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ABSTRACT 

Curio is a software framework intended to help researchers aggregate, integrate, organize, 

enhance, share, and analyze their scientific data. Most current research systems are built around 

predefined data management schemas that scientists must use in order to do their work, even if 

their data must be reorganized. Instead, Curio allows these schemas to evolve from researchers’ 

personal organizational preferences by providing the ability to enhance research data with 

metadata, including properties, relationships, and types. This allows the construction of 

ontologies starting with research data, and without requiring experience in data modeling. Curio 

also supports binding “behaviors” (built-in actions, or pre-programmed plugins) directly to 

ontological patterns, providing more powerful ways to utilize enhanced data.  Although this 

project specifically focuses on scientific research rather than personal or business use, the 

features it offers could be employed in any context where data management and utilization is 

desired.  Furthermore, even though we mainly use glycobiology as our primary domain for case 

studies, the features present in Curio could support research in any domain. 
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CHAPTER 1 

INTRODUCTION 

 

Scientific research methodologies continue to evolve, incorporating advanced information 

management technologies and inventing new ones as required.  Simply coping with the amount 

of data being generated continues to be a particularly difficult problem in the age of “Big Data”, 

where terabytes of information can be produced in a single day.  However, big data still has not 

resulted in big knowledge, big insights, or big wisdom.  Analysis techniques are continually 

being developed and refined to extract valuable information from this vast body of data.  

Meanwhile, efforts are progressing to link information from different domains of scientific 

interest together, and to foster collaboration between research groups.  These trends indicate that 

researching better ways to do research is a growing field in and of itself. 

The ability to effectively manage data has always presented unique and difficult 

challenges, with scientific data consistently presenting the most challenging scenarios.  The 

needs of scientists vary widely amongst different fields of research, as each field has its own 

specific requirements. This often leads to highly customized solutions for specific tasks, which 

can lead to information fragmentation.  The needs of biologists keeping track of cell samples are 

different from the needs of climate scientists researching global weather patterns, or the needs of 

oceanologists studying oceanic currents and the behaviors of sea life, even though requirements 

sometimes overlap between fields.  Many systems developed to analyze, store, or visualize 

research data under these circumstances are typically built with a very narrow focus in mind, and 
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rarely contain the ability to adapt to information from other domains without significant 

alterations.  Others are meant to accommodate widely used data types or support generic 

visualizations for general-purpose usage, but do not offer the ability to customize their 

capabilities with features that certain domains require.  Thus, many current scientific data 

systems are either too generic to satisfy the needs of more complex scientific domains, or are too 

narrowly focused to be of use when integration of research data from multiple domains is 

needed. 

The tradeoff when creating flexible systems for dealing with scientific research is ever 

present, and presents a challenge when attempting to implement systems that can adapt to a wide 

variety of research requirements. Making a system too generalized usually limits its effectiveness 

within specific domains of interest.  Conversely, focusing a system too exclusively on a certain 

domain often causes it to lose applicability in others.  Flexibility limitations hamper many such 

systems when attempting to integrate data from external sources, or when attempting to read 

formats they were not designed for, which are typically from domains of interest outside their 

focus.  While such systems could certainly be altered to incorporate new sources of data, this is  

a labor-intensive and cost-prohibitive process. 

Another common tendency with existing scientific data systems is that they require 

scientists to switch to a different method of organizing and interacting with data than they are 

accustomed. Instead, these systems should be adaptable enough to accommodate the methods 

scientists prefer when doing their research.  As Tim Berners-Lee commented in [1]: 

 

“What I was looking for fell under the general category of documentation systems 

– software that allows documents to be stored and later retrieved. This was a 
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dubious arena, however. I had seen numerous developers arrive at CERN to tout 

systems that “helped” people organize information. They’d say, “To use this 

system all you have to do is divide all your documents into four categories” or 

“You just have to save your data as a Word Wonderful document” or whatever. I 

saw one protagonist after the next shot down in flames by indignant researchers 

because the developers were forcing them to reorganize their work to fit the 

system.” 

 

Many scientific communities do not have standardized methods for dealing with research data, 

leaving it up to individual labs, or even individual scientists, to develop their own standards for 

handling research data.  While this often causes problems when attempting to integrate data, 

scientists should still not be forced to adopt a different method of data management without 

clear, objective advantages. 

Although some may consider the formation of a data model to be a one-time process [2], 

data modeling in many instances is an iterative process that produces designs which are 

constantly being revised and corrected as new knowledge is discovered.  Thus, expecting a data 

management system with a static data model focused on a single domain to be flexible is 

optimistic at best.  Data models, especially for rapidly changing scientific data, should be able to 

be modified easily and grow dynamically to fit the needs of the scientists who use them. 

Since research requires the ability to organize, analyze, and visualize data, scientists are 

frequently required to use multiple systems to make sense of the data they produce from 

experimentation.  Information fragmentation can become a major hassle when desiring to view 

an overall picture of research progress or results.  This places a burden on scientists to keep up 
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with where certain pieces of data are, and how the pieces fit together.  Often, this can result in an 

incomplete representation of their research if part of the data is misplaced, or if one system 

containing data is incompatible with others.  Valuable research directions or other serendipitous 

discoveries may be lost if data cannot be pieced together effectively.  As the complexity and 

volume of research data continues to increase, it is realistically infeasible to expect scientists to 

keep track of where specific data fragments are held.  Thus, better data aggregation and 

integration are required. 

Also of concern is the large number of domain-specific data exchange formats that are 

present in many areas of scientific research.  Integrating data encoded in different formats can be 

challenging within a single domain, let alone when combining data from several domains of 

interest.  One example is GLYDE-II [3], which is intended to encode information about the 

structure of glycan molecules.  GLYDE-II is used in the glycomics domain, and is written in 

eXtensible Markup Language (XML).  Climate scientists work with another XML-based format 

developed as part of the Thematic Realtime Environmental Distributed Data Services 

(THREDDS) project [4].  NetCDF [5] is another format developed by the creators of 

THREDDS, and is intended for general use, as it excels at encoding array-oriented scientific 

data.  These are but a few of the extensive number of data formats in use by researchers. 

Data provenance is also an increasingly important part of scientific data systems.  The 

ultimate goal of provenance in scientific research is to sufficiently document experimentation in 

order to ensure reproducibility. Provenance systems attempt to keep track of the path data takes 

as it is altered through transformations, analyses, and interpretations.  Often, the unfortunate 

tendency in scientific research is to “publish and forget”, with the data used to arrive at the 

conclusions presented being misplaced or deleted altogether.  Thus, there is a pressing need for 
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systems that are able to keep up with research data well after papers have been published in order 

to ensure experiment reproducibility. Systems constructed with this in mind should also store and 

even generate provenance where appropriate.  Provenance of this type could also assist in 

transferring responsibility for data or projects to someone else in the case of staff turnover or 

graduating students, which happens frequently in academic settings. 

Workflows are also becoming increasingly important to scientific research when 

performing experiments or data analysis. Scientific workflows are typically process networks 

used as data analysis pipelines [6].  Workflow systems with a focus on scientific workflows have 

become more numerous in recent years, with specific examples including Kepler [6], Taverna 

[7], and Pegasus [8].  These systems support a wide variety of functionality, including data 

analysis, visualization, management, and modeling.  

 

1.1 CONTRIBUTIONS 

 

To address the aforementioned issues and attempt to better support scientists in their research, 

we propose a framework to allow researchers to create ontologies organically, with the ontology 

schema naturally arising over time in a bottom-up fashion.  This process begins with research 

data and can adapt to the user’s preferences when organizing data.  This framework will also 

facilitate the binding of behaviors with patterns in the ontology, allowing plugins or other actions 

to be triggered automatically when certain conditions are satisfied.  We believe these two 

additions can have far-reaching implications for scientific research, especially if provided in 

combination.  The Curio framework could assist with rapid creation of scientific research 

platforms that allow researchers to share and organize their data more effectively, as well as 
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create workflows both for research tasks and mundane activities that support research, such as 

data backup. 

 

1.2 OUTLINE OF LATER CHAPTERS 

 

The remaining chapters in this dissertation describe the intended capabilities of the Curio 

framework, discuss possible applications, and provide information on our efforts so far at 

constructing a prototype system.  Chapter 2 discusses related work in different areas including 

data management, the Semantic Web, provenance management, and scientific workflows.  

Background information is also provided for glycomics, the domain used for our case studies. 

 Chapter 3 gives more in-depth motivations for this project, including previous glycomics 

projects that served as a major inspiration for Curio.  These projects support glycomics research 

and provide good examples of the types of scientific applications that Curio is well suited for.  

Efforts to build a glycan curation application, a biosynthetic pathway browser, and an 

experiment repository are discussed. 

Chapter 4 discusses an application we developed for glycan curation in greater depth.  

This section gives detailed context of the usefulness of glycan curation in glycomics, and 

discusses the specific implementation details of the curation application.  Curation efforts by 

glycobiologists are also provided. 

 Chapter 5 introduces the concept of an “active ontology”.  Active ontologies support the 

binding of behaviors with ontological patterns, and can facilitate a wide variety of research 

activities.  This section describes what behaviors are, and gives possible applications for active 

ontologies, including sections on data provenance and workflows. 
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 Chapter 6 introduces organic ontology construction, describing what it is, as well as how 

such construction could be performed with regards to scientific research.  Resources and their 

role in data aggregation and organization are described, as well as the general data organization 

philosophy used in Curio. 

 Chapter 7 describes the current status of the prototype implementation of Curio.  The 

architecture of the system is outlined, and a detailed description of the custom-built persistence 

module is given.  The user interface is also described, and how it attempts to provide scientists 

with an intuitive environment in which to perform their research. 

 Chapter 8 deals with the evaluation of Curio by describing specific scenarios that are 

expected to be possible using this framework.  Ideas for adapting previous projects are given, 

including the previously mentioned molecular pathway browser, experiment repository, and the 

glycan curation application covered in Chapter 4. 

 Finally, Chapter 9 closes with conclusions drawn from this research and future directions, 

including planned features for the Curio prototype. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

Managing data is a basic necessity of scientific research, and the importance of finding efficient 

ways to organize, extract, and share data cannot be understated. However, acquiring data is not 

the point of scientific research.  The analysis that happens after data is obtained, unveiling new 

information about what is being studied, is what adds to the sum of human knowledge. 

Information science is a broad, interdisciplinary field, with many sub-fields that cover all 

aspects of dealing with data and information. Our efforts are concentrated within one of these 

sub-fields, Information Management (IM), which deals with collecting and managing 

information from diverse sources and then distributing it to various audiences. We also 

incorporate ontologies, another sub-field of information science which is also heavily involved 

with the Semantic Web. 

The Semantic Web movement has championed the use of ontologies for various roles in 

scientific research, along with attempting to remake the currently human-readable World Wide 

Web (WWW) into a machine-processable Web.  In a broad sense, the Semantic Web movement 

shares many of the same goals as IM, since they both aspire to capture, share, and use 

information effectively.  Even though the original vision of the Semantic Web still remains 

largely unrealized [9], many useful technologies have been produced from it that can help with 

scientific research. 
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Data management systems have proposed numerous ways to store and maintain data, 

with varying degrees of success.  Over time, systems dealing with scientific research have 

become more specialized, as the data formats they support have become more diverse.  Highly 

focused systems are typically only useful in their respective fields of study, and do not offer 

much flexibility with integrating data formats outside their research area. This is readily apparent 

in two categories of systems geared specifically towards laboratory data management - 

Laboratory Information Management Systems (LIMS), and Electronic Laboratory Notebooks 

(ELNs). 

Other broadly focused information management tools also have features related to those 

in Curio.  The Networked Environment for Personal, Ontology-based Management of Unified 

Knowledge (NEPOMUK) project produced software that blends techniques from the Semantic 

Web into a desktop environment.  InfoGrid is a graph database that has some unusual features 

compared with other databases of its type, and has certain features similar to what we propose 

for Curio.  Lastly, Fedora Commons is an application that acts as a digital repository, but also 

has certain semantic features related to what is planned for Curio. 

The terms data, information, and knowledge are frequently used interchangeably in 

literature.  There are multiple definitions for each of these words, and sometimes they conflict or 

overlap.  Their meanings are obviously not identical, though when discussing actions like 

recording scientific data or exchanging data between sources, information would suffice as a 

substitute. But substituting knowledge in either of those instances would not make much sense.  

Indeed, most often, both data and knowledge seem to be more frequently interchanged with 

information rather than with each other [10].  This may indicate that information is the most 

general of the three terms.  However, Jones makes a compelling case for defining these words in 
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relation to one another. In his view, information is the key to understanding both data and 

knowledge. Information can be thought of as “data in motion”, and knowledge is “information in 

action”.  The conclusion Jones draws from this is that knowledge is not a thing in and of itself, 

but only arises through information, and so can only be managed by managing information.  

Perhaps, then, so-called knowledge management systems should not strive to contain actual 

“knowledge”, as we contain it within our minds, but should instead contain information that acts 

as cues to remind or reinstate knowledge if it is forgotten.  Such a system would be a knowledge 

manager and an information manager at the same time. 

 

2.1 ONTOLOGIES 

 

An ontology, as the term is used in information science, is a specification of concepts and related 

metadata.  Ontologies are typically used as a structural framework for organizing and encoding 

information for use by machines. Usually such information is limited to a single domain, but 

ontologies may also contain concepts spanning multiple domains of interest, especially in the 

case of upper level ontologies.  Ontologies enable communities to agree on a common 

vocabulary by describing concepts and the relationships between them, and may also contain 

information about instances of these concepts and relationships. Furthermore, Uniform Resource 

Indicators (URIs) allow concepts and instances, referred to as resources, to be reused by other 

ontologies.  URIs function as unique identifiers for resources within an ontology, and referencing 

concepts by their URIs is intended to be unambiguous. By using URIs and linking resources 

together with relationships, ontologies are also useful as bridges for integrating information from 
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different domains, as well as providing a means for different software applications to 

interoperate. 

 The term ontology was originally used to describe a part of metaphysics, one of the 

branches of philosophy, which deals with questions about the nature of reality and existence.  

However, in information science, ontologies initially appeared as a construct in the field of 

Artificial Intelligence (AI) that provided a way to encode knowledge for use by artificially 

intelligent systems.  AI researchers started creating ontologies with different forms of automated 

reasoning, allowing new information to be inferred automatically by a machine from existing 

information, given a set of rules.  Later, Tom Gruber more formally defined an ontology as 

currently used in information science, separate from its usage in philosophy [11].  Today, 

ontologies are used extensively in AI, the Semantic Web, systems engineering, software 

engineering, biomedical informatics, library science, and information architecture, among other 

fields. 

 Typically, an ontology consists of statements in the form of triples.  Triples are 

expressions comprised of a subject, a predicate, and an object. The subject represents a resource, 

with the predicate representing a trait of the subject and relating the subject to the object.  To 

present a simple examples of triples, we could describe the properties of a particular pizza: 

<Pizza1> <isA> <Pizza> 

<Pizza1> <hasTopping> <Pepperoni> 

<Pizza1> <hasTopping> <MozzarellaCheese> 

<Pizza1> <hasDiameter> 16” 
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Collectively, these triples describe a 16” pizza with mozzarella cheese and pepperoni 

toppings.  The first triple states that Pizza1 is an instance of class Pizza, while the following two 

triples define relations between Pizza1 and instances of its toppings.  The fourth triple is an 

attribute specifying that the pizza has a diameter of 16”.  Triples can express information at an 

organizational level (in the ontology schema), or at an instance level (as ontology instances and 

metadata). 

 

2.2 THE SEMANTIC WEB 

 

The Semantic Web is a collaborative movement led by the Word Wide Web Consortium (W3C), 

an international standards organization.  The term “Semantic Web”, coined by Tim Berners-Lee, 

the creator of the World Wide Web, describes a web of data joined together by relationships and 

processable by machines [12].  The W3C promotes common data formats on the World Wide 

Web and the Semantic Web, and is attempting to convert the current, mostly unstructured web 

into semantically structured information - a “web of data”, as opposed to a web of documents.  

This will allow users to search for, share, and combine information more easily, and allow 

machines to automatically accomplish many of the same tasks without human intervention or 

direction.  Berners-Lee expressed his original vision for the Semantic Web as follows [1]: 

 

“I have a dream for the Web (in which computers) become capable of analyzing 

all the data on the Web – the content, links, and transactions between people and 

computers. A "Semantic Web", which makes this possible, has yet to emerge, but 

when it does, the day-to-day mechanisms of trade, bureaucracy, and our daily 
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lives will be handled by machines talking to machines. The “intelligent agents” 

people have touted for ages will finally materialize.” 

 

Unfortunately, much of this vision has yet to be realized, but research continues. 

 The Semantic Web makes heavy use of ontologies to formalize and share information.  

One of the Semantic Web’s main goals is to allow easy interconnection of data from different 

domains, making ontologies an ideal tool to enable data integration through the use of 

relationships between concepts.  When used in the Semantic Web, ontologies are typically 

serialized in either a variant of the Resource Description Framework (RDF) language, the Web 

Ontology Language (OWL), Turtle (Terse RDF Triple Language), or N3 (Notation3), a 

shorthand form of RDF.  RDF and OWL began as variants of XML.  However, they now have 

definitions independent of XML, and RDF is now analogous to UML in XMI. 

 Recently, there has been much discussion and adoption of Linked Data and Linked Open 

Data (LOD) in research, government, and academic institutions.  In 2006, Tim Berners-Lee 

introduced a set of four principles to guide organizations in linking their data [13]: 

1. Use URIs as identifiers for resources. 

2. Use HTTP URIs so that people can look up those resources. 

3. When someone looks up a URI, provide useful information using standard 

formats (RDF, SPARQL). 

4. Include links to related URIs so that they can discover more resources. 
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These principles serve as a set of best practices for connecting data to the growing 

Semantic Web.  By 2007, datasets in the LOD cloud contained over two billion RDF triples, 

linked together by more than two million RDF links.  By September 2011, this had increased to 

31 billion triples, linked by approximately 504 million RDF links.1  However, an updated report 

in 2014 did not provide new statistics on the amount of triples present in the current LOD cloud.2  

Furthermore, the authors state that the numbers from 2011 were derived from dataset publishers’ 

numbers, meaning that crawlers were not used.  Even though no concrete statistics of triple 

numbers were given, they state that the number of datasets has increased by 274%.  Thus, it 

appears that many scientific communities are starting to publish their research data as Linked 

Data. 

There are currently a wide variety of non-proprietary data representation vocabularies 

available to ease the burden of data modeling.  General-purpose vocabularies that are useful for 

scientific domains are offered by ontologies such as the Data Cube Vocabulary [14], SKOS 

(Simple Knowledge Organization System) [15], SIOC (Semantically-Interlinked Online 

Communities) [16], or EXPO (EXPeriment Ontology) [17].  Data Cube and SKOS are both 

vocabularies offered by the W3C.  Data Cube is a candidate recommendation that is geared 

towards modeling multidimensional and statistical data, commonly used in scientific research, so 

that it can be linked to related concepts and data sets.  Data Cube builds upon the SKOS 

vocabulary, which is intended to model classification systems such as thesauri, classification 

schemes, subject heading systems and taxonomies, among others.  The SIOC vocabulary is 

designed to integrate online community information from sources such as blogs, wikis, forums, 

and newsgroups.  Lastly, EXPO is an ontology that attempts to model scientific experiments in a 

                                                
1 http://lod-cloud.net/state/ 
2 http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/ 
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general manner, and subsuming other experiment ontologies that are subject-specific.  EXPO 

links SUMO (Suggested Merged Upper Ontology) [18] with subject-specific experiment 

ontologies by generalizing the concepts involved in experiment design, methodology, and 

experiment results.  Any or all of these ontologies could be useful in a scientific data-modeling 

context. 

 

2.3 PROVENANCE 

 

The field of data provenance, especially with respect to provenance in scientific research, is 

large.  Multiple methods of utilizing provenance to enhance data have also been published.  Uses 

of provenance include estimation of data quality and reliability, tracing audit trails of data, steps 

for replication of data, correct attribution of data, and simply for more information about data 

[19].  In the context of cloud research, [20] describes using provenance to detect anomalies in 

business applications, for content-based search, and even for access control purposes.  

Furthermore, [21] identifies two major types of data provenance: annotations attached to data, 

and data derivation paths (which reveal how data was constructed). 

As mentioned previously, a large amount of research has been devoted to scientific data 

provenance, with much of that research dealing with scientific workflows [22-25]. Survey 

literature about provenance exists in many fields, as evidenced by reviews of provenance in e-

Science by [26], scientific processing by [27], database provenance by [28], and a paper 

classifying different approaches to provenance by [29].  Moreau has combined information from 

all of the previously mentioned works, and has written a comprehensive review of systems and 

approaches [30]. 
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The W3C has recently published a recommendation for a provenance data model, 

described in the PROV family of documents.3  The PROV data model supports accessing 

provenance-related information expressed in other standards, expressing provenance of 

provenance, as well as attempting to ensure reproducibility, versioning, and representing 

activities and derivations (i.e., for transforming one entity into another). 

 

2.4 GLYCOMICS 

 

Glycobiology is still an emerging discipline, and is aimed at understanding the diverse biological 

functions of complex glycans and the relationships between glycan structure, abundance, 

biosynthesis, and function.  Glycans participate in a broad range of cellular processes including 

cell-cell recognition and maintenance of cellular integrity.  Glycomics is a branch of 

glycobiology that studies the structure and synthesis of glycans (sugar chains) expressed by cells, 

tissues, or organisms.  Glycomics seeks to identify specific glycan structures and determine how 

their abundance varies in various tissues, cells and organelles, or as a function of cell 

development or pathology. Glycans are essential in living organisms, and their study could 

eventually result in cures for various cancers in humans, new drugs, advances in drug efficacy, or 

other discoveries.  They are composed of monosaccharide residues that can be linked together in 

several different ways, often resulting in branched structures.  This topological complexity 

distinguishes glycans from proteins and polynucleic acids (DNA/RNA), which are basically 

linear structures.  The added complexity also makes determination and accurate representation of 

glycan structures a challenging endeavor.  

                                                
3 http://www.w3.org/TR/prov-overview/ 
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Glycomics data is sometimes combined with data from transcriptomics, also referred to 

as gene expression profiling, which studies gene expression patterns in cells in order to create a 

more complete picture of cellular functions.  A laboratory technique commonly used in 

transcriptomics is qRT-PCR (Quantitative real-time Reverse Transcription Polymerase Chain 

Reaction), which is used to measure gene expression levels.  Paired with qRT-PCR data, 

glycomics data can be rendered in the form of a biosynthetic pathway, and gene expression 

levels can be analyzed at each step of the pathway.  An example of a biosynthetic pathway 

browser annotated with actual experiment data has been described in [31]. 

 

2.5 INFORMATION MANAGEMENT 

 

The information management field has generally been concerned with improving organizations 

as a whole instead of the individuals making up the organization.  This has led to a 

differentiation between Personal Information Management (PIM) and Organizational 

Information Management (OIM). PIM is a relatively new area of study, though the act of 

acquiring, organizing, and maintaining personal information dates back to ancient times with the 

spoken word, when mnemonics were used to augment human memory [32]. Software 

applications for PIM are numerous, but they can also add to the growing problem of information 

fragmentation.  As mentioned previously, information fragmentation is the unfortunate side 

effect of spreading information amongst multiple devices or applications, each with its own 

approach of storing and organizing information. 

Personal Knowledge Management (PKM) is also relatively new, having its origins in a 

working paper from 1999 [33].  PKM combines ideas from Knowledge Management (KM) with 
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PIM, and is thus far an under-researched subject [34].  More recent studies into PKM (and KM) 

have concerned the role of Web 2.0 technologies and the Semantic Web in enhancing the user 

experience and overall utility of knowledge management [35-37].  However, there are some 

criticisms of PKM, most notably the question of whether PKM is simply a wrapper around PIM. 

Dataspaces [38] are another approach related to Data Management and PIM.  Dataspaces 

can be considered an umbrella term for many of the challenges in modern data management, but 

it is also an abstraction that intends to mitigate some of the problems faced with data integration.  

The concept emerged from current practices in data management, which often require multiple 

data sources to act in concert.  Integrating data between multiple, often incompatible systems is a 

formidable challenge, and much research has been conducted in this area. However, the authors 

explicitly mention that dataspaces are not a data integration approach, but more of a “data co-

existence” approach. To this end, the authors also proposed DataSpace Support Platforms 

(DSSPs), which are systems intended to allow developers to focus on the specific challenges 

within their applications, rather than worrying about integrating multiple data sources that are 

needed by such applications.  There are four specific properties that distinguish DSSPs from 

traditional DataBase Management System (DBMS) approaches.   

1. DSSPs are required to support all data within the dataspace, dealing with data 

and applications in a variety of formats, rather than leaving some parts out, as 

in a DBMS.   

2. Unlike a DBMS, a DSSP is not in full control of its data, since often the same 

data will be available through another interface native to the system that 

contains it.   
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3. A DSSP is not required to support queries to every data source equally, and 

queries may be returned with approximate answers.   

4. Finally, a DSSP must offer the necessary tools to create tighter data 

integration in a dataspace, as is necessary for the application. 

 

A major goal of dataspaces is to reduce the amount of effort initially required to setup 

data integration systems. Such effort is delayed until it is required, forming a “pay-as-you-go” 

system. This allows the implementer to improve data integration as needed. 

 

2.6 THE MEMEX 

 

The history of information management is long, and stretches back as far as the written word. 

One of the earliest modern efforts to imagine a scientific data management system was Vannevar 

Bush’s ubiquitously cited “Memex”.  This theoretical machine was described in his 1945 essay 

“As we may think” [39], in which he meticulously describes the technologies available in his day 

that could enable the construction of an electromechanical desk.  This desk, the Memex device, 

would be capable of storing photographs, newspaper articles, scientific papers, or other items of 

scholarly or personal interest as microfilm.  More importantly, it would be capable of accessing 

such records through “associative trails”. Bush understood well the mind’s propensity to relate 

concepts together, connecting them through semantic associations. Consequently, this essay was 

particularly forward thinking for its time, and in some ways predicted (and likely influenced) 

many later technological developments such as personal computers, hypertext, the World Wide 

Web and the Internet, and even Wikipedia.  Strikingly, even now with our vastly superior 
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technology to that in Bush’s day, we are still attempting to construct devices and software that 

could provide Memex-like functionality, and are still taking inspiration from his conceptual 

design.  One would think, with the technology now available, we should easily be able to 

construct devices capable of meeting and in some cases far exceeding the imagined capabilities 

of the original Memex.  However, such a ubiquitously flexible and useful device that allows 

powerful, standardized methods of preserving knowledge among multiple scientific domains has 

remained elusive. 

 

2.7 PERSONAL KNOWLEDGE BASES 

 

The concept of a “Personal Knowledge Base” (PKB) has been around for many decades, likely 

originating from the aforementioned Vannevar Bush article “As we may think” [39].  The term 

itself however, seems to have been coined by Stephen Davies in a technical report in 2005 [40].  

PKBs derive their name from three major notions, the first being that they are primarily for 

personal use.  In this regard, they are much like Semantic Desktops, and draw much inspiration 

from Bush’s Memex with their focus on individual use and intent to supplement a user’s 

memory.  Secondly, what is stored in a PKB is primarily “knowledge”, as opposed to data or 

information.  Davies defines data as raw symbols, devoid of meaning, and information as the 

parsing of that data via context, and shared conventions, into something meaningful.  His 

definition of knowledge takes this one step further as the “true meaning” that has been 

internalized inside a person’s mind.  However, questions must be raised as to how effectively a 

PKB can truly store this definition of “knowledge”.  Thirdly, a PKB must function as a “base” of 

knowledge, which means that it acts as consolidated, integrated storage of knowledge.  It must be 
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able to connect two pieces of knowledge without the kinds of artificial boundaries typically 

found in information systems. 

 

2.8 SEMANTIC DESKTOPS 

 

The notion of a Semantic Desktop arose from Semantic Web research, but it also takes 

inspiration from ideas presented many decades ago [39, 41].  Again, Vannevar Bush’s Memex 

device is likely an inspiration, and shares many of the proposed functions of a Semantic Desktop.  

The primary goal of a Semantic Desktop is to provide a more personal experience regarding the 

organization, relation, and use of information, and even to supplement human memory.  

However, the term itself was first used in 2003, after being coined by Stefan Decker. The 

definition of a Semantic Desktop is given in [42], in which he echoes Bush’s sentiments for the 

Memex: 

 

“A Semantic Desktop is a device in which an individual stores all her digital 

information like documents, multimedia and messages. These are interpreted as 

Semantic Web resources, each is identified by a Uniform Resource Identifier 

(URI) and all data is accessible and queryable as RDF graph. Resources from the 

web can be stored and authored content can be shared with others. Ontologies 

allow the user to express personal mental models and form the semantic glue 

interconnecting information and systems. Applications respect this and store, 

read and communicate via ontologies and Semantic Web protocols. The Semantic 

Desktop is an enlarged supplement to the user’s memory.” 
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There are many applications that fulfill aspects of a Semantic Desktop, even if they do 

not specifically claim to be one.  Examples include MindRaider [43], TheBrain [44], and 

Gnowsis [45], though only Gnowsis claims to actually be a Semantic Desktop.  All of these 

applications support the creation of mind-maps through inputting concepts and data, in an 

attempt to enhance a person’s memory.  Gnowsis was developed within the scope of the 

NEPOMUK project, which was initiated to build a Social Semantic Desktop framework.  

NEPOMUK utilized experts from academia, industry, and open-source backgrounds4, and 

spawned an open-source software library with the same name under the KDE platform. 

 

2.9 RESEARCH OBJECTS 

 

Research Objects (ROs) are a recent concept arising from the need to support the exchange of 

experiment data and other scientific information on the Web [46].  ROs are structured 

aggregations of resources that are produced and consumed by standard Semantic Web formats 

and services, and are intended to connect seamlessly with the Linked Data cloud.  Various types 

of scholarly data can be bundled into ROs, including research problems, datasets, workflows, 

persons performing experiments, and even publications resulting from research.  These bundled 

packages of data are intended to facilitate experiment reproducibility, transferring all essential 

data for an experiment in a single unit. 

 Currently, the W3C has adopted ROs in the form of a community group, Research 

Objects for Scholarly Communication (ROSC).  The community charter has stated that their 

primary goal is “to provide a platform for scholars, librarians, publishers, archivists and policy 

                                                
4 http://cordis.europa.eu/project/rcn/79390_en.html 
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makers to exchange requirements and expectations for supporting a new form of scholarly 

communication”.5  A number of principles have been outlined for ROs to follow: 

1. Reusable –  ROs support the sharing and reuse of data 

2. Repurposeable – ROs should expose their constituent pieces for reuse 

3. Repeatable – ROs should contain sufficient information to allow others to 

repeat the study 

4. Reproducible – A special case of repeatability in which prior results are 

compared to results obtained by repeating a study to verify they are identical 

5. Replayable – ROs should provide sufficient provenance to allow the ability to 

analyze individual steps in a study to see what happened 

6. Referenceable – ROs should be citable, and should support unambiguous 

references 

7. Revealable – ROs should support the ability to audit the steps performed in a 

study to ensure validity 

8. Respectful – ROs should support user-visibility, credit, and attribution 

 

 

2.10 LABORATORY INFORMATION MANAGEMENT SYSTEMS 

 

Laboratory Information Management Systems are software-based platforms that provide features 

for managing laboratory operations.  Some of these features may include workflow management, 

data exchange interfaces, and integration with laboratory equipment.  LIMS have also performed 

                                                
5 http://www.w3.org/community/rosc/rosc-community-group-charter/ 
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many of the same functions as Laboratory Information Systems (LIS) and Process Development 

Execution Systems (PDES).  Thus, the definition of a LIMS is somewhat controversial, as no 

two systems seem to offer the same capabilities and the definition varies from the perspective of 

the user [47]. 

The first generation of software to be labeled as LIMS was released around 1982, owing 

to the fact that no mention of “LIMS” was found before 1983 [48].  These early systems were 

mainly purposed with assisting in laboratory automation [48].  However, newer systems are 

emerging that attempt to be more configurable and adaptable.  Such systems attempt to mitigate 

past inflexibilities of LIMS systems to adapt to widely varying requirements amongst scientific 

laboratories [49]. 

 

2.11 ELECTRONIC LABORATORY NOTEBOOKS 

 

Electronic Laboratory Notebooks are software intended to be a replacement for paper-based lab 

notebooks.  However, an ELN, owing to its electronic nature, can offer many enhancements over 

its paper counterparts.  Scientists, engineers, and other technicians use ELNs to document 

research, experiments, and procedures performed in a laboratory environment.  Similar to paper 

notebooks, the data contained within ELNs are considered to be legal documents and may be 

used in a court of law as evidence.  They are often referred to in cases of patent prosecution and 

intellectual property litigation.  This requirement necessitates that they adhere to certain 

standards of record keeping and security.  Some ELNs are built for specific purposes (Specific 

ELNs), while others are designed with broader applications in mind (Generic ELNs) [50].  
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Examples of ELNs are as diverse as the environments in which they serve.  They can be 

standalone applications, client-server applications, or be entirely web-based. 

eCAT [51] is a prominent example of an ELN, and is offered by ResearchSpace.  eCAT 

is web-based and provides interfaces to allow scientists to manage their samples.  Since the 

system is web-based, it can be accessed from anywhere, and has many features to support 

collaboration between researchers.  It allows scientists to structure records hierarchically, much 

like in a file system, and also to hyperlink records together.  

 

2.12 INFOGRID 

 

InfoGrid [52] is described as a “modern, Java-based, dual-licensed web applications platform”, 

and is offered by NetMesh.  NetMesh claims that InfoGrid allows developers to create REST-ful 

web applications on top of either a relational database or grid storage technology.  The basic 

component of data in InfoGrid is a MeshObject that can be “blessed” with one or more types 

(classes).  InfoGrid was recently made open-source and contains a number of sub-projects, 

including a graph database, a user interface project (Viewlet), a Lightweight Identity project 

(LID, OpenID, etc.), and a project for integrating external data sources from the web (Probe).  

The Viewlet framework renders MeshObjects for consumption using concrete formats such as 

HTML.  This is useful when dynamically creating graphical user interfaces or renderings for data 

elements stored in InfoGrid.  The Probe framework allows data from external sources on the web 

to appear as a graph of MeshObjects that can self-update, thus mirroring the content of the data 

source as it changes. 
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2.13 FEDORA REPOSITORY 

 

The Fedora Repository [53] is a storage system for digital content provided by DuraSpace, a 

non-profit organization, and is offered under a Creative Commons license.  Originally developed 

at Cornell University, Fedora (Flexible Extensible Digital Object Repository Architecture) [54] 

was created for managing and preserving digital resources, and was inspired by the Kahn and 

Wilensky Framework [55].  It supports RDF, and the repository is integrated with the Mulgara 

triple store.6  A SPARQL endpoint is also supplied for querying data. Fedora supports the 

storage of digital objects and associated metadata, and relations can also be created between 

objects.  Also provided is the ability to associate “behaviors” with digital objects, with “services” 

being the example given by Fedora.  Like InfoGrid, Fedora can reference external resources, and 

can deliver them through the repository when needed.  Examples of use cases for Fedora include 

digital collections, e-research, digital libraries, archives, digital preservation, institutional 

repositories, open access publishing, document management, and digital asset management. 

 

 

                                                
6 http://www.mulgara.org 
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CHAPTER 3 

MOTIVATION 

 

Research methods in many, if not all, scientific fields are changing rapidly due to the swift 

evolution of technology.  New instruments allow the collection of increasingly massive amounts 

of data, and gleaning useful information from it has become a monumental task. Analysis 

techniques are continually being developed and improved upon to support research, but scientists 

still need intuitive ways to organize it for human consumption, share data with other scientists, 

control access to their research, and perform further analysis.  Better ways of organizing, 

curating, and sharing information are needed to ensure that scientists are not overwhelmed by the 

data they collect, and to ensure that the data is of sufficient quality and able to be disseminated 

effectively.  Recent techniques in social media, including the ability to share opinions and 

information easily, have not yet been effectively translated to scientific communities and 

scientific information systems.  It is generally accepted, however, that collaboration is extremely 

important in understanding experiment results, and discussing future directions for research.  

Moreover, collaborative data curation by experts can more effectively detect poor-quality data 

since more people reviewing data reduces the chance that errors will go undetected.  While 

scientific collaboration is often necessary between labs or organizations, security concerns 

unfortunately sometimes prevent sharing data easily.  Thus, more convenient methods of data 

sharing and collaboration are needed between groups researching common interests, along with 

the ability to adequately secure data according to the policies of the organizations involved. 
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The Semantic Web initiative is a great place to begin looking for solutions, as it aims to 

provide standards for information to be shared, reused, and combined, and to allow machines to 

make use of such data without the need for human guidance.  The central components of this 

initiative are ontologies, typically described in either RDF, OWL, N3, or Turtle.  Ontologies 

enable communities to agree on a common vocabulary, describe concepts and relations between 

concepts, encode knowledge relevant to their domain of interest, and to reuse those concepts by 

referencing them via Uniform Resource Indicators (URIs).  Ontologies can be specific to a 

particular domain, or provide concepts and relations useful to multiple domains.  Ontologies are 

also useful for integrating information from different domains, as well as providing a means for 

different software applications to interoperate. 

Even though ontologies assist in allowing systems some flexibility when modeling data 

and help with data integration, ontologies are still largely utilized as static creations.  They are 

also often used as alternatives to database systems when high performance is not necessary, and 

when the schema plays an important role in answering queries.  Modern systems that store and 

manage ontologies typically do not provide the capability to self-populate data, provide analyses 

of the data they contain, or provide other advanced features that could make them more useful 

within their domains of interest.  With appropriate extensions to an ontology management 

system, these capabilities and more can be added. This could provide enormous benefits for 

scientists who want powerful ways to integrate and organize their data, along with ways to 

visualize, analyze, or otherwise glean further information from raw data files.  These capabilities 

could all be included in the same ontology management system, allowing seamless access to data 

analysis and visualization tools from the same interface used for organization. 
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As mentioned previously, designing a data management system with enough flexibility to 

incorporate new types of data, and allow the addition of new analysis methods, is not an easy 

task.  Nevertheless, scientific research that handles a variety of different data types (laboratory 

data in particular) requires such systems.  Multiple systems that facilitate data collection, storage, 

and analysis for glycomics and transcriptomics have been developed by the University of 

Georgia’s Computer Science Department in conjunction with the Complex Carbohydrate 

Research Center.  Prototype systems of this nature frequently require changes during their 

development to accommodate new information or ideas about how data should be stored.  These 

changes can range from simple user interface alterations to fundamental changes in the 

underlying data model of the system.  Designing a system that allows data models to be easily 

altered can help mitigate some of the inherent challenges of handling scientific data in especially 

Figure 1: An overview of glycomics bioinformatics applications 
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volatile scientific fields (fields whose conceptualizations change frequently).  This could also 

assist in prototyping systems when the data model is not fully fleshed out, or is expected to 

change at various points in its development.  Multiple systems developed within the CCRC’s 

bioinformatics program feature data models that are unable to be easily stabilized because of 

frequently changing requirements.  An overview of a few of these systems and how they relate to 

one another are shown in Figure 1. 

Curio began as a summer internship project at Oak Ridge National Laboratory.  The 

original plan was for a scalable virtual organizational system that allowed researchers to organize 

references to large amounts of data residing in different places, and then easily publish or share 

links to the data without having to deal with complicated security protocols in use by various 

organizations, or other security in place on different storage systems at ORNL.  The system 

would have the capability to create both shared and private workspaces for data to reside in.  

Another major goal was for scientists to be able to add metadata to the referenced data, thus 

increasing its value.  Logically, this idea was compatible with ontologies, and so the idea was 

extended to include linking data to one another via named relationships.  Lastly, we considered 

the need to effectively use the data in Curio, and so behaviors were conceived that attached to 

specific data items, or patterns of data, allowing virtually any conceivable action to be performed 

contextually. 

 

3.2 QRATOR 

 

Data provenance and curation is important for scientific research in general, and glycomics is no 

exception.  The Qrator application [56] is designed to assist glycobiologists with curating glycan 
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structures pulled from publicly available databases.  Currently, all the structures in Qrator are 

imported from the GlycomeDB database [57], which also contains imported structures from 

many other databases.  As shown in Figure 2, acquiring structures from GlycomeDB has distinct 

advantages, including numerous external references that link imported structures to other 

databases.  These references are listed alongside structures as the curator is reviewing them.  

Provenance data about who submitted the structures, accepted or rejected the structures, or 

included the structures in the GlycO ontology [58] is also recorded and displayed if the user 

activates the appropriate tab.  Qrator utilizes canonical trees for specific classes of glycans, 

which are encoded within GlycO, to further aid in curation.  New structures are compared 

against these canonical trees to determine whether their structural configuration fits within the 

currently established tree structure.  If a structure does not fit the canonical tree to which it 

belongs, this may indicate a problem with the structure and Qrator highlights the differences, 

Figure 2: Qrator's browse interface 
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thereby notifying the curator that closer attention is needed.  If the curator decides that the 

structure is correct in spite of differences with the canonical tree, additions may be made to the 

tree.  Qrator uses a two-stage review and curation process to make it more difficult for 

biosynthetically incorrect structures to be accepted.  When structures are approved, they are 

included in GlycO. 

 

3.2 BIOSYNTHETIC PATHWAY BROWSER 

 

Visualization of biosynthetic pathways is another important requirement for glycobiologists.  In 

particular, mapping expression data over biosynthetic pathways can be a powerful method of 

glycomics data analysis.  As shown in Figure 3, we have developed an application that draws 

from research data stored in GlycoVault and combines it with pathway knowledge contained in 

GlycO to provide such visualizations.  The Pathway Browser is capable of displaying glycan and 

transcript gene abundance levels at each step of a biosynthetic pathway.  An example of this is 

Figure 3: Biosynthetic pathway browser 
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shown in Figure 4.  The data displayed is a contrast of two different types of cells that can be a 

combination of any two of the following: embroid bodies, embryonic stem cells, or extra-

embryonic endoderm. 

 

3.3 GLYCOVAULT 

 

GlycoVault was designed to be a flexible system for storing experiment data and research 

workflows from various types of glycomics-related experiments.  In general, GlycoVault 

supports glycobiologists as they collect and analyze data about glycans. Examples of such data 

include changes in a glycan’s abundance level over a cell's life cycle, as well as correlating the 

abundance with gene expression levels for proteins that serve as enzymes in the biosynthetic 

process.  Information about this process is available from multiple heterogeneous sources, 

including several Web accessible databases, published papers, and experimental data produced 

by glycobiologists.  Thus, GlycoVault was designed to be able to accept information from 

Figure 4: Overlaying experiment data on a biosynthetic pathway 
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diverse sources.  GlycoVault also manages information about experiment protocols, parameters, 

samples, and other concepts involved in data collection workflows.  However, while GlycoVault 

was created with flexibility in mind when representing experiments, its primary purpose is to 

support glycomics experiments, while also being capable of storing transcriptomics, proteomics, 

and genomics experiments.  Though, as with most systems that are designed for a specific 

purpose, its data model is configured for the kinds of data it is expected to store.  For example, 

an Experiment has a set of Tasks that it follows, which are based on Protocols, with the 

Experiment based on an Experiment Design.  While such concepts are applicable within 

glycomics and related fields, this may not be true in other areas of research.  The kinds of 

experiments expected in glycomics are obviously much different than experiments performed in 

Computer Science, where experimentation is mostly done with algorithms, or on improving 

computer hardware and software.  Thus, a system like GlycoVault, while designed to be flexible 

within a few related domains, still does not have the capability to accommodate experiment data 

from domains it was not designed for.  

A satellite application designed to work alongside GlycoVault has been developed for 

Transcript Profiling data collection.  The qRT-PCR manager supports record keeping of 

individual qRT-PCR experiments, and the biological samples used in these experiments.  

Provenance about samples and who performed the experiments is also recorded.  The application 

supports the input of spreadsheet data generated from these experiments, and can upload data to 

GlycoVault for long-term storage.  However, it contains specific functions that GlycoVault does 

not possess, including the ability to generate more complex reports about experiments, and the 

ability to view information about gene expression pathways. 
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CHAPTER 4 

QRATOR: A SYSTEM FOR CURATING GLYCAN STRUCTURES 

 

Glycobiology is an emerging discipline aimed at understanding the diverse biological functions 

of complex glycans and the relationships between glycan structure, abundance, biosynthesis, and 

function.  Glycans participate in a broad range of cellular processes including cell-cell 

recognition and maintenance of cellular integrity [59].  As a sub-discipline of glycobiology, 

glycomics seeks to identify glycan structures and determine how their abundance changes in 

various tissues, cells and organelles, or as a function of cell development or pathology.  The 

availability of robust and accurate collections of glycan structural data is a key element required 

for the success of this emerging field.  Glycans are composed of monosaccharide residues that 

can be linked together in several different ways, often resulting in branched structures.  This 

topological complexity distinguishes them from proteins and polynucleic acids (DNA/RNA), 

which are basically linear structures [60-63].  Unlike proteins and polynucleic acids, glycans are 

not synthesized using a template-based mechanism, but are generated by glycosyltransferases 

and glycosyl hydrolases that modify glycan structure by catalyzing the addition or removal of 

specific monosaccharide residues [64].  This structural and biosynthetic complexity makes the 

determination and accurate representation of glycan structures a challenging endeavor. 

Collecting and storing data is an essential part of every field of scientific research, with 

databases and ontologies, among other methods, being used to capture scientific data.  

Ontologies are formal, shared vocabularies of concepts and relations that represent knowledge 
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within a domain, and are increasingly utilized for capturing scientific knowledge, as evidenced 

by the popularity of sites like OBO Foundry.7 Yet, the amount of information that has been 

recorded in databases and ontologies has not kept pace with the recent surge of data acquisition 

in biological and biomedical research. Furthermore, the quality of archived data is often 

compromised as a result of errors in data exchange, translation and annotation. When glycan 

structures are recorded in databases they are translated into database specific, non-standard 

formats [65], often leading to inaccuracies ranging from simple typographical errors to 

fundamental inconsistencies in the structural representation.  Thus, standardization and curation 

of glycan structural representations are important issues that must be addressed for the effective 

interpretation and utilization of laboratory data and associated metadata, particularly when 

populating databases or ontologies. 

The Complex Carbohydrate Structural Database (CCSD), also called CarbBank [66], 

established at the Complex Carbohydrate Research Center (CCRC), was the first major 

international effort to systematically archive structural and meta information of complex glycans. 

After the discontinuation of funding for CarbBank, other glycan structural databases, including 

GLYCOSCIENCES.de [67], the Consortium for Functional Glycomics Glycan Structure 

Database [68], KEGG Glycan [69], the Bacterial Carbohydrate Structure Database (BCSDB) 

[70], and GlycoSuiteDB [71] were established partially using the CCSD as a source of core data 

[59]. Unfortunately, CCSD also contained its share of errors, which then propagated to the 

databases that make use of its data [72]. More recent bioinformatics efforts at the CCRC have 

emphasized the establishment and population of ontologies, such as GlycO [58], to represent 

knowledge pertaining to glycan structures. However, the set of glycans to be represented is 

                                                
7 http://www.obofoundry.org 
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potentially very large, encompassing many complex, branched structures that are composed of 

many residues linked together in distinct ways. Therefore, manual data entry is prone to the 

introduction of errors, which can be mitigated by the development and implementation of 

effective curatorial tools. 

An effective curation tool, whether used for populating ontologies or more traditional 

databases with glycan structures, requires a highly intuitive interface for reviewing glycan 

structures.  Such an application should assist scientists in identifying and eliminating errors, and 

also provide provenance information when possible. Subtle changes in the linkage between two 

monosaccharide residues can completely change the physical and biological properties of the 

glycan.  As the human eye can easily miss subtle errors of this nature, computational methods are 

extremely helpful in highlighting potential errors in the representation of the glycan. 

The curatorial framework described in this paper takes advantage of canonical trees, each 

of which represents the emergent structural features of a set of related glycan structures.  This 

concept was first implemented as a “GlycoTree” used to predict the retention times of glycan 

structures [73]. Such trees are also formally implemented within the schema of the GlycO 

ontology and as “composite structure maps” in the KEGG database.  These are powerful 

canonical representations assembled by overlaying many glycan structures of a particular class 

(e.g., N-glycans) to generate a superstructure containing all of the different residues and residue-

to-residue linkages included in the glycan structures that were used to generate the tree. 

Canonical trees are generated using a set of naturally occurring, biosynthetically related glycans, 

rather than chemically synthesized glycans.  Each glycan corresponds to a subset or sub-tree of 

the canonical tree. Moreover, the structure of the GlycO ontology allows us to place canonical 

trees within the context of other information that we use to support the curation process. This 
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information consists of all the individual structures that make up the tree, as mentioned 

previously, as well as any references or other meta-information they contain.  As curation 

progresses the amount of information increases, which in turn supports further curation. To date, 

the application of canonical trees for the curation of glycan structures has not been extensively 

explored, and software applications that use such trees to aid in the curation process are not 

currently available.  

 Most of the curation efforts published in the literature (not limited to glycan structure 

curation) rely on completely manual curation. Curation in GlycoSuiteDB or BCSDB is 

performed manually by trained glycobiologists, and data is based on scientific literature.  The 

developers of these databases assert that disallowing direct data entry by researchers ensures 

consistency and integrity in the data, but Qrator offers users the option to upload their own 

structures for curation.  Moreover, their meaning for curation seems somewhat different from 

ours since they curate structures by extracting them from literature results, while Qrator allows a 

scientist to submit a structure directly, verify its structural correctness against a canonical tree, 

and then present the structure to experts for their approval or rejection.  GlycoBank [74] is a 

system that has been used for the curation of glycosaminoglycans (GAGs). The system contains 

a repository of GAGs, their references, and classification material.  Proposed entries or 

modifications are reviewed and approved manually by GlycoBank appointed curators with no 

apparent computer assistance, except for the actual display of pending additions.  WikiPathways 

[75] offers wiki-based pathway curation by a community of scientists, allowing domain experts 

from all over the world to directly collaborate on improving pathway diagrams. However, this 

system is geared towards signaling pathways and pathways leading to cellular metabolites rather 



 

39 

than glycan structures and does not feature any algorithms to aid scientists in curating glycan 

specific pathways. 

Henceforth, we describe a novel approach for curating glycan structures with the help of 

a web-based application, Qrator, which assists researchers in the curation of new structures by 

using existing knowledge of previously curated glycans. After passing through a two-stage 

human curation process, approved structures are available for download, and stored in the GlycO 

ontology. 

 

4.1 KNOWLEDGE REPRESENTATION 

 

Glycan structures approved at the end of the curation workflow may be deposited into the GlycO 

ontology, which contains knowledge about many types of biomolecules including glycans. A key 

feature of GlycO is the representation of complex glycans as collections of canonical residues 

that are defined in terms of their local structures and context within a canonical tree. Within 

GlycO, each canonical tree corresponds to a particular class of glycans (e.g., N-glycan or O-

glycan), such that all known structures of that particular class are represented as subtrees of the 

tree. These trees are constructed by identifying the union of residues and links contained in a 

validated collection of structures of a particular class.  When the tree is generated using a set of 

biosynthetically related glycans, it not only provides a convenient method to represent glycan 

structures, but also constitutes a concise basis for inferring a subset of the rules for glycan 

biosynthesis.  That is, adjacent structures in the overall biosynthetic pathway often correspond to 

valid subtrees that differ by the presence of a single residue; structures that cannot be mapped to 

a specific subtree cannot be generated by the biosynthetic mechanisms that give rise to the 
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canonical tree.  However, canonical trees are not static constructions.  Although they grow over 

time, canonical trees tend to become more stable as structures are added to GlycO, as subsequent 

inclusion of new structures is less likely to require extension of the tree by the addition of new 

residues. 

To supplement the structural knowledge contained in GlycO, we have created another 

ontology named ReferO that contains meta-information for each glycan structure in GlycO.  This 

includes references to other databases that contain the same glycan structure, publications that 

describe or cite the structure, biological source information and provenance information that is 

collected at each stage of the curation workflow. 

 

4.2 STRUCTURE MATCHING ALGORITHM 

 

After a glycan is submitted to Qrator, one of the early steps in the curation process involves 

matching the glycan against a suitable canonical tree in order to establish its conformance to 

existing structural knowledge.  In order to establish how well a candidate glycan matches within 

a canonical tree, we check if all of its paths are included within the canonical tree. These paths 

are enumerated by starting at leaf residues (residues that have no successor residues) and 

following the linkages to their predecessors, all the way back to the root residue of the glycan. At 

present, Qrator does not match glycan fragments. 
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A path in a candidate structure is fully included in a canonical tree if all of its residues 

and linkages have the same corresponding residues and linkages in the canonical tree.  For 

example, consider the O-glycan paths shown in Figure 5.  This glycan has three paths, each 

starting with a leaf of the structure tree on the left and leading back to its root on the right.  Two 

of the paths (Figure 5a and Figure 5c) are fully included in the canonical tree shown in Figure 6. 

The third one Figure 5b is included only partially, since the α-linked sialic acid residue 

connected by a 1-6 linkage (the leaf residue) is not present in the canonical tree. 

Figure 5: An example of possible paths within a single O-glycan structure 
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Figure 6: The current canonical tree for GalNAc initiated O-glycans 
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If any path in a candidate structure is not fully included in the canonical tree, 

incorporation of the candidate structure will extend the canonical tree, providing new 

information about residues and linkages that have not been previously reviewed.  The structure 

depicted in Figure 5 is one such example, and will extend the canonical tree if approved. 

On the other hand, it is possible that a candidate structure contains errors. Their existence 

also results in partially included paths.  One possibility is to treat non-included residues as 

correct and assume that they extend the canonical tree.  However, our matching algorithm 

attempts to generate additional alignments in which the partially included paths correspond to 

potential errors in the representation of the candidate structure, and are returned to curators for 

consideration.  

To measure the quality of a glycan’s match within a canonical tree, we compute the 

match score between the glycan and its inclusion in the canonical tree.  Pairs of corresponding 

residues in the candidate glycan and the canonical tree are compared with respect to their (1) 

residue types, e.g. mannose, glucose, galactose, etc.; (2) absolute configurations, i.e. D or L; (3) 

anomeric configurations, i.e. alpha or beta; (4) ring forms, i.e. furanose and pyranose; and (5) 

parent attachment site.  A perfect residue match has a score of 5, which means the residue agrees 

with the canonical tree on all considered factors. Thus, the match score of an entire glycan is the 

total score of all residue assignments of all residues in the candidate structure. A perfect 

candidate glycan match consists entirely of residues perfectly matched to the canonical tree. 

Our matching algorithm enumerates the list of all possible matches of the candidate 

glycan sorted by score in decreasing order and shows the ten best matches to the user.  The user 

has the option to request more matches as needed, though in practice this feature is rarely used.  

The list may contain perfect matches, matches that contain residues that disagree with the 
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canonical tree, or matches that contain residues not currently found in the canonical tree to which 

it was compared.  The matching algorithm, and consequently the user interface, gives indication 

of where and how each of these matches differ with respect to a canonical tree in order to assist a 

human curator in evaluating the structure. 

 

4.3 CURATION WORKFLOW 

 

The curation workflow (Figure 7) is a multistep process that requires approval from curators at 

key points to minimize the possibility of incorrect structures making their way into the GlycO 

ontology.  Combined with computer-aided structure validation, this approach provides an 

effective means to reduce both the amount of manual labor involved, and the amount of human 

error.  Note that “incorrect” structures, in this context, mean structures that are not consistent 

with curators' knowledge of biosynthesis. 

The process for structure approval is purposely multi-stage to give ample opportunities 

for reviewers and curators to reject incorrect structures. In Qrator, reviewers are identified as 

users who initially examine a pending structure and match it against a canonical tree, as opposed 

Figure 7: The curation workflow.  Solid lines represent the primary path that a structure takes to 
be included in GlycO.  Dashed lines indicate secondary paths that a structure could take, such as 
being deferred or rejected.  Once a structure is submitted to Qrator, it goes through separate 
review and curation before being added to the GlycO ontology.  User roles for different 
workflow tasks are also shown. 
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to curators who have the power to approve or reject reviewed structures.  In a typical usage 

scenario, anyone may register to use the Qrator for structure submission and review, but only 

known and trusted experts are allowed to make final approvals or rejections of structures.  

Interested labs may download and install their own Qrator software using source code hosted on 

Google Code (https://code.google.com/p/qrator/).  In such cases, the decision of who should be 

allowed to submit, review, and curate structures, or whether the application should be restricted 

at all, is up to the lab director. The downloadable version of Qrator will facilitate the 

implementation of autonomous databases or ontologies that focus on glycan structures that are 

relevant in a specific context, such as those produced by a particular organism or those related to 

a particular disease. 

During structure submission, Qrator can process a single file, or an archive containing 

several files.  File formats accepted by Qrator are discussed in the next section.  The structures 

parsed from these files are automatically classified using a set of core motifs to identify the 

canonical tree that most closely fits each one (e.g., the N-glycan tree), and its subtype (e.g., 

complex N-glycans), if applicable.  In general, motifs are substructures that are shared among all 

glycans of a particular class, but only motifs that contain the root residue of the glycan are used 

for this classification.  After classification, a reviewer determines whether a structure is 

consistent with his or her knowledge of biosynthesis.  Structures that are consistent are 

computationally compared to the canonical tree that matches their classification.  Then, 

depending on the judgment of the reviewer, one of the matches generated by Qrator may be 

chosen for a second review stage.  However, if a structure is determined to be incorrect (e.g., it 

contains a structural feature that is biologically improbable), it is not compared to a canonical 

tree and is moved to the rejected status and kept for future reference.  This means that the 
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structure does not make it to the second stage of curation. Retaining rejected structures prevents 

identical structures from being uploaded in the future, as well as allowing previously rejected 

structures, along with comments and references, to still be viewed.  In certain cases, the decision 

to reject a structure may be reversed, and structures can be brought out of the rejected state and 

reviewed again. 

In the second stage of curation, a curator examines structures in the reviewed state to 

make sure no errors are introduced to the ontology. In the curation stage, structures may be sent 

to approved status, or to rejected status.  There is no distinction in status between structures that 

were rejected during curation and those rejected during review.  However, the provenance for 

such a structure will show that it passed the review stage, but was rejected during curation.  

Approved structures are eventually moved to committed status by an administrator, and added to 

the GlycO ontology.  Reviewers and curators are able to make comments on structures (e.g. 

correctness, other concerns) at any stage of the curation process, even after a structure has 

achieved committed status.  

 

4.4 SUBMITTING STRUCTURES 

 

Glycan structures can be uploaded to Qrator using GLYDE-II, an XML-based glycan structure 

format (http://glycomics.ccrc.uga.edu/core4/informatics-glyde-ii.html) that has been accepted as 

a standard data exchange format [59].  Glycans may also be uploaded as a GlycoWorkbench 

Structure file (GWS files) [76], or zipped archives of many GLYDE-II or GWS files. Once 

logged in, a scientist may upload a structure, or review structures already imported from a 

database.  After a structure is imported or uploaded, it is parsed and converted into a Glycan 
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Object Model (GOM) object, and then converted into a simplified structure representation in 

JavaScript Object Notation (JSON) (http://www.json.org), which is then stored in the database.  

GOM is an application programming interface (API) used for parsing GLYDE-II XML files for 

use by Java applications, while JSON is an information exchange format that is often used as an 

alternative to XML. Afterwards, both SHA-1 and MD5 hashes of the structure representation are 

computed to ensure uniqueness among structures.  SHA-1 and MD5 are cryptographic hash 

functions that take potentially large strings of data as input, such as the aforementioned glycan 

representations, and generate fixed-length (shorter) hashed strings as output.  These are useful as 

unique structure keys in the Qrator’s database. After being imported, all new structures are given 

pending status (Figure 7). 

Additionally, scientists may use the included structure builder interface to construct 

glycans for review.  The interface allows users to rapidly construct glycans by clicking residues 

in a graphical menu in order to chain residues together.  Default values for ring form and 

absolute configuration are provided for each residue type, but users may modify them.  Users 

may also select a linkage position for each residue by clicking the link between two residues and 

selecting the desired position from the provided menu.  Parent residues are checked to make sure 

that they do not have multiple child residues connecting to the same linkage position.  

Additionally, substituents are created in much the same way as creating a child residue, though 

users pick substituent types and set their positions from a drop-down menu.  Moreover, the 

structure builder doubles as a substructure search interface.  It does not utilize the canonical tree 

to guide construction, however, as users may want to build structures that are not yet subsumed 

by a canonical tree. 
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Structures in Qrator are rendered in CFG Nomenclature.  When a structure contains 

residues with no CFG equivalent, they are rendered as dark circles.  However, the user may 

mouse over a residue at any point to view the textual description of the residue.  Other notations 

for rendering glycans may be considered in future versions. 

 

4.5 REVIEWING AND MATCHING STRUCTURES 

 

During the structure review process, a reviewer decides whether a structure is consistent with 

well-established biosynthetic pathways according to the reviewer’s knowledge.  Many 

Figure 8: An example of an N-glycan structure that has been matched against a canonical tree.  
The originally reviewed structure is depicted in (a).  An example of an alignment that differs 
from the original is shown in (b).  In this case, Qrator suggests changing the β-galactose to an α-
fucose, and the linkage from 1-4 to 1-3.  An example of an alignment that will cause a new 
residue (in this case, β-galactose) to be added to a canonical tree is shown in (c). 
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biosynthetic pathways are summarized and accessible as public resources (e.g. 

http://www.ccrc.uga.edu/~moremen/glycomics/) but expert knowledge is still required, 

especially when considering isomeric complexities that may be known to interfere with specific 

elongation reactions [64].  Also, no ambiguities are allowed within a structure’s definition, since 

curation is meant to produce a collection of specific, completely defined structures.  If, in the 

judgment of the curator, each linkage and residue is not supported by known biosynthetic 

capabilities or clear analytic data, the structure may be rejected. 

After initial review, the structure may then be compared against one of the canonical 

trees present in GlycO using the previously discussed matching algorithm.  A list of possible 

matching structural configurations (alignments) is then presented to the reviewer, with 

differences between the alignment and the submitted structure highlighted as colored circles.  For 

example, the candidate structure shown in Figure 8a has 8 residues, meaning the maximum score 

can be 40 (5 possible points per residue and its linkage).  The alignment shown in Figure 8b has 

a score of 36/40 because the linkage position, absolute and anomeric configuration, and residue 

type for the β-galactose residue in the target structure do not match that of the canonical tree.  

The only matching criterion between the β-galactose and the α-fucose is the ring form 

(pyranose).  In cases where two structures have the same score, they are ranked equivalently and 

it is left to the reviewer to determine which is correct. However, in practice the number of 

structures with identical scores is small and does not impair the curation process. A perfect 

match (an alignment with no differences) appears exactly as the submitted structure does, with 

no highlights around residues.  It should be noted that a perfect match merely means that a 

structure is completely subsumed by the canonical tree to which it was compared, and that 

attaining perfect matches is not the ultimate goal of curation. However, perfect matches do 
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indicate a higher probability that a structure is correct, since the curation process has previously 

validated other structures containing the same residues and linkages. However, in an imperfect 

alignment, candidate structure residues may exist that do not completely match a canonical tree 

residue, or simply are not present in the canonical tree to which the candidate structure was 

mapped. As shown in Figure 8b, a single residue in the candidate structure has been mapped to a 

topologically equivalent, yet structurally different, residue in the canonical tree and is 

highlighted with a red circle.  Selection of a match highlighted thus indicates the candidate 

structure should be edited to correct a mistake in the indicated node in order to match the 

corresponding node in the canonical tree.  Reviewers examining structures manually, or using 

software that does not attempt to detect errors may overlook such mistakes, since they are not 

pointed out automatically and are difficult to detect.  Residues in the candidate that are not 

matched topologically or structurally to any residues in the canonical tree are highlighted with 

blue circles, as shown in Figure 8c.  Selection of a match highlighted in this way should be 

carefully considered, as each highlighted residue requires the addition of a new residue to the 

canonical tree, fundamentally changing the tree’s information content.  Alignments such as these 

are most frequently selected when a canonical tree is initially being built.  As a canonical tree 

becomes larger and more robust, addition of new residues is less often necessary, as the mature 

canonical tree is more likely to contain all of the residues in each new candidate structure.  

Structures that have been successfully matched by the reviewer against a canonical tree are 

assigned reviewed status. 

The computer-assisted approach for structure review presented here reduces the incidence 

of human error and the amount of manual labor required in the overall curation process. 

 



 

51 

4.6 CURATING STRUCTURES 

 

After a structure has been reviewed and matched, a second human curator further assesses the 

matched structure to determine whether it should be included in GlycO.  When viewing a 

matched structure, all of the references and provenance data associated with it are immediately 

available to the curator, along with the aforementioned visual cues highlighting possible 

discrepancies between the structure and the canonical tree it was matched against.  With this 

information readily accessible, the curator can make a well-informed decision as to whether the 

structure should be approved or rejected. 

Another important feature of Qrator is its capability to construct canonical trees for new 

classes of glycans, provided that the root residue is present and an appropriate set of 

representative glycan structures is available for each class.  In this context, we have built upon 

early work [73] by expanding the initial N-glycan canonical tree that we had manually imported 

into the GlycO ontology.  We subsequently regenerated and extended this tree, and generated 

several O-glycan and glycosphingolipid trees from scratch by defining appropriate root residues 

(i.e., reducing end residues) and adding new residues using the Qrator application.  

 

4.7 COMMITTING STRUCTURES 

 

After a number of structures have been subjected to the curation workflow and have been 

approved, they are given committed status.  If Qrator is not in standalone mode (i.e. it is not 

configured to add structures to GlycO), they are written as GLYDE-II XML files and sent to a 

separate web application that manages the GlycO and ReferO ontologies.  This application 



 

52 

parses the XML and makes the necessary modifications to GlycO.  All metadata about the 

structures are sent in much the same manner and added to ReferO.  The local copies of the 

canonical trees are then updated for future structure matching. 

If Qrator is configured for standalone operation, committing structures to GlycO is not 

enabled.  However, approved structures (or structures in other stages of the curation workflow) 

can always be downloaded as a zipped archive of GLYDE-II files from the Status panel.  This 

allows scientists to utilize Qrator to curate structures for use in a specific biological context, or 

for situations where utilizing the semantic capabilities of the GlycO ontology is not needed. 

 

4.8 IMPLEMENTATION 

 

Qrator has been implemented as a lightweight, web-based application that connects to a series of 

Representational State Transfer (REST) based web services that are backed by a PostgreSQL 

database. The web application can be accessed at http://glycomics.ccrc.uga.edu/qrator/. Guest 

users may browse structures, and view the status page, along with the canonical trees, but they 

cannot review or curate structures. However, those interested may install a local copy of Qrator, 

giving them the ability to curate their own structures. The source code and installation 

instructions are available at https://code.google.com/p/qrator/. Qrator can be configured to 

interact with our Ontology Web API (still in development), or to function in standalone mode, 

meaning that it will not be able to add structures to an instance of the GlycO ontology. Even 

without this capability, curated structures are always available for download from Qrator’s status 

page. 
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4.9 USER INTERFACE 

 

The user interface is implemented in JavaScript, and relies heavily on the jQuery framework 

(http://www.jquery.com/). Many interface elements and CSS styling also come from the Twitter 

Bootstrap framework (http://getbootstrap.com/). Asynchronous calls to REST-based web 

services implemented as Java servlets supply it with data. These calls are made using the AJAX 

(Asynchronous JavaScript And XML) collection of web techniques. After glycan structures are 

retrieved from the server side, they are rendered on the client side using D3.js (http://d3js.org/), 

and further enhanced with supplementary information such as residue and link labels that are 

displayed on mouse-over. Annotations, references, and provenance for structures are also 

retrieved when necessary, and rendered in a second pane alongside the list of structures. 

Data is encoded in JSON for transmission between the web services and the web 

interface. JSON offers a more concise data exchange format than XML, and integrates well with 

a JavaScript user interface. Similar to XML schema, a JSON schema validation method is 

available in case there is a need, but Qrator does not utilize it at this time. 

 

4.10 WEB SERVICES 

 

The service layer has been divided into multiple REST-based web services based on their 

functionality. Creation, edit, and search functions for most types of objects within Qrator are 

contained in their own individual services, and all are available by querying them through a 

suitable Java web server. For example, a user may want to create more references for a structure, 

edit an annotation for a structure, or search over structures they have uploaded. Individual 
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services are provided for structures, literature and database references, annotations, user 

accounts, and administration functions for updating GlycO or downloading structures. Currently, 

we deploy Qrator on a JBoss Application Server (http://jbossas.jboss.org), but we have also 

tested the application on an Apache Tomcat web server (http://tomcat.apache.org). 

 

4.11 DATA STORAGE 

 

Qrator utilizes a PostgreSQL database for keeping track of submitted structures in different 

phases of review, along with references, annotations, and provenance information for these 

structures. We also keep track of which canonical trees are available in GlycO, and sub-classes 

of structures within those trees. Furthermore, we retain copies of all canonical trees in the 

database to compare structures against during the structure-matching step. The GlycO ontology 

itself is maintained by a separate application, and is updated via web service invocations by 

Qrator when necessary. 

 

4.12 RESULTS 

 

The Qrator web application has been thoroughly tested by scientists at the CCRC, and the 

application has evolved significantly based on the feedback we were given.  Workflow changes 

were implemented, making certain stages of the workflow appear under-populated, as in the case 

of deferred structures.  However, this disparity is expected to decrease over time as more 

curation is done.  In all, over 2500 glycans from various classes including N-glycans, O-glycans, 

and glycosphingolipids have been reviewed thus far, and are in various stages of the curation 
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workflow.  These structures were all imported from the GlycomeDB meta-database, which 

provides access to structural information from several different databases [57, 77], including 

CCSD, BCSDB and the CFG database.  Acquiring structures from GlycomeDB has distinct 

advantages, including the availability of numerous external references to the other databases that 

have been integrated within GlycomeDB.  In our past curation efforts, the focus was on the 

curation of mammalian structures, which led to a temporary deferment/rejection of valid glycan 

structures that are not present in Mammalia.  Such structures will be reviewed again at a later 

date.  Moreover, Qrator has been designed for curating glycan structures, not glycoconjugates or 

aglycons, and thus we only import glycans for review. 

It is important to note that not all classes of glycans are amenable to curation by Qrator.  

Each canonical tree used must consist of structurally related glycans (such as N-glycans) that are 

produced by variations of the same biosynthetic pathway.  Thus, curation of N-glycans using 

Qrator was undertaken before other classes of glycans.  This was due in part to the abundance of 

available structures to curate, as well as the availability of an existing canonical tree (GlycoTree) 

manually generated by [73].  This tree, containing 74 residues, was initially utilized for curation 

efforts.  After several hundred structures were curated, the N-glycan canonical tree was 

completely rebuilt using only the curated structures.  This newly rebuilt tree has been further 

CANONICAL TREE IMPORTED PENDING DEFERRED/ 
REJECTED 

APPROVED 

N-glycan lipid-linked precursor 14 0 4 10 

N-glycan 1911 509 535 883 

O-GalNAc 383 36 195 152 

Gal-initiated glycosphingolipid 12 2 8 2 

Glc-initiated glycosphingolipid 428 108 35 285 

 Table 1: Current glycan curation status 



 

56 

extended by continuous structure curation to 144 residues, as of May 2014.  Of the 1911 N-

glycan structures submitted for curation, experts have approved 879 for inclusion in GlycO.  All 

numbers are current as of August 2014. 

Currently, curation of O-glycans has been primarily focused on GalNAc-initiated O-

structures, with limited curation on mannose-initiated structures and plans to start curation of 

fucose-initiated structures in the near future.  Of the 383 GalNAc-initiated structures input for 

review, 347 have been curated thus far, with 152 structures approved for inclusion in GlycO.  

Currently, 9 mannose-initiated structures have been curated and approved, out of 466 candidate 

structures with a mannose residue at the reducing end. 

We have also added 440 glycosphingolipid structures including both glucose-initiated 

and galactose-initiated varieties.  In all, 330 glycosphingolipid structures have been curated thus 

far, with 282 structures approved for addition to GlycO. 

All structures are available for download at any stage of curation, either in batches from 

the status page, or individually.  Also, the latest version of GlycO is freely available from the 

CCRC’s Ontology Web API website. 
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CHAPTER 5 

ACTIVE ONTOLOGIES 

 

Information intended for use on the Semantic Web is primarily encoded within ontologies that 

contain concepts and relations typically expressed in RDF or OWL format.  Ontologies model 

domains of interest, and facilitate the reuse of knowledge by allowing references to concepts 

within the domain of interest, which are all assigned URIs.  They are typically used as a means 

of capturing knowledge about a domain that does not change often, since most ontologies are not 

used for daily information storage and retrieval.  This contrasts with databases that, for some 

installations, can see many millions of updates on a daily basis.   

Common axioms within ontologies include: 

1. CLASSES – Classifications of things. 

2. INDIVIDUALS – Instances of classes. 

3. ATTRIBUTES – Properties of objects (and classes). 

4. RELATIONS – Ways in which classes and individuals can be related to one 

another. 

5. RESTRICTIONS – Formal descriptions of what must be true in order for an 

assertion to be acceptable as input. 
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6. RULES – Descriptions of logical inferences that can be made from an 

assertion. 

These axioms enable the specification of concepts, and making assertions about concepts 

in the form of triples.  As mentioned previously, triples are expressions comprised of a subject, a 

predicate, and an object. The subject represents a concept or an instance of a concept, with the 

predicate representing a trait of the subject and relating the subject to the object.  

Even though ontologies are fundamentally a knowledge encoding mechanism, the 

information they contain is significantly more useful when harnessed to perform tasks.  Using 

ontological information typically requires constructing an application with specific instructions 

on how to query a particular ontology, and how to interpret the information that is subsequently 

returned.  Such applications are typically built for a particular use, and have a limited scope.  

Here we explore the idea of a framework that can extend an ontology with application functions 

called behaviors that bind to resource patterns. Active ontologies of this type can more easily be 

used in daily scientific research, since the contextually relevant functions they are enhanced with 

can support a wide range of scientific research endeavors. 

 

5.1 BEHAVIORS 

 

Behaviors are pieces of application functionality that are bound to ontological patterns and 

triggered when new instances of such patterns are detected, allowing contextual actions to be 

performed.  Behaviors may be one of a number of built-in primitive actions provided by the 

Curio API that can be performed on resources within an ontology, or pluggable modules that 

provide functionality beyond simple resource management.  A behavior is automatically 
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executed when the pattern it is mapped to is detected in an ontology after a triggering event, but 

a behavior may also be triggered manually by a user if desired.  Triggering events are any which 

could cause the creation of an ontology pattern at the instance level that could correspond to one 

of the patterns bound to a behavior.  Creating or modifying resources, properties, or relations are 

examples of triggering events.  Moving resources from one location to another is also a 

triggering event.  Removal of resources, properties, or relations is not a triggering event, since 

ontology patterns bound to behaviors are currently only inclusive of elements, not exclusive. 

Patterns are composed of one or more resource types, and may also have constraints on a 

resource type’s attributes, relations, parent resource types, or child resource types.  By default, 

patterns apply to entire classes of resources, but they may be constrained to smaller groups of 

individuals, or even specific individuals through the use of constraints.  This functions in much 

the same way as patterns present in SPARQL [78] queries, but also takes a great deal of 

influence from CSS’s [79] style of matching elements within HTML.   

Behaviors may be triggered by other behaviors when adding or removing information 

from an ontology, meaning that chain reactions may occur.  This could lead to unforeseen 

benefits or difficulties.  However, the ultimate intent is to better utilize the information present in 

ontologies and turn ontologies into more active participants in daily scientific research. 

 

5.1.1 BEHAVIOR DESCRIPTION LANGUAGE 

 

The Behavior Description Language (BDL) has been created for the purpose of easily specifying 

the ontology patterns that behaviors bind to, and takes inspiration from the syntax of CSS, which 

binds styling and formatting parameters to elements in an HTML page.  CSS was chosen as the 
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inspiration for BDL because of its relative conciseness compared to XQuery [80] or SPARQL, 

and its wide adoption by the web community.  CSS uses selectors to specify which HTML 

elements that a style will apply to.  Selectors are essentially patterns that are tested against 

elements within a tree structure to determine whether they are a match.  Selectors can be 

composed of a simple selector, or chains of simple selectors separated by combinators.  Simple 

selectors can constrain elements on their type, classes, or attributes.  Combinators can connect 

multiple simple selectors in order to allow constraints on an element’s familial relations within 

the hierarchy (i.e., an element’s ancestor or sibling relations).  Normally, a syntax geared 

towards trees is not readily applicable to graph structures, since graphs generally do not possess a 

Table 2: BDL selector patterns 

PATTERN DESCRIPTION 

* any ontology class 

C a resource of type C 

C[foo] a C resource with a property or relation “foo” 

C[foo=”bar”] a C resource whose “foo” property exactly equals “bar” 

C[foo^=”bar”] a C resource whose “foo” property begins with “bar” 

C[foo$=”bar”] a C resource whose “foo” property ends with “bar” 

C[foo*=”bar”] a C resource whose “foo” property contains “bar” 

C[foo=D] a C resource whose “foo” relation is connected to a D 
resource 

C(D,E,F) a C resource with D, E, and F children 

C D a D resource that is a descendant of a C resource 

C > D a D resource that is a child of a C resource 

C ~ D 
 

a D resource that is a sibling of a C resource 
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hierarchy in which to base constraints on.  However, Curio’s approach, to start with a tree-based 

hierarchy of instance data and subsequently build a graph structure of properties and relations 

around it, means that CSS’s use of selectors can be more readily adapted to this framework. 

 Selectors in BDL function much like selectors in CSS, and serve to constrain which 

elements are bound to behaviors.  However, BDL’s selector patterns are meant to constrain on 

graph patterns as well as on a hierarchy.  BDL selectors may constrain on: 

1. CLASSES – Constraints on a resource’s ontological types 

2. ATTRIBUTES – Constraints on attributes that are common to all resources 

(i.e. non-user created attributes such as name, description, uri, etc) 

3. PROPERTIES – Constraints on ontological properties that have been 

created by a user 

4. RELATIONS – Constraints on a resource’s ontological relationships to 

other resources 

5. POSITION – Constraints on ancestor/sibling relationships, as well as child 

resources 

 BDL’s syntax attempts to conform to syntax precedents set by CSS whenever possible, 

albeit with additions to accommodate the ability to constrain on child resources and relations.  

However, BDL does not require certain types of selectors specified in CSS, since its purpose is 

for binding behaviors to ontology patterns.  Examples of selector patterns in BDL are described 

in Table 2. 

 It is important to note that constraints on resource relations or resource children can be 

nested indefinitely.  For example, in the pattern C[foo=D], D may also have multiple property 
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or relation constraints.  Multiple selectors are handled in the same way as CSS, as in 

C[foo=”bar”][baz=”qux”].  BDL is not yet as mature as CSS, and so more selectors may 

be required in the future.  However, the currently listed selectors are able to support a wide range 

of use cases. 

A wide selection of built-in functions are also provided for basic resource management 

purposes.  These functions support creation, modification, and deletion of resources, properties, 

and relations.  There are also functions for moving resources from one location to another and 

invoking plugins.  Some simple examples of specifying behaviors are shown below. 

Experiment>GeneList{ 

extract(GeneExtractor); 

} 

 

Experiment>Gene{ 

move-to("Experiments:Genes"); 

} 

 

The first example demonstrates invoking an extractor named “GeneExtractor” on 

resources of type “GeneList”, which are the children of resources of type “Experiment”.  The 

second example will invoke the move-to function to move the selected resources of type “Gene”, 

which are also child resources of an “Experiment” resource, to the “Genes” resource located at 

the root of the space named “Experiments”. 
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5.1.2 PLUGINS 

 

Ontology behaviors are intended to be capable of extremely diverse tasks, and are required to be 

as flexible as researchers need to accomplish their work.  Since the built-in operations for 

resource management are generic and not expected to be flexible enough to accommodate all of 

a researcher’s goals, plugins may be constructed to perform domain-specific tasks.  Plugins are 

software modules that provide enhanced capabilities for research in a specific domain.  

Obviously the needs of researchers in different fields vary considerably, so plugins are 

envisioned to perform fairly specific tasks.  Multiple plugins may also be bundled together. 

Curio currently supports four major types of plugins: Importers, Exporters, Extractors, and 

Viewers. 

Importers may be used as a major source of automatically harvested input data for Curio.  

Since they are written as pluggable Java modules, Importers can potentially interface with any 

external source of data, whether local or remote file systems, web services, databases, ontology 

stores, or others, and utilize the Curio API to modify the user’s ontology by adding or removing 

resources, relations, or properties.  This is useful for gathering data from heterogeneous sources 

so that they may be organized in the same place.  This is intended to help mitigate the burden 

scientists currently face when viewing their research data, as it is typically spread out amongst 

multiple storage systems. 

Exporters are the opposite of importers, in that they allow resources to be written to some 

output, or even transferred from Curio back to external storage systems.  Like importers, they are 

pluggable Java modules, and can theoretically be programmed to interface with any external data 
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storage system.  However, exporters are not meant to modify the user’s ontology, only write or 

transfer resources to another location or format. 

Extractors work somewhat like importers in that they can also add and remove resources, 

relations and properties. However, they extract these elements from existing resources, such as 

imported XML documents, spreadsheets, or other raw scientific data.  Despite the name, 

extractors can serve many different functions ranging from data analysis to scientific workflows, 

and effectively serve as processing modules within Curio.  For example, an extractor may be 

written to convert existing resources to other formats suitable for analysis, while another 

extractor could be written to perform a scientific analysis, essentially extracting an output 

analysis from an input raw data file. 

Viewers may also be constructed for visualization of ontology data.  Contextually 

relevant, domain-specific visualizations are invaluable to scientists for analyzing their data in 

ways that are intuitive to them.  Generic visualizations of ontologies (i.e., as nodes and edges) 

are typically of limited value, and do not afford scientists the ability to view data in the manner 

that they are accustomed, or in ways that make sense to them, causing data analysis to be more 

difficult than it needs to be.  Custom visualizations, by contrast, can drastically improve the user 

experience, and greatly increase the usefulness of ontologies by allowing researchers to view and 

Figure 9: Visualizing a resource representing a glycan 
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analyze data in representations that are accepted by their scientific communities.  For example, in 

Figure 9, a resource representing a glycan in Curio could be rendered in CFG notation, a familiar 

format for glycobiologists.  Furthermore, in Figure 10, this glycan visualization could be 

combined with a second plugin that allows scientists to extrapolate the glycan into various 

biosynthetic pathways, and could even combine such pathways with experiment data for 

analysis. 

In general, behaviors give rise to interesting possibilities with respect to the role of 

ontologies.   As mentioned previously, it is easy to envision behaviors granting an ontology the 

ability to fully interact with other sources of knowledge, not simply extract information from 

them.  An ontology could conceivably self-populate its individuals, or dynamically create 

provenance information as new data is created or imported, verify its own data against other 

sources of data, or even rearrange its internal structure based on contextual triggers.  Given a 

combination of these abilities, an ontology could even function as an agent, growing by 

Figure 10: An example of contextual actions.  The glycan resource visualized in Figure 9 could 
be bound to a behavior plugin that locates biosynthetic pathways in which it resides, and renders 
experiment data on top of the path for analysis purposes. 
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collecting data, and regulating its structure as it increases in size.  The ontology could also 

automatically push updates or additional information to remote sources of data, if allowed.  

Scientists who create ontologies with Curio and import data from external sources would not 

simply be consumers of data, but also potential content creators that could push changes, along 

with additional information, back to these sources.  Once behaviors are in place, many of these 

processes or workflows could be automated, significantly reducing the workload scientists face 

when working with research data. 

 

5.2 DATA PROVENANCE 

 

Provenance is a very important part of scientific data management systems.  A good scientific 

data management system should be able to track the provenance of research data to ensure that 

the data is not misplaced or forgotten after the research on it has been published, both to ensure 

experiment reproducibility, and for possible use in future projects. Such a system should also be 

able to generate provenance where appropriate, so that a researcher does not have to manually 

document what has been done to an item of data.  Methods of documenting provenance, and 

what provenance should be recorded should also be flexible.  Current data management systems’ 

procedures for recording provenance cannot typically be altered. 

Indeed, data provenance is one of the most important uses of ontology behaviors.  To 

illustrate how a behavior can assist in recording provenance, let us consider a scenario that could 

be employed in qRT-PCR experiments. The qRT-PCR workflow contains a data processing step 

that accepts a raw data file as input and generates a spreadsheet as output.  By providing an 

extractor plugin to perform the data processing step and binding the extractor to the input file 
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with appropriate selectors, ontological relationships between the input data and output data could 

be generated automatically by the extractor, since it can utilize the Curio API.  Moreover, the 

workflow itself could be represented as a resource (or series of resources) in Curio, so that a 

relationship between the input and output resources and the workflow (or processing step) could 

be created as well.  If desired, metadata in the form of attributes could also be assigned to 

resources involved in the process.  A simple example of qRT-PCR workflow resources enhanced 

with provenance information is shown in Figure 11. The aforementioned scenario could also fit 

Figure 11: Data provenance scenario using the qRT-PCR workflow. Resources within Curio 
are displayed within the outlined area.  Relationships between resources could be created 
automatically by binding behaviors at certain stages of the workflow. 
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other workflows in numerous areas, including data analysis, data annotation, data curation, report 

generation, running simulations, and more. 

Versioning is yet another possibility for provenance relations, as newer versions of files 

can contain relations to previous versions, while keeping records of how they were transformed, 

similar to a wiki.  A data import plugin would be required to interface with workflow programs if 

automatic population is desired, however. 

 

5.3 WORKFLOWS 

 

Researchers are increasingly utilizing workflows for performing experiments, data analysis, or 

other tasks related to their research.  Current scientific workflow systems provide capabilities 

geared specifically towards scientific research.  Efforts in Astronomy, Bioinformatics, Physics, 

Chemistry, Botany, Climate Science, Computer Science, Neuroscience, and Ocean Science 

among others, are all benefitting from scientific workflows.  Most existing scientific workflow 

systems allow for graphical creation of workflows with references to outside resources, such as 

web services, to perform the actual execution of their tasks. 

Workflows can be created in Curio through the use of behaviors, enabling tasks to be 

automatically executed as certain conditions are met.  This method of specifying a workflow, 

however, is envisioned to be more loosely structured than in traditional workflow systems.  In 

the Curio model, resource patterns would have behaviors assigned to them, which could then 

trigger actions on other resources, causing chains of actions to occur.  These behaviors would be 

specified in place of using a graphical workflow editor to create a flow-diagram specification of 

a workflow that is currently prevalent in workflow systems.  Smaller sets of behaviors could also 
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easily be specified to handle commonplace tasks without a researcher even thinking of them as 

workflows.  This method also allows the possibility of overlapping workflows, as multiple 

workflows’ behaviors could interact with the same resources concurrently.  Care would naturally 

have to be taken to ensure that two workflows’ activities do not conflict when specifying 

multiple behaviors on the same resources. 
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CHAPTER 6 

ORGANICALLY CONSTRUCTED ONTOLOGIES 

 

Often in scientific data management systems, knowledge modeling is done first, usually by 

knowledge modeling experts or computer scientists.  Even though there is often close 

collaboration with domain experts to construct domain models, disagreements between domain 

experts is a frequent occurrence, especially on how concepts should be modeled.  In an ideal 

scenario, domain specialists should be able to construct their own knowledge models, either 

collaboratively or by themselves, since they have extensive background experience and know 

what is useful to model.  If there are multiple models of the same domain, these same specialists 

could work together in a collaborative software environment to integrate models, if desired. 

Static domain models often lack practicality for scientists who wish to use them in their 

efforts to better understand and analyze their data, since they also often need the flexibility to 

change the model as new data becomes available, or as their understanding of the domain 

changes.  A domain model need not be pre-constructed and static, but may grow organically 

from inputting and linking scientific data.  For many researchers, ontology development in these 

cases may be better performed from the perspective of the data (i.e. from the bottom-up).  A data 

management system that allows a scientist to construct a model out of their research data would 

also be better suited to handle changes to the model when the need arises, since the model is not 

static and is meant to be readily adapted to new data. 
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One option for ontologies starting with imported data is to use a basic schema grounded 

in the types of data that have been imported.  For instance, if GLYDE-II files have been 

imported, the type of the resource could be GLYDE-II, which would inherit from XML, which 

would inherit from Text Document, etc.  If an extractor (mentioned in the previous chapter) is 

available that can read the contents of GLYDE-II files, a representation of a glycan could be 

extracted from the GLYDE-II file.  Alternately, a reference to an existing representation in an 

external ontology could be created.  The scientist could then enhance the GLYDE-II file by 

creating or referencing a class called Glycan, instantiating a new Glycan object, and linking that 

object to the file that it originated from.  In this manner, source data (the GLYDE-II file) can 

reside in the same continuity as the resources that they describe (the Glycan resource). 

 

6.1 ONTOLOGY CONSTRUCTION METHODS 

 

Ontologies, described in section 2.3, act as common vocabularies for scientific domains, and are 

typically constructed through consensus on what concepts mean.  Designing ontologies can be 

controversial, with potential disagreements about what concepts are important, how they should 

be modeled, or even what they mean.  Here, we mainly consider ontology design to be referring 

to designing ontology schemas, as opposed to schemas plus instances.  Ontology design is often 

an iterative process, going through multiple revisions before a final ontology schema is 

produced.  Even then, the ontology may be further revised as new discoveries are made, if the 

scope of the ontology is to be expanded, or if the ontology is to be used for different purposes 

than originally conceived. 
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Often ontology schemas are modeled before the designers even know precisely what 

instance data will need to be included, and are engineered in a top-down fashion.  The top-down 

approach begins with the most general concepts of a domain, and then subdivides them into more 

specific concepts.  The bottom-up approach, which is the opposite of the top-down approach, 

groups together the most specific concepts of a domain (usually at the instance level) to form 

more general or complex concepts.  Methods to combine the two in hybridized approaches have 

also been proposed.  Of the two approaches, top-down is by far the most popular, as, currently, 

there is no general-purpose algorithm that is capable of automatically creating an ontology 

schema from instance-level data.  The Glycan Ontology (GlycO), which is used by many of the 

bioinformatics projects currently in development at the CCRC, was developed in a top-down 

fashion, and is intended to model the particulars of glycan chemistry and structure.  However, 

bottom-up and hybrid approaches also continue to gain popularity with various applications [81-

85].  Curio intends to allow researchers to gradually enhance their research data, which will 

function as the instance level of the ontology, with ontology classes, properties, and relations.  

While this is a bottom-up approach, it does not use an algorithm to automate construction of the 

ontology schema.  Rather, it will let schemas evolve naturally out of the process of enhancing 

research data with metadata. 

 

6.2 RESOURCES 

 

Resources in Curio are representations of data intended to be capable of embodying a wide 

variety of things including objects in the real world, research data, experiments, workflows, 

documents, or anything else that a researcher might need.  These resources may be organized 
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hierarchically using resources that act as containers, virtually identical to the organizational 

method present in a file system.  Resources may be further organized with Spaces, which can be 

considered largely analogous to different volumes in a file system, and carry their own security 

considerations.  Spaces can be used for organizational purposes, serving as a partition for 

resources, or they can be used for collaborative purposes, with multiple users having access to 

the same space and being able to edit the same resources. 

Curio resources also share many commonalities with the definitions for resources 

outlined by the World Wide Web, and later the Semantic Web. The Semantic Web defines 

resources by encoding them in RDF and its derivative formats.  Resources in RDF are entities 

referred to by any URI or Internationalized Resource Identifier (IRI).  By this definition, 

anything with an identity can have a URI or IRI, and is potentially a resource.  Thus, in RDF, 

statements can be made about anything that has an identity, and statements can even be made 

about other statements. 

Curio is intended to serve not only as a meta-organizational layer over existing storage 

systems, but also as a storage system in its own right, and is capable of creating resources that 

only reside within its database.  It supports the integration of resources residing in multiple 

systems, with no guarantee that those systems are otherwise interoperable. Curio is also capable 

of enhancing any resources it contains with new metadata.  Metadata enhancements take the 

form of relations between resources, which may be thought of as labeled hyperlinks, or 

properties, which function as annotations.  As with RDF, property and relation types may apply 

to all resource types, or may be constrained to only apply to a specific resource type.  An 

example of enhanced resources is displayed in Figure 12. 
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Scientists are able to reorganize resources irrespective of how they were organized in 

their place of origin.  These organizational changes are not propagated back to the sources unless 

an exporter is used.  For example, a scientist may import a group of resources from the file 

system on a computer and reorganize them inside Curio, but this does not mean that the changes 

Figure 12: An example of resources before and after metadata enhancement.  By default, 
resources may exist hierarchically like files, and they may be enhanced with properties and 
relations. 
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are reflected in the file system itself.  Resources from different origins may be organized and 

interspersed within Curio regardless of where they were imported from.  Information extracted 

from databases may exist alongside imported files, or instances imported from ontologies, or 

even resources imported from the web. Curio is not entirely dependent on importing resources, 

however, as it also supports the creation of new resources.  

Resources may also be organized into a hierarchical structure at the instance level, similar 

to the way file systems organize files.  This is accomplished with the use of resources that act as 

collections, also referred to as containers.  Containers are considered specialized resources that 

can contain other resources and other containers.  This allows for preserving the structure of data 

imported from inherently hierarchical sources such as file systems, and also provides a 

convenient means of creating further organization amongst resources in Curio even if a user does 

not wish to enhance their resources with metadata.  Such relationships between resources can 

represent partonomy, or other types of hierarchical relations as needed.  Furthermore, the 

semantics of containers may be mapped to external vocabularies such as SIOC or SKOS as 

needed when exporting data. 

Much like in other ontology-based systems, resources in Curio may be assigned types, 

which are analogous to classes in RDFS or OWL.  As with RDFS or OWL classes, resource 

types may have property and relationship types associated with them, constructing a schema.  It 

is expected that these types will be defined after the import or creation of resources in Curio, not 

before.  This will allow schemas to emerge from available resources, instead of forcing resources 

to fit a predefined schema.  However, if a community has already agreed on a common 

vocabulary and desires to import a predefined schema, this is also possible. 
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6.3 RESOURCE AGGREGATION 

 

As discussed previously, data is encoded in many different formats, and is kept in many different 

types of storage systems.  Scientific data is especially prone to information fragmentation owing 

to the number of ad-hoc file formats in existence, as well as the number of domain-specific data 

management systems being used.  Research data may be found in file systems, databases, 

ontologies, LIMS systems, the World Wide Web, or the Linked Data cloud, among potentially 

many others.  Aggregating data from so many sources, and extracting from so many different 

formats is a challenge unto itself.  While Curio cannot provide a direct solution to this problem, 

it does provide a basis for solving this problem in the form of an API for developing importers 

that can be utilized to ingest data from any of these various information sources as Curio 

resources.  Additionally, this API can be used to build extractors for creating resources by 

parsing structured and semi-structured data from different data formats. 

As mentioned in the previous chapter, importers are plugins that serve as adapters for 

external sources of data, allowing resources and metadata to be created.  These resources and 

metadata can be created in Curio to directly mirror the organization scheme used by the original 

source of the data.  Importers may ingest the entire contents of a resource into the system, or may 

simply create a reference to an external resource, which is especially desirable if the content of a 

resource is considered too large to efficiently store locally.  Resources ingested from different 

sources are treated equally, as Curio is agnostic to where a resource comes from.  This allows 

researchers to freely combine resources imported from multiple sources in the same space, and 

relate or otherwise organize them as they see fit. 
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6.4 RESOURCE ORGANIZATION 

 

The traditional file system organization paradigm (using files and folders in hierarchy) is familiar 

to most computer users, and the methods that people use when organizing their data in file 

systems have been studied in the past [86].  Every major desktop operating system (e.g. 

Windows, Mac OS, Linux) in current use is still designed around this form of organization.  

Even mobile operating systems utilize it behind their user interfaces, with some mobile operating 

systems employing aspects of it in the user interface as well.  Hierarchical file systems are likely 

going to be around for quite some time yet, despite claims to the contrary [87].  RDF-based 

ontologies can also support hierarchical means of organizing knowledge, but this is typically 

only used at the schema level.  To support the import of data from hierarchical systems, instances 

require the ability to be recursively grouped into containers.  Importing data elements from a 

hierarchy into a flat structure is not sufficient, as there would be information loss when 

discarding their previous organizational structure. 

Luckily, preserving organizational semantics when importing data from file systems into 

ontologies is not terribly problematic.  There are already elements in basic RDF to support 

collections of resources, whether ordered (Seq) or unordered (Bag).  Moreover, Semantic Web 

vocabularies like SKOS have support for collections of concepts, as well as other useful 

constructs for knowledge organization. 

When importing data into Curio as resources, hierarchical relationships present in 

organizational systems that use hierarchies, such as file systems, are preserved between resources 

at the instance level.  Then, should a scientist choose to enhance the resources further, an 

ontology schema can be built on top of them, complete with relations between resources, and 
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other metadata.  Scientists using such a system need only be aware of having the ability to 

organize and annotate their data in new ways, not that they are actually creating an ontology.  

Becoming proficient with knowledge-modeling should not be necessary for domain experts, who 

simply want enhanced capabilities for their data, like annotation or provenance.  With this 

approach, the ontology grows naturally from the way scientists already organize and use their 

data.  We also argue that schemas for data should not be rigid and difficult to alter, since the 

highly dynamic nature of many areas of scientific research demands a continually changing 

understanding of the way data is structured. 

However, considering that many data models are created prior to organizing data, Curio 

does support preloading such models for use by individuals within a community.  Often, 

Figure 13: Curio’s data model 
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scientific communities may agree on standard concepts and wish to use these as a starting point 

for further data modeling, or data exchange.  In such situations, the community can import its 

own ontological schema, whose concepts can be utilized by scientists in their own personal data 

models, and, in some cases, extended.  Resource types created by individual scientists can also 

be shared, or mapped to by others, in the case that other scientists agree on terminology and want 

to integrate their data. 

Curio’s data model (Figure 13) is designed to reside above the schema layer of 

ontologies, and is intended to contain both the schema and instances of user-constructed 

ontologies.  In effect, it is an extra level of abstraction and serves as a metamodel for data 

modeling.  It will support access control via spaces, and keep track of the sources that data is 

imported from.  The pre-construction of ontological schemas (discussed previously), as well the 

ability to specify ontology patterns and behaviors (described in section 5) that attach to these 

patterns will also be supported. 

 

6.4.1 SPACES 

 

Spaces are virtual containers that can be used in Curio for various purposes.  Spaces may be 

employed for organization, but they can also facilitate collaboration, or control access to 

different collections of resources.  This is similar to many existing organizational systems that 

also partition data for these purposes, such as file systems and database management systems.  

Access control is particularly important in governmental institutions such as the United States 

National Labs, which require tight controls on sensitive material.  Unfortunately, this also places 

burdens on scientists who want to collaborate with others, as they must go through a tedious 
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process of gaining clearance for outside organizations to be given access to data within a 

protected network.  Similar situations exist in most research labs with sensitive data in their 

networks.  As expected, scientists welcome systems that allow easier collaboration under such 

tight restrictions.  Spaces could help facilitate such interaction without compromising security. 

Another interesting possibility that spaces provide is the opportunity to publish research 

to a community immediately.  In this scenario, other scientists in the community could review 

research as it is made public, and make comments or criticisms to help the author improve it.  

Research materials could easily be linked to the published documents for other scientists to use 

in reproducing experiments or verifying results.  This could result in a much more open scientific 

community that is less afraid to publish negative research results along with positive ones, since 

the barrier to publication is lessened.  

 

6.4.2 CONTEXTS 

 

Like spaces, contexts are available to assist scientists with organizing or controlling access to 

their resources.  Contexts act as organizational elements, but they do not reside in the same 

continuum as classes or spaces, and do not function the same way.  Whereas classes group 

resources by assigning a definition based on their characteristics, and typically exist in a 

hierarchy, contexts operate like tags or keywords for resources, describing them in a non-

hierarchical manner. 

Contexts can also support access control for resources, since resources linked to a 

particular context may be restricted to particular groups of users.  This affords a greater degree of 

granularity when controlling access to resources, as contexts can be used within spaces to grant 
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or restrict access to groups of resources.  Contexts may also be used in concert with user groups 

by plugins to determine the extent of functionality that is available to a user.  For example, 

specific groups of users may need an extractor to only extract certain values, or there may be a 

need for a viewer to deny access to certain menu options. 

For applications like the Qrator, which exist within a single space, queues of structures 

are modeled as container resources.  Access to these queues must be restricted to specific user 

roles if we are to adequately model the original Qrator application.  Since reviewers, curators, 

and administrators need different access rights within the application, simply granting access to 

the entire space will not work in this case.  Contexts may be used instead to grant read or write 

access to specific queues.  Moreover, viewers employed by the Qrator may use contexts to 

restrict available functions in menus, such as the decisions that are available to curators when 

reviewing structures. 
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CHAPTER 7 

CURIO PROTOTYPE IMPLEMENTATION 

 

A prototype implementation of Curio has been developed using many of the lessons learned from 

previous implementations of data curation, analysis, and management systems for glycobiology.  

This system attempts to be a truly flexible, yet customizable platform for constructing scientific 

research environments that allow resource management, workflow design, and data analysis 

capabilities in a modular architecture.  Building upon previous work on projects in glycomics 

research, Curio aims to have an intuitive UI, more varied ways of organizing data in order to fit 

scientists’ preferences, and the ability to add behaviors to ontological patterns in order to 

facilitate scientific workflows, data analysis, or other capabilities. The current architecture for 

Curio is described in section 7.2. 

The persistence module used in Curio was refined in previous projects, such as the 

aforementioned GlycoVault and Qrator.  Highlighted features of the persistence module include 

(Java) code generation of system objects, object factories, web services, and SQL schemas from 

UML-like models.  The persistence module serves as a means of storing, retrieving, and 

searching for objects efficiently without requiring pre-constructed SQL queries. Possible future 

additions include support for graph databases, triple stores, file system storage methods, or 

hybrid systems that make use of multiple storage solutions in concert.  SPARQL support is 

another possibility, especially if a preexisting triple store is used. 
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The ability to add behaviors to ontological patterns has also been implemented.  A CSS-

inspired scripting language syntax has been developed to allow easier construction of behaviors 

that are matched to graph patterns. A set of basic operations has been constructed that allows 

scientists to easily create small workflow-like processes to be performed when triggered.  

Furthermore, a pattern scanning mechanism has been developed to activate behaviors in the 

event that the ontology changes.  Patterns for automatic execution of behaviors are stored in a 

trie-like structure, and executed when matching patterns are detected in the ontology. 

Aggregating data from external sources is also provided.  Curio can theoretically support 

the import of data from databases, ontologies (Linked Open Data), web services, and file systems 

(among others) through its plugin architecture.  As discussed in Chapter 5, data import plugins 

can be used to acquire resources from various locations, and data extraction plugins can be used 

to create resources or metadata by parsing specific data formats.  For example, when importing a 

GLYDE-II file from a web address, an importer for downloading web data will be used to 

acquire the file, where it can then be passed to a GLYDE-II extraction plugin for parsing.  As 

mentioned previously, these two resources, the GLYDE-II file and the extracted data, can both 

exist in Curio which allows opportunities for the creation of provenance metadata, among other 

things. 

Users can manage resources through a web-based user interface that heavily utilizes 

jQuery and Bootstrap functionality.  The user interface provides a default file-system-inspired 

view of resources, but is also capable of rendering resources in domain-specific representations 

dictated by visualization plugins.  Resources are divided up into spaces, which are displayed 

along the top of the screen.  Visualizations for resources are also available if a visualization 

plugin exists and is available for a particular resource pattern. 



 

84 

7.1 CHALLENGES 

 

As many application developers will attest, building flexible systems for handling research data 

is quite difficult.  There are no known algorithms that can analyze unknown data types and adapt 

to them automatically without human intervention, or algorithms that can automatically infer 

schemas from instance data for all domains. Moreover, not many systems exist that do not 

require their users to adapt their data to fit a predefined method of organization.  As stated 

previously, there is typically a tradeoff between usefulness in a specific domain, and the ability 

to support multiple domains (even if only to a limited degree).  In building Curio, we intend to 

construct a framework that could support any domain, yet one which must be customized in 

order to be truly useful.  While this is not as convenient as an algorithm that does most of the 

work for us, it can still provide a useful platform that supports a great deal of flexibility in data 

modeling, and interoperability between data in different domains.  Such a platform can also 

eliminate much of the effort expended in constructing modules that are common among many 

web-based research applications, such as persistence, web services, and user interface. 

 There are also challenges in developing a user interface that can support many different 

kinds of visualization through customization, yet is still mostly familiar to users.  To this end, we 

have decided to base the default visualization of resources around files and folders, as we believe 

that this offers the most common frame of reference for everyone who has dealt with computer-

based information management.  We also take inspiration from web browsers’ address bars and 

website breadcrumbs to display the user’s current location within the information space.  

However, visualization plugins must still be developed for specific applications in order to 

provide more useful ways of interacting with resources.  Still, we believe that starting with 
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familiar visualization paradigms, such as files and folders, will make it easier for researchers to 

adjust to using the system, and will minimize the discomfort of transitioning into the Curio 

environment. 

 

7.2 ARCHITECTURE 

 

Curio incorporates software that was previously developed for other projects, as well as modules 

that had to be written specifically for it.  The software that serves as Curio’s persistence layer 

was used in other bioinformatics projects, but was developed for use in any application.  While 

Figure 14: Curio's architecture 
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this software’s major role is to function as a persistence layer, it was also used to generate a 

significant amount of Curio’s code, and can offer the services of a rapid prototyping system.  In 

addition to the persistence software, a portion of the JavaScript in the user interface of Qrator 

was able to be adapted for use in Curio. 

Curio also makes use of the OSGi (Open Services Gateway Initiative)8 framework to 

allow the addition of domain specific plugins that define behaviors for data import, extraction, 

visualization, and analysis.  These plugins are managed by Curio’s plugin manager, and can be 

linked to resource patterns for automatic execution.  Currently, installed plugins are globally 

available to all users.  Apache Felix9, which is an OSGi implementation, was used in the 

construction of Curio’s plugin manager. 

Overall, Curio has been constructed with a software stack much like any other web-based 

application.  At the lowest levels, a persistence layer interacts with a PostgreSQL database.  The 

persistence layer is responsible for creating, retrieving, updating, and deleting the objects in the 

layer above it, which are, in turn, interacted with through object and relation factories in the layer 

above them.  Object managers form another layer of abstraction above the factories, and are used 

by a layer of web services that allow the JavaScript-based user interface and other external 

applications to interact with a Curio deployment.  The user interface is built with a combination 

of jQuery10, Bootstrap11, and D3.js12, and serves as an interactive environment for users to 

manage their resources. 

 

                                                
8 http://www.osgi.org/ 
9 http://felix.apache.org/ 
10 http://jquery.com/ 
11 http://getbootstrap.com/ 
12 http://www.d3js.org/ 
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7.3 PERSISTENCE MODULE 

 

The persistence module used in the construction of Curio was spun off as a separate project 

during the development of the aforementioned Qrator and GlycoVault projects.  Frequent 

alterations in the data models of these applications prompted the development of a system that 

could allow such changes to be rapidly implemented without requiring tedious updates to every 

level of the software stack.  It is often the case that modifications made to the data models of 

web-based applications that use a database necessitate updating database schemas, database 

queries, objects, object factories, and web service classes, depending on the extent of the 

changes.  Such updates require a lot of development time, and if many adjustments are made to a 

data model during an application’s development cycle, they can severely delay project 

completion dates. 

The persistence module has undergone many design and implementation iterations, but 

currently serves as a code generation system as well as a dynamic persistence layer.  It is capable 

of automatically generating large amounts of application code for Java projects, as well as 

storing and retrieving Java objects, all based on a project’s data model.  It dynamically generates 

queries to create, read, update, and delete objects (CRUD).  Currently, only PostgreSQL 

databases are supported, but the intent is to eventually support other SQL databases, and even 

other types of data storage methods, such as NoSQL databases, RDF or OWL triple stores, or 

even flat-file based systems.  There is also the possibility of utilizing multiple storage systems in 

tandem as a hybrid, with data being stored in whichever system would best accommodate it. 
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 Use of this module has saved considerable time during the development and maturation 

of the data models used in Curio, Qrator, and GlycoVault.  When designing any prototype 

application, changes to classes and their relationships are expected as new requirements are 

added.  Usually, this requires manual corrections to every level of the software stack, with the 

severity of the corrections depending on the number and significance of the changes.  However, 

the persistence module’s code generation capability mitigates many of the necessary corrections, 

since it can automatically generate many classes required by an application.  The code generation 

functionality has thus far been focused specifically on web-enabled applications, as it supports 

Figure 15: Persistence module’s code generation capability for a standard software stack.  
Sections in green are capable of being automatically generated.  Unshaded areas already exist or 
must still be manually coded.  The persistence module takes a data model specification as input. 
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the generation of web service classes.  Currently, SQL schemas, entity classes, relationship 

classes, entity and relation factories, entity and relation “manager” classes (which act as an 

abstraction and convenience layer on top of factories), and even web service classes can be 

generated.  Parts of a typical web application that can be generated are shown in Figure 15.  In its 

dynamic persistence capacity, this module currently serves as the data storage and retrieval layer 

for the three aforementioned projects. 

 When using the persistence module, a data model must be provided as input.  The model 

is encoded in JSON, and contains many attributes that are similar to UML models and SQL 

schemas.  Within the model specification, there is a section for specifying entities, and another 

for specifying relations between entities in the model.  An example of a model file is shown in 

Appendix A.  The persistence module completely relies on the data model specification in order 

to generate code and read and write objects, and reads this file each time the persistence module 

starts.  As the file is parsed, an internal data model is constructed with references to generated 

Table 3: Attributes of persistence module entities 
 

TYPE ATTRIBUTES COMMENTS 

Integer 

name 
type 
default 
nullable 
unique 
size (String only) 
values (Enumeration 
only) 

 

Long  

Float  
Short  

Boolean  

Date  

Text Treated as a text blob of varying size. 
Object Stored as a byte array. 

String Requires size attribute (in bytes). Stored as 
varchar. 

Enumeration Requires a list of values in the enumeration. 
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interfaces, classes, and even getter and setter methods to facilitate dynamically retrieving 

attributes of object instances when necessary. 

Entities in the model file are specified in a JSON map, with keys corresponding to the 

entity name, and values consisting of the entity’s specification.  Within the entity specification, 

there are multiple properties describing how the entity’s class is to be generated when utilizing 

code generation. Among these are a properties indicating whether the entity is abstract, an array 

of the attributes that the entity should have, a comment describing the entity, the entity’s 

database key, and whether the entity represents a user.  The last property is useful when the 

application makes use of access controls that are optionally available.  Attributes of entities are 

specified as JSON objects within a JSON array.  Attributes can be one of ten different types, 

with specific properties corresponding to each type (Table 3). 

After specifying a model, code generation may be performed by invoking methods within 

the persistence module’s code generator.  Code generation uses a series of Freemarker13 

templates to generate a variety of different types of classes.  Templates may be customized for 

each project, and theoretically could generate non-Java classes as well, though this is untested.  

Individual methods within the generator class are provided for generating class files for objects, 

relations, web services, object and relation factories, object managers, and even database 

schemas.  Object managers are classes that provide convenience methods for each type of object 

specified in the data model and invoke object factory methods to carry out many tasks.  Methods 

in an object manager may allow easy retrieval of specific objects, lists of connected objects via 

relations, updates to objects, or the ability to create new objects or remove them. 

                                                
13 http://freemarker.org/ 
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When using the persistence module as a dynamic persistence layer, configuration 

information must be updated in a Java properties file in order to connect to a database.  Once the 

database URL, database driver, user name, and password are set, the persistence module may be 

used to programmatically alter the database’s contents.  Adding, removing, and modifying 

instances of objects may be performed at the factory layer, or with individual object manager 

classes.  Querying for objects can likewise be performed in factories or object managers, and 

utilize filter classes to target specific objects for retrieval. 

The persistence module’s query package provides functionality for running select, insert, 

update, and delete queries.  Insert and Delete classes have functions for programmatically 

inserting and deleting objects and relations, respectively, while the Update class contains 

methods for updating a preexisting object’s attributes.  Select queries are used for retrieving data, 

and include the option of traversing relations between objects.  Select queries also allow the use 

of filters to constrain which objects are returned by the query.  Select, insert, update, and delete 

queries may all be constructed from a QueryBuilder class. 

Query filters are used to filter the results of a persistence module query based on the 

attributes of the objects being returned.  Options for filtering attributes include comparisons for 

equals, greater/less than, greater/less than or equal to, within, not within, like, and unlike.  Filters 

have the capability to group restraints so that they are evaluated together in the final query. 

Restraint groups can be separated by logical AND and OR conditions. Moreover, filters can also 

control the sorting order of the returned query results by providing the capability to sort 

ascending or descending. 
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7.4 WEB SERVICES 

 

Curio provides a series of REST-based web services that support managing resources, behaviors, 

and plugins from the user interface, or from external applications that have the appropriate 

access credentials.  Operations available for managing resources and their metadata include 

creating, updating, or deleting resources, properties, or relationships.  There are also services for 

user authentication, user group management, and management of schemas, spaces, and contexts. 

All web services in Curio have been defined by annotating methods according to the JSR-

311 specification [88], also known as JAX-RS.  JAX-RS allows web services to be exposed from 

Java methods using a set of Java annotations supported by interfaces and classes.  JAX-RS 

supports creating services that handle GET or POST requests, and supports query parameters, 

form parameters, or parameters embedded in the URI itself. 

 While many web services for resource management can be generated by Curio’s 

persistence module, the services it generates are only for basic operations like instantiating or 

updating objects and their relations, and involve at most two objects.  Thus, the functionality of 

many of the service calls is outside the scope of what can presently be automatically generated, 

and so were programmed manually. 

 

7.5 PLUGINS AND BEHAVIORS 

 

Curio features a behavior manager that indexes and triggers behaviors bound to ontology 

patterns.  Behaviors are indexed in a trie structure, which is an ordered tree structure where all 

descendants of a node share a common prefix with the node.  While this type of structure is 
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usually associated with string matching, the behavior index contains nodes that represent 

matching criteria instead.  This structure affords efficient storage of behavior patterns, along with 

efficient lookup speeds.  Examples of patterns that have been translated into this structure are 

shown in Figure 16.  Nodes in this structure may contain behaviors if they were the terminal 

nodes created when the ontology pattern was parsed.  When a pattern is matched against the 

index, behaviors contained within the leaf node are executed, if there are any. 

Curio also contains a plugin manager that accepts plugins uploaded by users, stores them, 

and executes them when explicitly requested, or when triggered by the behavior manager.  The 

plugin manager is built around the OSGi framework, which also powers the plugin systems of 

popular IDEs like Netbeans and Eclipse. OSGi is a dynamic component system that allows users 

Figure 16: Behavior pattern indexing structure.  The class being constrained is outlined in red. 



 

94 

to create bundles of software functionality that can be remotely installed, uninstalled, started, 

stopped, or updated, all without requiring a reboot of the environment.  Plugins are where much 

of the customization of Curio occurs, as new visualization modules, processing modules, or IO 

modules can be added as needed.  Apache Felix was chosen as the OSGi API implementation 

due to its lightweight design. 

 

7.6 USER INTERFACE 

 

Curio’s user interface is web-based, and utilizes the web services mentioned in section 7.4.  We 

were able to incorporate various JavaScript and CSS styling frameworks in its construction, 

which accelerated development considerably.  jQuery was chosen to simplify construction of 

interface elements and various JavaScript widgets that were necessary, and also for its fully 

featured AJAX library.  Bootstrap was incorporated for its simple and attractive styling elements, 

and useful pre-constructed JavaScript widgets.  For heavier visualization, D3.js was chosen for 

the ease in which it transforms user-provided data into SVG diagrams. 

jQuery is a popular library that mitigates many browser-specific JavaScript quirks, and 

generally makes modifying HTML with JavaScript easier via the use of selectors.  Selectors 

allow quickly finding elements within an HTML page by their tag name, class, or id, among 

other possible constraints.  Along with selectors, jQuery allows the ability to execute algorithms 

on selected elements easily.  There is also an extensive AJAX library included in jQuery.  

Curio’s user interface utilizes AJAX heavily, as it provides a more responsive user experience 

compared to form submissions and page reloading.  AJAX allows the interface to incrementally 
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request updated information that it can load quietly in the background, instead of disrupting what 

the user is doing by refreshing the entire page. 

Bootstrap is a front-end framework that contains various design elements, interface 

components, and JavaScript widgets for building user interfaces.  Notable features of Bootstrap 

include responsive web design support, a collection of scalable icons supplied by Glyphicons14, 

an extensive CSS stylesheet that provides a modern appearance to form fields, tables, headers, 

and others, and a collection of jQuery plugins. 

D3.js, short for Data-Driven Documents, is another JavaScript library that can render 

datasets as complex, interactive diagrams.  D3.js functions much like jQuery in many regards, 

and is able to use selectors for transforming elements on an HTML page.  D3.js is also capable of 

binding elements within a dataset to SVG or HTML elements rendered in a webpage.  Moreover, 

D3.js can specify transition functions on these elements to support animations.  This combination 

of features allows complex and richly interactive diagrams and interface elements to be created.  

An earlier incarnation of D3.js, Protovis, gained a measure of acceptance with visualization 

practitioners and academics [89].  Thus, by including this library as a standard part of Curio’s 

visualization capability, we hope to make the creation of custom data viewers easier for domain 

specialists. 

The default method of browsing resources in Curio’s user interface was designed to be 

very similar to many file-based operating systems’ ways of interacting with files and folders.  

Dragging and dropping resources onto container resources (folders) moves those resources inside 

the container.  Clicking on container resource icons displays its contents in a nested structure 

similar to the list views that are present in many modern operating systems.  Double clicking on 

                                                
14 http://www.glyphicons.com 
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a resource will either navigate inside it if it is a container, or display the contents of the resource 

if it is not a container and its contents are stored locally.  This is still in the early stages of 

development, and works best with text documents.  Other formats could be supported in the 

future via plugins.  Resources and containers may also be “trashed”, which actually just flags the 

resources for removal and does not display them, except when the trash is viewed.  Trashed 

resources may be restored or deleted at the user’s discretion.  There is also a location bar, much 

like a web browser’s address bar, that displays the current space and path within the space.  

Other controls within the address bar are for navigating to the previous location, future search 

capability, refreshing the display, selecting viewer plugins, and showing or hiding the metadata 

panel. 

One of the most useful aspects of Curio’s interface is the ability to add and view resource 

metadata.  The metadata panel is located to the right side of the resource viewer, and may be 

hidden if more space is needed when viewing resources using a plugin.  Properties (called 

Annotations) and relations may be viewed in their respective tabs, and can be added via popups 

or from a contextual menu when right clicking on a resource.  Attributes of currently selected 

resources are displayed above the metadata, including what resource types are assigned, who the 

author is, the path of the resource within its space, the location of the resource in its system of 

origin (if it was imported), and a description of the resource if one was provided. 

Curio also features a series of menus at the top of the screen for managing spaces, 

plugins, behaviors, and user account information.  Currently, these menus are still under 

construction.  For example, while a user may switch between spaces from the spaces menu, there 

is still no way to create new spaces from the interface.  Also pending are dialog boxes for plugin 

management, and behavior specification.  Even though plugins are currently global, and may be 
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utilized by any user of the system, plugin management will be limited to a user’s own uploaded 

plugins.  Plugins will be uploaded within OSGi bundles, which may contain multiple plugins of 

different types.  The behavior management panel will also likely have a graphical method of 

specifying ontology patterns for binding to behaviors.  After a pattern is specified, selecting 

which behaviors to execute should be a simple process. 

On the left side of the main resource view panel, there is currently a small panel used for 

collecting frequently used resources.  This area can be considered analogous to a clipboard, or a 

favorites list, and is useful for collecting resources in order to move them to locations that may 

require a significant amount of further browsing, or for keeping track of certain key resources 

when creating relations with other resources.  As the user interface becomes more refined, this 

panel may not need to be as prominent, or may not be needed altogether. 
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CHAPTER 8 

EVALUATION PLAN 

 

Work on converting existing applications to fit within the Curio framework continues.  Curio is 

currently still in the proof-of-concept stage of implementation, and so we still lack a completely 

refactored end-to-end workflow.  However, as implementation progresses we continue to assess 

if the applications already built for the glycomics domain will be capable of being refactored 

without losing functionality.  Ontology behaviors are being constructed from existing code that 

duplicates the functionality of these applications.  These behaviors mostly require extending the 

appropriate plugin class, and packaging the plugins as an OSGi bundle.  The data from the 

applications can likewise easily be imported by Curio using importer plugins.  Once the 

applications have been refactored, and their data more tightly integrated within the Curio 

framework, we expect that they will act more like pieces of a whole, and less like separate, 

distinct applications.  Of course, further analysis of the refactoring process and what effects it 

has on the functionality of applications will be needed. 

The bits of functionality from each application will also have the potential to be shared 

amongst resources from others.  For example, this could allow data from one application to be 

rendered by another’s visualization method, or the creation of significantly more useful metadata 

than one application would generate on its own. 
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8.1 QRATOR 

 

With Qrator, we have mostly concentrated on determining whether it can be completely ported 

into Curio at all, since it contains a variety of very specific functions that would require 

replication.  But, it does make an excellent case study, mainly owing to the fact that it does 

contain an assortment of functions.  We are confident that we will be able to successfully 

replicate all of its functionality in Curio with a combination of built-in actions and plugins. In the 

process of formulating a plan for how these functions should be refactored, we realized that there 

are multiple ways to go about replicating its functionality.  Thus, while Curio does support 

flexibility, which is one of its primary goals, careful attention must still be given to how 

behaviors are implemented. 

As discussed in Section 4, Qrator’s primary function is to curate glycan structures.  

Curation in this case is basically sorting out “good” structures from “bad” structures.  Qrator 

does this by assigning structure classifications based on decisions made by curators as the 

structure moves through the curation workflow.  Structures are assigned one of five statuses: 

pending, reviewed, deferred, rejected, or approved.  These statuses can also be considered states 

within the curation workflow.  When porting the structure of this workflow to Curio, containers 

have been established to model each status (or state) of the workflow, along with an additional 

import container.  We then assigned these containers the resource type Queue.  Structure 

resources may then be transferred between these queues via a combination of controls within a 

viewer plugin, and the built-in moveto behavior. 

A viewer plugin was constructed for structure queues using existing elements of Qrator’s 

user interface, borrowing most heavily from the CFG rendering code.  The status menu was also 
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retained, to allow curators to transfer the structure to a different stage of the workflow.  Contexts 

are used to ensure that users only have access to the controls that their curation role allows.  

Curation roles present in Qrator, submitter, reviewer, curator, and admin, were translated into 

contexts in order to restrict which queues and which interface controls are able to be accessed.  

The viewer plugin, since it is intended to visualize lists of structures, is bound to any container 

with the class Queue. 

GLYDE-II files can be imported from either external databases or the local file system 

via import plugins, and parsed using our existing GLYDE-II parser embedded within an 

extractor plugin.  We assign a resource type, Glycan, to the extracted files, making it easier to 

bind the moveto behavior to the import container for automatically transferring them to the 

pending container. The extracted files become the candidate structures, and contain a JSON 

representation of a glycan’s structure, which is also currently used in the Qrator application.  

This makes it easier to render the structure in CFG notation, again as is done in Qrator.  

An extractor plugin will need to be constructed for matching glycans against different 

canonical trees.  The canonical trees, instead of being stored in a database, will take the form of 

resources whose contents are represented in the same JSON format that is used by the candidate 

files discussed previously.  The plugin itself will repackage the matching algorithm that Qrator 

currently uses as an OSGi bundle, and will take the canonical tree resources as input.  After 

matching a candidate structure against a canonical tree, a list of potential matches will be 

presented to a reviewer via the previously mentioned viewer plugin bound to the structure’s 

parent queue.  After choosing a match, a candidate structure could potentially have its contents 

replaced with the selected match’s configuration data. 
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As structures move through the curation workflow, metadata about which user performed 

which curation step can be recorded automatically via instantiating a series of properties related 

to curation.  Curio automatically records authorship data when a property, relation, type, or 

instance is created, so all that would be necessary is to define properties corresponding to each 

stage of curation that could be instantiated when a structure is moved between queues.  In the 

future, this may not be necessary, since we are currently considering adding an additional layer 

of provenance to record when resources are moved, regardless of the context.  Moreover, 

annotations could easily be added as properties to structures, much as they are in Qrator.  

References would need to be modeled as separate entities with properties of their own.  

Properties associated with references could include a link to the source database, the id of the 

structure in the source database, or potentially publication metadata if the reference is for a 

publication.  While we are currently working to implement publication references in Qrator, it 

should be noted that this capability is not currently supported.  However, if Qrator were ported to 

Curio, this capability would be easier to implement, as there would not be a need to code 

anything directly. 

 

8.2 GLYCOVAULT 

 

Most of GlycoVault’s functionality is already subsumed by Curio. Thus, its data model could be 

converted into a schema for glycobiologists to use when organizing their experiments, and 

serving as a basis on which to share common concepts.  Various glycomics applications could 

also use this schema to integrate their data more effectively by using common classifications, 

referencing common resources, or even to share common behaviors among resources.  Within 
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Curio, however, scientists would not be limited to using GlycoVault’s schema, and could pick 

and choose concepts from the schema to supplement their own data models, or as a starting point 

for building such models. 

 GlycoVault’s schema was designed to provide a flexible means to design and store 

experiments associated with glycobiology.  Thus, there is the notion of creating templates for 

experiment workflows and protocols, called “designs”. Individual experiments may share 

common experiment designs, which are sequences of protocol designs arranged in directed 

acyclic graphs (DAGs).  Protocol designs were incorporated because there is also frequently a 

Figure 17: GlycoVault's data model, minus attributes for classes 
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need to create variants of protocols with different parameters and observable data.  There is also 

a large section of the schema that is devoted to recording experiment data and resources.  This 

section can accommodate digital data, as well as references and metadata about objects in the 

physical world.  The complete GlycoVault schema is shown in Figure 17.  Though this schema 

was designed for flexibility in storing experiments and experiment data, changes were still made 

very frequently during the development process to accommodate unforeseen types of data or 

experiment models.  In a system like Curio, this would not be a problem, since it supports easy 

redesign of data models. 

 GlycoVault also helps to illustrate the value of Curio’s plugin system, since its modules 

for data import, export, and extraction are currently coded as web services.  Modularization of 

these web services would simplify maintenance considerably, and would make it easier for 

individual organizations to customize their installations.  Furthermore, additional IO plugins 

could be constructed as required to support future data formats, along with viewers for 

displaying experiment designs in a graphical manner.  D3 has interactive examples of data 

arranged as a graph structure, which could easily be adapted to the DAG structure present in 

many glycomics experiment workflows. 

 

8.3 PATHWAY BROWSER 

 

The Pathway Browser was constructed to view biosynthetic pathways in conjunction with 

experiment data by taking ontological data about glycans and pathways from GlycO and ReactO, 

respectively, and overlaying them with experiment data from GlycoVault.  Fortunately, when 

porting this application to Curio, integrating data from multiple sources becomes significantly 
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easier.  Glycan data could just as easily come from within the port of the Qrator application, 

since it deals with structure curation and has a large collection of glycans already. Consequently, 

GlycO may not be needed at all for glycan information, or the GlycO schema and instances 

could be absorbed into Curio altogether.  Experiment data could likewise be taken from the port 

of GlycoVault. In this scenario, the interaction of data from the two sources happens seamlessly, 

since they now can exist within the same system. 

Porting the Pathway Browser’s functionality should require far less data modeling and 

plugin implementation than Qrator, since it is mostly a visualization and analysis application and 

does not store information of its own.  Likely, its entire functionality could be encompassed by 

implementing a viewer plugin that allows a user to select a set of glycans within Qrator and 

transform them into a pathway visualization, or to remotely query ReactO for pathway 

information if the metadata is not present in Curio.  Experiment data from GlycoVault linked 

with the selected glycans and reactions could then be rendered and overlaid on the pathway 

diagram.
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

 

We have presented Curio, a software framework that aims to provide scientists with an 

extensible platform for developing powerful, customizable ways of working with their research 

data. This framework can help researchers gain a clearer overall picture of their research by 

allowing them to aggregate and integrate data that may be spread out over multiple systems or 

data formats.  Granting access to specific resources when collaborating on projects is also 

possible through the use of spaces and contexts, allowing groups of researchers to access 

common data that they can browse and edit.  Data may be further enhanced by using behaviors 

bound to patterns in the data itself, enabling processes or workflows to be constructed for 

analysis, visualization, provenance, or other purposes.  These two features, supporting complete 

flexibility when organizing and annotating research while allowing the natural construction of 

ontologies, and supporting the building of research processes via behaviors, can be extremely 

powerful tools for interacting with digital information, especially when combined. 

 We described a method of enhancing research data gradually with metadata, allowing a 

more organic approach of constructing personal data models that are internally represented as 

ontologies.  The concept of resources was outlined, which are representations of data capable of 

embodying a wide variety of things, including objects in the real world, research data, 

experiments, workflows, or documents.  Methods of using behavior plugins to support resource 
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aggregation were also described, as well as using Spaces and Contexts to control access to 

resources. 

 Gradually constructing ontologies from data using a gradual, organic approach allows 

researchers to enhance data in ways that matter to them, rather than being forced to adopt a 

predefined data model. Modeling scientific domains is still not an exact science, and there is 

often debate in scientific circles on what aspects of a domain are important to model, or how 

these aspects should be modeled.  Arriving at a complete consensus is not always necessary, 

however, especially when research is time sensitive and an imperfect domain model is needed 

quickly that could easily be altered in the future.  In these cases, scientists should be given the 

freedom to organize and model data in the way they prefer, without being forced to adopt a 

model that they disagree with, or one that does not make sense to them.  Thus, Curio strives to 

support a great degree of flexibility with respect to data modeling, and allows scientists to add as 

much or as little metadata to their research as they want. 

 While flexible data modeling is powerful in its own right, the ability to bind behaviors to 

ontological patterns presents another interesting avenue for researchers to enhance their data.  

We defined behaviors as pieces of application functionality that are bound to ontological 

patterns, and triggered when new instances of such patterns are detected.  These behaviors can 

take the form of predefined functions built into Curio, or user-provided plugins that offer custom 

functionality.  To quickly specify such behaviors, we defined the Behavior Description 

Language, and described how it may be employed by users to define behaviors.  Lastly, we 

showed how behaviors could be used to offer automatic provenance generation, or to model 

workflows directly within the Curio framework. 
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Typical usage of behaviors could encompass anything from fully-fledged scientific 

workflows to simple day-to-day tasks, but behaviors could potentially grant even more exotic 

capabilities. For example, a network of cooperative behaviors could act as an artificially 

intelligent agent.  Such an agent could act as an automatic curator of sorts for the knowledge 

base it is bound to, importing new data, updating existing data, and even pushing data updates to 

other systems as requested. 

This framework could also have many uses outside of scientific research.  Personal data 

management, software development, electronic health records, education, and other fields could  

benefit from the customization that Curio offers.  Applications may also exist in the rapidly 

evolving “Internet of Things”.  Devices connected to networks could be represented as resources 

and activated or controlled remotely via behavior plugins.  Alternately, such devices could be 

part of a sensor web, and could actively feed new data into an ontology.  The possibilities for 

customization are quite varied, as are the range of applications, and we plan to explore other uses 

for Curio in the future. 

 As development work on Curio continues, our list of future goals continues to expand.  

Perhaps most importantly, a customizable search module will be needed to support powerful 

methods of finding resources.  This will likely necessitate the introduction of a new type of 

plugin, in addition to the four existing types.  Other plugin types dedicated to data processing 

may also be introduced, especially with regard to supporting workflows.  The user interface 

requires completion of unfinished sections and controls, and we will also add new functionality.  

The interface will also be subjected to usability testing, with lots of human feedback.  The 

eventual goal is to have multiple complete, end-to-end workflows in place for demonstration 

purposes, and then to let scientists begin using the system in their research environments. 
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 We hope that systems like Curio will gradually take the place of current scientific 

systems that rely on inflexible, difficult to customize research workflows.  Scientists would 

benefit from fewer frustrations in organizing data, powerful integrated process specification, and 

more collaborative research.  The trend towards a more interactive web has fostered a desire for 

more personalized virtual environments, and more collaboration, as shown with the rise of 

services like Facebook, or GitHub.  Scientists should have the same capability to personalize 

their research environment and collaborate with other scientists.  Giving researchers more 

powerful and flexible tools with which to do their work can help accelerate the future of 

scientific research. 
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APPENDIX A 

PERSISTENCE MODULE DATA MODEL EXAMPLE 

 
{ 
    "entities": { 
        "SystemObject": { 
            "abstract": true, 
            "attributes": [ 
                { 
                    "name": "uri", 
                    "size": 1024, 
                    "type": "String", 
                    "nullable": true 
                }, 
                { 
                    "name": "createdOn", 
                    "default": "NOW()", 
                    "type": "Date" 
                }, 
                { 
                    "name": "modifiedOn", 
                    "default": "NOW()", 
                    "type": "Date" 
                } 
            ], 
            "comment": "An object in the system.", 
            "key": "sid" 
        }, 
        "SystemUser": { 
            "attributes": [ 
                { 
                    "name": "active", 
                    "type": "Boolean", 
                    "default": "true" 
                }, 
                { 
                    "name": "email", 
                    "size": 256, 
                    "type": "String", 
                    "unique": true 
                }, 
                { 
                    "name": "firstName", 
                    "size": 256, 
                    "type": "String" 
                }, 
                { 
                    "name": "lastName", 
                    "size": 256, 
                    "type": "String" 
                }, 
                { 
                    "name": "password", 
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                    "size": 256, 
                    "type": "String" 
                }, 
                { 
                    "name": "lastLogin", 
                    "default": "NOW()", 
                    "type": "Date" 
                }, 
                { 
                    "name": "created", 
                    "default": "NOW()", 
                    "type": "Date" 
                }, 
                { 
                    "name": "behaviors", 
                    "type": "Text", 
                    "nullable": true 
                } 
            ], 
            "comment": "A user of the system.", 
            "key": "sid", 
            "user": true 
        }, 
        "UserGroup": { 
            "comment": "A group of users.", 
            "key": "sid", 
            "parent": "SystemObject", 
            "attributes": [ 
                { 
                    "name": "name", 
                    "size": 256, 
                    "type": "String" 
                }, 
                { 
                    "name": "description", 
                    "default": "No description provided.", 
                    "size": 1024, 
                    "type": "String" 
                } 
            ], 
            "unique": [ 
                [ 
                    "name", 
                    "systemuserowns" 
                ] 
            ] 
        }, 
        "SystemContainer": { 
            "abstract": true, 
            "comment": "A container for system objects.", 
            "key": "sid", 
            "parent": "SystemObject", 
            "attributes": [ 
                { 
                    "name": "name", 
                    "size": 256, 
                    "type": "String" 
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                }, 
                { 
                    "name": "description", 
                    "default": "No description provided.", 
                    "size": 1024, 
                    "type": "String" 
                } 
            ] 
        }, 
        "SchemaObject": { 
            "abstract": true, 
            "comment": "A parent class for resource types, property types, 
and relation types.", 
            "key": "sid", 
            "parent": "SystemObject", 
            "attributes": [ 
                { 
                    "name": "name", 
                    "size": 256, 
                    "type": "String" 
                }, 
                { 
                    "name": "description", 
                    "default": "No description provided.", 
                    "size": 1024, 
                    "type": "String" 
                } 
            ] 
        }, 
        "InstanceObject": { 
            "abstract": true, 
            "comment": "A parent class for resources, properties, and 
relations.  InstanceObjects are instances of SchemaObjects.", 
            "key": "sid", 
            "parent": "SystemObject" 
        }, 
        "Context": { 
            "comment": "A context reference for resources, properties, and 
relations.  Useful for faceted browsing. (tag? view?)", 
            "key": "sid", 
            "parent": "SystemContainer", 
            "unique": [ 
                [ 
                    "name", 
                    "systemuserowns" 
                ] 
            ] 
        }, 
        "Space": { 
            "comment": "A container for resources, properties, and relations.  
Spaces can be used to organize data, or allow access to certain Resources for 
collaborative purposes.", 
            "key": "sid", 
            "parent": "SystemContainer", 
            "unique": [ 
                [ 
                    "name", 



 

118 

                    "systemuserowns" 
                ] 
            ] 
        }, 
        "Schema": { 
            "comment": "A container for types of resources, properties, and 
relations.", 
            "key": "sid", 
            "parent": "SystemContainer", 
            "unique": [ 
                [ 
                    "name" 
                ] 
            ] 
        }, 
        "Resource": { 
            "comment": "A resource.", 
            "key": "sid", 
            "parent": "InstanceObject", 
            "attributes": [ 
                { 
                    "name": "name", 
                    "size": 256, 
                    "type": "String" 
                }, 
                { 
                    "name": "description", 
                    "default": "No description provided.", 
                    "size": 1024, 
                    "type": "String" 
                }, 
                { 
                    "name": "container", 
                    "type": "Boolean" 
                }, 
                { 
                    "name": "trashed", 
                    "type": "Boolean", 
                    "default": false 
                }, 
                { 
                    "name": "sourcePath", 
                    "type": "String", 
                    "size": 1024, 
                    "nullable": true 
                } 
            ], 
            "unique": [ 
                [ 
                    "name", 
                    "hasparentresource" 
                ], 
                [ 
                    "sourcePath", 
                    "systemuserowns" 
                ] 
            ] 
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        }, 
        "ResourceContent": { 
            "comment": "A resource's contents.", 
            "key": "sid", 
            "attributes": [ 
                { 
                    "name": "hash", 
                    "type": "String", 
                    "size": 128, 
                    "unique": true 
                }, 
                { 
                    "name": "contents", 
                    "type": "Text" 
                } 
            ] 
        }, 
        "Property": { 
            "comment": "A property of a resource.", 
            "key": "sid", 
            "parent": "InstanceObject", 
            "attributes": [ 
                { 
                    "name": "value", 
                    "type": "String", 
                    "size": 1024 
                } 
            ], 
            "unique": [ 
                [ 
                    "value", 
                    "resourcehasproperty", 
                    "hastypepropertytype" 
                ] 
            ] 
        }, 
        "Relation": { 
            "comment": "A relation connecting two resources.", 
            "key": "sid", 
            "parent": "InstanceObject" 
        }, 
        "Source": { 
            "comment": "An external source of resources.", 
            "key": "sid", 
            "parent": "SystemObject", 
            "attributes": [ 
                { 
                    "name": "name", 
                    "size": 256, 
                    "type": "String" 
                }, 
                { 
                    "name": "description", 
                    "default": "No description provided.", 
                    "size": 1024, 
                    "type": "String" 
                }, 



 

120 

                { 
                    "name": "location", 
                    "size": 1024, 
                    "type": "String" 
                } 
            ] 
        }, 
        "ResourceType": { 
            "comment": "A resource type.", 
            "key": "sid", 
            "parent": "SchemaObject", 
            "unique": [ 
                [ 
                    "name", 
                    "residesinschema" 
                ] 
            ] 
        }, 
        "PropertyType": { 
            "comment": "A property type.", 
            "key": "sid", 
            "parent": "SchemaObject", 
            "unique": [ 
                [ 
                    "name", 
                    "resourcetypehaspropertytype", 
                    "residesinschema" 
                ] 
            ] 
        }, 
        "RelationType": { 
            "comment": "A relation type.", 
            "key": "sid", 
            "parent": "SchemaObject", 
            "unique": [ 
                [ 
                    "name", 
                    "hasdomainresourcetype", 
                    "hasrangeresourcetype", 
                    "residesinschema" 
                ] 
            ] 
        }, 
        "SourceType": { 
            "comment": "A type of external source.", 
            "key": "sid", 
            "parent": "SystemObject", 
            "attributes": [ 
                { 
                    "name": "name", 
                    "size": 256, 
                    "type": "String" 
                }, 
                { 
                    "name": "description", 
                    "default": "No description provided.", 
                    "size": 1024, 
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                    "type": "String" 
                } 
            ], 
            "unique": [ 
                [ 
                    "name" 
                ] 
            ] 
        }, 
        "PluginReference": { 
            "abstract": true, 
            "comment": "A reference to a module that extends system 
capabilities.", 
            "key": "sid", 
            "parent": "SystemObject", 
            "attributes": [ 
                { 
                    "name": "name", 
                    "size": 256, 
                    "type": "String", 
                    "unique": true 
                }, 
                { 
                    "name": "serviceClass", 
                    "size": 256, 
                    "type": "String", 
                    "unique": true 
                }, 
                { 
                    "name": "description", 
                    "default": "No description provided.", 
                    "size": 1024, 
                    "type": "String" 
                }, 
                { 
                    "name": "bundleId", 
                    "type": "Long" 
                } 
            ] 
        }, 
        "ImporterReference": { 
            "comment": "A reference to a plugin that can import resources 
from an external source.", 
            "key": "sid", 
            "parent": "PluginReference" 
        }, 
        "ExtractorReference": { 
            "comment": "A reference to a plugin that can extract additional 
resources from the contents of a resource.", 
            "key": "sid", 
            "parent": "PluginReference" 
        }, 
        "ExporterReference": { 
            "comment": "A reference to a plugin that can export resources to 
a data representation format.", 
            "key": "sid", 
            "parent": "PluginReference" 
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        }, 
        "ViewerReference": { 
            "comment": "A reference to a plugin that can visualize resources 
in a contextually relevant manner.", 
            "key": "sid", 
            "parent": "PluginReference" 
        } 
    }, 
    "relations": [ 
        { 
            "cardinality": "OneToMany", 
            "from": "SystemUser", 
            "fromRole": "Owner", 
            "name": "Owns", 
            "nullable": false, 
            "creator": true, 
            "to": "SystemObject", 
            "toRole": "Owned" 
        }, 
        { 
            "cardinality": "OneToMany", 
            "from": "SystemUser", 
            "fromRole": "Creator", 
            "name": "Created", 
            "nullable": false, 
            "creator": true, 
            "to": "SystemObject", 
            "toRole": "Creation" 
        }, 
        { 
            "cardinality": "ManyToOne", 
            "from": "InstanceObject", 
            "fromRole": "Resident", 
            "name": "ResidesIn", 
            "nullable": true, 
            "to": "Space" 
        }, 
        { 
            "cardinality": "ManyToOne", 
            "from": "SchemaObject", 
            "fromRole": "Resident", 
            "name": "ResidesIn", 
            "nullable": true, 
            "to": "Schema" 
        }, 
        { 
            "cardinality": "ManyToMany", 
            "from": "SystemUser", 
            "name": "BelongsTo", 
            "nullable": true, 
            "to": "UserGroup" 
        }, 
        { 
            "cardinality": "ManyToMany", 
            "from": "UserGroup", 
            "name": "CanRead", 
            "to": "SystemContainer", 
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            "toRole": "Container" 
        }, 
        { 
            "cardinality": "ManyToMany", 
            "from": "UserGroup", 
            "name": "CanWrite", 
            "to": "SystemContainer", 
            "toRole": "Container" 
        }, 
        { 
            "cardinality": "ManyToOne", 
            "from": "Resource", 
            "fromRole": "Child", 
            "name": "HasParent", 
            "nullable": true, 
            "to": "Resource", 
            "toRole": "Parent" 
        }, 
        { 
            "cardinality": "ManyToOne", 
            "from": "Resource", 
            "fromRole": "Target", 
            "name": "ExtractedFrom", 
            "nullable": true, 
            "to": "Resource", 
            "toRole": "ExtractionSource" 
        }, 
        { 
            "cardinality": "ManyToOne", 
            "from": "ResourceType", 
            "fromRole": "Child", 
            "name": "HasParent", 
            "nullable": true, 
            "to": "ResourceType", 
            "toRole": "Parent" 
        }, 
        { 
            "cardinality": "ManyToOne", 
            "from": "ExtractorReference", 
            "name": "ExtractsFrom", 
            "nullable": true, 
            "to": "ResourceType" 
        }, 
        { 
            "cardinality": "ManyToOne", 
            "from": "ImporterReference", 
            "name": "ImportsFrom", 
            "nullable": true, 
            "to": "Source" 
        }, 
        { 
            "cardinality": "ManyToOne", 
            "from": "Resource", 
            "name": "ImportedBy", 
            "nullable": true, 
            "to": "ImporterReference" 
        }, 



 

124 

        { 
            "cardinality": "ManyToOne", 
            "from": "PropertyType", 
            "fromRole": "Child", 
            "name": "HasParent", 
            "nullable": true, 
            "to": "PropertyType", 
            "toRole": "Parent" 
        }, 
        { 
            "cardinality": "ManyToOne", 
            "from": "RelationType", 
            "fromRole": "Child", 
            "name": "HasParent", 
            "nullable": true, 
            "to": "RelationType", 
            "toRole": "Parent" 
        }, 
        { 
            "cardinality": "ManyToOne", 
            "from": "RelationType", 
            "name": "HasDomain", 
            "nullable": true, 
            "to": "ResourceType", 
            "toRole": "Domain" 
        }, 
        { 
            "cardinality": "ManyToOne", 
            "from": "RelationType", 
            "name": "HasRange", 
            "nullable": true, 
            "to": "ResourceType", 
            "toRole": "Range" 
        }, 
        { 
            "cardinality": "ManyToMany", 
            "from": "Resource", 
            "name": "HasType", 
            "to": "ResourceType" 
        }, 
        { 
            "cardinality": "ManyToOne", 
            "from": "Resource", 
            "name": "HasContents", 
            "nullable": true, 
            "to": "ResourceContent" 
        }, 
        { 
            "cardinality": "OneToMany", 
            "from": "ResourceType", 
            "name": "HasPropertyType", 
            "nullable": true, 
            "to": "PropertyType" 
        }, 
        { 
            "cardinality": "OneToMany", 
            "from": "Resource", 
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            "name": "HasProperty", 
            "nullable": false, 
            "to": "Property" 
        }, 
        { 
            "cardinality": "ManyToOne", 
            "from": "Property", 
            "name": "HasType", 
            "nullable": false, 
            "to": "PropertyType" 
        }, 
        { 
            "cardinality": "ManyToOne", 
            "from": "Relation", 
            "name": "HasType", 
            "nullable": false, 
            "to": "RelationType" 
        }, 
        { 
            "cardinality": "ManyToOne", 
            "from": "Relation", 
            "name": "HasDomain", 
            "nullable": false, 
            "to": "Resource", 
            "toRole": "Domain" 
        }, 
        { 
            "cardinality": "ManyToOne", 
            "from": "Relation", 
            "name": "HasRange", 
            "nullable": false, 
            "to": "Resource", 
            "toRole": "Range" 
        }, 
        { 
            "cardinality": "ManyToOne", 
            "from": "Source", 
            "name": "HasType", 
            "nullable": false, 
            "to": "SourceType" 
        }, 
        { 
            "cardinality": "ManyToOne", 
            "from": "Resource", 
            "name": "ImportedFrom", 
            "nullable": true, 
            "to": "Source" 
        } 
    ], 
    "entity-implementation-package": "edu.uga.cs.curio.obj.entity.impl", 
    "entity-interface-package": "edu.uga.cs.curio.obj.entity", 
    "relation-implementation-package": "edu.uga.cs.curio.obj.relation.impl", 
    "relation-interface-package": "edu.uga.cs.curio.obj.relation", 
    "service-package": "edu.uga.cs.curio.web.generated", 
    "manager-package": "edu.uga.cs.curio.manage.generated", 
    "session-manager": "edu.uga.cs.curio.access.SystemSessionManager", 
    "author": "" 



 

126 

} 


