8. This space is left open for comments on any of the above statements.
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APPENDIX F: PILOT STUDY TEST

Name____________________________

Decide whether or not the following relations are functions. If a relation is a function

identify it by name, give the domain, range and its graph. If a relation is not a function,

state why and give its name if applicable.

1. 2xy = 2. yx −=2

3. 2161568120)( xxxS −+= 4. 142)( 2 −−= xxxf     

5. 22)( 2 −+= xxxf 6. ]][[)( xxf =

7. xxf =)( 8. 








−
≥+

=
01
01

pKK

KK

xifx
xifx

y

9. 3)( =xf 10. 23 xxy +=
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11. xxf sin)( = 12. 13)( −= xxf

13. 1232 =+ yx 14. 
4

)( 2 −
=

x
xxf

15. xxf 2)( = 16. 4)( 23 −++= xxxxf

17. A = {(1, 2), (3, 9), (6, 6), (5, 10), (7, 2)} 18. 
2

3
75.
5.

0
1

8
3

3
2 −

−
−−

19. xxf =)( 20. 1822 22 =+ yx

21. xy =2 22. 66222 =+++ yxyx
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23. 122 =− yx 24. yyyx ++= 23

25. 3=x 26. 3=++
x
y

y
xxy

27. B = {(2, 29), (8, 11), (3, -7), (4, 9), (2, 100)} 28. 23 =− xyy

29. xxf log)( = 30. 
4

cos)(
−

=
x

xxf
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APPENDIX G

 PILOT INTERVIEW QUESTIONS FOR QUADRATIC FUNCTIONS

1. In your own words, give the definition of a function. Give an example of a function.
The words quadratic function means what to you?

8. Give an example of a quadratic function and its corresponding graph. Why is your
example a quadratic function? Suppose the graph of quadratic function opens upward,
what is the minimum point on the graph called? Conversely, if the quadratic function
opens downward, what is the maximum point on the graph called?

9. Which of the following functions (give them the cards) are quadratics? Did the
equation you chose cross the x-axis? If so, where? What is the maximum number of
times your equation crosses the x-axis? Are you able to decide where the equation you
chose crosses the x-axis without graphing it? If so, what is your procedure? Does your
equation also cross the y-axis? If so, where?

10. I
s it possible for the graph of a quadratic function not to cross the x-axis? If yes, where
is the graph of the quadratic function located? If not, why not? Is it possible for the
graph of a quadratic function not to cross the y-axis? If yes, why? If no, why?

5. Is the inverse of 462 2 ++= xxy a function?  What is the shape of the graph of the
inverse

462 2 ++= xxy ?

6. If a quadratic function has complex solutions (imaginary solutions), what information
does this fact give about its graph?

7. How many possible points of intersection exist between the graph of a quadratic
function and the graph of a linear function? How many possible points of intersection
exist between the graph of a quadratic function and the graph of a circle?


