Quabratic Forms OVER HASSE DoMAINS:

FiNiTENESS OF THE HERMITE CONSTANT

by

Jacos Hicks
(Under the Direction of Pete L. Clark)
ABSTRACT

This document describes three previous papers that proved representation theorems for binary
and quaternary quadratic forms using Geometry of Numbers tools and a computational approach.
It then goes on to generalize the some of the Geometry of Numbers tools used to S-integer rings of

global fields.

INDEX WORDS: Geometry of Numbers, Hermite Constant, Quadratic Forms, Lattice,
Universality



Quabpratic ForMs OVER HASSE DoMAINS:

FINITENESS OF THE HERMITE CONSTANT

by

JacoB Hicks

B.S. Mathematical Sciences, Clemson University, 2005
B.S. Computer Science, Clemson University, 2005

M.A. Mathematics, University of Georgia, 2012

A Dissertation Submitted to the Graduate Faculty
of The University of Georgia in Partial Fulfillment
of the

Requirements for the Degree

Doctor oF PHILOSOPHY

ATHENS, GEORGIA

2016



©2016
Jacob Hicks

All Rights Reserved



Quabpratic ForMs OVER HASSE DoMAINS:

FINITENESS OF THE HERMITE CONSTANT

by

JacoB Hicks

Approved:

Major Professor:

Committee:

Electronic Version Approved:

Suzanne Barbour

Dean of the Graduate School
The University of Georgia
May 2016

Pete L. Clark

Daniel Krashen
Robert Rumely
Robert Varley



Quadratic Forms Over Hasse Domains:

Finiteness of the Hermite Constant

Jacob Hicks

April 29, 2016



Acknowledgments

I first acknowledge Pete Clark, Hans Parshall, Kate Thompson, and Nathan Walters who were
my coauthors on the works appearing in this document. I cannot begin to express the depth of
my appreciation for my parents whose love and support helped me through both the brightest and
darkest times of graduate school. I would like to thank Pete for being compassionate and helpful,
and for being willing to work with me to discover what it would take for me to have a successful
graduate career.

Brian and Cristina have been my best friends throughout my graduate school experience and
a reliable refuge of fun, laughter, and rest. My thanks to Kate motivated me by her example and
encouraged me by her friendship, sarcasm, and food. I would also like to thank Laura and the rest
of the staff in the math department for being so eager to help, encouraging, and great to talk with
for all the graduate students.

My church family has been a constant reminder to keep things in an eternal perspective. My
Bible study with its ever changing makeup has always been a place to find people who both under-
stand the rigors of graduate school and that there is a life outside of it. Most of all, I want to thank
my God. Even though I was often not aware of it at the time, looking back His love was always

there leading, guiding, and comforting me.

v



Contents

1 Introduction

2 Quadratic Forms
2.1 Quadratic formsoveraring . . . . . . . .. ...l
2.2 Quadratic forms over a field of characteristicnotequalto2 . . . . . .. ... ...

2.3 Totally isotropic SUbsSpaces . . . . . . . . . . . .. e e

3 Classical Geometry of Numbers
3.1 Lattices . . . . . . . e
3.2 Minkowski’s Convex Body Theorem . . . . . . ... ... ... ... .......
3.3 Minkowski’s Linear Forms Theorem . . . . . . .. ... .. .. ... .......

3.4 Hermite Constant . . . . . . . . . . . . e e e e e

4 Binary Quadratic Forms
4.1 Background . . . . . ...
4.2 A Small Multiple Theorem . . . . . . .. . .. ...
43 2779 RegularForms. . . . . . . . . . . ...

5 Diagonal Quaternary Quadratic Forms
5.1 A multiplicative identity . . . . . . . . . ... e

5.2 An application of geometry of numbers . . . . .. ... Lo

11
12
14
16



6

8

5.3 Nine Universality Theorems . . . . . . ... ... ... ... ... ......
5.4 Some history of universal forms . . . . . . .. ... L L L oL
5.5 Binarysubforms. . . . . . ...
5.6 Sixmultiplicative forms . . . . . . ..o
5.7 Two non-multiplicative forms . . . . . . . . . . . ... ... o

5.8 Theformgys =(1,2,5,10) . . . . . . . ... L

Nondiagonal Quaternary Quadratic Forms
6.1 Proving Universality . . . . . . ... ... . ...
6.2 AnExample . . . . . . . .

6.3 Local Successof the Method . . . . . . . . . . . . . . . . . . . ... ...

Totally Real Number Fields
7.1 Worksof DeutschandIcaza . . . . . . . . . . . . . . . . . .

7.2 Improved bound on Hermite constant . . . . . . . .. ... ... ... ......

Abstract Geometry of Numbers

8.1 HasseDomains . . . . . . . . . ...
8.2 Linear Forms Constants . . . . . . . . . . . .. .. . o
8.3 Mahler-Minkowski Functionals . . . . . .. .. ... ... ... . L.

8.4 Finiteness of Hermite Constant in the Global Field Case . . . . . . . . . . . .. ..

Bibliography

A Appendix

Vi

42
43
46
49

52
53
55

63
63
66
68
71

75

80



List of Tables

A.1 Representatives for 2779 SL,(Z)-equivalence Classes of Regular Binary Forms . . 80
A.2 Classically Integral Quaternary Forms with Square Discriminant . . . . . . . . .. 86
A.3 Not-Classically Integral Quaternary Forms with Square Discriminant . . . . . . . . 87

vii



Chapter 1

Introduction

This thesis presents work done on bounding the Hermite constant and proving representation the-
orems of quadratic forms using a mixture of Geometry of numbers and computational tools. It
begins with work done on binary quadratic forms jointly conducted with Hans Parshall, Pete L.
Clark, and Katherine Thompson. This work was published in the journal Integers [8]. The main

result of the work was:

Theorem 4.3. Let g = (A, B,C) be one of the 27179 primitive, positive definite integral binary
quadratic forms in Table A.1, and let A = B*> — 4AC be the discriminant of q. For a prime p 1 2A,

the following are equivalent:
1. The form q integrally represents p: there are x,y € Z with q(x,y) = p.

2. All of the following conditions hold:

w0 ()1
(b) For each odd prime m | A, if m t A, then (%) = (%), and if m £ C, then (%) = (%)

(c) If16 | Aand2 1 A, then p = A (mod4). If 16 | Aand 2 1 C, then p = C (mod 4).

(d) If32| Aand2 1 A, then p = A (mod8). If32 | Aand 2 1 C, then p = C (mod 8).



Following the work on binary forms, we consider quaternary quadratic forms. This work was
jointly conducted with Pete L. Clark, Katherine Thompson, and Nathan Walters that was also
published in Integers [9]. We produced proofs of the universality of nine diagonal quadratic forms
of square discriminant. All but one of these was done using by hand computations. Then the
study of quaternary forms continues in work conducted with Katherine Thompson on non-diagonal

quadratic forms culminating in:

Theorem 6.1. The 105 integral, positive definite, quaternary quadratic forms appearing in Tables

A.2 and A.3 of the Appendix are universal.

After considering forms over the integers, our attention turned to the case of totally real number
fields. The value of the Hermite constant is know exactly in the case of integers in dimension two
and four that we studied. In the case of totally real number fields, the exact value of the Hermite
constant is not yet known. A paper of Icaza [28] had bounded the Hermite constant over number
fields and an insight gained from a paper of Deutsch [14] led to an improvement in her bound for

totally real number fields given by

Theorem 7.6. Let K/Q be a totally real number field of degree d, let d(K) be the discriminate of

the number field, and let By be the unit ball. For all N € Z* we have

AN)I\7 N
Yi(Zg) < d 44 (ﬁ) |d(K)| (Vol By) ™~

Finally the idea of extending the Hermite constant to other classes of fields and rings led to the

following

Theorem 8.7. yy(R) is finite for all global fields K with characteristic not equal to 2 and all

S -integer rings of K for all dimensions N.



Chapter 2

Quadratic Forms

2.1 Quadratic forms over a ring

Let R be a commutative ring, and let N € Z*. An N-ary quadratic form over R is a homogeneous

quadratic polynomial

qv) = q(xy1,...,xy) = Z a;jxixj € R[xy,...,xyl,a;j € R. 2.1
1<i<j<N
Two quadratic forms g(v) = q(xy,...,xn), ¢ (v) = ¢'(x1,...,xy) over R are equivalent over R if

there is A € GLy(R) such that g(Av) = ¢'(v). We write g = ¢'.

Let g(v) be an n-ary quadratic form over R, and let d € R. We say that g R-represents d if
there exists v € R" such that g(v) = d. We say that ¢ is isotropic over R if there exists v € R",
v # (0,...,0) such that g(v) = 0; otherwise ¢ is anisotropic. We say q is universal over R if g
R-represents every element of R.

Base change: Let S be another commutative ring, and let ¢ : R — S be a ring homomorphism.

Given an n-ary quadratic form g over R and such a map ¢, we may associate an n-ary quadratic



form g/s in the evident way: namely

Q/S(xlv-"’xn): Z So(aij)XjXJES[X],...,xn].

I<i<j<n

Base change is useful for showing that g does not represent d € R: if g R-represents d, then
for all homomorphisms ¢ : R — §, g5 S-represents ¢(d): indeed, if g(x;,...,x,) = d, then
qs(@(x1),...,9(x,)) = ¢(d). For succinctness we will say that g S -represents d. For instance, let
R = Z and g = x*> + y*. Then ¢ does not Z-represent any negative integers. The formal justifica-
tion of this is that in the ordered field R any sum of squares is non-negative, so g does not even
R-represent any negative integers. Moreover, g does not represent any n = 3 (mod 4): taking the

map ¢ : Z — Z/47Z, by enumeration of cases one sees that x*> + y> = 3 has no solution in Z/4Z.

Suppose that R is a domain of characteristic different from 2 and with fraction field K. For the
n-ary quadratic form g(v) of (2.1), let M, = (m;;) € M,,(K) be the matrix with m; = a;; for all i and
aijj

m;; = - forall i # j. Then, putting v = (xi,. .. , Xp)', we have

qg(v) = vV'Myv. (2.2)

The form q is classical it M, € M,(R), or equivalently, a;; € 2R for all i # j. Diagonal forms
are classical. Two n-ary forms g and ¢’ are equivalent over R iff there exists A € GL,(R) with
M, = AM,A". Then det M, = (det A)?* det M,, which shows that the class disc g of det M, modulo
(R*)? is an invariant of the equivalence class of g, called the discriminant of g. When R = Z,

(Z°)* = {1}, so disc g is a well-defined integer. In general we say q is nondegenerate if disc g # 0.

Let gi(x1, ..., x,;,) be an m-ary quadratic form over R and ¢,(y, ..., y,) be an n-ary quadratic form

over R. We define their direct sum q; ® g, to be the (m + n)-ary form g(x1,..., X V1, ., Vn) =



Gi(X15. o X)) + G(V1s oY)

2.2 Quadratic forms over a field of characteristic not equal to

2

The theory of quadratic forms is considerably simpler when R = K is a field of characteristic
different from 2. The results that we need are from Chapter 1 of the theory of quadratic forms over

fields [31, Ch. I].

Fact 2.1. [31, Cor. 1.2.4]: Every form q over K is K-equivalent to a diagonal form (ay,...,a,) :=
alx% +...+ a,,x,%. In other words, there is A € GL,(K) such that AM,A" = D(ay,...,a,), where

D(ay,...,a,) is diagonal with (i, 1) entry a;.
The binary form H = (1, —1) plays a distinguished role in the theory.

Fact 2.2. [3], Thm. 1.3.2]: For a nondegenerate binary form q(x,y) over K, the following are

equivalent:
1. qis K-equivalent to H.
2. discg = —1.
3. q is isotropic.

Fact 2.3. [31, Thm. 1.3.4(2)]: For a nondegenerate quadratic form q over K, the following are

equivalent:
1. q is isotropic.
2. There exists a quadratic form g’ such that g = q’' ® H.

A quadratic form is hyperbolic if it is isomorphic to @;1 H for some r € N.

5



2.3 Totally isotropic subspaces

We may view an n-ary quadratic form g as a map g : K" — K. A K-subspace W of K" is called

totally isotropic for q if gy = 0.

Fact2.4. [31, Thm. 1.3.4(1)]: Let q : K" — K be a nondegenerate quadratic form, and let W c K"

be a totally isotropic subspace of dimensionr. Then g = H @ ¢q'.

Proposition 2.5. Let g be a nondegenerate, isotropic quaternary quadratic form over a field K of
characteristic different from 2. The following are equivalent:

(i) q is hyperbolic.

(ii) discg = 1.

(iii) g admits a two-dimensional totally isotropic subspace.

Proof. (i) = (ii): A quaternary hyperbolic form g is equivalent to the diagonal form (1, -1, 1, —1),
which has discriminant 1.

(ii)) = (1): Since g is isotropic, by Fact 2.3, g = H® ¢’, with ¢’ binary. We have
1 = disc g = (disc H) - (disc ¢’) = —disc ¢/,

sodiscq’ = —1. By Fact2.2, ¢’ 2 H,sog = He H.
(1) = (iii): We may assume g = H@ H = (1,—-1,1,—1), in which case W = (e; —e;,e3 —e4) is a
2-dimensional totally isotropic subspace.

(iii)) = (i): This follows immediately from Fact 2.4. |



Chapter 3

Classical Geometry of Numbers

3.1 Lattices

We begin with a treatment of integral lattices. Fix some positive integer N. We can endow RY with
the structure of a locally compact topological group under addition. We can take a lattice in RY
to be discrete subgroup which is free of rank N. Thus we have that a lattice can be given by the
Z-span of an R-basis for RV, This basis is not unique for a given lattice. Any invertible Z-linear

transformation with determinant +1 will give another basis. For the remainder of the chapter we

will take a;, a,, . ..,ay to be a basis for a lattice A.
If we view the basis vectors as the columns of a matrix find that det(a;, a,,...,ay) is an in-
variant of the lattice up to multiplication by +1. Hence if we take |det(a;, a,, ..., ay)| we have an

invariant of the lattice. In a more abstract setting, let a group G act on a space X. A fundamental
region is a subset R C X that contains exactly one element from every G orbit on X. For any lattice,
A we can let A act on RY by translation. Viewing this as in the more abstract setting yields a
fundamental region that is the fundamental parallelepiped. This parallelepiped tiles the space with
its translates. The volume of this fundamental parallelepiped is independent of the chosen basis

and is known as the covolume of the lattice which will be denoted Covol(A). This covolume is also



the determinant of the lattice. In particular since the basis vectors must be linearly independent,
the covolume must be positive.
A lattice is a group under addition. If we have another lattice I" such thatI" C A, then this lattice

is called a sublattice of A and is in addition a subgroup. The index of the lattice is the sublattice is

D= Covol I

= CovalA The index is independent of the choice of basis.

3.2 Minkowski’s Convex Body Theorem

As Cassels says in his Introduction to the Geometry of Numbers, the whole of the geometry of
Numbers may be said to have sprung from Minkowski’s convex body theorem[4, p.64]. The state-

ment of the theorem is straightforward:

Theorem 3.1 (Minkowski’s Convex Body Theorem). If a set of point in Euclidean N-space is
symmetric about the origin (contains —x whenever it contains x) and convex [ie contains the whole
line segment

Ax+ (1 -y, 0<2<1

when it contains x and y] and has volume V > 2V, then it always contains a Z-lattice point other

than the origin.

It is clear that this is the best possible bound for such a theorem because we can take the
open hypercube surrounding the origin and containing no other lattice points except on its open
boundary. This shape has volume V = 2V, is symmetric about the origin, and is convex yet contains
no integral points except the origin.

Minkowski’s convex body theorem is immediately generalized to the case of lattice points by:
If A is a lattice and a set of point in Euclidean N-space space is symmetric about the origin and
convex and has volume V > 2V Covol A, then it always contains an lattice point other than the

origin. This theorem shows a relationship between the geometric properties of volume, convexity,



and symmetry and the arithmetical property of containing lattice points [4].

3.3 Minkowski’s Linear Forms Theorem

Theorem 3.2 (Minkowski’s Linear Forms Theorem). is given by: Let A € RY be a lattice. Let

C = (cij) € My(R) be a matrix. Consider the associated system of linear forms.

N
Li(x)=Li(x,...,xy) = Zcijxj,l <i<n

J=1

Let €1, . .., €y be positive real numbers such that

N
det(C)| Covol A < ]_[ €

i=1
Then there is an x € A°®, with |L,(x)| < € forall 1 <i < N.

For proof see [4, p.73]

3.4 Hermite Constant

The Hermite constant is an invariant of N-dimensional lattices. Colloquially, it determines how
short an element of a lattice in Euclidean space can be. More formally, yy for fixed N > 0 is
defined to be: For a lattice A ¢ RY with unit covolume, let A(A) denote the least length of a
nonzero element of L. Then +/yy is the maximum A(L) over all such lattices. This is also tied to
knowing the densest sphere packing in a given dimension N [3].

This can be viewed as a specific case in which we fix a quadratic form, the square of the
standard Euclidean distance formula and allow the lattice to vary. If we instead allow the quadratic

form to be arbitrary and restrict the lattice, we arrive at the same constant. Let ZV¥ c R" be our



lattice under consideration and let Q be the set of positive definite quadratic forms over R then

.. q(x)
= sup inf
o qeg xezV disc g

The bound in the 1 dimensional case is trivially 1. In the two dimensional case, Lagrange proved
the constant is y, = \% [32]. Gauss proved the case of N = 3 to be 23 [20]. Korkine-Zolotarev
found that y, = V2 [30]. The value is known for N up to 8 and for 24. A simple bound given by

Hermite for all N is Nt

well)”

This shows that the Hermite constant is finite for all V.

10



Chapter 4

Binary Quadratic Forms

This work in this chapter was done in the context of a VIGRE Research Group at the University of
Georgia throughout the 2011-2012 academic year. The results given below appear in [8]. Co-first
authors on this paper were Pete L. Clark, Hans Parshall, and Katherine Thompson.

We list 2779 regular primitive positive definite integral binary quadratic forms, and show that,
conditional on the Generalized Riemann Hypothesis, this is the complete list of regular, posi-
tive definite binary integral quadratic forms (up to SL,(Z)-equivalence). For each of these 2779
forms we determine the primes that they represent by elementary combinatorial methods, avoiding
Gauss’s genus theory. The key intermediate result is a Small Multiple Theorem for representations

of primes by integral binary forms. This result and some computations lead to the main theorem:

Theorem 4.3. Let g = (A, B,C) be one of the 2779 primitive, positive definite integral binary
quadratic forms in Table A.1, and let A = B> — 4AC be the discriminant of q. For a prime p | 2A,

the following are equivalent:
1. The form q integrally represents p: there are x,y € Z with q(x,y) = p.

2. All of the following conditions hold:

@ (2)=1

11



(b) For each odd prime m | A, if m t A, then (%) = (%), and if m 1 C, then (%) = (C)

m

(c) If16 | Aand2 1 A, then p = A (mod4). If 16 | Aand 2 1 C, then p = C (mod 4).

(d) If32| Aand2 1 A, then p = A (mod8). If32 | Aand 2 1 C, then p = C (mod 8).

4.1 Background

An imaginary quadratic discriminant is a negative integer A which is 0 or 1 modulo 4. For a given
imaginary quadratic discriminant A, let C(A) be the set of SL,(Z)-equivalence classes of primitive
positive definite integral binary quadratic forms of discriminant A. Then C(A) is a finite set [12,
Thm. 2.13] which, when endowed with Gauss’s composition law, becomes a finite abelian group,
the class group of discriminant A [12, Thm. 3.9].

Thus a form ¢ of discriminant A determines an element [¢g] € C(A). A quadratic form ¢ is
ambiguous if [g]* = 1. For a g = (A, B, C), the form g = (A, —B, C) represents the inverse of [g]
in C(A) [12, Thm. 3.9]. Note that g and g are GL,(Z)-equivalent: g(x,y) = g(x,—y), so g and g
represent the same integers.

A discriminant A is idoneal if every g € C(A) is ambiguous; this holds if and only if C(A) =
(2/2Z)" for some r € N. A quadratic form is idoneal if its discriminant is idoneal. A discriminant
A is bi-idoneal if C(A) = (Z/4Z) ® (2/27Z)" for some r € N. A quadratic form g is bi-idoneal if A
is bi-idoneal and ¢ is not ambiguous.

A full congruence class of primes is the set of all primes p 1 2A with p = n (mod N) for fixed
coprime positive integers n and N. We say q is regular if the set of primes p 1 2A represented by

g is a union of full congruence classes.

Theorem 4.1 (Fermat’s Two Squares Theorem). An odd prime p is of the form x* + y* if and only

ifp=1 (mod 4).
To rephrase in this terminology the form g(x,y) = x> + y* is regular. Much classical work on

12



quadratic forms can be phrased as showing that certain specific binary quadratic forms represent
full congruence classes of primes, or are regular. Among primitive, positive definite, integral binary
quadratic forms, one could ask many questions. How many are regular? How many represent full
congruence classes of primes? Remarkably, this problem has recently been solved (conditionally

on GRH) but the answer did not appear explicitly in the literature until [8]. Here it is:
Theorem 4.2. Let g be a primitive, positive definite integral binary quadratic form.
1. The following are equivalent:

(a) q is regular.
(b) q represents a full congruence class of primes.

(c) q is either idoneal or bi-idoneal.

2. There are at least 425 and at most 432 imaginary quadratic discriminants which are either
idoneal or bi-idoneal. These 425 known discriminants give rise to precisely 2779 SL,(Z)-

equivalence classes of regular forms: see Table A.1.

3. The list of idoneal and bi-idoneal discriminants of part b) is complete among all imaginary
quadratic discriminants A with |A| < 80604484. Assuming the Riemann Hypothesis for
Dedekind zeta functions of imaginary quadratic fields, there are precisely 425 imaginary

discriminants which are idoneal or bi-idoneal.

For these 2779 regular forms, it is natural to ask for explicit congruence conditions. The following

result accomplishes this.

Theorem 4.3. Let g = (A, B,C) be one of the 27179 primitive, positive definite integral binary
quadratic forms in Table A.1, and let A = B> — 4AC be the discriminant of q. For a prime p | 2A,
the following are equivalent:

1. The form q integrally represents p: there are x,y € Z with g(x,y) = p.

13



2. All of the following conditions hold:

w ()=t

(b) For each odd prime m | A, if m { A, then (%) = (%) and if m 1 C, then (ﬁ) = (9)

m

(c) If 16 | Aand2 1 A, then p = A (mod4). If 16 | Aand 2 1 C, then p = C (mod4).

(d) If32|Aand2 1 A, thenp = A (mod8). If32 | Aand?2 1 C, then p = C (mod38).

Our main goal is to offer a new proof of Theorem 4.3 using none of Gauss’s genus theory
but instead using elementary ideas from the Geometry of Numbers. Our methods build on the
classical proof of the Two Squares Theorem via Minkowski’s Convex Body Theorem and its recent
generalization to the 65 principal idoneal forms x* + Dy?* of T. Hagedorn [21], although we find it
simpler to use (sharp) bounds on minima of binary quadratic forms going back to Lagrange and
Legendre.

We may compare the two methods as follows: let g be a binary form of discriminant A, and
let p ¥ 2A be a prime. To analyze the question of whether g represents p, genus theory begins
with the observation that (%) = 1 if and only if some ¢ € C(A) represents p and attempts to
rule out the representation of p by all forms ¢ # g. Our method begins with a small multiple
theorem: if (%) = 1, then g represents some multiple kp of p with k bounded in terms of A and via
a combination of elimination and reduction attempts to show that we may take k = 1. Our method
1s more computational — at present it is more a technique than a theory — and the reasons for its

success in all 2779 cases are rather mysterious!

4.2 A Small Multiple Theorem

Let g = (A, B, C) be a real binary quadratic form with discriminant A # 0. Recall:
e If A > 0, then ¢ is indefinite: it assumes both positive and negative values.

e If A < 0and A,C > 0, then ¢ is positive definite: it assumes only positive values except at

14



(x,y) = (0,0).
e If A < 0and A,C < 0, then ¢ is negative definite: it assumes only negative values except at
(x,y) = (0,0). Since ¢ is negative definite if and only if —¢ is positive definite, negative definite

forms do not require separate consideration.

Theorem 4.4. Let g = (A, B, C) be a binary form over R with discriminant A.

a) If A <0, there are integers x and y, not both zero, such that |q(x,y)| < \/@.

b) If A > 0, there are integers x and y, not both zero, such that |g(x,y)| < %.

Proof. The core of the proof is the following “reduction lemma”: if xo, y, are coprime integers
with g(xg, yo) = M # 0, then there are b, ¢ € R such that g is SL,(Z)-equivalent to Mx?> + bxy + cy?

with —|M| < b < |M]|. For the details, see e.g. [23, Thm. 453, Thm. 454]. O

Proposition 4.5. Let g = (A, B, C) be an integral form of discriminant A. Let p be an odd prime

with (%) = 1. Then there is an index p sublattice A, C Z* such that for all (x,y) € A,, we have
q(x,y) =0 (mod p).
1 0

Proof. If p | A, take M), = and A, = M,Z*. If p t A, by the quadratic formula in Z/pZ,
0 p

pr

there is r € Z with Ar* + Br + C = 0 (mod p); set M, = and A, = M,Z*. In either case,
1

q(x,y) =0 (mod p) for all (x,y) € A,,. O

Theorem 4.6. Let g = (A, B, C) be an integral form of discriminant A. Let p be an odd prime with

()1

a) If q is positive definite, there are x,y,k € Z with q(x,y) =kpand 1 <k < \/I?j'

b) If q is indefinite, there are x,y,k € Z with q(x,y) = kp and 1 < |k| < \/g.

Proof. By Proposition 4.5, there is an index p sublattice A, = M,Z* c Z* with g(x,y) = 0

(mod p) for all (x,y) € A,. Thus the quadratic form ¢’'(x,y) = q(M,(x,y)) has discriminant

15



(det M,)’A = p*A and is such that ¢’(x,y) = 0 (mod p) for all (x,y) € Z>. Apply Theorem 4.4

to ¢’: if g is positive definite, there are integers x and y, not both zero, such that |g(M,(x,y)| =
’ |A| _ : Al - . .. .

lg’(x, )| < (\/;) p- Thus g(x,y) = kp with 1 < |k| < L/5; since g is positive definite, k > 0. If

A > 0, there are integers x and y, not both zero, such that |g(M,(x,y)| = |g'(x,y)| < (\/é) P, SO

q(x,y) = kp with 1 < |k] < \/é. O
Remark 4.7. : Taking q = (1,1, 1) (resp. (1, 1,—1)) shows that the bound in Theorem 4.6a) (resp.
Theorem 4.6b) is sharp.

Remark 4.8. Let g = (A, B, C) be positive definite with |A| < 12. Then \/léj < 2, and Theorem 4.6
takes the form: every odd prime p with (%) = 1 is Z-represented by q. It is easy to see that these
are the only odd primes p 1 2A which are represented by q (c.f. Proposition 4.9), so this proves
Theorem 4.3 for these forms, namely for (1,1, 1), (1,0, 1), (1,1,2), (1,0,2), and (1, 1, 3).

4.3 2779 Regular Forms

In this section we will use Theorem 4.6 to prove Theorem 4.3.

In this chapter we will take “forms” to be primitive, positive definite integral binary quadratic

forms.

4.3.1 Necessity

Proposition 4.9. Let g = (A, B,C) be a form with discriminant A. Let p be an odd prime not
dividing A. Suppose there exist x,y € Z with q(x,y) = p. Then p satisfies conditions (i) - (iv) from

Theorem 4.3.

Proof. Via the discriminant-preserving transformation (A, B,C) — (C, B,A) we may assume in

m { A in part (ii) and 2 1 A in parts (iii) and (iv); otherwise, ¢ would not be primitive.

16



(i) If both x and y were divisible by p, this would imply p? | g(x,y) = p, a contradiction. If p 1 y,

then we have A(xy™")? + B(xy™!) + C =0 (mod p). Let r € Z with r = xy~! (mod p). Then
(2Ar + B)* = 4A(Ar* + Br + C) + B> —4AC = A (mod p)

As p 1 A, we conclude (%) = 1. The case p 1 x follows similarly.
(i1) Let m be an odd prime such that m | A and m 1 A. Via a change of variables we can diagonalize

g over Z/mZ as {A, 0, C — B*>(4A)7"), so there are w, z € Z with
p=q(x,y = Aw? + (C — B*(4A)™HZ? (modm).

Multiplying by 4A gives 4Ap = 4A’w? (modm). Hence p = Aw? (modm). It follows that
)= 2)

(iii) Suppose 2 ¥ A and A = 0 (mod 16). We have B> = 4AC (mod 16), so B = 2B, for some
By € Z. Then 4(Bj — AC) = 0 (mod 16), so Bj — AC = 0 (mod4).

Case 1: Byis odd. Then A = C = =1 (mod4). Now, Ax> + 2Byxy + Cy* = p, so x> +y* =
p=1 (mod2),and x £y (mod2). If y =0 (mod2), p = A (mod4) as claimed. Similarly if
x=0 (mod2), p=C (mod4). Butsince A = C (mod4), p =A (mod4) as claimed.

Case 2: By is even. Then AC =0 (mod4). As2 1 A, C =0 (mod4). Hence, Ax*> = p (mod4),
and so p = A (mod4) as claimed.

(iv) Suppose 2 ¥ A and A = 0 (mod 32). Put B = 2By, so B(Q) —AC =0 (mod38).

Case 1: Byis odd, Then A = C (mod?2) and in fact A = C (mod8). Thus x> +y> = p = 1 (mod?2),
sox £y (mod2). Ify =0 (mod?2), set y = 2y,. Then Ax* + 4yo(Box + Cyy) = p. If y, is even,
then Ax?> = A = p (mod 8). If instead y, is odd, then since By, x, and C are odd, Byx + Cyj is even

and Ax*> = A = p (mod 8). Similarly if x = 0 (mod2), then p = C = A (mod 8).
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Case 2: By is even. Put By = 2B and C = 4Cy, so Bf = ACy (mod 2) and
p = Ax* + Bxy + Cy* = Ax* + 4y(B x + Cpy).

Thus x is odd and x* = 1 (mod 8). If y is even, then p = Ax*> = A (mod 8). If y is odd then either
B =Cy=0 (mod2)sop=Ax>=A (mod 8) or B, = Cy =1 (mod 2), so B;x + Cyy is even and

once again p = Ax’> = A (mod 8). o

4.3.2 Sufficiency

Our proof that (b) implies (a) in Theorem 4.3 is handled individually for each of the 2779 forms.
For each form, we apply a three step process. First, we use Theorem 4.6 to demonstrate that our
form represents a small multiple of a prime. In the second step, we eliminate certain multiples

from consideration. In the final step, we reduce the remaining multiples to find a representation of

p.

Example 4.10. Consider g = (3,3,5) with A = =51. Let p be an odd prime not dividing A that
satisfies conditions (i) - (iv) of Theorem 4.3.

Step 1: From condition (i) of Theorem 4.3, (%) = 1. Apply Theorem 4.6: there are x,y,k € Z with
q(x,y) =kpand 1 <k < % =4.123....

Step 2 (Elimination): We will show that the cases k = 2 and k = 3 cannot occur.

e Suppose q(x,y) = 2p. Then x and y are both even, so q(x,y) = 2p = 0 (mod4), contradicting
the fact that p is odd.

e Suppose q(x,y) = 3p. Then q(x,y) = 5y*> = 0 (mod3), so 3 | y. Hence, q(x,y) = 3x* =
3p (mod9), so (%) = 1. As 3 | A, from condition (ii) of Theorem 4.3, (%) = (%) = —1: contradic-

tion.

Step 3 (Reduction): We cannot hope to eliminate the possibility of k = 4: we want to show that
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there are x,y € Z such that g(x,y) = p, and then necessarily g(2x,2y) = 4p. (A similar argument
will be needed for any value of k which is a perfect square). We must instead argue that a represen-
tation of 4p by q implies a representation of p by q. In this case, this is easy: suppose q(x,y) = 4p.

Then as above x and y are both even, so q(5, %) =p.

In Lemmas 4.11 and 4.12, we collect a number of congruence restrictions that apply assuming
a form g represents kp. In particular, for our 2779 forms, we use Lemma 4.11 in the elimination

step and Lemma 4.12 in the reduction step.

Lemma 4.11 (Elimination). Let g = (A, B, C) be a form of discriminant A. Let p 1 2A be a prime.
Suppose there are x,y,k € Z, k > 1, with q(x,y) = kp.

a)Leta €7, a> 1. Suppose 2> | Aand 2* | B. If p = A (mod 2%), then k is a square modulo 2°.
b) Ifk is even, A,C are odd, B=0 (mod4) and A + C # 2 (mod4), then 4 | k.

c) Let m be an odd prime dividing A. If(ﬁ) = (%), then k is a square modulo m.

d) Let m be an odd prime dividing k. If(%) =—lorm?| A, then m? | k.

¢) Let m be an odd prime dividing ged(A, k) such that m* { k. If (£) = (2) then (42 = (22L2).
Proof. a) Since A = B? = 0 (mod2°*?), and A is odd, 2¢ | C. Then kp = Ax? = px* (mod 2%), and
since p is odd, this implies k = x> (mod 2¢).

b) We have g(x,y) = Ax> + Cy* = A(x*> —y?*) = kp (mod 4). Since k is even, x = y (mod 2) and
thus kp = A(x*> — y*) = 0 (mod 4). Since p is odd, 4 | k.

c) Via a change of variables we can diagonalize g over Z/mZ as (A, 0, C — B*(4A)™!), so there are
w, 7 € Z with

kp = q(x,y) = Aw® + (C — B> (4A) )2 (mod m).

Thus 4Akp = 4A’w? (modm), implying kp = Aw? (modm). As (ﬁ) = (%) # 0, k is a square
modulo m.
d) Suppose first that (%) = —1. We have g(x,y) = 0 (modm). If m t y, then g(xy™!,1) =

0 (modm), so A is a square modulo m: contradiction. So m | y. Then Ax> = 0 (modm), and
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m £ A, since otherwise A = B> (modm). Hence m | x. Then m? | g(x,y) = kp, and since (%) =1,
we have p # m and m? | k.

Next suppose m” | A. If m | gcd(A, C), since m | A we would also have m | B, contradicting the
primitivity of g. We may assume without loss of generality that m { A. As B> —4AC =0 (modm),
C = B?(4A)™! (modm). Hence, Ax*> + Bxy + B*(4A)™'y? = 0 (mod m), so by multiplying through
by 4A,

4A%x* + 4ABxy + B*y* = 2Ax + By)* =0 (modm).
Since m is prime, 2Ax + By = 0 (mod m), s0 44%x> + 4ABxy + B%y* = 0 (mod m?). As B> - 4AC =
0 (mod mz), we have B?(4A)' = C (mod mz). Then

4Akp = 4A°X* + 4ABxy + B’y = 0 (modm?).

Since p £ A, m # p. Then m does not divide 4Ap, so m? | k.
e) Sincem | Aand p ¥ A, m # p. We may write A = mA, and k = mky with Ay, ky € Z and m 1 k.
Then

AxX* + Bxy + Cy* = mkyp (mod mz) .

As in part d),

AX’ + Bxy + (B*(4A)™)y* = 0 (mod m?).

Subtracting gives

(C - B*(4A™")y* = mkop (modm?).

Since ged(m, kop) = 1, it follows that m 1 y. Multiplying through by 4A, we get
—mAgy* = (4AC — B»)y* = 4Amkyp (mod mz).

Then (44kop+Agy*)m = 0 (modm?), so 4Apky = —Agy* (mod m). It follows that (=2 ) = (ﬂ) =

m
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Lemma 4.12 (Reduction). Let g = (A, B,C) have discriminant A. Let p be an odd prime not
dividing A. Suppose there exist x,y,k € Z with g(x,y) = kp and k > 1.
a)Letaec Zwitha> 1. If p=A (mod?2?), then g(x,y) = Ak (mod 2%k).

b) Let a € Z with a > 0, and let m | A be an odd prime. Ifmza | k, m***' t k, and (%) = (%), then
q(x,y)/mz“) — (Ak/mz“ )

m m

we have (

Proof. a) Write p = 2°¢ + A. Then g(x,y) = k(2*€ + A) = Ak (mod 2%).
b) Write k = m*'ko. Then (L2227 = (k) = (dh), 5

m m

4.3.3 Proof of Theorem 4.3

(a) = (b): This is Proposition 4.9.

(b) = (a): Let g = (A, B,C) be one of the 2779 regular forms, and let p ¥ 2A be a prime
satisfying conditions (i) - (iv) from Theorem 4.3.

Step 1: Using condition (i), Theorem 4.6 implies there exist x, y, k € Z such that g(x,y) = kp with
1<k< (5.

Step 2 (Elimination): For each k € {2,...,] 'gﬂj}, assume g(x,y) = kp. If k does not satisfy the
conditions imposed on it by Lemma 1, we have a contradiction. We similarly have a contradiction
if k does not satisfy the conditions imposed on it by applying Lemma 1 to the equivalent forms
qy,x) =(C,B,Ayand g(x +y,x +2y) =(A+ B+ C,2A + 3B+ 4C, A + 2B + 4C) representing kp.
We eliminate these k from consideration.

Step 3 (Reduction): Foreachk € {2,...,| %J} that was not eliminated in Step 2, assume g(x, y) =

kp. Using a computer, we have verified that this assumption leads to a representation of p by ¢ in
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every case. Our algorithm is as follows. First, we construct the finite set of matrices

a b
M= € My(Z)|a =0, g(a,c) = kA and q(b,d) = kC
c d

a b
by enumerating the representations of kA and kC by ¢g. Given M = eM,

c d

g(M(x,y)) = kAx* + (2abA + (ad + bc)B + 2¢dC)xy + kCy*.

In particular, g(M(x,y)) = kq(x,y) whenever 2abA + (ad + bc)B + 2¢dC = kB. By iterat-
ing over M and checking this condition, we verify that there exists some M € M such that
g(M(x,y)) = kq(x,y). Fixing such an M, we further check whether for each (x,y) € Z? with
q(x,y) = 0 (modk) that also satisfies the congruence restrictions imposed by Lemma 4.12, the
pair (xp, o) = M(x,y) satisfies xo = yo = 0 (modk). It suffices to check this condition modulo
kA by an exhaustive search. In every case we’ve considered, this search successfully produces
such an M € M. Once such an M has been found, we can set xo = kw and yo = kz. Then

g(M(x,)) = q(kw, kz) = k*p, so q(w, z) = p. Therefore, we’ve shown that g represents p.

Example 4.13. : Consider g = (2,1,7) with A = =55. Let p be an odd prime not dividing A that
satisfies conditions (i) - (iv) of Theorem 4.3.

Step 1: From condition (i) of Theorem 4.3, (%) = 1. Thus, applying Theorem 4.6 yields x,y,k € Z
with g(x,y) = kp and 1 < k < \/533 =4.28....

Step 2 (Elimination): By Lemma 4.11(c), k is a square modulo 5. As (%) = (%) =-1,ke{l,4}.
Step 3 (Reduction): Suppose q(x,y) = 4p. One might try to argue, as in Example 4.1, that both x

and y are even. However, this need not be the case: e.g. q represents T and q(3,1) = 4-7. Applying
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the algorithm described above we obtain

1 =3[ 1 =1]|1 o0 1 ol |1 1 1 3
M:{ b b b b b b

-1 —1] |-1 2| |-1 =2| [-1 2| |[-1 2| [-1 1
2 =312 =12 o2 o]l |2 1] |2 3}
0 -1/ [0 2|0 =2 [0 2|0 2] |0 1]

1 _

Set M = . Set (xo,y0) = M(x,y) = (x = 3y, —x —y) and note q(xy, yo) = 4q(x,y) = 16p. If
-1 -1

we knew xy = yp = 0 (mod 4), then we could divide through by 4 to obtain an integer representation
of p. Certainly we need only consider (x,y) € Z* with q(x,y) = 0 (mod4). Further, since we're
assuming (%) = (%) = —1 and (%) = (%) = —1, condition (ii) of Theorem 4.3 implies we need
only consider (x,y) € Z* with (@) = (4?”) = —1 and (@) = (1—’1’) = —1. By an exhaustive
search modulo 220, we verify the only such (x,y) € Z? yield xy = yo = 0 (mod 4). Setting x, = 4w
and y, = 4z, we have q(xo,yo) = 32w? + 16wz + 2247> = 16p. Dividing through by 16, we see

qgw,z) = 2w? + wz + 772 = p. Therefore, we’ve shown that q represents p.
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Chapter 5

Diagonal Quaternary Quadratic Forms

This work in this chapter was done in the context of a VIGRE Research Group at the University of
Georgia throughout the 2011-2012 academic year. The results given below appear in [9]. Co-first
authors were Pete Clark, Katherine Thompson, and Nathan Walters.

In [25], Hermite applied GoN methods to give a striking new proof that every positive integer
is a sum of four squares (Lagrange’s Theorem), many years before Minkowski’s foundational work
in GoN [36]. It is thus remarkable that a systematic study of the application of GoN methods to
universality theorems for quadratic forms seems not to have been undertaken until [9]. The closest
precedent in the literature is a late paper of L.J. Mordell [37]. Mordell proves in particular a small
multiple theorem for certain diagonal quaternary forms of square discriminant. Especially, his

results apply to the multiplicative forms
Gup = X* + ay® + bz* + abw?

for a,b € Z*. We generalize this to all forms of square discriminant (Theorem 5.6).
Although our methods apply to many nondiagonal forms of square discriminant [26] which will

be discussed in the next chapter, in the remainder of this chapter we concentrate on the diagonal
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case. Work of Ramanujan [39] and Dickson [15] shows that there are precisely nine universal
diagonal positive definite quaternary integral quadratic forms of square discriminant. Here we give
GoN proofs of the universality of all nine of these forms.

Of these nine forms, seven are multiplicative,

qi1,1> 912> 913> 422, 423, 424, 425,

and the universality of the two remaining forms can be rather easily deduced from these (Theorems
5.16 and 5.17). Mordell gives GoN proofs of the universality of q; 1, g1, 13 and also alludes to
Liouville’s reduction of ¢, 3 to ¢g;; (Theorem 5.14). Similar methods can be applied to show uni-
versality of the forms g,, and ¢, 4 (Theorems 5.13 and 5.15), as Mordell likely knew. Because of
the work of the previous chapter we possess certain analogous results for representations of primes
by binary quadratic forms, and we make use of them in the proofs (though in the next chapter we
prove them without these). In [33], [34], Liouville states how to give elementary (non-GoN) proofs
of the universality of these six multiplicative forms.

This leaves g, 5. This form stymied Liouville, who says he can only prove that it represents all
positive even integers [34]. The universality of ¢, s was first proven by Ramanujan and Dickson,
using (non-elementary) representation theorems for certain ternary subforms. Mordell does not
mention that there are seven universal multiplicative forms, and the form ¢, s does not appear in
[37].

In [27], Hurwitz gave an elementary proof of Lagrange’s Theorem using quaternion arithmetic.
Recently Deutsch [13] gave Hurwitz-style universality proofs for eight of the nine diagonal uni-

versal forms of square discriminant, but not for g, s. This lack of success is somewhat puzzling

=2,-5

because the relevant quaternion algebra ( 5

) still carries a Euclidean quaternion order, as was
shown by Fitzgerald [17]. Using quaternionic methods Fitzgerald showed ¢, 5 represents 16n for

alln e Z*.
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Thus it seems that the literature contained no elementary proof of the universality of ¢, s. David
B. Leep has found a different elementary proof of the universality of ¢, 5. The main result of the
present section, Theorem 5.18, gives an elementary — though computational — proof of the univer-
sality of g»5. Moreover, in a key step of the argument we show that if g, s represents 2n then it
also represents n. This step does not use GoN methods and thus could be used to complete the
elementary universality proofs of Liouville and Fitzgerald.

Most of the universality proofs for the first eight forms make use of well-chosen linear changes
of variable. This is one of the oldest tricks of the trade, going back at least to Euler [16, 141: July
26, 1749]. However, in the proofs of the first eight theorems (and in the classical literature) the rel-
evant changes of variable are written down without any systematic justification. (In [37] Mordell
exhibits relations between these changes of variable and the multiplicative structure of the forms
qap via (5.1), but this is not a complete explanation.) In order to prove the universality of g;s,
we needed to devise and implement an algorithm to search for these changes of variable, of which
some thousands were required. Our algorithm can be used on the other eight forms as well, and it

forms the basis of the universality proofs of the nondiagonal forms explored in the next section.

5.1 A multiplicative identity

Lemma 5.1. (Lagrange [32]) Let R be a commutative ring, and let

a,b, xi, x2, X3, X4, ¥1, Y2, V3, V4 be elements of R. Then:
(X7 + ax; + bx; + abx;)(y; + ay; + by; + aby;) = (x1y| — axay, — bxsy; — abxsy,)*

+a(xyy + Xoy1 + bxzyy — bxgys)* + b(x1ys — axays + X3y + axgys)’

+ab(x1y4 + X253 — X3y + X4y1)°

Proof. The proof is a direct application of Littlewood’s Principle: all purely algebraic identities
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are trivial to prove (though not necessarily trivial to discover). O

Corollary 5.2. Let R be any commutative ring, let a,b € R, and let q,;, be the diagonal quadratic
form (1,a,b,ab). Then the set of elements of R which are R-represented by q,, is multiplicatively

closed.

In view of Corollary 5.2 we call a quadratic form g, multiplicative.

5.2 An application of geometry of numbers

Lemma 5.3. Let p be an odd prime, and let q(v) be an n-ary quadratic form over ¥, = Z/pZ. If

n > 3, then q is isotropic.

Proof. This is a special case of the Chevalley-Warning Theorem [29, Thm. 10.2.1]. For the con-
venience of the reader, we give a (yet) more elementary proof.

Step 1: We show that any nondegenerate binary quadratic form g(x,y) over F, is universal. By
Fact 1 above, we may assume ¢ is diagonal, say g(x,y) = ax® + by*, with ab € Fy. Let d € F,,. We

may rewrite the equation g(x,y) = d as

Then as x and y range over all elements of Z/pZ, both the left and right hand sides take on pT_l +1=

p+l1

prl prl
2

> distinct values. Since p < ”T“ +

, these values sets cannot be disjoint, which leads to a
solution (x, y).
Step 2: It is enough to show every ternary form over F), is isotropic; since degenerate forms are

isotropic, we may assume g(x, v, z) = ax* +by* + cz*> with abc € F. By Step 1, there are xo,y € F,

such that g(xo, yo) = —c, and then g(xg, yp, 1) = 0. ]
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Theorem 5.4. Let q(v) be a nondegenerate quaternary integral quadratic form of square discrimi-
nant. For each squarefree positive integer n prime to 2 disc g, there is an index n* subgroup A,, C Z*

such that for all v € A,, g(v) = 0 (mod n).

Proof. Step 1: Letn = py--- p,, with py,..., p, distinct odd primes. Suppose that forall 1 <i <r
there exists a subgroup A; of Z* of index pl.2 such that for all v € A;, g(v) = 0 (mod p;). Then
taking A, = (/—; A, an easy Chinese Remainder Theorem argument gives [Z* : A,] = n* and for
allve A, giv) =0 (mod n).

Step 2: We are reduced to considering the case n = p for p f 2disc(q) and a € Z*. Let g
be the reduction of ¢ modulo p. Since p t disc(g), discg = 1 (mod (IF;)Z): in particular g is
nondegenerate. By Proposition 1, g admits a 2-dimensional totally isotropic subspace W C IF;‘,.
Now reduction modulo p induces an isomorphism of commutative groups Z*/(pZ*) — Pf). Taking

A, = ¢ (W) gives an index p* subgroup of Z* such that for allv € A, g(v) =0 (mod p). o

Theorem 5.5. (Korkine-Zolotarev) Let q(v) be a positive definite real quaternary quadratic form,

and let A C Z* be a finite index subgroup. Then there exists 0 # v € A such that
g(v) < (4disc q)7 V[Z* : A].

Proof. In [4, § X.3.2] the result is stated with A = Z*. Our version follows: if A = AZ*, replace

g(v) with g(Av), of discriminant (det A)? disc ¢ = [Z* : A]*discgq. o

For a positive definite real quaternary quadratic form ¢, put
KZ(q) = (4disc g)*,

442 L (4
M(q) = [%)(disc )t = (;)KZ@.
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Theorem 5.6. Let q(x,y,z,w) be a positive definite integral quadratic form of square discriminant.

Let n € Z* be squarefree and prime to 2 disc q. Then there exist x,y, z, w, k € Z such that
q(x,y,z,w) = kn

and

1 <k < |(@discq)i] = |KZ(q)].

Proof. Applying Theorem 5.5 to A,, from Theorem 5.4, we get v € Z* such that
qv) =0 (mod n)

and

0 < g(v) < (4disc g)* V[Z* : Al = KZ(g) - n. (5.1)

Theorem 5.5 is classical, but not so easy. One gets a version of Theorem 5.5 with a slightly
worse constant more easily by applying Minkowski’s Convex Body Theorem to the ellipsoids

Qr = q(x,v,z,w) < R*: there is a nonzero element v € A with

qv) < #(diso 9)i \IZ4: A

and thus a version of Theorem 5.6 with (5.1) replaced by
4v2 I 4
1<ks {—\/_(disc ot | = M@) = | KZ0)| (5.2)
n Vs

In all the cases considered in this section we can make do with M(qg) instead of KZ(g).
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5.3 Nine Universality Theorems

For the remainder of this section, all quadratic forms considered will be positive definite quadratic
forms over Z, so we make the convention that “form” means “positive definite quadratic form over
Z”, arepresentation of n means a Z-representation of the integer n, and “universal” means “positive

universal”, i.e., the form ¢ integrally represents every positive integer.

5.4 Some history of universal forms

Recall the following theorem, a high water mark of classical number theory.
Theorem 5.7. (Lagrange [32]) Every positive integer is the sum of four squares.

Proof. Apply Corollary 5.2 with a = b = 1: we get the set of integers Z-represented by g =
(1,1,1,1) is multiplicatively closed. Since 1 = 12+ 0> + 0% + 0> and 2 = 1% + 1? + 0> + 0% are
represented by g, it’s enough to show g Z-represents every odd prime p. Apply Theorem 5.6 with

n = p: there are x,y, z, w, k € Z such that
xz+yz+z2+w2 = kp,
with
1 <k<|(@discq)i]=|V2]=1.

Thus k = 1 and every odd prime is a sum of four squares: done! O

Thus Lagrange’s Theorem is the assertion that (1,1, 1,1) is universal. Which other forms are
universal? As we have already mentioned, Liouville proved several further universality theorems
[33], [34]. The following result surveys more recent work. (When we enumerate forms, we really

mean integral equivalence classes of forms.)
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Theorem 5.8. a) There is no universal form in fewer than four variables.

b) For every n > 5, there are infinitely many universal forms.

¢) (Ramanujan-Dickson) There are precisely 54 diagonal universal quaternary forms.

d) (Halmos) A diagonal quaternary form is universal iff it represents 1 through 15.

e) (Conway-Schneeberger, Bhargava) A classical form is universal iff it represents 1 through 15.
Moreover there are precisely 204 such forms.

f) (Bhargava-Hanke) A form is universal iff it represents 1 through 290. Moreover there are, up to

equivalence, precisely 6436 such quaternary forms.

Proof. a) See e.g. [10, p. 142]. b) Since ¢, is universal, for all » > 4 and all d € Z* so is
(1,...,1 (n times), d). This exhibits infinitely many pairwise nonisomorphic universal (n + 1)-ary
forms for all n > 4. ¢) See [39] and [15]. d) See [22]. This follows directly from the proof of part
¢), but P.R. Halmos seems to have been the first to have explicitly noticed this. e) See [11] and [1].

f) See [2]. O

Parts b) through f) of Theorem 5.8 rely heavily on the theory of ternary forms as well as the local
theory over Q, and Z,. Thus these proofs are not elementary in our sense, but we hope to apply
GoN methods to ternary forms in the near future. Parts b) through e) are still relatively elementary
in the sense of not requiring high technology: especially, Bhargava’s proof of the “15 Theorem”
is a triumph of insight over hard computations or deep theory. In contrast, the proof of the “290

Theorem” uses both lengthy computer calculations and sophisticated modular forms theory.

What about GoN methods? Our GoN proof Theorem 5.7 is far from the first. Rather Hermite

was first [25]. Another GoN proof was given by J.H. Grace [18].

The results of §3 bring GoN methods to bear on all quaternary forms of square discriminant.

The work of Bhargava-Hanke shows that there are 112 such universal forms — a sizable number —
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so it makes sense to concentrate first on diagonal forms. Of the 54 universal diagonal forms, nine

have square discriminant:

(1,11, 1), (1,1,2,2), (1, 1,3,3), (1,2,2,4), (1,2,3,6),(1,2,4,8), (1,2,5,10), (5.3)

(1,1,1,4), (1,1,2,8). (5.4)

Remark 4.1: It is an easy exercise to write down a list of 54 forms such that any universal quater-
nary form is integrally equivalent to at most one form in the list. In particular, it is elementary to
see that there can be no diagonal universal forms of square discriminant other than the nine listed

in (5.3) and (5.4).

The seven forms of (5.3) are multiplicative forms ¢q,, = (1,a,b,ab) — whereas the two forms

of (5.4) are not, although (1, 1, 1,4) is closely related to ¢, ; and (1, 1, 2, 8) is closely related to g ».
We will show that all of these forms are universal. First observe:

Lemma 5.9. A form representing all squarefree positive integers is universal.

Proof. Every positive integer n may be written uniquely in the form A%b with b squarefree. If

q(xy,...,x,) = b, then g(Ax,,...,Ax,) = A’b = n. O

5.5 Binary subforms

Theorem 5.10. a) A prime p > 2 is represented by x> +y* iff p = 1 (mod 4).
b) A prime p > 2 is represented by x> + 2y* iff p = 1,3 (mod 8).

c) A prime p > 3 is represented by x* + 3y* iff p = 1 (mod 3).
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d) A prime p > 2 is represented by x> + 4y* iff p = 1 (mod 4).
e) A prime p > 5 is represented by x> + 5y* iff p = 1,9 (mod 20).

f) A prime p > 5 is represented by 2x* + 5y* iff p = 7,13,23,27 (mod 40).

Proof. See the previous chapter. O

5.6 Six multiplicative forms

Let ¢ = q,, be one of the forms of (5.3). One checks that g represents all primes p < discg. By
Lemma 5.1, to establish universality it suffices to show g represents every p > disc g. By Theorem

5.6, for any such p there are x,y, z, w, k € Z such that

42
q(x,y,z,w) =kp, 1 <k < M(q) = {_\/_(disc q)‘l*J.
T

Theorem 5.11. The form q,» = x* + y* + 27> + 2w? is universal.

Proof. By Theorem 5.10a), it suffices to show that g, , represents every prime p = 3 (mod 4); fix

such a p. We have M(q;,) = 2, so there are k, x,y,z, w € Z with
¥+ + 22 + 2w = kp, ke (1,2}

If k = 1, we’re done, so suppose x> + y* + 2z% + 2w? = 2p. Then x =y (mod 2).

Case 1: x and y are both even. So we may take x = 2X, y = 2Y to get
2X2 +2Y* + 2+ wh = p.

Case 2: x and y are both odd. Then

x+y)2+(x—y

2
5 3 )+z2+w2:X2+Y2+z2+w2.

1
p:E(x2+y2)+12+w2=(
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Since p = 3 (mod 4), exactly 3 of X, Y, z, w are odd: without loss of generality suppose z and w

are odd. Then

w2 w2
p:X2+Y2+2(¥) +2(%) =X+ V> +27° + 2W

Theorem 5.12. The form q,3 = x* + y* + 37> + 3w? is universal.

Proof. Here M(q,3) = 3, so for all p > 3, there are k, x,y,z, w € Z with
X+ +32 +3wr =kp, ke {l,2,3).

Case 1: Suppose k = 2. Then x + y and z + w have the same parity.

Xty z+w

Case 1a): Suppose x + y, z + w are both even. Then 5,5 € Z., SO

X+ y)\? (x—y)2 (z+w)2 (z—w)Z_Z_p_
(2)+ 7 ) Vo) ) =

Case 1b): x + y and z + w are both odd. Without loss of generality x and z are odd and y and w are

even, SO

2p=x+y +372+3w*=1+3=0 (mod 4),

so p is even, contradiction.
Case 2: Suppose k = 3, i.e., x> +y* + 3z + 3w? = 3p. Then 3 | x> +y?, so x and y are both divisible

by 3. Substituting x = 3X, y = 3Y and simplifying gives

2 +w? +3X2+37% = p.
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Theorem 5.13. The form g, = x* + 2y* + 272 + 4w? is universal.

Proof. It suffices to show that ¢, , represents every prime p > 2. Taking z = w = 0 and applying
Theorem 5.10b), we see g represents all p = 1,3 (mod 8); taking y = z = 0 and applying Theorem
5.10d), we see ¢, represents all p = 1 (mod 4), so we may assume p = 7 (mod 8). By Theorem

5.7, there are x,y, z, w € Z such that
X+ +Z2+w=p. (5.5)

Up to order, the only way to write 7 as a sum of three squares in Z/8Zis 7 =1+ 1+ 1+ 4, so we

may assume that in (5.5) we have y, z odd and w even, and thus

— 2 o2 2
x2+y2+z2+w2:x2+2(y—zz) +2(y_z) +4(K) =p.

Theorem 5.14. The form g,3 = x* + 2y* + 3722 + 6w? is universal.

Proof. (Liouville [33]) Letn € Z*. By Theorem 5.7, there are x, y,z, w € Z withn = x> +y*+z2+w>.
After replacing some of x,y, z, w by their negatives and reordering, we may assume 3 | y + z + w;
further, two of y, z, w must have the same parity, so after reordering them we may assume y = z

(mod 2). Then Z = @, W = ”ZT_ZW, Y = 5= are all integers, and, as one readily checks,

n=x*+y +22+w = x> +2Y* + 37> + 6W>.

Theorem 5.15. The form q»4 = x> + 2y* + 42> + 8w? is universal.

Proof. It suffices to show that g represents each p > 2. By Theorem 5.10d), every p = 1 (mod 4) is

represented by x>+4z%, so we may assume p = 3 (mod 4). By Theorem 5.13 there are x,y,z,w € Z
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such that

p=x 42"+ 27 + 4w’ (5.6)

If y is even, put y = 2Y to get p = x* + 2z* + 4w? + 8Y?; and similarly if z is even. So suppose y

and z are both odd. Also x is odd, so reducing (5.6) modulo 4 gives

P=xX+2"+22+4w?=1+2+2=1 (mod4).

5.7 Two non-multiplicative forms

Theorem 5.16. The form q = x> +y?> + 7> + 4w? is universal.

Proof. Let n € Z* be squarefree, so in particular 4 + n. By Theorem 5.7 there are x,y,z,w € Z
such that n = x> + y* + z2 + w?. Since 4 { n, x, y, z, w cannot all be odd. Without loss of generality,

w = 2W for W € Z and thus

n:x2+y2+z2+(2W)2:x2+y2+z2+4W2.

Theorem 5.17. The form q = x> + y* + 27> + 8w? is universal.

Proof. Step 1: We claim ¢q represents every n = 3 (mod 4). By Theorem 5.11 there are x,y,z,w €
Z such that

n=x>+y +222+ 2w (5.7)

If w is even, we may substitute w = 2W to get

n:x2+y2+2z2+8W2,
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and similarly if z is even. Thus we may assume z, w are both odd. Reducing (5.7) modulo 4 gives
n=x*+y* (mod 4),son %3 (mod 4).
Step 2: Suppose n; and n, are odd positive integers both represented by g. We claim that n;n, is

also represented by g. If

ny =X+ x5+ 2x5 + 2(2x4)% ny =y +y5 + 23 + 2(2y4)%

then by Lemma 5.1 we have

nny = 77 + 25 + 225 + 22X,y + X2y3 — X3y2 + 2X4)1)% (5.8)

with z1, 25,273 € Z. Equation (5.8) exhibits n;n, in the form g(v) iff x,y; — x3y, is even. Since n,
is odd, then x7 + x5 is odd and thus exactly one of x;, x, is even. By interchanging x; and x, if
necessary, we may assume that x, is even. In exactly the same way we may assume that y, is even
and thus that x,y; — x3y, is even.

Step 3: Every odd n € Z* is represented by g. By Step 2 it is enough to show that every odd prime
number p is represented by ¢. If p = 1 (mod 4), then by Theorem 5.10a) p = x% + x%, whereas if
p =3 (mod 4) then g represents p by Step 1.

Step 4: Suppose n = 2n’ = 2 (mod 4). Since »’ is odd, by Step 3, there are integers yi, y2, 3, V4,

with y, = 2Y5, such that n’ = y} + y3 + 2y3 + 2(2y4)*. Then

n=2-n"=0"+0"+2-12+22 -0 +y; + 253 + 2(2y4)*)

2,2, 2 2_ 2,2, 2 2
=1+ +5+2(—) =21+, +25+8Y;.
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5.8 The form g,s = (1,2,5,10)

Theorem 5.18. The form q,5 = x* + 2y + 522 + 10w? is universal.

To prove Theorem 5.18 we need to clarify and systematize the rather ad hoc methods used for the

other universality proofs, so we begin by laying out a general strategy.

Let g(v) be an n-ary integral quadratic form, and let d € Z. We wish to show that g represents
d, and say we know that it integrally represents kd for some ‘“small” positive integer k, i.e., there
exists x € Z" such that g(x) = kd.

Suppose first that we can find A € M,(Z) such that we have an identity of quadratic forms
q(Av) = kq(v). Then g(Ax) = kqg(x) = k*d, and thus

() -a

This gives an integral representation of d by g provided Ax € (kZ)", a condition which depends
only the classes of xj,...,x, (mod k). Since g(x) = kd, we need only consider admissible n-
tuples, 1.e., (x1,...,x,) € (Z/kZ)" such that g(xi,...,x,) = 0 (mod k). And we do not need the
same matrix A to work for each admissible n-tuple: we only need that for each admissible n-tuple
X € (Z]kZ)" there is some A, € M,(Z) such that g(Av) = kg(v) and A,x = 0 (mod k).

However, in most cases this is asking too much.
Lemma 5.19. Forallk € Z*, {A € M,(Z) | g(Av) = kq(v)} is finite.

Proof. M,(R) is an n’>-dimensional Euclidean space in which M,(Z) sits as a discrete subgroup.
Since ¢ is positive definite, the set of A € M, (R) with g(Av) = kq(v) for all v € R" is bounded, so
its intersection with M,(7Z) is finite.

However, for our applications we want an algorithmic enumeration of O,(k). This can be

achieved by revisiting the above argument more quantitatively.
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Step 1: Suppose ¢ = go = x> + ... + X2, SO
0,(R) ={A € M,(R) | g(Av) = g(v)}

is the standard real orthogonal group O,(R). M,(R) endowed with the Frobenius norm A = (a;;) =
Al = /lei,an al.zj is a Banach algebra: for all A, B € M,(R), |AB| < |A||B| (this amounts to the
Cauchy-Schwarz inequality). Let gy = x7 + ... + x;. Then O, (R) = {A € M,(R) | go(Av) = q(v)}
is the standard orthogonal group O,(R), and thus for all A € O, (R), |A| = vn. All positive
definite n-ary forms are R-equivalent, so choose P € GL,(R) such that g(v) = go(Pv). Then
0,(R) = P10, (R)P: if A € O, (R), then g(P~'APv) = go(APv) = qo(Pv) = g(v), and conversely.
So for A € O,(R),

IA| = |P"'PAP7'P| < |P7Y||PAP7Y||P| < vn|P||P7'.

Step 2: For A € M,(R), k € R, q(Av) = kq(v) iff q(4) = g(v) & < € O,(R). Thus if

A € M,(R) and g(Av) = kq(v),
Al < Vkn|P||P7!|.

So we may compute O, (k) by running through {A € M,(Z) | |A] < \/ElPllP‘ll} and testing to see
whether g(Av) = kq(v) holds. O

Remark 4.2: The algorithm given above was chosen because it is (we hope) easily understood by

a wide audience. We do not claim any particular efficiency.

However, we may also consider matrices with denominators. For &, r € Z*, put
A 2
Oylk,r) ={A € M,(Z) | 61(7\’) = kq(v)} ={A € M,(Z) | q(Av) = krig(v)}.

By Lemma 5.19, O,(k, r), is finite for each fixed k and r, but for fixed k the sets O,(k, r) tend to

39



grow in size with r.This improves our chances of success: we say a tuple x € (Z/krZ)" is admis-
sible if g(x) = 0 (mod k). Let A,(k, r) denote the set of all admissible tuples. We say that O,(k, r)
covers A,(k, r) if for each x € A (k, r), there exists A, € O (k, r) such that A,x = 0 (mod kr). If for
some r € Z* we have that O,(k, r) covers A,(k, r), then for all d € Z", if there exists x € Z" such

that g(x) = kd. then A, (%) € Z" and g(A, (%)) = d.

We now turn to the proof of Theorem 5.18. As usual, we apply Theorem 5.6: since | M(q)] = 5, for
any prime p > 5 there exists (x, y, z, w) € Z* with x? +2y* + 5z + 10w? = kp with k € {1,2,3,4,5}.
So to complete the proof, it suffices to find, for each k € {2, 3,4, 5}, a positive integer r such that

O,(k, r) covers A (k, ).

Theorem 5.20. Let g = gy 5 = x* + 2y + 52% + 10w?. Then:

a) The 26768 elements of O4(2,8) cover all #A,(2,8) = 32768 admissible tuples, and thus for all
d € Z%, if q represents 2d then it also represents d.

b) For no r < 8 does O,(2,r) cover A,(2,r).

c¢) The 83072 elements of O,(3,8) cover all #A,(3,8) = 135168 admissible tuples, and thus for all
d € Z7, if q represents 3d then it also represents d.

d) For no r < 8 does O,(3,r) cover A,(3, ).

e) The 10384 elements of O,(4,4) cover all #A,(4,4) = 16384 admissible tuples.

f) For no r < 4 does Oy (4,r) cover Ay(4,r).

g) The 16 elements of O,(5, 1) cover all #A,(5, 1) = 25 admissible tuples, and thus for all d € Z*,

if q represents 5d then it also represents d.

Proof. A computer calculation. The C++ code used for this may be found at

http://www.math.uga.edu/~pete/MinimalCode.cpp. a

This completes the proof of Theorem 5.18.
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Remark 4.3: Notice that — without any GoN input — Theorem 5.20a) yields:
Theorem 5.21. For all d € Z*, if q, 5 represents 2d, then it also represents d.

As described in the introduction, Theorem 5.21 completes a quaternionic proof of the universality

of (1,2,5,10) initiated by Deutsch and continued by Fitzgerald.
Remark 4.4: The case k = 5 is easy enough to be treated by hand. If x* + 2y + 5% + 10w? = 5p,

then 5 | x* + 2y?, so x and y are both divisible by 5. Putting x = 5X, y = 5Y and simplifying gives

22 +2w? + 5X% + 10Y? = p.
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Chapter 6

Nondiagonal Quaternary Quadratic Forms

This work in this chapter was done in the context of a VIGRE Research Group at the University of
Georgia throughout the 2011-2012 academic year. The results given below appear in [8]. Co-first
authors on this paper was Katherine Thompson.

In this chapter, we again use GoN methods to provide proofs of universality of positive definite
quaternary integral quadratic forms. Now, however, we only require that the forms have square
discriminant. The work of Conway [10] and Bhargava-Hanke [2] shows there are 112 such forms
(a list of all 6436 universal quaternary integral quadratic forms is available at [35]). Of the 112
candidates, 105 have lent themselves to our methods and GoN universality proofs can be given. In
light of the nine forms discussed in [9], this paper adds 96 universality statements and proves the
universality of the previous forms without using binary subforms. Of these 96 forms only 11 are
classically integral.

We wish to emphasize that the primary of interest of this work is not the universality theorems
themselves but the way in which they are proved. To prove the 290 Theorem, Bhargava-Hanke
must analyze the universality of more than 6000 individual forms, and they do so by consider-
ing the associated theta series and applying deep and sophisticated techniques from the theory

of modular forms. To analyze the Fourier coefficients of the theta-series, Siegel’s work on local
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densities is used to bound the Eisenstein coefficients, and the theory of newforms and Deligne’s
bounds on Hecke eigenvalues (i.e., the Ramanujan-Petersson Conjecture) are used to bound the
cusp coefficients. In constrast, the present method is almost entirely self-contained. The only GoN
result which does not receive a full proof here or in [9] is Korkine-Zolotarev’s computation of the
4-dimensional Hermite constant y, [30]. In fact, for all 105 forms treated here, the upper bound
on y4 coming from Minkowski’s Convex Body Theorem is sufficient. That state-of-the-art uni-
versality theorems can be proved by such elementary methods seems truly remarkable...and also
somewhat mysterious.

Our techniques prove universality of 78 forms of class number greater than one. To the best of
our knowledge all previous applications of GoN methods to representation theorems for integral
quadratic forms (including [8] and [9]) treat only class number one forms. One might have guessed
that such elementary methods were inherently limited to the class number one case. The present
paper shows that the range of applicability of GoN methods is considerably larger. It would be

interesting to probe this range more thoroughly, and we hope to do so in the future.

6.1 Proving Universality

Theorem 6.1. The 105 integral, positive definite, quaternary quadratic forms appearing in Tables

A.2 and A.3 of the Appendix are universal.

Proof. Letq = }1.cjcy @ijXix; = X'Ayx be a form in Table A.2 and A.3. Suppose we can show:
(a) For all squarefree n € Z* with ged(n, 2A,) = 1, g represents n.

(b) If g represents n € Z" and p | 2A,, then g represents pn.

Then g represents every squarefree positive integer and is thus universal: write n € Z* as ts*> with

t squarefree. There is ¥ € Z* with g(¥) = t, so g(sV) = ts*> = n.
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We now explain how to establish (a) and (b) for g: the method includes computer computation,

and an example is provided in the following section.

Establishing (a): By the Small Multiple Theorem (Theorem 4.6), for all n € Z* there is V € Z*
such that g(¥) = kn for some k € {1,2, ..., [(4A,)"*]}.

If g(V) = kn, suppose we can find a matrix A € M4(Z) such that g(Ax) = kg(x): an identity of
quadratic forms. Then g(AV) = kq(¥) = k*n. If, however, we could show AV € (kZ)*, allowing

W = (AW)/k € Z*, we would have g(W) = £q(AV) = n.

The strategy is to use a computer to create a set of such matrices. Since the AV € (kZ)* condi-
tion can be checked modulo k, we have a finite set of vectors to consider. If for each vector we can

find a matrix, we will have shown (a). Consider the set of such matrices:

O,4(k) = {A € My(Z) : q(AV) = kq(D)}.

By the previous chapter, O, (k) is finite. Here is another algorithm to compute O,(k):
We create the set of vectors V; = {¥ € Z* : q() = kay} for i € {1,2,3,4}. By positivity of g,
the finite set V; can be enumerated by evaluating ¢(V) at all vectors inside a bounded ellipsoid. Let

M = [vi|va|vs|v4] € M4(Q). Then M € O (k) if and only if:

elForalll <i<4,v;€eV, and

eForall 1 <i< j<4,viAyv, = ka.
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The problem has been reduced to a computer search to find a d such that O,(k, d) covers A,(k,d).

For all the forms in Tables I and 11, the computer search was successful.

Establishing (b): fix a prime p such that p | 2A, and a vector v € Z*. This time we wish to
find a matrix A € M4(Z) such that g(A¥) = pq(V). We again consider matrices in O,(p, d). Now all
vectors in (Z/pdZ)* are admissible. We say a matrix A € O,(p, d) multiplies a vector vV € (Z/ pdZ)*
if AV’ € (dZ)*, which then gives ¥ = A € Z* and q(¥) = ¢ (AZ) = Lq(AD) = pq(¥).

We are again reduced to a computer search, and upon finding a d for all (g, p) pairs required,
we have shown that if g represents n then g represents pn. This search was successful for all the

forms in Tables I and II.

This completes the proof. O

Remark 6.2. For 104 of the 105 forms of Theorem 6.1, using the first assertion of the Small
Multiple Theorem — coming from the Minkowski bound — either does not change the computations

at all or does not significantly lengthen them. However for
g = X7 + 235 + xpx3 + 4x3 + 313,

the last form in Table II, using the first assertion of the Small Multiple Theorem requires consid-
eration of k = 1, and our computation has not terminated for this value. If we use the second
assertion of the Small Multiple Theorem — coming from the Korkine-Zolotarev bound — then k =7

does not need to be considered.
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6.2 An Example

We will now illustrate all steps of the algorithm with a particular form:
q(x) = x% + Xx1x + 2x§ + 3x§ + 3x3x4 + 6xﬁ.

This form is not classically integral, has class number 3 and discriminant %. Applying the Small
Multiple Theorem for n satisfying (n,42) = 1, we obtain k < 3. For the cases g(¥) = 3n or

g(¥) = 2n, we must prove the existence of a reduction to a representation of n by q.

For k = 3 (i.e., assuming ¢g(¥) = 3n), using a computer search we find that a denominator of 1 that

all that is required. That is, we only need to consider vectors ¥ € (Z/3Z)*. Moreover, setting

o
(= )

S o O
()

one quickly observes that gM(x) = 3¢g(x). Noting that M reduces all admissible vectors v €
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A,(1,3):

M (0, 0, 0, 0)' = (0, 0, 0, 0)
M (0, 0,0, 1) = (0, 3, 0, 0)
M (0, 0, 0, 2)" = (0, 6, 0, 0)
M (0,0, 1,0 = (3,0, 0, 0)
M(,0,1, 1) =(3,3,0,0)
M(0,0,1,2)=(3,6,0,0)
M0, 0, 2, 0)' = (6, 0, 0, 0)
M0, 0,2, 1) = (6, 3, 0, 0)

M (0, 0,2, 2)" = (6, 6,0, 0)

we see that a representation of 3n by g can be reduced.

Next we address the case where g(X¥) = 2n. This time a denominator of 2 suffices. There are

160 admissible vectors and we need to consider vectors in (Z/4Z)*.
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0O -2 0 -6 0 -4 00 0O -4 0 O
1 1 -3 0 2 2 00 2 2 0 0
Oq(2,2) = Ml = ’M2 = 9M'§ = ’

0 -2 0 2 0O 0 0 4 0 0 3 1
1 1 1 O 0O 0220 0O 0 -1 -3

0O -4 0 O 04 00 0O -2 0 6

2 2 0 0 2 0 00 1 1 3 0

My = s Ms = s Mg =
0O O 2 =2 0O 0 0 4 0o -2 0 -2
0O 0 -2 =2 00 20 1 1 -1 O

For all M; € 0,(2,2), we have g(M;x) = 8q(x). For each of the six matrices we provide an example

of an admissible vector that it covers:

My(0,0,0,2) = (-12,0,4,0)
M;(0,0,0, 1) = (0,0,4,0)
M>(0,0,1, 1) =(0,0,4,-4)
M;5(0,0,1,3) = (0,0,—4,-8)
M4(0,1,0,0) = (4,0,0,0)

M;s(0,1,1,1) = (4,4,-4,0)".

Similarly all other 154 admissible tuples are covered by one of the six matrices above.

Now it remains to show that if g represents a positive integer n then it represents 2n, 3n, and 7n. In

each case there is an integer matrix that allows multiplication. Specifically:
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o 2 0 O 0 0 30 1 -2 -3 -3
-1 -1 0O O 0O 0 0 3 0O 2 0 -3
P, = , Py = , P7=
o 0 0 2 1 0 0O 0 -1 2 -1
0O 0 -1 -1 01 00 1 1 0 1

Note that for each i, P; € M4(Z), and hence for all ¥ € Z*, P, € Z* Moreover, for each i,

q(P;x) = i- q(x). This completes the proof of the universality of g.

6.3 Local Success of the Method

In this section we will discuss the success of the method. At every level d € Z*, we say that the
method succeeds if the finite set A,(k, d) of admissible vectors is covered by the finite set O,(k, d)
of matrices: i.e., if every v € A,(k,d) is reduced by at least one A € O,(k, d). If not, then we move
on to A,(k,d’) for a larger value of d’ (up to the limits of our computational power). We show here
that the method necessarily succeeds locally in the following sense: given any v € A,(k, d’), there

is a lift ¥ of ¥ to A,(k,dd") such that it is reduced by some A € A,k dd").

Although the above statement in terms of congruence classes is a natural one when analyzing
the method of proof of Theorem 6.1, we will actually prove a stronger result concerning integer
vectors. In turn, by clearing denominators, this integral result follows quickly from a result about
rational quadratic forms. The result for rational forms uses one of the key facts in the basic theory
of algebraic quadratic forms: the isometry group of a nondegenerate quadratic form acts transi-
tively on the set of vectors on which the quadratic form takes any fixed nonzero value. To make a
short, clean proof of a slightly more general result, we have decided to make use of a basic property

of Pfister forms (see [31] for details).

Theorem 6.3. Let K be a field of characteristic different from 2, and let q,x be a nondegenerate

n-ary Pfister form of square discriminant. For k, p € K*, suppose q represents p and kp. Then for
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all v,w € K" with q(V) = p and g(W) = kp, there is M € GL,(K) with Mw = kv and g(Mx) = kq(x).

Proof. Putting
Oy(k) = {M € GL,(K) | g(Mx) = kq(x)},

we must show that there is M € O,(k) such that Mw = k¥. Since q is a Pfister form, by [31, Thm.

X.1.8] g is a round form: if we define

D(q)* :={g(x) | x € K"} \ {0}

and

G(q) :={c € K" | cq = q},
then D(gq)* = G(gq). Thus D(q)* is a subgroup of K*, so p,kp € D(q)* = k € D(q)* = G(q):

there is M; € GL,(K) such that g(M;x) = kq(x) for all x. Taking x = V, we get

qg(MV) = kq(V) = kp = qW).

By [31, Prop. 1.4.7], there is M, € O(g) = O,(1) with M,M,V = w. Put M = M,M,. Then

and

q(Mx) = (MM, x) = q(Myx) = kq(x),
so M € Oy(q). O

Corollary 6.4. Let g, be a positive quaternary quadratic form with square discriminant.
a) For k, p € Z\ {0}, suppose q integrally represents 1, p, kp. Then for all V,w € Z* with g(¥}) = p

and q(W) = kp, there is M € M4(Q) such that Mw = kv and g(MX) = kq(X).
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b) If q is positive universal, reduction always succeeds locally: for all k,p € Z \ {0} and W € Z*
with q(W) = kp, there is d € Z* and A € O,(k,d) with AW € (kdZ)*.

(Thus if V = % then vV € Z* and q(V) = p.)

Proof. a) A nondegenerate quaternary quadratic form over a field of characteristic different from 2
is a Pfister form if and only if it has a diagonal representation (1, a, b, ab) if and only if it represents

1 and has square discriminant. Thus Theorem 6.3 applies to g,q: there is M € M,(Q) such that

MW = kV.

b) Since g is positive universal, there is ¥ € Z* with g(¥) = p. Applying part a), we get M € M,4(Q)
with g(Mx) = kq(x) and Mw = kV. Let d be the greatest common denominator of the entries of M,

and put

Then A € M4(Z) and
q(Ax) = g(dMx) = d*q(Mx) = kd*q(x),

so A € O,(k,d), and finally
AW = dMW = kdV € (kdZ)*. o
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Chapter 7

Totally Real Number Fields

A totally real number field, K, is a finite extension of Q such that the image of each embedding
of K into C lies in R. A totally positive quadratic from over a totally real number field K is a
quadratic form, g = ) ;<jcy; aijxix; € K[xi, ..., xy] such that for each embedding, o, : K — R,
0(q) = Yi<icjen 0(aij)Xix; is a positive definite quadratic form.

Icaza, in her work on Hermite constants [28] for totally positive quadratic forms over totally
real number fields produced a bound using the Cartesian product of ellipsoids called polyellipsoids.
Inspired by Deutsch [14], I replaced the polyellispoids used by Icaza with a more complicated
shape that yields a better bound. The bulk of this result comes down to computing the volume of

this body. Using these techniques leads to

Theorem 7.6. Let K/Q be a totally real number field of degree d. Let By be the unit N-ball. For

all N € Z*.
(dN)!

( N!)d) |d(K)| Vol(By) ™

Yi(Zk) < d—2d4d(

Yn(Zk) is the positive Hermite constant which is restricted to considering only totally positive

quadratic form.
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7.1 Works of Deutsch and Icaza

Icaza defines the Hermite constant for number fields as follows: yy k. Let g be a positive definite

quadratic form over K. Define

uq) = xglzi?g.{llq(X)ll}
d(f) = ldet(q)|

where ||| denotes the absolute value of the field norm. Then put y(g) := u(q)/d(¢g)""". Finally
define yyx := sup,{y(g)} where g runs over all totally positive definite quadratic forms defined
over K.

Using this definition Icaza derives a bound on the Hermite Constant for all number fields. For
the purposes of this chapter, I am restricting Icaza’s results to totally real number fields. In this
case Icaza’a bound is given by y;(,’ ¥ =< 4By ||D||, where d is the degree of K, By is the volume of
the N-sphere, and D is the discriminant of K. This is obtained by looking at an ellipsoid around
each embedding of the form into the real numbers, taking the Cartesian product, and applying

Minkowski’s convex body theorem.

Proof of Icaza’s result [28]. Letoy,...,0q — Rbe the real embeddings. Let g = > ;< jcn; @ijXiX; €
K[xy,...,xy] be totally positive. We define for each embedding ¢; = 0i(q) € R[xy,...,xy]. As

defined each of these forms is positive definite. Then for all # € KY and x; = o7i(¢)

d d
lg@ll = [ Jlg:cel = | ] aitx
i=1 i=1

and in the same vein

d
Idiscqll = | | discqs,

i=1

so we can take

d
gi(x:)
v(g) = inf E—
xe(ZR)* l_l (disc q,)N

i=
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Since each g; is a positive definite real quadratic form, we can define function with level sets
Qqi, B = {x e RY | gi(x) < R*)
These are ellispoids. Take yi,...,y,; € RY and define
Q : RdN - R, Q(Yb oo ’yd) = Ei’;ql(yl)

The level sets of this function form polyellipsoids, which are the Cartesian product of ellipsoids.

d
QR ={xeR" |0 <R = | | Qg R)

i=1

The volume of this figure can be computed using this decomposition into its embeddings

7 Yol(By) v _ Vol(By)'R™Y

L Jdiscq /lidiscql]

Set A = Z¥ c R™; A is the Cartesian product of N copies of the usual lattice Zg in RY, Thus we

d
Vol Q(O, R) = 1_[ Vol Q(g;, R) =
i=1

have that the Covol A = /|d(K)[V. We can then choose an R such that

VO](BN)deN

vdisc g

= Vol Q(Q, R) = 2%N Covol A = 29V |d(K)|V?
This R is
R = 21d(K)| ||disc || ™ Vol(By)™
Then we apply Minkowski’s Convex Body Theorem to see that there is a v € Q(Q, R) N A*. Then

g:(v) < R* for all i, so

d
gl = | | aitv) < B = 47 1d(K)) |disc glI™ Vol(By) ™
i=1
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an therefore

@ < 24 gavoi B F k)|

~ |disc g|7

O

Deutsch in his paper on Gotsky’s four squares theorem [14] he first proves the two squares
theorem over Q ( \/5) using a polyellipsoid in the same manner as Icaza. He then uses a refined
technique for proving the sum of four squares is universal over the same field. Instead of taking the
Cartesian product of ellipsoids, he takes the sum of the distance formula defining the individual
spheres to get a smaller convex body. After some calculations to determine the volume of this
body, he uses it to get a better bound on the in the particular case of the sum of four squares.

The plan for remainder of this chapter is to use Deutsch’s idea of using the sum of sphere
equations and take the sum of ellipsoids equations to get a bound on arbitrary degree totally real

number fields.

7.2 Improved bound on Hermite constant

We will be treating RV as d copies of RY and hence will use the notation x; i = X(i=1yn+j to visually

simply the statements.

Definition 7.1. Let g be a totally positive n-ary quadratic form over a totally real number field K

with [K : Q] = d. Let 0y,...,0,4 be the embeddings from K — R. Then we define the region

Qq(R) = {X c RNd | Zz['izl \/O',(Q) (-xi,l, ey X,',N) < R}

Theorem 7.2. Vol(Q,(R)) = %Rw.

We will first prove several lemmas that will be used in the proof of this theorem. We will see

()

that the volume of this region differs from the polyellipsoid used by Icaza by a factor of i
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Lemma 7.3. Let g be a positive definite n-ary real quadratic form. Let B,(R) be the closed ellipsoid
defined by m < RinR". Let S ,(R) be the surface area of B,(R). Let S, be the surface
area of the unit n ball. Let r = m Let g be a continuous function of a single variable.
Then

R S R
= S (rdr = —= ld
fB " g(r) fo 8(r)S ¢(r)dr Tooe fo g(nr'—dr

Proof of Lemma 7.3. We begin by integrating over the entire ellipsoid, since the function is taken

to be constant over level sets of the ellipsoid we can instead integrate over the surface at each level

R
[ = [ smsmar
B,(R) 0

and S,(r) = S (D! = 22—,

/discq

set.

R 1 S R 1
g(r)S,r"dr = - f g(rr'"dr
‘fo ydisc g Jo

We will need a combinatorial identity to simplify a later integral.

Lemma 7.4. Form € Z>°

n -1
wfry m_(m+n
;( 1)(k)m+k_( n )

Proof. We begin with a base case thatn = 1.

. 1\ m 1\ m 1\ m
k —_ (_1\0 _Nn!
;(_1) (k)m+k = D (O)m+0+( D (1)m+1

m m

= 1-1 ~1.1.
m+0 m+1

3 1

C om+1
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and

So the base case is verified.

We will define a recursive relationship between b, and b,,_;.

_ a _ kl’l m
bn = Z( 1)(k)m+k
- () (1)m+n
n—1
e ol (U R A e
B __kn—lm O - m am
- 1+;( 1)( k )m+k+;( 1)(k—1)m+k+( D

- S e S (i v
_ 1+Z( 1)’6(”_1) mk+( 1)m+n
= b, 1+Z( 1)k(”_i)mmk
= b, 1+—Z( 1)"(”)mﬁk
s2lSer) o

B m| _xfn\ m
B bn_l+n[ ;( 1)(k)m+k

m

= bn—l - _bn
n
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+
bn = bn—l - @bn - z nbn =b, = bn = & b1
n n m+n
Which when used with the base case gives us
n nn+1) n!m! m+n\" m+n\"
by = ——b,_ = n-2 = by = by =
m+n m+n)(im+n-1) (n+m)! n n

We define a quantity, Q,(k, R), that we will use to establish this formula recursively. The

definition here depends on the ordering given to the real embeddings of the field.

Lemma 7.5. Define Q,(k,R) = {x e R | Zf»‘zl \/O'i(q) (XDl - -+ s Xii=Dynn) < R} for g a totally

real quadratic form, k € Z°, and R € R*°. Let V,, be the volume B,. If 1 < k < d then

Va(R)

((k; 1)n) \/(m

Vol (Q,(k + 1,R)) = Vol (Q,(k, R))
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Proof of Lemma 7.5. We will use Lemma 7.3 with g(r) = Vol(Q,(k,R — ).

S ; s
8r) = —— f g(r'
fBakH(m ydisc or1(q) Jo

S R
L VI f Vol(Q,(k, R — r)r"™!
ydisc oir1(q) Jo
S R
o Se f Vol(Q,(k, D)(R — !
vdisc oy41(q)
_ S VOl(Qq(k 1))f (R kn nl
d1s00k+1(q

1

S, Vol(Q,(k, 1)) R & (kn

ydiscoy1(q) Jo o

S, Vol(Qy(k, 1) & (kn

( l)l kl’ll
vdiscopyi(q) = )

kn k(n+1)
_ S, Vol(Qq(k 1)) (kn)( I)R

Vdiscoii(q) =

8, Vol(Qy(k, D)RKD & (kn) 1y

vdisc oy1(q) i=0

S, Vol(Q, (k, 1))RKD & (kn

(—1)’
ny/discop(g) S\ ! ) n+i

S R kn
= “ Vol(Q,(k, 1))R*" ( ) 1—]
(n«/disccrkn(@]( o8 D) )[lzzol C )n+z

V.(R) kn\ ™"
— | Vol(Q,(k, R
(\/disc ak+1(q>]( ol )))(")

)( 1)Rkn l]’ﬂ+l 1

n+i

l

n+i
0

n+i

1 n+i

O

Proof of Theorem 7.2. First we start with Q (1, R) = Q) (R). Then Vol(, ,)(R)) = \/%R".
iscoi(g

And Q,(R) = Q,(d, R).
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Vol(Q,(R)) = Vol(Qy(d,R))

Va(R)
= Vol(Q,(d - 1,R
((i") disc o4(q) ol )
Va(R) Vu(R)

= Vol(Q,(d - 2, R))

(‘Z’) Vdisc o4(q) ((d_nl)”) Vdisco,_1(q)

d
l_[ Va(R) d 1 k d 1-
k=1 [Tie (:) [Tiz1 vdisco(q)

(n")? 1
V. (R))?
(V) (dn)! ||disc q|

So now we use the convex body to obtain a bound on the Hermite Constant.

Theorem 7.6. Let K/Q be a totally real number field of degree d. For all N € Z*.

dN)!\F

Yi(Zx) < d 244 ((N—,)d) |d(K)| Vol(By) ™

Proof. Let A = Z§ c R?™. Then we have that Covol A = V[d(K)[" [40]. We can choose a value

for R such that it satisfies

(D! (V)?
(dm)! \f||disc q|

R™ = Vol(Q,(R)) = 2" Covol A = 2™V |d(K)|?

We find that
(dn)!
(n!)?

1
dn =1
R= 2( ) d(K)| |disc g|= V.7

Now we can apply the Minkowski’s Convex Body Theorem to find a vector v € €,(R) N A®.
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Thus Zl‘-lzl Voi(gv)) <R

We can apply the arithmetic-geometry mean inequality to find that

1/d

d d
d(]‘[ \/cri<q<v>>} < 2, Voulg()
i=1 i=1

Since |g(v)| = ]_[?: , 0i(g(v)), we can then see that d |q(v)|ﬁ <R

So
g < d*'R*
d! 1 2d
dn 1 1 -1
= d™ [2 (—(( r‘z))d) |d(K)|2 |disc g|2m VnN]
n!
2
_ (dn)!\* ) 1 =
= d MZM(W d(K)| |disc g|" V"
Which finally gives
2
lg(v)| —2d~2d (dn)!\" 2
+ n
Ya(K) < disc g <d "2 i ld(K)| 'V,

It is not readily apparent if this new bound is an improvement or not. It differs from the bound

2
(n!),,)”. This quantity can be shown to always be less

found by Icaza by exactly a factor of d=* (

than one for values of d and n greater than 1.

Theorem 7.7. Let n,d be positive integers such that n,d > 1.

¢ ((n!)d)

2
n
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Proof. We manipulate the expression slightly.

2 2
Py (dnm)!\" _ (dn)! \"
(n!)? dr(n!)?
In the denominator we can think of it as an array with n columns and d rows all multiplied together.

Since we have a term of d"¢ we can distribute a d to every entry in our array and have

nl=nn-1)n-2)---1 dndin-1)dn-2)---d
nl=nn-1)n-2)---1 J dndin—1)dn-2)---d J
nl=nn-1Hn-2)---1 dndin—1)dn—-2)---d

Now consider the d leading terms of the numerator paired with the first column of the array.

d_ndn—l dn—d+1 din-1)+1
dn’ dn ~7 dn B dn

Similarly the k + 1-st block of d terms of the numerator will be paired with the k + 1—st column of

the array

din—kd) din—kd)—-1 dn—kd)y—d+1 dn—-(k+1)d)+1
dn—-kd)y dn-kd) * d(n —kd) B d(n — kd)

So in each block of terms the numerator is smaller than the denominator. Therefore the bound is

an improvement. O
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Chapter 8

Abstract Geometry of Numbers

In the previous chapter the definition of the Hermite constant was extended to the case of totally
positive quadratic forms over the ring of integers in a totally real field. We now seek to extend
the definition to the case of S -integer rings also called Hasse domains within a global field. The

principal result of this section is showing the finiteness of this extended constant.

Theorem 8.7. The Hermite constant for S -integer rings of global fields of characteristic not equal

to 2 is finite.

The choice of language, notation, and introduction for this section are taken from [6].

8.1 Hasse Domains

A norm on aring R is a function | - | : R — R such that
1. [x]=0 < x=0,
2. |x]>1forallx e R*; |x| =1 & x € R*,

3. VYx,y € R, |xy| = |x][yl.
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Let |-| be a norm on a ring R.

A(R) = inf{C e R** | Vx,y € R, |x + y| < C max(|x], [y])}.

If there is no such C, then A(R) = inf @ = oco. If A(R) < co we say that the norm is almost metric
and call A(R) the Artin constant. It follows that for all x,y € K, |x+y| < A(R) max(|x|, |y]), and thus
| - | is an absolute value on K in the sense of E. Artin.

When A(R) = 1 we say the norm is non-Archimedean or ultrametric.

Lemma 8.1. Let R be a domain with fraction field K, and let | - | be an almost metric norm on R
with Artin constant A(R). Then we have

a) A(R) = max(|1], |2)).

b) For « € R*°, A(R,| - |?) = A(R)".

c) The map (x,y) & |x — y| is a metric on K iff A(R) < 2.

d) For xi,...,x, € K, |x; + ...+ x,| < |n|max; |x;].

See [6] for proof.

Let K be a global field. A place on K is an equivalence class of almost metric norms on K. We
denote by Xk the set of all places of K. Let S be a finite, nonempty subset of Zx containing all the
Archimedean places. We define Zg s as the set of all elements x € K such that |x|, < 1 for every
ultrametric place |-|, € Zx \ S. Following O’Meara [38] we call such aring a Hasse domain. Every
Hasse domain is a residually finite Dedekind domain hence comes equipped with the canonical
ideal norm || = #R/I.

Next we recall some facts.

e Suppose K = Q[t]/(f) is a number field. Then the set of Archimedean places of K is finite and
nonempty. More precisely, if f has r real roots and s conjugate pairs of complex roots, then K has
r real places — i.e., such that the corresponding completion is isomorphic to the normed field R —

and s complex places — i.e., such that the corresponding completion is isomorphic to the normed
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field C. We write out the infinite places as ooy, ..., o0,,,. The finite places correspond to maximal
ideals of Zg, the integral closure of Z in K, which is the unique minimal Hasse domain with
fraction field K: any other Hasse domain Zg ¢ with fraction field K is an overring of R, obtained as
(NpeMaxspec ks, Ry Where S ¢ is a finite set of maximal ideals corresponding to a finite set of places.
e Suppose K has characteristic p > 0. Then there is a prime power ¢ = p/ such that K/F,()
is a regular extension — separable, with constant field F,. There is a unique smooth, projective
geometrically integral curve Cg, such that K = F,(C) is the field of rational functions on C.
The places of K are all non-Archimedean and correspond bijectively to closed points on C, or
equivalently to complete gg, = Aut(E/ [F,)-orbits of E—Valued points of C. Thus the Hasse domains
with fraction field K correspond to finite unions of complete gg -orbits of E—points of C, and any
such R is the ring of rational functions which are regular away from the support of D, a finite set
of points. There is no unique minimal Hasse domain in this case, because we cannot take D = 0:
the ring of functions which are regular on all of C is just F,.

The norm |-| on R need not be almost metric but is multimetric: a finite product of almost metric
norms. Note in particular that the canonical norms on every Hasse domain and affine domain are
multimetric.

For 1 < j<mweput N; = |K"[,.

The norm || is of g-rype iff there is ¢ > 0 such that N; ¢ ¢* for all j: this is the situation for
affine domains. We emphasize that more than one choice of ¢ is always possible but that such a
choice will always be given as part of the structure. As in the m = 1 case we put deg; = log, |- ;.
When each — deg j is a discrete valuation, we say the norm is fotally ultrametric.

The norm is totally dense if N is dense for each j. If each | - |; is metric, this is equivalent
to each | - [; being Archimedean, and we use the terminology totally Archimedean. The canonical
norm on R = Zg, K a number field, is totally Archimedean. The norm is of mixed type if some N/

is dense and some N is not. The canonical norm on R = Zg s when § # @ is of mixed multimetric

type.
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We say an ideal normed Dedekind domain (R,| - |) is multinormed if there are elementwise
norms | - |{,...,| - |» on R such that |x| = H;”:l |x[; for all 1 < j < m. We say that (R,] - |) is
multimetric if each norm | - |; is almost metric.

A multimetric ideal normed Dedekind domain R is of multinormed linear type if for all n € Z*
there is C € N such that: given M = (m;;) € GL,(K), an R-lattice A C K" and forall 1 < j <m

constants €5, . .., €, € Nj such that

| det M| Covol A < C [ | &, (8.1)

Lj

there is x = (xq,..., x,) € A® such that

Vi, j, < 6,'}'.

n
Z Mg X
k=1

J

When R is of multinormed linear type, we let Cy;(R, 1) be the supremum over all C € N such that

(8.1) holds. We call the Cy(R, n)’s the multinormed linear constants of R.

8.2 Linear Forms Constants

First we consider Real Minkowski functionals. Let N € Z*. For x = (x,...,xy) € R, put
||lx|l = max; |x;|. Let Iy = {x € R" | ||x]| = 1}, i.e., the boundary of the unit ball in the £*-metric.

Consider the following axioms for a function f : RV — R>?:
MFO0 Vx € RY, f(x) =0 = x = 0. (definiteness)
MF1 Yo € R, Vx € RY, f(ax) = af(x). (positive homogeneity)
MF2 Vx € RY, f(-x) = f(x). (symmetry)
MF3 Vx,y € RY, f(x +y) < f(x) + f(y). (subadditivity)
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MF4 f is continuous. (continuity)
MF4’ sup(fl;,) < oo. (boundedness)
MF4” f is continuous at 0.

Lemma 8.2. Let f : RY — R satisfy (MF1). Then (MF4) — (MF4') < (MF4"), and the

first implication cannot be reversed.

Proof can be found in [6].

A Minkowski distance function is a function f : R¥Y — R satisfying (MFO0) through (MF3).
These are precisely the norm functions on the finite-dimensional R-vector space RY. We recall the
very standard facts that ||-|| : x — ||x|| is a Minkowski Distance Function (“Minkowski’s Inequal-
ity”) and that if f is any Minkowski distance function then there are constants 0 < C; < C, < o0
such that

Vx e RY, Cyllxll < f(x) < G ixl.

Thus in the presence of (MFO) through (MF2), (MF3) — (MF4).

Classical geometry of numbers also includes the study of functions which merely satisty (MF1)
and (MF4): the level sets f~!([0, R]) of such functions are star bodies, and conversely to any star
body we can associate a function f : RV — R satisfying (MF1) and (MF4). The portion of the
classical geometry of numbers that we wish to generalize requires only the weaker (MF4’), so we
define a Minkowski functional as a function f : RY — R which satisfies (MF1) and (MF4").

Let f be a Minkowski functional. A lattice A is f-admissible if inf(f|x.) > 1. We define the
lattice constant of f as

A(f) = inf{Covol A | A is f-admissible}.

Thus A(f) = oo iff there are no f-admissible lattices (e.g. when f = 0). When A(f) < co we say f

is of finite type.
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Lemma 8.3. For any Minkowski functional f : RY — R=° and any a € R=°, af is also a Minkowski

functional, and

Aaf) = a " A(f).

8.3 Mahler-Minkowski Functionals

Let R be a Hasse domain. Thus K is a global field, § C Xk is a finite set of places containing
all the infinite places, and R = Zg s is the ring of functions which have non-negative valuation at
every v € g \ §. Foreachv € §, let | - |, be the corresponding almost metric norm: precisely, if
K, = R then it is the usual Euclidean absolute value; if K, = C we take the square of the standard
Euclidean absolute value; if v is ultrametric and the residue cardinality is ¢ then for a uniformizer

n, we have |r,|, = ¢!. We put

7(:1_[&

ves
and define | - | : K — R by |x| = [],cs |xl,. The map x + |x| is a norm: we have |x| > 1 for all

x € R*, with equality iff x € R*. Moreover we have

Vx € R®, #R/(x) = ]_[ Ixl,.

vesS

The additive group (R, +) is discrete in K with compact fundamental domain. Thus there is a
unique Haar measure Vol on (K, +) such that Covol(R) = 1. Further, for every nonzero ideal / of
R, we have Covol I = #R/I and thus by [6, Prop. 1.8] I — Covol I is an ideal norm on R.

Let N € Z*. For x = (x1,...,xy) € K", we put ||x]| = max; <<y |xi|. Letey,...,ey be the

standard basis vectors of K. Let

Iy={x=(x1,...,xy) e KN |VI <i < N,¥veS, [xi, <1}
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A Mahler-Minkowski functional is a function f : K" — R satisfying
MF1 (Homogeneity) Yo € K, Yx € KV, f(ax) = |a|f(x), and
MF4' (Linear Majorization) The cube constant C(f) = sup(fl;,) is finite.
Remark 8.4. Since Iy is compact, as above continuity of f implies (MF4’).

We define an R-lattice in K to be a finitely generated free R-submodule A c K" such that
(Ayg = KV,

We give (K7, +) the product Haar measure, so that the standard R-lattice Ay = R" has co-
volume 1. Then any R-lattice A has a covolume Covol A € (0,o0). More explicitly, if A is a
free R-lattice then we may write A = gA, for some g € GLy(K) and then Covol A = |detg|.
Let f : K" — R*° be a Mahler-Minkowski functional. An R-lattice A ¢ K" is f-admissible if

inf(f|A®*) > 1. We define the lattice constant of f as
A(f) = inf{Covol A | A is f-admissible}.

The definition of C(R, N) is the largest number C such that: if M € GLy(K), A C K" is an

R-lattice and {€;},<;<y are positive constants with each ¢; in the closure of |[K*| and such that
| det M| Covol A < C | | &,
i
then there is x = (x1, ..., xy) € A°® such that

V1<i<N, <¢€.

N
Z Mg Xy

k=1

Taking M to be the identity matrix and each ; = 1 we get that if Covol A < C(R, N) then there is

x € A* with ||x]| < 1, soinf(]| - ||, A*) < 1 and A is not || - ||-admissible.
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Theorem 8.5. We have
A(llD = C(R,N) >0

Proof. Let A c K be a lattice, we can take an R-basis, ey,...,ey. We have that K is dense in
K hence we can apply weak approximation. Thus we can construct a sequence {e;,}>, € K"
so that each ¢;, — e;. We can then use these points to construct a sequence of lattices A, =
(€15 -+ ENnIR-

We can assume that these are all linearly independent vectors and hence for a lattice lattices
because it is only required that the matrix formed by the vectors have full rank. Since we are
working over a finite product of fields and GLy(K) = [] GLy(K,) this will hold if the determinant
is nonzero. Since the original lattice A had nonzero covolume and the determinant is a continuous
function of its entries and Covol A,, — Covol A, eventually the determinant must be nonzero for
all n > M for some M. Hence we by renumbering our sequence so that it starts at M and have
every e;, define a full rank lattice.

If any of our constructed lattices are such that Covol A,, < Covol, we can apply a scaling factor
so that it will.

Each A, ¢ K" is a rational lattice. We use the definition of C(R, N) with the identity matrix
and €, = 1 for all i and v gives A}, N Iy # (. Specifically there exists some x, € A}, N Iy.

Since our lattices are discrete and Iy is compact, this intersection must be finite for each n.
Suppose for the sake of contradiction that A* N Iy = (. Then for each z = (z;,...,2y) € (RV)*,
the set of n € Z* with Zfil zie;n € Iy must be finite, otherwise there would be a limit point to this
sequence in Iy giving a contradiction.

So there must be infinitely many z € (RY)® such that for some n € Z*, 3.,_\~ zi€i,, € Iy. Then
there must be at least one 1 < i < N such that for each M > O for at least one v € §, there is
z € (RV)* which for some absolute value ||, with |z;], > M and n € Z* such that Zl].il eiZin € Iy. We

can them consider the projection map from K — % which projects to the coefficient of ;. This
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map will produce a sequence of points that generate a contradiction. O

For Mahler-Minkowski functionals f,g : K¥ — R, g majorizes f if f(x) < g(x) for all
x € KV, If so, every f-admissible lattice is also g-admissible, hence A(f) > A(g). We now deduce

the main result of this section.

Theorem 8.6. For any Mahler-Minkowski functional f : KV — R=°, we have
A(f) = C(f)™Cu(R,N) > 0. (8.2)

rooj. e functiona 1S Majorize - |]. corem o.). O
Proof. The functional f is majorized by C(f)l - l. Apply Theorem 8.5

8.4 Finiteness of Hermite Constant in the Global Field Case

In this section we extend the definition of Hermite Constant to the context of global fields and
S-integer rings as follows. Let Rk g be the S-integer ring of the global field K and let Q be the set

of non-degenerate quadratic forms.

. lg(x)|
Yn(Rgs) = sup inf .q e
q€Q xRy o)* |disc g|V

Theorem 8.7. The Hermite constant for S -Integer rings of global fields of characteristic not equal

to 2 is finite.

Let go be a quadratic form over an S-integer ring Zx s and let Q be the set of quadratic forms

which are GLy(K) equivalent to g. Then we define the Hermite invariant of g to be yy(R, q) =

SUP,co infxE(R%S). 9L We will first provide a proof of the finiteness of the Hermite invariant for

|disc g| N

an arbitrary class of quadratic forms in the number and function field cases separately and then use

those theorems to prove this main theorem.
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Theorem 8.8. Let K be a number field, let S be a finite set of places including all the infinite
places, Zg s its ring of S-integers, N a positive integer, and K = [] es K,. For any non-degenerate

GLN(K) equivalence class of quadratic forms of g € K[xi, ..., xy], we have

Ax(@)T

Yw(Zks,q) < — 1
|disc g|V

Proof. First we pick an equivalence class of quadratic forms, Q,, that are K-equivalent to a par-

ticular non-degenerate representative gj.

lg(x)|

Yno = sup inf -
disc g|¥

qeQo xe(Zii5)"

We can rewrite this expression varying over matrices instead of forms.

lqo(Mx)|
disc MTgoM|V
lqo(M x)|
disc go|™ |det MPN

YNO = sup inf
MeGLy(K) X(Z o)

= sup inf
MeGLy(K) X(Z o)

If we replace M with aM where a € K>

2
sup inf |go(aM x)| ey |a|” |go(Mx)|
. 1 - . 1
MeGLy(K) x€Z5)* |disc go|V [det a M| MeGLy(K) x€(Zis)* |disc go|¥ |arf* |det MI*Y
. Mx
= sup inf |40]( )
MeGLy(%) *Zi5)* |disc go|™ |det M|*'Y
= YnNO

Hence we can freely scale by squares in the value group without changing the value of the

fractions. Therefore we can either choose to scale each matrix so that the inf |go(Mx)| is one or p,
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or if the quadratic form is isotropic its value is zero and it can be safely ignored in the supremum.
We construct the set GL},(K) to be the representatives of each class of matrix under scaling that
gives 1.

We can scale inf |go(Mx)| so that it equals 1. In this case the term drops out of the equation

leaving simply:

1
Yno = Sup . 1 2/N
MeGL\(K) |disc g,|V |det M|

On the other side of the equation.

~2/N
A;}Z/N B (1r/{f {CovolA | Ais \/|q0|-admlss1ble})

I/N —

1/N

|disc gol |disc gol

And being +/|go|-admissible means that for all x € (ZV)* +/lgo(x)| > 1.

Just as before we change from varying over lattices to varying over matrices.

-2/N
( inf _{Covol MZ}{ | Vx € MZ} s, qo(x) > 1})

AI_VZ/ N MeGLy(%)

UN

|disc gol \disc go| ¥

But the covolume of this is simply the determinant of the matrix M.

-2/N
( inf {ldetMlleeMZ%S,qo(x)> 1})

A,_Vz/ N MeGLy(K)

N

; . T
|disc gol |disc go|¥

For each matrix we can select a representative of the coset given by scaling as above such that
the infimum of the absolute value of the quadratic form on the lattice is 1. This is the same set of

matrices as before. We introduce the a parameter that varies over scalars to allow us to cover the
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full range of matrices.

-2/N
( inf inf {|detaM| | Vx € ZY . qo(aMx) > 1})

Al_\,z/N MeGL)(K) aeK™

1/N

|disc gol \disc g,|

-2/N
(Me Ci;rz,f(m aienq;fx { oV |det M| | Vx € ZY ¢, go(@Mx) > 1})
‘N

) T
|disc go|¥

We have inf |go(Mx)| = 1 and there exists a sequence of a € K™ that approaches 1 from above
without becoming constant.

Then we can use that sequence to see that the @ will drop out of our equation.

-2/N
( inf inf {|det M| | Vx € ZY 5, go(@Mx) > 1})

Al_vz/ N MeGL)(K) aeK*

|disc go|'"Y

. L
|disc go| ¥

~2/N
( inf |detM|)

MeGL),(K)

. 1
|disc go|¥

We can take apply the negative from the exponent to take the reciprocal switching the infimum

to a supremum.

-2
A 1
di N Su,p 2/N |1 &
|disc gol MeGL, (%) |det M| |disc go|¥
1
= Sup 2/N | 1: 1
MeGL(K) |det M|~ |disc go|¥

YN0
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Therefore we can see that the two sides of the equation are in fact equal.

Theorem 8.9. Let K be a function field of characteristic not equal to 2, let S be a finite set of
places, Zg s its ring of S-integers, N a positive integer, and K = [] s K. For any non-degenerate

GLxN(K) equivalence class of quadratic forms of q € K[xy, ..., xyl, we have

PAg(q) ™

’)/N(ZK,S > Q) < K 1
|disc g|V

The proof of this theorem mirrors the proof in the number field case. The changes need to be
made because we can not necessarily reduce the infimum of every quadratic forms value to the
same square class as one and because there may not be a sequence approaching approaching 1 that
is non-constant. In both of these cases it introduces factors of / cardinality of the constant field.

The equality still holds with some power of [ introduced.

Proof of Theorem 8.7. There are a finite number of square classes in any of our local fields and
hence we can apply the appropriate one of the two theorems in each case. Further since we present
a lower bound on the lattice constant, this produces a bound on each of the classes of quadratic

forms. Hence we have the desired upper bound showing finiteness. O
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Appendix A

Appendix

|A] (A,B,C) | |A] (A,B,C) | |A| (A,B,C) | |A] (A,B,C)
Table A.1: Representatives for 2779 SL;(Z)-equivalence Classes of Regular Binary Forms

3 (1,1,1) 4 (1,0,1) 7 (1,1,2) 8 (1,0,2)
11 (1,1,3) 12 (1,0,3) 15 (1,1,4) 15 (2,1,2)
16 (1,0,4) 19 (1,1,5) 20 (1,0,5) 20 (2,2,3)
24 (1,0,6) 24 (2,0,3) 27 (1,1,7) 28 (1,0,7)
32 (1,0,8) 32 (3,2,3) 35 (1,1,9) 35 (3,1,3)
36 (1,0,9) 36 (2,2,5) 39 (2,%1,5) 40 (1,0, 10)
40 (2,0,5) 43 (1,1,11) 48 (1,0,12) 48 (3,0,4)
51 (1,1,13) 51 (3,3,5) 52 (1,0,13) 52 (2,2,7)
55 2,£1,7) 56 (3,£2,5) 60 (1,0,15) 60 (3,0,5)
63 (2,£1,8) 64 (1,0, 16) 64 4,4,5) 67 (1,1,17)
68 (3,£2,6) 72 (1,0,18) 72 (2,0,9) 75 (1,1,19)
75 (3,3,7) 80 3,£2,7) 84 (1,0,21) 84 (2,2,11)
84 (3,0,7) 84 (5,4,5) 88 (1,0,22) 88 (2,0,11)
91 (1,1,23) 91 (5,3,5) 96 (1,0,24) 96 (3,0,8)
96 4,4,7) 96 (5,2,5) 99 (1,1,25) 99 (5,1,5)
100 (1,0,25) 100 (2,2,13) 112 (1,0,28) 112 (4,0,7)
115 (1,1,29) 115 (5,5,7) 120 (1,0,30) 120 (2,0,15)
120 (3,0, 10y 120 (5,0,6) 123 (1,1,31) 123 (3,3,11)
128 (3,%2,11) 132 (1,0,33) 132 (2,2,17) 132 (3,0,11)
132 (6,6,7) 136 (5,+2,7) 144 (5,+4,8) 147 (1,1,37)
147 (3,3,13) 148 (1,0,37) 148 (2,2,19) 155 (3,%1,13)
156 (5,%2,8) 160 (1,0,40) 160 4,4,11) 160 (5,0,8)
160 (7,6,7) 163 (1,1,41) 168 (1,0,42) 168 (2,0,21)
168 (3,0,14) 168 (6,0,7) 171 (5,+3,9) 180 (1,0,45)
180 (2,2,23) 180 (5,0,9) 180 (1,4,7) 184 (5, +4,10)
187 (1,1,47) 187 (1,3,7) 192 (1,0,48) 192 (3,0, 16)
192 (4,4,13) 192 (7,2,7) 195 (1,1,49) 195 3,3,17)
195 (5,5,11) 195 (1,1,7) 196 (5,%2,10) 203 3,x1,17)
208 (7,+4,8) 219 (5,£1,11) 220 (7,£2,8) 224 (3,+2,19)
224 (5,+4,12) 228 (1,0,57) 228 (2,2,29) 228 (3,0,19)
228 (6,6,11) 232 (1,0,58) 232 (2,0,29) 235 (1,1,59)
235 (5,5,13) 240 (1,0,60) 240 (3,0,20) 240 (4,0, 15)
240 (5,0,12) 252 (8,+6,9) 256 (5,+2,13) 259 (5,+1,13)
260 (3,+2,22) 260 (6,+2,11) 264 (5,+4,14) 264 (7,+4,10)
267 (1,1,67) 267 (3,3,23) 275 (3,%1,23) 276 (5,%2,14)
276 (7,+2,10) 280 (1,0,70) 280 (2,0,35) 280 (5,0,14)
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Al (A, B,C) Al (A, B,C) Al (A, B,C) Al (A, B,C)
280 (7,0, 10) 288 (1,0,72) 288 (4.4,19) 288 (8,0,9)
288 (8,8,11) 291 (5,43, 15) 292 (7,%4,11) 308 (3,42,26)
308 (6,+2,13) 312 (1,0,78) 312 (2,0,39) 312 (3,0,26)
312 (6,0,13) 315 (1,1,79) 315 (5,5,17) 315 (7,7,13)
315 (9,9,11) 320 (3,2,27) 320 (7,%4,12) 323 (3,%1,27)
328 (7,+6,13) 336 (5,%2,17) 336 (8,+4,11) 340 (1,0,85)
340 (2,2,43) 340 (5,0,17) 340 (10,10, 11) 352 (1,0,88)
352 (4,4,23) 352 (8,0,11) 352 (8,8,13) 355 (7,43,13)
360 (7,42,13) 360 (9,46, 11) 363 (7,%1,13) 372 (1,0,93)
372 (2,2,47) 372 (3,0,31) 372 (6,6,17) 384 (5, +4,20)
384 (7,46, 15) 387 (9,43, 11) 388 (7,42, 14) 400 (8,+4,13)
403 (1,1,101) 403 (11,9, 11) 408 (1,0,102) 408 (2,0,51)
408 (3,0,34) 408 (6,0,17) 420 (1,0, 105) 420 (2,2,53)
420 (3,0,35) 420 (5,0,21) 420 (6,6,19) 420 (7,0,15)
420 (10,10, 13) 420 (11,8,11) 427 (1,1,107) 427 (7,7,17)
435 (1,1,109) 435 (3,3,37) 435 (5,5,23) 435 (11,7,11)
448 (1,0,112) 448 (4,4,29) 448 (7,0, 16) 448 (11,6,11)
456 (5,42,23) 456 (10,8, 13) 468 (7,46, 18) 468 (9,6, 14)
475 (7,%1,17) 480 (1,0, 120) 480 (3,0,40) 480 (4,4,31)
480 (5,0,24) 480 (8,0,15) 480 (8,8,17) 480 (11,2, 11)
480 (12,12,13) 483 (1,1,121) 483 (3,3,41) 483 (7,7,19)
483 (11,1,11) 504 (5,+4,26) 504 (10, +4, 13) 507 (7,45,19)
520 (1,0, 130) 520 (2,0,65) 520 (5,0,26) 520 (10,0, 13)
508 (7,+2,19) 508 (8, +4,17) 532 (1,0,133) 532 (2,2,67)
532 (7,0,19) 532 (13,12, 13) 544 (5,+4,28) 544 (7,+4,20)
552 (7,46,21) 552 (11,+8, 14) 555 (1,1,139) 555 (3,3,47)
555 (5,5,29) 555 (13,11, 13) 564 (5,+4,29) 564 (10, +6, 15)
568 (11,+2,13) 576 (5,+2,29) 576 (9,+6,17) 580 (7,+6,22)
580 (11,46, 14) 592 (8,+4,19) 595 (1,1, 149) 595 (5,5,31)
595 (7,7,23) 595 (13,9,13) 600 (7,%4,22) 600 (11, +4, 14)
603 (9,+3,17) 612 (7,+2,22) 612 (11, +2, 14) 616 (5,+2,31)
616 (10,8, 17) 624 (5,+4,32) 624 (11, +6, 15) 627 (1,1,157)
627 (3,3,53) 627 (11,11,17) 627 (13,7,13) 640 (7,+2,23)
640 (11,48, 16) 651 (5,+3,33) 651 (11, £3, 15) 660 (1,0, 165)
660 (2,2,83) 660 (3,0,55) 660 (5,0,33) 660 (6,6,29)
660 (10,10, 19) 660 (11,0, 15) 660 (13,4,13) 667 (11, +9, 17)
672 (1,0, 168) 672 (3,0,56) 672 (4,4,43) 672 (7,0,24)
672 (8,0,21) 672 (8,8,23) 672 (12,12,17) 672 (13,2,13)
708 (1,0,177) 708 (2,2,89) 708 (3,0,59) 708 (6,6,31)
715 (1,1,179) 715 (5,5,37) 715 (11,11, 19) 715 (13,13,17)
720 (7,+6,27) 720 (8,+4,23) 723 (11, £5,17) 736 (5,42,37)
736 (11,+10, 19) 760 (1,0, 190) 760 (2,0,95) 760 (5,0,38)
760 (10,0, 19) 763 (13, £11,17) 768 (7,+4,28) 768 (13, +8, 16)
772 (11,8, 19) 792 (9, +6,23) 792 (13,12, 18) 795 (1,1,199)
795 (3,3,67) 795 (5,5,41) 795 (15,15,17) 819 (5,+1,41)
819 (9,+3,23) 820 (11, +4, 19) 820 (13, +8, 17) 832 (7,%6,31)
832 (11,42, 19) 840 (1,0,210) 840 (2,0,105) 840 (3,0,70)
840 (5,0,42) 840 (6,0,35) 840 (7,0,30) 840 (10,0,21)
840 (14,0, 15) 852 (7,+4,31) 852 (14, +10, 17) 868 (11, +10,22)
868 (13,4, 17) 880 (7,+4,32) 880 (13,2, 17) 900 (9,+6,26)
900 (13,+6,18) 912 (8, +4,29) 912 (11,+10,23) 915 (7,+3,33)
915 (11,+3,21) 928 (1,0,232) 928 (4,4,59) 928 (8,0,29)
928 (8,8,31) 952 (11,+4,22) 952 (13,+6,19) 955 (7,+5,35)
960 (1,0,240) 960 (3,0,80) 960 (4,4,61) 960 (5,0,48)
960 (12,12,23) 960 (15,0, 16) 960 (16,16, 19) 960 (17,14,17)
987 (11,+5,23) 987 (13,+1,19) | 1003 (11,+3,23) | 1008 (9, +6,29)

1008 (11,+2,23) | 1012 (1,0,253) | 1012 (2,2,127) | 1012 (11,0,23)

1012 17,12,17) | 1027 (7,£3,37) | 1032 (7,+2,37) | 1032 (14, +12,21)

1035 (7,+1,37) | 1035 (9,43,29) | 1056 (5,+2,53) | 1056 (7,+6,39)

1056 (13,6,21y | 1056 (15,+12,20) | 1060 (7,+2,38) | 1060 (14, 2, 19)

1092 (1,0,273) | 1092 (2,2,137) | 1092 (3,0,91) | 1092 (6,6,47)

1092 (7,0,39) | 1092 (13,0,21) | 1092 (14,14,23) | 1092 (17,8,17)

1120 (1,0,280) | 1120 4,471y | 1120 (5,0,56) | 1120 (7,0,40)

1120 (8,0,35) | 1120 (8,8,37y | 1120 (17,6,17) | 1120 (19,18, 19)
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|A] (A, B,C) |A] (A,B,C) |A] (A, B,C) |A] (A,B,C)
1128 (11, 4,26y | 1128 (13,+4,22) | 1131 (5,%3,57) | 1131 (15, 3, 19)
1140 (7,+6,42) | 1140 (11,+2,26) | 1140 (13,+2,22) | 1140 (14, +6,21)
1152 (11,£6,27) | 1152 (16,+8,19) | 1155 (1,1,289) | 1155 (3,3,97)
1155 (5,5,59) | 1155 (7,7,43y | 1155 (11,11,29) | 1155 (15,15,23)
1155 A7,1,17) | 1155 (19,17,19) | 1204 (5,+4,61) | 1204 (10, +6,31)
1227 (11,+7,29) | 1240 (11,+6,29) | 1240 (17,+16,22) | 1243 (17, +7,19)
1248 (1,0,312) | 1248 (3,0,104) | 1248 (4,4,79) | 1248 (8,0,39)
1248 (8,8,41) | 1248 (12,12,29) | 1248 (13,0,24) | 1248 (19,14, 19)
1275 (11,+1,29) | 1275 (13,+5,25) | 1288 (13,8,26) | 1288 (17, £2, 19)
1312 (7,+2,47) | 1312 (13,+12,28) | 1320 (1,0,330) | 1320 (2,0,165)
1320 (3,0,110) | 1320 (5,0,66) | 1320 (6,0,55) | 1320 (10,0, 33)
1320 (11,0,30) | 1320 (15,0,22) | 1332 (9,+6,38) | 1332 (18,+6,19)
1344 (5,+4,68) | 1344 (11,+8,32) | 1344 (15,+6,23) | 1344 (17, +4,20)
1360 (8,%4,43) | 1360 (11,%2,31) | 1380 (1,0,345) | 1380 (2,2,173)
1380 (3,0,115) | 1380 (5,0,69) | 1380 (6,6,59) | 1380 (10,10,37)
1380 (15,0,23) | 1380 (19,8,19) | 1387 (13,+11,29) | 1395 (13, £3,27)
1395 (17,+13,23) | 1408 (13,+10,29) | 1408 (16,+8,23) | 1411 (5,%3,71)
1428 (1,0,357) | 1428 (2,2,179) | 1428 (3,0,119) | 1428 (6,6,61)
1428 (7,0,51) | 1428 (14,14,29) | 1428 (17,0,21) | 1428 (19,4, 19)
1435 (1,1,359) | 1435 (5,5,73y | 1435 (7,7,53) | 1435 (19,3, 19)
1440 (7,+4,52) | 1440 (9,+6,41) | 1440 (11,+10,35) | 1440 (13, +4,28)
1443 (11,+3,33) | 1443 (17,+11,23) | 1467 (9,+3,41) | 1488 (8,+4,47)
1488 (17,+12,24) | 1507 (13,+1,29) | 1540 (1,0,385) | 1540 (2,2,193)
1540 (5,0,77y | 1540 (7,0,55) | 1540 (10,10,41) | 1540 (11,0,35)
1540 (14,14,31) | 1540 (22,22,23) | 1555 (17,+3,23) | 1560 (7,%6,57)
1560 (14,+8,29) | 1560 (17,+2,23) | 1560 (19,+6,21y | 1600 (13,+8,32)
1600 (17,+10,25) | 1632 (1,0,408) | 1632 (3,0,136) | 1632 (4,4,103)
1632 (8,0,51) | 1632 (8,8,53) | 1632 (12,12,37) | 1632 (17,0,24)
1632 (23,22,23) | 1635 (11,+9,39) | 1635 (13,+9,33) | 1659 (5,+1,83)
1659 (15,£9,29) | 1672 (7,+6,61) | 1672 (14, 8,31y | 1680 (8,%4,53)
1680 (11,+6,39) | 1680 (13,+6,33) | 1680 (19,+12,24) | 1683 (7,45,61)
1683 9,+3,47) | 1716 (5,+2,86) | 1716 (10,+2,43) | 1716 (15,+12,31)
1716 (17,+16,29) | 1752 (13,+4,34y | 1752 (17,+4,26) | 1768 (11, +6,41)
1768 (22,+16,23) | 1771 (5,+3,89) | 1771 (13,+7,35) | 1780 (13,+12,37)
1780 (19,+14,26) | 1792 (11,+10,43) | 1792 (16,+8,29) | 1824 (5,+4,92)
1824 (13,+10,37) | 1824 (15,+6,31) | 1824 (20,+4,23) | 1827 (17, +3,27)
1827 (19,+15,27) | 1848 (1,0,462) | 1848 (2,0,231) | 1848 (3,0,154)
1848 (6,0,77) | 1848 (7,0,66) | 1848 (11,0,42) | 1848 (14,0,33)
1848 (21,0,22) | 1860 (7,+4,67) | 1860 (13,8,37) | 1860 (14, +10,35)
1860 (21,+18,26) | 1920 (11,+4,44y | 1920 (13,+2,37) | 1920 (16, +8,31)
1920 (17,+16,32) | 1947 (13,49,39) | 1947 (17,+5,29) | 1992 (13, +6,39)
1992 (23,+20,26) | 1995 (1,1,499) | 1995 (3,3,167) | 1995 (5,5,101)
1995 (1,7,73) | 1995 (15,15,37) | 1995 (19,19,31) | 1995 (21,21,29)
1995 (23,11,23) | 2016 (5,+2,101) | 2016 (13,+8,40) | 2016 (19, +6,27)
2016 (20,+12,27) | 2020 (11,+2,46) | 2020 (22,+2,23) | 2035 (7,43,73)
2035 (19,+13,29) | 2040 (7,+2,73) | 2040 (13,+12,42) | 2040 (14, +12,39)
2040 (21,+12,26) | 2067 (11,+1,47) | 2067 (19,+17,31) | 2080 (1,0,520)
2080 (4,4,131) | 2080 (5,0,104) | 2080 (8,0,65) | 2080 (8,8,67)
2080 (13,0,40y | 2080 (20,20,31) | 2080 (23,6,23) | 2088 (9, +6,59)
2088 (18,+12,31) | 2100 (11,+10,50) | 2100 (17,+12,33) | 2100 (19,+16,31)
2100 (22,+10,25) | 2112 (7,+4,76) | 2112 (17,+8,32) | 2112 (19, +4,28)
2112 (21,+18,29) | 2115 (9,43,59) | 2115 (13,+11,43) | 2128 (8,+4,67)
2128 (13,£2,41) | 2139 (5,+1,107y | 2139 (15,+9,37) | 2163 (11, £9,51)
2163 (17,+9,33) | 2208 (7,+2,79) | 2208 (11,+6,51) | 2208 (17, +6,33)
2208 (21,+12,28) | 2212 (17,+10,34) | 2212 (19,+12,31) | 2244 (5,4, 113)
2244 (10,6,57) | 2244 (15,+6,38) | 2244 (19,+6,30) | 2272 (11, +4,52)
2272 (13,4,44) | 2275 (19,9,31) | 2275 (23,+5,25) | 2280 (7,+4,82)
2280 (14,4,41) | 2280 (17,+10,35) | 2280 (21,+18,31) | 2340 (11, 6, 54)
2340 (19,+4,31) | 2340 (22,+6,27) | 2340 (23,+12,27) | 2368 (19, +8,32)
2368 (23,+22,31) | 2392 (7,+4,86) | 2392 (14, +4,43) | 2400 (7,+6,87)
2400 (11,+8,56) | 2400 (21,+6,29) | 2400 (25,+20,28) | 2436 (5,+2,122)
2436 (10,+2,61) | 2436 (15,+12,43) | 2436 (23,+18,30) | 2451 (5,+3,123)
2451 (15,+3,41) | 2464 (5,+4,124y | 2464 (17,+16,40) | 2464 (19, +14, 35)
2464 (20,+4,31) | 2475 (23,+3,27) | 2475 (25,+15,27) | 2496 (5,+2,125)
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|A] (A, B,C) |A] (A,B,C) |A] (A, B,C) |A] (A,B,C)
2496 (11,+10,59) | 2496 (15,+12,44y | 2496 (20,+12,33) | 2520 (9,+6,71)
2520 (17,+8,38) | 2520 (18,+12,37) | 2520 (19, +8,34) | 2580 (11, +4,59)
2580 (17,+2,38) | 2580 (19,+2,34) | 2580 (22,+18,33) | 2632 (19, +16,38)
2632 (23,+6,29) | 2640 (8,+4,83) | 2640 (13,8,52) | 2640 (19, +18,39)
2640 (24,+12,29) | 2667 (17,£11,41) | 2667 (23,+1,29) | 2688 (13, +4,52)
2688 (16,+8,43) | 2688 (17,+10,41) | 2688 (23,+16,32) | 2715 (7,+1,97)
2715 (21,+15,35) | 2755 (13,+1,53) | 2755 (17,+13,43) | 2760 (11,10, 65)
2760 (13,+10,55) | 2760 (22,+12,33) | 2760 (26,+16,29) | 2772 (13, +6, 54)
2772 (17,4,41) | 2772 (26,+6,27) | 2772 (27,+24,31) | 2788 (19, +10,38)
2788 (23,+8,31) | 2832 (8,+4,89) | 2832 (24,+12,31) | 2880 (7,+2,103)
2880 (23,+8,32) | 2880 (27,+24,32) | 2880 (27,+12,28) | 2907 (27,+21,31)
2907 (27,+15,29) | 2968 (13,+10,59) | 2968 (26,+16,31) | 3003 (1,1,751)
3003 (3,3,251) | 3003 (7,7,109) | 3003 (11,11,71) | 3003 (13,13,61)
3003 (21,21,41) | 3003 (29,19,29) | 3003 (31,29,31) | 3040 (1,0,760)
3040 (4,4,191) | 3040 (5,0,152) | 3040 (8,0,95) | 3040 (8,8,97)
3040 (19,0,40) | 3040 (20,20,43) | 3040 (29,18,29) | 3060 (9, 6, 86)
3060 (11,+8,71) | 3060 (18,+6,43) | 3060 (22,+14,37) | 3108 (11, +4,71)
3108 (13,+8,61) | 3108 (22,+18,39) | 3108 (26,+18,33) | 3168 (9,6, 89)
3168 (13,+2,61) | 3168 (19,+10,43) | 3168 (23,+12,36) | 3172 (19, +18, 46)
3172 (23,+18,38) | 3192 (11,+8,74) | 3192 (17,+2,47) | 3192 (22, +8,37)
3192 (31,+30,33) | 3220 (11,+6,74) | 3220 (13,+2,62) | 3220 (22, +6,37)
3220 (26,+2,31) | 3243 (17,+15,51) | 3243 (19,+5,43) | 3315 (1,1,829)
3315 (3,3,277) | 3315 (5,5,167) | 3315 (13,13,67) | 3315 (15, 15,59)
3315 (17,17,53) | 3315 (29,7,29) | 3315 (31,23,31) | 3355 (13,+5,65)
3355 (23,+7,37) | 3360 (1,0,840) | 3360 (3,0,280) | 3360 (4,4,211)
3360 (5,0,168) | 3360 (7,0,120) | 3360 (8,0,105) | 3360 (8,8,107)
3360 (12,12,73) | 3360 (15,0,56) | 3360 (20,20,47) | 3360 (21,0, 40)
3360 (24,0,35) | 3360 (24,24,41) | 3360 (28,28,37) | 3360 (29,2,29)
3360 (31,22,31) | 3432 (17,+6,51) | 3432 (19, +8,46) | 3432 (23, +8,38)
3432 (31,+28,34) | 3480 (13,2,67) | 3480 (19,+4,46) | 3480 (23,+4,38)
3480 (26,+24,39) | 3507 (13,49,69) | 3507 (23,+9,39) | 3520 (7,+6,127)
3520 (13,4,68) | 3520 (17,+4,52) | 3520 (28,+20,35) | 3588 (11, +8,83)
3588 (17,+4,53) | 3588 (22,+14,43) | 3588 (33,+30,34) | 3627 (9,+3,101)
3627 (11,+5,83) | 3640 (11,+10,85) | 3640 (17,+10,55) | 3640 (22,+12,43)
3640 (31,+24,34) | 3648 (11,+2,83) | 3648 (23,+20,44) | 3648 (29, +8,32)
3648 (32,+24,33) | 3712 (16,+8,59) | 3712 (31,+16,32) | 3795 (13, +1,73)
3795 (17,%9,57)y | 3795 (19,+9,51) | 3795 (29,+27,39) | 3808 (11,+8,88)
3808 (13,+12,76) | 3808 (19,+12,52) | 3808 (29,+22,37) | 3828 (7,+6,138)
3828 (14, £6,69) | 3828 (21,+6,46) | 3828 (23,+6,42) | 3840 (16, +8,61)
3840 (17,+6,57) | 3840 (19,+6,51) | 3840 (23,+22,47) | 3843 (9,+3,107)
3843 (17,+13,59) | 4020 (13,+6,78) | 4020 (17,+14,62) | 4020 (26, +6,39)
4020 (31,+14,34) | 4032 (9,6,113) | 4032 (11,+4,92) | 4032 (23, +4,44)
4032 (29,+12,36) | 4048 (8,+4,127) | 4048 (17,+10,61) | 4123 (17, +5,61)
4123 (29,+13,37) | 4128 (7,4,148) | 4128 (21,+18,53) | 4128 (23, +14,47)
4128 (28,+4,37) | 4180 (17,+6,62) | 4180 (23,+12,47) | 4180 (29, +24,41)
4180 (31,+6,34) | 4260 (13,+2,82) | 4260 (23,+8,47) | 4260 (26, +2,41)
4260 (31,+24,39) | 4323 (19,+3,57) | 4323 (23,+1,47) | 4368 (8, +4,137)
4368 (17,+16,68) | 4368 (23,+18,51) | 4368 (24,+12,47) | 4420 (7,+2,158)
4420 (14,+2,79) | 4420 (19,+8,59) | 4420 (35,+30,38) | 4440 (11,2, 101)
4440 (19,+14,61) | 4440 (22,+20,55) | 4440 (33,+24,38) | 4452 (11,6, 102)
4452 (17,6,66) | 4452 (22,+6,51) | 4452 (33,+6,34) | 4480 (16,+8,71)
4480 (17,+12,68) | 4480 (19,+2,59) | 4480 (32,+16,37) | 4488 (13, +6,87)
4488 (26,+20,47) | 4488 (29,+6,39) | 4488 (31,+10,37) | 4512 (11, 8, 104)
4512 (13,+8,88) | 4512 (31,+18,39) | 4512 (33,+30,41) | 4515 (13, +3,87)
4515 (19,+11,61) | 4515 (23,+19,53) | 4515 (29,+3,39) | 4680 (9,6, 131)
4680 (18,+12,67) | 4680 (23,+14,53) | 4680 (31,+30,45) | 4740 (11,10, 110)
4740 (22,+10,55) | 4740 (29,+4,41) | 4740 (33,+12,37) | 4788 (9, +6, 134)
4788 (13,+10,94) | 4788 (18,+6,67) | 4788 (26,+10,47) | 4960 (11, £10, 115)
4960 (17,+2,73) | 4960 (23,+10,55) | 4960 (29,+12,44) | 4992 (16, +8,79)
4992 (19,+10,67) | 4992 (29, +24,48) | 4992 (32,+16,41) | 5083 (19,+3,67)
5083 (31,+1,41) | 5115 (7,+3,183) | 5115 (17,+11,77) | 5115 (21, +3,61)
5115 (35,+25,41) | 5152 (13,%+10,101) | 5152 (17,+4,76) | 5152 (19, +4, 68)
5152 (31,+26,47) | 5160  (13,+12,102) | 5160 (17,+12,78) | 5160 (26,+12,51)
5160 (34,+12,39) | 5187 (11,+7,119) | 5187 (17,+£7,77y | 5187 (29,+27,51)
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A (A,B,C) A (A,B,C) |A| (A,B,C) |A] (A,B,C)
5187 (33,+15,41) 5208 (19, +£6,69) 5208 (23,+6,57) 5208 (37,+34,43)
5208 (38,+32,41) 5280 (1,0,1320) 5280 (3,0, 440) 5280 (4,4,331)
5280 (5,0,264) 5280 (8,0, 165) 5280 (8,8,167) 5280 (11,0, 120)
5280 (12,12,113) 5280 (15,0, 88) 5280 (20,20,71) 5280 (24,0,55)
5280 (24,24,61) 5280 (33,0,40) 5280 (37,14,37) 5280 (40,40, 43)
5280 (41,38,41) 5355 (9, +3, 149) 5355 (13,+1,103) 5355 (23,+21,63)
5355 (31,£15,45) 5412 (13, £10, 106) 5412 (23,+4,59) 5412 (26,£10,53)
5412 (39, +36,43) 5440 (11, +4,124) 5440 (31, +4,44) 5440 (32,+24,47)
5440 (32, +8,43) 5460 (1,0,1365) 5460 (2,2,683) 5460 (3,0,455)
5460 (5,0,273) 5460 (6,6,229) 5460 (7,0,195) 5460 (10, 10, 139)
5460 (13,0, 105) 5460 (14,14,101) 5460 (15,0,91) 5460 (21,0,65)
5460 (26,26,59) 5460 (30,30,53) 5460 (35,0,39) 5460 (37,4,37)
5460 (42,42,43) 5467 (19,+9,73) 5467 (31, +19,47) 5520 (8,+4,173)
5520 (19, £16,76) 5520 (24,+£12,59) 5520 (37, +20,40) 5712 (8,+4,179)
5712 (19, +8,76) 5712 (24,+12,61) 5712 (29, +28,56) 5952 (17, +10, 89)
5952 (29, +14,53) 5952 (32,+24,51) 5952 (32, £8,47) 6160 (8,+4,193)
6160 (23,+2,67) 6160 (31, +£28,56) 6160 (40, +20,41) 6195 (11, £3, 141)
6195 (31, +£25,55) 6195 (33, +3,47) 6195 (37,+13,43) 6240 (7,+2,223)
6240 (17,+4,92) 6240 (19,+12,84) 6240 (21,+12,76) 6240 (23, +4,68)
6240 (28,+12,57) 6240 (29, £16, 56) 6240 (35,+30,51) 6307 (19, +£1, 83)
6307 (23,+15,71) 6420 (11, £2, 146) 6420 (22,+2,73) 6420 (31, +20,55)
6420 (33,+24,53) 6435 (9,+3,179) 6435 (17,+5,95) 6435 (19, £5, 85)
6435 (37,%15,45) 6528 (16,8, 103) 6528 (23,£2,71) 6528 (32,£16,53)
6528 (37,+24,48) 6580 (11, +8,151) 6580 (17,+4,97) 6580 (22,+14,77)
6580 (34, +£30, 55) 6612 (17, +16,101) 6612 (23,+14,74) 6612 (34,+18,51)
6612 (37,+14,46) 6688 (7,+2,239) 6688 (28,+12,61) 6688 (31, +16,56)
6688 (37,+34,53) 6708 (23,+10,74) 6708 (29, +22,62) 6708 (31, +£22,58)
6708 (37,+10,46) 6720 (11,10, 155) 6720 (13,+12,132) 6720 (19, £14,91)
6720 (31, +10, 55) 6720 (32, +£24,57) 6720 (32, +8,53) 6720 (33,+12,52)
6720 (39,+12,44) 6820 (19,+18,94) 6820 (29,£16,61) 6820 (37,+32,53)
6820 (38,+18,47) 6840 (9,+6,191) 6840 (18,+12,97) 6840 (29, +2,59)
6840 (43, +£30,45) 7008 (13, +8,136) 7008 (17, +£8,104) 7008 (39, +18,47)
7008 (43,+42,51) 7035 (11,7, 161) 7035 (23,£7,77) 7035 (31,+23,61)
7035 (33, +15,55) 7072 (11, +10, 163) 7072 (23,+14,79) 7072 (29,+2,61)
7072 (41,+12,44) 7140 (13,6, 138) 7140 (19,+£2,94) 7140 (23,+6,78)
7140 (26, +6,69) 7140 (29, £20, 65) 7140 (37, +36,57) 7140 (38, +2,47)
7140 (39, +6,46) 7315 (13,11, 143) 7315 (29, £15,65) 7315 (31,+£1,59)
7315 (37,+23,53) 7392 (1,0, 1848) 7392 (3,0,616) 7392 (4,4,463)
7392 (7,0,264) 7392 (8,0,231) 7392 (8,8,233) 7392 (11,0, 168)
7392 (12,12,157) 7392 (21,0, 88) 7392 (24,0,77) 7392 (24,24, 83)
7392 (28,28,73) 7392 (33,0, 56) 7392 (43,2,43) 7392 (44,44, 53)
7392 (47,38,47) 7395 (7,+5,265) 7395 (21, +9, 89) 7395 (31,+13,61)
7395 (35, +5,53) 7480 (19, +14,101) 7480 (23, +8,82) 7480 (38, +24,53)
7480 (41, +8,46) 7540 (17,+12,113) 7540 (23,+2,82) 7540 (34,+22,59)
7540 (41, +2,46) 7755 (7,+1,277) 7755 (19, £15, 105) 7755 (21, +15,95)
7755 (35,%15,57) 7968 (13,£12,156) 7968 (23,+6,87) 7968 (29, £6, 69)
7968 (39,+12,52) 7995 (19, +17,109) 7995 (23,+3,87) 7995 (29, £3,69)
7995 (37,+21,57) 8008 (17, +4,118) 8008 (29, +24,74) 8008 (34, +4,59)
8008 (37,+24,58) 8052 (19, £2,106) 8052 (31,+16,67) 8052 (38,+2,53)
8052 (41, +36,57) 8160 (7,+4,292) 8160 (13, +2,157) 8160 (21, +18,101)
8160 (28,+4,73) 8160 (35,10, 59) 8160 (39, +24,56) 8160 (41, +32,56)
8160 (43, +£28,52) 8320 (16,+8,131) 8320 (23,+12,92) 8320 (31,+22,71)
8320 (32,£16,67) 8352 (9, £6,233) 8352 (31,+24,72) 8352 (36,+12,59)
8352 (37,+26,61) 8512 (13, +4,164) 8512 (32,+24,71) 8512 (32,+8,67)
8512 (41, +4,52) 8547 (17, 15, 129) 8547 (23,+3,93) 8547 (31, £3,69)
8547 (43,+15,51) 8580 (7,+4,307) 8580 (14, £10, 155) 8580 (21, £18, 106)
8580 (29,+2,74) 8580 (31, £10,70) 8580 (35,+10,62) 8580 (37,+£2,58)
8580 (42,+18,53) 8680 (13,+2,167) 8680 (26, +24,89) 8680 (29, +22,79)
8680 (43, +36,58) 8715 (19, £5, 115) 8715 (23,+5,95) 8715 (41, +31,59)
8715 (43,+33,57) 8835 (11, +3,201) 8835 (33,+3,67) 8835 (41, +29,59)
8835 (43, +25,55) 8932 (13,+8,173) 8932 (19, +6,118) 8932 (26, +18,89)
8932 (38, +6,59) 9108 (9, +£6,254) 9108 (17,+2,134) 9108 (18, +6,127)
9108 (34,+2,67) 9120 (7,+6,327) 9120 (17,+14,137) 9120 (21, +6,109)
9120 (28, +£20, 85) 9120 (31, £26,79) 9120 (35, £20, 68) 9120 (41, £8,56)
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A (A,B,C) A (A,B,C) |A| (A, B,C) [A| (A, B,C)
9120 (51, +48,56) 9240 (13,+4,178) 9240 (17,+12,138) 9240 (23,+12,102)
9240 (26, +4,89) 9240 (34,£12,69) 9240 (37, £26,67) 9240 (39, +30, 65)
9240 (46,+12,51) 9568 (7,+6,343) 9568 (28, +20, 89) 9568 (43, £8,56)
9568 (53, +48,56) 9867 (29, +15,87) 9867 (37,£7,67) 9867 (43, +£25,61)
9867 (47,+35,59) | 10080 (9,+6,281) | 10080 (17,£16,152) | 10080 (19,16, 136)

10080 (36,+12,71) | 10080 (37,+24,72) | 10080 (43,+38,67) | 10080 (45, +30,61)
10080 (47,+£42,63) | 10528 (19,+6,139) | 10528 (23,%12,116) | 10528 (29,£12,92)
10528 (41,+38,73) | 10560 (13,+10,205) | 10560 (19,+2,139) | 10560 (29, +24,96)
10560 (32,+24,87) | 10560 (32,+8,83) | 10560 (39,+36,76) | 10560 (41, +£10,65)
10560 (52,+36,57) | 10920 (11,+6,249) | 10920 (19,+10, 145) | 10920 (22,16, 127)
10920 (29,+10,95) | 10920 (33,+6,83) | 10920 (38,+28,77) | 10920 (55, +50,61)
10920 (57,+48,58) | 10948 (37,+2,74) | 10948 (41,+32,73) | 10948 (43,+24,67)
10948 (47,+12,59) | 11040 (11,+2,251) | 11040 (13,+6,213) | 11040 (29, +£26,101)
11040 (33,+24,88) | 11040 (39,+6,71) | 11040 (43,£22,67) | 11040 (44, £20,65)
11040 (52,+20,55) | 11067 (13,+3,213) | 11067 (37,+25,79) | 11067 (39,+3,71)
11067 (47,+5,59) | 11328 (31,+24,96) | 11328 (32,+24,93) | 11328 (32, £8,89)
11328 (43,+14,67) | 11715 (17,£7,173) | 11715 (29,+1,101) | 11715 (43,+29,73)
11715 (51,+27,61) | 11872 (13,+6,229) | 11872 (31,+30,103) | 11872 (41, +10,73)
11872 (52,+20,59) | 12160 (16,+8,191) | 12160 (29,+22,109) | 12160 (32,+16,97)
12160 (43,+40,80) | 12180 (13,+12,237) | 12180 (17,+14,182) | 12180 (26,+14,119)
12180 (34,+14,91) | 12180 (37,£20,85) | 12180 (39,+12,79) | 12180 (51,+48,71)
12180 (53,+40,65) | 12768 (11,+6,291) | 12768 (17,+4,188) | 12768 (31,+2,103)
12768 (33,+6,97) | 12768 (37,+16,88) | 12768 (44, +28,77) | 12768 (47, +4,68)
12768 (51,+30,67) | 12915 (9,+3,359) | 12915 (19,+9,171) | 12915 (45,+15,73)
12915 (53,+21,63) | 13195 (11,£7,301) | 13195 43,£7,77) | 13195 (47, +£23,73)
13195 (55,+15,61) | 13440 (16,+8,211) | 13440 (29,+4,116) | 13440 (31,+18,111)
13440 (32,£16,107) | 13440 (37,+18,93) | 13440 (41,+34,89) | 13440 (47, £40, 80)
13440 (48,+24,73) | 13728 (17,+12,204) | 13728 (19,+16,184) | 13728 (23,+16,152)
13728 (31,+6,111) | 13728 (37,+6,93) | 13728 (51,+12,68) | 13728 (53, +30,69)
13728 (57,+£54,73) | 13860 (9,+6,386) | 13860 (18,+6,193) | 13860 (23,20, 155)
13860 (31,+20,115) | 13860 (41,+30,90) | 13860 (45,+30,82) | 13860 (46, +26,79)
13860 (62,+42,63) | 13920 (13,+4,268) | 13920 (19,+8,184) | 13920 (23, +8,152)
13920 (39,+30,95) | 13920 (41,+26,89) | 13920 (52,+4,67) | 13920 (57, +30,65)
13920 (61,+54,69) | 14280 (11,+8,326) | 14280 (22,+8,163) | 14280 (23, +16, 158)
14280 (33,+30,115) | 14280 (46,+16,79) | 14280 (47,+14,77) | 14280 (55, +30,69)
14280 (59,+36,66) | 14560 (11,+2,331) | 14560 (17,+14,217) | 14560 (31,+14,119)
14560 (41,+6,89) | 14560 (43,+24,88) | 14560 (44, £20,85) | 14560 (53,+42,77)
14560 (55,+20,68) | 14763 (23,£7,161) | 14763 (47,+29,83) | 14763 (53,+17,71)
14763 (59,+39,69) | 14820 (17,£2,218) | 14820 (29,+12,129) | 14820 (34, +2,109)
14820 (43,+12,87) | 14820 (47,+28,83) | 14820 (51,+36,79) | 14820 (58, +46,73)
14820 (59,+44,71) | 16192 (17,+14,241) | 16192 (32,+24,131) | 16192 (32, +8,127)
16192 (61,+20,68) | 16555 (29,+27,149) | 16555 (37,+13,113) | 16555 (41, +3,101)
16555 (47,+41,97) | 17220 (17,+16,257) | 17220 (29, +8,149) | 17220 (31, +4,139)
17220 (34,+18,129) | 17220 (43,+18,102) | 17220 (51,+18,86) | 17220 (58, +50, 85)
17220 (62,+58,83) | 17472 (17,£2,257) | 17472 (23,+10,191) | 17472 (32,+24,141)
17472 (32,+8,137) | 17472 (47,£24,96) | 17472 (51,£36,92) | 17472 (59, £46, 83)
17472 (68,+36,69) | 17760 (11,+4,404) | 17760 (19,+10,235) | 17760 (33,+18,137)
17760 (44,+4,101) | 17760 (47,£10,95) | 17760 (55,+40,88) | 17760 (57, +48, 88)
17760 (61,+28,76) | 17952 (13,+12,348) | 17952 (29,+12,156) | 17952 (31, £20, 148)
17952 (37,£20,124) | 17952 (39,+12,116) | 17952 (47,+40,104) | 17952 (52,+12,87)
17952 (53,+42,93) | 18720 (9,+6,521) | 18720 (23,+18,207) | 18720 (31,+2,151)
18720 (36,+12,131) | 18720 (45,+30,109) | 18720 (53,+28,92) | 18720 (67,+24,72)
18720 (72,+48,73) | 19320 (17,+14,287) | 19320 (29,+20,170) | 19320 (34,20, 145)
19320 (41,+14,119) | 19320 (51,+48,106) | 19320 (53,+48,102) | 19320 (58, +£20, 85)
19320 (73,+68,82) | 19380 (13,+4,373) | 19380 (23,+20,215) | 19380 (26,+22,191)
19380 (39,+30,130) | 19380 (43,+20,115) | 19380 (46,+26,109) | 19380 (65, +30,78)
19380 (69, +66,86) | 19635 (19,£7,259) | 19635 (31,+9,159) | 19635 (37,+7,133)
19635 (41,+39,129) | 19635 (43,+39,123) | 19635 (53,£9,93) | 19635 (57, +45,95)
19635 (59,+37,89) | 20020 (19,+14,266) | 20020 (23,+6,218) | 20020 (37,16, 137)
20020 (38,+14,133) | 20020 (46, +6,109) | 20020 (47,40, 115) | 20020 (61, £54,94)
20020 (74,+58,79) | 20640 (13,+2,397) | 20640 (17,+10,305) | 20640 (39, +24,136)
20640 (51,+24,104) | 20640 (52,+28,103) | 20640 (61,+10,85) | 20640 (65, +50, 89)
20640 (68, +44,83) | 20832 (19,+12,276) | 20832 (23,+12,228) | 20832 (37, +6, 141)
20832 (41, £18,129) | 20832 (43,+18,123) | 20832 (47,+6,111) | 20832 (57,+12,92)
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A (A,B,C) A (A,B,C) |A| (A,B,C) |A] (A, B,C)
20832 (69,+12,76) | 21120 (16,+8,331) | 21120 (32,+16,167) | 21120 (37,+28, 148)
21120 (41,+6,129) | 21120 (43,+6,123) | 21120 (48,+24,113) | 21120 (61, +48,96)
21120 (71,+40,80) | 21840 (8,+4,683) | 21840 (24,+12,229) | 21840 (37, +8,148)
21840 (40, £20, 139) | 21840 (43,£2,127) | 21840 (53,+46,113) | 21840 (56,+28,101)
21840 (59,+52,104) | 22080 (19,+6,291) | 22080 (32,+24,177) | 22080 (32,+8,173)
22080 (37,+34,157) | 22080 (57,+6,97) | 22080 (59, +24,96) | 22080 (71, £70,95)
22080 (76, £44,79) | 22848 (19,£16,304) | 22848 (29,£2,197) | 22848 (32,424, 183)
22848 (32,+8,179) | 22848 (57,+54,113) | 22848 (61,+24,96) | 22848 (73, +72,96)
22848 (76,+60,87) | 24640 (23,+4,268) | 24640 (31,+6,199) | 24640 (32,+24,197)
24640 (32,+8,193) | 24640 (41, +40,160) | 24640 (59,50, 115) | 24640 (61,+2,101)
24640 (67,+4,92) | 27360 (9,+6,761) | 27360 (29, +4,236) | 27360 (36,+12,191)
27360 (43,+26,163) | 27360 (45,+30,157) | 27360 (59, +4,116) | 27360 (72,+48,103)
27360 (72,+24,97) | 29568 (16,+8,463) | 29568 (32,+16,233) | 29568 (43, +4,172)
29568 (47,+18,159) | 29568 (48,+24,157) | 29568 (53,%18,141) | 29568 (73,+56,112)
29568 (83,+48,96) | 29920 (19,+10,395) | 29920 (23,+16,328) | 29920 (41, £16, 184)
29920 (53,+48,152) | 29920 (67,30, 115) | 29920 (76,+28,101) | 29920 (79, +£10,95)
29920 (92,+76,97) | 31395 (17,+15,465) | 31395 (31,+15,255) | 31395 (43, +9,183)
31395 (47,+1,167) | 31395 (51,+15,155) | 31395 (61,+9,129) | 31395 (71,+49,119)
31395 (85,+15,93) | 32032 (17,+8,472) | 32032 (29,+10,277) | 32032 (37,+26,221)
32032 (59, +8,136) | 32032 (68,+60,131) | 32032 (71,+42,119) | 32032 (79, £68, 116)
32032 (89,+50,97) | 33915 (11,£3,771) | 33915 (33,+3,257) | 33915 (41, £19,209)
33915 (55,+25,157) | 33915 (61,+1,139) | 33915 (67,+11,127) | 33915 (77, +63,123)
33915 (79,+23,109) | 34720 (13,+4,668) | 34720 (29, +14,301) | 34720 (43, £14,203)
34720 (52,+4,167) | 34720 (65,+30,137) | 34720 (79,+44,116) | 34720 (89, +48, 104)
34720 (91, £56,104) | 36960 (13,+8,712) | 36960 (17,+£10,545) | 36960 (23, £22,407)
36960 (37,+22,253) | 36960 (39,+18,239) | 36960 (51,+24,184) | 36960 (52, +44,187)
36960 (65,60, 156) | 36960 (67,+52,148) | 36960 (68, +44,143) | 36960 (69, +24,136)
36960 (85,£10,109) | 36960 (89,+8,104) | 36960 (91,470, 115) | 36960 (92, +68, 113)
36960 (104,+96,111) | 40755 (23,+1,443) | 40755 (31,+17,331) | 40755 (41, +£9,249)
40755 (43,+3,237) | 40755 (69, £45,155) | 40755 (79,+3,129) | 40755 (83,+9,123)
40755 (93,+45,115) | 43680 (11,+10,995) | 43680 (19,+18,579) | 43680 (29, £20, 380)
43680 (33,+12,332) | 43680 (44, +12,249) | 43680 (55,+10,199) | 43680 (57,+18,193)
43680 (61,+22,181) | 43680 (67,+£2,163) | 43680 (76,+20, 145) | 43680 (77,+56,152)
43680 (83,+12,132) | 43680 (87,+78,143) | 43680 (88, +£56,133) | 43680 (88,+32,127)
43680 (95,+20,116) | 57120 (11,+6,1299) | 57120 (23,+14,623) | 57120 (33,+6,433)
57120 (44, +£28,329) | 57120 (47,+28,308) | 57120 (55,+50,271) | 57120 (59, +46,251)
57120 (69, £60,220) | 57120 (77,+28,188) | 57120 (79,+32,184) | 57120 (88,+72,177)
57120 (88,+16,163) | 57120 (89,+14,161) | 57120 (92,+60,165) | 57120 (109, +66, 141)
57120 (115,+60, 132) | 77280 (17,+6,1137) | 77280 (29,+18,669) | 77280 (41, £28,476)
77280 (51,+6,379) | 77280 (53,+10,365) | 77280 (68, +£28,287) | 77280 (73, £10, 265)
77280 (85,+40,232) | 77280 (87,+18,223) | 77280  (107,+98,203) | 77280 (109, +108,204)
77280 (116,+76,179) | 77280  (119,+28,164) | 77280  (123,+54,163) | 77280 (136, £96, 159)
77280 (136, +40, 145) | 87360 (32,+24,687) | 87360 (32,+8,683) | 87360 (37,+16,592)
87360 (43,+4,508) | 87360 (53,%14,413) | 87360 (59,+14,371) | 87360 (96,+72,241)
87360 (96,+24,229) | 87360 (101,+56,224) | 87360  (111,+90,215) | 87360 (113,+92,212)
87360 (127,+4,172) | 87360  (129,+90,185) | 87360  (139,+40,160) | 87360  (148,+132,177)
87360 (159, +120, 160)

Table A.2: Classically Integral Quaternary Forms with Square Discriminant

(€11, €12, C13, C14, €22, €23, €24, €33, C34, C44)

Class Number

Highest Denominator

(1,0,0,0,1,0,0,1,0,4)

1

2

(1,0,0,0,1,0,0,2,0,2)

(1,0,0,0,2,0,2,2,2,2)

(1,0,0,0,1,0,0,2,2,5)

(1,0,0,0,1,0,0,3,0,3)

(1,0,0,0,2,2,0,2,0,3)

(1,0,0,0,1,0,0,2,0,8)

(1,0,0,0,2,0,0,2,0,4)

(1,0,0,0,2,0,0,3,2,3)

(1,0,0,0,1,0,0,2,2,13)

(1,0,0,0,2,0,2,3,2,5)
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(1,0,0,0,2,2,0,3,0,5)

(1,0,0,0,2,0,0,3,0,6)

(1,0,0,0,2,0,2,4,0,5)

(1,0,0,0,2,0,2,4,4,6)

(1,0,0,0,2,0,2,3,2,9)

(1,0,0,0,2,2,0,4,0,7)

(1,0,0,0,2,0,0,4,0,8)

(1,0,0,0,2,0,0,5,0, 10)

B B W | 1| D] B —
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Table A.3: Not-Classically Integral Quaternary Forms with Square Discriminant

{c11, €12, €13, C14, €22, €23, €245 €335 C34, C44)

Class Number

Highest Denominator

(1,0,0,1,1,0,1,1,1, 1)

1

1

(1,1,0,0,1,0,0,1,1,1)

(1,1,1,0,1,1,0,1,0,2)
(I,1,1,0,1,1,1,2,2,2)
(1,0,0,1,1,0, 1, 1, 1, 3)
(1,1,0,0,1,0,0,1,0,3)
(I,I,1,0,1,1,1,1,1,5)
(1,0,1,1,1,1,1,2,1,2)
(1,1,0,0,1,0,0,2,2,2)
(1,0,1,0,1,0, 1,2,0,2)
(1,1,1,0,1,1,0,1,0,8)

(1,0,0,1,1,0,1,2,2,3)

(1,1,0,0,1,0,1,2,0,3)

(1,0,0,1,1,0,1,1,1,7)

(1,1,1,0,1,1,1,1,1,13)

(1,1,1,0,2,2,-1,2,1,3)

1,0,0,1,2,2,0,2,2,3)

(1,1,0,0,1,0,1,2,2,5)

(1,0,0,0,2,1,-1,2,1,2)

(1,0,1,1,1,1,1,3,1,3)
1

1,1
1,1,1,0,1,1,0,2,0,5)
(1,0,1,0,1,0,1,3,0,3)

(1,1,0,0,1,0,0,2,0,6)

(1,0,0,0,1,0,1,3,3,4)

(1,0,1,1,2,2,2,3,0,3)

1,0,1,0,1,1,0,3,2,4)

1,0,0,1,2,0,0,2,2,3)

(1,1,1,0,2,1,0,2,0,3)

(1,1,1,0,2,1,2,2,2,4)

(1,1,0,1,2,1,1,2,2,4)

(1,1,0,0,1,0,1,2,2,9)

(1,0,1,1,2,0,2,3,0,3)

(1,0,1,1,2,1,-1,3,2,3)

(1,0,1,0,1,0,0,2,0,7)

(1,0,1,0,1,1,0,3,1,5)

1,1,0,0,2,0,0,2,2,4)

1,0,0,1,2,2,0,2,2,5)

(1,0,0,1,2,1,0,2,0,4)

(1,1,1,1,2,1,0,2,0,5)

1,1,0,0,2,1,1,3,1,3)

(1,1,1,1,2,2,0,2,1,6)

(1,1,0,0,2,0,2,3,3,4)

(1,1,1,0,2,2,-1,3,2,5)

(1,0,1,0,2,0,2,3,3,5)

(1,0,1,1,2,2,0,3,2,5)

1,0,1,0,2,2,2,3,1,5)

(1,1,1,0,2,1,2,3,3,6)

B[ WO O B[ | W W | B [ D [ [ D [ Y[ —=[ D H| [ H[ D D D =D | | = || BB == =] N W =] =] —

1,0,0,1,2,0,0,2,2,7)
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(1,0,1,1,2,0,0,4,3,4) 3 8
(1,0,0,0,2,1,-1,2,1,7) 7 1
(1,1,1,0,2,2,0,2,0, 10y 3 8
(1,0,1,1,2,0,0,3,2,5) 6 10
(1,1,0,0,2,1,0,3,0,5) 7 1
(1,0,1,0,2,2,0,3,2,6) 6 10
(1,1,0,0,2,0,0,3, 3, 6) 3 2
{1,0,1,0,1,0,0,3,0, 11) 5 8
(1,0,1,0,2,0,2,3,0,6) 1 1
(1,0,1,1,2,2,0,3,0,7) 6 11
(1,0,0,1,2,2,0,5,5,5) 6 11
(1,0,0,1,2,1,0,3,0,6) 6 1
(1,0,1,1,2,0,0,3,2,7) 3 2
(1,0,1,0,2,2,0,3,0,8) 6 2
(1,0,1,1,2,2,2,5,1,5) 6 36
(1,1,0,0,2,1,0,2,0,13) 7 12
(1,0,1,0,2,0,2,3,3,9) 8 39
(1,0,1,0,2,2,2,5,4,6) 3 39
{1,0,1,0,2,2,2,3,0, 10y 8 13
(1,0,0,1,2,2,0,5,1,5) 8 13
(1,0,0,0,2,1,-1,5,3,5) 7 12
(1,0,1,0,2,0,0,5,4,6) 12 14
(1,0,1,0,2,2,0,5,2,6) 2 n
(1,0,1,1,2,1,2,4,1,8) 6 6
(1,0,1,0,2,2,2,3, 1, 13) 6 5
(1,0,1,1,2,2,0,3,2,13) 5 5
(1,0,1,1,2,0,2,5,3,7) 6 5
(1,0,0,1,2,2,2,5,1,7) 6 15
(1,0,0,1,2,2,0,5,3,7) 5 15
(1,0,1,1,2,2,0,5,2,7) 6 15
(1,0,0,1,2,1,0,4,0,8) 6 12
(1,0,1,1,2,0,2,5,4,9) 14 17
(1,0,1,0,2,2,2,5,1,9) 3 3
(1,0,1,1,2,1,2,5, 1, 10y 7 20
{1,0,1,0,2,0,2,5,0, 10 7 3
(1,0,0,0,2,1,0,3,0,23) 4 24
(1,0,0,0,2,1,0,4,0,31) 19 80
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