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Abstract

The Health and Retirement Study (HRS) is designed to have a thorough investigation of

retirement policy, health and well-being of the US elderly. The main focus of this thesis is

to predict the time to dementia by demographic characteristics and self-respond questions

measured in HRS. The Cox proportional hazard (PH) model was adopted in the analysis.

However, there is a certain percentage of missingness in the HRS data. In order to ensure

the accuracy of the study results, multiple imputation was used to deal with the missing

data. Since not all variables are related to the response, we could reduce the number of

covariates contained in the final model to improve the precision of model prediction. Stepwise

and LASSO selection methods were then conducted on multiply-imputed datasets to select

significant variables related to dementia. We evaluate the performance of the methods on

selecting important variables by simulation studies.

Index words: Cox PH model, Multiple imputation, Variable selection, Data
simulation, Cognitive impairment, Dementia
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Chapter 1

Introduction

1.1 Background

Cognitive impairment (CI) is a major health problem among the elderly, which has received

increasing attention due to its importance to human health. CI can lead to a decline in the

quality of life, reduce life expectancy[1], and has a high mortality rate among the elderly[2].

Dementia, a terminal disease of CI, is defined as a decline in memory and cognitive functions

that causes a loss of independent ability. This is a common phenomenon that has a great

influence on individuals, families and government programs[3].

In the past 25 years, great progress has been made on assessing the effects of demo-

graphic, medical and lifestyle factors on dementia[4, 5]. As is known to all, CI and dementia

disease are not evenly distributed in the population since they are highly correlated with

age. Moreover, education level is another factor which has a connection with CI. Those with

higher education level are less likely to develop cognitive impairment. On the other hand,

low levels of education are thought to be linked to cognitive impairment because people with

low levels of education have less cognitive reserves, poorer physical health in old age, and a

greater risk of cognitive decline. In this study, we have evaluated more factors related to CI

as a function of time to dementia.

The HRS was launched in 1992 by The University of Michigan’s Institute, primarily spon-

sored by the National Institute on Aging (NIA), with additional funding from the US Social

Security Administration (SSA)[6]. Its main objective is to meet the national demand for

reliable data that enable research and analysis to support policies on retirement, health, and

well-being of people as they age. The survey gathered information on population, income,
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assets, health, cognition, family structure and relationships, health care utilization and costs,

housing, work status and history, expectations and insurance. The HRS is administered by

the University of Michigan Institute for Social Research (ISR). It consists of six cohorts:

the original HRS, first interviewed in 1992; the AHEAD cohort, first interviewed in 1993;

depressed, first interviewed in 1998; war babies (WB) cohort, first interviewed in 1998; the

early baby boomers, first interviewed in 2004; and the mid-baby boomers born, first inter-

viewed in 2010[7]. In this study, we adopted all of these six cohorts. However, since the mea-

surements of memory-related or dementia disease started from 1998, only the measurement-

results at 1998, which is my baseline, and measurements from 1998 forward were counted in

my study. For cohort 5 and 6, the baseline are the measurement-results at 2004 and 2010,

respectively.

1.2 Data Overview

The HRS is a large, nationally representative biennial interview longitudinal survey of people

over the age of 50 and their spouses. This survey is carried out both in person and on the

telephone. Core interview is conducted once every two years and each interview last for about

two hours, including face-to-face interview at participant’s home and follow-up interview at

home or on phone. The study now has 12 waves from 1992 to 2014, each with approximately

18-23,000 participants. In order to make data more accessible to researchers, the RAND

center for the Study of Aging created the RAND HRS data products. The RAND HRS

Longitudinal File is a user-friendly version of a subset of the HRS[7].

The variables in the HRS cover a very large range of measures (demographics, the health,

health insurance, income, Social Security, wealth, family structure, retirement etc.), including

the extensive measures that can be used to judge the decline of cognition and the starting

point of cognitive impairment. In the HRS, the cognitive function can be evaluated by

word-recall and mental status measurements which include: the self-reported memory; the

immediate and delay word recall; backwards counting; date naming; president/vice-president
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naming etc. The higher the score, the lower the likelihood of cognitive impairment. The

variables of word-recall, mental status tests and other factors related to health at baseline

were used as covariates to predict the future risks of suffering from memory-related disease in

elderly. Other than self-respondent cognitive variables, we also used demographic variables

like age, gender, and education years etc. All of these covariates were taken from the RAND

HRS longitudinal dataset (RAND).

Nearly half of the variables used in my study are binary, and remaining half are either

continuous or multinomial covariates. Ten out of thirty-seven variables are continuous, i.e.,

education years, age, BMI, immediate word recall (IMRC) and delay word recall (DLRC)

etc. The rest of the variables are either nomial or ordinal variables, such as, cohort indicator

(COHORT), race, religion, and backwards counting test (BWC20) etc are nominal vari-

ables; self-report of the health (SHLT), backwards counting test (BWC20), and self-reported

memory (SLFMEM) are ordinal variables.

Since the primary focus of this study is the self-respondent’s cognitive measurements, a

subset including 44 variables and 22,197 observations was extracted from the RAND data.

Among the 44 variables, 9 variables (R4MEMRY∼R9MEMRY, R10DEMEN∼R12DEMEN)

indicating the status of doctor diagnosed memory-related disease were used to construct

the survival time, censored time and event status for survival data. The event here means

the observation was diagnosed with a memory-related or dementia disease1. The time was

measured in years-scale with 1998 as the starting point. The variables related to cognition

in section A and B in the RAND file were included in this study, except the variables that

has collinearity property with other variables, such as total word recall summary score. Most

variables contain missing values except gender and cohort indicator. The missing percentages

of most variables are around 11% to 18%.

1From 2010 forward, the outcome of doctor diagnosed health problem changed from memory-
related disease to dementia. Since the consistence between these two outcomes in results, dementia
was used to represent these two for convenience.
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1.3 Purpose of Study

The motivation for this study is to analyze the cognition-related measurements in the RAND

data. Subsequently our main interest became whether the self-report cognitive evaluations

at the baseline can be used to effectively predict the time when a subject will be diagnosed

as dementia by a doctor. As the RAND contains the biennial investigation of the dementia

status of the elderly people, survival analysis[8] is a feasible way to achieve this purpose.

Moreover, this data meets the two requirements of survival analysis: 1) subjects are usu-

ally followed for a certain period; 2) the time of the occurrence of interested-event can be

observed. We adopt the proportional hazards model[9] to evaluate the effect of cognition-

related measurements on time to dementia. This could be used in the future to predict the

future risk of cognitive development. The objective of this thesis is to present thorough

evaluation of relevant factors at baseline and identify important covariates that affect the

dementia status of the observations. However, there is a large amount of missing values in

the dataset. Variable selection is generally carried out on the complete dataset, otherwise,

significant missing will cause unreliable analysis results. Thus, it is necessary to handle the

missing values with common multiple imputation methods.

1.4 Literature Review

1.4.1 Cognitive Impairment and Dementia

Cognition impairment is a common disease among elderly Americans, and dementia is the

terminal illness. The definition of severe cognition impairment is that subject cannot suc-

cessfully answer any cognitive screen questions in the survey interview. Senile dementia

includes different causes and clinical manifestations: Alzheimer’s, non-Alzheimer’s, stroke-

related, vascular etc[4]. Nowadays, a lot of studies on the effects of demographic and lifestyle

factors on CI and dementia diseases have been presented in literatures.
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Kenneth et al.[10] have studied the influence of medical, demographic, and social trends

on the cognition health in old adults. The comparison of prevalence of CI and two-year

mortality rates between the 1993-1995 and 2002-2004 was measured. The CI was evaluated by

35-point cognition scale for self-respondents aged 70 or older, and the evaluation of memory

and judgment by proxy respondent were also considered in cognitive assessment. The results

showed that there was a higher rate of CI among people aged 70 or older in 1993 than

in 2002. Moreover, those with moderate or severe CI have higher mortality in both years.

Although education can prevent the development of CI, higher education was accompanied

by a higher 2-year mortality among those who have CI.

Eileen et al.[11] also conducted a research on assessment of cognition using HRS data

by performing a new measurement using subsample. A detailed neuropsychiatric assessment

(Aging, Demographics, and Memory Study [ADAMS]) was adopted in the subsample to

verify the effectiveness of HRS survey in predicting cognition. ADAMS has identified three

degrees of cognition outcomes: Demented, cognitively impaired without dementia (CIND)

and normal cognitive function. The author applied the multinomial logistic regression model

to predict the diagnosis using the measurements related to cognition or noncognitive in HRS

and ADAMS. However, this approach does not taken account of the censoring observations

in the HRS data.

1.4.2 Survival Analysis and Cox PH Model

Survival analysis[8] is a group of methods used to analyze data where the outcome vari-

able is survival time that subject to censoring. Dependent variables in survival analysis

include time to event and event status. Time to event is the time until the occurrence

of an event of interest, and event status indicates if the event happens or not. There are

three types of methods in survival analysis that can be used to analyze the relationship

between predictor variables and survival time: non-parametric, semi-parametric, and para-

metric methods. Kaplan Meier[12] is a widely used non-parametric function for estimating
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and graphing survival probability as a function of time. Parametric approach assumes that

the distribution of survival follows a specific probability distribution, such as, exponential,

Weibull, or lognormal distribution. The most popular and applicable semi-parametric model

is the Cox proportional hazard model[13] which does not require the specification of base-

line hazard function. The Cox regression model is a simple and convenient analysis method,

which can describe the relationship between hazard function and predictors.

Censoring is a common problem that needs to be taken into account in survival analysis,

which refers to a subject did not undergo the event of interest during follow-up period.

The most common situation is right censoring, for example, a person was not observed to

experience the event before the end of the study or he dropped out in the middle of the study.

Cox PH model was adopted in my thesis to deal with the right-censored time to dementia

in HRS data.

1.4.3 Techniques For Missing Data

The common solutions on missing data are listwise deletion and pairwise deletion provided

with the default statistical package. Unless data is missing completely at random (MCAR),

which means missingness is not dependent on the data at all, these two methods would

induce bias and reduce the power of analysis. Another way of handling missing data is

single imputation, which means imputing each missing value under the specified model. This

imputation method can provide a complete data to facilitate subsequent statistical analysis

that requires complete data. However, there are some problems with this method. Since it

fits in the missing value as if they were known, limitation of missing-value variability would

occur in statistical analysis. Other ad-hoc imputation methods, such as mean imputation,

would cause bias and inference errors.

Multiple Imputation (MI), proposed by Rubin[14], is a widely used method to solve

problems of missing data, which will reduce bias compared with methods above. This method

repeatedly fills in the missing cells in incomplete data and generates corresponding two or
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more complete data sets. MI performs well with data under an ignorable missing mechanism,

including missing completely at random (MCAR) and missing at random (MAR)[15] while it

may produce biased results under a non-ignorable missing mechanism-missing not at random

(MNAR). MAR occurs when the pattern of missingness only depends on the observed data,

not the unobserved data. MNAR occurs when the probability of missingness on a variable is

related to the value of that variable itself or other unobserved variables given the observed

variables.

1.4.4 Variable Selection

Variable selection is a critical step in model building. Several variable selection methods

for Cox model were mentioned in literatures. Purposeful selection[16], proposed by Hosmer

and Lemeshow, can avoid overfitting and too strict in initial screen. Starting with fitting

individual univariate Cox models, non-significant variables were deleted at 20% ∼ 25% level.

Then, multivariate Cox model would be fitted with all the remaining covariates.

Forward selection starts with a model without covariate, then adds one covariate at a

time until no more can be added to the model given a specific criterion. Backward selection

is an inverse process opposite to forward selection. It starts from the model containing all

the covariate, then deletes a covariate at one time until no more can be removed based on

a specific threshold. Stepwise selection, first proposed by Efroymson[17], is a combination

of forward selection and backward selection. Best subset selection examines all subsets of

variables and select the best model among them. However, one common drawback of these

approaches is that the variations induced in the variable selection process is not accounted

in inference based on the final selected model. When the number of observations is less than

the candidate covariates, namely high-dimensional data, penalized regression is a better way

to achieve variable selection.

The least absolute shrinkage and selection operator (LASSO), introduced by Tibshirani[18],

is a general variable selection method which maximizes a penalized version of the likeli-
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hood. For Cox model, the likelihood is replaced with partial likelihood[19]. In some cases,

however, it is desirable to select predictors in groups. Yuan and Lin[20] proposed the group

LASSO method, which penalizes the grouped coefficients in a similar way to traditional

lasso. However, Fan and Li[21] have shown that the traditional lasso estimator may not be

completely effective and its selection result may be inconsistent. The major reason is that

the traditional lasso applies same tuning parameter on each regression coefficient. In order

to solve this problem, Zou[22] proposed adaptive LASSO which generally adds adaptive

weights used for penalizing different coefficients in the L1 penalty. Similar method has been

developed for Cox proportional hazard model[23].

After multiple imputation, if the variable selection methods are applied to each multiply-

imputed dataset separately, the selection results of each dataset may be inconsistent, making

it difficult to obtain the final selected model. Therefore, many methods have been mentioned

in the literatures for variable selection with missing data. Wood et al.[24] provided a method

using backward variable selection on a stacked multiply-imputed dataset. They also proposed

a stepwise selection approach for multiply-imputed data via repeated application of Rubin’s

rule. Chen and Wang[25] used group LASSO to select the grouped coefficients of each variable

in multiple imputed datasets. Schomaker et al.[26] proposed using the stepwise and LASSO

selection methods on each imputed dataset separately.
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Chapter 2

Methodology

2.1 Cox Proportional Hazard Model

The Cox proportional hazard regression model was first introduced by Cox[13] in a seminal

paper (1972). Let T denote the survival time, X1, ..., Xk be the covariates. The proportional

hazards model assumes that the hazard of the failure

h (t) = lim
∆t→0

Pr [(t ≤ T < t+ ∆t) | T ≥ t]

∆t

= h0 (t) exp (β1Xi1 + β2Xi2 + · · ·+ βkXik) .

Here h0(t) is a unspecified baseline function. It is assumed that the hazard ratio does not

vary over time. The survival package in R can be used for fitting the Cox model.

The standard inference for the Cox regression approach is based on the partial likelihood.

Let Xi and β denote as Xi = (xi1, ..., xik) and β = (β1, β2, ..., βk)
T respectively. When there

is no tied event times, the partial likelihood is given by

L (β) =
∏

r∈E

exp
(
βTXkr

)∑
k∈Rr

exp (βTXk)
, (2.1)

where E is a set of indicators of the failure times, Rr is the set of indicators of the individuals

at risk at time Tr. Given L (β) = logL (β), the parameter β is estimated by maximizing the

log partial likelihood

β̂ = arg maxL (β) .

When there exists tied events, the permutations in the calculation of true partial likelihood

function can make the calculation very time-consuming. In this case, Breslow[27], Efron[28],
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and Kalbfleisch and Prentice et al.[29] have proposed several approximated partial likelihood

functions. Hertz-picciotto and Rockhill[30] showed that, in most cases, Efron approximation

is the best method. Consequently, the default method of tie handling is Efron in survival

package.

2.2 Multiple Imputation

2.2.1 Software Packages for Multiple Imputation

For this study, we used two packages: Amelia II[31] and MICE[32] for multiple imputation

(MI). Amelia II imputes the missing data based on multivariate normal assumption of the

variables. However, real data often has complex data structures and is usually composed of

many variables, which are usually subject to different distributions, such as Poisson data. It is

difficult to assign the joint distribution of all variables. Thus, under certain circumstances, it

is not reasonable to assume missing data is multivariate normal (MVN). MICE (multivariate

imputation by chained equations), which is based on “fully conditional specifications” (FCS).

Starting with selecting a variable with the lowest missing rate, this variable will be imputed

through an appropriate regression model given other variables and observed values. The next

variable will be imputed in the same way with the imputed variable. Each different model

is assigned to different variables until all the variables are imputed. The whole procedure

will be iterated until convergence. MICE can deal with different types of variable: numeric,

binary, multinomial, ordinary counts and mixed variables.

Both packages assume that missing data is MAR. The assumption of MAR will be more

reliable if more variables from the dataset are included in MI process, not only those that

would show up in the final analysis model. In general, Amelia II will have a better perfor-

mance in imputing multivariate normal data, while MICE does a better job in imputing

missing data with lots of different types of variables.
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2.2.2 Rubin’s Rule

Multiple imputation (MI) from either method creates M imputed datasets, and then regres-

sion analysis is conducted on each imputed dataset, which will result in M estimates of the

parameters and their covariance estimates. Then we combine these results according to the

following rules. The estimate of parameters after MI can be obtained by

β̂MI =
1

M

M∑
m=1

β̂(m), (2.2)

where β̂(m) is the estimate of β in the mth imputed data set d(m). The covariance of β after

MI is

Ĉov
(
β̂MI

)
= Ŵ +

M + 1

M
B̂, (2.3)

with the average within imputation covariance

Ŵ =
1

M

M∑
m=1

Ĉov
(
β̂(m)

)
,

and the between imputation covariance

B̂ =
1

M − 1

M∑
m=1

(
β̂(m) − β̂MI

)(
β̂(m) − β̂MI

)′
.

The confidence interval then can be calculated by a tv distribution

β̂MI ± tv
√
Ĉov

(
β̂MI

)
, (2.4)

where the degrees of freedom v is given by v =
[
1 +

(
M
M+1

)
Ŵ

B̂

]2

(M − 1) . More details can

be found in Rubin[14].

2.3 Variable Selection

We consider two approaches for variable selection. One is the approach proposed in the R

package MAMI[33], the other is the group LASSO approach[20, 34].
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2.3.1 Variable Selection in MAMI

For each imputed data set, the variables are selected using a variable selection approach,

such as AIC and LASSO. If a variable is selected in at least one imputed data set, it will

be officially selected, but its frequency of being selected determines its overall impact. After

multiple imputation, the estimates of β can be obtained by

β̂MI =
1

M

M∑
m=1

β̂(m),

where β̂(m) is the estimates of the parameters for the mth imputed data set, with the estimates

being zero for unselected variables. According to (2.3), the overall variance of the estimator

after multiple imputation is:

V̂ ar
(
β̂j,MI

)
=

1

M

M∑
m=1

V̂ ar
(
β̂

(m)
j

)
+

M + 1

M(M − 1)

M∑
m=1

(
β̂

(m)
j − β̂j,MI

)2

.

Therefore, the confidence interval can also be calculated using (2.4). However, this method

still may not solve the problem that the parameters in regression models may still be

biased[26].

For Cox model, two variable selection approaches are implemented in MAMI, one is based

on AIC (mAIC) and the other is based on LASSO (mLASSO). The AIC for the Cox model

is

AIC = −2L
(
β̂
)

+ 2p,

where p is the dimension of parameters β. Tibshirani[19] applied his own LASSO method to

Cox model. the LASSO parameter estimate of β is

β̂LE (λ) = arg minβ

{
− L (β) + λ

p∑
j=1

|βj|

}
,

where λ is a set of candidate tuning parameters λ = {λ1, ..., λL}. The tuning parameter λ is

selected by cross-validation (CV), and the purpose is to minimize the error of the difference

between training- and test- likelihood (the partial likelihood deviance). In MAMI, for the mth

imputed dataset, the variance of the LASSO estimator is estimated by bootstrapping[33].
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2.3.2 Group LASSO

Yuan and Lin[20] proposed a group LASSO (gLASSO) approach for variable selection in

linear regression model after multiple imputation. Here we extend this approach to the Cox

model. The coefficients of the same variable in the M imputed dataset are constrained to

a group. In regular LASSO, each coefficient has different constraints. However, the group

LASSO removes a set of variables from the model by shrinking the parameter of this set to

zero, and retains the important set of variables on which the hazard function depends.

The covariates are divided into K groups and β(j) is the regression coefficient of the jth

covariate group, where j = 1, ..., K. The group LASSO estimate is obtained by minimizing

Qn(β, λ) = −Ln(β) + λ
K∑
j=1

||β(j)||,

β̂n(λ) = arg minβ Qn(β, λ),

where Ln(β) is the partial log likelihood for the Cox model. || · || represents the L2 norm.

Applying group LASSO to the multiply-imputed datasets is implemented as follows.

Treating the M imputed datasets as one big dataset and letting xmj be jth covarites in the

mth imputed dataset with coefficient βmj , define βj = (β1
j , ..., β

m
j ). If there is no significant

correlation between Xj and the survival time, β1
j , ..., β

m
j are all zero. If Xj is significant, then

none of β1
j , ..., β

m
j should be zero. The group LASSO method is implemented with the R

package SGL[34] by setting alpha = 0. The tuning parameter is chosen by cross validation

via the function cvSGL.
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Chapter 3

Simulation Study

To investigate the performance of different variable selection methods, we use simulated data.

In this way, we can control which variables are important to the response and know if the

method has selected the right variables. All methods are evaluated based on 200 simulated

data sets, each with 100 observations and 20 variables.

3.1 Generating Survival Data

In this simulation, there were n = 100 subjects and p =20 variables, which were generated

from a multivariate normal distribution with mean µ = 0 and the correlation structure of

compound symmetric with the correlation coefficient ρ = 0.3 between any two variables.

Among 20 variables, the variables (X1, X5, X10, X11, X15, X20) are important. The true Cox

model is

h (t|x) = 0.5 exp(0.5X1 − 1.2X5 + 1.8X10 + 0.5X11 − 1.2X15 + 1.8X20).

The coefficients values from negative to positive and from small to large were taken into

account in this study. Then we tested if the variable selection methods were successful in

finding them.

The censoring time was generated from an exponential distribution with mean c and

truncated at d, which corresponds to the maximum follow up time. By changing the param-

eter c and d we can vary the overall censoring rate. The censoring rate was controlled to be

approximately 30%.
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3.2 Generating Missing Data

The missing data was generated for the 20 candidate covariates. The first ten variables,

X1, ..., X10, were completely observed, and the remaining ten variables, X11, ..., X20, all had

missing values. The ignorable missing mechanism, MAR, was considered in this simulation.

Two different nonresponse rates were also taken into account, resulting in 60% and 35% of

complete cases, respectively.

Under MAR, the indicator Rij is generated to specify whether Xij is missing, Rij = 1 if

Xij is missing and Rij = 0 if Xij is not missing. Suppose the missing-probability of variable

Xij depends on Xi(j−10) such that

logit{Pr(Rij = 1|Xi(j−10))} = α0 + 0.5Xi(j−10),

where j = 11, . . . , 20, α0 is controlled to get 60% and 35% complete cases, separately.

3.3 Measurements of Performance

To compare the performance of variable selection among the three methods, we used the

following three criteria:

1. Sensitivity:

Sen =
# of selected important variables

# of true important variables
;

2. Specificity:

Spe =
# of unselected unimportant variables

# of true unimportant variables
;

3. Geometric mean of sensitivity and specificity:

G =
√

Sensitivity× Specificity.

Sensitivity assess the proportion of correctly choosing important variables, while specificity

measures the rate at which unimportant variables are correctly eliminated. In addition, the
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geometric mean of sensitivity and specificity was used in this study to measure the degree of

the correctness after the combination of sensitivity and specificity. These measures all range

from 0 to 1, with the property that the larger the value, the better the selection performance.

3.4 Results

For each setup, 200 replicates of simulations were conducted. Although the more times of

imputation the better the results, the processing time would be too long which is time-

consuming. In order to obtain a balance, within each replicate, five imputed-datasets were

generated in each incomplete data using R package Amelia II. We compared the variable

selection, estimation and coverage probabilities of the four methods.

3.4.1 Variable Selection

In my missing data simulation, first half of variables X10 ∼ X20 are fully observed while

missing values are only generated in second half of variables X10 ∼ X20. These two sets of

covariates, complete set and incomplete set, are used to assess the effect of missing level.

Moreover, two missing scenarios were designed to evaluate the variable selection methods:

60% CC under MAR; 35% CC under MAR. In order to intuitively illustrate the selection

performance, Figure 3.1 is presented to show the selected frequency of all variables among

different methods under the missing mechanism MAR. It represents comparison among four

different methods: 1) the gLASSO on the multiply-imputed datasets; 2) the mLASSO on the

multiply-imputed datasets; 3) the mAIC on the multiply-imputed datasets; 4) the LASSO

on the complete-cases (CC). It is worth mentioning here, for CC, the LASSO is implemented

in R using the function SGL by setting alpha = 1 and the tuning parameter is chosen by

cvSGL.

The absolute value of coefficient has a considerable impact on selected percentage of

important variables, i.e., X10 and X20 have higher percentages of selection than X1 and X11.

Both mAIC and mLASSO tend to over-select more unimportant variables. Furthermore,
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Figure 3.1: Percentage of each variable selected in the model using the four
methods among 200 replicates with 60% complete cases. The important variables are
X1, X5, X10, X11, X15, X20 with censoring rate 30%. Variables X1 ∼ X10 are complete, while
variables X11 ∼ X20 have missing values resulting in 60% complete cases. The missing mech-
anism is MAR. Each missing replicate is multiply imputed with Amelia II.

no significant difference is observed on the selection percentage between complete observed

covariates and incomplete observed covariates. Specifically, for two important variables X1

and X11 with the same coefficient values, we can see that X1 has an approximate same

selection percentage as X11.

Comparing Figure 3.2 against Figure 3.1, the performance of CC on 35% complete-cases

is worse than on 60% complete-cases. It is reasonable to conjecture that the higher the

percentage of missing, the worse the performance of CC. For gLASSO, the performance is

only slighly worsened when the complete cases decreased from 60% to 35%. However, mAIC

and mLASSO tend to select more unimportant variables when the missing rate increases,

with no obvious difference in selecting important variables.

When comparing gLASSO against CC, the selected percentages of the important variables

by gLASSO are higher than by CC. In contrast, CC has comparatively lower probabilities of

selecting unimportant variables than gLASSO. To some extent, CC has a better performance
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Figure 3.2: Percentage of each variable selected in the model using the four
methods among 200 replicates with 35% complete cases. The important variables are
X1, X5, X10, X11, X15, X20 with censoring rate 30%. Variables X1 ∼ X10 are complete, while
variables X11 ∼ X20 have missing values resulting in 35% complete cases. The missing mech-
anism is MAR. Each missing replicate is multiply imputed with Amelia II.

on removing unimportant variables. For mAIC and mLASSO, although their probabilities of

selecting important variables are high, they both tend to over-select unimportant variables.

The potential reason is that the variable selected in any imputed data set by mAIC and

mLASSO will be formally presented in the final model.

The mean sensitivities, mean specificities and corresponding geometric means are

reported in Table 3.1 for all the four methods. gLASSO, mAIC, and mLASSO have

relatively higher sensitivities of selecting important variables than CC on both 60% and 35%

complete-cases. CC and gLASSO have relatively higher specificity of removing unimportant

variables than mAIC and mLASSO. After combing the performance of selecting important

variables and eliminating unimportant variables, gLASSO outperforms other three methods

since it has the highest geometric mean.
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Table 3.1: Mean sensitivity (SEN), specificity (SPE) and their geometric mean (G) for the
four methods among 200 replicates. Variables X1 ∼ X10 are complete, while variables X11 ∼
X20 have missing values resulting in 60% or 35% complete cases. The missing mechanism is
MAR. Each missing replicate is multiply imputed with Amelia II.

60% complete cases
Amelia II SEN SPE G

CC 0.906 0.770 0.835
gLASSO 0.974 0.745 0.852
mAIC 0.993 0.494 0.700

mLASSO 0.995 0.339 0.581

35% complete cases
Amelia II SEN SPE G

CC 0.659 0.839 0.743
gLASSO 0.962 0.715 0.829
mAIC 0.987 0.350 0.587

mLASSO 0.993 0.254 0.502

3.4.2 Estimation

We also compared the estimates from the four approaches. The coefficient estimator and

confidence interval of each covariate under mAIC and mLASSO come with the variable

selection results. In order to obtain the estimates and confidence intervals for CC, the model

is refitted with the selected covariates. For gLASSO, the selected variables are used to refit

the model for each imputed dataset separately, then Rubin’s rule is used to combine the

inference from each dataset.

The coefficient estimates of six important variables and fourteen unimportant variables

for 60% complete-cases were presented in the Box plots in Figure 3.3. Four horizontal lines at

(-1.2, 0, 0.5, 1.8) were drawn as reference. For important variables, one can see that gLASSO

has the best performance among the four scenarios, since the medians of important variables

fall at the reference line and the range of 1st to 3rd quantile for each variable is quite narrow.
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Figure 3.3: Estimates of each variable using the four methods among 200 replicates with
60% complete cases. The true model is h (t|x) = 0.5 exp(0.5X1− 1.2X5 + 1.8X10 + 0.5X11−
1.2X15 + 1.8X20) with censoring rate 30%. Variables X1 ∼ X10 are complete, while variables
X11 ∼ X20 have missing values resulting in 60% complete cases. The missing mechanism is
MAR. Five (m=5) imputed datasets are generated in each replicate. Each missing replicate
is multiply imputed with Amelia II.
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While for unimportant variables, mLASSO have the least biased estimates as its ranges of

outliners are pretty narrow. CC has the worst performance since it produces much biases on

coefficient estimations.

3.4.3 Confidence Intervals

Empirical coverage probabilities of the 95% confidence intervals were calculated for each

variable under different scenarios. For each covariate Xi(i = 1, ...20), the empirical coverage

probability can be obtained by

Coverage Probability (Xi) =
# of CI(Xi) covering true parameter

200
,

where the numerator is the number of confidence intervals covering the true parameter of Xi

among 200 replicates.

Figure 3.4: Percentage of each variable whose true parameter is covered by the 95% confi-
dence interval given by the four methods among 200 replicates. The important variables are
X1, X5, X10, X11, X15, X20 with censoring rate 30%. Variables X1 ∼ X10 are complete, while
variables X11 ∼ X20 have missing values resulting in 60% complete cases. The missing mech-
anism is MAR. Five (m=5) imputed datasets are generated in each replicate. Each missing
replicate is multiply imputed with Amelia II.

The empirical coverage probability of each variable on 60% complete-cases is presented

in Figure 3.4 for the four methods. The benchmark of 95% confidence interval was drawn

21



as reference. The shorter the distance between the probability and benchmark, the better

the performance. CC has a terrible performance on estimating confidence interval of impor-

tant variables. gLASSO and mAIC give the coverage probabilities of both important and

unimportant variables slightly lower than 95%. The coverage probabilities of most unimpor-

tant variables given by mLASSO are higher than the benchmark. The majority of coverage

probabilities from four methods are mildly under 95%. Thus, these four methods generally

underestimate the true 95% confidence interval.

Table 3.2: Average coverage-probabilities of 95% confidence intervals.
(X1, X5, X10, X11, X15, X20) are important and (X2 ∼ X4, X6 ∼ X9, X12 ∼ X14, X16 ∼ X19)
are unimportant variables. Variables X1 ∼ X10 are complete, while variables X11 ∼ X20

have missing values resulting in 60% complete cases. The missing mechanisms is MAR.
Each missing replicate is multiply imputed with Amelia II.

60% complete case
Covariates CC gLASSO mAIC mLASSO

Important 74% 92% 96% 84%
Unimportant 93% 95% 94% 100%

All 87% 94% 94% 95%

The average coverage-probabilities of important, unimportant and all variables on 60%

complete-cases are reported in Table 3.2. For important variables, the gLASSO and mAIC

methods have relatively better performances than mLASSO and CC, where the average

coverage probability of the confidence intervals of mAIC is 96% which is higher than 95% and

gLASSO gives the average coverage probability of 92% which is close to 95%. On the other

hand, for unimportant variables, all of the four methods have coverage probabilities close to

the nominal level. Overall, gLASSO and mAIC perform better than the other methods.
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Chapter 4

Application

The RAND data is longitudinal data containing a very large range of measures of elderly in

the United States. The outcome of interest is time to diagnosis of dementia. The subjects were

followed up every two years. The 35 variables used as candidate covariates were listed in Table

4.3 which were selected from sections A and B from the RAND file[7]. More details about the

variables can be found in the RAND file. Most variables contain missing values except gender

and cohort indicator. The missing percentages of most variables are around 11% to 18%. The

missing data were multiply imputed with MICE by specifying each variable’s type, assuming

the missing mechanism is MAR. After 5 multiply-imputed datasets were generated, the

three methods (gLASSO, mLASSO and mAIC) were applied to them to select important

cognitive factors related to dementia. CC was applied to complete-cases dataset directly.

Cross-validation was used to select the tuning parameters in CC, gLASSO and mLASSO.

The variable selection results from these four methods are shown in Table 4.1 and 4.2.

The variables with category 1 are all binary, and the reference groups for them are 0. The

reference group for BWC20 is also 0. The Table 4.1 and the top part of Table 4.2 show

the 19 variables which were selected by all four methods (except HOMCAR, NRSHOM,

and MEDUC), and the bottom part of Table 4.2 lists the variables which were selected by

three methods or less. Among the 19 variables, the HR estimators of the variables AGE,

EDUCATION, BMI, HOSP, IMRC, DLRC, DY, DW, PRES, and VP were pretty similar

among all four methods. According to the 95% CI, these 10 variables are all significant at

the 0.05 level. A larger value of AGE, EDUCATION, or HOSP is accompanied with a higher

hazard of dementia. Conversely, for BMI, IMRC, DLRC, DY, DW, PRES, and VP, a higher
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value is associated with lower hazard to develop dementia. For the remaining 9 variables,

they are only found significant by three or less methods. Moreover, for the nominal and

ordinal covariates (COHORT, SLFMEM, SHLT, and BWC20), they are partially significant

in their sub-categories. In addition to the 19 common variables, other 16 variables were also

selected by three or less methods which are not significantly associated with the outcome at

the 0.05 significant level.

SER7 is merely found insignificantly by CC, while NRSHOM is merely found significantly

by CC. According to my simulation results, CC gives untrustworthy confidence intervals

comparing to other three methods. Hence, SER7 is likely to be significant, while NRSHOM is

likely to be insignificant. Moreover, mAIC and mLASSO pick RACE (group 2) as a significant

variable. Also, BWC20 (group2) is only found significantly by gLASSO. However, the nearest

boundaries of these confidence intervals are very close to 1. It is inconclusive whether these

variables are related to hazard of dementia.

Among the thirteen cognitive related measures BWC20, PRES, VP, SCIS, CACT, DY,

MO, YR, DW, IMRC, DLRC, SER7, and VOCAB, only 6 variables PRES, VP, DY, DW,

IMRC, DLRC are found significant by all the four methods. Generally, the larger the scores

of these 6 variables, the less the hazard to develop dementia.
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Chapter 5

Discussion and Conclusion

We have compared CC and three different methods for variable selection for the Cox PH

model after multiple imputation. The mAIC method uses AIC criteria to select important

variables on each multiply-imputed dataset. The mLASSO method, a method similar to

mAIC, combines the results of lasso variable selection on each multiply-imputed dataset.

The third method is gLASSO, which deals with variable selection after multiple imputation.

The basic idea is to constrain the coefficients of the same variable in each imputed data set

to a group, then lasso will be applied to the grouped and constrained variables to obtain a

consistent result from variable selection. The last method is CC, which simply applies lasso

variable selection on complete-cases dataset.

Simulation study was used to compare the methods. We considered different values for

the β, from negative to positive and from small to large, in order to reflect if the coefficients

would affect the performance of variable selection. We also compared the approaches under

different degree of missingness. Overall, gLASSO has better performance than the other

three methods.

According to the results of application on HRS data, the demographic and health char-

acteristics of AGE, EDUCATION, and HOSP are significantly associated with hazard of

dementia. A higher value is related with a higher hazard to develop dementia. The health

and cognitive related factors of BMI, IMRC, DLRC, DY, DW, PRES, and VP are negatively

correlated with the development of dementia at 0.05 significant level. Specifically, the higher

the scores of these variables, the lower the hazards of developing dementia.
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