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ABSTRACT 

 Bushmeat hunting is anticipated to directly influence the distribution of bonobos through 

mortality of individuals and/or indirectly via bonobo avoidance of areas with higher hunting 

activity. Fragmentation of lowland rainforest is expected to facilitate hunter access to potential 

bonobo habitat, thereby reducing bonobo occurrence and reducing the effective habitat afforded 

by fragmented forests. We calculated four bonobo-specific fragmentation metrics based on 

remotely sensed data and fit univariate logistic regression models relating each metric to bonobo 

nest occurrence data collected in 2009. We found strong correlation between all fragmentation 

metrics and bonobo nest occurrence, with nests less likely to occur as fragmentation increased. 

We ranked the metrics based on predictive accuracy, with forest edge density (ED) ranking the 

highest. Using a maximum entropy modeling approach and 10 years of collaboratively compiled 

bonobo nest data, we built the first spatially explicit multivariate model predicting the rangewide 

distribution of bonobos. Of the rangewide environmental variables tested, the most important 

were distance from agriculture, distance from roads, ED, percent forest, and distance from river. 

Except percent forest, we view these predictors as proxies of hunting impact. Areas closer to 

agriculture are closer to human populations who tend to hunt in the surrounding forest. Roads and 



 
 

 

navigable rivers provide human access to areas that would otherwise likely be less vulnerable to 

hunting. ED distills the information of forest fragmentation from agriculture, logging, major 

rivers, and roads into a single metric that relates to hunter accessibility. At a finer scale, we fit 

bonobo site-occupancy models using three landscape-level metrics and three field-derived 

measures of human activity (machete cuts, traps, and roads). We used an information-theoretic 

approach to select the best fit models out of 65 potential combinations. ED occurred in all 13 of 

the top models, machete cuts occurred in 11, and both were negatively correlated with bonobo 

occupancy. Very likely, it is the poaching associated with these metrics that is the single common 

threat influencing bonobo occurrence. Our results indicate that forest fragmentation and hunting 

both negatively influence bonobo occupancy and both landscape- and local-level variables are 

important considerations in order to conserve this species. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Conservation of biodiversity and specific species of concern necessitates deliberate and informed 

land-use decisions rather than unmitigated spread of human use. With the global human footprint 

ever intensifying (Sanderson et al., 2002), natural-resource decision making must proceed even 

when species-specific biological information is incomplete. To conserve species of interest, 

natural resource planners rely on a clear understanding of where those species occur and how they 

react to various human impacts. In an age of rapid land-cover conversion, traditional 

approximations of species’ ranges based exclusively on historic data are insufficient for 

conservation planning aimed at reducing the impact of infrastructure and pervasive human use. 

For that reason and in conjunction with the proliferation of available data from remote sensing, 

the use of satellite imagery to estimate species’ distributions has become widespread. Yet, to be 

truly useful for species conservation, it is important to quantify the accuracy of such data for 

predicting species occurrence.  

Remote areas present a particular challenge for understanding species-habitat relationships 

because biological data are scarce and difficult to obtain due to inaccessibility. In many cases, 

even remotely-sensed data, such as satellite imagery, are not easily ground-truthed. Therefore, to 

make the most of limited spatial and biological data, spatially-explicit rangewide models that 

deliver fine-scaled information on species occurrence and relative habitat suitability – even in 

areas that are not surveyed – are critical. Landscape-level variables derived from remote sensing 

can contribute to models of species’ potential habitat and therefore to more informed decisions, 
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only if they are grounded in established relationships with the elements of biodiversity targeted 

for conservation. Such models can inform land-use plans designed to maintain connected, viable 

populations of species. 

The bonobo (Pan paniscus), epitomizes the remote-area challenge (Nishida 1972). 

Bonobos occur naturally at low densities in the rainforests of the Democratic Republic of Congo 

(DRC) and are difficult to locate (Badrian et al. 1981, Kano 1984, Mohneke and Fruth 2008). 

Surveys of unhabituated bonobos tend to focus on the daily nest structures they build, because in 

areas where they are hunted, bonobos tend to avoid humans (Kano 1984, Van Krunkelsven 2001, 

Reinartz et al. 2006, Fruth et al. 2008, Mohneke and Fruth 2008, Reinartz et al. 2008, Hart et al. 

2008, but see Grossmann et al. 2008). Persistent civil strife, limited road infrastructure, and food 

insecurity contribute to the low accessibility of the bonobo range to scientists (Dupain and Van 

Elsacker 2001, Eba’a Atyi and Bayol 2008, Grossmann et al. 2008). The highly rural human 

population within the bonobo range generally sustains itself through unregulated expansion of 

slash-and-burn agriculture, bushmeat hunting, and forest-product use (e.g. firewood collection) 

(Oates 1994, Eba’a Atyi and Bayol 2008, USAID 2010). These extractive activities impact 

wildlife and fragment Congolese rainforests, home to the only wild populations of bonobos in the 

world (Fruth et al. 2008, USAID 2010).  

Given that Congolese communities must hunt, farm, and log to shape their livelihoods, the 

over-arching goal of this project was to provide information to aid in the development of best 

management practices for natural resource managers interested in bonobo persistence. To achieve 

this goal, we aimed to develop landscape-scale metrics that reasonably predict where bonobos 

occur, to create maps identifying areas with the highest potential to support bonobos, and to 
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assess the accuracy of such broad-scale metrics against known bonobo occurrences and field-

based measures of potential threats.  

Our first objective was to identify useful landscape metrics for predicting bonobo 

occurrence (Chapter 2). To address this objective, we considered aspects of bonobo habitat 

expected to be both important to bonobos and detectible by satellite imagery. Timber harvest and 

slash-and-burn agriculture remove trees and forest cover that bonobos use as nesting, foraging, 

and shelter habitat (Badrian et al. 1981, Kano 1984, Kano and Mulavwa 1984, Oates 1994). 

Furthermore, timber inventories (conducted on cut transects), road networks, logging operations, 

and small farms penetrate the dense forest with linear openings that facilitate hunter access to 

bonobos (Wilkie et al. 1992, Oates 1994, Dupain et al. 2000, Dupain and Van Elsacker 2001). It 

is possible then that logging and farming not only reduce bonobo habitat through tree removal, 

but these activities may actually lead to increased harvest rates of bonobos. Although not a 

primary species for subsistence consumption, bonobos are eaten and can be sold for considerable 

profit in urban markets or as part of the pet trade (Dupain et al. 2000, Dupain and Van Elsacker 

2001). While satellite imagery cannot detect hunting explicitly, remote sensing can capture the 

forest fragmentation that exacerbates hunting and pet trade activities. In fact, habitat 

fragmentation and hunting are now considered principal threats to primates in general (Arroyo-

Rodriguez and Mandujano 2008), and have been regarded as such for bonobos specifically for at 

least 25 years (Kano 1984). Therefore we sought to distill the information of forest fragmentation 

into one or more metrics and test them.  

We calculated four broad-scale landscape metrics for predicting bonobo occurrence: edge 

density (ED), COHESION, CONTAGION, and class area (CA) for the Maringa-Lopori-Wamba 

(MLW) landscape and evaluated them for utility in predicting bonobo-nest occupancy based on 
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2009 field data. We conducted extensive field surveys entailing over 1,000 km of river and 

motorbike travel to then access different regions on foot. We fit logistic regression curves for 

bonobo nest occurrence for each metric and cross-validated them with hold-out data to 

independently test their accuracy. In this manner, we hoped to suggest an appropriate metric to 

use in future multivariate models of bonobo distributions. 

Our second objective was to develop the first spatially explicit model of the rangewide 

bonobo distribution. Such a model would provide conservation planners a map of areas likely to 

support bonobos and that may be good candidates for protected area expansion, as well as the 

complimentary information regarding areas less suited to sustaining bonobos where expansion of 

human uses may do the least-harm (Chapter 3). We used a machine-learning approach to species 

distribution modeling called maximum entropy (MaxEnt; Phillips et al. 2006; Elith et al. 2010), in 

which attribute data associated with known locations of bonobo nests were used to predict 

locations of suitable conditions across the species’ entire range. Numerous research teams 

collected bonobo nest data throughout the bonobo range between years 2000 and 2010 and we 

compiled these data for use in this modeling effort. Starting with numerous landscape-scale 

environmental predictor variables, including forest fragmentation, we systematically tested their 

relative capacity to predict bonobo nest blocks in multivariate MaxEnt (version 3.3.1) models. We 

excluded variables that contributed negligibly to prediction and interpreted the potential 

mechanisms relating the landscape-scale predictors to bonobo nest presence.  

Finally, in Chapter 4, we evaluated the relative influence of landscape and local variables 

related to human presence and hunting on the occupancy of bonobos. We fit multiple alternative 

models for predicting bonobo occupancy, including all combinations of broad-scale remotely-

derived data and fine-scale field-derived data. In addition to the fragmentation metric from 
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Chapter 2, we calculated two additional landscape-level metrics thought to correspond to human 

access and potential hunting pressure: distance from fire and distance from river. To compliment 

these remotely derived predictors with field data, we recorded bonobo nests and evidence of 

potential human threats within the MLW in areas of different hunting pressure. Such evidence 

included: machete cuts in vegetation, traps, hunting camps, paths, roads, and log-cut trees. We 

used an information-theoretic approach to select the best fit models, model averaged the 

parameter estimates, and evaluated the direction, magnitude, and confidence interval for each 

predictor. By grounding remotely-sensed predictors with field-based evidence of bonobo 

occupancy and relative hunting pressure, we sought to elucidate the mechanisms by which 

landscape-level variables influence bonobo distributions. Equipped with information regarding 

the relationships between bonobo occupancy and various human activities, we hope that 

conservation planners can encourage proactive management of land uses. Timber harvest units, 

agricultural fields, protected areas, and hunting areas can be placed strategically in an effort to 

meet local communities’ needs while doing the least harm to bonobo populations. 
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CHAPTER 2 

APPLYING LANDSCAPE METRICS TO CHARACTERIZE POTENTIAL HABITAT OF 

BONOBOS (PAN PANISCUS) IN THE MARINGA-LOPORI-WAMBA LANDSCAPE, 

DEMOCRATIC REPUBLIC OF CONGO
1
 

 

 

 

  

                                                             
1 1Hickey, J.R., J.P. Carroll and N.P. Nibbelink. 2012. International Journal of Primatology. 33:381-400. 
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ABSTRACT 

To conserve areas and species threatened by immediate landscape change requires that we make 

planning decisions for large areas in the absence of adequate data. Here we study the utility of 

broad-scale landscape metrics as predictors of species occurrence, especially for remote areas 

where there is a need to make the most of limited spatial and biological data. Bonobos (Pan 

paniscus) are endangered great apes endemic to lowland forests of the Democratic Republic of 

Congo. They are threatened by bushmeat hunting that is exacerbated by habitat fragmentation 

through slash-and-burn agriculture and timber harvest. We developed four landscape metrics: 

edge density (ED), COHESION, CONTAGION, and class area (CA) that may serve as surrogates 

for measuring accessibility of areas to hunting in order to predict relative bonobo-habitat 

suitability. We calculated the metrics for the Maringa-Lopori-Wamba (MLW) landscape and 

evaluated them for utility in predicting bonobo-nest occupancy based on 2009 field data. Cross-

validations showed that all four metrics performed similarly. However, forest edge density (ED) 

was arguably the best predictor, with an overall classification accuracy of 72.1% in which 85% of 

known nest blocks (n=124) were classified correctly. We demonstrated that for a relatively intact 

landscape and a mobile forest-dwelling species that is fairly tolerant of forest openings, forest 

fragmentation can still be an important predictor of species occurrence. We suggest that ED can 

be helpful when mapping bonobo habitat in MLW and can aid landscape-planning and 

conservation efforts. Our approach may be applied to other edge-sensitive species especially 

where high-resolution data are deficient.    
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INTRODUCTION 

Remote areas present a challenge for understanding species-habitat relationships because both 

biological and habitat data are scarce and difficult to obtain. Predicting species distributions 

generally depends upon having two primary types of data: (1) geographic locations of the species 

in question and (2) variables associated with those locations and the entire area of interest, such as 

vegetation cover type, soil type, or elevation (Austin 1996). Statistical relationships are 

investigated to determine the likelihood of species occurrence given a range of environmental 

conditions (Franklin 1995, Austin 1998, Guisan and Zimmermann 2000, Ferrier et al. 2002, Elith 

et al. 2006). Species location data can be scarce in remote areas due to inaccessibility and this 

inaccessibility also complicates the collection of observations to ground-truth the classification of 

remotely-sensed data that may exist, such as satellite imagery. Yet for endangered species, 

conservation planning must proceed in these data limited scenarios and such planning relies on 

reasonable estimates of species distributions.  

The bonobo (Pan paniscus) epitomizes the remote-area challenge (Nishida 1972). 

Bonobos occur naturally at low densities and are difficult to locate (Badrian et al. 1981, Kano 

1984, Mohneke and Fruth 2008) in the rainforests of the Democratic Republic of Congo (DRC). 

Although decades of effort have been invested in wild bonobo studies (Susman 1984, White 

1996, Furuichi and Thompson 2008), much of that work has been on habituated populations 

(Furuichi 1987, Kano 1992, Furuichi et al. 1998, Furuichi and Thompson 2008, Hohmann and 

Fruth 2008). Surveys of unhabituated bonobos tend to focus on the daily nest structures they 

build, because in areas where they are hunted, bonobos tend to avoid humans (Kano 1984, Van 

Krunkelsven 2001, Reinartz et al. 2006, Fruth et al. 2008, Mohneke and Fruth 2008, Reinartz et 

al. 2008, Hart et al. 2008, but see Grossmann et al. 2008). Persistent civil strife, limited road 
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infrastructure, and food insecurity contribute to the low accessibility of the bonobo range to 

scientists (Dupain and Van Elsacker 2001, Eba’a Atyi and Bayol 2008, Grossmann et al. 2008). 

The highly rural human population within the bonobo range generally sustains itself through 

unregulated expansion of slash-and-burn agriculture, bushmeat hunting, and forest-product use 

(e.g. firewood collection) (Oates 1994, Eba’a Atyi and Bayol 2008, USAID 2010). These 

extractive activities impact wildlife and fragment Congolese rainforests, home to the only wild 

populations of bonobos in the world (Fruth et al. 2008, USAID 2010). Determining effects of 

these activities on bonobo distributions can guide future research and aid landscape planning 

efforts.    

Ongoing conservation efforts are grappling to determine priority areas for research, 

monitoring, and protected-area designation for bonobos (Luetzelschwab 2007). To address the 

urgent call for landscape planning in the face of the above data limitations, there is a need to 

identify broad-scale landscape variables, derived from remotely-sensed data, and test their ability 

to identify high quality bonobo habitat. While increased data collection would be ideal, we were 

interested in exploring the utility of broad-scale landscape metrics to bridge the gap, thereby 

providing a near-term solution until more species-location and high-resolution data become 

available. To develop a bonobo-relevant metric, we considered aspects of bonobo habitat 

expected to be both important to bonobos and detectible by satellite imagery. Timber harvest and 

slash-and-burn agriculture remove trees and forest cover that bonobos use as nesting, foraging, 

and shelter habitat (Badrian et al. 1981, Kano 1984, Kano and Mulavwa 1984, Oates 1994). 

Furthermore, timber inventories (conducted on cut transects), road networks, logging operations, 

and small farms penetrate the dense forest with linear openings that facilitate hunter access to 

bonobos (Wilkie et al. 1992, Oates 1994, Dupain et al. 2000, Dupain and Van Elsacker 2001). It 
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is possible then that logging and farming not only reduce bonobo habitat through tree removal, 

but these activities may actually lead to increased harvest rates of bonobos. Although not a 

primary species for subsistence consumption, bonobos are eaten and can be sold for considerable 

profit in urban markets or as part of the pet trade (Dupain et al. 2000, Dupain and Van Elsacker 

2001). While satellite imagery cannot detect hunting explicitly, remote sensing can capture the 

forest fragmentation that exacerbates hunting and pet trade activities. In fact, habitat 

fragmentation and hunting are now considered principal threats to primates in general (Arroyo-

Rodriguez and Mandujano 2009), and have been regarded as such for bonobos specifically for at 

least 25 years (Kano 1984). Therefore a metric that captures this fragmentation may be a useful 

predictor of bonobo occurrence.  

This study focuses on the process of creating 4 bonobo-specific fragmentation metrics 

from available Landsat Thematic Mapper (TM) products. In order to determine the utility of these 

metrics to identify potential habitat for bonobos in the face of limited available high-resolution 

spatial data, we evaluated their ability to predict bonobo nest occurrence in MLW and discuss 

their potential value for broad scale habitat-suitability modeling and management applications. 

There are many potential metrics one could use to estimate habitat fragmentation. 

Selection of a fragmentation metric is challenging because quantifications of fragmentation and 

habitat loss have been shown to be confounded (Fahrig 2003, Neel et al. 2004) in that 

fragmentation itself is caused by dispersed habitat loss, resulting in a correlation between the two 

measures. Neel et al. (2004) examined numerous metrics across gradients of aggregation and 

percent habitat (area). Aggregation is a measure of the degree to which pixels of a focal class 

(say, forest) are spatially clustered. Conceptually, aggregation is similar to connectivity and is 

essentially the inverse of fragmentation. Neel et al. (2004) showed that certain landscape metrics 
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purported to measure aggregation are sometimes more highly correlated with percent habitat (P) 

than with aggregation. This non-intuitive behavior adds to the difficulty in selecting appropriate 

metrics. 

We evaluated: forest edge density (or, ED, the linear edge between forest and non-forest 

in a given area), COHESION, CONTAGION, and class area (CA) of forest, as predictors of 

bonobo occurrence (Table 2.1). We expected ED (McGarigal and Marks 1995) to be useful as a 

broad landscape metric that simultaneously captures the importance of intact forest (low ED) and 

the concomitant negative impacts of forest loss and forest fragmentation (high ED). A strength of 

the conceptually intuitive ED metric is that it has a strong negative correlation (Kendall's =-0.79) 

with aggregation (Neel et al. 2004) which translates to a positive correlation with fragmentation. 

However, there is no perfect metric. The weakness of ED is that it exhibits a parabolic response in 

relation to percent-habitat, P, hypothetically represented in Figure 2.1. This means that as area of 

target habitat nears 50% of the landscape, the potential for high ED will be highest (Li et al. 

1993) (e.g. complete disaggregation of forest pixels is possible, as in a checkerboard). While this 

parabolic behavior may at first seem problematic, because there is the potential for similar ED 

values at different levels of forest disturbance, it is still true that complexity of patch edge 

influences ED such that for the same P, convoluted edges result in higher ED than simple edges 

(Hargis et al. 1998, Fahrig 2003). Therefore, ED can highlight differences in edge within a 

narrow range of P values. For landscapes with a wide range of P values, one could multiply ED 

by CA of forest such that the interaction term would capture the entire 0-100% range. Either of 

these approaches is likely to capture useful information on landscape pattern for species 

responding to edge effects (Donovan et al. 1997, Chalfoun et al. 2002). In our highly forested 

study area, we expected P values predominantly in the upper tail of the ED-P curve (Figure 2.1) 
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and for bonobo occurrence to decline with increasing ED; therefore for simplicity we used ED 

alone. 

We chose COHESION because it proved to be a useful predictor of dispersal for another 

highly-mobile forest-associated species, the northern spotted owl (Strix occidentalis caurina, 

Schumaker 1996, UMass 2000). However, COHESION is non-intuitive because, although it was 

originally conceived as a measure of aggregation or connectedness, it was later found to correlate 

more strongly with quantity of habitat (=0.88) rather than aggregation (=0.12) (Neel et al. 

2004).  

We chose CONTAGION (Li and Reynolds 1993) because it was originally created to 

capture both the degree to which habitat patch types are mixed and the spatial distribution of 

patch types at the landscape level (McGarigal and Marks 1995). However, CONTAGION's ability 

to represent spatial distribution of habitat patches is disputed (Hargis et al. 1998). Generally, 

lower CONTAGION indicates a more mixed pattern of different patch types and higher 

CONTAGION indicates more aggregation of like patch types in a landscape. We expected a 

positive correlation between bonobo occupancy and both COHESION and CONTAGION.  

We chose CA in order to compare fragmentation metrics to simple habitat loss and to 

evaluate where our study landscape, Maringa-Lopori-Wamba (MLW), resides on the P gradient. 

METHODS 

Study Area 

The study area, MLW, is an area designated as a conservation landscape by the Central African 

Regional Program for the Environment (CARPE), a branch of the U.S. Agency for International 

Development (USAID) (Hickey and Sidle 2006). MLW (Figure 2) was selected as a CARPE 

landscape specifically for the conservation of bonobos in conjunction with alleviation of poverty 
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(Hickey and Sidle 2006). MLW is approximately 74,000 km
2
 and characterized by large areas of 

intact lowland rainforest, human settlement, slash-and-burn agriculture, and numerous large 

timber concessions (totaling >6,000 km
2
) in different states of harvest rotation or harvest planning 

(Dupain et al. 2009).  

Focal Area Selection 

In order to determine the range of fragmentation values in MLW (of four landscape metrics with 

values for each pixel based on a 20-km
2
 window around each pixel; see Calculating Landscape 

Metrics) in relation to land use, we selected 3 focal areas (Figure 2). Each focal area was 

approximately 430 km
2
 in size and represented one of the 3 most typical land use categories:  

minimum use, logging use, and human-settlements, respectively. The minimum-use area was 

selected based on continuous high canopy cover, absence of roads, and distance from detectable 

human activity. We assumed this minimum-use area represents optimal bonobo habitat and likely 

provides a bookend-reference point for greatest habitat quantity/quality based on least 

fragmentation achievable in MLW. The logging-use area was selected for its regular grid-like 

pattern of logging-access roads in an area with no detectable human settlements. We assumed the 

logging-use area represents an area in which bonobo-habitat value is reduced by the level of 

fragmentation. Such fragmentation may allow increased hunter access and, subsequently, either 

increased harvest of bonobos or avoidance of the area by bonobos. The human-settlement area 

was selected for the known high human population, large interruptions in forest canopy due to the 

presence of villages and agriculture, and the absence of nearby logging. This human-settlement 

area represents the opposite end of the spectrum from the minimum-use area and provides a 

reference for maximal levels of fragmentation within MLW as of 2000.  
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Development of base forest-cover layers 

We used 7 scenes of Landsat TM imagery circa 2000 as classified for the USAID-CARPE 

decadal forest change mapping project with a pixel size of 57x57 m (Hansen et al. 2008).  The 

original classification portrayed each pixel as the likelihood (from 1 to 99%) of having at least 

60% canopy cover (henceforth termed “forest”). Hansen et al. (2008) validated the classification 

using MODIS (MODerate Resolution Imaging Spectroradiometer) data, with a coarser resolution 

of 231 m which is atypical of most validation processes. Ideally, finer grained imagery or field 

reconnaissance would inform the validation process; but again, this remote area was deficient in 

data, including high resolution data. Although more recent imagery (circa 2010) has since been 

classified in a similar manner, it was not available at the time of these analyses. We expect the 9-

year difference between satellite images and field data is negligible for these analyses because the 

amount of forest loss between 2000 and 2010 was <0.44% of MLW (OSFAC 2010).    

 In order to calculate landscape metrics, we first had to establish binary habitat types from 

the original classification. Using ESRI's ArcMap version 9.3 we reclassified the probability of 

being forested into a binary raster (FOR) where 0 = unforested (0-30% likelihood of being forest) 

and 1 = forested (31-99% likelihood of being forest). Likelihood of forest cover was allowed to 

range widely (31-99%) for the definition of forested habitat because bonobos are tolerant of low 

canopy cover and openings (Uehara 1990, Thompson 1997) in the absence of human activity (i.e. 

hunting) and have been documented in some forest-savannah mosaics (Inogwabini et al.2008). In 

addition, several different thresholds were compared to Google® Earth imagery in the few 

locations where high resolution data was clearly visible, and the 30% threshold appeared to best 

capture forest/non-forest habitats. Because we had access to reasonably good spatial data for 

roads and rivers (CARPE-UMD 1997, Lehner et al. 2006) which are not always classified as 
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nonforest in many areas of the Landsat-derived data, we created two additional forest/nonforest 

layers on which to base landscape metrics in order to test the value of this additional information. 

Due to documented reduced bonobo numbers around roads (Dupain and Van Elsacker 2001, 

Dupain et al. 2000, and Horn 1980), we buffered roads 100 m on either side and added the 

buffered roads to the unforested class, to create a second base layer (referred to as RD). Finally, 

because of increased access and hunting activity near rivers, we buffered both roads and rivers by 

100 m and added those buffered areas to the unforested class, for a third base layer (referred to as 

RR, for roads and rivers).    

Calculating Landscape Metrics  

Because we were interested in comparing the ability of 4 landscape metrics to predict bonobo 

presence across all of MLW, including sites we never surveyed, we needed to build spatially 

explicit raster layers of each metric across the entire landscape. We conducted a moving window 

analysis in FRAGSTATS Version 3.3 (McGarigal et al. 2002) to calculate ED, COHESION, 

CONTAGION, and CA on each of the above 3 base forest-cover layers (FOR, RD, and RR). We 

assumed that home-range size is the scale at which bonobos respond to fragmentation, and 

therefore applied a radius of 2.524 km to the moving windows to approximate the mean area (20-

km
2
) of a bonobo-group homerange (Hashimoto et al. 1998). The value of each metric within a 

given window was then assigned to the centroid of that window. By stepping these windows 

across the entire landscape, this procedure results in a raster with a home-range scaled landscape 

metric assigned to every pixel. We also ran moving-window analyses on the three focal areas, to 

investigate the nature of the metrics along a relative continuum of impacted areas. We employed a 

4-cell rule for neighborhood size. 
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ED was reported as a positive number, with larger values indicating greater fragmentation. 

An ED value of 1 m/ha converted to 1 km of edge/10 km
2
 and equated to 2 km of edge across a 

given 20-km
2
 window. COHESION of forest was a positive number <100, with higher values 

indicating more connected (less fragmented) forest. Similarly, CONTAGION was a positive 

number ≤100, with larger numbers indicating more aggregation of like patch types. CA of forest 

was simply the forested area in ha within each moving window and ranged from 0 to 2000 ha. In 

order to investigate if ED is a potentially useful metric for this landscape, we converted CA to 

percent-forested habitat, P. This allowed us to assess whether MLW represents a relatively 

narrow portion of the P gradient (Neel et al. 2004, Hargis et al. 1999).  

Field Verification 

We randomly stratified survey sites a priori to represent a range of fragmentation levels, 

including logged and unlogged areas. Because our premise is that bonobos may avoid highly 

fragmented areas due to the potential for increased hunting pressure in those areas, we also 

stratified by protected status, distance-from-fire (a proxy for villages), and distance-from-river (a 

proxy for human access sites). In this way, we assured that fragmentation was explored across a 

gradient of potential hunting pressure. In 2009, we conducted line-transect surveys for bonobo 

nests (Figure 2) using double-independent observer techniques (Williams, Nichols & Conroy 

2002). Start and end points of all transects were generated randomly in ArcMap (ESRI, version 

9.3) for each strata described. We completed approximately 73 km of line-transect surveys, all of 

which were surveyed twice, once each by two separate observation teams. We recorded the 

geographic coordinates of the transect point located perpendicularly to both singly- and doubly-

observed nests, as well as other sign (other sign not analyzed here). We complied with protocols 
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approved by the University of Georgia's Institutional Animal Care and Use Committee (AUP # 

A2009-10042) and adhered to the legal requirements of the DRC.  

Designation of nest blocks and random blocks 

Bonobo nests tend to occur in groups and would be expected to be clustered on the landscape 

(Mulavwa et al. 2010). To reduce this spatial auto-correlation, we decreased the resolution of our 

individual nest locations to 57 x 57 m blocks (the same resolution as our Landsat TM imagery 

classification; Hansen et al. 2008). A block with one or more nest in it was termed a nest block. 

For a comparison set of random (non-nest) blocks that we surveyed with effort equal to nest 

blocks, we created random points on the transects that fulfilled the criteria of being ≥100 m both 

from nest blocks and from each other. The 134 random points were distributed proportionally to 

each transect based on its length compared to the total length of all transects surveyed. It is worth 

noting that these random blocks do not equate to known absences, because bonobo nests could 

have occurred there in the past. Since bonobo nests decay between about 75 and 99 days 

(Mohneke and Fruth 2008), bonobos could have used these random blocks any time in excess of 3 

months previous to our surveys.  

Logistic Regression Modeling of Bonobo Nest Occurrence 

Using logistic regression analysis (Neter et al. 1989) in SAS (v. 9.1), we examined the individual 

relationships between nest-block occurrence and ED, COHESION, CONTAGION, and CA. We 

input 124 nest blocks (1), 134 random blocks (0), and their corresponding landscape-metric value 

into logistic regression models (one model for each landscape metric, separately). To test for 

multicollinearity, Pearson's correlations (r) were calculated between all pairs of variables to assess 

if multiple landscape metrics could be included in a multivariate model. We ranked the metrics 

based on their leave-one-out predictive error rates to select one for mapping (Kearns et al. 1997, 
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Kearns and Ron 1999). In logistic regression the coefficients are expressed in log odds; therefore, 

in order to calculate an odds ratio, the parameter estimate for the coefficients must be back-

transformed with the exponential function, e
x
, where x is the logistic parameter estimate. This 

procedure allows inference of the relationship between the predictor and response variables 

(Hosmer and Lemeshow 1989). Therefore, we calculated odds ratios for the selected metric in 

order to infer the direction and magnitude of the relationship with nest-block occurrence. Odds 

ratios >1 indicate positive relationships, such that with each unit increase in the variable, the 

probability of occurrence is e
x
 times greater. Odds ratios <1 indicate a negative relationship and 

are interpreted more easily by taking the inverse and stating “nest blocks are 1/ e
x
 times” less 

likely to occur with each unit increase in the parameter. 

Fragmentation Thresholds 

While landscape variables are often useful for habitat modeling in their continuous form, it is 

often necessary to choose a threshold for visualization and planning. To that end, we produced 

fragmentation maps based on 3 threshold choices. The Continuous Map (no threshold) simply 

depicts the continuous gradient of fragmentation values across MLW. Next, because conservation 

planners may be interested in a distinct demarcation between acceptable and unacceptable 

amounts of canopy alteration in bonobo habitat, we applied two fragmentation thresholds 

resulting in binary maps. To assign defensible thresholds, we evaluated fragmentation values 

using Jenks' natural breaks (Jenks 1967) to identify a natural break in the landscape metric data 

(Habitat Threshold) and we determined the maximal fragmentation value where bonobo nest 

blocks were found (Nest Threshold) (see Results). The Jenks procedure defined categories by 

maximizing inter-class variance and minimizing intra-class variance for ED across MLW. The 
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Habitat Threshold allowed the data on forest pattern to define the threshold, whereas the Nest 

Threshold allowed the data about bonobo nest occurrence to define the threshold.  

RESULTS 

Landscape Metrics 

All four landscape metrics (Figure 3) were highly correlated with each other (Pearson's |r| 

> 0.95). The strongest correlations were between CONTAGION and CA (r=0.989), followed by 

CONTAGION and COHESION (r=0.987), and by CONTAGION and ED (r=-0.982) (N=258 for 

all comparisons). Evaluating all metrics across all 3 base layers, we found ED consistently ranked 

as the first or second for correlation with bonobo nest occurrence (r=-0.5 for ED-RD), whereas 

the other metrics frequently ranked 3rd or 4th. Furthermore, leave-one-out cross validations also 

ranked ED the highest (see Results - Logistic Regression). Therefore, we discuss only ED in more 

detail. ED-RD values ranged from 0 to 104 m/ha across MLW (Figure 3). The mean ED for 

MLW was 9.83  SE 0.003 m/ha. ED was higher (42.6  SE 0.06 m/ha) in the human-settlement 

area compared to all other focal areas (Figure 4). The minimum-use area had virtually no ED 

(3.06  SE 0.015 m/ha), whereas the logging-use area had slightly higher ED as compared to the 

entire MLW. The mean ED for each focal area was significantly different than that of MLW 

(p<0.01 for all comparisons). 

The Jenks (1967) natural breaks procedure demonstrates that there is a natural break 

around 6.56 m/ha (equivalent to 13.12 km of edge within a 5.048-km diameter home-range) 

which defines well the difference between minimum-use and logging-use areas (Figure 5). The 

vast majority of pixels in the minimum-use area had an ED less than 6.56 m/ha, whereas the 

majority of the logging area had EDs between 6.56 and 18.71 m/ha. Additionally, over 60% of 

MLW had an ED less than 6 m/ha and over 80% had an ED less than 19 m/ha. Furthermore, we 
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converted CA to percent habitat, P, and found that >90% of MLW was >80% forested, 

demonstrating that MLW represents a sufficiently narrow portion of the P gradient to warrant the 

use of ED as a measure of fragmentation. As we predicted, most areas were in the upper tail of the 

ED-P curve (Figure 2.1), therefore ED can be expected to be negatively correlated with percent-

habitat and positively correlated with forest disturbance in MLW (Neel et al. 2004). 

Field Verification 

During 2009, we completed approximately 73 km of line-transect surveys and recorded the 

geographic coordinates of 338 bonobo nests. Multiple nests occurring within a single 57-m pixel 

of our base GIS data layers were treated as a single observation resulting in 124 total nest blocks.  

Logistic Regression Modeling of Bonobo Nest Occurrence 

Due to the high correlations found among the landscape metrics, they appear to contain nearly the 

same information and therefore should not be included together in the same predictive model 

(Neter  et al. 1989). Hence we were interested in ranking their classification accuracy in order to 

select a single best predictor. Leave-one-out cross validation performed on single-variable logistic 

regression models confirmed that ED, COHESION, CONTAGION, and CA predicted bonobo-

nest occurrence similarly in all instances. Their predictive error rates, which reflect the sum of the 

false positive (commission) and false negative (omission) rates, ranged from 27.91 to 30.62%. We 

ranked all the metrics based first on predictive error (lower is better) and based second on true 

positive rates (higher is better) (Table 2.2). The top 3 predictors all had a predictive error rate of 

27.91% and included ED calculated on FOR, ED calculated on RD, and CONTAGION calculated 

on FOR. While we acknowledge the merit of CONTAGION as a fragmentation metric, as well as 

the strong similarity in predictive capability of all the calculated metrics, we selected ED for our 

maps, due both to its high ranking here and to its ease in interpretation over the other metrics. 

Note that the model containing CA-RD as a sole predictor had an exceptionally high true positive 
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rate of 95%; however this model had a substantially higher commission error than the top 3 

models (52% versus 40%). Therefore, although the model looks strong initially, its ability to 

discriminate is marginal in comparison to the top models. While we ran 12 separate logistic 

models, one for each landscape metric and base forest-cover layer, we summarize the results of 

the four models run on the intermediate representation of forest cover, the RD base layer (Table 

2.3). As mentioned earlier, all metrics performed similarly as predictors of bonobo nest 

occurrence, and ED ranked consistently the highest. As an example, a confusion matrix (Figure 6) 

describes the strengths and weaknesses of the logistic ED-RD model in classifying bonobo 

occurrence.  

 For proper inference we transformed the log odds parameter estimate (-0.255) in the ED-

RD logistic model (e
-0.255

=0.775); and because 0.775 is <1 the odds ratio indicates a negative 

relationship between ED and nest-block occurrence. Therefore, nest blocks were (1/0.775)=1.3 

times less likely to occur for each 1-km increase of edge per 10 km
2
. Or more simply, about one-

third fewer nests were expected to occur, for each unit increase in ED.  

Fragmentation Thresholds 

Continuous ED and binary-thresholded ED maps were produced for the three focal areas and for 

all of MLW (Figure 7). The Habitat Threshold map uses a threshold ED of 6.56 m/ha, the natural 

break in ED values across the landscape and between minimum-use and logging-use areas. The 

Nest Threshold map uses a threshold ED of 12.256 m/ha, the highest ED value for a nest block 

from our field verification surveys.   
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DISCUSSION 

Our comparison of prediction accuracy of landscape metrics derived from remotely sensed data 

demonstrated that fragmentation, no matter how we measured it, is a useful predictor of bonobo 

nest presence; therefore we encourage the use of a single, well-chosen fragmentation metric for 

use in multivariate bonobo distribution or habitat-suitability models. The four bonobo-relevant 

landscape metrics, each classified to represent the potential tolerance of bonobos to open canopy 

and edge effects, were highly correlated with each other and performed similarly in predicting 

bonobo nest presence. We favor the use of ED because it ranked highest in leave-one-out cross-

validations (Table 2.2) and perhaps, more importantly, because it is the most intuitive 

representation of fragmentation (Table 2.1). Our field surveys demonstrated that bonobo nest 

block occurrence was indeed higher where ED (fragmentation) was lower. We found ED, as we 

calculated it, to be a useful predictor of nest occurrence and potential bonobo nesting habitat. 

Although ED-RD is merely a single-variable model, it boasted 72.1% overall prediction accuracy 

and correctly classified 85% of nest blocks. 

There is precedent for including ED in evaluations of sustainable management in multi-

owner landscapes (Gustafson et al. 2007) and as an indicator of conditions for edge-sensitive 

species (USFS 2004). With that in mind, future land managers may desire a binary ED value 

either for assigning areas worthy of protection or for assessing acceptable levels of canopy 

alteration in multiple-use landscapes (e.g. extractive zones or community-use zones, Hickey and 

Sidle 2006). Ultimately, selecting a threshold for management choices such as allowable canopy 

alteration is an arbitrary decision, yet to be defensible requires scientific rationale. Therefore, we 

explored the range of fragmentation (ED) values in relation to land use in MLW. We identified a 

natural break in MLW-wide ED values that corresponded to the difference between the minimum-
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use and logging-use areas. Our field data supported this break as biologically meaningful to 

bonobos because greater than 92% of nest blocks had an ED<6.56 m/ha, the natural break, and no 

nests were observed in the logging area. Based on the natural break in ED values for the 

landscape and the ED values in nest blocks, we offer two thresholds that are supported by the data 

from MLW. The Habitat Threshold employed the natural break in ED values (6.56 m/ha) to 

define the threshold, whereas the Nest Threshold allowed the maximal ED (12.256 m/ha) found in 

a bonobo nest block to define the threshold.  

Because conservation spending can depend heavily on visualization of habitat and species 

ranges (Halpern et al. 2006), we advocate careful selection of thresholds both for communicating 

results and for conservation planning. In order to display potentially acceptable and unacceptable 

amounts of canopy alteration in bonobo habitat, we produced maps of the Continuous ED metric 

and two alternate ED thresholds for consideration. The Continuous map allows visualization of 

how fragmentation changes across the landscape. This depiction can be satisfying in that it is easy 

to perceive the gradient of fragmentation intensity, differentiating areas that are highly 

fragmented, from those that are marginal but might be threatened. The continuous metric is also 

preferred for potential inclusion in bonobo-habitat suitability models, along with other covariates 

(e.g. landcover, elevation). Eventually, multivariate models will be needed that take several other 

such explanatory variables into account. All maps portray the range of impact conditions present 

in MLW circa 2000. Each depicts very low levels of suitably continuous forest for bonobo nesting 

in the human-settlement area, which is supported by field reconnaissance near the village of Djolu 

(Hickey and Sidle 2006) and previous research (Kano 1984). Furthermore, all maps portray 

suitably contiguous forest in the minimum-use area which we interpret as a reasonable conclusion 
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for a species that is rather plastic in its use of cover types (Uehara 1990, Thompson 1997) in the 

absence of hunting pressure.  

The Habitat Threshold is useful for highlighting areas of intact forest that may be most 

important for conserving bonobos in MLW. The Habitat Threshold may at first appear a cautious 

estimate of bonobo tolerance to fragmentation; however our nest surveys suggest that the Habitat 

Threshold likely is a plausible binary representation of bonobo-habitat suitability in MLW. For 

instance, no nests were found in the logging-impact area, which the Habitat Threshold essentially 

depicts as entirely fragmented, and fewer than 8% of nest blocks were found in areas with ED 

above the Habitat Threshold. The Habitat Threshold demonstrates the pervasive nature of human 

presence even in a remote area plagued by an unreliable transportation system (Hickey and Sidle 

2006, USAID 2010). For an area boasting one of the last strongholds of bonobos in the world, the 

Habitat Threshold suggests that < 62% of MLW is sufficiently unfragmented for bonobo nesting. 

The Nest Threshold is a liberal threshold from a conservation perspective, resulting in a binary 

map showing more area with potentially suitably low levels of forest fragmentation. While 

decisions based on liberal thresholds may be criticized because they are prone to commission 

error (inclusion of unsuitable areas), they represent the best choice for describing all potential 

habitat given all observations. Further study of the relationship between ED and bonobo nest 

occurrence both in MLW and other areas is recommended to assess whether the relationship and 

relevant thresholds change temporally or regionally. 

At a broad scale, ED is an effective landscape metric for estimating bonobo nest 

occurrence and therefore potential bonobo habitat. We suggest ED can be used to increase the 

efficiency of future bonobo surveys, by increasing survey effort in areas of lower ED and 

decreasing effort in areas of higher ED. Future surveys can continue to inform the relationship 
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between ED and nest occurrence and extrapolate to unsurveyed areas based on those ED values. 

We advise against zero effort in areas of higher ED because estimates of overall bonobo 

abundance or density rely on characterizing the areas of both low and high bonobo densities. 

Extrapolating high-density estimates across all areas would result in grave over-estimates of 

bonobo abundance in a given region. ED appears well suited for predicting bonobo occurrence in 

the MLW, an area with documented hunting impact on the bonobo population (Dupain and Van 

Elsacker 2001), and may extrapolate well to other areas of similar hunting pressure. However, the 

predictive value of ED may be weaker in areas where hunting pressure is relatively low because, 

in the absence of hunting, bonobos are relatively tolerant of open canopies and have been 

documented in some forest-savannah (fragmented) mosaics (Uehara 1990, Thompson 1997, 

Inogwabini et al.2008). Conversely, there could be specific locales within the bonobo range in 

which the forest is relatively intact, yet bonobos do not occur. This could be due to occasional 

targeted hunting of remote areas, or other habitat factors that remain unknown. However, these 

areas are rare enough in our data that they did not mask the relationship between nest presence 

and ED. In order to find these anomalous areas, and potentially discover other relevant controlling 

factors, it will be important to institute continued monitoring and communicate with biologists 

and local people alike. Further investigations may help elucidate this relationship. 

 We believe we are the first to quantitatively demonstrate that fragmentation can be an 

important predictor of species occurrence for primates while their habitat remains relatively 

intact. Across taxa, the preponderance of fragmentation studies focus on landscapes in the lower 

tail of the ED-P curve, showing that the dispersed loss of habitat is important in highly disturbed 

landscapes in which habitat occurs in isolated patches surrounded by a matrix of non-habitat 

(Andrén 1994, Fischer and Lindenmayer 2007, Arroyo-Rodriguez et al. 2008). Our study takes a 
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different approach, investigating the potential consequences of habitat fragmentation prior to the 

matrix transitioning from habitat to non-habitat (sometimes called perforation). We suspect that 

the mechanism by which fragmentation affects bonobo distributions is through increased bonobo 

avoidance of areas due to increased hunter access and increased hunting mortality near linear 

openings. Our study supports findings that hunting activity increases near openings and results in 

lower nest occurrence (Reinartz et al. 2008). Those linear openings in the forest habitat are 

effectively detected by remote sensing and measured by ED. We surmise that ED is most useful 

for landscapes with a preponderance of percent-habitat values in just one tail of the ED-P curve 

(Figure 2.1). In our landscape, the majority of areas were well over 80% forested, in the upper 

tail, where there exists a negative relationship between ED and percent habitat. While our analysis 

reinforces previous assertions of similarities among various measures of fragmentation and area 

(Hargis et al. 1998, Hargis et al. 1999), and supports the suggestion that fragmentation may 

impact bonobo habitat suitability (Kano 1984), it also quantitatively describes applicability of 

landscape-level fragmentation metrics for great ape habitat and assesses the impacts of 

fragmentation on habitat suitability. 

 Given the lack of studies of landscape-scale fragmentation metrics relevant to primates 

(Arroyo-Rodriguez and Mandujano 2009), we believe we have offered an approach that can be 

applied to other taxa. Fragmentation metrics can be developed for a given species by classifying 

habitat specifically with that species' needs in mind and by selecting a window size at the scale 

that the species likely responds to fragmentation (perhaps the scale of the species' homerange). 

These metrics can be ranked using field data to evaluate their utility in predicting species 

occurrence and made spatially explicit in maps. For land managers and conservation planners, we 

have outlined some defensible ways to identify thresholds of allowable canopy alteration for a 
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given species based on an evaluation of fragmentation values across the landscape and in different 

land use categories, in combination with levels of fragmentation where the species shelters. When 

delineating such thresholds we suggest employing species occurrence records that likely indicate 

areas of quality habitat rather than areas used in a transient manner. For example, we used nests 

where bonobos seek shelter for the night. The appropriate type of sign will depend on individual 

species' habits and needs. In addition, species-covariate relationships may change over time, 

especially as land use and climates shift, therefore repeated studies examining such relationships 

are warranted. 
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Table 2.1. Landscape metrics used and their associated formulas
1
. 

   
Metric Concept Formula Units 

    
Edge Density Fragmentation length of forest edge/total area of window m/ha 

COHESION Connectivity [  
∑ ∑    

 
   

 
   

∑ ∑    √   
 
   

 
   

] [  
 

√ 
]
  
(   )  none 

CONTAGION Connectivity [  
∑ ∑ [(  (

   
∑    
 
   

)][  (  )(
   

∑    
 
   

)] 
   

 
   

    ( )
](100)    % 

Class Areas Area area of forest within window    ha 

1Formulas from Fragstats Official Website, variables modified to pertain to this study's moving-window analysis 

http://www.umass.edu/landeco/research/fragstats/documents/Metrics/Metrics%20TOC.htm 

For COHESION: 

pij = perimeter of patch ij in terms of number of cell surfaces                                                

aij = area of patch ij in terms of number of cells  

A = total number of cells in window 
For CONTAGION: 

Pi =proportion of the landscape occupied by patch type (class) i  

gik =number of adjacencies (joins) between pixels of patch types (classes) i and k based on the double-count method 

m = number of patch types (classes) present in the landscape, including the window border if present 

 

  

http://www.umass.edu/landeco/research/fragstats/documents/Metrics/Metrics%20TOC.htm
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Table 2.2.  Rank, mean (±SE), and range of values of landscape metrics at nest sites: Edge density 

(ED), CONTAGION, COHESION, and Class Area (CA) each calculated on 3 different binary 

base forest-cover layers FOR (probability of being forested), RD (FOR with roads burned in), and 

RR (FOR with both roads and rivers burned in). 

 

Rank Metric Units Mean (±SE) Range 

Total 

Prediction 

Error 

True 

Positive 

Rate 

1 ED - FOR m/ha 1.18 0.25 0 - 11.7 27.91 85.48 

2 ED - RD m/ha 1.22 0.26 0 - 12.3 27.91 84.68 

2 CONTAGION - FOR % 98.2 0.37 98.1 - 100 27.91 84.68 

3 COHESION - RD none 99.87 0.03 98.6 - 100 29.45 84.68 

4 ED - RR m/ha 2.3 0.32 0 - 12.5 29.46 80.65 

5 CONTAGION - RD % 97.4 0.61 67.1 - 100 29.84 84.68 

6 CA - RD ha 1963 3.31 1783 - 1974 29.85 95.16 

7 CA - FOR ha 1969 1.1 1922 - 1974 29.85 85.48 

8 COHESION - RR none 99.7 0.04 98.2 - 100 29.85 79.84 

9 CA - RR ha 1944 4.64 1784 - 1974 30.23 83.06 

10 COHESION - FOR none 99.9 0.03 98.1 - 100 30.24 85.48 

11 CONTAGION - RR % 93.1 0.84 67.1 - 100 30.62 79.03 

Rank is based first on leave-one-out cross-validation total prediction error (lower is better) and based second on true 
positive rate (higher is better). Note a tie in position 2 and a consistently high ranking for ED. 
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Table 2.3.  Predictor variable, units, number of parameters (K), intercept, parameter 

estimate (±SE), odds ratio, and confidence interval for each candidate model 

predicting bonobo nest presence (based on the RD forest-cover layer) for the 

Maringa-Lopori-Wamba landscape, DRC. 

Candidate 

Model Units K
a
 

Intercept  

(±SE) 

Estimate

SE 

Odds 

Ratio
b
 

Lower 

95% 

CI 

Upper 

95% 

CI 

Edge Density 
m/ha or 

km/10km
2
 

3 
0.753 

(0.168) 

 -0.255 

(0.038) 
0.775 0.72 0.833 

CONTAGION % 3 
 -9.28 

(1.52) 

0.0999 

(0.016) 
1.11 1.07 1.14 

COHESION 
None      

(0-<100) 
3 

 -226.4 

(35.5) 

2.272 

(0.356) 
9.7 4.83 19.5 

CA ha 3 
 -31.8 

(5.59) 

0.016 

(0.003) 
1.017 1.011 1.022 

a
K is the sum of each model's single covariate parameter estimate, the intercept, and 

error term; each model has only one predictor variable. 

b
Odds ratios calculated as e

(estimate)
 and odds ratios <1 indicate a negative relationship 

and are interpreted more easily by taking the inverse and stating “nest blocks are 1/ 

e
(estimate)

 times” less likely to occur with each unit increase in the variable. Therefore 

nest blocks were (1/0.775)=1.3 times less likely to occur for each 1-km increase of 

edge per 10 km
2
. 
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Figure 2.1. A hypothetical representation of the parabolic nature of edge density (ED) over the 

percent habitat (P) gradient. ED values tend to be lower for both low and high values of P. 
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Figure 2.2. Maringa-Lopori-Wamba (MLW) landscape, Democratic Republic of Congo, selected 

focal areas, and location of line transects for bonobo nest surveys conducted in 2009. 
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Figure 2.3. Maps of the four landscape metrics across the Maringa-Lopori-Wamba (MLW) landscape, Democratic Republic of Congo. 
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Figure 2.4. Mean ED (±SD) for the Maringa-Lopori-Wamba (MLW) landscape and selected 

focal areas. Focal area labels correspond as follows: Min=Minimum Use, Log=Logging Use, and 

Hum=Human Settlement; and (**) indicates significant difference from MLW at the p<0.01 

level. 
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Figure 2.5. Frequency of edge density (ED) values (per pixel based on a 20-km
2
 window around 

each pixel) for Maringa-Lopori-Wamba (MLW) and selected focal areas. Categories on the x-

axis represent Jenks’ natural breaks (Jenks 1967) for ED across MLW. 
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Figure 2.6. Confusion matrix showing classification accuracy of the ED-RD model. Box (a) 

reflects that 105/124=84.7% of known nest blocks were correctly classified. Box (c) highlights 

that the greatest source of error in this model is in misclassifying 53/134=39.6% of blocks as 

nest-blocks, when in fact, no nest was found (commission error). 
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Figure 2.7. Focal areas highlight differences between continuous and thresholded edge density (ED) maps, and landscape-wide maps 

depict corresponding focal areas in light boxes from left to right: logging-use, minimum use, and human-settlement areas. Thresholds 

accentuate areas where ED may be too high for bonobo nesting. 
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CHAPTER 3 

A SPATIALLY-EXPLICIT RANGEWIDE MODEL OF SUITABLE CONDITIONS FOR THE 

BONOBO (PAN PANISCUS) FOR CONSERVATION PLANNING
2
 

 

 

 

  

                                                             
2 Hickey, J.R., J. Nackoney, N.P. Nibbelink, et al. 2012. To be submitted to Diversity and Distributions. 
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ABSTRACT 

The bonobo (Pan paniscus), a great ape endemic to the lowland rainforests of the Democratic 

Republic of Congo, is threatened by habitat loss and hunting and is listed as Endangered by the 

IUCN
TM

. There is an urgent need to create and implement effective bonobo conservation 

strategies, yet the bonobo's rangewide distribution is poorly known. Conservation planning 

requires a current, data-driven, rangewide map of the probable bonobo distribution as well as an 

understanding of the key attributes of areas more likely used by bonobos. Given that humans live 

and hunt in the bonobo range, it is worthwhile to quantify the effects of human disturbance and 

land-use change on bonobo habitat use. In an attempt to provide such information, we present the 

first rangewide suitability model for bonobos. We used a maximum entropy approach to species 

distribution modeling, in which attribute data associated with known locations of bonobo nests 

were used to predict locations of suitable conditions across the species’ entire range. 

Classification accuracy, measured by the area under the curve (AUC), was high (0.82). Distance 

from agriculture and forest edge density (ED) were the best predictors of suitability, with test 

gains (goodness-of-fit) of 0.5 and 0.35, respectively, and resulted in a primarily threat-based 

model. Response curves indicated that bonobos were more likely to nest farther from agriculture 

and in areas of lower ED, suggesting that they avoid areas of higher human activity. The model 

results and maps can be used to determine core bonobo protection areas, identify priority areas for 

surveys, and increase our understanding of threats to bonobo populations. 
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INTRODUCTION 

Wildlife conservation relies on understanding patterns of species occurrence. With the global 

human footprint ever growing and intensifying (Sanderson et al., 2002), approximate delineations 

of species' ranges exclusively based on historic data are no longer enough for conservation and 

minimum-impact infrastructure planning. As such, spatially-explicit rangewide models that 

deliver fine-scaled information on suitable conditions are critical. Such models can inform land-

use plans designed to maintain connected, viable populations of species. In the Democratic 

Republic of Congo (DRC), the annual human population growth is increasing rapidly - estimates 

range from 2.6% (UNDP, 2011) to 3.2% (USAID, 2010) - and has driven increased deforestation 

in areas of previously intact forest (Hansen et al., 2008; OSFAC, 2010). Increased poverty from 

the collapse of the agricultural sector during and following DRC's recent civil war has also 

contributed to a rise in bushmeat hunting which remains a substantial threat to the viability of 

many game species (Draulans and Krunkelsven, 2002; Yamagiwa, 2003; Beyers et al., 2011).  

Bonobos (Pan paniscus) are great apes listed as Endangered on the IUCN Red List since 

2007 (Fruth et al., 2008). They are endemic to the lowland rainforests of DRC and are threatened 

by both habitat loss and hunting (IUCN, 2010). In order for conservation efforts to be successful, 

up-to-date information on the rangewide distribution of bonobos and an evaluation of their threats 

is required (Grossmann et al., 2008). A bonobo conservation-action planning meeting was held in 

Kinshasa, DRC in January 2011, with a large group of bonobo experts, including representatives 

from DRC's Institution for the Conservation of Nature (Institut Congolais pour la Conservation de 

la Nature, ICCN). Several objectives for bonobo conservation were defined, including the 

promotion of strategic land-use management and conservation plans at local, regional and 
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national levels. Achieving this objective requires spatial information about the probability of 

bonobo occurrence in unsampled areas and the characteristics and drivers of habitat use.  

To aid such efforts, we provide the first spatially-explicit bonobo rangewide suitability 

model. Model development began in a collaborative workshop held in Kinshasa immediately 

prior to the action-planning meeting. We further developed and refined the model during the 

following months. We used a maximum-entropy modeling approach (MaxEnt; Phillips et al., 

2006; Elith et al., 2010) that combined bonobo nest locations with environmental layers to predict 

the spatial distribution of potentially suitable conditions. Recognizing that suitable conditions 

include food availability, shelter, and security from predation (including humans), we used a suite 

of environmental variables to model bonobo distribution and evaluated their relative importance 

in predicting bonobo occurrence. To date, spatial data classified into detailed categories relevant 

to bonobo foraging do not exist. We therefore focused on the presence of broad forest types where 

bonobos are known to nest, as well as abiotic factors likely influencing vegetation (and, 

indirectly, occurrence of forage species) and proxies for hunting pressure as measures of habitat 

security (Swenson, 1982). For the purpose of this paper, we define suitable conditions as those 

locations where bonobos nest, which necessarily includes avoidance of hunters.  

MaxEnt is a modeling tool that uses presence-only occurrence data and has been found to 

perform favorably in comparison to other presence-only models (Elith et al., 2006; Hernandez et 

al., 2006). It has been widely applied in the species distribution modeling and mapping literature: 

primate examples include monkeys in Amazonia (Boubli and de Lima, 2009), slow lorises in 

Southeast Asia (Thorn et al., 2009), and chimpanzees in West Africa (Torres et al., 2010).   

 Using our model, we present a rangewide map of relative suitability for bonobos. The map 

and approach serve as a foundation to be refined in the future as improved classification of 
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vegetation, and other environmental data that can be used for predicting bonobo occurrence, 

become available. The DRC Government recognizes the need for sustainable land-use planning, 

and local and international non-government organizations have generated momentum toward 

achieving it (USAID, 2010). Our map and results will assist planning efforts by providing 

necessary information to prioritize areas for bonobo conservation.   

STUDY AREA 

The bonobo range, located in central DRC, is defined by the Congo River to the north and west, 

the Lualaba River to the east, and the Kasai/Sankuru Rivers to the south (IUCN, 2010). Although 

the western portion of the range is currently thought to be discontinuous, we included the entire 

area in our model because the collective knowledge on bonobo occurrence, especially in 

unsurveyed areas, is still expanding. We therefore developed a contiguous boundary based 

initially on the IUCN (2010) range and then expanded it to encompass all known bonobo 

occurrences southward to the Kasai River, thereby eliminating any isolated pockets (Fig. 3.1). 

DATA AND METHODS 

Bonobo data 

Multiple entities collected the presence-only bonobo data used in this model. These data were 

compiled as part of the Apes, Populations, Environments, and Surveys (A.P.E.S.) database 

maintained by the IUCN/SSC Primate Specialist Group (PSG) and managed by the Max Planck 

Institute for Evolutionary Anthropology. The A.P.E.S. database provides a global picture of the 

distribution and status of great apes and informs their long-term management and conservation 

strategies. During the Kinshasa workshop, we evaluated the presence-only data and performed 

quality assessment and control prior to input into the model. We used bonobo nest locations from 

the A.P.E.S. database, rather than all signs (e.g. feeding remains or tracks) in order to characterize 
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habitat where bonobos nest rather than where they might move through in a transient manner. 

Numerous teams collected data along either randomly- or systematically-located line transects or 

recce walks; the latter followed the path of least resistance and focused on areas where bonobo 

signs were found. Because bonobo nests and nest sites tend to be clustered, we reduced the effects 

of spatial auto-correlation by aggregating our individual nest or nest-site locations to 100 x 100 m 

blocks (the same resolution as our final environmental predictor layers). A block containing one 

or more nests or nest sites was termed a nest block. The block size corresponds well to the scale 

of nest groups because the risk of a single nest group being split between two blocks is low as the 

gap between nests within a group tends to be 30 m or less (Mulavwa et al., 2010). We compiled 

data for 2,364 nest blocks distributed across the bonobo range (Fig. 3.1). 

Predictor Variables 

  We collaboratively developed and evaluated a suite of environmental predictors thought to 

be relevant to bonobos. MaxEnt allows for the incorporation of a diverse range of environmental 

predictor variables (hereafter referred to as "predictors" or “environmental layers”) including 

biotic, abiotic, and threat-based data. However, MaxEnt requires that data values exist for each 

pixel across the entire modeled range. Factors influencing bonobo presence, such as detailed 

vegetation layers and understory information (including bonobo forage species), are not classified 

and mapped for the bonobo range. This is likely due to the vast size and extreme inaccessibility of 

the region, a history of highly localized research effort, and the sheer logistical and economic 

challenges to ground truth remotely sensed data in Central Africa.   

 To construct this model, we focused on two broad biotic predictors (percent forest and 

presence of intact forest), selected abiotic factors that may influence vegetation (and hence, 

forage), and various measures of potential hunting pressure. The environmental layers came from 
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a wide variety of sources with varying resolutions and expected influence on bonobos (Table 3.1). 

We resampled the environmental layers to 100-m resolution in ArcGIS in order to standardize the 

pixel size. The Africover data (FAO, 2000) contained six landcover categories: agriculture, 

broadleaved rainforest, swamp rainforest, shrub, urban, and water. Because we found that most 

nest blocks (99.9%) were located in just two forest covertypes (broadleaved rainforest and swamp 

rainforest), we re-classified these data into percent forest based on a 3 x 3 cell neighborhood of 

100-m cells (=0.09 km
2
) using FRAGSTATS 3.3 (McGarigal et al., 2002). This neighborhood 

analysis addressed potential GPS error and decreased the possibility of misclassification of any 

given cell. Although we could have used broadleaved forest (terra firma) exclusively, we included 

swamp forest in the percent-forest variable because there is evidence that bonobos also nest in 

swamp forest. While bonobos nest in terra-firma forest more often (Reinartz et al., 2008; 

Mohneke and Fruth, 2008), Mulavwa et al. (2010) reported 13% of nest groups in swamp forest, 

suggesting that a model predicting suitable conditions for bonobos must include this landcover 

type.  

MaxEnt Modeling 

We used a machine-learning approach called maximum entropy (MaxEnt; Phillips et al. 2006; 

Elith et al. 2010) to develop a relative suitability map (Guissan and Thuiller, 2005) for bonobos 

based on relationships between nest-blocks and the above environmental predictors. MaxEnt 

(version 3.3.1) is a modeling tool that predicts species occurrence based on presence-only data. It 

does not require known absences; instead, MaxEnt relies on random background points to 

characterize the range and variation of values for each environmental layer across the study area. 

Using the "species with data" (SWD) format and 10,000 random background points, MaxEnt 

compared the environmental values of nest blocks to the full range of environmental values 
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observed throughout the bonobo range to predict probability of suitable conditions in unsurveyed 

areas (Elith et al., 2010). It is noteworthy that MaxEnt performs best with relatively broad 

sampling coverage within the area of interest (Phillips et al., 2009). Although there was clustering 

in nest locations where sampling intensity was high, nest-block locations are well-distributed 

throughout the bonobo range (Fig. 3.1). 

 Using presence-only data can sometimes produce results that are geographically biased to 

the regions near the presence points (Phillips et al., 2009; Phillips, 2008). This effect can be most 

pronounced if those areas are highly surveyed relative to the full dataset (Phillips et al., 2009). To 

test for such bias, we ran iterative models withholding nest-block locations from specific regions 

to evaluate how well each reduced-data model performed in the area of withheld nest locations. 

This procedure informally evaluated the sensitivity of the models to potential bias from highly 

sampled sites. Specifically, we tested a succession of separate models, independently withholding 

nest data from each of the following highly-sampled regions: Maringa-Lopori-Wamba (MLW), 

Tshuapa-Lomami-Lualaba (TL2), and Salonga National Park (SNP) (Fig. 3.1a, 3.1b, and 3.1c, 

respectively). We also ran another series of models that each used only the data from one 

intensively-sampled region at a time, plus a model using only data from a lightly sampled area (39 

nest blocks) called Lac Tumba (LT) (Fig. 3.1d). These sensitivity tests allowed us to evaluate how 

well models built with presence data from each region predicted the other regions of known 

occurrence and whether the relative importance of the different predictor variables changed based 

on the region from which the presence data originated. 

We varied the suite of included environmental layers to test their predictive performance 

and to refine their selection based on diagnostics (explained below). We rejected predictors 

exhibiting too narrow a range of values because they added little discerning capability to the 
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models (e.g. certain global or continental datasets, such as soil type, were mapped at such coarse 

resolutions that only one value dominated the entire bonobo range). For each MaxEnt analysis in 

the series, we used a random 70% of the nest blocks as training data to build the model and 

withheld 30% to independently test model accuracy.  

 A common method for evaluating the classification accuracy of MaxEnt models is with 

the area under the curve (AUC) of a receiver operating characteristic (ROC) plot (Phillips et al., 

2006). An AUC of 0.5 represents a prediction no better than random, whereas a theoretically 

perfect prediction would approach an AUC of 1, with no errors of omission or commission.  

Omission and commission error, or false-negative and false-positive prediction respectively, are 

used to calculate sensitivity and specificity. Traditionally, a graph of the true positive rate 

(sensitivity) on the y-axis and the false positive rate (1-specifcity) on the x-axis gives the AUC. 

MaxEnt, however, calculates the AUC using the fractional predicted area on the x-axis (Phillips et 

al., 2006), resulting in a theoretical maximum equal to [1 – (predicted area/2)] (Wiley et al., 

2003). This adjustment accounts for the fact that the background points are not true absences and 

therefore do not indicate false positives. Standard deviation of the test AUC provided an estimate 

of significance (DeLong et al., 1988; Phillips, 2006). 

 We also ran a jackknife analysis in MaxEnt to determine the relative contribution of each 

environmental predictor to the models' performance. In this procedure, MaxEnt removes one 

predictor and runs the model once on the individual predictor and again on the remaining 

predictors. With this approach, MaxEnt calculated the difference in the training and test gains of 

each predictor alone, the model without that predictor, and the full model with all predictors 

included. Gain is closely related to deviance, a measure of goodness of fit used in generalized 

additive and generalized linear models; it starts at 0 and increases asymptotically during the 
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model run (Phillips, 2006). Training and test gains relate to training and test data, respectively. 

High test gains reflect predictor variables that better predict locations not used to build the model 

(test data). Because MaxEnt does not generate conventional parameter estimates as in logistic 

regression, this jackknife procedure helps to describe the relative contribution of each variable to 

the full model (Phillips, 2006). To develop the final model, we removed environmental predictors 

that contributed negligibly to prediction (low gains). To avoid multicollinearity, we calculated 

Pearson's correlation coefficient, r, and removed predictor variables that were strongly correlated 

(r ≥ 0.49). For binary suitability maps, we selected the “maximum sensitivity plus specificity” 

threshold because it balances omission and commission errors thereby generating neither overly 

cautious nor overly optimistic predictions regarding suitable conditions. 

RESULTS 

MaxEnt Modeling 

The final output of the MaxEnt model (Fig. 3.2) highlights the areas most likely suitable for 

bonobos based on the final model containing distance from agriculture, ED, percent forest, and 

distance from river. The jackknife analyses showed that the first three of these were the best 

predictors of bonobo nest presence (Table 3.2 and Fig. 3.3). We included distance from river in 

the final model because it increased model accuracy and was not correlated with the other three 

predictors. Each of the predictors was threat-based except percent forest. Distance from 

agriculture contributed the most to the final model and to all models with one region withheld, 

making it the most important predictor. In the final model, approximately 28% (156,211 km
2
) of 

the bonobo range was predicted suitable based on the maximum sensitivity plus specificity 

threshold. This cut-off value was 0.3, producing a maximum classification accuracy when values 
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greater than 0.3 were classified as suitable. Within the area of suitable conditions, 28% (43,836 

km
2
) was located in official protected areas.  

  Predictor-exclusion rules rejected certain variables from the final model as follows. We 

removed forest-loss variables because they contributed negligibly (training gains < 0.05 each). 

Distance from agriculture and distance from roads were highly correlated (Pearson's r=0.72), and 

therefore we removed the weaker predictor of the two, distance from roads. Nevertheless, distance 

from roads was a very strong predictor of bonobo nest occurrence, with nests more likely to occur 

farther from roads. Presence of intact forest was negatively correlated with edge density (ED) (r=-

0.55) and hence was rejected, leaving the variable with the highest test gain, ED, as the only 

remaining forest pattern metric. We removed soil and lithology because they varied too little in 

their values throughout the range. Similarly, elevation and precipitation exhibited a narrow range 

of values, 145-672 m and 118-179 mm/month, respectively. Because of this, MaxEnt over-fit the 

model to these two variables, creating highly complex relationships that were not biologically 

defensible, so we omitted them. 

 Training and test AUCs (0.82 and 0.80, respectively) indicated strong prediction accuracy 

for the final model. MaxEnt calculated the theoretical maximum test AUC [1 – (predicted area/2)] 

of our data as 0.816. The small standard deviation (±0.007) of the test AUC confirmed the model 

performance was significantly better than random (AUC = 0.5). In addition, the series of models 

for which we removed data from one highly-sampled region at a time resulted in maps that still 

predicted the withheld regions as likely suitable (not shown). This confirmed that the final model 

(1) predicted suitable conditions beyond regions of known occurrence and (2) is robust to missing 

data.  
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Models in the withhold-one-region series generally agreed and supported the final model, 

whereas models built using region-specific nest blocks showed some noteworthy differences in 

terms of both transferability and predictor variable importance. For comparison purposes, we 

applied the final model's threshold of 0.3 to all region-specific models (Figure 4). The models 

built with MLW-only (Fig. 3.1a) and SNP-only (Fig. 3.1c) data agreed most with the final model 

(44.6% and 63.5% spatial overlap, respectively). The SNP model predicted similarly to the MLW 

model (overlapping 91% of the MLW model), yet the SNP output had larger areas of high 

suitability. The MLW model predicted 13% of the range as suitable while the SNP model 

predicted 18%. The TL2-only model was the most liberal, predicting nearly 44% of the range as 

suitable. The LT-only model was the most dissimilar of the four region-specific models; it 

predicted only 11% of the range as suitable, and those locations were nearly the spatial inverse of 

the final model's prediction with only 8% spatial overlap. Of the four predictor variables, distance 

from agriculture had the highest test gain for all models except the MLW-only model, for which 

ED was higher. ED was one of the top two predictors for all region-specific models except TL2, 

which was more influenced by percent forest than by ED. Distance from river had test gains 

between 0.14 and 0.24 for all region-specific models except the TL2 model, which had a test gain 

of 0.06.  

 The response curves (Fig. 5) show the relationship between each predictor and suitability 

of conditions for bonobos based on the final model. As expected, distance from agriculture and 

distance from rivers were both positively correlated with bonobo occurrence. This pattern may be 

indicative of a threat-based response in which higher hunting pressure occurs near concentrations 

of humans (indicated by agriculture) and access points (indicated by rivers). ED was negatively 

correlated with bonobo occurrence, suggesting that bonobos tend to nest in areas of low ED rather 
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than highly fragmented forests. Percent forest was a broad-scale predictor, positively correlated 

with bonobo occurrence.  

 As described earlier, elevation was excluded from the final model; however, prior to 

removal, it too served as a broad predictor suggesting that bonobos tend to occur above 

approximately 400-m elevation. When elevation was included in the model, the mapped output 

predicted large swaths of terra-firma forest in the south-west and a smaller area in the north-west 

of the range as unsuitable. Yet, when elevation was excluded from the model, the output depicted 

these same regions as suitable (Fig. 6). Based on our knowledge of bonobo ecology, we find no 

support for this type of elevation-related limitation to their distribution given the presence of 

appropriate vegetation and absence of potential threats.  

DISCUSSION 

The results from our iterative modeling approach strongly suggest that threats associated 

with human activity (distance from agriculture, distance from roads, forest fragmentation, and 

distance from river) drive bonobo distributions. We view these predictors as proxies of hunting 

impact. Areas closer to agriculture and roads are closer to human populations who tend to hunt in 

the surrounding forest (Robinson, 1996; Hart et al., 2008). Roads and navigable rivers provide 

human access to areas that would otherwise likely be less vulnerable to hunting (Wilkie et al., 

2000; Blake et al., 2009), as such features are major transport conduits to markets. Edge density 

(ED) distills the information of forest fragmentation from agriculture, logging, major rivers, and 

roads into a single metric that relates to hunter accessibility. Very likely, it is the poaching 

associated with these metrics that is the single common threat influencing bonobo occurrence. At 

the regional/local scale, however, there will be some exceptions to this general rule due to cultural 

taboos against eating bonobos. Such taboos are in a state of flux due to changing values 
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associated with immigrant populations (Fruth et al., 2008); therefore poaching of bonobos may 

begin to occur in new areas, further magnifying this threat.  

In the current model, the threat-based variables were better predictors of suitability for 

bonobos than were biotic and abiotic factors. However, this could be due to the fact that there 

were more datasets available describing human threats, in the required raster format, covering the 

correct geographic extent, and with adequate spatial detail, than were available for biotic and 

abiotic factors. Because hunting persists throughout most of the bonobo range, including areas 

that are legally protected (Dupain and Van Elsacker, 2001; Hart et al., 2008), it is not possible to 

determine the environmental variables that would predict suitable conditions in the absence of 

hunting. Finer-scale analyses of relative hunting pressure are recommended to untangle these 

effects. While distance from roads was not included in the final model due to multicollinearity 

with distance from agriculture, distance from roads was in fact one of the strongest predictors of 

bonobo nest occurrence (second only to the correlated variable, distance from agriculture). As 

such, proximity to roads should also be considered an important threat to bonobos. We 

recommend repeating this study’s approach when more detailed biotic and abiotic data relevant to 

bonobos become available. 

The first bonobo conservation action plan (Thompson-Handler et al., 1995) recognized 

that very little was known about bonobos and outlined an expansive area that needed to be 

surveyed to determine bonobo distribution, abundance and the environmental factors affecting 

bonobo presence. Here, we show the results of a comprehensive compilation of bonobo nest data 

collected since then and offer a current rangewide bonobo distribution model (Fig. 3.2) that can 

be used to inform future bonobo conservation actions and plans. Due to its rangewide, raster-

based requirements, the model provided here does not benefit from finer-resolution data or the 
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more detailed understandings of local areas well-known to particular researchers. Instead, this 

type of knowledge of bonobo occurrence can be used in combination with the prediction map on a 

case-by-case basis. Certainly, future modeling will benefit from higher resolution environmental 

data, particularly for vegetation. While no model is perfect, we consider this model to be the best 

current rangewide spatial depiction of potentially suitable conditions for bonobos. 

 When building predictive models, it is important to critically consider classification 

accuracy (AUC). In some previous studies (Phillips et al., 2009; Veloz, 2009), MaxEnt 

occasionally produced inflated measures of AUC, a problem that was most severe with small 

sample sizes in which samples were geographically clumped in a few isolated portions of the 

modeled area (Anderson and Gonzalez, 2011). For such studies, the data were biased by the 

characteristics found in those limited geographic areas, yet high accuracies were reported (all 

AUCs>0.9 when extrapolating to areas 100 km from known presences, VanDerWal et al., 

2009). Suggestions for corrective action have included restricting the geographic distribution of 

the background points used by MaxEnt to surveyed areas in order to match potential bias in the 

presence-only data (Phillips et al., 2009). Our sensitivity test of a model in which we used LT-

only data (39 nest sites) underscored the caution needed when modeling large areas with small 

presence-only datasets (Fig. 3.4d), because the LT-only output is implausible given the other 

known nest locations throughout the range. In contrast, the strength of the full dataset used in our 

final model is that the data are numerous (>2,000 nest blocks), the points span the entire modeled 

area, clusters of those points cover vast expanses, and surveyed regions represent a broad portion 

of each predictor’s range of values. Due to these characteristics, we did not restrict background 

points to surveyed areas but instead used 10,000 random points distributed throughout the entire 

range. We interpret the test AUC (0.80) of this study to be biologically reasonable based on the 
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input data and, after iterative modeling, find no evidence that is inflated. The high AUC 

demonstrates that the model exhibits high classification accuracy and therefore is likely to be 

useful in predicting areas of relative suitability. 

 The final model predicted numerous unsampled areas as likely suitable for bonobos, 

suggesting that this model is not overly biased to vicinities near presence points. The succession 

of test models built by sequentially removing presence data from each highly-sampled region 

(i.e., MLW, TL2 and SNP) demonstrated high spatial overlap with each other and with the final 

model. Such agreement further increases our confidence in the model's portrayal of suitable 

conditions for bonobos. Finally, our series of test models built using just one highly-sampled 

region at a time confirmed that the full set of compiled presence data sufficiently portray the 

range of conditions (described by the predictors) that bonobos will generally tolerate, given that 

humans are part of the landscape.  

 However, all models are simplified interpretations of the real world with inherent error. 

Because of the spatially-explicit nature of MaxEnt, predictor variables were restricted to those for 

which data existed across the entire range. Moreover, there was uncertainty regarding the best 

way to compute the percent-forest variable because <2% (n=2364) of nest sites were located in 

swamp forests, yet there is evidence that, in addition to terra-firma rainforest, bonobos do nest in 

swamp forests more frequently than indicated by the rangewide dataset (Mulavwa et al., 2010; 

Reinartz et al., 2008; Mohneke and Fruth, 2008). Specifically, Mulavwa et al., (2010) reported 

13% of nests in swamp forest, and the landcover data (FAO, 2000) used in the current study 

classifies 20% of the range as swamp forest, suggesting that bonobos may nest in swamp forest at 

rates comparable to its availability. We concluded that swamp forest is underrepresented in 
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survey effort, partially due to its sampling difficulty, and therefore included it in our computation 

of percent forest.  

 The iterative MaxEnt modeling approach identified the most important factors 

determining the current bonobo distribution, namely: distance from agriculture, ED, and percent 

forest. Distance from agriculture was the strongest predictor of bonobo presence, with suitability 

increasing farther from agriculture. The MLW-only model was an exception, where the test gain 

for ED was highest. This difference appears to be due to the lack of areas within MLW located 

extremely far from agriculture, such that a model built on MLW-only data had limited 

transferability to locations that are extremely far from agriculture (dark regions at center of SNP 

Fig. 3.4a). Another exception was a relatively low predictive power for ED and distance from 

river in the TL2-only model. The higher amount of woodland-savannah interface in TL2 likely 

results in higher ED independent of hunting pressure, greater importance of percent forest, and/or 

potentially lower hunting pressure by the TL2 community. These varied results demonstrate both 

the geographic variation of factors determining bonobo presence and the importance of using 

well-distributed presence-only data when extrapolating to broad areas across the entire range. 

The final suitability map, complemented by maps of the threats outlined here, provides a 

necessary starting point for developing creative on-the-ground actions needed to maintain viable 

bonobo populations. For instance, the map identifies certain unsurveyed areas as potentially 

suitable and that may be important for bonobo conservation. Such areas may either currently 

harbour unsurveyed bonobo populations or support a natural expansion of the current bonobo 

distribution. Additional bonobo surveys in these areas (highlighted in Fig. 3.2) are especially 

important. Here, the best predictors – distance from agriculture and ED – represent habitat loss in 

addition to hunter access. Others have noted the importance of habitat loss and fragmentation to 
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primate populations (Arroyo-Rodriguez and Mandujano, 2009). Therefore, where possible, we 

recommend any future agriculture, logging or infrastructure development concentrate in areas of 

least suitability and avoid areas of high suitability. Further, we recommend increased enforcement 

of current wildlife protections and increased efforts to provide alternative livelihoods to human 

communities within the bonobo range. Overall, we urge that priority actions focus on reducing 

bonobo mortality caused by hunting. We hope our analysis will contribute significantly to the 

development of land-use management plans aimed at protecting highly suitable areas, reducing 

threats to bonobos, and promoting conservation and sustainable natural resource management 

throughout the bonobo range. 
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Table 3.1: List of environmental predictor variables originally used and those in the final model 

predicting relative suitability of conditions for bonobos rangewide, Democratic Republic of 

Congo.   
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Forest 

metrics 

Percent 

forest* 

Percentage of broadleaf terra-firma and 
swamp forest in a 9-cell neighbourhood 

(=0.09 km2) reclassified from 6 
landcover types 

Yes + + + FAO 2000 

Forest 
metrics 

Intact forest 
Presence of blocks of forest  
>500 km2 

Yes + + + 
Potapov et al. 
2008 

Forest 
metrics 

Forest edge 
density* 

A measure of forest fragmentation at 57-
m resolution, then resampled up 

Yes U ˗ ˗ Hickey et al. 2012 

Climate 
Monthly 
Mean 
Precipitation 

mm/month Yes + No + 
Hijmans et al. 
2005 

Terrain Elevation 1-km Digital Elevation Model Yes U U U USGS 2000 

Terrain Soil lithology Surface rock type Yes U No U 
van Engelen et al. 
2006 

Terrain Soil types Dominant soil types Yes U No U 
van Engelen et al. 
2006 

Terrain 
Compound 
Topographic 
Index 

From HYDRO1k Elevation Derivative 
Database  

Yes U No U USGS 2000 

Terrain 
Distance 
from rivers* 

Distance to nearest river or stream in km 
calculated from HYDRO1k Elevation 
Derivative Database 

Yes U + + USGS 2000 

Human 
Impact 

Distance 
from 

agriculture* 

Distance to nearest agricultural complex 
in km as reclassified from landcover 

types 

Yes + + + FAO 2000 

Human 

Impact 

Distance 

from roads 
Distance to nearest road in km No U + + WRI 2010 

Human 
Impact 

Presence of 
forest loss 

Locations of areas experiencing 
deforestation between the years 1990-
2000 and 2000-2010  

Yes U ˗ ˗ OSFAC 2010 

Human 
Impact 

Distance to 
forest loss 

Distance to nearest areas experiencing 
deforestation between the years 1990-
2000 and 2000-2010 

Yes U + + OSFAC 2010 

* Retained in final model 
Yes = predictor variable expected to influence the location of bonobo forage species 
No = predictor variable not expected to relate to the life-history component listed 
U = Relationship unknown  
+ = Positive correlation expected between predictor variable and mechanism influencing bonobo presence 
- = Negative correlation expected between predictor variable and mechanism influencing bonobo presence 
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Table 3.2: MaxEnt diagnostics for each predictor variable modeling relative suitability of 

conditions for bonobos rangewide using only that predictor variable. Gain is a measure of relative 

goodness-of-fit (Phillips 2006). An AUC of 1 would be perfect prediction whereas 0.5 would be 

no better than random.  

    
Predictor Variable 

Training 

Gain 

Test 

Gain 
AUC 

            Distance From Agriculture 0.58 0.50 0.77 

    Edge Density 0.34 0.35 0.73 

            Percent Forest 0.16 0.15 0.58 

    Distance From River 0.10 0.08 0.6 
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Figure 3.1. Map of the bonobo range as defined for the purpose of this effort to model suitable 

conditions for bonobos rangewide. All wild bonobos inhabit the area south of the Congo River, 

Democratic Republic of Congo. Specific regions referred to in the text correspond to the boxes: a) 

Maringa-Lopori-Wamba Landscape, b) Tshuapa-Lomami-Lualaba Landscape c) Salonga National 

Park, and d) Lac Tumba, respectively. 
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Figure 3.2. Final rangewide map of suitable conditions for bonobos, based on bonobo nest blocks 

and the strongest non-correlated predictor variables using a maximum-entropy approach. The 

polygons denote boundaries of official protected areas at the time of writing. 
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Figure 3.3. Maps of the selected environmental variables used in the final model to predict 

relative suitability of conditions for bonobos: a.) edge density (km/10km
2
), b.) distance from river 

(km), c.) distance from agriculture (km), and d.) percent-forest landcover. All maps are drawn at 

100-m resolution. 
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Figure 3.4. A comparison of suitable conditions for bonobos as predicted by 4 rangewide models 

differing in their presence-only input data. Each was built from nest-block data limited to the 

following corresponding regions a.) MLW-only, b.) TL2-only, c.) SNP-only, and d.) LT-only, 

Democratic Republic of Congo. Note the similarity between a, c, and the final model (Fig. 3.2).  
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Figure 3.5. The response curves of relative suitability of conditions for bonobos and the predictor 

variables for the final rangewide MaxEnt model, depicting a negative relationship for forest 

fragmentation as measured by edge density (km/10km
2
), and positive relationships for distance 

from river (km), distance from agriculture (km), and percent-forest landcover. 
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Figure 3.6. A comparison of the MaxEnt rangewide spatial predictions of relative suitability for 

bonobos a.) without elevation and b.) with elevation as a fifth variable, Democratic Republic of 

Congo. 
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CHAPTER 4 

QUANTIFYING BONOBO (PAN PANISCUS) SITE OCCUPANCY: 

THE INFLUENCE OF LANDSCAPE AND LOCAL MEASURES OF HUNTING PRESSURE
3
 

  

                                                             
3 Hickey, J.R., M.J. Conroy, C. Moore, and N.P. Nibbelink. 2012. To be submitted to Biological Conservation. 
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ABSTRACT 

The use of classified data from satellite imagery to estimate species’ distributions has become 

widespread and is often used for conservation planning purposes. Therefore, it is important to 

understand the relative strength of such classified data to predict species occurrence compared to 

field-derived data and to assess the conservation implications of both types of data. We quantified 

the effect of various remotely-derived versus field-derived predictor variables on the probability 

of site occupancy by bonobos (Pan paniscus). Bonobos are great apes endemic to the Democratic 

Republic of Congo (DRC) primarily inhabiting large tracts of lowland rainforest that are under 

pressure from timber harvest and land-use change. The IUCN
TM

 classifies bonobos as endangered 

and lists direct loss from illegal hunting and indirect losses from habitat degradation via forest 

fragmentation as the primary threats to bonobos. In 2009, we collected site occupancy data based 

on bonobo nest observations on 68 km of transect in the Maringa-Lopori-Wamba landscape, 

DRC. We analyzed double-independent observer data using mark-recapture techniques to 

estimate detection probabilities in order to calculate unbiased estimates of abundance and site 

occupancy. Using logistic regression, we evaluated bonobo site occupancy in relation to both 

landscape-scale measures of forest fragmentation and hunter accessibility as well as local 

measures of hunting pressure (e.g. number of machete cuts in the vegetation and number of traps 

per site). We demonstrated that the remotely-derived forest edge density metric [ED, (m/ha)], a 

measure of forest fragmentation, performed at least as well as the best-performing field-derived 

predictor (machete cuts). Using an information-theoretic approach, we found that ED appeared in 

all 13 of the best-performing models, whereas machete cuts appeared in 11 of 13. Assuming the 

other factors stayed constant, the odds of bonobo site occupancy were 1.27 times lower for each 

unit increase in ED. Similarly holding the other factors constant, bonobos were 1.27 times less 
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likely to occupy an area for each additional machete cut per site. Comparing areas similar in 

hunting pressure but different in forest fragmentation demonstrated significantly lower bonobo 

occupancy correlated with high fragmentation. By contrast, areas of differing hunting pressure yet 

with similarly intact forest exhibited significantly lower bonobo occupancy under high hunting 

pressure. Our results indicate that forest fragmentation and hunting both negatively influence 

bonobo occupancy, and suggest potential negative effects of forest fragmentation independent of 

hunting. 

INTRODUCTION 

The rapid conversion of land to meet human needs creates a conservation challenge, and 

emphasizes the need for relevant data to support conservation planning. Landscape-level variables 

derived from remote sensing can contribute to more informed decisions, yet need to be grounded 

in established relationships with the elements of biodiversity targeted for conservation. The 

difference in relative scale between measures of many landscape- versus local-level variables can 

cloud our understanding of the causal mechanism relating the two. For example, a substantive 

body of research has documented the empty forest syndrome – in which seemingly suitable stands 

of intact or relatively intact forest are devoid of most fauna. The mechanism causing empty forest 

syndrome has generally been attributed to local hunting (Redford 1992, Fa and Brown 2009, 

Wilkie et al. 2011). Wilkie et al. (1992) demonstrated that forest fragmentation via roads and 

transects from logging activities exacerbated hunting pressure on forest fauna in the Republic of 

Congo. Therefore, in the cases of fragmentation-induced empty forest syndrome, we (Chapters 2 

and 3) hypothesized that remotely-sensed data measuring forest fragmentation and landscape-

level proxies of hunter access (distance from agriculture, distance from road, distance from rivers) 

may correspond to relative hunting pressure for many hunted species because areas near 
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agriculture, roads and rivers are necessarily near areas of higher human concentration. However, 

it remains untested whether those landscape metrics actually relate to relative hunting pressure.  

As a case in point, bonobos (Pan paniscus) are endangered great apes that are in jeopardy 

due to illegal hunting (poaching) and habitat fragmentation (Fruth et al. 2008). We (Chapter 3) 

demonstrated that habitat fragmentation as measured by edge density (ED) and relative hunter 

access as measured by distance from agriculture, distance from road, and distance from rivers 

effectively predicted rangewide occurrence of bonobo nest blocks. Yet, the pervasiveness of 

hunting throughout the bonobo’s range – including areas that are legally protected (Dupain and 

Van Elsacker, 2001; Hart et al., 2008) – precluded a rangewide assessment of the predictive 

importance of landscape-level factors in the absence of hunting (Chapter 3). The difficulty is that, 

at the rangewide scale, there are essentially no areas without hunting. Therefore, there is a need 

for fine-scale analyses in areas that differ in relative hunting pressure in order to compare the 

utility of both remotely-sensed and field-derived data in predicting bonobo occupancy and to 

assess the conservation implications of those factors. Over the long term, it will be important to 

clarify the mechanism by which landscape-level predictors relate to bonobo occupancy. Based on 

previous studies (Wilkie et al. 2011, Chapters 2 and 3 this document), the assumed causal 

mechanism is hunting.  

We evaluated bonobo site occupancy within the Maringa-Lopori-Wamba (MLW) 

landscape in relation to both landscape-level predictors, as well as local evidence of human 

presence. We quantified and compared the influence of these factors on probability of bonobo site 

occupancy and suggest that this information can inform and focus bonobo conservation efforts. 

Additionally, we anticipated imperfect detection of bonobo nests directly seen on the transect line, 

violating a key assumption of density estimation via distance sampling (Buckland et al. 2001). 
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Thus, we employed double-independent observer techniques (Williams et al. 2002) to estimate 

detection probability and to correct estimates or abundance and occupancy accordingly. Given 

that humans in this landscape must hunt, farm, and harvest trees to shape their livelihoods, this 

project seeks to provide data that decision makers can use to optimally zone sylvo-agro-pastoral 

(Dupain et al. 2009) activities and protected areas in order to ensure the persistence of bonobos. 

In addition, these results provide a baseline for long-term studies striving to elucidate causal 

mechanisms relating bonobo occupancy to remotely-derived data.  

METHODS 

Study Area 

MLW (Figure 4.1) is an area designated as a conservation landscape by the Central African 

Regional Program for the Environment (CARPE), a branch of the U.S. Agency for International 

Development (USAID) (Hickey and Sidle 2006). MLW was selected as a CARPE landscape 

specifically for the conservation of bonobos in conjunction with alleviation of poverty (Hickey 

and Sidle 2006). MLW is approximately 74,000 km
2
 and characterized by large areas of intact 

lowland rainforest, human settlement, slash-and-burn agriculture, and numerous large timber 

concessions (totaling >6,000 km
2
) in different states of harvest rotation or harvest planning 

(Dupain et al. 2009). We conducted our field research both inside and outside of a recently 

designated protected area known as the Lomako-Yokokala Faunal Reserve (LYFR) and a logged 

area near the town of Kee, DRC (Figure 4.1). 

Field Data Collection 

From February to July 2009, we surveyed 68 km of line-transects and recorded locations of all 

detected bonobo nests and human signs (machete cuts, traps, hunting camps, paths, roads, and 

log-cut trees). We used double independent-observer search methods (Williams et al. 2002) 
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thereby surveying all transects twice in order to quantify and address detection probability, which 

is critical for unbiased estimates of occupancy with imperfect detection (MacKenzie et al. 2006). 

We conducted transects in four major regions stratified by forest fragmentation as measured by 

ED (m/ha) (see GIS Methods). They ranked from lowest to highest ED as follows: (1) Lomako 

South, inside the southern portion of LYFR, (2) Lomako North, inside the northern portion of 

LYFR, (3) Mawa, an unlogged region west of Lomako South, and (4) Kee, a logged area 

northwest of LYFR (Figure 4.1). All regions differed significantly in ED (Figure 4.2) except the 

two Lomako regions which shared similarly low ED (intact forest). We further stratified random 

start and end points of all transects a priori in ArcGIS 9.3 (ESRI, Redlands) using “distance from 

fire” (see GIS Methods), a measure expected to correlate with proximity of human presence. We 

found that fire points corresponded more accurately to the locations of roads, villages and slash-

and-burn agriculture than the available layer on human settlements. In this landscape, all 

communities practice slash-and-burn agriculture creating fires sufficiently large that satellites 

detect them. In stratifying by distance from fire, we attempted to capture site occupancy data 

along a gradient of potential human threat in every region with strata further from fire expected to 

experience lower likelihood of hunting pressure.  

GIS Methods 

We applied reported nest-group distances and the raster pixel size to define bonobo sites. When 

assigning nests to nest groups, the suggested cutoff distance between nests within a single nest 

group is 30 m (Mulavwa et al. 2010). Our raster pixels were 57-m x 57-m, consequently sites for 

this study are 120-m long and correspond approximately to pixel length plus 30-m buffer on 

either side. In ArcGIS 9.3, we separated the surveyed transects into 542 sites. For each site, we 
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summed the total count of bonobo nests and each human sign (machete cuts, traps, hunting 

camps, log-cut trees, paths, and roads).  

Our objective was to evaluate the relative magnitude of effect from landscape variables 

developed from remote sensing data versus the local counts from field surveys described above. 

Therefore, we created three metrics thought to represent habitat fragmentation, relative hunting 

pressure, or both. We defined forest ED as the linear edge between forest and non-forest in a 

given area and used ED as a measure of habitat fragmentation. ED was shown to be a strong 

predictor of bonobo nest occurrence in MLW and rangewide (Chapters 2 and 3); specific methods 

for calculating ED may be found in Chapter 2. Since ED captured the fragmentation from rivers, 

roads, timber harvest, and agriculture it not only related to habitat degradation, but also to 

potential hunter access via any or all of these human created or natural access routes (Laurance et 

al. 2009). In addition, we developed specific GIS layers for distance from river and distance from 

fire as additional proxies for relative hunting pressure due to ease of hunter access. In MLW, 

rivers are the primary travel corridors, hence areas closer to rivers are also closer to potential 

hunter access. Fire points were detected via LANDSAT imagery and then interpreted and 

provided by the University of Maryland (Davies et al. 2009). The fire-points database included a 

rating of relative confidence (0-100%) in the accuracy of its classification as a fire. Based on 

guidance in the associated metadata, we used fire points rated ≥ 50% confidence in determining 

distance-from-fire strata for our study design. However, during the field season we noted that 

even low confidence fire points tended to be actual slash-and-burn fields, therefore the distance-

from-fire predictor variable includes fire points of all confidence levels in lieu of spatial data on 

village locations. We calculated the Euclidean distance from fire points (Davies et al. 2009) and 
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rivers (USGS 2000), thereby creating two raster data layers from which to extract values of each 

covariate to our sites.  

Population estimation, detection probability, and occupancy estimation methods 

Viewed from the forest floor, fresh bonobo nests are large green leafy clusters occurring at 

various heights amid equally green foliage of the forest canopy. Lack of dramatic color or texture 

contrast and potential for vegetation to obstruct viewing can cause some nests to go undetected; 

thus nondetection cannot be equated to nonoccurrence. Therefore, we analyzed individual nest 

mark-recapture histories with Huggins closed capture population estimation models (Huggins 

1989) in Program MARK (version 6.1). This allowed us to provide unbiased estimates of N, the 

number of nests along the transects and to assess potential heterogeneity in detection probability 

(p) based on observer (Team A or B) and time (survey occasion 1 or 2). Following Mohneke and 

Fruth (2008), we estimated density of bonobo nests using the following formulas: 

wLprdr

n
D

2
ˆ

1


                   (1) 

and  
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ˆ
ˆ

2
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

                  

(2)  

thereby incorporating the estimated number of nests (either the naïve count of n detections or the 

unbiased estimate of nests N̂ from Program MARK), nest decomposition rate (dr), nest 

production rate (pr), total length of the transects surveyed (L), and approximate mean viewing 

distance along either side of the transects (2w). To develop a range of estimates for D, we applied 

two different estimates of dr, 99 d and 75.5 d (Eriksson 1999 in Mohneke and Fruth 2008, and  

Mohneke and Fruth 2008, respectively) and pr, 1.37 and 1 (Mohneke and Fruth 2008 and 

Reinartz et al. 2006, respectively). To determine w, we measured perpendicular distance to 
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detected nests along 13 km of transect and selected the distance at which frequency of 

observations declined sharply.  

For unbiased estimates of occupancy, we built a series of models (MacKenzie et al. 2006) 

in Program MARK, estimated the probability of site occupancy (ψ) and p, and examined the 

effect of environmental predictors on occupancy. This procedure computes the probability of site 

occupancy using repeated site visits in a closed population to estimate p and uses that value to 

estimate the combined probabilities that a given site is either: 1) occupied and detected, 2) 

occupied but not detected, and 3) not occupied. In addition, we looked for evidence of site-level 

heterogeneity in p using mixture models. A fourth option is detecting the target in error when it is 

actually absent (such as erroneously recording a cluster of lianas as a nest). We believe the latter 

is unlikely because of the distinctive construction of bonobo nests that often includes intertwined 

live branches. Prior to analysis we standardized all predictor variables by subtracting their mean 

and dividing by their standard deviation. Despite this procedure, adding environmental covariates 

in a given model caused unreliable results in Program MARK (e.g. estimates of 0 variance), 

therefore we re-ran the univariate and multivariate models in WinBUGS (version 1.4.3) using 

Bayesian analysis.  

WinBUGS provided the posterior distribution of ψ from the product of the likelihood of 

the model (given the data) and prior distributions of model parameters using a Gibbs sampler 

(Link et al. 2002). For each model, we employed a uniform distribution between 0 and 1 for the 

prior of p, and normal distributions with mean=0 and precision=0.37 for the priors of all logit-

linear coefficients. We initialized each of three chains with p values of 0.3, 0.5, and 0.7 and 

coefficient values of -1, 0, and 1, respectively, and ran them for 103,000 iterations each then 

deleted the first 3,000 iterations as burn in. Although Bayes analysis provided consistent estimates 
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of p and ψ across all models, we were unsuccessful in modeling potential relationships between ψ 

and the environmental covariates using occupancy modeling in either a Bayesian (WinBUGS) or 

likelihood (Program MARK) approach. Although these procedures normally accommodate zero-

inflated data, our data likely were limited by an exceptionally high number of zeros (473 of 542 

sites were unoccupied) and would have benefitted from >2 occasion histories/site or more sites 

surveyed. Therefore, we used logistic regression models and an information-theoretic approach 

(Burnham & Anderson 2002) to evaluate the influence of environmental predictor variables on 

occupancy. 

Logistic regression and multi-model inference 

We ranked all Program MARK, WinBUGS, and logistic regression models (Program R) using an 

information-theoretic (AIC) approach to model selection discussed in Akaike (1973) and 

Anderson et al. (2000). Under each modeling framework, we developed a candidate set of models 

describing potential relationships between site occupancy and unstandardized landscape and local 

variables (Table 4.1). Information-theoretic methods (Anderson et al. 2000) evaluate the relative 

plausibility of different models using estimates of likelihood. To reduce the potential for over-

fitting, we examined the parameter estimates of univariate models for nine predictors and retained 

those exhibiting potential significance at α ≤ 0.1 for use in a global logistic regression model 

(Millington et al. 2010). In order to avoid multicollinearity, we calculated Pearson’s correlation 

coefficient, r, on all pairs of predictors and eliminated the weaker predictor of any two correlated 

(r>0.49) variables from the global model. We built a set of candidate models to predict site 

occupancy from all possible combinations of non-correlated parameters contained in the global 

model. We calculated Akaike’s Information Criteria (AIC; Akaike 1973) with the small-sample 

bias adjustment (AICc; Hurvich and Tsai 1989) to evaluate the fit of each candidate model. Then 
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to compare models, we assessed the relative fit of each candidate model by calculating Akaike 

weights (Anderson et al. 2000), with the best-fitting candidate model having the greatest Akaike 

weight. We created a confidence set of models that included only those candidate models with 

Akaike weights greater than 10% of the largest Akaike weight as suggested by Royall (1997). We 

considered models with Akaike weights less than 10% of the greatest weight to have too little 

evidence to be plausible explanations for bonobo site occupancy.   

The above estimates, predictions, and associated confidence intervals are conditional on 

given models, and do not reflect uncertainty about model identity.  Therefore, following Burnham 

and Anderson (2002), we estimated model-averaged coefficients and unconditional standard 

errors in order to incorporate model uncertainty. We weighted parameter estimates and 

corresponding standard errors from each candidate model by that model’s associated Akaike 

weight and summed across the different models to develop a composite model. We decided a 

priori to include all parameters found in the confidence set of models in our final composite 

model and based all inferences on the composite model. 

In logistic regression predictions are expressed in log-odds, and odds ratios are used to 

interpret the relative strength of factors affecting the response assuming the other factors are held 

constant. In order to calculate an odds ratio, the parameter estimate for each coefficient must be 

back-transformed with the exponential function, e
x
, where x is the logit-linear parameter estimate. 

This procedure allows inference of the relationship between the predictor and response variables 

(Hosmer and Lemeshow 1989). We then calculated the odds ratio for each predictor in the 

composite model in order to infer the direction and magnitude of the relationships with bonobo 

site occupancy. Odds ratios >1 indicate positive relationships, such that with each unit increase in 

the variable, the probability of occupancy is e
x
 times greater. Odds ratios <1 indicate a negative 
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relationship and are interpreted more easily by taking the inverse and stating “sites are 1/e
x
 times” 

less likely to be occupied with each unit increase in the parameter. 

ANOVA corrected for multiple comparisons 

We used one-way ANOVAs to test whether there were differences among regions with respect to 

each variable (machete cuts, traps, roads, ED, distance from fire, and distance from river), 

applying the Tukey correction for multiple comparisons. Results were then compared to bonobo 

occupancy in each of the regions to help explain the pattern of occupancy relative to regional 

conditions. 

RESULTS 

Field Surveys, detection probability, and occupancy estimation 

We detected a total of 338 nests of which 319 were usable for this analysis, the others being 

opportunistically sighted during hikes to or from transects. We found no nests in Kee, the 

previously logged region, and we detected none in Lomako North. The latter is an area where 

abundant hunting signs (fresh, set traps) were found, despite its official designation as a protected 

area (Figure 4.2). Examined in Program MARK, occasion histories per individual nest resulted in 

stable models and estimates of p and .N̂  Huggins closed-capture population estimation calculated 

N̂ (±SD) as 352.7 (±12.98). Using the naïve count for number of nests, n=319 and an effective 

strip width 2w=0.06 km, then the density of nest-building bonobos from equation (1) equals: 

576.0
06.06837.199

319ˆ
1 


D

 
bonobos/km

2
. 

Whereas holding all other estimates constant and employing the number of nests corrected for p, 

353ˆ N , the D̂ from equation (2) equals: 
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Because the values of dr and pr can vary by location and season we calculated a range of 

estimates for 1D̂  and 2D̂  (Table 4.2).  

We found individual nest-detection probability varied significantly by observer but not by 

survey occasion. Mean detection rates of Teams A and B were 0.78 and 0.58, respectively. Within 

Team A, detection rate for occasion 1 was 0.83 (±0.04) and for occasion 2 was 0.73 (±0.04) and 

did not differ significantly (t-statistic=1.72, d.f.=317, P=0.09). Within Team B, detection rate for 

occasion 1 was 0.63 (±0.06) and for occasion 2 was 0.52 (±0.05), also not differing (t-

statistic=1.32, d.f.=317, P=0.19). Teams A and B differed significantly from each other during 

occasion 1 (t-statistic=2.43, d.f.=317, P=0.016) and occasion 2 (t-statistic=3.46, d.f.=317, 

P<0.001). The difference in observer detection rates was homogenized over occasion histories, 

because the survey protocol included periodically alternating Team A and B between occasion 

times 1 and 2. Mixture models for p using site occasion histories were not supported as all 

mixture models caused implausible results in Program MARK (e.g. estimates of 0 variance). 

Assuming a constant p, the Program MARK estimate and the mean of the posterior distribution 

derived from Bayesian analysis shared similar values for p (±SD) of 0.745 (±0.047) and 0.737 

(±0.047), respectively. 

Modeling a constant p and ψ, the Program MARK estimate and the mean of the posterior 

distribution derived from Bayesian analysis concurred with ψ (±SD) of 0.136 (±0.016) and 0.138 

(±0.016), respectively. We determined the minimum convex polygon (MCP) around surveyed 

transects (Figure 4.3) which encompasses 3,115 km
2
, 79% of which falls within the protection of 

the LYFR. Extrapolating the mean of the ψ values to the MCP gives: 
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3,115 km
2   0.137 = 426.8 km

2
 

occupied within the MCP. Inverting the occupancy estimate, we can see that at any given time 

approximately (1- 0.137) 100 = 86.3% of the MCP is unoccupied by bonobos, despite being 

predominantly protected lowland rainforest.  

While both approaches produced stable models with similar estimates when covariates 

were excluded, adding covariates to the models produced unrealistic estimates of ψ (e.g. lower 

than observed) in Program MARK, whereas in WinBUGS the null model ranked the highest 

based on Akaike weight. Due to these uninformative results we used logistic regression to 

evaluate the influence of covariates.   
 

Logistic regression 

We collapsed occupancy histories into presence-absence data combining data from both occasions 

1 and 2 in order to conduct logistic regression. This procedure increases the power of the data to 

detect a pattern with the covariates, however it also eliminates consideration of detection 

probability (p). Yet, we reason most occupied sites were detected with our protocol. Since p is the 

probability of detecting a nest, given it is there, the probability of not detecting a nest given it is 

there is (1-p). In general, non-detection at a site that contains at least one nest (false absence) can 

be estimated by (1-p)
i
, where i is the number of survey occasions. In this case, the best-ranked 

occupancy model had constant p between occasions and mixtures were not supported, therefore 

we estimated the probability of false absences as: 

(   ̅) = (1 0.74)
2
 = 0.068, 

where  ̅ was the mean of Program MARK and Bayesian analysis estimates for site-level detection 

probability. The corresponding probability that we correctly determined site occupancy was 

1 0.068=0.932. Based on this high probability of correct site classification, relatively few 
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occupied sites went undetected, therefore we analysed the effect of predictors on presence-

absence using logistic regression. 

In Program R, we constructed a global model with 6 of 9 possible predictors. There was 

no evidence of multicollinearity (all Pearson’s |r|<0.44); however we excluded hunting camps due 

to low occurrence (n=7), log-cut trees due to abnormal behavior caused by zero variance at 

occupied sites (100% of occupied sites had zero log-cut trees within 100 m), and paths due to 

non-significance in the univariate model (P=0.9). Out of 64 models, 13 had Akaike weights ≥ 

10% of the best model and so were included in the final composite model (Table 4.3). ED was the 

most prevalent parameter, being present in all models in the confidence set. Machete cuts 

occurred in 11 and distance from river occurred in 10 of the top 13 models. Together, ED, 

distance from river, and machete cuts were the most important predictors of site occupancy. As 

expected, sites were less likely to be occupied with increasing ED and machete cuts, whereas sites 

were more likely to be occupied with increasing distance from rivers (Table 4.4).  

 Back-transforming the parameter estimate of ED produced the odds ratio e
-0.2393

 = 0.787; 

and because 0.787 is <1 the odds ratio indicates a negative relationship between ED and site 

occupancy. Therefore, the odds of bonobos occupying a site were (1/0.787)=1.27 times lower for 

each additional m/ha (or scaled to the approximate size of a bonobo’s homerange: 1.27 times less 

for each 2-km increase of edge in the surrounding 20 km
2
) (Table 4.4). Similarly, sites were 1.27 

times less likely to be occupied for each additional machete cut within a 120-m site. Sites were 

1.47 times more likely to be occupied for each 1-km increase in distance away from river, yet its 

lower 90% CI approximated 0 thereby demonstrating a weaker effect for distance from river than 

for either ED or machete cuts. All other parameters had 90% confidence intervals that fully 
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encompassed 0, indicating inconclusive results because we could not determine the direction 

(positive or negative) of the relationships. 

ANOVA analysis 

One-way ANOVAs showed differences in landscape-scale and local-scale variables among 

sample regions. Overlaying bonobo occupancy allowed us to tease out potential differences due to 

hunting versus habitat structure alone (Figure 4.2). For instance, Lomako North is within an 

officially designated protected area, with low mean (±SD) ED 1.74 (±1.6) m/ha that was 

significantly farther from fires than the other regions (mean (±SD) fire distance 20.08 (±1.41) km, 

F=196.24, d.f. 3, 538, P<0.0001 for all comparisons). Despite these qualities, Lomako North had 

zero detected nests and very high numbers of machete cuts and traps, many of which still had 

animals captured in them. Lomako North and the logging area, Kee, did not differ significantly in 

mean number of machete cuts per site and these two regions had significantly more machete cuts 

than either Lomako South or Mawa (Figure 4.2a). Lomako North and Kee, both of which had 

zero bonobo nests detected, had significantly more traps than Lomako South (Figure 4.2b). In 

fact, Lomako North had significantly more traps than all other regions. Lomako North and 

Lomako South were the most similar in terms of mean ED (Figure 4.2d); however, these two 

regions were the most dissimilar in mean number of traps per site (F=20.00, d.f. 3, 538, 

P<0.0001) (Figure 4.2b). 

Comparing the bonobo-occupied regions of Lomako South and Mawa to the unoccupied 

logged region of Kee indicated that neither of the former regions differed significantly in mean 

number of traps from Kee. While not a significant difference, Mawa actually had a higher mean 

number (±SD) of traps per site than Kee, 0.63 (±1.06) and 0.44 (±0.86), respectively. The 
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attribute that did differ between Kee and the two bonobo-occupied regions was ED (Figure 4.2d), 

with Kee exhibiting significantly greater ED (F=633.03, d.f. 3, 538, P<0.0001).  

Interestingly, the two bonobo-occupied sites, Lomako South and Mawa differed 

significantly in mean number (±SD) of traps per site, 0.19 (±1.32) and 0.63 (±1.06), respectively 

(Figure 4.2b). Lomako South exhibited the fewest traps of all the regions and the highest site 

occupancy by bonobos. 

DISCUSSION 

We estimated overall bonobo density and site occupancy within the minimum convex polygon 

around our transects, and quantified important influences of hunting pressure on bonobo 

occupancy from both remotely-sensed and field-derived data. Our survey design incorporated 

gradients of potential human threat which resulted in occupancy samples that included forest 

unoccupied by bonobos, thereby avoiding inflated estimates of occupancy. In addition, we 

demonstrated that line-transect bonobo nest surveys involve imperfect detection (including at 0-m 

distance from the transect where traditional distance-methods assume p=1) and adjusted estimates 

of nest counts accordingly. An information-theoretic approach to model selection identified that 

habitat fragmentation (ED), number of machete cuts, and distance from rivers were the most 

important predictors of those evaluated. Regional comparisons revealed the importance of hunting 

in the absence of fragmentation and the importance of fragmentation when hunting pressure is 

similar. 

This study generally supported estimates of bonobo density generated by studies 

employing distance methods (Buckland et al. 2001). Using two different nest-decomposition rates 

and nest-production rates from the literature, we computed four estimates of detection-corrected 

bonobo density, D, ranging from 0.638-1.15 bonobos/km
2
 all of which fell within the range of 
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values reported in estimates for MLW (0.28 bonobos/km
2
 to 1.4 weaned bonobos/km

2
, Hashimoto 

and Furuichi 2001 and Eriksson 1999, respectively).  

Just as it is important to sample areas of both low and high bonobo occupancy in order to 

avoid correspondingly inflated or deflated density estimates, we believe it is also important to 

appropriately incorporate detection probability, p, in sample design to avoid biased estimates of 

occupancy, abundance, and density. Traditional distance-sampling techniques for estimating 

density incorporate functions for declining p based on increasing distance from the transect, but 

assume perfect detection at 0-m distance from the transect. We offer an alternate survey approach 

that addresses imperfect detection at 0-m from the transect. Our estimate of  ̂=0.74 based on 

mark-recapture analysis of nests provides a reference point for comparisons to future estimates by 

other teams of observers. 

Comparisons between regions underscore the importance of both local-scale and 

landscape-scale predictors. Consider Lomako North, a region that contained no detected nests 

despite having apparent outward characteristics of favorable habitat including low fragmentation 

and large distance from fire. Based on these landscape characteristics, we might have expected 

bonobo occupancy to be high, or at least detected. Instead, this area had zero detected nests and 

significantly higher numbers of traps than any other region. For Lomako North, number of traps 

was the prevailing attribute correlated with the observed low occupancy by bonobos. These 

results substantiate previous reports that hunting is a major problem even in intact forest (Redford 

1992, Hart et al. 2008, Wilkie et al. 2011), and can lead to the empty forest syndrome in which a 

forest appears otherwise suitable yet is depauperate of fauna. 

Results from Lomako North demonstrate that bonobos inhabiting a nationally designated 

protected area are not necessarily effectively protected per se, and that extensive improvements 
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are needed in law enforcement as well as in proactive efforts to provide alternatives to local 

peoples. For this site specifically, we recommend additional financial and capacity-building 

support for a guard station located on the Yokokala River in the Ekombe territory. We envision 

such a station employing and training locals as guards, thereby contributing to increased 

employment opportunities. We expect that regular patrols of the northeastern quadrant of LYFR 

as well as inspections of boats commuting on the Yokokala River would decrease hunting 

pressure in this portion of the Reserve. We assume that since important drains on wildlife 

populations come from non-local commercial hunters (Hart et al. 2008, Fa and Brown 2009), 

finding and confiscating bushmeat derived from protected areas is an essential element to 

reducing the problem of poaching.   

Because fragmentation can increase hunter access to forest areas, it can be difficult to 

demonstrate whether the negative effect of fragmentation on bonobo occupancy is due to habitat 

preference or confounded by hunting pressure. This study provides one example supporting 

fragmentation effects under apparently low hunting pressure. In the case of the logged area 

compared to the two bonobo-occupied regions, the logged area differed significantly in 

fragmentation (ED) but not in mean number of traps. Because the logged area had similar hunting 

pressure, but high ED and zero nests detected, we concluded that fragmentation is important to 

consider for bonobo distributions regardless of hunting pressure. Conversely, Lomako North and 

Lomako South did not differ significantly in ED, yet Lomako North had significantly more traps. 

Having detected zero nests in Lomako North, we concluded that hunting is an important variable 

to consider for bonobo distributions regardless of fragmentation. Essentially, both landscape- and 

local-level variables are important in shaping bonobo distributions, and both are important to 

consider in landscape management in order to protect this species. 
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A weakness in this study is that we do not have nest- or trap-occurrence data prior to the 

logging event, hence our study represents a snapshot in time. For example, based on our data 

alone, we cannot know whether Kee had higher bonobo occupancy prior to logging. If it did, we 

cannot discern from our single-season data whether Kee was hunted and drained of bonobos 

(perhaps during or immediately after logging), or if bonobos have extremely low occupancy there 

now because of the high ED itself. For this reason, we advocate long-term repeated studies in 

these and other regions in order to build datasets that can detect factors related both to empty 

forests as well as factors contributing to high bonobo occupancy. This study highlights the 

importance of both forest fragmentation and indirect measures of hunting pressure as factors 

influencing bonobo occupancy and quantifies the effects of each of these variables on probability 

of bonobo occupancy.  
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Table 4.1. Remotely-sensed and field-derived data used in logistic regression models to predict 

the probability of bonobo site occupancy in the Maringa-Lopori-Wamba landscape, Democratic 

Republic of Congo. 

Source 
Predictor 

Variable 
Units Measure of 

Expected 

relationship 

with bonobo 

occupancy 

Remotely-sensed 

(Hickey et al. 2012, 

Hansen et al.  2008) 

Edge Density 
m/ha 

(km/10km2) 
Forest fragmentation - 

Remotely-sensed 

(Davies et al. 2009) 

Distance from 

fire 
km 

Proximity to human 

settlements and, potentially, 

relative hunting pressure 

+ 

Remotely-sensed 

(USGS 2000) 

Distance from 

river 
km 

Proximity to human travel 

corridors 
+ 

Field-collected Machete cuts Count/site Human activity in forest - 

Field-collected Traps Count/site Hunting activity in forest - 

Field-collected Hunting camps Count/site Hunting activity in forest - 

Field-collected Log-cut trees Count/site 

Human alteration of forest and 

potentially increased human 

access via log-extraction trails 

- 

Field-collected Paths 
Number of 

intersections /site 
Human access - 

Field-collected Roads 
Number of 

intersections /site 
Human access - 
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Table 4.2. A range of naïve and detection-adjusted density estimates ( D̂ , bonobos/km
2
) based on 

bonobo nest surveys conducted during 2009 in the Maringa-Lopori-Wamba landscape, 

Democratic Republic of Congo using alternate estimates of number of nests (n and N̂ ), nest-

decomposition rates (dr),and nest production rates (pr). 

       
1D̂  

(naïve) 
2D̂  

(adjusted for detection probability) 

 

  n N̂   

pr1 
dr1 (99 d) 0.576 0.638  

dr2 (75.5 d) 0.756 0.837  

pr2 
dr1 (99 d) 0.790 0.874  

dr2 (75.5 d) 1.04 1.15  
 319n  naive (raw) nest count 

353ˆ N  number of nests adjusted for detection probability 
dr1 from Eriksson (1999) 

dr2 from Mohneke  and Fruth (2008) 

pr1=1.37 nests built per bonobo/d; from Mohneke and Fruth (2008) 

pr2=1 nest built per bonobo/d; from Reinartz et al. (2006) 
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Table 4.3. Model rank, predictor variables, number of parameters (K), AICc, ΔAICc, Akaike 

weights (w) for each model (i) in the confidence set of models predicting bonobo site occupancy 

in the Maringa-Lopori-Wamba landscape, Democratic Republic of Congo. Akaike weights are 

interpreted as the relative plausibility of candidate models. 

Rank Candidate Model K AICc ΔAICc wi % Max. wi 

1 ED+FIRE+RIVER+CUT 5 345.692 0.0000 0.1926 100.0 

2 ED+RIVER+CUT 4 346.26 0.5678 0.1450 75.3 

3 ED+RIVER+CUT+TRAP 5 346.907 1.2148 0.1049 54.5 

4 ED+FIRE+RIVER+CUT+TRAP 6 347.008 1.3157 0.0998 51.8 

5 ED+FIRE+RIVER+CUT+ROAD 6 347.732 2.0396 0.0695 36.1 

6 ED+CUT 3 348.009 2.3168 0.0605 31.4 

7 ED+RIVER+CUT+ROAD 5 348.294 2.6020 0.0524 27.2 

8 ED+RIVER+CUT+TRAP+ROAD 6 348.947 3.2543 0.0378 19.6 

9 ED+FIRE+RIVER+CUT+TRAP 7 349.053 3.3606 0.0359 18.6 

10 ED+CUT+TRAP 4 349.506 3.8138 0.0286 14.9 

11 ED+FIRE+RIVER+TRAP 5 349.639 3.9464 0.0268 13.9 

12 ED+FIRE+CUT 4 349.817 4.1244 0.0245 12.7 

13 ED+FIRE+RIVER 4 349.819 4.1272 0.0245 12.7 
ED=edge density (m/ha); CUT=number of machete cuts; FIRE=distance from fire (km); RIVER=distance from river 

(km); ROAD=number of road crossings; TRAP=number of traps 

 

  



109 
 

 

Table 4.4. Model averaged parameter estimates, SE, 90% confidence intervals and odds ratios for 

the composite model predicting bonobo site occupancy in the Marina-Lopori-Wamba landscape, 

Democratic Republic of Congo. 

 
Number 

      
Interpretation

2
 

 
of Models 

      
For each unit 

 
Parameter Parameter 

 
90% CI odds

1
 90% CI increase 

 
Occurs In Estimate SE Lower Upper ratio Lower Upper odds are 

(Intercept) 13 -1.739 0.577 -2.69 -0.79 0.176 0.07 0.45  

ED (m/ha) 13 -0.239 0.049 -0.32 -0.16 0.787 0.73 0.85 1.27 times lower 

CUTS 11 -0.235 0.120 -0.43 -0.04 0.791 0.65 0.96 1.27 times lower 

RIVER (km) 10 0.384 0.235 0.00 0.77 1.468 1.00 2.16 1.47 times greater 

FIRE (km) 7 -0.027 0.036 -0.09 0.03 0.973 0.92 1.03 1.03 times lower 

TRAPS 6 -0.068 0.125 -0.27 0.14 0.934 0.76 1.15 1.07 times lower 

ROADS 4 -0.012 0.176 -0.30 0.28 0.988 0.74 1.32 1.01 times lower 
1Back-transforming the parameter estimate of ED produced the odds ratio e-0.2393 = 0.787; and because 0.787 is <1 the odds ratio 
indicates a negative relationship between ED and site occupancy.  
2Therefore, sites were (1/0.787)=1.27 times less likely to be occupied for each additional m/ha (or scaled to the approximate size 
of a bonobo homerange: 1.27 times less likely to be occupied for each 2-km increase of edge in the surrounding 20 km2). 

ED=Edge density (m/ha); CUTS=Number of machete cuts; RIVER=Distance from river (km); FIRE=Distance from fire (km); 
TRAPS=Number of traps; ROADS=Number of road crossings 
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Figure 4.1. Four study regions (Lomako North, Lomako South, Mawa, and Kee), survey transects, protected areas, and edge density in 

the Maringa-Lopori-Wamba landscape, Democratic Republic of Congo.  
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Figure 4.2. Bonobo site occupancy, mean number of human signs, and mean edge density (ED) by region in the Maringa-Lopori-

Wamba landscape, Democratic Republic of Congo. Region names abbreviated as follows: LS=Lomako South and LN=Lomako North.



112 
 

 

Figure 4.3. Minimum convex polygon containing the 2009 survey transects in four regions of the 

Maringa-Lopori-Wamba landscape, Democratic Republic of Congo. 
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CHAPTER 5 

CONCLUSIONS 

The undeniable proliferation of human impact into even the most remote regions of the 

world forces conservation planners to “think outside the park” and to develop strategies that will 

help rare species persist across broad landscapes characterized by a mosaic of land uses. As with 

many species of conservation concern, governmental and non-governmental organizations 

(NGOs) at local, national, and international levels are grappling to determine priority areas for 

research, monitoring, and protected-area designation for bonobos (Luetzelschwab 2007). In 

addition, community-based natural resource managers seek information to guide reasonable 

placement of protected areas and limitations of land uses potentially impactful to bonobos such as 

farming, logging, and housing that together are known as the sylvo-agro-pastoral zone (Dupain et 

al. 2009; USAID 2012).  

A meeting to plan bonobo conservation action was held in Kinshasa, DRC in January 

2011, with a large group of bonobo experts, including representatives from DRC's Institution for 

the Conservation of Nature (Institut Congolais pour la Conservation de la Nature, ICCN). One of 

several objectives identified to promote bonobo conservation was the development of strategic 

land-use management plans at local, regional and national levels. Achieving this objective 

requires spatial information about the probability of bonobo occurrence, not only in surveyed 

areas, but in the vast unsampled areas as well. Broad-scale, species-specific landscape metrics and 

models can provide needed information when they are grounded in field-based data regarding 

species occurrence and local environmental conditions.  
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For species affected by hunting, the empty forest syndrome (Redford 1992, Fa and Brown 

2009, Wilkie et al. 2011) complicates predictions of species occurrence based solely on the 

presence of ostensibly suitable habitat. Viewed from satellites, intact forests can mask 

defaunation caused by hunting. Therefore there is a need to assure that predictions of bonobo 

occurrence based on remotely-sensed data are verified in the field. The recent collaboration of 

bonobo researchers, who compiled 10 years of bonobo data rangewide (Chapter 3), provided an 

opportunity to test the utility of remotely-sensed data in predicting bonobo occurrence against 

known bonobo locations and local evidence of hunting threats (Chapter 4).  

While satellite imagery cannot detect hunting explicitly, remote sensing can capture the 

forest fragmentation that exacerbates hunting and pet trade activities. Across taxa, the 

preponderance of fragmentation studies focus on highly disturbed landscapes in which habitat 

occurs in isolated patches surrounded by a matrix of non-habitat (Andrén 1994, Fischer and 

Lindenmayer 2007, Arroyo-Rodriguez et al. 2008) as well as on species that are habitat 

specialists adverse to openings in their habitat. Our study takes a different approach, investigating 

the potential consequences of habitat fragmentation prior to the matrix transitioning from habitat 

to non-habitat (sometimes called perforation) and focusing on a vagile species tolerant of forest 

openings (when not hunted). We hypothesized that increased bonobo avoidance of perforated 

forests due to increased hunter access and/or increased hunting mortality near openings to be a 

likely mechanism by which forest fragmentation could influence the distribution of the highly 

mobile bonobo. 

At the landscape and rangewide scales, we evaluated the accuracy of numerous metrics 

derived from remote sensing to predict bonobo occurrence. Of the factors examined, the most 

important predictors influencing the bonobo distribution at the rangewide scale were distance 
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from agriculture, fragmentation, and percent forest. Distance from agriculture was by far the 

strongest predictor of bonobo presence, with probability of suitable conditions increasing farther 

from agriculture. However, at regional scales within different landscapes, we showed these best 

predictors can rank differently in importance. For instance, fragmentation was the most influential 

metric for predicting bonobo occurrence in the Maringa-Lopori-Wamba (MLW) landscape in the 

north-central portion of the range, yet had relatively low predictive importance for the Tshuapa-

Lomami-Lualaba (TL2) landscape in the southeastern portion of the range. 

At yet finer scales, comparisons between regions within MLW underscored the 

importance of both field-derived and remotely-sensed predictors. Our results corroborated other 

research (Hart et al. 2008) that hunting can reduce bonobo occurrence in the absence of 

fragmentation yet also demonstrated that higher fragmentation correlates with lower bonobo 

occurrence when comparing areas with similar hunting pressure. 

Future research should strive to clarify the causal links connecting landscape metrics and 

bonobo distributions. Are fragmented forests less occupied primarily due to increased hunting 

pressure or are there other ecological characteristics of fragmented forests that help explain 

reduced bonobo occurrence? Furthermore, due to the large extent of the bonobo range and the 

apparent variability of fragmentation levels tolerated by bonobos inhabiting different regions, it is 

worth exploring the relationships between specific bonobo sub-populations and landscape 

variables such as fragmentation. Differences in species or phenology of fruiting trees, forest 

structure, hunting pressure, or behaviour of bonobos could contribute to the differences we 

documented in the predictive power of fragmentation between regions. 

Finally, it is important to acknowledge that while some models are useful, all models are 

simplifications of the real world with inherent error. Therefore, we urge field surveys of areas 
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with both low- and high-suitability based on the models presented here, perhaps with a larger 

proportion of the effort in the higher probability locales. Such surveys would provide needed data 

to either verify or refine the models for improved prediction and understanding. Such field 

surveys may identify previously undocumented bonobo groups, and where intact forest is found 

devoid of bonobos, field surveys can contribute further data regarding the hunting pressure and 

environmental conditions that may explain empty forests. Because forests and bonobo 

populations are dynamic systems, we advocate long-term repeated studies in order to build 

datasets that can elucidate causal mechanisms of empty forests as well as factors contributing to 

high bonobo occupancy. 

Documenting high hunting pressure in otherwise intact, remote forest can bolster the case 

for increased enforcement and proactive conservation in specific areas. In that regard, we 

documented very high hunting pressure within the northeast portion of the Lomako-Yokokala 

Faunal Reserve correlated with very low bonobo occurrence. We recommend that the ICCN and 

NGOs in MLW increase funding, training, and enforcement patrols in this portion of the 

landscape. Regular boat inspections and contraband confiscations on the Yokokala River should 

discourage illegal bushmeat traffickers sourcing their meat from the Reserve.  

We recommend a two-pronged approach to conservation action, as enforcement will not 

suffice. Where possible, future sylvo-agro-pastoral zones should concentrate in areas of least 

suitability while avoiding areas of high suitability as predicted by the rangewide bonobo 

occurrence model presented here. Conservation planners can encourage proactive management of 

land uses such as logging and agriculture and strategic placement of protected areas and hunting 

areas in an effort to meet local communities’ needs while doing the least harm to bonobo 

populations.  
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Our approach for evaluating the utility of landscape-level metrics and models to predict 

species occurrence can be applied to taxa of conservation concern globally. Landscape metrics 

can be developed for a given species by classifying habitat specifically with that species' needs in 

mind and by selecting a window size at the scale that the species likely responds to the metric 

being tested (perhaps the scale of the species' homerange). These metrics can be ranked using 

field data to evaluate their utility in predicting species occurrence and made spatially explicit in 

maps. For land managers and conservation planners, we have outlined some defensible ways to 

identify threshold values of landscape metrics for a given species. When delineating such 

thresholds we suggest employing species occurrence records that likely indicate areas of quality 

habitat rather than areas used in a transient manner. For example, we used nests where bonobos 

seek shelter for the night. The appropriate type of sign will depend on individual species' habits 

and needs. In addition, species-covariate relationships may change over time, especially as land 

use and climates shift, therefore repeated studies examining such relationships are warranted. 
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