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ABSTRACT 

Forest ecosystems in Great Smoky Mountains National Park (GRSM) have long been affected by 

natural and human disturbances. Insect outbreaks and fires are the major disturbances affecting 

forest ecosystems in GRSM with interactions between each other. This manuscript-style thesis 

research explores these types of forest disturbances occurred in GRSM with two case studies. 

The first manuscript explores the spatial and temporal patterns of eastern hemlock (Tsuga 

canadensis L.) defoliation caused by hemlock woolly adelgid (HWA, Adelges tsugae) infestation 

in GRSM. Hemlock trees play an ecologically vital role in the eastern United States including 

GRSM. However, they have been facing a rapid infestation by the non-native HWA discovered 

in the park circa 2002. Moreover, the severe and persistent Chimney Tops 2 Fire occurred in 

November 2016 also put forest ecosystems in GRSM under threats. The second manuscript 

examines the spatial variations and driving factors affecting burn severity of the 2016 Chimney 

Tops 2 Fire in GRSM. The methodology and results from this project will support National Park 

Service forest management and insect control policies for the GRSM. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

Climate change has resulted in severe impacts on biodiversity, ecosystem functioning and 

services through increasing temperatures, rising carbon dioxide levels, and growing number of 

extreme weather events since the 20th century (Staudinger et al., 2012; Blunden et al., 2018). 

Long-term datasets collected from the 1960s have shown that Earth’s land surface temperature 

has increased approximately 0.17°C per decade (Blunden et al., 2018). Global warming can 

further increase the intensity and frequency of extreme events such as droughts, floods and heat 

waves (Trenberth et al., 2013; Stott, 2016). Specifically, droughts and heat stress induced by 

climate change, and climate-mediated processes like wildfire and infestations of invasive insects, 

have the potential to amplify forest mortality throughout the world (Allen et al., 2010).  

Covering nearly one third of the total land area on the Earth with over 80% of the terrestrial 

biodiversity, forest ecosystems play a vital role in preserving soil and water resources, 

maintaining biodiversity and contributing to sustainable development (Aerts & Honnay, 2011). 

However, forests are currently suffering from strong pressure generated by increasing frequency 

and intensity of disturbances related to human activities and climate change such as wildland 

fire, insect outbreaks, droughts and wind storms (Hansen et al., 2013; Trumbore et al., 2015; 

Seidl et al., 2017). From 2000 to 2012, forest losses of about 2.3 million km2 have been 

identified all over the world based on satellite observations (Hansen et al., 2013). In particular, 

the tropics have experienced the highest rates of forest loss caused by intensive forestry, 
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followed by the loss of the boreal forests related to fire and forestry practices (Hansen et al., 

2013). 

Although human activities such as forestry and shifting agriculture are the primary drivers of 

forest loss globally (Curtis et al., 2018), natural disturbances such as insect outbreaks and 

wildfire also exert strong impacts on the forests in temperate North America (van Lierop et al., 

2015). These forest disturbances not only cause massive mortality of plants and animals, but also 

influence the climate conditions in return by altering the carbon storage, hydrologic cycle, 

surface energy fluxes, etc. (Bonan, 2008). In addition, climate change could interact with 

pathogens, insects and fire to further impact the spatial distribution and phenology of tree species 

(Sturrock et al., 2011). Thus, monitoring of forest disturbance spatiotemporal patterns is of great 

importance for maintaining healthy forest ecosystems under climate change conditions.  

1.2 Research Questions and Objectives  

This Master’s research utilizes remote sensing imagery to examine spatial and temporal patterns 

of vegetation disturbances in GRSM forests caused by insect outbreaks and fires, which are the 

major disturbance sources in the park. Dead trees caused by insect infestation have the potential 

to increase fire risks by providing fuels that support burning (Jenkins et al., 2008). In addition, 

insect outbreaks can affect post-fire severity levels in forests (Meigs et al., 2016). Remote 

sensing methods have the capability to detect both types of disturbances effectively for forest 

ecosystems. Specifically, this thesis examines two case studies are examined in GRSM: eastern 

hemlock defoliation caused by HWA and post-fire burn severity of the 2016 Chimney Tops 2 

Fire. Both case studies can provide resource agencies such as the GRSM National Park Service 

(NPS) and U. S. Forest Service (USFS) with a complete methodology and results for long-term 

monitoring of forest disturbances and can assist the forest management and health protection at 

the broad spatiotemporal scale. 
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Chapter 2 (the first manuscript) focuses on geospatial analysis to quantify and map the spatial-

temporal patterns of eastern hemlock defoliation in GRSM. The results of this study can be used 

to assess the overall effectiveness of control measures and to identify key locations for hemlock 

protection. They can also be used to support modeling and prediction of HWA risks. Two 

research questions are addressed in this chapter: 

(1) How are the eastern hemlock disturbances caused by HWA in GRSM distributed in space 

and time?  

(2) What regions in GRSM have the greatest decline or long disturbance of eastern hemlock? 

Chapter 3 (the second manuscript) computes and maps the spatial variation of burn severity after 

the 2016 Chimney Tops 2 Fire and examines the factors influencing the severity distribution. 

The results of this study can assist the post-fire restoration efforts of the forest ecosystems in 

GRSM. This chapter addresses the following three research questions: 

(1) How is burn severity distributed in GRSM after the 2016 fire? 

(2) How does the fire impact the habitats of different vegetation species? 

(3) What environmental factors affected the distribution of burn severity in this fire? 

In summary, this thesis plans to achieve the following objectives: 

(1) To analyze the spatiotemporal patterns of hemlock disturbances in GRSM; 

(2) To identify the key time and locations of HWA infestation for future control and protection 

efforts; 

(3) To map the burn severity for the 2016 fire in GRSM; 

(4) To examine the vegetation species affected by the fire; and 

(5) To identify the factors influencing the variance of burn severity. 
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1.3 Study Area 

GRSM is located in Tennessee and North Carolina and encompasses approximately 2114.18 km2 

within the southern portion of the greater Appalachian Mountains (Figure 1.1). Among the oldest 

mountains in the world, the formation of the Southern Appalachian Mountains within which the 

GRSM lies can be dated back to perhaps 200 ~ 300 million years ago. Originally established in 

1934, GRSM was designated as an International Biosphere Reserve by United Nations in 1976 

and a World Heritage Site by United Nations Educational, Scientific and Cultural Organization 

(UNESCO) in 1983 in recognition of its unique and abundant natural resources (World Heritage 

Centre, 2018). Now with over nine million visitors annually, GRSM is known as the most visited 

park in the United States (U.S.). 

 

Figure 1.1 The Great Smoky Mountains National Park straddling the boundary between 

Tennessee and North Carolina in the eastern U.S. 
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With elevations ranging between 267 and 2025 m in the park, it is believed that the 

heterogeneous geology and topographic features affect the distribution of the various species 

(Whittaker, 1956). The central massif of GRSM is surrounded by mountain valleys which reach 

as low as 256 m on the western side along most of the park boundary. A steep terrain of narrow 

ridges and rocky coves can also be found all over the park resulting in the relative short distances 

between elevation extremes (6 ~ 12 km), except for a few places that are mainly composed of 

metamorphosed and sedimentary rock covered with fields, grassland and some forest vegetation 

(Fridley, 2009). Throughout GRSM, temperature and lapse rate decreases as elevation increases 

while precipitation and humidity increase as the elevation rises. All of the above climate patterns 

will also be influenced by the microclimate conditions in certain areas (Busing et al., 2005).  

1.4 Literature Review 

1.4.1 Forest Disturbances in Great Smoky Mountains National Park (GRSM) 

As part of the southern Appalachian Mountains in the eastern U.S., Great Smoky Mountains 

National Park (GRSM) once served as a place of refuge for plant and animal species during the 

last Ice Age and now is one of the most biodiverse regions in the world (Walker, 1991; Jenkins, 

2007). GRSM contains more than 100,000 species with at least 5,400 plants, 450 vertebrates, 

76,000 invertebrates and 20,000 fungi species, according to the All Taxa Biological Inventory 

developed based on expert knowledge (Sharkey, 2001). The flora and fauna species in GRSM 

are of great importance for maintaining the ecological integrity and ecosystem services of the 

southern Appalachian Mountains and the southeastern U.S. (Walker, 1991; Vandermast, 2005). 

In addition to the rich diversity of plant species, GRSM contains one of the largest old growth 

forests in the eastern U.S. (Jenkins, 2007). 

Forests in GRSM have experienced a long history of both natural and anthropogenic 

disturbances (Pyle, 1985). Paleorecords suggest that fire occurred regularly in GRSM forests 
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over the past 4,000 years (Fesenmyer & Christensen, 2010). Having lived in this region for 

thousands of years, Native Americans burned the forests and grasses for gaming and hunting 

purposes with relatively minimal impacts on the local ecosystems. The settlement of the 

Europeans in this region in the 1700s then became an important disturbance that influenced the 

vegetation communities in GRSM (Pyle, 1985). The impacts were still minimal in the beginning 

for cutting trees for building settlements and small area farming. The logging and farming 

activities during the 1800s and 1900s, however, was so extensive that over half the area of the 

park was cleared with severe loss of species until the establishment of GRSM in 1934 (Pyle, 

1985). 

In spite of the current protected status, forests in GRSM are also threatened by pathogenic fungi, 

insect outbreaks, fire and other disturbances (Jenkins, 2007). Accidentally introduced into North 

America in the early 1890s, chestnut blight (Cryphonectria parasitica Barr) wiped out American 

chestnut (Castanea dentata), a dominant species in GRSM forest communities, in the 1930s 

(Whittaker 1956). Balsam woolly adelgid (Adelges piceae), first discovered in 1956 in the 

Appalachians, has caused serious mortality of the only fir species in GRSM, Frasier fir (Abies 

fraseri) (Jenkins, 2007; Taylor, 2012). More recently, hemlock woolly adelgid (HWA, Adelges 

tsugae) has become a serious threat to the eastern hemlock (Tsuga canadensis L.) forests in 

GRSM since 2002.  

In addition to fungus and insect infestations, GRSM forests experience both prescribed fires and 

two lightning-ignited fires per year, on average (NPS, 2018a). In particular, the Chimney Tops 2 

Fire, one of many in the Fall of 2016 fire season in GRSM, has not only affected local forest 

ecosystems in GRSM, but also led to human deaths, injuries and severe damages in the 

developed areas of Gatlinburg, Tennessee. Other processes like tornados and catastrophic winds 

can also lead to damages on the forests, which could take decades for the ecosystems to recover 
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(Peterson, 2000; Allen et al., 2012; Bernardes & Madden, 2016). This research focuses on 

examining the impacts of recent disturbance events on GRSM forests, particularly the HWA 

infestation of hemlock forests and the Chimney 2 Tops Fire, as examples of remote sensing and 

geospatial analyses of broad-scale forest disturbances related to spatial and temporal patterns of 

forest damage.  

Eastern Hemlock and Hemlock Woolly Adelgid 

Known as “redwood of the East", eastern hemlock (Tsuga canadensis L.), or Canadian hemlock, 

is a slow-growing but long-lived evergreen coniferous tree species native to the eastern North 

America (Figure 1.2; Ward et al., 2004). Within the U.S., eastern hemlock forests are dominated 

throughout the northeastern U.S., extending from lower Quebec and the Canadian Maritime 

Provinces to the north, Michigan and the Appalachian Mountains to the west and stretching 

south to northern Georgia and Alabama. Specifically, they cover about 3.24 km2 within GRSM, 

more than in any other parks (NPS, 2018b). The eastern hemlock normally require 250 ~ 300 

years to mature and can live up to 800 years (Godman & Lancaster, 1990). It can grow more than 

45 m tall with trunks measuring 2 m in diameter (Brisbin, 1970). 

 

Figure 1.2 Eastern hemlock distribution in North America (Little & USGS, 1971) 
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Typically locating at elevations ranging from 600 m to 1800 m, eastern hemlock often occupies 

the area near streams and within cove or valley formations on lower protected slopes and terraces 

(Godman & Lancaster, 1990; Jenkins, 2007). It can also be found at higher elevations within or 

near northern hardwood forest community types. Eastern hemlock is generally confined to humid 

continental climates and mainly ranges in areas with constantly moist soil due to its sensitivity to 

drought and wind exposure (Benvie, 2000). During the growing season, the habitats of eastern 

hemlock typically have an average annual precipitation from 740 mm to more than 1270 mm. 

The habitats in the north can have average temperatures from -12°C to 16°C, while in the south 

the average temperature can reach 6°C (Godman & Lancaster, 1990). Its habitats are usually 

influenced by topographic features like slope and aspect, since they have the potential to affect 

soil moisture content and surface temperature (Orwig et al., 2002; Marks, 2012).  

As one of the most common species in GRSM, eastern hemlock plays an essential role in forest 

and riparian ecosystems by providing a unique micro-habitat for local wildlife and maintaining 

the rich biodiversity of animal and plant species (NPS, 2018b). The heterogeneous vertical 

structure of mature hemlock forest stands also provides habitats for hundreds of vertebrate 

species (Ward et al., 2004). Its dense evergreen foliage reaching to the forest floor can maintain 

the cool and moist microclimates critical to the survival of cold-water species and stabilizes 

hydrologic budgets (Ward et al., 2004; Stadler et al., 2005). The thermal cover and forage 

provided by hemlock forests can also be utilized by various mammal and bird species, such as 

white-tailed deer and black-throated green warbler (Ward et al., 2004). 

Though eastern hemlock has a long lifecycle, its population has declined rapidly across the 

eastern U.S. due to the infestation of hemlock wooly adelgid (HWA, Adelges tsugae), a small 

invasive insect native to Japan and probably China (Godman & Lancaster, 1990; Orwig et al., 

2002; Clark et al., 2012). Although hemlock species in Japan are no longer significantly injured 
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by HWA because of the host resistance and arthropod predators, they are now threatened by an 

increasing population of HWA in the North America (Letheren et al., 2017). The HWA can have 

two complete parthenogenetic wingless generations, winter and spring generations, on hemlock 

every year. Feeding at the needle junctions of hemlock, HWA can feed off the nutrients and then 

cause the needles to desiccate (Figure 1.3). The HWA can thus lead to serious needle loss, 

prevent the production of new apical buds and finally kill hemlock trees within three to five 

years (McClure & Salom, 2001). Since HWA has no natural predators within the U.S., it has 

become necessary for researchers and forest managers to intervene and control the spread of 

HWA considering the significance of eastern hemlock in protecting the ecosystems (Bonneau et 

al., 1999; Soehn et al., 2005). 

 

Figure 1.3 Eastern hemlock infested by HWA (Credit: Connecticut Agricultural Experiment 

Station Archive, U.S.) 

The HWA was first found in the northeastern U.S. in the 1950s and then spread along the 

Appalachian regions to the southeast from the late 1990s to early 2000s (Havill et al., 2016). The 

spreading rate of the HWA has reached 15.6 km per year in the southern areas since the 1990s 

and can be even higher in warmer years (Evans & Gregoire, 2007). By 2016, HWA had infested 
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hemlock forests in most eastern US counties from Maine to Georgia (Figure 1.4). First 

discovered in GRSM in 2002, HWA then became widespread within the park and caused severe 

hemlock defoliation and death in both overstory and understory levels of the forests (Johnson et 

al., 2005; Krapfl et al., 2011). Specifically, the mortality rates of understory hemlock trees tend 

to be higher than those of the overstory ones (Krapfl et al., 2011). Though significant changes of 

species composition in the hemlock forests due to HWA infestations have not been identified, it 

is highly possible that hemlock trees could disappear in GRSM and thus influence the 

successional vegetation patterns in the forest ecosystems (Krapfl et al., 2011).   

 
 

Figure 1.4 HWA distribution map in U.S. counties in 2015 (Havill et al., 2016)  
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Three types of treatments, including foliar treatments, systemic treatments and release of 

predator beetles, have been conducted by the NPS to kill the adelgids and control their 

dispersions in the hemlock forests of GRSM (NPS, 2018c). These treatments can be generally 

categorized into chemical and biological controls (Havill et al., 2016). Specifically, foliar 

treatments are applied to hemlock trees at accessible regions mainly with a spray of insecticidal 

soap to kill the adelgids. Systemic treatments apply a systemic insecticide into the trunk or soil 

of those trees that are not easily accessible by humans. Though effective, these chemical controls 

only last from a few months up to five years and require repeated treatments (Havill et al., 2016; 

NPS, 2018c). In addition, such “stand-alone” strategies are not viable for broad scale 

applications due to their costs and potential impacts on the environment (Abella, 2014; Havill et 

al., 2016). As a biologic control, predatory beetles have been released across the park since 2002, 

with a population greater than half a million reached by 2011 (NPS, 2018c). This method is 

under development with promising preliminary results (Havill et al., 2016; NPS, 2018c). 

Although the site and climatic factors driving HWA’s widespread distribution are still unclear, 

the vulnerability of hemlock to HWA infestation varies in space (Rentch et al., 2009; Havill et 

al., 2016). In addition, effective implementation of these controls requires knowledge of hemlock 

defoliation locations in inaccessible regions. Thus, gaining a thorough understanding about the 

spatiotemporal patterns of hemlock defoliation can improve our understanding of the underlying 

drivers and assist the management efforts of eastern hemlock forests in GRSM.  

Wildland Fires in GRSM 

The southern Appalachian forests have a long history of regularly occurring wildfires as 

suggested by soil charcoal data (Fesenmyer & Christensen, 2010). The frequency of fires 

increased abruptly in the recent 1000 years, related to the activities of Native Americans in this 

region (Fesenmyer & Christensen, 2010). After the establishment of the park in 1934, fire 
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suppression efforts have significantly reduced wildfire occurrences in the forests of the southern 

Appalachian Mountains (Flatley et al., 2013). Currently in GRSM, arson is the primary cause of 

fires in GRSM, while lighting strikes accounted for about 10% of fires. Lightning-ignited fires in 

GRSM usually occur in May or June, mainly at the low and mid-elevations, and especially where 

pine and oak forests predominate (Cohen et al., 2007; NPS, 2018a). 

Referred to as the largest fire in GRSM’s history, the Chimney Tops 2 Fire that occurred in 

November of 2016, lasted for six days from November 23 to 28 and burned about 69.36 km2 in 

total with 44.37 km2 inside the park (Figure 1.5; Klein et al., 2017). Starting from the Chimney 

Tops Mountain in the central area of the park, this fire then grew rapidly under strong winds and 

raged across the park to the developed Gatlinburg region in Tennessee. Merged with two other 

smaller fires, this fire resulted in 14 deaths, a million-dollars of economic loss in the Gatlinburg 

area of Tennessee, and a massive number of dead trees within GRSM. Although ignited by arson 

by two juveniles, the occurrence of this unusually severe fire was also impacted by the unusually 

low precipitation and warm temperatures in this region from mid-summer to fall, resulting in a 

tinder dry condition for the forests in GRSM (Klein et al., 2017). In addition, the newly fallen 

leaves in the autumn of 2016 that piled up on the forest floor also provided plenty of fuels for the 

fire and extremely high winds rapidly spread the fire from its point of ignition. 
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Figure 1.5 The Chimney Tops 2 Fire in GRSM on November 27, 2016 (Credit: Brett Bevill) 

There is a long history of fire management in GRSM. Currently, two types of fire management 

zones are distinguished in GRSM for different management purposes (Figure 1.6; GRSM, 2010). 

For the purpose of protecting human life, property and sensitive resources, the first type, 

Interface Zone, has been established in the regions within and adjacent to the park boundary, 

which covers approximately 17% of the total park area. The remaining 83% of the park is 

identified as the Natural Zone, within which natural processes are allowed to occur. Particularly, 

wildland fires occurring naturally in this unit will be allowed to burn for resource benefits under 

proper conditions. The GRSM management team will also ignite prescribed fires to maintain 

healthy forest ecosystems.  
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Figure 1.6 GRSM Fire Management Units (GRSM, 2010) 

Fires are like a double-edged sword for the forest ecosystems. On one hand, wildland fires can 

alter the ecosystem functioning and services of forest and become dangerous for wildlife and 

human beings (Bonazountas et al., 2007; Thom & Seidl, 2016). While on the other hand, fires 

have the capability to maintain healthy forest ecosystems and to benefit the species by recycling 

the nutrients of dead trees (Tiedemann et al., 2000). Fire spread extent and severity could have 

different levels of negative impacts on the local ecosystems by influencing seed sources, 

vegetation mortality and even the biogeochemical cycles (Pyne et al., 1996; Certini, 2005; Cocke 

et al., 2005). The distribution of burn severity is largely dependent on the interactions between 

fires and environmental factors like fuel types, fuel moisture, topography and weather conditions 

(Pyne et al., 1996). Understanding the distribution of post-fire burn severity and environmental 



15 
 

factors related to severity distribution can provide useful information for effective forest 

recovery management in GRSM.  

1.4.2 Remote Sensing Applications in Environmental Studies 

Remote sensing technology has been widely utilized in environmental and ecological 

applications due to its capability of collecting data with broad spatiotemporal coverage and 

continuity. In general, remote sensing can be defined as “the art and science of obtaining 

information about an object without being in direct physical contact with the object” (Reeves et 

al., 1975). To be more specific, it focuses on recording and analyzing the information of objects 

or phenomena from certain regions of the electromagnetic spectrum, including ultraviolet, 

visible, infrared and microwave spectral bands, using various sensors such as cameras, scanners, 

and lasers carried on platforms including handheld devices, towers, aircrafts and satellites 

(Jensen, 2007).  

Particularly, multispectral remote sensors allow for the discrimination of different types of 

vegetation, rocks and soils, clear and turbid water, and selected man-made materials based on 

their different reflectance properties in the visible and infrared spectrum (Figure 1.7). With the 

development of remote sensing technologies over the past 45 years, multispectral remote sensors, 

such as Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and 

Atmospheric Administration (NOAA) satellites, Thematic Mapper (TM), Enhanced Thematic 

Mapper Plus (ETM+) and the Operational Land Imager (OLI) onboard Landsat satellites from 

National Aeronautics and Space Administration (NASA), and High Resolution Geometrical 

(HRG) instrument on SPOT 5 satellite from French Centre National d'Etudes Spatiales, among 

many others, have obtained a large amount of images to identify various ground objects, to 

acquire biophysical and land cover information and to examine their spatiotemporal trends at a 

broad scale (Running & Nemani, 1988; Cohen & Goward, 2004; Pettorelli et al., 2005; Tucker et 
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al., 2005; Yuan & Bauer, 2007; Hansen et al., 2013). Compared to the relatively broad-band 

multispectral sensors, hyperspectral remote sensing sensors can capture hundreds of narrow-band 

spectral data. The use of hyperspectral imagery makes it possible to obtain more detailed spectral 

information for monitoring vegetation species and other ground objects (Figure 1.8), such as 

detecting forest health events caused by fire, insect infestation, invasive species, etc. (Treitz & 

Howarth, 1999; Koetz et al., 2008; Wang et al., 2010).  

 

Figure 1.7 Spectral signatures for dry bare soil, green vegetation and clear water body (Govender 

et al., 2007)  
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Figure 1.8 Surface reflectance spectra of different vegetation types (Govender et al., 2007) 

In recent years, monitoring long-term forest dynamics and disturbances at broad spatiotemporal 

scales have become possible thanks to the large amount of open remote sensing satellite data 

provided by NASA (Kerr & Ostrovsky, 2003). Satellite images acquired at high temporal 

resolution such as daily Moderate Resolution Imaging Spectroradiometer (MODIS) data have 

been widely used to monitor the vegetation phenology for broad-scale agriculture and forest 

applications (Myneni et al., 2002; Zhang et al., 2003; Sakamoto et al., 2005; Verbesselt et al., 

2010). With lower temporal frequency but higher spatial resolution, 30-m multispectral data 

collected by Landsat sensors have played the most important role in mapping vegetation cover 

change and using the derived surfaces in ecological models given their about 40-year record of 

data collection (Cohen & Goward, 2004; Hansen et al., 2013). Given similar spectral collection 

configurations and orbital parameters, data from both MODIS and Landsat sensors have been 

combined together for Earth observations to make full use of their spatial and temporal details.  

First launched in 1972, Landsat satellite series has been the longest running satellite program for 

Earth observations. Ever since the USGS started to provide millions of Landsat scenes for free in 
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2008, Landsat satellites, particularly Landsat 4, 5, 7, and 8, have played an important role in 

providing data for broad scale studies and promoting the progress of scientific research in a 

variety of fields such as land use and land cover change, forest disturbances monitoring, wildland 

fires evaluation, and surface water extent estimation. Multispectral instruments onboard Landsat 

satellites, including TM on Landsat 4 and 5, ETM+ on Landsat 7, and OLI on Landsat 8, are 

designed to provide data with 30-m spatial resolution and 16-day revisiting time (Jensen, 2007; 

Jackson, 2009). 

These instruments specifically capture reflective spectral bands covering visible, near infrared 

(NIR), and shortwave infrared (SWIR) portions of the electromagnetic spectrum (Figure 1.9; 

Jackson, 2009). In spite of the similar band designations among these sensors, ETM+ and OLI 

have improved radiometric resolution in data acquisition when compared to TM.  However, the 

Scan Line Corrector failure of ETM+ sensor in 2003 resulted in scanline gaps in data collection 

and limited the usage of ETM+ data in scientific research. Specifically, the Landsat TM sensor 

has six reflective spectral bands, one thermal emissive band and one panchromatic band as listed 

in Table 1.1. The Landsat OLI sensor has eight reflective spectral bands and one panchromatic 

band, with one ultra-blue band and one cirrus band added for coastal and aerosol studies and 

atmospheric correction (Table 1.2).  
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Figure 1.9 Comparison of Landsat TM, ETM+ and OLI spectral bands (Credit: NASA) 

Table 1.1 Band designations of Landsat 5 TM sensor 

Spectral Bands Wavelength (micrometers) Resolution (meters) 
Band 1: Blue 0.45 - 0.52 30 
Band 2: Green 0.52 - 0.60 30 
Band 3: Red 0.63 - 0.69 30 
Band 4: NIR 0.77 - 0.90 30 
Band 5: SWIR 1 1.55 - 1.75 30 
Band 6: Thermal Infrared 10.40 - 12.50 120 
Band 7: SWIR 2 2.08 - 2.35 30 
Band 8: Panchromatic 0.52 - 0.9 15 

 

Table 1.2 Band designations of Landsat 8 OLI sensor 

Spectral Bands Wavelength (micrometers) Resolution (meters) 
Band 1: Ultra Blue  0.435 – 0.451 30 
Band 2: Blue 0.452 - 0.512 30 
Band 3: Green 0.533 - 0.590 30 
Band 4: Red 0.636 - 0.673 30 
Band 5: NIR 0.851 - 0.879 30 
Band 6: SWIR 1 1.566 - 1.651 30 
Band 7: SWIR 2 2.107 - 2.294 30 
Band 8: Panchromatic 0.503 – 0.676 15 
Band 9: Cirrus 1.363 – 1.384 30 
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The USGS has archived, processed and distributed multilevel Landsat satellite data acquired 

since 1972. Level-1 Landsat products delivered by USGS have been processed with radiometric 

calibration and geometric correction. Particularly, the standard terrain correction collection in 

level-1 products provides the digital number (DN) values with highest geometric accuracy with 

orthorectification processing using ground control points and DEM data. Then with properties 

provided in metadata, the top-of-atmospheric (TOA) radiance and reflectance values can then be 

calculated from DN data. In addition to level-1 products, USGS also provides on-demand level-2 

surface reflectance products for TM, ETM+ and OLI data after applying radiometric calibration 

and atmospheric correction algorithms. Level-2 products of TM and ETM+ data are processed 

through the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) system for 

atmospheric correction, cloud masking and quality assessment (Masek et al., 2006), while OLI 

data are generated using the Landsat Surface Reflectance Code (LaSRC) system (Vermote et al., 

2016). These two systems adopted different radiative transfer models, algorithms and input 

datasets for atmospheric correction, which could lead to the inconsistency of spectral signatures 

values in long-term data records. 

1.4.3 Forest Disturbance Detection with Remote Sensing 

Monitoring forest disturbance has always been a major concern in forest management due to the 

spatiotemporal limitations of on-site monitoring (Overpeck et al., 1990; Attiwill, 1994; Millar et 

al., 2007). In many cases, insect infestation has been a major cause of forest disturbances for 

decades and has had deep negative impacts on the health condition of ecosystems (Ayres & 

Lombardero, 2000; Czerwinski, 2012). The development of satellite sensors has allowed for 

improved measurements of forest extent and change at various spatial and temporal scales (Boyd 

& Danson, 2005). Specifically, the NASA Earth Observing System (EOS) including optical 

sensors on board satellites have systematically collected comprehensive global imagery on a 
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regular schedule for decades. For example, Hansen et al. (2008) integrated MODIS and Landsat 

images to monitor Congo forest cover and change from 1990 and 2000. Masek et al. (2013) have 

mapped the forest disturbances and examined their temporal trends during 1985 ~ 2005 for the 

U.S. using Landsat TM and ETM+ archive data. Archived since 1984, Landsat TM and ETM+ 

data with a 16-day temporal resolution and 30-m spatial resolution are suitable for capturing the 

spatial details of vegetation characteristics and assessing long-term trends of land cover changes 

(Cohen & Goward, 2004; Meigs et al., 2011).   

As a simple spectral transformation of various bands, vegetation indices calculated by band 

ratios are designed to enhance the detection of the contribution of vegetation properties and can 

be used to monitor seasonal, annual, and long-term variations of vegetation structural, 

phenological, and biophysical parameters (Huete et al., 2002). As the most commonly used 

index, Normalized Difference Vegetation Index (NDVI) calculated with NIR and red bands has 

been widely applied using Landsat data to measure the vegetation greenness and disturbance 

patterns globally (Maselli, 2004; Pettorelli et al., 2005; Tucker et al., 2005; Spruce et al., 2011; 

Fensholt et al., 2012). NDVI is calculated using the formula below:  

𝑁𝐷𝑉𝐼 = 	 '()*+	'*,-
'()*.'*,-

, 

where 𝜌012 and 𝜌234 are surface reflectances of the NIR and red spectral bands. Since NDVI 

tends to saturate in high biomass regions, Enhanced Vegetation Index (EVI) has been designed 

and adopted to improve vegetation monitoring with a combination of blue, red and NIR bands 

(Huete et al., 2002; Sims et al., 2008; Bernardes & Madden, 2016). EVI can be calculated using 

the following formula: 

𝐸𝑉𝐼 = 	2.5	 × '()*	+	'*,-
'()*	.	(;	×	'*,-	+	<.=	×	'>?@,)	.	B

, 
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where 𝜌012, 𝜌234 and 𝜌CDE3 are surface reflectances of the NIR, red and blue spectral bands. 

Other indices like Soil and Atmospheric Resistant Vegetation Index (SARVI) and Normalized 

Difference Moisture Index (NDMI) also show good performances in mapping forest disturbances 

in different ecosystems (Maingi & Luhn, 2005; Goodwin et al., 2008). Normalized Burn Ratio 

(NBR), a metric calculated with NIR and SWIR bands, is originally developed to capture the 

impacts of fire on vegetation communities (García & Caselles, 1991). Existing research also 

suggests the effectiveness of NBR in detecting other forest disturbances like insect outbreaks, 

due to its sensitivity to low intensity disturbance events (Cohen et al., 2010; Kennedy et al., 

2010). The formula of NBR is presented as: 

𝑁𝐵𝑅 = 	 '()*+	'HI)*
'()*.'HI)*

, 

where 𝜌012 and 𝜌JK12 are surface reflectances of the NIR and SWIR spectral ranges. In addition, 

by deriving three linear combinations (Brightness, Greenness, and Wetness) of spectral bands 

related to biophysical properties, Tasseled Cap (TC) transformation can reduce the volume and 

improve the interpretability of multispectral data, and thus is commonly used to assist vegetation 

classification and disturbance monitoring efforts (Crist, 1985; Dymond et al., 2002; Zhang et al., 

2002; Healey et al., 2005). 

When considering change detection analysis with Landsat data, image differencing, Principle 

Component Analysis (PCA) and Change Vector Analysis are among the most widely used 

methods for measuring change with images from two different dates (Czerwinski, 2012). To 

analyze the spatial variation of landscape changes with temporal details, trend analysis methods 

dealing with multi-temporal remote sensing data have been developed. Masek et al. (2008) 

mapped the disturbance and early recovery of North American forest using the temporal change 

in a Tasseled-Cap “Disturbance Index” for the 1990-2000 Landsat record. Eastman et al. (2009) 
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applied Theil-Sen slope to calculate the pixel-level median slope of an image time series to 

estimate the long-term trend. Huang et al. (2010) designed a Vegetation Change Tracker 

algorithm to map forest disturbance in eastern U.S. from 1984 to 2006. Kennedy et al. (2010) 

developed a trajectory-based temporal segmentation algorithm combining both regression-based 

and point-to-point fitting of spectral indices as a function of time to capture abrupt and gradual 

change of forest disturbance and recovery.  

1.4.4 Fire Severity Estimation with Remote Sensing 

Fire severity, or burn severity, was originally proposed to describe the ecological impacts of fire 

intensity, which describes the energy released from organic matter during different physical 

phases of combustion (Keeley, 2009). In spite of the interchangeable use of these terms in some 

existing studies, they represent different post-fire impacts regarding the temporal scale and the 

properties they describe (Lentile et al., 2006; Keeley, 2009). In particular, considering both 

short- and long-term fire impacts, burn severity describes more attributes related to fire severity 

and ecosystem responses when compared to fire severity (Lentile et al., 2006; Keeley, 2009). 

Fire management efforts for forest ecosystems require accurate monitoring of post-fire burn 

severity and enhanced understanding of environmental factors driving burn severity distribution 

(Malmström, 2010; Jenkins et al., 2011; Francos et al., 2016). 

Deriving empirical relationships between remote sensing spectral indices and field severity 

measurements is the most commonly used method for broad scale estimation of burn severity 

across different types of ecosystems. Different from remote sensing indices developed based on 

spectral information, field measurements of burn severity such as composite burn index (CBI) 

are usually designed to represent a much broader set of attributes considering not only organic 

matter loss, but also ecosystem responses (Keeley, 2009). Existing studies have identified strong 

relationships between spectral indices like NDVI and burn severity measured with post-fire 
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biomass loss (Keeley, 2009). NBR shows significant relationship with field measurements and 

has been widely utilized in monitoring and quantifying burn severity in different ecosystems 

(Rogan & Franklin, 2001; Roy et al., 2006; Stow et al., 2007).  

For example, Brewer et al. (2005) compared six methods of burn severity mapping including 

indices, PCA and Artificial Neural Network and identified NBR-based empirical method as the 

most effective one for the 2000 fire season in the Northern Rocky Mountains and Northern Great 

Plains. Developed based on NBR, differenced NBR (dNBR) and Relative dNBR (RdNBR) were 

used as alternative ways for mapping severity (Miller & Thode, 2007; Wimberly & Reilly, 

2007). Other metrics such as change in leaf area index (LAI; Boer et al., 2008) were also 

developed to capture certain aspects of fire severity.  

In addition to empirical fitting with spectral indices, inversion methods with radiative transfer 

models (RTM) have shown their effectiveness in assessing burn severity within certain ranges 

(Chuvieco et al., 2006; De Santis & Chuvieco, 2007). For example, De Santis and Chuvieco 

(2007) compared both types of methods in Mediterranean forests and found that RTM based 

methods have higher accuracy for estimating CBI values in high severity and unburned areas 

than the empirical ones. Although NBR-based indices have their limitations in interpreting fire-

related biophysical changes and mapping burning perimeters (Cocke et al., 2005; Boer et al., 

2008), they are still considered to be among the most effective methods in assessing forest burn 

severity in many applications (Chang et al., 2016).  

Spatial variation of burn severity is under the control of environmental factors such as fuel types, 

topography and weather conditions across the landscape through their impacts on fire intensity 

and duration (Pyne et al., 1996; Dillon et al., 2011; Estes et al., 2017). Types of vegetation fuels 

are critical for the distribution of burn severity in forest ecosystems, since they can affect 

flammability and fuel loads and thus influence fire intensity and duration (Pyne et al., 1996). 
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Specifically, the LANDFIRE program maintained by USFS uses Landsat data to map the spatial 

distribution of major fuel types across the entire country to support wildfire studies and fire risk 

modeling (Rollins, 2009). Topography and weather conditions also exert strong impacts on the 

severity distribution in multiple ways. On one hand, they can influence the accumulation of fuels 

that support burning by altering vegetation distribution and productivity and controlling local 

energy and water balances for vegetation growth (Barbour, 1999; Dillon et al., 2011). On the 

other hand, they can affect the microclimatic conditions of fire weathers and thus influence the 

fuel moisture content (Pyne et al., 1996). U.S. National Fire Danger Rating System (NFDRS) 

and Canadian Forest Fire Danger Rating System (CFFDRS) have developed specific indices to 

quantify weather conditions for fire potential evaluation.  

Impacts of these factors on post-fire burn severity vary by different ecosystems and locations. 

Wimberly & Reilly (2007) found strong linkages between burn severity and pre-fire vegetation 

types, topography, changes in species richness in the southern Appalachians using Landsat TM 

and ETM+ imagery. Birch et al. (2015) examined the fires in central Idaho and western Montana 

forests and suggested that vegetation and topographic factors tended to influence burn severity 

the most. Kane et al. (2015) identified seven factors, including time since previous fire, actual 

evapotranspiration, climatic water deficit, burning index, slope, and solar radiation to explain 

burn severity variance for the Rim fire occurred in the western U.S. Another study by Chang et 

al. (2016) also identified topographic factors and daily humidity as the determinative factors 

affecting burn severity for forests in northeastern China.  

1.5 Thesis Structure 

This manuscript-style thesis is comprised of four chapters containing two manuscripts, which 

will be submitted for publication in peer-reviewed journals. The first chapter introduces 

background information of this research, research questions and objectives to be addressed, study 
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area and related literature review. The second chapter, which is the first manuscript, aims to 

explore the defoliation pattern of eastern hemlock forests in GRSM using a temporal 

segmentation algorithm and Landsat time series imagery. The third chapter, which is the second 

manuscript, focuses on evaluating the burn severity in GRSM after the 2016 Chimney Tops 2 

Fire and explores the environmental factors affecting the burn severity distribution. Finally, the 

fourth chapter summarizes this thesis and discusses the next steps of work.   
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Abstract 

Eastern hemlock (Tsuga canadensis L.) plays an ecologically vital role in forest ecosystems of 

eastern United States. Within Great Smoky Mountains National Park (GRSM), hemlock forests 

provide a unique habitat for many flora and fauna species that thrive in cool, shaded aquatic or 

terrestrial landscapes. However, hemlock trees are currently threatened by the non-native 

hemlock woolly adelgid (HWA, Adelges tsugae) discovered in the park circa 2002. A variety of 

controls have been conducted to prevent the rapid loss of hemlock trees caused by the infestation 

of HWA. However, the performances of these control efforts are largely limited when compared 

to the dramatic loss of trees throughout the park. In this study we aim to gain a thorough 

understanding of hemlock defoliation caused by HWA in GRSM at the broad spatiotemporal 

scale, using National Aeronautics and Space Administration (NASA) Earth Observing System 

(EOS) data. We use Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic 

Mapper Plus (ETM+) imagery acquired during leaf-off conditions from 1991 to 2011 to 

construct temporal trajectories of hemlock disturbance. Then we apply a temporal segmentation 

algorithm, LandTrendr, to identify pixel-based defoliation trends and to evaluate the health 

condition of eastern hemlock in GRSM. The methodology and results from this project can 

inform National Park Service forest management and insect control policies for the GRSM.  
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2.1 Introduction 

The Great Smoky Mountains National Park (GRSM) is one of the most biodiverse regions in the 

world and the largest virgin forest landmass in the United States (U.S.; Jenkins 2007). 

Containing at least 1,300 native plant species, 1,570 species of flowering plants and 4,000 

species of non-flowering plants, GRSM plays an important role in preserving flora and fauna 

diversity and maintaining ecological integrity of the southern Appalachian Mountains (Walker, 

1991). Forest ecosystems in GRSM has long been threatened by natural or human disturbances 

(Pyle, 1985). In particular, biotic disturbances caused by fungi and insects are major drivers for 

forest defoliation in GRSM during the recent decades. Chestnut blight (Cryphonectria 

parasitica), introduced to the U.S. in the early 1900s, has wiped out the majority of American 

chestnuts (Castanea dentate) in GRSM by the late 1930s (Taylor, 2012). By the 1970s, balsam 

woolly adelgid (Adelges picea) has led to the death of about 80 ~ 90% mature Fraser fir (Abies 

fraseri) throughout GRSM (Taylor, 2012). More recently, eastern hemlock (Tsuga canadensis) 

forests in GRSM are also at risk due to the infestation of hemlock woolly adelgid (HWA, 

Adelges tsugae) since 2002 (Krapfl et al., 2011). 

Known as “redwood of the East", eastern hemlock is a slow-growing but long-lived coniferous 

tree native to the eastern North America (Ward et al., 2004). Within the U.S., hemlock trees have 

been found throughout New York, New England area, Pennsylvania, extending from New Jersey 

to the Appalachian Mountains in the west side and stretching to the northern Georgia and 

Alabama in the south (Figure 2.1). Eastern hemlock trees usually require approximately 250 to 

300 years to mature and can live up to 800 years (Godman & Lancaster, 1990). In general, they 

can reach heights of about 25 to 30 m with trunk diameter at breast height of about 0.6 ~ 1 m 

(Brisbin, 1970). Having grown in GRSM for more than 400 years, eastern hemlock is the 

dominant species in many sites (Johnson et al., 2000). These old-growth hemlock trees cover 
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more than 3.2 km2, while younger trees growing for about 75 ~ 100 years occupy about another 

360 km2 land area throughout the park (NPS, 2018). 

 

Figure 2.1 HWA distribution map in U.S. counties in 2015 (Havill et al., 2016) 

As one of the most common species in GRSM, eastern hemlock plays an essential role in the 

local forest and riparian ecosystems by providing a unique micro-habitat for wildlife and 

maintaining the rich biodiversity of animal and plant species (NPS, 2018). The heterogeneous 

vertical structure of hemlock forests provides mature stands for hundreds of vertebrate species 

(Ward et al., 2004). The dense evergreen foliage reaching to the forest floor from hemlocks can 

stabilizes hydrologic budgets and maintain the cool and moist microclimates, which are critical 

to the survival of cold-water species (Ward et al., 2004; Stadler et al., 2005). The thermal cover 
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and forage provided by hemlock trees can also benefit various mammal and bird species, such as 

white-tailed deer (Odocoileus virginianus) and black-throated green warbler (Dendroica virens) 

(Ward et al., 2004). 

Despite of its ecological importance, eastern hemlock has declined rapidly across the eastern 

U.S. due to the infestation of HWA (Godman & Lancaster, 1990; Orwig et al., 2002; Clark et al., 

2012). First discovered in GRSM in 2002, HWA became widespread and caused severe hemlock 

defoliation and death in both overstory and understory levels of the forests (Johnson et al., 2005; 

Krapfl et al., 2011). Previous studies identified negative impacts of HWA induced hemlock 

mortality on the local biodiversity, hydrologic processes and ecosystem stability (Ford & Vose, 

2007; Letheren et al., 2017). Existing treatments such as biological and chemical methods were 

conducted in GRSM to control the infestation of HWA and to decrease the mortality of eastern 

hemlock. However, due to the lack of knowledge about factors driving HWA population and 

large-scale distribution patterns of hemlock mortality, treatments of hemlock defoliation 

throughout the park are difficult to conduct and their performances are quite limited (Letheren et 

al., 2017). Thus, to assist the effective management and protection of eastern hemlock forests in 

future, it is of great importance to gain a thorough understanding about the spatiotemporal 

patterns of hemlock decline caused by HWA in GRSM. 

The development of remote sensing technology over the past 45 years makes it possible for 

tracking ecosystem disturbances on Earth in broad spatiotemporal scales. Having been archived 

since 1972, multispectral remote sensing imagery collected by Landsat satellites provide 

consistent Earth observations with a 16-day temporal coverage and 30-m spatial resolution. 

Vegetation indices extracted from Landsat spectral bands, such as Normalized Difference 

Vegetation Index (NDVI; Maselli, 2004), Normalized Burn Ratio (NBR; García & Caselles, 

1991) and Soil and Atmospheric Resistant Vegetation Index (SARVI; Maingi & Luhn, 2005), 
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have been widely used to monitor the spatiotemporal patterns of biophysical parameters and 

disturbance events across different ecosystems (Huete et al., 2002; Cohen & Goward, 2004). 

Tasseled Cap (TC) transformation, which derives three components (Brightness, Greenness and 

Wetness) with linear combinations of spectral bands, has also been commonly applied for 

capturing spectral properties of vegetation communities and identifying forest disturbances 

(Crist, 1985; Healey et al., 2005). A group of algorithms have been developed for mapping 

spatial and temporal disturbance patterns, including Seasonal Trend Analysis (Eastman et al., 

2009), Vegetation Change Tracker (Huang et al., 2010) and LandTrendr (Kennedy et al., 2010).  

Existing remote sensing studies in GRSM primarily focused on mapping the spatial distributions 

of overstory vegetation communities using both spectral and non-spectral information from 

aerial imagery (Welch et al., 2002; Madden et al., 2009; Kim et al., 2010). Allen and Madden 

(2009) developed 3D visualizations for HWA damage in GRSM based on the developed 

vegetation database (Welch et al., 2002; Madden et al., 2004). Strother et al. (2015) also applied 

Lightning Detection and Range (LiDAR) remote sensing data to measure tree heights in GRSM. 

In addition, NDVI time series data generated from coarse resolution Moderate Resolution 

Imaging Spectroradiometer (MODIS) data have captured phenological variability (Norman et al., 

2017) and potential hemlock defoliation trend (Norman et al., 2013) in GRSM since 2000.  

However, spatiotemporal patterns of hemlock decline have not been examined in detail with 30-

m resolution Landsat imagery across the entire GRSM so far. This study aims to analyze the 

spatiotemporal patterns of HWA disturbances in eastern hemlock forests in GRSM, and to 

identify the key time and locations of defoliation to assist future pest control and protection 

efforts. Specifically, the following two research questions are addressed in this chapter: (1) How 

are the eastern hemlock disturbances caused by HWA in GRSM distributed in space and time? 

(2) What regions in GRSM have the greatest decline or long disturbance of eastern hemlock? 
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2.2 Datasets and Materials 

2.2.1 GRSM Vegetation Database 

This study utilizes the GRSM vegetation database to determine the spatial distribution of eastern 

hemlock forests in the study area. Developed by the Center for Geospatial Research 

(http://www.cgr.uga.edu/) at the University of Georgia in collaboration with NPS (Madden et al., 

2004), this dataset provides detailed information about overstory and understory vegetation 

species and their distributions throughout the whole GRSM. Figure 2.2 shows a generalized 

overstory vegetation species (about 25 classes) summarized from over 100 classes of forest from 

the original dataset.  

 

Figure 2.2 GRSM overstory vegetation map (Jordan 2002; Welch et al., 2002; Madden et al., 

2004) 

The overstory vegetation communities were classified to the Association level, which is the 

finest division from the National Vegetation Classification System protocol of the U.S. 
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Geological Survey (USGS) NPS Vegetation Mapping Program. Over 1000 color infrared aerial 

photographs were acquired a 1:12,000 scale and recorded with a Wild RC20 photogrammetric 

camera. Specifically, leaf-on photos in the fall were collected from 1997 to 1998 in late October 

since they display diverse colors to distinguish vegetation communities. These photos were then 

scanned at 800 dpi resulted in digital images, reaching about 0.4 m spatial resolution (Jordan 

2002). Manual interpretation was used to map the overstory vegetation communities with these 

data. Supplementary data, including USGS National Aerial Photography Program (NAPP) Air 

Photos, USGS Topographic Maps, USGS Digital Orthophoto Quarter Quadrangles (DOQQs) 

and USGS level-2 Digital Elevation Model (DEM), were also integrated to generate the GRSM 

vegetation database. 

2.2.2 Remote Sensing Imagery 

Landsat 5 TM and Landsat 7 ETM+ 30-m level-2 surface reflectance data delivered by USGS 

were obtained from EarthExplorer (http://earthexplorer.usgs.gov/) to examine the long-term 

trend of eastern hemlock defoliation in GRSM. Processed with the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS), this level-2 product provides surface 

reflectance values for each reflective spectral band after radiometric calibration, geometric 

correction and atmospheric correction (USGS, 2018). For atmospheric correction, LEDAPS 

processes level-1 Landsat data with MODIS atmospheric correction routines using water vapor, 

ozone, aerosol optical thickness, geopotential height and digital elevation as input parameters for 

the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer models 

(Masek et al., 2006). Clouds and cloud shadows are also masked using the CFMask algorithm 

through this system.  

To construct the temporal trend of eastern hemlock deforestation condition, Landsat tiles 

covering GRSM (Path 19 Row 35) from 1991 to 2011 were collected for data analysis. Images 
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with limited cloud coverage were preferred. Specifically, only images in leaf-off conditions 

(November, December and next January) were selected to remove the impacts of understory 

broadleaf species on the reflectance of eastern hemlock. The pixel quality assessment data 

provided by level-2 data were then used to identify the clear pixels for data processing and 

analysis. The selected Landsat images for generating the time series are listed in Table 2.1.  

Table 2.1 List of leaf-off Landsat 5 TM and Landsat 7 ETM+ imagery obtained for this study. 

Year Sensor Landsat Scene ID Acquisition 
Date 

Date of 
Year 

Cloud 
Coverage 

1991 Landsat 5 TM LT50190351991351XXX02 1991/12/17 351 1% 
1992 Landsat 5 TM LT50190351992322XXX02 1992/11/17 322 5% 
1994 Landsat 5 TM LT50190351994311AAA02 1994/11/07 311 0% 
1995 Landsat 5 TM LT50190351995330AAA02 1995/11/26 330 8% 

1996 Landsat 5 TM LT50190351996333XXX01 1996/11/28 333 9% 
Landsat 5 TM LT50190351996349XXX01 1996/12/14 349 5% 

1999 Landsat 5 TM LT50190351999341XXX02 1999/12/07 341 30% 
Landsat 5 TM LT50190351999357XXX02 1999/12/23 357 3% 

2000 Landsat 5 TM LT50190352000344XXX03 2000/12/09 344 25% 

2001 
Landsat 5 TM LT50190352001314LGS01 2001/11/10 314 2% 
Landsat 5 TM LT50190352001330LGS01 2001/11/26 330 14% 

Landsat 7 ETM+ LE70190352001338EDC00 2001/12/04 338 6% 

2002 Landsat 5 TM LT50190352002333LGS01 2002/11/29 333 0% 
Landsat 7 ETM+ LE70190352002341EDC00 2002/12/07 341 4% 

2003 Landsat 5 TM LT50190352003336GNC02 2003/12/02 336 18% 
Landsat 7 ETM+ LE70190352003360EDC01 2003/12/26 360 0% 

2004 Landsat 5 TM LT50190352004339GNC01 2004/12/04 339 0% 
2005 Landsat 5 TM LT50190352006024GNC01 2006/01/24 24 4% 

2006 Landsat 5 TM LT50190352006328GNC01 2006/11/24 328 0% 
Landsat 5 TM LT50190352007027GNC01 2007/01/27 27 1% 

2008 Landsat 7 ETM+ LE70190352008342EDC00 2008/12/07 342 9% 
Landsat 5 TM LT50190352009032GNC01 2009/02/01 32 0% 

2009 Landsat 5 TM LT50190352009320GNC01 2009/11/16 320 0% 
Landsat 7 ETM+ LE70190352009344EDC00 2009/12/10 344 2% 

2010 Landsat 7 ETM+ LE70190352010315EDC00 2010/11/11 315 0% 
Landsat 5 TM LT50190352010323GNC01 2010/11/19 323 2% 

2011 Landsat 5 TM LT50190352011310EDC00 2011/11/06 310 4% 
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2.2.3 Auxiliary Dataset 

Although detailed field measurements of eastern hemlock loss are not available for this research, 

we used the 30-m resolution global forest cover change data provided by Global Land Analysis 

& Discovery (GLAD; Hansen et al., 2013) as a reference for result evaluation and comparison. 

Developed with 30-m Landsat top-of-atmosphere reflectance data using decision tree method, 

GLAD data provides binary data of forest cover loss from 2000 to 2014, binary data of forest 

cover gain from 2000 to 2012, and the year of gross forest loss between 2000 and 2014. 

2.3 Methodology 

2.3.1 Identifying Eastern Hemlock Distribution in GRSM 

Before examining the spatiotemporal trend of eastern hemlock decline, the eastern hemlock 

forest regions in GRSM were first determined using the overstory vegetation classification data 

from the GRSM vegetation database. Based on hemlock extent and canopy presence information 

from the overstory vegetation dataset, two types of eastern hemlock distribution were identified 

within GRSM: dominant hemlock region and mixed hemlock region. Here the vegetation 

communities with eastern hemlock coverage greater than 50% were identified as the dominant 

hemlock distribution type, while the vegetation communities with hemlock coverage within 20 ~ 

50% were referred to as the hemlock mixed type.  

2.3.2 Trajectory-based Algorithm LandTrendr 

This study then applies a LandTrendr (http://landtrendr.forestry.oregonstate.edu) algorithm to 

analyze the spatial-temporal distributions of eastern hemlock defoliation in GRSM. LandTrendr 

is designed for mapping the temporal trend of forest disturbance through extraction of spectral-

temporal trajectories (Kennedy et al., 2010). This algorithm is comprised of five successive 

steps: preprocessing, segmentation, change label mapping, spatial filtering and result validation. 

Using vegetation indices to represent vegetation greenness and to construct trajectories, it 
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conducts pixel-by-pixel temporal segmentation for the trajectories and then simplifies the 

temporal trajectories to identify the trends of forest change.  

Landsat data preprocessing 

LandTrendr requires specific data formats for processing. Here we prepared three data files for 

each Landsat image listed in Table 2.1. A layer stack of the six surface reflectance bands for 

Landsat 5 and 7 was first generated. Then a layer stack of the three TC components was then 

calculated with the surface reflectance data and prepared in integer format. Both surface 

reflectance and TC component layer stacks were prepared using the ENVI software. LandTrendr 

also requires cloud mask data for each image. Here the quality assurance data provided by 

LEDAPS level-2 product were utilized to prepare the cloud mask data. Only “clear” pixels were 

assigned as “1” in the cloud mask data for LandTrendr processing, while other pixels were 

assigned as “0” to remove low-quality pixels such as clouds, shadows, snows and Landsat 7 Scan 

Liner Corrector (SLC) gaps. Although originally designed for highlighting burned area and 

estimating fire severity, NBR is found to have good performances in identifying forest 

disturbance trends due to its high sensitivity to low intensity disturbance events (Cohen et al., 

2010; Kennedy et al., 2010; Meigs et al., 2011). Thus, here NBR was adopted as the index for 

constructing the trajectories and tracking the hemlock defoliation pattern. 

Algorithm description 

As the core part of the LandTrendr algorithm, temporal segmentation utilizes straight line 

segments to model the key features of a pixel’s spectral time series while removing the impacts 

of noise (Kennedy et al., 2010). The detailed steps of segmentation are shown in Figure 2.3. The 

algorithm first constructs the pixel-by-pixel temporal trajectories and removes ephemeral spikes 

in the trend. Then potential vertices are identified using deviation from simple regression lines, 

with more vertices identified than needed. The excess vertices are then removed based on the 
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low angle change. Next, a single path through the vertices is chosen using flexible fitting rules, 

and then segments are removed to create successively simplified models of the trajectory. 

Finally, the algorithm chooses the best-fit model and records segment details in the output data. 

 

Figure 2.3 LandTrendr algorithm segmentation process (Kennedy et al., 2010): (a) removal of 

ephemeral spikes; (b) identification of potential vertices; (c) removal of excess vertices; (d) 

choice of a single path through the vertices; (e) removal of segments to create successively 

simplified models of the trajectory; (f) determination of the best-fit model. 
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After segmentation, the next step is change label mapping. This step interprets the segmentation 

results based on user-defined rules, and then creates maps that highlight important processes of 

vegetation loss and growth. For vegetation index like NBR, decreases of values represent loss of 

forest and increases of values suggest gain of forest. The outputs from change label mapping can 

provide the onset timing, duration and conditions of significant loss or recover processes at pixel 

level. Then to remove single-pixel noises in the results, a spatial filtering step is conducted to 

create patch-based maps.  

In general, when running the algorithm, we first run the segmentation and labeling in an 

evaluation model to detect and fix any problematic issues related to data preparation, in order to 

generate stable results. Then, the code is run in a full segmentation mode, which creates fitted 

images considering original index, multiple bands and TC components. Next, change labeling 

and spatial filtering steps are conducted to generate final outputs. 

2.3.2 Experiments with LandTrendr 

The performance of LandTrendr is highly dependent on a variety of parameters related to 

segmentation, trajectory fitting, and change labeling in the algorithm. Specifically, three 

parameters “pct_tree_loss1”, “pct_tree_loss20” and “pct_tree_gain” from the change labeling 

step have direct impacts when characterizing the forest cover changes based on the segmentation 

results. Here “pct_tree_loss1” specifies the minimum percent cover loss caused by disturbances 

within one year. Similar to “pct_tree_loss1”, “pct_tree_loss20” is defined for a 20-year 

duration. In addition, “pct_tree_gain” represents the minimum cover gain to determine a 

segment growth. Fragal et al. (2016) tested several different combinations of these parameters to 

optimize the algorithm results. Thus, in this study we also explored different settings of these 

parameters as suggested by Fragal et al. (2016). The detailed parameter settings are summarized 

in Table 2.2.   
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Table 2.2 Parameter settings for LandTrendr experiments 

Parameter Group1 Group2 Group3 Group4 Group5 
pct_tree_loss1 0.1 0.2 0.25 0.3 0.35 
pct_tree_loss20 0.03 0.1 0.125 0.15 0.2 
pct_tree_gain 0.05 0.15 0.2 0.25 0.3 

 
2.3.3 Evaluation of Results 

The source trajectories and the fitted trajectories were then compared to examine the trend of 

disturbance for these pixels. For each group of tests, we generated labeled change detection maps 

including: year of disturbance onset, duration of change and magnitude of disturbance. To assess 

the results, we calculated the confidence level of our results from all five groups of tests to 

estimate the confidence of detected change based on the method described in Fragal et al. (2016). 

For each group, we generated the change detection binary layers by assigning changed pixels to 

1 and the rest to 0. Then for each pixel, a confidence index ranging from 0 to 1 was calculated as 

the normalized sum of results from all five groups using the following equation: 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒	𝐼𝑛𝑑𝑒𝑥 = 	 ∑ VW(
WXY
0

, 

where N represents the total number of groups, 𝑖 represents each group and 𝑥Z is the binary value 

of each pixel in each group. In addition, GLAD forest cover loss data were used to examine and 

compare the spatial patterns of forest loss estimated with LandTrendr.  

2.4 Results and Discussions 

2.4.1 Distribution of eastern hemlock forests in GRSM 

Eastern hemlock forests in GRSM are typically mixed with vegetation communities such as 

rhododendron, Southern Appalachian mixed hardwoods, montane alluvial hardwoods, etc. 

(Madden et al., 2004). According to the percent coverage of different species, we first 

summarized the major vegetation communities related to the two hemlock distribution types as 
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listed in Table 2.3. The distribution of both hemlock dominant and hemlock mixed types were 

further mapped in Figure 2.4. The hemlock dominant region is sparsely spread within GRSM 

with a total area of 63.81 km2. It primarily concentrates in the eastern side of the national park, 

around the Cataloochee Valley. With a larger coverage of 140.90 km2 in GRSM, the hemlock 

mixed region is widely distributed in the western and mid parts of the park. 

Table 2.3 Dominant and mixed hemlock regions with corresponding vegetation communities 

Type Overstory Vegetation Communities Vegetation Class Code 

Dominant 
hemlock region 

Eastern Hemlock/Rhododendron  T, T/R, T/K 
E. Hemlock/ Southern Appalachian 

Mixed Mesic Acid Hardwoods T/NHxA 

E. Hemlock/Yellow 
Birch/Rhododendron  T/NHxB, T/NHx 

Hemlock/ Montane Alluvial 
Hardwoods and Broad Valley Acid 

Code Hardwoods 
T/MAL 

Red Spruce-Hemlock/Rhododendron T/S 
S. Appalachian Cove Hardwoods T/CHx, T/CHxA, T/HxL 

E. Hemlock - E. White Pine/ 
Rhododendron T/PIs 

Mixed hemlock 
region 

Red Spruce-Hemlock/Rhododendron S-T, S-T/R 

S. Appalachian Northern Hardwoods  NHx-T, NHxB-T, NHxR-T, 
NHxA-T,  

Montane Alluvial Hardwoods  MAL-T 
S. Appalachian Cove Hardwood 

Forests CHx-T, CHxL-T, CHxA-T  

S. Appalachian Early Successional 
Hardwoods  HxL-T, HxB-T 

S. Appalachian Mixed Hardwood 
Forest  HxA-T 

E. Hemlock - E. White Pine/ 
Rhododendron PIs-T 
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Figure 2.4 Spatial distribution of the hemlock dominant and hemlock mixed classes in GRSM 

(Welch et al., 2002; Madden et al., 2004)  

2.4.2 Spatial and temporal patterns of hemlock defoliation in GRSM 

We then constructed and fitted pixel-by-pixel spectral trajectories from 1991 to 2011 in the 

segmentation step of LandTrendr. The segments and significant vertices were generated 

primarily based on the NBR trends while considering the temporal trends of three surface 

reflectance bands and TC components. Figure 2.5 shows two examples of original and fitted 

trajectories of NBR for two hemlock forest sites in GRSM. The hemlock site in Figure 2.5 (a) 

shows consistent NBR values from 1991 to 2002 and decrease from 0.4 to 0.1 during 2003 to 

2005. The NBR then tends to stay around 0.1 after 2006. Similarly, the fitted NBR trajectory in 

Figure 2.5 (b) shows that the western site has an NBR value reducing from 0.4 to 0.35 from 1991 

to 2003. Then the value begins to drop rapidly during 2003 and 2004. Compared to the original 

NBR data, the fitted lines represent the general temporal changes in these sites very well and also 

remove the noises properly. 
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Figure 2.5 Temporal NBR trajectories of two hemlock forest sites in GRSM. In particular, (a) is 

from eastern GRSM and (b) is from western GRSM. Upper false color images show the original 

Landsat surface reflectance data before disturbance in 1999. Lower false color images show the 

original Landsat surface reflectance data after disturbance in 2009. 

Based on the fitted trajectories, we then labeled the change classes using the five groups of 

parameter settings in Table 2.2. We further generated patch-based maps for different change 

classes through spatial filtering and examined the year of onset, magnitude and duration for these 

classes. Here we focus on the results and discussions for the following change classes: greatest 

disturbance, longest disturbance and longest discovery. The greatest disturbance change class in 
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this study considers all the disturbance segments identified in the trajectories, without restrictions 

on the time period, duration length or magnitude. Compared to the greatest disturbances, we only 

consider the segments longer than four years as the longest disturbance change class. The 

greatest recovery class here considers all segments that indicate potential tree recovery in the 20-

year time series, without any further restrictions. For each change class, we further assess the 

overall patterns (year of onset, duration, and magnitude) for hemlock dominant and hemlock 

mixed regions and show the detailed maps of certain regions. Since Group 5 is the most 

restrictive parameter set with the highest reliability when compared to other groups (Fragal et al., 

2016), here we only discuss the results of Group 5 in detail.  

For the greatest disturbance events, we summarized the area of each year of onset in Figure 2.6. 

For both hemlock dominant and mixed forests, the years of 1992, 2003 and 2006 show 

substantial large disturbance areas when compared to other years. Ever since the first discover of 

HWA in GRSM circa 2002, hemlock forests in GRSM were most severely disturbed in 2003 and 

2006, with more than 6 km2 and 8 km2 forests affected, respectively. The 2003 disturbance 

influenced more hemlock dominant region than the mixed region, while the 2006 disturbance 

mainly occurred in the hemlock mixed region with an area of 5.4 km2. Following 2003, the years 

of 2004 and 2005 also showed disturbances that covered less than 2 km2. Prior to the infestation 

of HWA in GRSM, the year of 1992 was also detected as the onset year of defoliation in about 

7.4 km2 hemlock forest, because these pixels actually show a general decreasing trend during the 

entire 20-year time series (Figure 2.7). On one hand, this gradual trend could be caused by other 

gradual disturbances related to climate change (warming, drought, etc.) rather than HWA 

infestation. On the other hand, although the algorithm tries to minimize the noises in the time 

series, data quality and inconsistency in the 20-year period still have the potential to result in this 

pattern.  
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Figure 2.6 Year of onset of greatest disturbance events for hemlock forests in GRSM 

 
Figure 2.7 Source and fitted NBR trends for a site in hemlock forests with 1992 as the onset year 

of disturbance 

Figure 2.8 shows an example of the affected hemlock forests in eastern GRSM. The disturbance 

events in this region mainly start in 2003 (yellow) and 2006 (cyan). We also examined the 

duration of greatest disturbance events in the study area as shown in Figure 2.8. Since we 

consider all the disturbance for this change class, greatest disturbance events mainly range from 

1 to 9 years for within the hemlock forests in GRSM. Disturbance events lasting 1 year, 4 years 

and 6 years cover more than 3 km2 in total for the hemlock forests. The 20-year disturbance is 

corresponding to the 1992 events shown in Figure 2.6, which is not the main focus of this study.  
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Figure 2.8 Year of onset of greatest disturbance events for hemlock forests in eastern GRSM 

 
Figure 2.9 Duration of greatest disturbance events for hemlock forests in GRSM 

For the longest disturbance events, we summarized the area of each year of onset in Figure 2.10. 

Different from the greatest disturbance events, the year of 2003 has many more disturbance 

events longer than four years when compared to other years, which occupies about 12.8 km2 
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throughout the hemlock forests in GRSM. Following that, in 2004, about 7 km2 hemlock regions 

started to experience forest loss that longer than four years. The years 2002, 2005 and 2006 also 

witnessed long-term hemlock disturbance covering about 4 km2. Figure 2.11 mapped the onset 

year of longest disturbance type that affect hemlock forests in eastern GRSM.  

For the greatest recovery events, we summarized the area of each year of onset in Figure 2.11. 

An area of approximately 2 km2 of hemlock forests started to show recovery in 2009 and 2010. 

While other years indicated very limited recovery occurred. Figure 2.12 is an example of the 

recovered hemlock forests in eastern GRSM. The recovery of 2009 and 2010 are shown as light 

and dark green in the output map. Since the growth and succession of understory vegetation can 

affect the spectral signatures after the defoliation of overstory hemlock trees, this recovery 

pattern can be resulted from the detection of understory vegetation and does not represent the 

actual recovery of overstory hemlock forests. The year 1992 is also identified as the year of onset 

for the recovery of approximately 9.7 km2 hemlock forests from 1991 to 2011. Similar to the 20-

year gradual decline, this type of recovery can be caused by the algorithm itself or data quality, 

rather than the control efforts of HWA infestation in GRSM.  

Compared to Group 5, the other 4 groups generate similar spatial and temporal patterns for these 

disturbance and recovery events of hemlock forests in GRSM, although they tend to identify 

larger areas of these events in general. Since the algorithm is only developed for imagery from 

Landsat 5 and 7, we have so far only constructed a 20-year time series with only Landsat 5 and 7 

data without including Landsat 8 data acquired after 2014 in the data processing. This is because 

the original LandTrendr algorithm written in Interactive Data Language that we used here does 

not incorporate Landsat 8 data, and the SLC gaps in Landsat 7 data could affect the overall 

results if we simply include Landsat 7 data after 2012. Kennedy et al. (2018) recently 

implemented the algorithm for all Landsat data on the Google Earth Engine platform. In future, 
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we will improve the results by combining Landsat 8 data in the analysis to monitor the hemlock 

defoliation condition in GRSM.  

 
Figure 2.10 Year of onset of longest disturbance events for hemlock regions 

 
Figure 2.11 Year of onset of longest disturbance events in eastern GRSM 
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Figure 2.12 Year of onset of greatest recovery events for hemlock forests in GRSM 

 
Figure 2.13 Year of onset of greatest recovery events in eastern GRSM 

2.4.3 Result evaluation and comparison 

To assess the overall performance of the loss and recovery results from LandTrendr, we further 

calculated the confidence index for the greatest disturbance and greatest recovery results from 
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the five groups of tests. Since HWA infestation was first observed in GRSM circa 2002, we only 

focused on the pixels with year of onset after 2000 to assess the hemlock change caused by 

HWA. Figure 2.14 summarizes the confidence index for both disturbance and recovery for 

hemlock forests. Here disturbance refers to the greatest disturbance event and recovery refers to 

the greatest recovery event from the results. In general, about 8.2 km2 hemlock dominant region 

and 10.7 km2 hemlock mixed region are identified as hemlock loss with high confidence, while 

recovery occurred in approximately 2.3 km2 of hemlock dominant region and 2.1 km2 hemlock 

mixed region with high confidence. During the leaf-off period in this study, other coniferous 

species, such as rhododendrons and white pine, and understory vegetation species might stay 

active during the dates of our data collection. Due to the mixed canopy cover, this impact should 

be minimized as the study focused on areas previously identified as hemlock.  

 
Figure 2.14 Confidence index values for post-2000 disturbance and recovery in the hemlock 

forests of GRSM 

We also compared our results with the forest loss captured by GLAD dataset between 2001 and 

2014. Figure 2.15 shows the area of tree cover loss captured in each year within the defined 

hemlock forests in GRSM. In general, the GLAD dataset underestimates the disturbance in 
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hemlock forests when compared to our results. There is a significant loss within hemlock forests 

that is actually caused by the tornado outbreak across the Southeastern US in April 2011 

(Bernardes & Madden, 2016; Figure 2.16), while other years like 2008 and 2004 only witnessed 

limited loss of tree cover in hemlock forests. The differences in results could be caused by the 

methods that are used to generate the GLAD data. Aiming at mapping the overall forest cover 

conditions, GLAD is developed based on the data acquired in leaf-on seasons, during which 

other mixed overstory and understory species could affect the spectral signals in the data. 

Focusing on the hemlock defoliation conditions, our study simply adopted data in leaf-off 

conditions to minimize the impacts from other species.  

 
Figure 2.15 Yearly tree cover loss of hemlock forests in GRSM as from GLAD data 
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Figure 2.16 Yearly tree cover loss from GLAD data for hemlock forests in eastern GRSM 

The algorithm used in this study has the capability of capturing the major disturbance events by 

examining the spatial and temporal patterns of spectral information. However, it also has its 

weaknesses. To represent forest disturbance conditions accurately, this method requires expert 

knowledge for parameter settings in the segmentation and change labeling steps. The 

performance of the segmentation step is largely impacted by the trajectory construction results, 

which depends on the proper removal of cloud and cloud shadow pixels. In addition, the 

information of spatially-adjacent pixels are only considered for spatial filtering, but not 

integrated into the segmentation step, which could affect the robustness of the results (Kennedy 

et al., 2010). Moreover, other drivers of disturbances in hemlock forests such as tornadoes and 

fires were not separated in our study, which could amplify the impacts of HWA on hemlock 

defoliation.  
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Although this algorithm can detect forest cover changes, the factors driving the change still need 

more knowledge and long-term monitoring of the study area. Our results also suggest gradual 

forest loss within the hemlock forests of GRSM, which could be driven by factors other than 

insect infestation. In addition to HWA, the health condition of eastern hemlock is also threatened 

by the stresses from drought, poor site conditions and other disease pests (Souto & Shields, 

2000). Existing studies also have shown that changing climatic conditions, such as temperature 

extremes and drought, can affect the susceptibility of trees to insects and amplify the mortality of 

trees (Allen et al., 2010; Sturrock et al., 2011; Evans et al., 2013). As eastern hemlock is very 

sensitive to drought, it is also believed that drought can weaken the eastern hemlock and can 

increase the susceptibility of hemlock to HWA (Orwig & Foster, 1998). For more accurate 

evaluation of results, ground-based forest inventory data should be investigated in future to better 

understand the hemlock health conditions in GRSM.  

2.4.4 Implications for hemlock management practices 

Although previous studies have examined hemlock defoliation in other regions, this regional-

scale analysis makes an initial effort in examining the overall spatiotemporal patterns of hemlock 

defoliation induced by HWA outbreaks in recent years. The 30-m forest change maps generated 

in this study also suggest potential management actions for hemlock forests within GRSM. The 

disturbance results map the extent of hemlock loss and assist the proper design of HWA control 

policies. Koch et al. (2006) predicted the future infestation of HWA in GRSM and found it most 

likely to occur in the northern portion of the park or near the roads and major trails. However, 

our results suggest that HWA infestation has been widely distributed across the hemlock forests 

in GRSM by 2011. Krapfl et al. (2011) previously observed significant hemlock loss caused by 

HWA infestation in GRSM with forest inventory data. Our results further quantify the yearly 

hemlock loss in GRSM, which could assist the evaluation of potential impacts of hemlock 
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mortality on local ecosystems. In addition, the recovery results can help with tracking the long-

term performance of existing control efforts.  

2.5 Conclusions and Future Work 

In summary, this study maps yearly hemlock defoliation caused by HWA infestation in GRSM at 

a fine spatial scale. By identifying the starting year and lasting period of substantial disturbance 

events of hemlock forests, our results provide an important context for ecosystem monitoring and 

insect control planning policies in GRSM. In particular, our results identify the hotspots of 

hemlock defoliation and recovery, which highlights the regions that requires HWA controls 

effects and further assessments of ecosystem impacts. In addition to the forest loss caused by 

HWA infestation, we also identified long-term gradual disturbances inside the park during the 

two decades (1991 ~ 2011), suggesting the need to examine additional driving factors of forest 

loss within GRSM. Accurate evaluation and consistent monitoring of hemlock mortality will 

continue to be significant for sustainable ecosystem management within GRSM. With the 

Landsat 8 satellite launched by NASA in 2013 and Sentinel-2A and 2B satellites launched by 

European Space Agency (ESA) in 2015 and 2017, broad-scale forest health monitoring will 

reach a new epoch with higher spatial and temporal resolution. In addition, considering the 

inconsistency of Landsat level-2 datasets caused by sensors and processing algorithms, the 

utilization of Landsat Analysis Ready Data developed by USGS can improve the performances 

of long-term disturbance studies.  
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CHAPTER 3 

EXPLORING THE SPATIAL VARIATION AND ENVIRONMENTAL DRIVERS OF BURN 

SEVERITY IN GREAT SMOKY MOUNTAINS NATIONAL PARK: A CASE STUDY OF 

THE 2016 CHIMNEY TOPS 2 FIRE2 

  

                                                
2 He, Jiaying, et al. To be submitted to ISPRS International Journal of Geo-Information 
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Abstract 

Wildland fire is one of the most severe broad-scale disturbances in forest ecosystems. Forest 

fires can exert strong impacts on climate and ecosystem services and functioning. They can also 

lead to human deaths and economic losses to human societies. Understanding the spatial 

distribution of the burn severity and related environmental factors can not only assist post-fire 

recovery plans, but also help decision makers prepare for future fire management efforts. The 

Great Smoky Mountains National Park (GRSM) has a long history of fire disturbances. Although 

fires within GRSM are currently managed under careful monitoring and suppression efforts, the 

Chimney 2 Tops 2 Fire occurred in November 2016 has led to severe impacts of the forest 

ecosystems in GRSM and the nearby developed area in Tennessee. In this study we aim to 

examine the spatial distribution of burn severity within GRSM after the Chimney Tops 2 Fire 

using the remote sensing imagery. We then identify how this fire affected different vegetation 

communities. The impacts of environmental factors affecting the distribution of burn severity 

caused by this fire were also explored with geospatial analysis.  
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3.1 Introduction 

Wildland fire is one of the most severe broad-scale disturbances across many ecosystems in 

Earth systems (Bowman et al., 2009). Temperate forests in the North America experienced 

increasing frequency of severe fires during the past few decades (Millar & Stephenson, 2015; 

Schoennagel et al., 2017). Forest fires can exert strong impacts on climate through the alteration 

of carbon dynamics and surface radiative forcing (Randerson et al., 2006; Loehman et al., 2014; 

Seidl et al., 2014). They can also cause severe environmental effects on ecosystem functioning 

and services, such as destruction of vegetation communities, changes in hydrology and loss of 

wildlife habitats (Thom & Seidl, 2016). In addition, fire can lead to loss of lives, air pollution, 

and destruction of homes and livelihoods, thus affecting both health and socioeconomics of 

human societies (Bonazountas et al., 2007; Liu et al., 2015). Future projections suggest that 

climatic stresses are likely to increase the long-term fire frequency and severity, enhancing the 

fire impacts on local ecosystems (Miller et al., 2009; Stephens et al., 2013; van Mantgem et al., 

2013; Littell et al., 2016; Parks et al., 2016).  

Fire severity, or burn severity, are developed to describe the impacts of wildland fires on 

ecosystems (Keeley, 2009). Although the two terms are used interchangeably in some studies, 

their differences exist regarding the post-fire temporal scale and the biophysical properties they 

describe (Lentile et al., 2006; Keeley, 2009). Compared to fire severity, burn severity represents 

a broader range of attributes representing both fire severity and ecosystem responses, and 

considers both short- and long-term fire impacts (Lentile et al., 2006; Keeley, 2009). Contrary to 

general perception that fire burns evenly through a landscape, the levels of burn severity actually 

vary across the fire area, with some regions unburned, some lightly burned, and some severely 

burned. Post fire analysis of the spatial patterns of burn severity contributes to our understanding 
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of fire behavior and ultimate ability to model and predict fire risk (Malmström, 2010; Jenkins et 

al., 2011; Francos et al., 2016).  

The southern Appalachian forests in the southeastern United States (U.S.) have a long history of 

wildfires. Soil charcoal data suggested that wildfires have occurred regularly across the regions 

over the past 4,000 years, with an abrupt increase during the past 1,000 years related to the 

appearance of Native Americans across this area (Delcourt & Delcourt, 1998; Fesenmyer & 

Christensen, 2010). Fires have become less frequent in the southern Appalachian forests over the 

recent 250 years, coinciding with the decreased population of Native Americans caused by 

European settlement (Fesenmyer & Christensen, 2010). In recent decades, fire suppression 

efforts have significantly reduced fire activities in the forests of the southern Appalachian 

Mountains (Flatley et al., 2013). 

The Great Smoky Mountains National Park (GRSM), located in the subrange of the southern 

Appalachians along the border of Tennessee and North Carolina, has experienced less fires after 

the establishment of the park in 1934 because of the federal policies for fire exclusion and 

suppression (GRSM, 2010). For example, 93 human ignited fires occurred in GRSM between 

1931 and 1933 before the implement of vigorous suppression policy with more than 25 km2 

burned. While only 9 fires occurred burned 0.33 km2 per year within the GRSM during 1960 to 

1969 (Dukes, 2001). Since fires serve as the natural recycling mechanism in forest ecosystems 

for vegetation regeneration and nutrient circulation, both natural and prescribed fires then 

became allowed within the park with careful monitoring and management (Dukes, 2001). The 

National Park Service (NPS) further identified three suppression zones: (I) suppression, (II) 

conditional, and (III) prescribed natural fire zones (Dukes, 2001). Fires along the boundaries of 

the park and developed areas (Zone I) are immediately suppressed. Fires in Zone II are only 
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allowed when they show no threats to Zone I. While Zone III allows fires burning within certain 

parameters and staying in the zone within 48 hours (Dukes, 2001). 

Currently, the NPS combines the three zones and identifies two types of fire management units 

“Interface Zone” and “Natural Zone” within GRSM that are delineated for protecting human 

communities and maintaining fire adapted ecosystems (Figure 3.1; NPS, 2009; GRSM, 2010). 

The first type “Interface Zone”, covering approximately 17% of the total park area, is established 

in the regions within and adjacent to the park boundary to protect the safety of human lives, 

properties and sensitive resources. The remaining 83% of the park is identified as the “Natural 

Zone”, within which all natural processes are allowed to occur. Particularly, wildland fires 

occurring naturally in this unit are allowed to burn under proper conditions for the conservation 

of natural resources under careful monitoring of negative ecological consequences (GRSM, 

2010). Within the entire GRSM, approximately 95% of landscape is covered by five fuel groups: 

non-flammable, grasses, shrubs, timber and slash (Madden et al., 2004). These groups are 

comprised of various vegetation communities including Spruce-Fir Forest, Northern Hardwood 

Forest, High Elevation Northern Red Oak Forest, Cove Hardwood Forest, Mesic Oak/ Hardwood 

Forest, Xeric Oak/ Pine Forest and Woodland, Hemlock Forest, etc. (Madden et al., 2004; 

GRSM, 2010).  
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Figure 3.1 GRSM fire management units (GRSM, 2010) 

In 2016, a unique combination of events and conditions led to one of the greatest outbreaks of 

wildfire in the southern Appalachian region. Recorded as one of the largest fires in GRSM, the 

Chimney Tops 2 Fire occurring in late November of 2016 lasted for six days and burned about 

69.36 km2 in total with 44.37 km2 inside the park (Klein et al., 2017). Later determined to be 

caused by arson ignited in the Natural Zone on the slopes of Chimney Tops Mountain, this fire 

spread rapidly under gale-fore winds and raged across the Interface Zone to Gatlinburg, 

Tennessee, devastating adjacent developed areas and resulting in 14 deaths and nearly 150 

injuries (du Lac et al., 2016; NPS, 2017). Although most wild animals have become adapted to 

wildfires, the rapid spread of this fire resulted in the wildlife unable to move out of the fire’s 

path. Extensive damage to structures in Gatlinburg and the loss of human life made this one of 



82 
 

the deadliest East Coast wildfires in many years (du Lac et al., 2016; NPS, 2016). The rapid 

spread of this fire was largely caused by the unusually low precipitation and warm temperatures 

in this region from mid-summer to fall, resulting in a tinder-dry condition for the forests (NPS, 

2017). The newly fallen leaves in the autumn of 2016 that accumulated on the forest floor also 

provided plenty of fuels to support burning. Understanding the spatial distribution of the burn 

severity and related environmental factors can not only assist post-fire recovery plans, but also 

help decision makers prepare for future fire management efforts.  

Multispectral remote sensing imagery play an important role in broad-scale monitoring and 

evaluation of burn severity of forest fires (Lentile et al., 2006). Developed to extract properties of 

land surface features with combinations of spectral bands, vegetation indices such as Normalized 

Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR) have been commonly 

used because of their strong relationships with field severity measurements (Jensen, 2007; 

Keeley, 2009). For example, Brewer et al. (2005) identified NBR as the most effective method 

for mapping burn severity during the 2000 fire season in the Northern Rocky Mountains and 

Northern Great Plains. Additional indices developed based on the NBR, including differenced 

NBR (dNBR) and Relative dNBR (RdNBR), also show their efficiency in mapping burn severity 

(Miller & Thode, 2007; Wimberly & Reilly, 2007). Other metrics such as differenced Soil 

Adjusted Vegetation Index (dSAVI) and change in leaf area index (LAI) can also capture spatial 

details of burn severity in forests (Boer et al., 2008; Arnett et al., 2015). Though the values of 

NBR-based indices may not translate to fire-related biophysical changes accurately (Cocke et al., 

2005; Boer et al., 2008), they are still among the most effective methods for assessing broad-

scale forest burn severity distribution in many applications (Chang et al., 2016).  

Environmental factors including fuel types, topography and weather conditions are major drivers 

of burn severity distribution across the landscape by controlling fire intensity and duration (Pyne 
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et al., 1996; Dillon et al., 2011; Estes et al., 2017). Fuel types, primarily referred to vegetation 

fuels for forest ecosystems, affect the flammability and fuel loads that support burning, thus can 

further influence the fire intensity and duration (Pyne et al., 1996). Topography and weather 

conditions also exert strong impacts on severity distribution in multiple ways. They can influence 

the distribution and productivity of vegetation fuels (Barbour, 1999) and control the energy and 

water balances that impact vegetation development, which then affects the accumulation of fuels 

for burning (Dillon et al., 2011). In addition, they can control the microclimatic conditions and 

thus influence the fuel moisture content (Pyne et al., 1996).  

The specific relationships between these factors and burn severity vary by sites. Wimberly & 

Reilly (2007) found burn severity distribution in southern Appalachians was strongly linked to 

pre-fire vegetation types, topography and changes in species richness. Birch et al. (2015) 

identified vegetation and topographic features as the major factors driving burn severity in 

central Idaho and western Montana forests. Kane et al. (2015) also explained the burn severity 

variance of the Rim Fire in the western US with seven weather and topographic factors. 

Understanding the spatial distribution of the burn severity and related environmental factors can 

not only provide resource managers quantitative information for assessing post-fire impacts, but 

also help decision makers prepare for future vegetation recovery and fire management efforts 

(Keane et al., 2008).   

Although the Burned Area Emergency Response (BAER) team from U.S. Forest Service (USFS) 

conducted field assessments and classified burn severity levels with Landsat imagery right after 

the Chimney Tops 2 Fire in December 2016 (Klein et al., 2017), this initial effort simply 

considered the short-term impacts and failed to capture detailed spatial variation of burn severity. 

This research aims to evaluate the spatial distribution of burn severity within GRSM one year 

after the Chimney Tops 2 Fire using the indices derived from remote sensing imagery. Compared 
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to the assessment conducted right after the fire, assessing the data one year after the fire can 

consider the recovery capability of forest ecosystem in the severity level evaluation. Then we 

examine how this fire affected different vegetation communities and explore the environmental 

factors influencing the severity distribution with geospatial analysis. Three research questions are 

addressed in this chapter: (1) How is the burn severity spatially distributed in GRSM after the 

2016 Chimney Tops 2 Fire? (2) How does the fire impact the different vegetation habitats? (3) 

What environmental factors affected the distribution of burn severity in this fire?  

3.2 Data and Materials 

3.2.1 GRSM Vegetation Database 

The GRSM vegetation database was utilized to identify the distribution of vegetation 

communities and fuel groups in the study area in this study. Developed by the Center for 

Geospatial Research (http://www.cgr.uga.edu/) at the University of Georgia in collaboration with 

NPS (Madden et al., 2004; Welch et al., 2002), this dataset provides detailed information about 

overstory and understory vegetation species and their distributions throughout the entire GRSM.  

The overstory vegetation communities (Figure 3.2) were classified to the Association level, 

which is the finest division from the National Vegetation Classification System protocol of the 

U.S. Geological Survey (USGS) NPS Vegetation Mapping Program. Recorded with a Wild 

RC20 photogrammetric camera, over 1000 color infrared aerial photographs were acquired a 

1:12,000 scale from 1997 to 1998 in late October. This is because leaf-on conditions photos 

acquired in the fall display diverse colors to separate vegetation communities. These photos were 

then scanned at 800 dpi resulted in digital images, reaching a spatial resolution of 0.4 m (Jordan 

2002). These photos were manually interpreted to map the overstory vegetation communities 

with these data. Supplementary data, including USGS National Aerial Photography Program 

(NAPP) Air Photos, USGS Topographic Maps, USGS Digital Orthophoto Quarter Quadrangles 
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(DOQQs) and USGS level-2 Digital Elevation Model (DEM), were also used to generate the 

GRSM vegetation database.  

 

Figure 3.2 GRSM overstory vegetation map (Jordan 2002; Welch et al. 2002; Madden et al., 

2004) 

3.2.2 Remote Sensing Imagery 

Landsat 8 Operational Land Imager (OLI) 30-m Level-2 surface reflectance data provided by U. 

S. Geological Survey (USGS) are obtained from EarthExplorer (http://earthexplorer.usgs.gov/) to 

map the burn severity of the Chimney Tops 2 Fire. Processed with the Landsat 8 Surface 

Reflectance Code (LaSRC), this level-2 product provides surface reflectance values for each 

reflective spectral band after radiometric calibration, geometric correction and atmospheric 

correction (USGS, 2018). In this study, the images covering GRSM (Path 19 Row 35) before the 

fire starts and one year after the fire were selected for data analysis. Specifically, this study 

selected image pairs collected around similar time period from the beginning of the growing 
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season in May to the end of the growing season in September. Clear images with limited clouds 

and cloud shadows are preferred when choosing the imagery. Table 3.1 lists the detailed 

information of the level-2 Landsat 8 OLI images used in this study.  

Table 3.1 Landsat 8 OLI Path 19 Row 35 level-2 imagery obtained for this study 

State Landsat 8 Scene ID Acquisition Date Date of Year Cloud Cover 
Pre-fire LC80190352015257LGN01 2015/09/14 257 0.03% 
Post-fire LC80190352017246LGN00 2017/09/03 246 0.24% 

 

3.2.3 The Chimney Tops 2 Fire Dataset 

The Chimney Tops 2 Fire data, including fire perimeter and vegetation severity levels (Figure 

3.3), were obtained from ArcGIS Online account of GRSM Geographic Information Science 

(GIS) team (https://www.arcgis.com/home/user.html?user=GRSM_GIS). The Infrared (IR) heat 

perimeter shapefile for the Chimney Tops 2 Fire was created from thermal infrared scan data 

obtained from airborne thermal infrared imaging system on Dec. 2, 2016 by USFS. The 

perimeter data include the main fire polygons, a list of isolated heat sources and potential heat 

sources. The main fire polygons were generated from the IR data with very few perimeter edits. 

The vegetation severity data were generated from the Burned Area Reflectance Classification 

(BARC) image developed with Landsat imagery and field observations collected by the BAER. 

Specifically, the field observations collected in these data measured the degree of scorch, 

consumption, and mortality of vegetation and the projected or ultimate vegetative recovery to 

evaluate the wildfire impacts on vegetative ecosystems.  
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Figure 3.3 Vegetation burn severity levels generated with BARC image by BAER team for the 

2016 Chimney Tops 2 Fire within GRSM 

3.2.4 Climatic Dataset 

To assess the impacts of fire weather conditions on the burn severity, daily surface weather data 

Daymet were acquired in 2016 through the Oak Ridge National Laboratory Distributed Active 

Archive Center (ORNL DAAC, https://daymet.ornl.gov). This dataset provides daily, monthly 

and yearly gridded estimates of weather parameters for the North America since 1980 with 1-km 

spatial resolution, including minimum and maximum temperature, precipitation, humidity, 

shortwave radiation, snow water equivalent, water vapor pressure and day length (Thornton et 

al., 2017). These parameters were generated through an integration of weather station data and 

spatial interpolation methods. In addition to Daymet, hourly wind speed and wind direction 
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station data in 2016 were downloaded from the NPS Gaseous Pollutant Monitoring Program 

Database (https://ard-request.air-resource.com). This program provides six weather stations in 

total in GRSM and four of them have wind data for 2016, including Cades Cove, Clingmans 

Dome, Cove Mountain, and Look Rock as mapped in Figure 3.4. 

 

Figure 3.4 The 2016 Chimney Tops 2 Fire perimeter and wind data stations in GRSM 

3.2.5 Auxiliary Dataset 

To extract topographical features and analyze their impacts on burn severity distribution, the 3-m 

GRSM Digital Elevation Model (DEM) data published in 2011 was obtained from the Data Store 

of the Integrated Resource Management Applications (IRMA) Portal for NPS 

(https://irma.nps.gov/DataStore/). This product was generated using a combination of North 

Carolina (NC) LiDAR (Light Detection and Ranging), USGS-Tennessee (TN) LiDAR, and 

National Elevation Dataset (NED) data. Particularly, LiDAR data from the NC Flood Mapping 
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Program were used to generate DEM for the overlapping area of the park boundary and NC state 

boundary. In addition, the LiDAR data from a USGS LiDAR mapping contract were used to 

derive the DEM for the areas located in the intersection of the park boundary and TN state 

boundary. For all other areas, the DEM data were sourced from the NED. In addition, 30-m 

resolution products of Topographic Shape Index (TSI; McNab, 1989), Topographic Wetness 

Index (TWI; Beven et al., 1988), Topographic Position Index (TPI; Guisan et al, 1999), and 

Topographic Ruggedness Index (TRI; Riley et al., 1999) derived from multisource LiDAR data 

were also obtained from IRMA to assist the extraction of topographical features. 

3.3 Methodology 

3.3.1 Estimation of Burn Severity 

Although the burn severity classes data generated by GRSM with BARC image and BAER field 

observations right after the fire can indicate the general burn severity levels, this categorical 

result cannot capture the detailed spatial variations of burn severity in the local forests or 

consider the ecosystem recovery when evaluating the impacts of fire. As a consequence, in this 

study we further extracted a list of commonly used vegetation indices to evaluate the post-fire 

burn severity for the 2016 fire in GRSM using Landsat 8 OLI images acquired before and one 

year after the Chimney Tops 2 Fire.  

NBR-based vegetation indices have been commonly used in previous studies to estimate the 

spatial distribution of severity due to their best performance in providing spatial details about the 

severity levels. First in this study NBR was calculated using with the SWIR and NIR bands for 

both pre-fire and post-fire Landsat 8 OLI images, as shown in equation (1). dNBR and RdNBR 

values were then computed based on pre-fire and post-fire NBR images based on equations (2) 

and (3) as shown below.  

𝑁𝐵𝑅 = (𝜌012 − 𝜌JK12\)/(𝜌012 + 𝜌JK12\)             (1) 
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𝑑𝑁𝐵𝑅 = 𝑁𝐵𝑅_`3+aZ`3 − 𝑁𝐵𝑅_bcd+aZ`3     (2) 

𝑅𝑑𝑁𝐵𝑅 = 0C2ef,ghWf,+0C2eijkghWf,
lmnc(0C2ef,ghWf,/1000)

      (3) 

Additionally, dNDVI and dSAVI were also mapped in this study as previous research also 

showed strong relationships between these indices and burn severity in forest ecosystems (Arnett 

et al., 2015; Chang et al., 2016). In particularly, dNDVI can better represent the vegetation loss 

and dSAVI can better indicate the change of soil conditions caused by forest fires. Pre-fire and 

post-fire NDVI and SAVI were calculated separately using equations (4) and (5) first. Then 

equations (6) and (7) were used to generate dNDVI and dSAVI images.  

𝑁𝐷𝑉𝐼 = (𝜌012 − 𝜌234)/(𝜌012 + 𝜌234)     (4) 

𝑆𝐴𝑉𝐼 = (𝜌012 − 𝜌234)/(𝜌012 + 𝜌234 + 0.5)*1.5    (5) 

𝑑𝑁𝐷𝑉𝐼 = 𝑁𝐷𝑉𝐼_`3+aZ`3 − 𝑁𝐷𝑉𝐼_bcd+aZ`3     (6) 

𝑑𝑆𝐴𝑉𝐼 = 𝑆𝐴𝑉𝐼_`3+aZ`3 − 𝑆𝐴𝑉𝐼_bcd+aZ`3     (7) 

Next, the results of vegetation indices calculated with Landsat 8 OLI images were compared 

with the severity classes from BARC data. Box plots were generated to compare the values of 

vegetation indices and severity classes.  

3.4.2 Affected Vegetation Communities 

According to the GRSM Overstory Vegetation Database (Madden et al., 2004), the Chimney 

Tops 2 Fire affected a wide variety of forest species. A full list of related vegetation species was 

summarized in Appendix II. As different forests could have different or similar fuel loads and 

moisture content levels, fuel groups were further identified in GRSM based on the vegetation 

communities to better evaluate the role of vegetation communities on fire severity.  

In general, the 2010 GRSM Fire Management Plan identified eight major fuel communities 

within the national park including Spruce-Fir Forest, Northern Hardwood Forest, High Elevation 
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Northern Red Oak Forest, Cove Hardwood forest, Mesic Oak/ Hardwood Forest, Xeric Oak/ 

Pine Forest and Woodland, Hemlock Forest, Successional Hardwood Forest and Others (GRSM, 

2010). Here we summarized the detailed vegetation species defined in the GRSM vegetation 

database (Madden et al., 2004) into these eight fuel communities within the Chimney Tops 2 Fire 

perimeter. In particular, the category of “Others” is comprised here of vegetation species with 

very limited coverage in the study area, including Alluvial Forest, Heath Balds, Grassy Balds, 

Fields, etc. The fuel communities were then summarized into the major fuel groups and classes 

from (Madden et al., 2004) to better understand their spatial distributions and roles in affecting 

the burn severity. The fuel communities were also mapped for next-step analysis. 

3.4.3 Environmental Variables Influencing Severity Distribution 

Extraction of Topographic Features 

A list of topographic features was calculated to get independent variables for topographic 

features. Slope raster in degrees and aspect raster were extracted from the 3-m DEM data first. 

Then instead of using the original aspect values, an aspect index was calculated using equation 

(8). Ranging from -1 to 1, higher aspect index values indicate higher potential to receive more 

downward solar radiation.   

𝐴𝑠𝑝𝑒𝑐𝑡	𝐼𝑛𝑑𝑒𝑥 = 	−𝑐𝑜𝑠	((𝐴𝑠𝑝𝑒𝑐𝑡	 × 2 × 𝜋)/360)    (8) 

In addition to slope and aspect, a few more topographic indices, including the 30m resolution 

TSI, TPI, and TRI provided by GRSM, were used to further evaluate the topographic 

characteristics in GRSM. Both low TSI and TWI values indicate concave and low gradient 

regions that are easier to gather water, while high TSI and TWI values represent convex regions 

with higher steepness, which will shed water and are assumed to be of higher fire risk. The TPI 

in this dataset is generated by calculating the difference between the elevation value of a cell and 

the average values of all its neighboring pixels. Positive TPI values indicate that the cell has 
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higher elevation when compared to its surroundings, while negative TPI values mean the 

opposite. By integrating the TPI and slope values of each cell, it is possible to identify the slope 

position of that cell, such as at or near the top of a hill or ridge, at or near the bottom of a valley, 

or at a flat or mid-sloped area. In addition, TRI is calculated by summing the changes in 

elevation between a grid cell and its eight surrounding neighbors, which can present the 

ruggedness level of an area. These topographic features were all projected and clipped by the 

Chimney Tops 2 Fire perimeter. 

Calculation of Fire Weather Indices 

Fire weather is a dominant factor driving wildfire behavior and thus could affect post-fire burn 

severity (Bradstock et al., 2010). The U.S. National Fire Danger Rating System (NFDRS) and 

the Canadian Forest Fire Danger Rating System (CFFDRS) are the two commonly used fire 

rating systems developed for the North American forest ecosystems. Both systems have provided 

indices for quantifying fire weather conditions. While CFFDRS mainly uses daily based 

observations, NFDRS requires more hourly weather parameters. So instead of CFFDRS, Fire 

Weather Indices (FWI; Stocks et al., 1989) from CFFDRS were used in this study to describe fire 

weather conditions in the study area. The whole FWI system is comprised of six weather indices 

as shown in Figure 3.5, including Fine Fuel Moisture Code (FFMC), Duff Moisture Code 

(DMC), Drought Code (DC), Initial Spread Index (ISI), Buildup Index (BUI) and Fire Weather 

Index (FWI).  Particularly, FFMC is designed to measure the moisture level of cured fine fuels, 

which indicates the relative ease of ignition and the flammability of fine fuel. The DMC 

measures average moisture content of loosely compacted organic layers of moderate depth. In 

addition, DC is designed to estimate the average moisture content of deep, compact organic 

layers, particularly useful for indicating the seasonal drought effects on forest fuels. ISI 

combines the effects of wind and the FFMC on rate of spread to rate the expected rate of fire 
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spread. BUI estimates the total amount of fuel available for combustion by integrating DMC and 

DC. Then FWI evaluates fire intensity in general by combining ISI and BUI. 

 

Figure 3.5 Structure of Canadian FWI System (Stocks et al., 1989) 

These indices were calculated using 1-km Daymet data and interpolated wind speed data 

obtained from NPS for 2016 before the fire started. Though the growing season for deciduous 

species in GRSM could start in early March, we started the FWI calculations from April 19 

considering the availability of wind data. We first extracted and projected the daily data for 

GRSM from April 19 to November 20 in 2016 for precipitation, maximum temperature, vapor 

pressure (VP), and day length from original Daymet product. As relative humidity data are not 

provided with Daymet, we then calculated relative humidity (RH) using equations (9) and (10) 

provided by World Health Organization (WHO) report: 

𝑆𝑎𝑡𝑢𝑎𝑡𝑖𝑜𝑛	𝑉𝑎𝑝𝑜𝑟	𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒	(𝑆𝑉𝑃) = 	6.112	 ∗ 	𝑒
17.62∗z,{|,f}k@f,
243.12~z,{|,f}k@f,   (9) 

𝑅𝐻 =	 �_
J�_

∗ 100%      (10) 
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Then Inverse Distance Weighting interpolation method was used to generate daily wind speed 

distribution for GRSM. After preparing all necessary input weather observations for FWI, six 

FWI metrics were the computed for GRSM using the “cffdrs” package in R (Wang et al., 2017).   

Random Forest Modeling 

Random Forest (RF) is a supervised learning algorithm designed for tasks like classification and 

regression (Breiman, 2001). It is designed to generate an ensemble of decision trees based on the 

“bagging” method in statistics. Thus, this algorithm could mitigate the overfitting problems from 

decision tree methods. The RF algorithm typically requires three important parameters that are 

related to the predictive power: the number of trees that the algorithm constructs before voting or 

averaging, the maximum number of features for an individual tree, and the minimum number of 

variables for a split at each internal node. In this study the RF algorithm provided in the Random 

Forest package in R (Liaw & Wiener, 2002), to model the impacts of different environmental 

factors on fire severity for the Chimney Tops 2 Fire in GRSM. Environmental factors covering 

fuel conditions, topographic features and weather conditions were included as independent 

variables for the algorithm (Table 3.3). Here we utilized both classification and regression 

methods from RF. Classification was used for modeling the relationship between environmental 

factors and the severity classes generated with BARC data, while regression was used for 

modeling the relationship between those factors and the dNBR values generated in previous step. 

Results were then analyzed to identify the key factors affecting the burn severity variation for 

this fire. 

Table 3.2 Independent environmental variables used for RF classification and regression 

Types Environmental Variables 
Fuel Conditions Vegetation community, NDVI, EVI, NDMI, NBR 

Topographic Features Elevation, Slope, Aspect Index, TPI, TRI, TSI 
Fire Weather Conditions FWI, FFMC, DMC, DC, ISI, BUI 
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3.4 Results and Discussions 

3.5.1 Distribution of burn severity after the 2016 Chimney Tops 2 Fire 

To examine the spatial variation of burn severity of the Chimney Tops 2 Fire, four vegetation 

indices including dNBR, RdNBR, dNDVI and dSAVI were mapped for the study area as shown 

in Figure 3.6. Within the fire perimeter, the dNBR values range from -0.24 to 1.09, RdNBR 

range from -12.6 to 40.1, dNDVI ranges from -0.18 to 0.9, and dSAVI ranges from -0.27 to 1.37. 

These indices show very similar patterns regarding the spatial distribution of burn severity levels. 

The Chimney Tops, where the wildland fire started, have higher elevation than other areas within 

the fire perimeter and facing south. It turns out to have the most severe burn severity according 

to the mapping results. Other regions with lower elevation tend to have lower burned severity 

levels, although south-facing areas tend to have more severe burning with higher index values in 

general, when compared to the local neighborhoods. Although normalized indices can usually 

minimize the impacts of topography, clouds or shadows, the topographical features still have the 

potential to affect the calculation of metrics for a mountainous region like GRSM. Topographic 

correction methods can be included in future to further identify the spatial distribution for burn 

severity.  
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Figure 3.6 Spatial distributions of dNBR, RdNBR, dNDVI and dSAVI in the fire perimeter 

within GRSM 

We also generated boxplots for all four indices by multiple severity levels as shown in Figure 

3.7. These indices tested in this study turn out to do a good job in distinguishing moderate and 

high severity levels from low and unburned, while the values of unburned and low severity levels 
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do not show differences for all indices. The moderate severity level tends to have a wider 

interquartile range (IQR) when compared to the other three levels. For both unburned and low 

severity levels, the values of dNBR mainly range from 0 to 0.1 and the RdNBR ranges from 0 to 

5. For the moderate severity level, dNBR is primarily within 0.2 to 0.6 and RdNBR values fall 

within 6 to 24. While high severity level is primarily represented by dNBR values from 0.75 to 

0.9 and RdNBR values from 27 to 34.  

 

Figure 3.7 Boxplots comparing how vegetation indices distinguish different burn severity levels 

for the 2016 Chimney Tops 2 Fire 

Although, Miller & Thode (2007) previously developed dNBR and RdNBR thresholds for 

distinguishing different severity levels in the western US, their findings (Table 3.3) are not 

directly transferrable to this Chimney Tops 2 Fire. This indicates that we not only need to 

carefully design field measurement strategies for fire severity estimations but also should 
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calibrate the indices derived for western US for describing vegetation fuels and fire impacts in 

the eastern deciduous forests.  

Table 3.3 Ranges of dNBR and RdNBR for different severity levels from Miller & Thode (2007) 

Severity levels dNBR range RdNBR range 
Unburned < 41 < 69 

Low 41 – 176 69 – 315 
Moderate 177 – 366 316 – 640 

High >=367 >=641 
 

3.5.2 Severity impacts on the habitats of different vegetation communities 

To address the second research question, we first summarized the major fuel groups and 

vegetation communities according to Madden et al. (2004) in Table 3.4. The distribution of 

vegetation communities was also mapped in Figure 3.8. We further compared the distribution of 

vegetation communities and burn severity within the perimeter of the Chimney Tops 2 Fire. 

Based on Figure 3.8, the burned area percentages for each major vegetation community were 

first summarized in Figure 3.9.  In general, this fire mainly affects the Mesic Oak/ Hardwood 

Forest, which occupies approximately 42% of the area within the fire perimeter. This community 

provides habitats for overstory tree species like Chestnut Oak and Red Oak. Following that, both 

the Northern Hardwood Forest and the Cove Hardwood Forest communities have burned about 

16% ~ 17% of the total area for the whole fire site. In addition, about 6% to 9% of the burned 

area was previously covered by Xeric Oak/Pine Forest and Woodland, Successional Hardwood 

Forest and Other before the fire started. Communities like Hemlock Forest, Spruce-Fir Forest 

and High Elevation Northern Red Oak Forest are less influenced by this fire.  
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Table 3.4 Major fuel classes and overstory vegetation communities within the 2016 Chimney 

Top 2 Fire perimeter in GRSM 

Group Fuel 
Class Description Vegetation 

Communities 
Overstory Vegetation 
Dominate Class Code 

Non-
flammable 0 Non-

flammable/Wet 
Montane Alluvial 

Forest MAL, MAL/T, MALc, MALt 

Grass 
1 Short Grass Pasture P 
2 Timber Sparse Vegetation SV 
3 Tall Grass N/A N/A 

Shrubs 

4 Shrub (6 feet tall) Shrub Understory K, R 
5 Brush (2 feet tall) N/A N/A 

6 Brush/Hardwood 
Slash N/A N/A 

7 Southern Rough 

High Elevation 
Northern Red Oak 

Forest 
MOa, MOr 

Southern Appalachian 
Health Balds Hth 

Timber 

8 Closed Timber 
Litter 

Xeric Oak/Pine Forest 
and Woodland 

OzH, OzH/PI, OzH/PIp, OzHf, 
PI, PI/OzH, PI-OzH, PIp-OzH 

9 Hardwood Litter 

Northern Hardwood 
Forest 

NHx, NHxB, NHxB/S, NHxR, 
NHx-T, NHxY, S/NHx, 

S/NHxB, S-NHx 
Cove Hardwood 

Forest CHx, CHxA, CHxA-T, CHxR 

Hemlock Forest T 
Succesional 

Hardwood Forest Hx, HxBl/R, HxL 

Mesic Oak/Hardwood 
Forest 

OcH, OmH, OmHA, OmHL 
OmHp/R, OmHr, OmHR, 

Northern Hardwood 
Forest 

NHx, NHxB, NHxB/S, NHxR, 
NHx-T, NHxY, S/NHx, 

S/NHxB, S-NHx 
Cove Hardwood 

Forest CHx, CHxA, CHxA-T, CHxR 

10 Timber (Litter and 
Understory) Spruce-Fir Forest S, S/F, S/R, S/T 

Slash 

11 Light Logging 
Slash N/A N/A 

12 Medium Logging 
Slash N/A N/A 

13 Heavy Logging 
Slash N/A N/A 
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Figure 3.8 Distribution of major vegetation communities within the perimeter of the 2016 

Chimney Tops 2 Fire  

We then analyzed the burn severity distribution within different vegetation communities affected 

by the Chimney Tops 2 Fire. The percentages of different severity levels within each vegetation 

community were plotted in Figure 3.10. Although Mesic Oak/Hardwood Forest has the largest 

burned area inside the fire perimeter (Figure 3.9), this community is dominated by low to 

moderate severity levels. More than 50% of the High Elevation Northern Red Oak Forest is 

burned moderately. Vegetation communities like Hemlock Forest, Successional Hardwood 

Forest, and Cover Hardwood Forest are less affected by the fire since they are mainly covered by 

low severity sites. In particular, about 38% of the Xeric Oak/Hardwood Forest habitat is severely 

burned in this fire, which is the highest among all vegetation communities involved.  
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Figure 3.9 Burned area percentages of major vegetation communities affected by the 2016 

Chimney Tops 2 Fire 

The distribution of dNBR and RdNBR values were also summarized for each community, as 

shown in Figure 3.11. Similar to the results in Figure 3.10, the Xeric Oak/Pine Forest and 

Woodland have the highest values of both dNBR and RdNBR, indicating that these communities 

are most severely burned in this fire. While other communities tend to have much lower burn 

severity levels with smaller dNBR and RdNBR values in their habitats. This difference also 

suggests that xeric forest habitats with inadequate moisture content could lead to more severe 

burns after fire for the local ecosystems when compared to mesic environments in GRSM. 
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Figure 3.10 Percentages of different burn severity levels for each vegetation community affected 

by the Chimney Tops 2 Fire 

 

Figure 3.11 Average dNBR and RdNBR values for each vegetation community affected by the 

Chimney Tops 2 Fire (error bar represents ±1 standard error) 
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3.5.3 Environmental factors affecting the distribution of burn severity 

To explore the environmental factors influencing the burn severity of this fire, we conducted 

both RF classification with both burn severity classes derived by BARC images, and RF 

regression with dNBR values calculated using Landsat 8 OLI images. The dNBR index was 

chosen here mainly considering its good performance in capturing burn severity distribution in 

previous literature. All independent variables involved are listed in Table 3.3. An overall out-of-

bag (OOB) value was generated to evaluate the prediction accuracy of RF algorithm. While 

regression results with dNBR values for random points did not show strong relationships, 

classification results turned out to have relatively good estimation of burn severity levels, with 

OOB estimate of error rate as 25.73%. Table 3.5 shows the detailed classification accuracy for 

each severity level from the classification results. Low severity level has the highest accuracy, 

partially because there are more training samples for the low severity class in the classification 

test. On the other hand, unburned class has the highest error percent, also due to the limitation of 

training samples generated in this class.  

Table 3.5 Confusion matrix of RF classification results 

 
Classified data 

Unburned Low Moderate High Producer’s 
accuracy 

Reference 
data 

Unburned 3 31 1 1 8.33% 
Low 2 186 12 0 93.00% 

Moderate 0 23 46 5 62.17% 
High 1 4 8 19 60.38% 

User’s 
accuracy 33.33% 76.23% 68.66% 76.00%  

 

We further examined the importance of each environmental variable as shown in Figure 3.12. 

The Mean Decrease of Accuracy value quantifies the importance of a certain variable by 

measuring how much the classification error reduces when including this variable. The higher 

the value is, the more importance of the certain variable is. The Mean Decrease Gini coefficient 
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measures the contribution of a variable in generating homogeneous nodes in the output 

classification forest. Greater Gini decrease suggest a more important role of the variable in data 

partitioning during the classification process.  

 

Figure 3.12 Importance of independent environmental variables from RF classification 

According to Figure 3.12, the aspect index turns out to be the most important variable that affects 

the distribution of burn severity in the Chimney Tops 2 Fire site with both Mean Decrease 

Accuracy and Mean Decrease Gini reaching 50%. Following the aspect index, variables related 

to vegetation type and greenness including NDVI, EVI and type, also have important influences 

on the burn severity distribution, with both Mean Decrease Accuracy and Mean Decrease Gini 

values ranging from 15% to 20%. However, the strong impact of aspect identified here could be 

related to the complex topography in the study area. The topographical variation also has the 

potential to affect the spatial distribution of vegetation indices.  

Compared to topographic features and vegetation related properties, fire weather conditions 

show relatively less significances in affecting burn severity distribution in this fire, except the 

DC index related to moisture conditions. This could be caused by the coarse resolution of 
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Daymet data and very sparse weather stations for wind data in this mountainous region. 

Compared to the fire size and the 30m resolution of other variables, the 1-km Daymet data fail to 

capture the detailed spatial variations of weather conditions throughout the mountainous region. 

These findings for the 2016 Chimney Tops 2 Fire are also consistent with earlier studies 

conducted throughout the Appalachian Mountains, which emphasizes the impacts of topography 

and moisture levels on fire severity (Flatley et al., 2011; Schwartz et al., 2016).  

3.5.4 Implications for fire management efforts in GRSM 

In recent decades, remote sensing and GIS technologies have played an important role in 

assisting fire management efforts, such as development of fire risk warning system (Dukes, 

2001), active fire monitoring (Yuan et al., 2015), tracking and assessment of post-fire impacts 

(Miller & Yool, 2002; Lee & Chow, 2015). Efficient fire risk warning requires improvements in 

accurate monitoring of pre-fire conditions and robust modeling of future fire potential 

(Thompson & Calkin, 2011). In particular, Dukes (2001) took the initial step towards the 

systematic assessment and modeling of fire risk throughout the whole GRSM with GIS. Owens 

(2013) continued the research of fire risk assessment in GRSM, focusing on determining fire 

frequency and simulating fire spread. Still, relatively fewer studies in pre-fire monitoring have 

been conducted for the forest ecosystems in the southern Appalachian Mountains when 

compared to the forests in western United States. This brings up the need for further efforts on 

developing effective warning systems in future.  

Challenges also exist for quantification of fire severity combining field measurements, remote 

sensing data and modeling efforts (Morgan et al., 2014). Comprehensive assessment of post-fire 

burn severity could benefit the management policies for long-term ecosystem recovery, such as 

evaluating the impacts of fuel treatments on prescribed fires, planning and assessing salvage 

activities, or preparing strategies for controlling post-fire hazards (Beschta et al., 2004). In 
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addition, Jenkins et al. (2011) found that controlling the severity of prescribed fire could lead to 

regeneration of yellow pine in GRSM. Hutto et al. (2016) also suggested the land managers to 

keep using severe prescribed fires to maintain the integrity of forest ecosystems. Thus, gaining 

comprehensive understanding of fire severity and related species could help with targeting 

certain species for restoring and keeping ecosystem diversity in the southern Appalachian 

Mountains. 

3.6 Conclusions and Future Work 

To summarize, this study examines the spatial variations of burn severity and aims to understand 

environmental factors impacting the burn severity, using the 2016 Chimney Tops 2 Fire in 

GRSM as an example. We first evaluated the burn severity distribution through mapping of 

commonly used vegetation indices. We then assessed the impacts of burn severity on local 

vegetation communities within the fire perimeters. We further explored the impacts of factors 

related to post-fire severity. All four vegetation indices tested in this study do a good job in 

distinguishing the burn severity levels, though differences still exist in local regions. From the 

perspective of the burned area, this fire impacted the Mesic Oak/ Hardwood Forests the most. 

While from the perspective of burn severity, Xeric Oak/ Hardwood Forests and Northern 

Hardwood Forests were more severely impacted by the fire. Topographic conditions, vegetation 

properties as well as habitat moisture levels, tend to have more important impacts on the spatial 

distribution of fire severity. Particularly, aspect index and vegetation greenness values tend to 

have the most influences on the severity levels. Due to the complex topographical patterns in the 

mountainous study area, topographic correction methods can be conducted in future to assist the 

mapping of burn severity distribution and exploration of environmental drivers.  

However, this study is limited by the availability of field data and weather observations. 

Although BAER team has obtained some measurements of burn severity after the fire and 
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published their BARC map, this is not enough for a detailed and accurate estimation of severity 

in general. More detailed field measurements should be collected regularly to ensure accurate 

severity assessment and recovery monitoring in the long run. Also, the lack of high-resolution 

weather observations within the study area could largely underestimate the roles of weather 

variables on the fire severity distribution. Weather simulation results generated from numerical 

weather forecasting models could be other data sources to assist the estimation of fire weather 

indices in future.   
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CHAPTER 4 

CONCLUSIONS 

Forest ecosystems are suffering from increasing frequency and intensity of biotic and abiotic 

disturbances related to climate change, such as insect outbreaks, fires, droughts and wind storms 

(Dale et al., 2001). GRSM forests have long been affected by natural or human disturbances 

(Harmon et al., 1985; Pyle, 1988). In recent decades, the development of remote sensing 

technologies has played an important role in ecological applications, particularly large-scale 

forest monitoring caused by either natural or human disturbances (Kerr & Ostrovsky, 2003; 

Hansen et al., 2013). This manuscript-style thesis demonstrated an example of applying remote 

sensing technologies and NASA Earth Observations to understand vegetation disturbances in 

space and time through two case studies of insect outbreak and wildfire in GRSM.  

Chapter 2 examined the spatiotemporal patterns of hemlock defoliation caused by HWA 

infestation. We constructed a 20-year time series with 30m Landsat imagery and applied a 

temporal segmentation algorithm “LandTrendr” to map the significant disturbance events in 

hemlock forests. We developed maps of onset year, magnitude and duration of significant 

disturbance and recovery events for hemlock forests in GRSM. Based on these maps, we 

identified the key regions and temporal periods of hemlock defoliation. In particular, majority of 

the hemlock decline were found to start from 2003 and 2006 in GRSM. We also compared the 

similarities and differences in disturbance patterns between hemlock dominant forests and 

hemlock mixed forests. In addition to the abrupt disturbance caused by HWA infestation, we 

observed gradual forest decline within hemlock dominant or mixed forests, which might be 

caused by other disturbance factors or data inconsistency. Our study provides an initial effort of 
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monitoring the consistent hemlock change across the entire GRSM in the long term. However, 

due to the lack of historical field measurements, Chapter 2 simply applied relative methods to 

assess the results of this study, which might not be enough to quantify the overall performance of 

our methods and outputs. In addition, although we identified the defoliation caused by 2011 

tornado outbreak in eastern GRSM, this study didn’t examine the impacts of other potential 

factors that might drive gradual loss of hemlock forests in in detail.  

Chapter 3 evaluated the burn severity distribution for the 2016 Chimney Tops 2 Fire in GRSM 

and explored the impacts of related environmental factors on the severity. We mapped the spatial 

distribution of four indices one year after the fire, including differenced Normalized Burn Ratio 

(dNBR), Relative dNBR (RdNBR), differenced Normalized Difference Vegetation Index 

(NDVI) and differenced Soil Adjusted Vegetation Index (dSAVI). All four indices derived from 

30m Landsat imagery data have shown good performances in distinguishing multiple burn 

severity levels, although differences still exist in local regions. Among all the vegetation 

communities affected by this fire, the Mesic Oak/Hardwood Forests have the largest burned area 

and the Xeric Oak/Hardwood Forests and Northern Hardwood Forests have the most severe burn 

severity when compared to other communities. We also found that the topographic and 

vegetation conditions showed more significant impacts on the spatial distribution of burn 

severity when compared to weather conditions. In particular, aspect index and vegetation 

greenness values tended to have the most influences on the severity levels. 

Although the Burned Area Emergency Response (BAER) team has obtained some measurements 

of burn severity within one month after the fire, this is not enough for accurately mapping the 

detailed burn severity distribution. Field measurements like Composite Burn Index (CBI) should 

be collected consistently to assess the severity pattern and to monitor the recovery trend in the 

long run. In addition, despite the fact that weather conditions were not identified as significant 
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factors in our burn severity modeling results, this could be caused by the coarse weather 

observations from 1-km Daymet product and very limited weather stations inside the study area. 

Weather simulation results generated from numerical weather forecasting models could be 

another data source to assist the estimation of fire weather indices with higher spatial resolution 

in the mountainous GRSM.  

Based on our current results and analyses in this thesis, we see some future opportunities for 

monitoring GRSM disturbances in the long run. The launch of Landsat 8 satellite in 2013 and 

Sentinel-2 satellites in 2015 and 2017 has enable the next stage of moderate resolution 

observations for global forest ecosystem in the long run. With improved performances in spatial 

resolution, temporal coverage and radiometric resolution, large spatiotemporal scale monitoring 

of abrupt or gradual disturbance events in GRSM and preparation of management policies will 

certainly benefit from these new missions. In addition, understanding the roles of environmental 

factors in driving HWA infestation on hemlock trees is of great importance in assisting the HWA 

control efforts in HWA. Koch et al. (2006) previously modeled the infestation risks of hemlock 

trees in GRSM through the analysis of field sites and found the connectivity provided by road or 

trail networks and riparian corridors to be the most importance factor that lead to HWA 

infestation. The relationships between environmental factors and HWA infestation could be 

further evaluated and explored in large scale with hemlock decline maps developed in this study. 

Moreover, we should also examine historical fires in GRSM to understand the drivers of burn 

severity in GRSM and their impacts on local communities.  
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APPENDIX I 

LIST OF ACRONYMS 

 Acronym Full description 
A AVHRR Advanced Very High Resolution Radiometer 
B BARC Burned Area Reflectance Classification 
 BAER Burned Area Emergency Response 
 BUI Buildup Index 

C CBI Composite Burn Index 
 CFFDRS Canadian Forest Fire Danger Rating System 

D DC Drought Code 
 DEM Digital Elevation Model 
 DMC Duff Moisture code 
 DN Digital Number 
 dNBR differenced Normalized Burn Ratio 
 dNDVI differenced Normalized Difference Vegetation Index 
 dSAVI differenced Soil Adjusted Vegetation Index 
 DOQQs Digital Orthophoto Quarter Quadrangles 

E EOS Earth Observing System 
 ETM+ Enhanced Thematic Mapper Plus 
 EVI Enhanced Vegetation Index 

F FFMC Fine Fuel Moisture Code 
 FWI Fire Weather Index 

G GIS Geographic Information Science 
 GRSM Great Smoky Mountains National Park 

H HRG High Resolution Geometrical 
 HWA Hemlock Woolly Adelgid 
I IQR Interquartile Range 
 IRMA Integrated Resource Management Applications 
 ISI Initial Spread Index 

L LAI Leaf Area Index 
 LaSRC Landsat 8 Surface Reflectance Code 
 LEDAPS Landsat Ecosystem Disturbance Adaptive Processing System 
 LiDAR Lightning Detection and Range 

M MODIS Moderate Resolution Imaging Spectroradiometer 
N NAPP National Aerial Photograph Program 
 NASA National Aeronautics and Space Administration 
 NBR Normalized Burn Ratio 
 NDMI Normalized Difference Moisture Index 
 NDVI Normalized Difference Vegetation Index 
 NED National Elevation Dataset 
 NFDRS National Fire Danger Rating System 
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 NIR Near Infrared 
 NPS National Park Service 

O OLI Operational Land Imager 
 OOB Out-of-bag 

P PCA Principle Component Analysis 
R RdNBR Relative differenced Normalized Burn Ratio 
 RH Relative Humidity 

S SARVI Soil and Atmospheric Resistant Vegetation Index 
 SAVI Soil Adjusted Vegetation Index 
 SLC Scan Liner Corrector 
 SVP Saturation Vapor Pression 
 SWIR Shortwave Infrared 

T TC Tasseled Cap 
 TM Thematic Mapper 
 TOA Top-of-atmosphere 
 TPI Topographic Position Index 
 TRI Topographic Ruggedness Index 
 TSI Topographic Shape Index 
 TWI Topographic Wetness index 

U UNESCO United Nations Educational, Scientific and Cultural Organization 
 USDA United States Department of Agriculture 
 USGS United States Geological Survey 
 UTM Universal Transverse Mercator 

V VP Vapor Pressure 
W WHO World Health Organization 
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APPENDIX II 

OVERSTORY VEGETATION COMMUNITIES AND RELATED CODE IN GRSM 

MENTIONED IN THIS THESIS 

Code Main Class Sub Class 

CHx, CHx-T Southern Appalachian Cove 
Hardwood Forests 

Southern Appalachian Cove Hardwoods, 
Typic (with Hemlock) 

CHxA, CHxA-T Southern Appalachian Cove 
Hardwood Forests 

Southern Appalachian Cove Hardwood, Acid 
type (with hemlock) 

CHxL-T Southern Appalachian Cove 
Hardwood Forests 

Southern Appalachian Cove Hardwoods, 
Liriodendron dominated, lower slope (with 

Hemlock) 

CHxR Southern Appalachian Cove 
Hardwood Forests 

Southern Appalachian Cove Hardwood, Rich 
type 

HI Human Influence Human Influence 
Hth Southern Appalachian Heath Balds Southern Appalachian Heath Balds 

Hx Southern Appalachian Early 
Successional Hardwoods - 

HxA-T Southern Appalachian Mixed 
Hardwood Forest, Acidic 

Red Maple-Sweet, Yellow Birch-Fraser 
Magnolia-Blackgum-Sourwood / 

Rhododendron Submesic 

HxB-T Southern Appalachian Early 
Successional Hardwoods 

Broad Valley Sweet Birch Type (may have 
Hemlock) Shared association with Southern 

Appalachian Acid Cove Hardwoods 

HxL-T Southern Appalachian Early 
Successional Hardwoods 

Tuliptree-Red Maple-Sweet-Birch-(Black 
Locust), Liriodendron Successional Type 

(may have Hemlock) 

HxBl/R Southern Appalachian Mixed 
Hardwood Forest, Acidic 

Southern Appalachian Sweet Birch/ 
Rhododendron 

HxL Southern Appalachian Early 
Successional Hardwoods 

Tuliptree-Red Maple-Sweet Birth-(Black 
Locust) 

K Shrub Understory Kalmia latifolia (mountain laurel) 
MAL, MAL/T, 

MAL-T Montane Alluvial Forest Montane Alluvial Forest 

MALc Montane Alluvial Forest American Hornbeam Thicket 

MALt Montane Alluvial Forest Sycamore-Tuliptree- (Yellow, Sweet Birch)/ 
Alder-American Hornbeam; Large River Type 

MOa Montane Xeric White Oak/ Kalmia-
Deciduous Ericaceous Woodland 

Montane Xeric White Oak/ Kalmia-Deciduous 
Ericaceous Woodland 

MOr Montane Northern Red Oak Montane Northern Red Oak 

NHx, NHx-T Southern Appalachian Northern 
Hardwoods - 

NHxA-T Southern Appalachian Northern Southern Appalachian Mixed Hardwoods/ 
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Hardwoods, Acidic Rhododendron, Acid type 
NHxB, NHxB/S, 

NHxB-T 
Southern Appalachian Northern 

Hardwoods 
Southern Appalachian Northern Hardwoods, 

Yellow Birth type 

NHxR, NHxR-T Southern Appalachian Northern 
Hardwoods 

Southern Appalachian Northern Hardwoods, 
Rick type 

NHxY Southern Appalachian Northern 
Hardwoods 

Southern Appalachian Northern Hardwoods, 
Typic type 

OcH Submesic to Mesic Oak/ 
Hardwoods Chestnut Oak type 

OmH Submesic to Mesic Oak/ 
Hardwoods Submesic to Mesic Oak/ Hardwoods 

OmHA Submesic to Mesic Oak/ 
Hardwoods 

White Oak- (Red Oak-Chestnut Oak)-Hickory, 
Acid type 

OmHL Submesic to Mesic Oak/ 
Hardwoods 

Red Oak-Red Maple type, Liriodendron co-
dominant 

OmHp/R Submesic to Mesic Oak/ 
Hardwoods 

Chestnut Oak-(Red Maple-Red Oak)/ tall 
Rhododendron 

OmHr Submesic to Mesic Oak/ 
Hardwoods Red Oak-Red Maple-Mixed Hardwoods Type 

OmHR Submesic to Mesic Oak/ 
Hardwoods 

Red Oak-(White Oak, Chestnut Oak, Scarlet 
Oak)-Hardwoods/ Herbaceous, Rich type 

OzH Chestnut Oak/ Hardwoods Chestnut Oak-Red Maple-Scarlet Oak 

OzH/PI, OzH/PIp Chestnut Oak/ Hardwoods 
Chestnut Oak-Red Maple-Scarlet Oak/ 
Mountain Laurel Xeric Ridge/ Slope 

Woodland 

OzHf Chestnut Oak/ Hardwoods Chestnut Oak-Red Maple/ Sourwood/ 
Herbaceous Forest 

P Cultivated/ pasture/ old-field Cultivated/ pasture/ old-field 

PI Southern yellow pine species in 
xeric woodlands 

Southern yellow pine species in xeric 
woodlands 

PI/OzH, PI-OzH Southern yellow pine species in 
xeric woodlands 

Blue Ridge Pitch Pine-Table Mountain Pine 
Woodland 

PIs-T Eastern Hemlock – Eastern White 
Pine/ Rhododendron - 

R Shrub Understory Rhododendron sp., generally R. maximum 
RD Road Road 
S Red Spruce Red Spruce 

S/F Red Spruce - Fraser Fir Red Spruce - Fraser Fir 

S/NHx, S/NHxB Red Spruce-Yellow Birch- 
(Northern Hardwood) 

Red Spruce-Yellow Birth- (Northern 
Hardwood)/ Shrub/ Herbaceous 

S/R Red Spruce Red Spruce/ Rhododendron 
S/T, S-T, S-T/R, 

T/S 
Red Spruce-

Hemlock/Rhododendron Red Spruce/ Hemlock 

SV Sparse vegetation Sparse vegetation 
T, T/R, T/K Eastern Hemlock - 

T/NHxA 
Eastern Hemlock/ Southern 

Appalachian Mixed Mesic Acid 
Hardwoods 

- 

T/NHx, T/NHxB Eastern Hemlock/ Yellow Birch/ - 
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Rhododendron-(Northern 
Hardwoods)/ Rhododendron 

T/MAL Montane Alluvial Forest Hemlock/ Montane Alluvial Hardwoods and 
Broad Valley Acid Code Hardwoods 

T/CHx Southern Appalachian Cove 
Hardwoods 

Southern Appalachian Cove Hardwoods, 
Typic (with Hemlock) 

T/CHxA, T/HxL Southern Appalachian Cove 
Hardwoods 

Southern Appalachian Cove Hardwoods, Acid 
Type (usually with Hemlock) 

T/PIs Eastern Hemlock - Eastern White 
Pine/ Rhododendron - 

V Montane Grape Vine Opening Montane Grape Vine Opening 
W Water Water 

 

 

 


