
Methods for Predicting Flow-Induced

Vibrations in Bellows Expansion Joints

by

Stephen L. Higgins

(Under the direction of R. Benjamin Davis)

Abstract

Bellows expansion joints are a specialty corrugated pipe fixture that serve critical purposes

in aeronautics, space, defense and industrial applications. Their corrugated design makes

bellows joints susceptible to a high-amplitude, flow-induced vibration phenomenon that can

compromise the structural integrity of the joint. The current empirically-based method used

by NASA to assess flow-induced vibration in bellows joints was developed in the early 1980s.

This historical method is discussed here with a new nondimensional analysis that provides

a simpler way to apply the model and examine its output. Presently, new bellows designs

are beyond the empirical basis of this historical method, underscoring the need for more

modern methods that are computationally efficient and physically insightful. To this end,

a physics based, coupled oscillator model of bellows flow-induced vibration is developed. A

comparison of the model output to experimental bellows response is presented and discussed.

Index words: Flow, Induced, Vibrations, Bellows, Expansion, Joint, Van der Pol,
Oscillator
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Chapter 1

Introduction and Motivation

Bellows expansion joints are corrugated pipe fittings that serve critical purposes in aero-

nautics, space, defense, and industrial applications. First developed at the end of the 19th

century, bellows joints are used to absorb thermal deformation and isolate vibration. They

are also used as a substitute for expansion loops to save space and prevent head loss. For

aerospace applications, bellows are commonly used in rocket propulsion systems as part of

feed lines to allow for articulation and reduction of misalignment loads. They can be descri-

bed as having a number of uniform convolutions, much like an accordion, that are commonly

U-shaped as seen in Fig 1.1.

Bellows are well suited for low pressure applications as over-pressurization can cause

plastic deformation. There are numerous configurations and types of bellows each having

advantages and disadvantages, but the most popular have U-shaped convolutions and are

typically constructed by hydroforming thin walled cylinders of stainless steel or Inconel alloy.

Metal U-shaped bellows are the only type examined in this thesis; however, the methods

presented may be applicable to other bellows types.

The qualities that make bellows joints useful also make them susceptible to high-amplitude

flow-induced vibrations (FIV). FIV is a phenomenon in which fluid flow interacting with elas-

tic bodies induces motion. The response to this coupling of fluid and structural systems can

cause fatigue failure. The phenomenon can be found across a wide range of engineering

structures in applications such as power generation and transmission, aerospace, naval and

civil engineering. In the case of bellows joints, as internal fluid flow passes over the cavities
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Figure 1.1: Examples of single and double type bellows expansion joints (photograph by
Peter Sonnabend, distributed under a CC-BY-SA 3.0 license)

formed by the convolutes, an oscillating shear layer develops across these gaps and impin-

ges on adjacent, downstream convolutes. When the frequency of this oscillating shear layer

matches a natural structural frequency of the bellows, large amplitude responses can occur.

This is particularly challenging in the aerospace industry where the drive for lightweight

components increases susceptibility to FIV.

There have been several bellows failures due to FIV. During the late 1960s and early

1970s, fuel subassemblies for the Japanese JOYO experimental fast breeder reactor were

tested [1]. During testing there were a number of bellows, serving as components of sodium

valves, that failed due to FIV, with one case resulting in a sodium leak. Numerous bellows

failures occurred as part of the Joint European Torus fusion energy research project in the
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1980s and early 1990s. Bellows leaks were the most significant item causing operational

stoppages and delays [2].

Tragically, bellows fatigue was potentially responsible for an explosion at a chemical

plant near Flixborough, England in 1974. The blast claimed 28 lives, seriously injured 36

others and completely destroyed the facility. Discounted by the original inquiry, more recent

investigations suggest that an initial bellows failure, likely caused by FIV, released 10-15

tons of cyclohexane forming a vapor cloud that detonated with a force equivalent to 280

tons of TNT [3].

The bellows FIV phenomenon was first encountered by NASA during the second flight

of the Saturn V rocket—the Apollo 6 mission—in which three J-2 engines malfunctioned.

Bellows components of the LH2 propellant lines failed due to fatigue caused by FIV on

the S-II engine No. 2 and on the single S-IVB engine. The S-II No. 3 engine failed after

receiving the shut down command intended for the ailing No. 2 engine due to crossed control

wires [4]. The S-II stage was designed to compensate for the loss of a single engine, but the

loss of both the No. 2 and 3 engines caused the spacecraft to achieve a less than nominal

trajectory. Despite the failures, most of the missions parameters were achieved and the

mission was considered a success.

The bellows failures during the Apollo 6 mission instigated a program of research that

lasted into the early 1980s, in which NASA and its affiliate institutions studied the bellows

FIV phenomenon. This research culminated in the 1983 NASA technical memorandum,

TM-82556, which details a semi-empirical method for predicting fluid-loaded axial natural

frequencies and flow-induced stresses in bellows joints of certain configurations [5]. This

method is still in use by NASA and its contractors. Chapter 3 of this thesis presents this

historical method along with a new nondimensional analysis that provides a simpler way to

apply the model and examine its outputs.

Outside of NASA, bellows researchers in the 1960s developed approximate solutions for

predicting structural frequencies and stresses as there is not a direct solution of the shell equa-
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tions for a bellows’ toroidal shape [6]. Anderson [7] developed design charts and equations for

simplified calculations of bellows stresses; compensating for inaccuracies in the approximate

solution with correction factors. His research forms the foundation of the guidelines set by

the Standards of the Expansion Joint Manufacturers Association (EJMA) [8] for designing

bellows joints. Numerical analysis has also been used to model bellows stresses using finite

element and finite difference methods; however, to date, little research using computational

fluid dynamics (CFD) techniques to model bellows internal flow or FIV characteristics has

been published.

Presently, new bellows designs are beyond the empirical basis of the historical method,

underscoring the need for more modern methods that are computationally efficient and

physically insightful. To date, there does not exist a physics-based method of predicting

this complex bellows fluid-structure interaction (FSI) phenomenon. The goal of this thesis

is to develop an approach to predict bellows FIV that captures the salient physics of the

phenomenon while dramatically reducing computational expense. To accomplish this, an

FSI model that couples a discrete mechanical model of the bellows to a representation of

the fluid wake expressed in terms of van der Pol oscillators is proposed in Chapter 4. This

method reduces the computational expense of the problem by several orders of magnitude,

requiring minutes compared to the weeks or months required for high-fidelity FSI simulations.

Additionally, this model can be exercised across a large design space to better understand

the physical parameters that strongly influence bellows FIV. This understanding will allow

designers to select bellows joint configurations that minimize FIV potential. It will also

enable the design of bellows joints to be more robust in the face of FIV.
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Chapter 2

Background

While the earliest publication discussing bellows expansion joints was in 1946 [9], it was

not until the 1960s and 1970s, with the rapid advance of power generation and aerospace

technologies, that bellows research gained significant momentum. Much of this early rese-

arch emanated from the United States Air Force [10] and NASA with their affiliate insti-

tutions [11–16]. NASA’s research culminated in the 1983 technical report TM-82556 [5].

Since then, institutions worldwide have continued to provide new insights and methods of

modeling the behavior of bellows joints. There are several key aspects of bellows systems

that researchers have studied to develop more accurate prediction models, namely, bellows

stiffness, axial and lateral vibrations, fluid-added mass, flow-induced vibrations, stress and

fatigue.

2.1 Stiffness

The stiffness of bellows joints has been particularly challenging to model due to their unique

geometry. TM-82556 [5] defines the bellows stiffness of one-half of a convolution as k =

2NcKa and the overall stiffness as

Ka =
DmEt

3Np

Nch3
, (2.1)

where Dm is the bellows mean diameter, E is Young’s modulus, Np is the number of plys, Nc

is the number of convolutes, t is ply thickness, and h is convolute height. See Fig. 2.1 for a
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diagram of a bellows convolute with nomenclature. The authors advise that the user employ

experimentally determined stiffness values if possible as the results were only approximate

to experimental values.

Another method for calculating stiffness is included in the EJMA standards [8]. For one

convolution the axial spring rate is represented as

k = 1.7
DmEt

3
pNc

h3Df

, (2.2)

where tp = t
√
Db/Dm is the corrected ply thickness to account for thinning caused during

the forming process and Db is the bellows inside diameter. The design factor Df relates

U-shaped convolution segment behavior to a simple strip beam and is determined using a

design chart found in the EJMA standards [8].

Jakubauskas [17] was able to calculate the lateral stiffness of a bellows using the relation

EIeq =
1

4
kλR2

m, (2.3)

where Ieq is the equivalent second moment of area, k is the axial stiffness for one half of a

convolution, λ is the convolute pitch, and Rm is the bellows mean radius. The accuracy of

Eq. (2.3) is dependent on the accuracy of the provided k, which can be found by using the

previously mentioned methods, experimentally or with finite element methods (FEM). For

axial stiffness, Jakubauskas [17] also found that the half convolutions at the fixed ends of

a bellows exhibited an increased stiffness due to their restrained condition. All other half

convolutions had approximately the same stiffness.
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Figure 2.1: Convolute diagram with bellows nomenclature.

2.2 Axial Vibrations

Axial—also referred to as accordion or longitudinal—vibration is characterized by a sinus-

oidal displacement of the convolutes along the center axis of the bellows. Daniels [11] first

discussed predicting axial modes for welded bellows and suggested using elastic, homogene-

ous bar formulas to calculate the axial natural frequencies and mode shapes. He verified his

methods experimentally by mounting fluid filled bellows on a shaker table. Daniels’ method

of predicting axial natural frequencies was found to be accurate by Trainer, et al. [10] for

both welded and formed type bellows. Lytle [18] modeled the bellows as a porous elastic

cylinder and used a modified wave equation to calculate critical frequencies. His theoreti-

cal results compared within 9% difference to experiment; however, Lytle did not detail his

experimental methods.

Morishita, et al. [19], modeled bellows by approximating them as fixed-fixed uniform rods.

A seismic table was used to test a standard bellows restrained at both ends and with a flow

sleeve. Tests were conducted with and without the bellows filled with water. Experiments

compared within 20% to the predictions from the uniform rod model and from FEM analysis
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for the first mode. Accuracy was better for the second and third modes with approximately

10% and 2% differences respectively.

Methods to determine axial natural frequencies of U-shaped bellows having different end

conditions (fixed-fixed, fixed-free and fixed-free with a weight at one end) were developed

by Li, et al. [20], by modeling the bellows as a pipe. Axial natural frequency results from

experiments performed using tap testing were in good agreement with the model, having

average percent differences within 6% for air and 9% for water. Radhakrishna and Rao [21]

extended Li’s work by developing a method for calculating axial vibrations for bellows with

elastically restrained end conditions.

Jakubauskas and Weaver [22] modeled the bellows and the fluid region using axisymmetric

shell and triangular finite elements, respectively. They verified the model using tap testing on

a bellows with restrained end conditions, finding good agreement with just a 2% difference

between theoretical and experimental natural frequencies in air and a corresponding 7%

difference when filled with water. They also compared Gerlach’s method [12] for predicting

axial natural frequencies and concluded that its prediction was less accurate than their model

for higher frequencies; however, the presented data show only a slight improvement of about

1% between the two methods for water filled bellows and 7% in air. A similar comparison

was made with the axial frequency prediction method distributed by the EJMA [8]. It was

found to be less accurate at higher modes with about a 6% difference for fluid-filled bellows

and 11% difference in air.

2.3 Lateral Vibrations

Lateral—also referred to as transverse or bending—vibration in bellows has been studied in

parallel with axial vibration. Daniels [11] used the same simple, elastic, homogeneous bar

formula to model lateral modes while assuming the bellows to be a thin cylinder. While

Daniels claimed the agreement between the predicted and experimental lateral frequencies

for welded bellows to be fair, his data show differences averaging around 22%. Furthermore,
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Trainer, et al. [10] observed that Daniels’ methods did not accurately predict lateral fre-

quencies for either welded or formed bellows. Li, et al. [20] also considered lateral modes of

vibration using their same technique used for the axial case. They found that the lateral

frequency predictions approached the experimental values, but were not as accurate as the

predictions for the axial case, having about an 8% difference when filled with air and a 16%

difference when filled with water.

Morishita, et al. [19] modeled lateral vibrations using Timoshenko beam theory. Ti-

moshenko beam theory is an extension of Euler-Bernoulli beam theory that considers shear

deformation and rotational inertia. It is useful for modeling short beams as it allows rota-

tion between the cross section and the bending line, effectively decreasing the beam stiffness

and changing the natural frequency. To validate the model, Morishita, et al. [19] subjected

a standard bellows and a set of two bellows mounted in a segment of pipe to lateral ex-

citation using a seismic table and found the first five natural frequencies. The results of

the model compared favorably with the experiment and with an FEM analysis, with one

notable exception. A bellows with a flow sleeve, i.e. a segment of pipe that extends into

the bellows and shields the convolutes from direct flow, incurred significant error due to the

fluid-structure interaction effect between the convolutions and sleeve. They determined that

this effect could be accounted for with a virtual added mass concept that models the bellows

as two coaxial cylinders [19]. They also compared the lateral modes of a standard bellows

experiment to the EJMA [8] method and found that it drastically over-predicted the lateral

natural frequencies. They attributed this to the EJMA method neglecting to account for

rotary inertia.

Transverse vibrations were the subject of a doctoral thesis and reports by Jakubaus-

kas [17] and Jakubauskas and Weaver [23,24]. Their model was based on Timoshenko beam

theory and included considerations for fluid-added mass, convolute distortion and rotary

inertia. An exact solution and an approximate Rayleigh quotient formula were developed.

Experimental results, found using tap testing on both single [23] and double [24] bellows
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configurations, were compared with the model, and a method provided by the EJMA [8].

The model agreed within 5% of the experimental results for both air and water filled bellows,

but the EJMA method drastically diverged from the experiment with increasing mode num-

ber due to neglecting rotational inertia and convolute distortion effects. When neglecting

the effect of added mass due to convolute distortion in the model, a 140% difference was

incurred. This difference increased to 240% when rotary inertia was also excluded. Jaku-

bauskas and Weaver also found that the effect of shear deformation and the Coriolis force

to be negligible for lateral modes. A vibrating pipe will have a Coriolis force component as

the fluid velocity flows relative to the pipe while the pipe has some non-zero circumferential

component to its motion. This effect was found to only alter the lateral natural frequencies

by 0.5%. Broman, et al. [25] also modeled lateral bellows modes using his method discussed

in Section 2.2. Comparison with the calculated and experimental results from Jakubauskas

and Weaver [23] yielded an improved prediction of lateral frequencies of a few percent at

higher modes.

Euler-Bernoulli beam theory with considerations for fluid-added mass and rotary inertia

was used by Radhakrishna and Rao [26,27] to model transverse vibrations for a rotationally

restrained double bellows. In a separate study, they used Timoshenko beam theory with an

approximated Rayleigh Quotient method to investigate lateral vibrations of multi-ply bellows

with elastically restrained ends [28]. While there was no comparison with experiment, it was

found that the approximated solution varied from the exact solution by as much as 33% for

the first mode, suggesting that the Rayleigh Quotient method is insufficient for predicting

natural frequencies of multi-ply bellows.

Jakubauskas and colleagues [17, 23] and Watanabe, et al. [29] have also found that in-

creasing the internal pressure of bellows has the effect of significantly reducing the lateral

frequency up to the point of buckling failure. Jakubauskas observed a lowering of the fun-

damental frequencies by about 7% when pressurized to 200 kPa, but the effect diminishes

with increasing mode number. Watanabe, et al. [29] also found that lateral parametric reso-
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nances occur in bellows subjected to internal periodic fluid pressure excitation. Parametric

resonances are caused by varying a system parameter, in this case internal pressure, with

time, and are twice the natural frequency. The effect was modeled and compared with the

results from an experiment using a bellows with fixed ends, filled with oil, and an oscillating

piston generating internal periodic pressure. The results are said to be in good agreement

with experiment although they are presented in a graphic and not quantitative form.

2.4 Other Vibration Modes

In addition to axial and lateral modes, researchers have identified other vibration modes

of bellows. Daniels [11] identified a“liquid mode” for welded bellows that he described as

a motion of the bellows ends relative to each other that occurs when an excess amount of

liquid in the convolutes is pumped in or out, effectively decreasing or increasing the liquid

column and displacing the bellows end. It should be noted though that in Daniels’ tests it

appears that one end of the test bellows is free to move. No other researcher has documented

this phenomenon and would seem unlikely to occur in most applications as bellows ends are

usually restrained in some manner. The convolute bending mode is described by Gerlach, et

al. [5] as a bending of the convolute walls and was only observed for high velocity gaseous

flows with radial acoustic resonance. Torsional modes were modeled based on uniform rod

theory by Broman, et al. [25]. He found that torsion natural frequencies were more than an

order of magnitude higher than axial and lateral natural frequencies.

2.5 Fluid-Added Mass

As a body in fluid accelerates, some volume of the surrounding fluid is entrained. The

entrained fluid effectively increases the inertia of the system. This phenomenon is referred

to as fluid-added mass. This is critical to consider as the additional mass will affect the

system’s natural frequencies. In bellows joints, determination of the fluid-added mass is

complicated by the convolute geometry and motion. The simplest method to account for
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fluid-added mass is used by the EJMA [8], which considers only the mass of fluid contained

between rigid convolutes. Gerlach’s [12] methods included a fluid-added mass term with two

components: the mass of the fluid trapped between the rigid convolutes and the varying mass

as the convolutes are compressed and expanded. NASA TM-82556 [5] modified Gerlach’s

method to the one that is currently used by NASA. This approach is presented in Chapter

3.

Jakubauskas [30] established that the EJMA method was capable of accurately predicting

the first few axial natural frequencies, but the error increased with increasing mode number.

He modified the EJMA’s method by including considerations for fluid-added mass due to

convolution distortion and accounting for return flow back into the central area of the bel-

lows cross section. With these modifications Jakubauskas was able to decrease the error in

predicting axial natural frequencies for the first four modes to within a 2% difference relative

to experiment; a drastic improvement over the prediction of a maximum 16.8% difference

found using the original EJMA method.

In Jakubauskas and Weaver [31], a finite element analysis was performed to construct

a distortion component for fluid-added mass when concerned with lateral vibration modes.

They found that neglecting the effects of this distortion component on the fluid-added mass

would result in an overestimation of the true bellows transverse natural frequencies. De-

sai and Thornhill [32] calculate fluid-added mass based on the longitudinal position of the

convolutes in their numerical model (which is discussed further in Section 2.6.1).

2.6 Flow-Induced Vibrations

In general, modeling FIV can be challenging as the underlying excitation mechanisms can

vary greatly. Several researchers have tried to generally classify FIV phenomena to bet-

ter compare it across disciplines. Weaver [33] classified the excitation mechanisms into three

groups based on the source of vibration: forced vibrations, self-controlled vibrations and self-

excited vibrations. Forced vibrations are said to be induced by turbulent flow, are random
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in nature, and the structure has a negligible effect on the fluid. For self-controlled vibrati-

ons, the fluid forcing has a periodic component and can induce large amplitude structural

vibration if the fluid frequency is near a natural frequency of the structure. The amplitude

of vibration will increase until the motion of the structure begins to control the frequency

and magnitude of the fluid forces. The fluid velocity range over which this occurs is referred

to as the lock-in region. Elastically restrained cylinders in flow, risers used on offshore oil

platforms, and heat exchanger tube bundles are examples of systems that can experience

self-controlled vibration. Self-excited vibrations also involve a periodic fluid force amplifying

the structural motion, but the periodic force is originally created by motion of the structure.

If a structural motion does not exist, the periodic fluid force will not occur. Aeroelastic

flutter in wings and transmission line gallop are a couple of examples.

Naudascher and Rockwell [34] use a similar approach to distinguish between the excitation

mechanisms, but elaborate on self-controlled vibrations or, as they call it, instability-induced

excitation, by defining three types of instability controls: fluid-dynamic, fluid-elastic and

fluid resonant. For the fluid-dynamic case the excitation force is only a function of the

flow conditions. The excitation force of the fluid-elastic case is dependent on a coupling

of the fluid force and an oscillating structure where as the fluid-resonant case depends on a

coupling of the fluid force and a fluid oscillation. The latter is very important in compressible

flows. The examples listed previously for self-excited vibrations are fluid-elastic systems.

The Helmholtz resonator is a common example of the fluid-resonant case. The type of

excitation mechanism at work in bellows FIV is a fluid-elastic instability-induced excitation

(self-controlled in Weaver’s parlance). For more information on FIV research and methods,

the texts by Blevins [35] and Nakamura, et al. [36] are recommend in addition to those

previously cited.
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2.6.1 Bellows Flow-Induced Vibrations

The earliest researchers of FIV in bellows joints was C.R. Gerlach and his associates [12–14,

37,38]. They first theorized and concluded after experimentation that the excitation mecha-

nism for FIV in bellows joints was caused by the frequency of fluid vortices shedding off of the

bellows inner convolute tips matching a natural frequency of the bellows [12]. This behavior

is akin to the classical case of vortex-induced vibration (VIV) of an elastically restrained

cylinder subject to fluid flow. Gerlach found that the Strouhal number, a dimensionless

number used to describe oscillating flow, can be used to predict the conditions at which

maximum bellows excitation occurs. The Strouhal number is defined as St = ffll/U where

ffl is the fluid frequency, l is the characteristic length and U is the flow velocity. Using the

convolute root diameter, α, as the characteristic length, he found a Strouhal number range

of St ≈ 0.1− 0.3 provided a good prediction of the vortex shedding frequencies that excite

bellows structural response. VIV of an elastically restrained circular cylinder has approx-

imately the same characteristic Strouhal number, leading Gerlach to believe in the vortex

shedding hypothesis.

Gerlach developed a method for calculating the axial natural frequencies by modeling

the bellows as a N-degree-of-freedom spring-mass mechanical system, where the springs and

masses are in series and N represents one less than two times the number of convolutes. In

1972, Bass and Holster [15] expanded on Gerlach’s work by conducting bellows testing with

internal cryogenic flow. They found that heat transfer causes local boiling in the convolutes,

which suppresses vortex formation and dampens the system. Bass and Holster also found

that the build up of frost on the outside of the bellows with cryogenic flow had negligible

effect on the amplitude of FIV; however, light and heavy ice formations could potentially

reduce or completely eliminate vibrations. Two reports, Johnson, et al. [16], conducted at

the Southwest Research Institute (SwRI) in 1979, and NASA TM-82556 [5], conducted at

Marshall Space Flight Center in 1983 and led by Gerlach, used Gerlach’s earlier frequency

prediction methods and carried out extensive testing on a large variety of bellows. The
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resulting model is capable of predicting axial vibration frequencies and flow-induced stresses,

and is still in use today by NASA. A 1986 report by Desai and Thornhill [32], prepared

under a NASA contract, adopted a different approach to predicting bellows FIV. They

determined that the TM-82556 method of predicting stresses and natural frequencies was

too conservative and were concerned about its reliance on empirically based functions. The

researchers developed a lumped parameter vibration model that coupled convolute motion

in the axial and lateral directions. The model required numerical methods to solve for time-

dependent displacement, from which the frequency could be calculated using Fourier analysis.

While unique, the model could only be applied to bellows having five or less convolutes due

to the cycles until failure prediction decreasing unrealistically. Furthermore, there was no

comparison between the predicted natural frequencies and experiment.

In contrast to vortex shedding being the excitation mechanism, the other theorized pos-

sibility is that bellows FIV is caused by impinging free shear layer instabilities over the

periodic cavities formed by the convolutions. Rockwell and Naudascher [39] first suggested

bellows FIV as a cavity driven oscillation in 1978 and compared it to similarly proportioned

rectangular cavities which generally have characteristic Strouhal numbers of St ≈ 0.5. They

explained the difference between Gerlach’s Strouhal number and their own by suggesting

that the rounded corners of a bellows cavity have the effect of lowering the oscillation fre-

quency. However, it seems improbable that this would explain a nearly twofold difference

in St. What Rockwell and Naudascher failed to mention or realize was that Gerlach used

the convolute root diameter, α, as the characteristic length while they used the length of

the cavity opening in the stream-wise direction. In the case of a bellows this cavity length

would be the convolute pitch, λ, shown in Fig. 2.1.

Weaver and Ainsworth [40], who experimentally investigated the FIV failure of a double

bellows used in the Joint European Torus fusion energy project, supported the concept of free

shear layer instability as the excitation mechanism. They found that the Strouhal number,

based on the convolution pitch and corresponding to the peak vibration amplitude in each
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mode, was consistent with that of free shear layer instability over a deep cavity, finding a

Strouhal number of St = 0.45 for the bellows tested. Gidi and Weaver [41,42] built and tested

a two dimensional convolute model in a flow loop, described in more detail in Chapter 4, to

visually examine the phenomenon and arrived at the same conclusion. Watanabe [29] sought

to further evaluate the flow pattern around bellows and evaluate the excitation mechanism.

He created a similar two-dimensional model except that the convolutions were formed by

placing masses on the end of plate springs and were not coupled together. He concluded from

flow visualization studies that shear layer instability is the excitation mechanism, but also

suggested that a fluid elastic feedback system caused by a periodic vortex street synchronizing

with the moving convolutes has a significant role on the instability mechanism as well.

A survey of the bellows mentioned in the literature indicates that, for a typical bellows, λ

ranges between 1.5α and 2α with an average around 1.7α. One can compare the open cavity

flow theory constructed by Rockwell [43] with experimental bellows data to help determine a

representative St range for bellows. For Rockwell’s theory, he compared St with the length

of the open cavity divided by the cavity height. In bellows these dimensions correspond

to convolute pitch, λ and convolute height, h. The available bellows experimental data

have a narrow St range of 0.42 − 0.50 for multiple modes with the exception of the Bass

and Holster [15] data, which is confounded by the effects of an upstream elbow. This is

in contrast to Gerlach’s [14] wider range of St ≈ 0.1 − 0.3. The bellows data fit very well

with the theory for the first fluid mode response for deep, rectangular cavity flow despite the

geometric differences.

Jakubauskas [17] and Jakubauskas and Weaver [23,24] also experimentally studied lateral

FIV of single and double bellows. They found that internal flow in bellows can excite its

lateral modes and that the static method mentioned in Section 2.3 is capable of accurately

predicting the flow-exited frequencies. A Strouhal number of St = 0.45 was again found to

be appropriate.
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Figure 2.2: Experimental bellows data overlaid on Rockwell’s [43] Strouhal number vs.
pitch/height ratio chart, (a), with detailed area, (b)

2.6.2 Flow-Induced Acoustic Resonance

Baylac, et al. [44] studied the acoustic behavior of bellows joints with flow sleeves used in a

piping system carrying pressurized CO2 for a nuclear reactor. It was found that the cavity

between the flow sleeve and convolutions could potentially act as an acoustic resonator

and induce stress on the bellows. By modeling a two-dimensional resonator, they were

able to predict the first six natural frequencies with less than ten percent error. Popescu

and his colleagues [45–47] studied flow-induced acoustic resonance in corrugated pipes with

applications to riser pipes used on drill platforms. They modeled the acoustic response

with a one-dimensional, transient model that couples the wave equation and a van der Pol

oscillator equation to simulate the flow-induced oscillations over convolute cavities. The

model’s frequency predictions agreed within 1.3% of the experimental frequencies and is

able to predict lock-in velocity and onset fluid velocity.

2.6.3 Effect of Upstream Flow Conditions

In typical bellows installations it is not uncommon for the operational flow conditions to be

nonuniform due to an upstream elbow or bend in the piping system. Johnson, et al. [16]
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and TM-82556 [5] first studied the effect of an upstream elbow on bellows joints. It was

found that, in the presence of an upstream elbow, the mean flow velocity required to excite a

given mode is shifted downward and the amplitude of flow-induced stress (FIS) is increased.

TM-82556 attempts to account for the effect of an elbow on FIS, but does not make any

considerations for shifting the velocity.

Similarly, Weaver and Ainsworth [40] found that nonuniform upstream velocities resulted

in the reduction of the mean velocity necessary to excite a resonant response as the bellows

could be excited by sufficiently high flow velocities over just a portion of the bellows cir-

cumference. They concluded that elbows and sudden transitions immediately upstream of

the bellows should be avoided to maintain uniform flow. Jakubauskas [23] found that the

presence of an 90o elbow immediately upstream can reduce the mean flow velocity required

to excite a resonance response by an average of 29% and resulted in an increase in average

Strouhal number to St = 0.574.

2.7 Bellows Stress and Fatigue

The determination of the fatigue life of bellows joints due to FIV is paramount. The ability

to accurately quantify the serviceability of these critical components is necessary to ensure

reliable operation. However, predicting the operational life span of bellows joints is very

complex due to the variety of bellows designs and associated flow environments. An excellent

review of bellows deflection and stress models prior to 1986 was written by Becht [48] in which

he presents a detailed summary of theoretical and analytical models. General elastic shell

theroy modified for axisymmetric shells is one example. Numerical methods used include

finite-element and finite-difference methods and numerical integration, with the latter two

being used to solve shell equations. Analytical methods used for predicting both axial and

bending stress include beam and cylinder approximations, shell theory, elastic numerical

analysis and nonlinear numerical analysis.

Following this review, Osweiller [49] develped a finite element program based on linear
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elastic theory for predicting stresses due to axial displacement and internal pressure. Compa-

rison with the EJMA standards yielded good results. A “linear bellows element” is proposed

by Mackenzie and Boyle [50] for use in an finite element program. Li, et al. [51] also used

a finite element model for stress and fatigue prediction and determined from testing that

fatigue cracks usually originate from the positions of maximum strain located at the roots.

Schonberg, et al. [52] carried out testing on bellows with U-shaped convolutes and found

that common commercially available flat strain gauges were inadequate for measuring thin-

walled, formed, metal bellows with small convolute radii. To calculate stress for axial modes

Morishita, et al. [19] simply used the model provided by the EJMA [8], but combined this

model with other considerations to develop a stress model for transverse modes. This model,

however, has not been confirmed experimentally. Becht [53] focuses on trying to understand

strain effects in bellows to reduce the amount of fatigue tests required for bellows design. The

effects that corrosive media have on the fatigue of bellows was the concern of Zhu, et al. [54],

which found that corrosive media can accelerate bellows crack initiation and propagation ra-

tes. Stelmar [55] complied a substantial amount of stress and fatigue data for bellows joints

to compare with EJMA and ASME prediction methods and presents an empirically-based

S-N curve.

Gerlach first introduced his “stress indicator” approach in 1972 [14]. After comparison

with extensive testing this method did not accurately predict the behavior of bellows failure.

It neglected to recognize the effect of the mode number. The “CFQ” approach, proposed in

Johnson, et al. [16], was a modification of the stress indicator method in an attempt collapse

the experimental data along a single relationship by including considerations for the effect

of mode number. This method was also found to be inadequate as it failed to account for

the non-linear damping behavior of bellows. The final model deviated from the previous

methodology and used empirical coefficients to fit the model to the experimental stress data.

This method is currently still in use as part of NASA TM-82556 [5] presented in Chapter 3.
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Chapter 3

Analysis of Historical NASA Method: TM-82556

NASA Technical Memorandum (TM)-82556 [5] is the culmination of almost two decades of

research on bellows FIV by NASA and SwRI. Through extensive testing, a semi-empirical

model was developed to predict bellows axial natural frequencies and flow-induced stresses.

This method is still being used by NASA and its affiliate institutions; however, it is being

applied to bellows configurations that are outside of its experimental basis. To better un-

derstand and evaluate the TM-82556 method, which can be something of a black box for

users, it is presented here in a succinct format. Through a nondimensionalization of its key

equations, its predictions are also compared to existing experimental data.

3.1 Axial Natural Frequencies of Bellows Joints

TM-82556 describes a bellows joint as a series of springs and masses, as shown in Fig. 3.1,

where each root and crown is assigned as a mass for a total of s = 2Nc − 1 masses.

m1 m2 ms

k1 k2 k3 ks+1

ms−1

ks−1 ks

x1 x2 xs−1 xs

Figure 3.1: TM-82556’s spring-mass representation of a bellows joint.

The formula for the axial natural frequencies of this bellows model is

f(n) =
1√
2π

√
k

mt

(
1 + cos

(
π(2Nc − n)

2Nc

))
, (3.1)
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where n is the axial mode number ranging from 1 . . . 2Nc−1, Nc is the number of convolutes

and the total mass, mt, is equal to the sum of the structural mass, ms, and the fluid-added

mass, mfl. The structural mass is defined by

ms = πρsDmtNp(πa+ h− 2a), (3.2)

where ρs is the structural mass density, Dm is the mean diameter of the bellows, Np is the

number of plys, t is the ply thickness, a is the mean convolute radius and h is the mean

inside convolute height, (see Fig. 2.1). The fluid-added mass is given by

mfl = B1mfl1 +B2mfl2

(
n

Nc

)
, (3.3)

where B1 and B2 are empirical constants having values 1.0 and 0.68, respectively. The mfl1

and mfl2 terms are

mfl1 =
πρflDmh(2a− tNp)

2
, (3.4)

and

mfl2 =
ρflDmh

3

λ− α , (3.5)

where ρfl is the fluid mass density, λ is the convolute pitch and α is the convolute root

width. Equation (3.4) is used to calculate the fluid-added mass contained within one-half of

a convolute and Eq. (3.5) accounts for the fluid-added mass due to convolute distortion. The

bellows stiffness of one-half of a convolution is defined as k = 2NcKa. The bellows spring

rate, Ka, is given by

Ka =
DmENpt

3

Nch3
, (3.6)

where E is the Young’s modulus.

21



3.2 Nondimensional Analysis of the Axial Natural Frequency Formula

A nondimensional version of the axial natural frequency formula, Eq. (3.1), is shown here.

This expression allows the TM-82556 prediction of axial natural frequencies to be compared

to experimental frequency data across a range of bellows designs. The nondimensional

frequency function, f , is given by

f =

√
mt

k
f(n) =

1√
2π

√
1 + cos

(
π

2Nc − n
2Nc

)
. (3.7)

To compare axial natural frequency predictions across designs with varying Nc it is helpful

to cast f in terms of a mode number parameter, that is itself a function of Nc. This mode

number parameter, η, is defined as

η ≡ 2Nc

2Nc − n
for n = 1, 2, . . . , 2Nc − 1, (3.8)

and increases linearly with increasing mode number. The nondimensional frequency expres-

sion in terms of η is now

f =
1√
2π

√
1 + cos

(
π

η

)
. (3.9)

The available experimental natural frequency data consider bellows joints of a variety

of designs. Using Eq. (3.9), it is now possible to compare these experimentally determined

natural frequencies to the TM-82556 prediction on the same plot shown in Fig. 3.2. Ex-

perimental data is compared from many sources—TM-82556, Gerlach [14], Ainsworth and

Weaver [40], Jakubauskas and Weaver [22, 24], Morishita, et al. [19], Bass and Holster [15]

and Li, et al. [20].

Examining the percent error between the data sets in Table 3.1, it is observed that the

data collected by NASA [5] and Gerlach [14] have a good fit to the predicted frequency

curve with the exception of three bellows [13]. These discrepancies may be because the pro-
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vided geometry for these three bellows is slightly inaccurate causing an incorrect prediction

using Eq. (3.6). It was noted by the authors that the reported geometric values were a

representation and may not be completely accurate [13].

The Jakubauskas and Weaver [22], Morishita, et al. [19] and Li, et al. [56] data sets

also compare favorably with the prediction. Of the remaining three data sets, Bass and

Holster [15] is unique in that it involves cryogenic flow testing. Data for both water and

liquid nitrogen flow tests are listed and both sets have significant percent error. The only

potential flaw apparent in the experimental configuration is that their flow loop had the pump

and an elbow placed immediately upstream of the joint; however, the frequency should not

vary with an upstream elbow [24]. Another possibility for the high error is an incorrect

prediction of the stiffness calculated using Eq. (3.6), as it was not provided in the report.

The last two data sets, Ainsworth and Weaver [40] and Jakubauskas and Weaver [24],

used double bellows configurations. The Ainsworth and Weaver double bellows consisted

of two, five convolute bellows separated by a section of pipe for a total of ten convolutes

in the axial direction. The Jakubauskas and Weaver double bellows was made up of two,

13 convolute bellows for a total of 26 convolutes in the axial direction. The Jakubauskas

and Weaver bellows shows excellent agreement with the prediction, but the Ainsworth and

Weaver bellows has the highest percent error of all the data. This is thought to be caused by

either geometric irregularities in the bellows or an over-estimated prediction by the TM-82556

method for calculating stiffness. The geometric irregularities imaged in the report show that

the outer convolutes are not symmetric to the inner convolutes; additionally, the convolute

roots protrude into the mean flow, unlike all other bellows examined. The Ainsworth and

Weaver case is interesting as it shows that asymmetrical geometries could have a significant

impact on bellows FIV characteristics. In Fig. 3.2, 85% of the data falls within 20% of the

f prediction.
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Figure 3.2: Prediction curve and experimental data in terms of nondimensional frequency f
versus η (85% of the data lies within ±20% of f)).

Table 3.1: Percent error between TM-82556 nondimensional frequency f prediction and
experimental data.

Data Set Points Max % Error Abs. Mean % Error
Ainsworth and Weaver [40] 2 37.0 37.0
Bass and Holster w/ H2O [15] 6 -35.4 23.7
Bass and Holster w/ LN2 [15] 6 -44.2 30.6
Jakubauskas and Weaver [24] 2 6.2 3.4
Gerlach [13] 3 -38.0 28.6
Gerlach [14] 3 -4.4 2.9
TM-82556 [5] 46 -24.5 9.4
Morishita, et al. [19] 7 -8.63 3.8
Jakubauskas and Weaver [22] 14 -13.1 4.9
Li, et al. [20] 32 -21.1 6.8
Total 121 -44.2 10.1
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3.3 Stress Function

As bellows joints deform in the axial direction, the peak stress is located at the roots and

crowns of the convolutes. Bellows operating in FIV conditions can experience cyclic fatigue

with failures usually located at these peak stress locations. TM-82556 presents the formula

for calculating this peak flow-induced stress as

σ =
1

U ′

(
C1

C2 + U ′2
+
C3 | sin(πU ′) |
C4 + U ′2

+ C5

)
CPCECRtEPD

δβNp

. (3.10)

The coefficient, CP , is a damping modifier for multi-ply bellows defined by

CP =


1 if Np = 1,(

1− C6

1+C7(U ′2)
α
h

)
if Np > 1.

(3.11)

This coefficient is needed to account for Coulomb friction damping occurring between the

plys. The empirical constants C1 − C7 have values 0.130, 0.462, 1.000, 10.000, 0.060, 1.250

and 5.500, respectively. The CR coefficient is expressed as

CR = 1 + 0.1

(
400

β

)2

, (3.12)

where 400 is a reference spring rate and β is the specific spring rate of the bellows given by

β =
KaNc

DmNp

. (3.13)

The dynamic pressure, PD, is defined as

PD =
ρflU

2

2
, (3.14)

where U is the fluid freestream velocity at mode n. This flow velocity can be calculated using

U = αf(n)/St, where St is the Strouhal number. TM-82556 defines a range of St = 0.1−0.3
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with a critical St = 0.2. The U ′ variable is the result of dividing U by the critical velocity,

Uc. The critical velocity is the velocity of the fluid freestream at which the bellows is excited

at n = Nc. It is also useful to define U ′ in terms of a nondimensional frequency ratio, f ′,

shown using the Strouhal number:

U ′ =
U

Uc
=

αf(n)
St

αf(Nc)
St

=
f(n)

f(Nc)
= f ′. (3.15)

The elbow factor, CE, accounts for the effects of an elbow upstream of the bellows and is

defined as

CE =


1 if absent,

1 + 4.7
2.0+L/Dp

if present,

(3.16)

where L is the length from termination of an upstream elbow to the first convolute of a

bellows joint divided by the inner diameter of the pipe, Dp, just before the start of the joint.

3.4 Nondimensional Analysis of Stress Function

A nondimensional statement of the stress function, Eq. (3.10), was formulated and is denoted

σ. This new function allows for the comparison of stresses for bellows of varying geometries.

The new formulation is expressed as

σ =
δβNp

CECRtEPDc

σ = CPU
′
(

C1

C2 + U ′2
+
C3 | sin(πU ′) |
C4 + U ′2

+ C5

)
, (3.17)

where

PDc =
ρflU

2
c

2
, (3.18)
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is the result of multiplying PD, Eq. (3.14), by (Uc/Uc)
2 and moving the resulting U ′2 to the

right hand side.

This nondimensional stress formulation is not as straight forward as that for the non-

dimensional frequency. When Np = 1 the experimental data of one ply bellows can be

compared to one predicted curve; however, due to the conditionality of Eq. (3.11), when

Np > 1 there exists the geometric ratio α/h. Because of this ratio, experimental data for

multi-ply bellows can not collapse along a single curve. A reasonable range could be approx-

imated based on minimum and maximum values of the α/h ratio (0.4 and 0.75) for typical

bellows.

To compare experimental data with the predicted curves generated by the right-hand

side of Eq. (3.17), the experimental peak stress, the Uc calculated by the model, and the

bellows geometry and material properties must be entered into the left-hand side. The U ′

values of the data points in Fig. 3.3 are calculated by dividing the experimental velocity, U ,

at peak stress by the predicted Uc. Figure 3.3 contains the experimental data plotted with

the predicted single and multi-ply curves. Experimental data were obtained from TM-82556

and Johnson, et al. [16] with stress values ranging between 1.9 × 108 Pa and 2.6 × 108 Pa

and between 4.8× 106 Pa and 6.2× 107 Pa respectively. Examining Fig. 3.3 and Table 3.2,

the single ply data from TM-82556 has an absolute mean percent error of 17.2% while the

multi-ply data have good agreement with a absolute mean error of 7.1%.

Both the single and multi-ply data from Johnson, et al. [16] have significant error. One

potential source of error that could account for the large difference between the two reports

is stiffness. The stiffness values used for the TM-82556 data were experimentally found while

Johnson, et al. [16] never discussed the origin of the provided stiffness values. TM-82556

showed that the true stiffness of bellows could vary significantly from the value provided

by the manufacturer [5]. Using Eq. (3.6) to calculate the stiffness for the Johnson, et al.

data does increase the accuracy. The single-ply data sees a moderate mean error reduction

to 50.3% while the multi-ply data has a significant improvement with a new mean error of
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15.3%.

An over-prediction of FIS was expected knowing that TM-82556’s authors often cited

conservatism throughout its development [5, 13, 16]. TM-82556 notes that the “predicted

FIS values are always greater than actual values, hence, the model is conservative [5].” In

fact, all of the experimental stress data presented from TM-82556 was over-predicted by the

dimensional model and fit within 20% of its prediction. This conflicts with Fig. 3.3, which

shows all of the single-ply and a few of the multi-py TM-82556 data points being under-

predicted. This can be explained by the true critical velocity of the experiment deviating

from the predicted Uc for St = 0.2. If the experiment’s critical velocity was observed,

substituted into Eq. (3.18), and used to calculate U ′ the result should match that of the

dimensional model. Without this information, results can deviate in both σ and U ′.
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Eq. 3.17 Np=1
Eq. 3.17 Johnson et al. Np>1 [16]
Eq. 3.17 TM-82556 Np>1
TM-82556 Np=1
Johnson et al. Np=1 [16]
Johnson et al. Np>1 [16]
TM-82556 Np>1

Figure 3.3: Comparison of predicted curves for nondimensional stress σ versus U ′ with
experimental data.
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Table 3.2: Comparison of predicted curves for nondimensional stress σ versus U ′ with expe-
rimental data.

Data Set Points Max % Error Abs. Mean % Error
TM-82556 Np = 1 3 -29.6 17.2
TM-82556 Np > 1 8 40.6 10.52
Johnson, et al. [16] Np = 1 6 76.6 58.2
Johnson, et al. [16] Np > 1 3 44.2 28.9
Total 20 76.6 28.6

3.5 Discussion of Nondimensional Versions of TM-82556 Methods

Expressing the TM-82556 method in a nondimensional format offers a unique perspective

on the model. As shown, the nondimensional formulation for the frequency equation allows

comparison over a wide range of bellows configurations with a single prediction curve. It has

also been shown to be accurate when compared with a large amount of experimental data

from many sources. The nondimensional formulation for the flow-induced stress equation

yields a single prediction curve for single ply bellows and a prediction range for multi-ply

bellows. Even though the experimental data sets used for comparison are somewhat limited,

TM-82556 appears to reasonably predict FIS.

Figures 3.2 and 3.3 along with Eqs. (3.7) and (3.17) can be used to predict frequency

and flow-induced stress with only hand-calculations. The steps to find the frequency are:

1. Calculate η using Eq. (3.8) for the desired mode.

2. Find f by comparing the value for η with the predicted curve in Fig. 3.2 or by solving

Eq. (3.9).

3. Frequency can then be found using:

f(n) =

√
k

mt

f (3.19)
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where k = 2NcKa, with Ka being calculated using Eq. (3.6), and mt is the sum of the

structural mass, Eq. (3.2), and fluid mass, Eqs. (3.3)-(3.5).

To calculate flow-induced stress:

1. Use the above process and Eq. (3.19) to calculate f ′ = f(n)/f(Nc) for the mode, n, of

interest.

2. Compare f ′, which is equal to U ′, with the predicted single ply curve or approximate

range for multi-ply curves on Fig. 3.3 to determine nondimensional stress σ.

3. Dimensional stress is then calculated using σ, geometric and material properties as

inputs into:

σ =
CECRtEPc
δβNp

σ (3.20)

TM-82556 includes consideration for the effect of an upstream elbow in the form of the

elbow factor, Eq. (3.16), which modifies the FIS calculation. It does not, however, include

considerations for adjusting the velocity range over which excitation occurs. It is thought that

the downward shift in the velocity range due to an upstream elbow would translate to both

U and Uc, leaving the ratio U ′ relatively unchanged for the nondimensional formulation. In

practice, U ′ could potentially be calculated for a bellows without an elbow present and then

be applied to the elbow case. This would provide an elbow corrected σ with the appropriate

U ′ value. There was not enough information to determine U ′ in the TM-82556 results for

the bellows tests with an upstream elbow to compare the data using the nondimensional

method.
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Chapter 4

A Coupled Oscillator Model of Flow-Induced Vibration in Bellows

Here bellows FIV is modeled using a series of considerations that are supported by prior work.

First, it is assumed that vortex formation occurs in a bellows joint due to self-sustained oscil-

lations of impinging shear layers [39, 57]. It then follows that the fluid oscillatory frequency

depends on the convolute pitch, λ, not the convolute width, α [39, 40]. It is also presumed

that convolute motion increases the vortex strength. Rockwell and Naudascher describe this

as “movement-induced leading-edge vortices” in which the movement of a bellows convolute

generates enhanced vortex formation in the shear layer [34].

Further, it is postulated that the model should exhibit a frequency lock-in phenomenon

in which the fluid oscillatory frequency and the bellows structural frequency “lock” together

across a potentially wide range of freestream velocities. In bellows, this phenomenon has

been discussed by Gerlach and his colleagues [5,12–14,37] and the shape of response curves

from experimental data are indicative of lock-in. Finally, it is presumed that at a certain

point, the amplitude of the convolute motion will be detrimental to vortex strength. This

will lead to convolute response amplitudes that are self-limited.

A model that exhibits the above features while remaining simple and computationally in-

expensive is sought. The proposed modeling approach is inspired by a model of an elastically-

restrained, single degree-of-freedom cylinder subject to uniform flow. The model couples the

structural equation of motion of the cylinder to a van der Pol equation modeling the fluctua-

ting lift associated with the vortex wake [58]. While the model is relatively simple, it captures

the classical FSI phenomena associated with VIV; namely, self-limiting response amplitudes
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and frequency lock-in. Here, this cylinder VIV model is adapted for use with bellows joints.

Bellows response is calculated and compared to experimental responses available in litera-

ture. The model is also exercised across a wide range of bellows mass, damping, and fluid

forcing conditions to observe the possible FIV amplitude and frequency lock-in behavior.

4.1 Van der Pol Oscillator in FSI Models

The use of a wake oscillator equation to model near wake dynamics in fluid-structure inte-

raction systems was proposed and developed by Birkhoff and Zarantonello [59]. This was

supported by experimental data gathered by Bishop and Hassan [60] while studying cylin-

der VIV in flow. They found that fluid oscillators exhibit non-linear, self-excited behaviors.

Hartlen and Currie [61] were the first to couple the van der Pol oscillator with the cylinder

motion via a linear dependence on the cylinder’s velocity. While this model compared well

with many features of the experimental results (e.g. the cylinder amplitude response when

the shedding frequency was close to the structural natural frequency) Skop and Griffin [62]

felt that the model was underdeveloped because the model parameters were not related to

physical parameters of the system. They in turn developed a modified version of the Hartlen

and Currie [61] model to address these concerns and obtained good results.

A more recent paper by Facchinetti, et al. [58] reviews wake oscillator models for VIV.

It examines the effects of using three different mechanisms to couple the wake and struc-

tural equations: displacement coupling, velocity coupling, and acceleration coupling. These

methods operate by applying either the displacement, velocity or acceleration response from

the structural equation as forcing to the wake equation. The coupling is completed by using

the displacement response from the wake equation to force the structural equation. It was

found that displacement coupling fails to predict the lift caused by vortex shedding, the lift

magnification at lock-in, and all significant features of VIV at Skop-Griffin (SG) numbers

below 1.7. The dimensionless Skop-Griffin number characterizes the mass and damping of a

structure and is defined as
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SG = 8π2St2µ2ζ, (4.1)

where µ is a non-dimensional mass and ζ is the structural damping ratio. Velocity coupling

also fails to model the lift force due to vortex shedding and does not capture the full lock-in

range at low values of SG. Acceleration coupling, however, was found to model most features

of VIV of a cylinder in flow.

The Facchinetti, et al. [58] model was further enhanced by Xu, et al. [63] who introdu-

ced a method of estimating the empirical parameters found in the wake oscillator equation.

Another modification of the wake oscillator model was proposed by Farshidianfar and Zan-

ganeh [64] to better model the system response at low mass-damping ratios. They used a

second van der Pol equation to model the structure and used velocity coupling. For a more

comprehensive overview of VIV of circular cylinders see Gabbai and Benaroya [65].

4.2 Model

Consider a bellows joint with an arbitrary number of convolutes, denotedNc. The parameters

defining convolute geometry are shown in Fig. 2.1. Here, the Facchinetti, et al. [58] cylinder

VIV model is adapted to an arbitrary bellows configuration by modeling the bellows joint

as a spring-mass-damper system, with each mass representing a single convolute as shown

in Fig. 4.1. This differs somewhat from the model used in TM-82556 where each half of a

convolute represented a single mass.

m1 m2 mNc

k1 k2 k3 kNc+1

mNc−1

kNc−1 kNc

c1 c2 c3 cNc−1 cNc
cNc+1

x1 x2 xNc−1 xNc

Figure 4.1: Spring-mass-damper diagram for coupled oscillator model

This leads to a system of Nc structural equations of motion given by

[M ]{ẍ}+ [Cs + Cfl]{ẋ}+ [K]{x} = {F} (4.2)
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where x is the structural displacement.

The mass matrix [M] is a diagonal matrix with elements ms +mfl. The mass terms are

calculated by adapting Eqs. (3.2) and (3.3) for use over a single convolute by including a

multiple of two, resulting in equations:

ms = 2πρsDmtNp(πa+ h− 2a), (4.3)

and

mfl = 2

(
B1mfl1 +B2mfl2

(
n

Nc

))
, (4.4)

where n = 1 . . . Nc is the mode number.

The stiffness matrix, [K], is given by

[K] =



k1 + k2 −k2 0 · · · 0

−k2 k2 + k3 −k3
...

0 −k3 . . . −kNc−1 0

... −kNc−1 kNc−1 + kNc −kNc

0 · · · 0 −kNc kNc + kNc+1


, (4.5)

where kn = NcKa. The overall stiffness, Ka, can either be found experimentally, calculated

using Eq. (3.6) or by using another method discussed in Section 2.1.

The structural and fluid damping matrices, [Cs] and [Cfl], have the same structure as

[K] in Eq. (4.5). If desired, the damping coefficient elements, cs, can be chosen to yield a

known viscous modal damping ratio. The fluid damping elements, cfl, are given by

cfl =
1

2
ρflhwUCD, (4.6)

where w is the circumference of the bellows at the mean diameter and CD is a drag coefficient

that captures the resistance of the fluid to convolute motion. The right hand side of Eq. (4.2)
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represents the fluid force on the convolutes. This force is analogous to the fluctuating lift

force on a cylinder experiencing VIV [58] and is described by

F =
1

2
ρflhwU

2Cf , (4.7)

where Cf is a fluid force coefficient for a moving convolute.

The structural equations are coupled to a system of Nc fluid oscillator equations via the

structural acceleration ẍj and are given by

q̈j + 2πSt
U

λ
ε(q2j − 1)q̇j +

(
2πSt

U

λ

)2

qj =
A

α
ẍj, (4.8)

where j = 1 . . . Nc for Nc fluid oscillator equations per bellows, St is the Strouhal number

given by St = fflλ/U , ffl is the frequency of the oscillating shear layer, ε is a parameter

that determines the strength of the non-linear damping and A is a coupling force scaling

parameter described in Facchinetti, et al. [58]. When q < 1, negative damping exists creating

a dynamically unstable system that increases amplitude response. When q > 1, positive

damping limits the amplitude response of the system. When the forcing term on the right

hand side of Eq. (4.8) is zero and 0 < ε � 1 the equation will produce an oscillation

with a finite amplitude of q = 2 [66]. The dimensionless fluid degree of freedom q is a

reduced forcing coefficient representing the fluctuating pressure amplitude on a convolute

and is defined as q ≡ 2Cf/C
o
f , where Co

f is the coefficient calculated for a rigid convolute

experiencing fluctuating fluid forcing. The force, F , acting on the structure can now be

defined as

Fj =

(
ρfhwU

2

2

)(
Co
f

2

)
qj, (4.9)

where q acts to couple the fluid oscillator, Eq. (4.8), to the structural oscillator, Eq. (4.2).
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4.3 Model Inputs and Characterization

The model contains several parameters, namely: Cf , CD, A, and ε, that need to be carefully

chosen. Through a combination of literature surveys, CFD simulations and experimental

data, realistic values of these parameters have been determined for a range of typical bellows

configurations.

4.3.1 Forcing Coefficient

Here the forcing coefficients for a rigid convolute, Co
f , have been determined using a range

of 2-D rigid CFD simulations of varying bellows configurations. The CFD software program

ANSYS Fluent R© was used for these simulations. To find Co
f , a bellows 2-D cross section

was modeled, as shown in Fig. 4.2 for Gerlach [14] bellows 102. The convolute section and

adjacent walls were no-slip boundaries with the adjacent mesh satisfying a y+ < 1 condition.

The boundary opposite the convolutes is the centerline of the bellows cross section and

was set as a slip wall. The mesh contained approximately two million elements with the

greatest concentration being located in and around the convolute cavities. The Detached

Eddy Simulation model with the SST k−ω turbulence solver [67] was used with second order

discretization and double precision. Convergence criteria for the conservation equations was

set to the order of 10−6.

Data were collected for the fluid force on a convolute by calculating the pressure integral

over the height of the upstream and downstream halves of a convolute with a unit depth.

A similar approach was used by Gharib and Roshko [68] to calculate fluctuating fluid forces

acting on rectangular cavities. The net fluid force, Fflj , per convolute is found by subtracting

pressure integral time history of the upstream convolute half from the that of the downstream

half. The fluid force coefficient for each convolute is then found using

Co
f =
√

2RMS

(
2Fflj
ρflU2h

)
, (4.10)
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where
√

2RMS is the root-mean square used to find the zero-to-peak amplitude of the

resulting time history.

A partial time history and corresponding fast Fourier transform of the Gerlach [14] bellows

102 case with a flow velocity of 6.4 m/s is found in Figs. 4.3a and 4.3b. The dominate

frequency for this sample case is 399 Hz. This frequency corresponds to an St = 0.41, which

is near the range of St = 0.42− 0.50 discussed in Section 2.6.1.

(a)

(b)

Figure 4.2: CFD velocity contour plot of Gerlach [14] bellows 102, (a) and detailed area,
(b). Flow direction is from left to right with a 6.4 m/s velocity at the inlet.

Gerlach and his associates [12–14] developed the relationship between the dynamic Cf

and λ/α, shown in Fig. 4.4a, using data from flow testing of a flexible ring that represented a

single convolute. Simulations were conducted to study the affect of varying pitch/width has

on Co
f and the results are shown in Fig. 4.4b. The λ/h ratios and velocity were maintained

for the simulations while convolute pitch and width were varied. The Gidi [42] geometry

was used for the altered pitch and width cases. It is seen that Co
f did not vary greatly with

changing λ/α ratio as Gerlach’s Cf curves would suggest in Fig. 4.4a.
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Figure 4.3: Partial CFD time history, (a), and corresponding Fast Fourier transform, (b),
for the trailing wall of the third convolute of Gerlach bellows 102 geometry at a flow velocity
of 6.4 m/s, frequency of 399 Hz and St = 0.41.
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The results in Fig. 4.5 show that Co
f increases with increasing convolute number, indi-

cating a stronger forcing on downstream convolutes. Each data set in Fig. 4.5 represents

a unique condition for seven bellows geometries. The Gidi [42] case is distinct in that the

upstream and downstream edges of the outer convolutes have straight edges instead of U-

shaped edges like all other bellows configurations examined in this study. The effect of the

straight edge is pronounced for the first convolute where the Co
f value is much higher than

when compared to the same case with rounded edges. The Gidi geometry with rounded

upstream and downstream edges was also modified from six to 16 convolutes to expand on

the relation that Co
f increases with convolute number.

Gerlach and Schroeder [13] bellows 102 and 105 share the same geometry, but differ by

the flow velocities (6.4 m/s and 7.2 m/s) that excited the first mode. This is also the case

for bellows 104 and 110 from the same report having excitation velocities of 9.5 m/s and 9.7

m/s. Bellows 106 varies greatly from all other configurations examined. This is explained

by the bellows 106 convolutes being shallow cavities with a λ/h = 1.5, where as all other

bellows examined are deep cavities having λ/h < 1. No more attention has been given to

bellows having shallow cavity geometry.

From these results, excluding bellows 106 and straight edged Gidi geometries, estimates

of Co
f values per cavity for bellows of common, configurations can be based on the following

curve fit found from Fig. 4.5:

Co
f = −0.000176j2 + 0.007991j − 0.002131, (4.11)

where j = 1 . . . Nc.

The relationship between Co
f and increasing flow velocity was examined using a simulation

that varied the inlet flow velocity from 0− 10 m/s using the Gerlach bellows 102 geometry.

The results are shown in Fig. 4.6 for the first, third and seventh convolutes. The first

convolute shows a steady Co
f value, while the latter convolutes show increasing dispersion,

likely caused by turbulence, and a decrease in Co
f for increasing velocity. Figure 4.7 is a
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Figure 4.4: Gerlach and Schroeder [13] force coefficient, Cf , vs. pitch/height ratio, λ/α, for
modes n ≤ 3, —, and n > 3, - - -, (a), and the effect of changing pitch and width on Co

f , (b).

spectrogram of the third convolutes’ time history that shows the linear relationship between

frequency and velocity. From this spectrogram and from those for the other convolutes not

shown, the Strouhal number is found to be approximately St = 0.41 for all convolutes. This

is close to the range found from experiments (St = 0.42−0.50) and provides some confidence

in the CFD simulation. With these results, Co
f can now be approximated for each cavity of

a bellows joint using Eq. (4.11) without concern that changes in pitch and width will cause

variations.
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Figure 4.5: Forcing coefficient, Co
f , as determined by 2-D rigid CFD simulations with curve
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Figure 4.6: The effect of varying the flow velocity on the forcing coefficient, Co
f , for the 1st,

3rd and 7th convolutes using the Gerlach and Schroeder [13] bellows 102 geometry.
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Figure 4.7: Spectrogram of the third convolute of Gerlach and Schroeder [13] bellows 102
geometry for increasing velocity.
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4.3.2 Drag Coefficient

There does not exist experimental or theoretical data pertaining to the drag coefficient of

bellows joints. It is assumed that the convolutes of a bellows joint vibrating in an axial

mode are resisted by the fluid in a manner akin to a flat plate oscillating in fluid. Consulting

literature regarding drag coefficients for flat plates in fluid, it was found that CD ≈ 2 is

appropriate for flows with Reynolds numbers greater than 104 [69]. So CD = 2 will be used

for all simulations shown here.

4.3.3 Lock-in and A

A method for examining frequency lock-in is found among cylinder VIV literature; par-

ticularly from de Langre [70]. To gain insight into the nature of lock-in, we consider an

undamped, coupled two degree-of-freedom system having the structural and fluid equations

of motion

Mẍ(t) +Kx(t) =
1

4
ρflhwU

2Co
fq(t) (4.12)

and

q̈(t) +

(
2πSt

U

λ

)2

q(t) =
A

α
ẍ(t). (4.13)

The equations can then put into a dimensionless form using the variables

τ =

√
K

M
t, X =

x

λ
. (4.14)

Substituting the dimensionless variables in Eq. (4.12) it becomes

λKẌ(τ) + λKX(τ) =
1

4
ρflhwU

2Co
fq(τ). (4.15)

Dividing through by λK and using the relation K = 4π2f 2
sM it now reads
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Ẍ(τ) +X(τ) =
ρflhwU

2Co
f

16π2f 2
s λM

q(τ). (4.16)

Multiplying by λSt2/λSt2 and defining the reduced velocity as Ur = U/(λfs), the dimensi-

onless structural equation is

Ẍ(τ) +X(τ) = ΓSt2U2
r q(τ), (4.17)

where

Γ =
ρfhwλC

o
f

16π2St2mfl(m∗ + 1)
, (4.18)

and m∗ = ms/mfl.

The fluid equation, Eq. (4.13), with dimensionless variables substituted, is

K

M
q̈(τ) +

(
2πSt

U

λ

)2

q(τ) = A
λK

αM
Ẍ(τ). (4.19)

Dividing though by K/M , the dimensionless fluid equation simplifies to

q̈(τ) + St2U2
r q(τ) = A

λ

α
Ẍ(τ). (4.20)

The product StUr is a dimensionless frequency of the oscillating fluid that is proportional

to the flow velocity.

To solve Eqs. (4.14) and (4.20), assume a solution is of the form (X, q) = (Xo, qo)e
iωτ to

find the characteristic equation:

ω4 +

[(
AΓ

λ

α
− 1

)
St2U2

r − 1

]
ω2 + St2U2

r = 0. (4.21)

Using the quadratic formula, Eq. (4.21) becomes
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ω2 =
1

2

(
1−

(
AΓ

λ

α
− 1

)
St2U2

r ±
√((

AΓ
λ

α
− 1

)
St2U2

r − 1

)
ω2 − 4St2U2

r

)
. (4.22)

Considering a case where AΓλ/α = 0.04, since bellows configurations found in literature

have an AΓλ/α value ranging between 0.01-0.06, we can compute ω from Eq. (4.21) for

increasing StUr, as seen in Fig. 4.8a. It is recognized that when StUr < (1 +
√
AΓλ/α)−1

and StUr > (1−
√
AΓλ/α)−1 two neutrally stable modes, the structural and fluid modes,

exist with real frequencies [70]. A neutrally stable system, when acted upon, will neither

become unstable or return to its exact previous state. Examining Fig. 4.8a, the structural

mode tracks along real wR = 1, while the fluid mode follows closely to ωR = StUr.

As StUr increases, the fluid and structural frequencies merge together. This lock-in region

is defined by (1 +
√
AΓλ/α)−1 < StUr < (1 −

√
AΓλ/α)−1 around StUr = 1. Two modes

exist in this region with complex conjugate frequencies, but one of the coupled modes is now

damped and the other is unstable (ωI < 0), as shown in Fig. 4.8b. As StUr continues to

increase the two modes decouple and return to neutral stability. This behavior is analogues

to the phenomenon of coupled-mode flutter [35,70].
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Figure 4.8: The effect of increasing StUr on the (a) frequencies and (b) growth rate of the
coupled system with AΓλ/α = 0.04. —, Unstable mode; - - -, damped mode; · · · , uncoupled
structural mode; - · -, fluid mode of uncoupled solution when AΓλ/α = 0 and ωR = StUr.
In (a), CMF shows the bounded coupled mode flutter region, S is the structural mode and
W is the fluid mode.

The AΓλ/α parameter is responsible for the magnitude of the lock-in range and the

change in frequency. If AΓλ/α < 1, the two frequencies of the system corresponding to the

fluid and structural modes can be tracked by varying StUr, which determines the stability

of the system. Figures 4.9a and 4.9b show how the lock-in region increases with increasing

values of AΓλ/α. Interestingly, the upper bound of the lock-in range expands more quickly

than the lower bound for increasing AΓλ/α; however, for the small values of AΓλ/α found

for bellows, the upper and lower bounds of the lock-in range are fairly symmetric.

With this technique lock-in region plots can be created for any bellows given Co
f , St,

geometry and material properties. Figure 4.10a shows the lock-in region of bellows flow

experiments overlaid on the prediction created using the properties of Gerlach’s bellows 102,

(see Sections 4.3 and 4.4). The lock-in range of experimental data is plotted by finding

the upper and lower velocity bounds at 60% of the peak amplitude response. For a typical

bellows, Fig. 4.10a can be used to provide a quick estimate of the velocity range in which a

given bellows is susceptible to FIV. This method is particularly useful as it can be used to

determine the coupling force scaling parameter, A, by comparison with experimental data.
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Figure 4.9: (a), The effect of varying AΓλ/α for values of 0.01, 0.04, 0.10 and 0.20 on the
growth rate of the coupled system with AΓλ/α = 0.04. —, Unstable mode; - - -, damped
mode; · · · , fluid mode of uncoupled solution when AΓλ/α = 0 and ωR = StUr and, (b), the
effect increasing AΓλ/α has on the lock-in range (upper StUr - lower StUr).

Examining Fig. 4.10a, the data fit the trend of decreasing StUr with increasing m∗; however,

the model’s bias towards higher StUr values is not reflected by experimental data. In fact,

the upper bound increases at a higher rate than the lower bound when A is increased. This

behavior is also noted by de Langre [70]. Because of this, there are two potential methods

for selecting A from this information. An A value could be chosen to align with the upper

StUr bound while under-predicting the lower bound or it could be chosen to capture the

width of the lock-in region with the caveat that it is offset towards higher values of StUr. In

Table 4.1, the method of residual sum of squares (RSS) was used to evaluate both techniques

for the first mode response of each bellows. In column I, an A value was selected to provide

the smallest difference between the RSS for the upper and lower StUr bounds for a given

bellows. Column II values were calculated by selecting an A that gave the smallest RSS

value for just the upper bound.

Examining Table 4.1, it is not a surprise that the quasi-2D geometry of the Gidi case

has different A values than actual bellows and the result for bellows 106 is not unexpected
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Table 4.1: Comparison of A values for each bellows found using: I, the difference of the
upper and lower bound RSS; II, just the upper bound RSS

Bellows I II
Gidi Exp. 6 [42] 5.5 2.9

Gerlach and Schroeder 102 [13] 22.6 17.6
Gerlach and Schroeder 104 [13] 21.0 18.3
Gerlach and Schroeder 105 [13] 13.6 8.5
Gerlach and Schroeder 106 [13] 2.8 1.4
Gerlach and Schroeder 110 [13] 13.0 6.0

Bass and Holster 3 [15] 19.9 6.1
Bass and Holster 6 [15] 25.3 13.3

Jakubauskas and Weaver [23] 20.5 13.2

either as it has an atypical geometry when compared with the other specimens, see Table 4.3.

There is not much variation in A for each method. Typical A values range between 13.0-25.3

for column I and it would require a much larger change in A to significantly affect the lock-in

region. Excluding the Gidi cases and bellows 106, the RSS method provides a best fit to

the lock-in width using an A = 19.1 for standard, deep cavity bellows. In contrast, if the

fit to only the upper StUr bound is used, a value of A = 11.8 is found. Rounding up and

choosing an A = 20.0 is the conservative choice since the larger lock-in range better fits the

experimental data and an overestimation would be preferred. Figures 4.10a-4.10c show the

predicted lock-in regions for bellows 102, the Gidi experiment 6 case and the bellows 106 case

with their respective A values. Figure 4.10a is representative of typical bellows geometries

and has a similar lock-in region to the other experimental data listed. For Figs. 4.10b

and 4.10c an A = 20 was also plotted using their respective geometries to show how these

two cases differ from other bellows.
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Figure 4.10: Lock-in range for (a) typical bellows, A = 20, (b) Gidi [42] quasi-2D bellows,
A = 5.5, and (c) Gerlach and Schroeder [13] bellows 106, A = 2.8

4.3.4 Van der Pol Parameter

Having determined representative A values, a basis for selecting the the van der Pol para-

meter, ε, can be found in cylinder VIV literature. Facchinetti, et al. [58] proposed a ratio of

A/ε = 40 based on a fit to experimental data for which they compared the lift magnifica-

tion factor resulting from an imposed structural amplitude. There are not computational or

experimental data available to determine if this ratio is similar for bellows systems. In the

absence of these data, a A/ε ratio of 40 is also used here.
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4.4 Model Results and Validation

Since bellows joints are often critical system components, any mathematical model should

be carefully validated. The data available from the water flow testing by NASA [5] and

SwRI [16] are mostly represented in terms of strain, but there are a few data sets that can

be compared with the model’s prediction. Gidi [42] collected amplitude and flow velocity

data with a quasi-2D bellows flow experiment. It is particularly useful as amplitude data

was reported for each convolute. The model is also used to construct a design chart for

predicting maximum amplitude response.

4.4.1 Gidi Experiments

Gidi’s [42] data were presented in his thesis and were also summarized in an article by Gidi

and Weaver [41]. He built a quasi 2-D model of a bellows joint and placed it in a water

flow loop. The model geometry was upscaled from an actual bellows tested by Weaver and

Ainsworth [40] to compare the results with the FIV characteristics of the parent model.

It can be described as an “extruded” 2-D cross section of of a bellows consisting of five

convolute-shaped acrylic blocks supported on long aluminum rods. Springs were attached

between the rods to simulate elastic coupling between the convolutes. Thin mylar strips were

attached at the base of the acrylic blocks to form the cavity geometry of a bellows joint.

The five convolute assembly was attached to a base plate and placed in the test section such

that the tips of the convolutes were at the same height as the upstream and downstream

edges of the test section. The convolutes could also be raised or lowered to change the flow

impingement points. This model was particularly unique because transparent side walls

allowed for flow visualization. Amplitude response data were gathered by attaching a strain

gauge at the base of each rod.

In Gidi’s sixth experiment, the maximum response of the first mode occurred at a fre-

quency of 2.5 Hz with a flow velocity of about 0.5 m/s, an St = 0.45 and a corresponding

50



Reynolds number of approximately 44,000. These values can also be found in Table 4.5. The

two outermost spring constants were ke = 1.49 kN/m and the inner spring constants were

ki = 0.88 kN/m. Gidi cited a fluid mass of 0.657 kg per convolute; however, calculations

show that it should be 0.701 kg for the fluid mass surrounding the inner convolutes and the

outer convolutes have an additional 0.291 kg of fluid mass each. All other geometric and

material properties can be found in Tables 4.3 and 4.4. Other values used are A = 5.5,

ε = 0.1375, CD = 2 and cs = 0.69. The structural damping coefficient element, cs, was

selected by applying the log decrement method to the uncoupled structural equation and

adjusting cs until ζ = 0.005. The forcing coefficients were determined via CFD simulation

to be Co
f = [0.0187, 0.0099, 0.0147, 0.0220, 0.0309]. In addition to applying this convolute

specific forcing coefficient to the model, it’s average, Co
f = 0.0192, and the average of the

values calculated using Eq. (4.11), Co
f = 0.0184, are compared. The coupled oscillator mo-

del was programmed using the ODE45 solver in Matlab R© to calculate convolute amplitude

response results for the geometry and flow conditions corresponding to the first mode of the

sixth Gidi experiment [42]. The frequency of this mode was predicted by the model to be

fs = 2.52 Hz while the experiment demonstrated a corresponding frequency of fs = 2.50 Hz.

Experimental and predicted convolute amplitude responses are shown in Fig. 4.11 where

|x|/α is the amplitude response normalized by the convolute width. As shown in Figs. 4.11b -

4.11d, the predicted response curves using the convolute specific Co
f values are within 16% of

the experimental amplitude results for the inside convolutes and within 7% when the average

of the convolute specific Co
f is used. The Co

f = 0.0184 falls in between the other two methods

and within 10% of the experiment.

The outer convolutes are under-predicted by at most 57%. The first mode shape of the

structural system is [0.3651, 0.8262, 1.0000, 0.8262, 0.3651], where the maximum modal

amplitude has been normalized to one. This mode indicates that the maximum amplitude

response of the outer convolutes will be approximately 36% of the center convolute for the

model, but the experimental results indicate that the amplitude of the outer convolutes were
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69% of the center convolutes’ amplitude. Gidi does note that since the outer cavities have a

fixed wall, the rate of volume change in the outer cavities are not the same as that for the

inner cavities and could affect the system [42]. A better explanation for this behavior is not

available and it is assumed to be an eccentricity of this particular experimental system.

Figure 4.11f shows the frequency lock-in region for the convolute specific CFD case.

Taking the lock-in region to be the lower and upper velocity values at 60% of the peak

amplitude, denoted by the shaded area, the model indicates lock-in occurring over a tight

range of flow speeds (StUr = 0.95 − 1.06) with a 32.4% difference in width between the

model and experiment. This improves to a 23.7% difference for Co
f = 0.0192. It also seems

to exhibit a slight asymmetry with the lock-in region biased to StUr > 1. The slope of the

model’s prediction for ffl/fs in the lock-in range is only slightly perturbed, indicating that

the degree of lock-in is small. The predicted flow velocity at peak amplitude for all three

methods is 0.51 m/s; very close to the experiment’s 0.5 m/s.
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Figure 4.11: (a)-(e), Normalized amplitude response of convolutes versus reduced frequency
times Strouhal number for Gidi’s sixth experiment [42] using convolute specific CFD, average
CFD, and Eq. (4.11) derived Co

f values and, (f), the predicted frequency lock-in region for
convolute 3 using CFD specific Co

f .
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4.4.2 SwRI Bellows Trials

The technical report by Gerlach and Schroeder [13] prepared for NASA by the Southwest

Research Institute, along with the corresponding journal article by Gerlach [14], detail three

tests that can be compared with the presented model: bellows tests 102, 104 and 105. The

experimental data are in terms of strain, but a strain-to-displacement conversion factor was

provided. In the experiments, displacement was calculated by attaching strain gauges to the

crown of an end convolute and applying static loads to create a strain-deflection curve. Then,

using the measured peak stain, S, from flow experiments and the slope of the strain-deflection

curve, dS/dx, the displacement could be found using

x =
S

2Nc

(
dS

dx

)−1
. (4.23)

This equation is used to convert the model’s displacement result to strain for comparison

with the experimental data in its native format.

The following values are used for all three bellows calculations: A = 20, ε = 0.5, St = 0.45

and CD = 2. Elements of the structural damping coefficient matrix [Cs] are chosen for each

bellows by adjusting their value until ζ = 0.005 was found using the log decrement method

on the uncoupled structural equation, resulting in cs values of 7.14, 4.49, and 7.82 for bellows

102, 104 and 105 respectively. All other geometric, mass and flow properties can be found

in Tables 4.3—4.6. The authors of the experimental data note that the reported geometries

are only a representation and that the actual dimensions may vary slightly [13].

The bellows 102 experiment yielded a frequency of 478 Hz compared to the models

predicted frequency of fs=402 Hz for the first mode. A frequency of 440 Hz was predicted

for bellows 105 versus the experimental frequency of 515 Hz for the first structural mode.

For bellows 104, the experimental frequency was 813 Hz. Since a value for stiffness was

not provided for bellows 104, Eq. (3.6) was used to predict a frequency of 537 Hz. To

compensate for this large error, an overall stiffness value of Ka = 283, 000 N/m was input
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into the model to match the experimental frequency for the first axial mode. The CFD

results for each bellows yielded peak frequencies of 409 Hz, 677 Hz and 478 Hz over each

bellows first convolute respectively; however, the frequencies did decrease for downstream

convolutes.

Three methods to apply the Co
f values to the model are used. First, the CFD derived

convolute specific Co
f values are applied to each respective convolute and can be found in

Table 4.6. Second, the average of the CFD derived Co
f values are used. Lastly, Fig. 4.5 and

Eq. (4.11) are used to determine an average Co
f to apply to the model. Amplitude response,

in terms of strain and StUr, and frequency lock-in are plotted for each method in comparison

with experiment and are shown in Fig. 4.12. The Strouhal numbers used to normalize the

experimental results are found in Table 4.5. Additionally, the percent difference between the

model and experiment for three parameters—peak amplitude, lock-in width and velocity at

peak amplitude—are shown in Table 4.2.

Examining the results of using the first method, shown in Fig. 4.12, the model over-

predicts the amplitude response by about an average of 88% difference. The widths of the

lock-in regions and the velocities at peak amplitude have a close fit to the experiment with

average percent differences of just 9.8% and 5.6% respectively. Using average Co
f values of

0.0235, 0.0319, 0.0253, for bellows 102, 104 and 105 respectively, provides nearly identical

results. For amplitude and excitation velocity there was less than a 3% change and an 8%

change for lock-in width.

For the final method, Eq. (4.11) provided average Co
f values 0.0263, 0.0293 and 0.0263

for each bellows respectively. The results have just a slightly higher percent difference in

comparison with experiment for all three parameters, as shown in Table 4.2. It does differ

from the convolute specific, CFD derived Co
f results by as much as 13% as seen for bellows

102’s peak amplitude. The change in lock-in width is less than 5% and peak excitation

velocity less than 2%. These results show that it appropriate to use Fig. 4.5 and Eq. (4.11)

to select an average Co
f value and apply it to the model.
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While the predicted amplitude response is high, the accuracy of predictions for the lock-

in width and peak amplitude velocity is very encouraging. Being able to pinpoint the peak

excitation flow velocity and predict the onset and range of FIV in the first mode is a unique

capability.
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Figure 4.12: Gerlach and Schroeder [13] bellows 102, 104 and 105 amplitude responses for
convolute specific CFD, average CFD, and Eq. (4.11) derived Co

f values, (a), (c) and (e), and
frequency lock-in regions, (b), (d) and (f) respectively for convolute specific, CFD derived
Co
f values.
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Table 4.2: Percent difference between model and experiment for different Co
f input methods:

convolute specific CFD values, mean of CFD derived values, and mean of values found using
Eq. (4.11).

Method Parameter 102 104 105 Mean

CFD Specific Amplitude 86.6 110.8 66.8 88.1

Lock-in width 12.1 10.1 7.1 9.8

Velocity 0 14.6 2.1 5.6

CFD Mean Amplitude 86.6 109.1 65.5 86.6

Lock-in width 12.1 7.9 7.1 9.1

Velocity 0.8 14.2 2.1 5.7

Eq. (4.11) Mean Amplitude 97.2 101.0 70.1 89.4

Lock-in width 8.7 14.7 10.1 11.2

Velocity 0.8 13.7 2.1 5.5

Table 4.3: Bellows geometric properties with all dimensions in centimeters

Bellows Nc Dm λ α h w t
Gidi Exp. 6 [42] 5 - 9.0 4.5 13.5 9.6 -
Gerlach 102 [42] 7 4.6990 0.6604 0.31750 0.8890 14.76 0.03302
Gerlach 104 [42] 8 4.4196 0.5588 0.36576 0.6858 13.88 0.03302
Gerlach 105 [42] 7 4.6990 0.6604 0.31750 0.8890 14.76 0.03302
Gerlach 106 [42] 9 5.4864 0.6096 0.24130 0.4064 17.24 0.01524
Gerlach 110 [42] 8 4.4196 0.5588 0.36576 0.6858 13.88 0.03302

Bass and Holster 3 [15] 8 4.4196 0.5588 0.22606 0.6858 13.88 0.03302
Bass and Holster 6 [15] 7 4.699 0.6350 0.35052 0.8763 14.76 0.03302

Jakubauskas and Weaver [23] 13 16.84 1.202 0.7428 1.57 52.90 0.03680

Table 4.4: Bellows material properties

Bellows ms (kg) mfl (kg) ρs (kg/m3) Ka(N/m)
Gidi Exp. 6 [42] 0.5221 0.6570 - see text
Gerlach 102 [42] 0.0081 0.0052 7916.5 79508
Gerlach 104 [42] 0.0064 0.0041 7916.5 -
Gerlach 105 [42] 0.0081 0.0052 7916.5 95444
Gerlach 106 [42] 0.0023 0.0016 7916.5 -
Gerlach 110 [42] 0.0064 0.0041 7916.5 -

Bass and Holster 3 [15] 0.0058 0.0018 8000 -
Bass and Holster 6 [15] 0.0082 0.0047 8000 -

Jakubauskas and Weaver [23] 0.0604 0.0704 7860 43308
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Table 4.5: Bellows flow properties

Bellows U (m/s) St (-) Reynolds # (-)
Gidi Exp. 6 [42] 0.50 0.45 44,900
Gerlach 102 [13] 6.4075 0.493 42,200
Gerlach 104 [13] 9.5162 0.4774 53,100
Gerlach 105 [13] 7.2454 0.4694 47,800

Table 4.6: Gidi [42] and Gerlach and Schroeder [13] bellows forcing coefficients

Bellows Co
f

Gidi Exp. 6 [42] 0.0187, 0.0099, 0.0147, 0.0220, 0.0309
Gerlach 102 [13] 0.0050, 0.0096, 0.0170, 0.0232, 0.0313, 0.0387, 0.0395
Gerlach 104 [13] 0.0087,0.0141, 0.0192, 0.0321, 0.0381,0.0423, 0.0480, 0.0526
Gerlach 105 [13] 0.0057, 0.0130, 0.0158, 0.0239, 0.0358, 0.0416, 0.0413
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4.4.3 Self-Limiting Amplitudes

The proposed model can be used to predict maximum convolute response across a range

of design parameters. Figure 4.13 shows the predicted maximum amplitude response of

an end convolute normalized by convolute width, α, in the first mode for the Gerlach and

Schroeder [13] bellows 102 geometry. The amplitudes are plotted against SG, defined by

SG = 8π2St2µ2ζ, (4.24)

where µ is a nondimensional mass given by

µ =
ms +mfl

ρfhwλ
. (4.25)

The comparison is constructed by stepping the model through varying ζ values for different

mean forcing coefficients, Co
f . As a consequence of the self-limiting behavior of the model, the

maximum amplitudes remain relativity constant for SG numbers less than one-half. These

curves can be used as a design tool to estimate the maximum response for a given bellows

geometry and structural damping.
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Figure 4.13: Normalized convolute amplitude versus SG for different values of fluid force
coefficient, Co

f . Data for Gidi [42] experiment 6, bellows 102, 104, and 105 [13] end convolute
displacement is shown.

4.4.4 Model Application

To quickly estimate the maximum displacement in the first mode for a single-ply bellows the

following parameters are needed: Co
f , bellows geometric and material properties and the flow

conditions. First, knowing the number of convolutes Nc, the average Co
f can be calculated

using

Co
f =

1

Nc

Nc∑
j=1

(−0.000176j2 + 0.007991j − 0.002131). (4.26)

Then the Skop-Griffin parameter SG is found with

SG = 8π2St2µ2ζ, (4.27)

where the Strouhal number is St = fflλ/U , ζ is the damping ratio having typical values

around 0.005 for a single-ply bellows, and µ is a nondimensional mass given by
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µ =
ms +mfl

ρfhwλ
. (4.28)

Then with Co
f and SG, Fig. 4.13 can be used to estimate the maximum amplitude response

in the first mode. Presently, this is only valid for single-ply bellows, but similar design

charts could be created in the future for multi-ply bellows once their structural damping

characteristics are known.

The lock-in range for a bellows can be calculated using

(1 +
√
AΓλ/α)−1 < StUr < (1−

√
AΓλ/α)−1, (4.29)

where the coupling force scaling parameter is set to A = 20 for typical deep cavity, U-shaped

bellows, α is the convolute root width, Ur = U/fsλ is the reduced velocity and Γ is defined

as

Γ =
ρfhwλC

o
f

16π2St2mfl(m∗ + 1)
(4.30)

with m∗ = ms/mfl.

To obtain a more accurate prediction of amplitude response and lock-in region as well as

velocity at peak excitation the model would need to be programmed to solve the system of

2Nc equations formed by Eqs. (4.2) and (4.8). At this time, it is recommended to use the

TM-82556 method for calculating frequency, shown in Section 3.5, as it is currently more

accurate than the model’s prediction.
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Chapter 5

Summary and Recommendations for Future Work

This investigation into flow-induced vibrations in bellows expansion joints has yielded notable

contributions to the topic:

• This work contains the most comprehensive literature review of bellows joints that

has been compiled. Discussions include surveys of axial and lateral natural frequency

prediction methods, fluid-added mass predictions, stiffness calculations and modeling

of flow-induced vibration.

• From more recent literature, it is apparent that the excitation mechanism acting on

bellows involves free shear layer instabilities forming over the convolute cavities and

not vortex shedding as was previously theorized. It has been shown that the characte-

ristic length used to determine the oscillating fluid frequency of bellows should be the

convolute pitch and not root width. This is akin to rectangular cavity driven oscillati-

ons. Examination of experimental results shows that the Strouhal number for bellows

ranges between St = 0.42− 0.50. A comparison has been made between cavity theory

and data from bellows flow experiments that further supports this concept.

• The methods in TM-82556, used by NASA to predict bellows axial natural frequencies

and flow-induced stresses, have been presented in new, nondimensional formats. This

allows experimental axial natural frequency and stress data of bellows to be compa-

red on a single plot. An expanded data set consisting of more than 120 entries from

literature has been compared to the non-dimensional axial frequency prediction met-
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hod, showing that is still quite accurate. Comparison of experimental data with the

nondimensional formulation of the FIS method show that it is capable of approxima-

tely predicting stresses, provided that the specimens critical flow velocity, is near the

predicted critical velocity. Procedures for using these methods have been outlined and

should be a practical aid for designing and selecting bellows joints for a given operating

environment.

• A new method for predicting bellows FIV has been developed. This method cou-

ples a discrete mechanical model of the bellows to a representation of the fluid wake

expressed in terms of van der Pol oscillators. Inspired by a model of an elastically

restrained, single degree-of-freedom cylinder in flow, it captures the salient physics of

the bellows FIV phenomenon while remaining computationally efficient. The model

has been shown to be capable of accurately predicting lock-in regions and flow velo-

cities at peak excitation for the first mode of several experimental bellows found in

literature. Convolute displacement and axial natural frequencies are also predicted.

The coupled oscillator model separates itself from previous methods with the capabi-

lity of accurately predicting the lock-in region over which excitation occurs. TM-82556

compensates for this by defining an overly large velocity range for resonant conditions,

whereas the presented model is much more precise and is not as limiting from a design

standpoint. Furthermore, the model is uniquely capable of predicting off-resonance

conditions potentially allowing for more accurate fatigue life assessments.

• A design chart was also developed to predict maximum amplitude FIV response. The

chart requires only an estimate of Co
f and Skop-Griffin number as inputs.

• In development of the coupled oscillator model, forcing coefficients corresponding to

rigid bellows, Co
f , were determined using CFD simulations. It was found that Co

f

increases with increasing convolute number, while changes to convolute pitch and width

had minor effects. A curve fit to these simulation results gives a design equation that
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provides Co
f values for each convolute in a bellows. When applying Co

f to the model, it

is sufficient to simply apply the average of the individual Co
f values to all convolutes.

Results from a CFD simulation that varied velocity show that as velocity increases, Co
f

is nearly constant for the first convolute, but can decrease with increasing velocity for

downstream convolutes.

• A study was performed to examine the nature of frequency lock-in for bellows joints

and to determine a value for the coupling force scaling parameter used in the van der

Pol oscillator equations. It is shown that bellows lock-in is similar in nature to the

coupled mode flutter phenomenon in which system frequencies merge together. The

predicted lock-in regions for the bellows were compared with experimental results and

it was found that an A = 20 provided the best fit for modeling the width of the lock-in

range.

5.1 Recommendations for Future Work

There are several aspects of the coupled oscillator model that can be further developed as

well as additional topics that can be studied using CFD:

• The frequency prediction of the coupled oscillator model should be improved. Finite

element modeling could be used to inform the stiffness values in the coupled oscillator

model.

• Presently, the model has only been applied to the first axial mode and needs to be

validated for higher modes.

• The amplitude predictions from the model are quite conservative. Refinements to

reduce this conservatism may be sought.

• CFD time histories could be applied as forcing to the coupled oscillator model to

capture the effects of multi frequency excitation and phasing of the forces.
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• It is suspected that higher-order fluid modes may exist for bellows as is the case for

flow over rectangular cavities. This could be studied by conducting further bellows

CFD simulations.

• There are several potential topics that could be studied further using CFD simulation.

A CFD simulation of an angled bellows could help inform the affect this has on the

bellows FIV characteristics. In addition, many bellows contain flow liners that signifi-

cantly alter the flow characteristics in a bellows, but have been shown in literature to

still be susceptible to FIV. If the forcing coefficients for partially lined convolutes can

be found using CFD simulations, then they could be used with the coupled oscillator

model to predict its FIV response. Another concept that could be studied using CFD

is the flow field associated with variable pitch bellows. It is hypothesized that by ha-

ving cavities of varying pitch, the bellow would not be able to strongly resonate since

adjacent cavities would have different frequencies of fluid oscillations.
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