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ABSTRACT 

 

An important issue for agent-based simulation architectures concerns the means by which agents 

can be kept up to date regarding the position and state of other agents and objects in their local 

environment.   We implement two distributed publish-subscribe approaches and assess their 

performance within the SASSY architecture. The environment is decomposed into a set of 

regions, where an LP referred to as an Interest Manager (IM) manages each region. Publish-

subscribe approaches have been utilized in other simulation environments (e.g., HLA), but we 

believe our approach is the first to use a peer-to-peer method in an optimistic environment.  We 

assess the efficiency and scalability of these two methods by measuring the number of rollbacks 

and total runtime for various configurations of the simulation.  Further, we evaluate the impact of 

varying the disparity of between the sensor and actuator regions. 
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CHAPTER 1 

INTRODUCTION 

 

Multi-agent simulation is becoming an increasingly popular tool in robotics (Balch, T. 

1998; Gerkey et. al. 2003), social animal studies (Balch, T. et. al. 2005, Luke et. al. 2005; Minar 

et. al. 1996), and game theoretic research. However, these simulations suffer from serious 

performance and scalability limitations. The Scalable Agent-based Simulation System (SASSY) 

framework developed by our research group aims to leverage advances in the field of Parallel 

Discrete Event Simulation (PDES). It provides an agent-based API but with the performance 

benefits of a PDES kernel. The SASSY architecture consists of two layers: a standard PDES 

kernel and middleware, which provides an agent-based API.  

In SASSY, individual agents are programmed by the application developer using the 

standard agent-based sense-think-act paradigm. In order to support the agents in a PDES kernel, 

each agent is provided a proxy that “lives” in the PDES Simulation. The proxy serves to translate 

agent activities expressed in the agent based API appropriately into discrete events in the PDES 

kernel. An advantage to building the middleware atop a standard PDES kernel is that advances in 

the PDES paradigm can be transparently applied to speed up agent-based simulations. 

SASSY’s PDES kernel is based on the Time Warp synchronization algorithm (Hybinette 

et. al. 2006) and has been completed. In this thesis work we focus on the challenge of 

distributing and managing environmental state information so that agents moving about the 

simulated world can access it efficiently and consistently. Our interest management LPs (IMLPs) 

facilitate a publish/subscribe protocol between the agents themselves. This research centers on 
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comparing two methods: A peer-to-peer approach, and a method that uses intermediate LPs. 

Both approaches are fully distributed. 

We describe the design, the application programmer interface and the implementation of 

the agent- based middleware extensions, along with a simple but powerful multi-agent 

simulation benchmark. The agent-based middleware aims to achieve parallel speedup by 

exploiting the locality usually encountered in agent-based simulations. Although in a multi-agent 

simulation all agents view and modify a shared environment, usually the actuating region of each 

agent is small compared to the overall size of the environment. Our interest management scheme 

can take advantage of this observation that agents typically have different sense and actuating 

radiuses and provide a performance advantage; we will discuss this in more detail in Chapter 4. 

The agent-based paradigm and characteristics suggest that other advanced PDES 

techniques such as lazy cancellation can further improve performance. Lazy cancellation delays 

secondary rollbacks and caches the results of the original rollback in anticipation of reusing the 

results and thus avoiding re-computation (Gafni 1988). We discuss additions, such as Lazy 

Cancellation, and how it improves performance in the chapters below. But first we provide some 

background on PDES simulation systems and other related work. 
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       CHAPTER 2 

BACKGROUND  

 

The work presented here is implemented and evaluated using and enhancing SASSY, a 

hybrid Agent-Based Modeling / Discrete Event Simulation (ABM/DES) System introduced in 

(Hybinette et al. 2006). For completeness we provide a brief overview here. 

DES systems are fast and efficient because the systems they simulate are treated as if 

they proceed forward in discrete time steps – the intervening time is ignored. As compared to 

continuous time simulation, the discrete nature of time in DES systems enables a reduction in 

complexity because the requirement for synchronization is reduced. Furthermore, researchers 

have considered carefully how to gain speedup by distributing and parallelizing DES across 

multiple processing elements in Parallel Discrete Event Simulation (PDES) systems. 

2.1 Parallel Discrete Event Simulation 

Distributed parallel simulation provides at least two advantages. First, multiple 

processors can be used to reduce the execution time of the simulation. Second they may be 

required to support distributed personnel or resources (e.g., a combat simulator with multiple 

human participants at different locations). Distributed simulation also facilitates linking existing 

simulators developed for different platforms to model large systems. 

In this work, a parallel simulation is composed of distinct components called logical 

processes or LPs. Each LP models some portion of the system under investigation. For example 

in an air traffic simulation an LP might represent each airport. The logical processes may be 

mapped to different processors. As in a sequential simulation, a change in system state is defined 
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by an event. The “scheduling” of an event is accomplished by sending a message from one LP 

that may request the destination LP to change its state or schedule additional events. For example 

processing a departure event may result in scheduling a new arrival event at another airport. 

Since events are scheduled by sending messages, “message” and “event” are used 

interchangeably in our discussion. To summarize: distinct components in the simulation are 

modeled by logical processes and the simulation progresses as LPs exchange time-stamped event 

messages that cause changes in the system state at discrete points in time. 

A synchronization mechanism is used to ensure each LP processes events in time-stamp 

order. The two leading classes of synchronization protocols are conservative (Chandy and Misra 

1981) and optimistic (Jefferson and Sowizral 1985) approaches. A conservative protocol 

enforces consistency by avoiding the possibility of an LP ever receiving an event from its past 

(as measured in simulated time). LPs wait to process events until reception of an out-of-order 

event is impossible. The optimistic protocol, in contrast, uses a detect-and-recover scheme. 

When an event is received in an LP's past, an LP recovers by rolling back previously processed 

events with later time-stamps than the one that was just received. While optimistic protocols are 

more complex and require more memory than conservative protocols, they offer greater 

concurrency by being less reliant on lookahead. 

2.2 The Agent Based Paradigm 

The standard PDES API for simulation developers is not well suited to agent-based 

applications because it does not offer the programming model these researchers expect. For 

example, multi-agent system (MAS) researchers expect to treat agents as objects that move 

around in an environment (like messages in DES, but with the ability to compute). In most PDES 

simulations LPs don’t move, they represent geographically static objects such as network routers, 
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airports, sectors in the airspace, intersections. So, in these simulators the objects that perform 

computing don’t move. In contrast, in physical agent simulations the agents move around. In 

general, ABM researchers expect their agents to (Riley and Riley 2003; Balch 1998; Gerkey et al. 

2003):  

• Use the Sense-Think-Act cycle – agents sense their environment; consider what to do, 

then act. This is the predominant computational paradigm for agents; it stands in contrast to 

the message/event paradigm for PDES. 

• Compute – Agents have computing capability and state; again, in contrast to messages in 

PDES, which provide no computing function. 

• Proliferate – MAS simulations typically involve hundreds or thousands of agents. 

• Persist – Agents are persistent members of the environment, in contrast to messages that 

exist only for a short periods. 

For these reasons, a number of MAS and multi-robot systems researchers have devised 

their own simulation systems for their research. From a software engineering and ease of use 

point of view their simulators are well suited to the research tasks they pursue, but these 

simulators are not “high performance” in the same sense that state of the art PDES systems are. 

In fact, some agent based simulation systems face serious performance limitations. These limits 

prevent MAS researchers from investigating systems with thousand or millions of agents. 

We feel the best solution is to provide middleware between a PDES kernel and agent-

based API. This will enable MAS researchers to program using a model that is comfortable for 

them, while they leverage the high performance of an underlying PDES kernel.  
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2.3 SASSY Framework 

Before we introduce our interest management approach we first briefly review our 

architecture. In the standard physical agent model, an agent senses its environment, considers 

what to do, then acts (see Figure 1. This is frequently referred to as the sense-think-act cycle 

(Riley and Riley 2003; Uhrmacher et al. 2000; Logan and Theodoropoulos 2001).  

 

Figure 1: The Physical Agent Model.  
 

Multi-agent simulators are typically configured as shown in Figure 2. The code for each 

agent connects to a process that maintains world state for the simulation. An Application 

Programmer’s Interface (API) allows agents to query the simulator for sensor information and to 

send actuation commands to the simulator. The simulator updates the world state accordingly. 

The simulator checks for possible physical interactions that would prohibit a requested action. 

The simulator also moderates interactions between agents (such as communication). 
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Figure 2: An Agent-Based Simulation. 

 

The agents may be implemented in a number of ways. In TeamBots, for instance, agents 

are Java objects with “call back” methods the simulator calls to give them an opportunity to run 

(Balch 1998). In SPADES and Player/Stage the agents are separate processes that connect to a 

single-threaded simulation engine (Riley and Riley 2003; Gerkey et al. 2003). 

SASSYs agent-based modeling API is implemented as middleware between a PDES 

kernel and the agent based model application code (see Figure 3). Each agent is provided a 

PDES proxy LP that serves to process and create messages. Figure 3 shows how this works for 

one agent. 
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Figure 3: An LP in the PDES System Serves As a Proxy  
for a Simulated Physical Agent. 

 
Each agent proxy maintains a model of relevant objects in the environment near the 

corresponding agent it serves as a proxy for. When agents move or act in the world they generate 

an event that is sent to the other nearby agents so they can track the movements and state of 

others. The agent proxy LPs keep their state current for the agent they support.  

As mentioned above, the Agent Proxy LP (APLP) keeps track of the world’s state that is 

relevant to the agent it serves. In our approach, there is no central representation of world state. 

Instead, that agent’s proxy LP maintains the world state relevant to each agent. As an agent’s 

state changes, it notifies other agents using a state message reflection mechanism. Message 

reflection is accomplished by a distributed publish/subscribe mechanism implemented by a set of 

LPs arranged in a grid. These LPs are referred to as Interest Monitoring LPs (IMLPs). Each 

agent registers interest in (subscribes to) the activities that occur within specific cells. Agents 

that move within a specific cell periodically publish their state by sending a message to the 

relevant IMLP; then the IMLP reflects those messages to other interested agents. 
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        CHAPTER 3 

RELATED WORKS 

 

The use of PDES for agent-based modeling is a relatively new idea that has been used to 

support research in soccer, biological systems and general purpose agent-based models (see for 

instance (Uhrmacher 2001), (Logan and Theodoropoulos 2001), and (Riley and Riley 2003)). 

However, we believe there are several aspects of our approach that contribute to a novel high-

performance design. In particular, we use a “standard” PDES kernel, and we provide a 

“standard” agent-based model view. Because we use a standard PDES kernel we are able to 

easily leverage existing and future performance technologies such as optimistic protocols, 

distributed execution and advanced efficient Global Virtual Time calculations. Accordingly we 

make the simulation application developer's job easier -- she can more directly map her problem 

to the simulator without having to know the details of PDES. 

Most research utilizing agent-based simulation centers on modeling autonomous agents 

(e.g., robots or automobiles) moving about a 2- or 3- dimensional environment. These agents rely 

on a sense-think-act cycle where they sense information about the local environment, think about 

the information in the context of their own behavioral state, and then act in the environment. 

From the point of view of a simulation kernel, these activities correspond to reading state, 

processing it, and writing new state. A key challenge concerns maintaining a consistent 

environmental state that agents can sense (read) and act upon (write). 

Logan and Theodoropoulos provide a comprehensive and readable description of this 

problem in (Logan and Theodoropoulos 2001). Their solution centers on Environmental LPs 

(ELPs) in which the environmental state is managed and distributed. However their experimental 

 9



 

results only include 1 central environmental LP with 64 agents (Lees et. al. 2007). Our approach 

is somewhat different, in that state is maintained by the agents and objects in the environment 

directly to provide an intuitive API for the ABM programmer. Also, our experiments include 

runs with 3,000 or more interacting agents and 400 IMLPs. 

Our interest management LPs (IMLPs) facilitate a publish-subscribe protocol between the 

agents themselves. This is similar to High Level Architecture (HLA) (Dahman et. al. 1997) 

interest manager approaches that use conservative clocks (e.g. Tacic and Fujimoto's work 

reported in (Tacic and Fujimoto 1998) and Wang, Turner and Wang's work in (Wang et. al. 

2003)). Tacic and Fujimoto's work focuses on reducing network traffic in a simulation using a 

conservative protocol (HLA) while Wang, Turner and Wang describes how to integrate agents 

using different interest management schemes into an HLA-based distributed simulation. In 

contrast, our approach supports optimistic simulation (Jefferson and Sowizral 1985; Fujimoto 

1990), and performance improvement centers on reducing the number of rollbacks. 

Logan and Theodoropoulos also propose a related approach to our interest management 

for an optimistic simulator in (Logan and Theodoropoulos 2001). In their approach world state is 

maintained in “environmental LPs” (similar to our IMLPs), however the ELPs kept state 

centralized. In our approach the agents track world state themselves; there is no centralized 

representation of any agent’s state.  

Also of interest is the fact they address the degree coupling and skew in optimistic 

simulators. In the SASSY simulation framework, evenly allocating agent LPs and IMLPs to 

participating PEs can minimize the skew. In addition, in SASSY one can vary the number of 

IMLPs to achieve different degree of coupling (e.g., un-coupled, coupled or fully coupled). As 

the number of IMLP increases, the agents far from each other become uncoupled with each other. 
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This enables SASSY to be both efficient and flexible. In this work we do not assess how skew 

impacts the performance of our approach, but we intend to address this in future work. 

In SPADES and Player/Stage the agents are distributed and run as separate processes that 

connect to a single threaded simulation engine (Riley and Riley 2003; Gerkey et. al. 2003). 

Because these other simulation systems utilize a central resource (the simulation server) they are 

not able to scale well on a distributed computer platform. However, SASSY uses a standard 

PDES kernel and is able to leverage the corresponding benefits. Our SASSY kernel supports the 

optimistic synchronization paradigm which is one of the standard synchronization protocols used 

in PDES (Jefferson and Sowizral 1985; Fujimoto 1990). Performance improvements for 

Optimistic PDES systems center on reducing the cost of rollbacks and scalability on distributed 

computing platforms. Among the various performance enhancements available to PDES systems, 

SASSY leverages distribution of multiple processors, function caching (Xiong et. al. 2008) and 

lazy cancellation (Vulov et. al. 2008) and re-evaluation. 

 

 11



 

        CHAPTER 4 

INTEREST MANAGEMENT APPROACHES 

 

As described in Chapter 2 each agent is represented by a proxy logical process (LP), 

which maintains an up-to-date version of the environment currently visible to the agent. For 

efficiency and scalability the SASSY middleware leverages the domain decomposition method 

by dividing the environment in a number of 3D rectangular regions, each of which is managed 

by an Interest Manager Logical Process (IMLP). The IMLP implements a subscribe/publish 

system for the proxy LPs to ensure that all agents have a consistent view of the shared 

environment. 

It should be noted that the distribution of the global state amongst IMLPs is completely 

transparent to the multi-agent application. Indeed, the granularity of the distribution of the global 

environment can be controlled with a parameter loaded at runtime. Developers of agent-based 

simulations can adjust the size of the IMLP regions to suit the needs of the particular application. 

Ideally, the size of a region controlled by an IMLP should be roughly equal to the area that an 

agent can directly modify. 

Proxy LPs can send five basic types of messages to an IMLP: 

1. SUBSCRIBE 

2. UNSUBSCRIBE 

3. ENTER 

4. LEAVE 

5. UPDATE 
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A SUBSCRIBE message lets the proxy LP monitor updates in a certain region without 

committing any changes to the region. The IMLP sends a description of the current region state 

back to the new subscriber. The SUBSCRIBE message is not relayed to other agents currently in 

the region, since the observing agent cannot influence their actions. Correspondingly, 

UNSUBSCRIBE message removes an observing agent and is not relayed.  

An ENTER message notifies the IMLP that the agent is going to be modifying the 

managed region. A modification of the environment can be something as simple as the agent 

moving its body into the region. An ENTER message is relayed to all other agents subscribed to 

the region, since the new entry could potentially influence their behavior. Similarly, a LEAVE 

message indicates that the proxy LP will not be committing any more changes to the region and 

is also relayed to all other subscribers. 

Finally, the UPDATE message is used by proxy LPs to notify other agents’ proxy LPs of 

changes in the observable environment. An UPDATE message is relayed by the IMLP to all 

subscribers. The IMLP also processes the message, maintaining an up-to-date local copy of the 

observable environment in the region. 

4.1 Event-driven Implementation of the Agent Interface 

Multi-agent simulations typically progress by evaluating a sense-think-act cycle for every 

agent in the simulation. Typically the thinking time varies from 10ms to 1000ms (Balch 2008: 

Riley and Riley 2003; Lees et. al. 2007). Agent-based robot simulators usually assume a fixed 

time period between the incoming sense events; for example, a 33 msec time step could be 

imposed by the frequency of the video sensors (TeamBots (Balch 1998) and Player/Stage 

(Gerkey et. al. 2003)). The SASSY middleware relates the PDES virtual time to the agent’s 

simulated time through a constant multiplier, Δ. Hence, in a SASSY agent-based simulation, 
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time flows in discrete intervals of time Δ. Each agent can specify how many intervals pass 

between the invocations of its sense-think-act cycle. For example, consider a simulation with two 

robot types: type A senses every 50 msec and the type B senses every 10 msec. The SASSY 

middleware would be configured with Δ = 10 msec. Robot type A would receive a sense 

callback every five time intervals, while type B would receive a callback every time interval.  

The agent’s sense callbacks are implemented by its proxy LP. In addition to sending 

messages destined for the IMLP (described previously), each proxy LP schedules a SENSE 

message to itself. Each time a proxy LP processes a SENSE event, it schedules its next SENSE 

event. The simulation time advancement of the SENSE event depends on the agent’s processing 

rate. If an agent’s time progresses in 20 msec intervals and Δ = 10 msec, then the timestamps of 

its SENSE events would increase by two each time. Note that due to the event-driven nature of 

the PDES architecture, there is no performance punishment for using a lower discrete time step 

than an agent’s processing time. There are no “slots” wasted by having an agent process once 

every ten intervals rather than every interval. Taking a SASSY agent simulation and halving Δ 

would result in doubling of the timestamps of all the underlying PDES messages; such a 

simulation would perform no more computations than the original. 

4.2 The Relay Approach  

We are exploring two approaches to interest management. In this section, we describe the 

Relay Implementation first introduced (Hybinette, Kraemer et al. 2006). Consider the scenario 

illustrated in Figure 4. In this case, we are concerned with agents A, B, C, and D. A and B will 

register interest in the light colored cell (for convenience we will refer to it as IMLPj). C and D 

will move through the J cell and post state messages to IMLPj. In a real simulation, all four 

agents would subscribe to multiple IMLPs and they would also all post state information to the 
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IMLP cell they travel within. In this example, we focus on the messages related to A and B 

acting as subscribers and C and D acting as publishers. 

 

Figure 4: Four Agents: A, B, C and D That Roam About 
a 2 Dimensional Space. The Light Colored Region Is an 
Interest Region Maintained by IMLPj. Positions of the 

Agents and Their Directions Are Denoted by Dots and Arrows 
(the Numbers Refer to Instants in Simulated Time) 

 

 

Figure 5: Event Message Timeline for Agent LPs  
A, B, C and D and IMLPj 

 

In Figure 5, we show an example timeline of event messages sent to and from IMLPj. In 

this timeline, all four agents are roughly synchronized. Events occur as follows: Agent A 

subscribes to information from IMLPj at time 1 and unsubscribes at time 4 (all times are given in 
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simulation time). Agent B subscribes at time 3 and unsubscribes at time 4. Agent C enters cell J 

at time 1, it sends an enter message at time 1, then states messages at time 2 and 3. Agent C 

leaves cell J at time 4 and sends a corresponding leave message at that time. IMLPj receives the 

state messages from C and “reflects” them to A and B at the appropriate times. Agent D enters 

cell J at time 2 and leaves at time 3; it sends appropriate enter and leave messages at those times. 

IMLPj reflects the time 2 state message from D to agent A at time 2. Note that Agent B does not 

have to be notified of D’s activities, because it was not interested in IMLPj at time 2. In this 

scenario no rollbacks were necessary. IMLPs maintain a record of state messages and 

subscription windows back to Global Virtual Time (GVT). If a state message arrives within the 

subscription window of a particular agent, the IMLP will reflect that message to the interested 

agent. Also, if later in time, an agent registers interest in events during a time window in the past, 

the IMLP will reflect those old messages from that time to the agent. Now consider the timeline 

in Figure 6. Events move forward in a manner similar to the earlier example, except that agent D 

is somewhat behind the other agents. In real time, agent D arrives in cell J after C has come and 

gone and after A and B have unsubscribed to information about cell J. D’s message at time 2 is 

reflected to agent A. A is forced to rollback, because it had already advanced in simulated time 

to time 4. Note that agent B does not have to rollback, because it is not affected by D’s activities. 

B does not have to rollback because it is not affected by D’s activities, either.  
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Figure 6: Time Lines of Agents (Agent LPs): A, B, C and D  
and Interest Manager LP That Corresponds to a Cell in the Grid  

This Example Shows That Agent A Needs to Roll Back 
 

4.3 The Peer to Peer Approach 

One potential failing of the relay implementation is the overhead for each message 

having to be sent twice (from one agent proxy to the IMLP, then to another agent proxy). In the 

peer-to-peer approach, the interest manager serves only to hook up agents that are interested in 

monitoring a particular area with those agents from the reduced message traffic. In this section, 

we describe a peer to peer communication approach that avoids relaying messages. Consider the 

scenario illustrated in 7s that shows a time line of event messages sent to and from IMLPj and 

agents A and C. To simplify the discussion, we will not discuss interactions involving agents B 

and D.  

 

Figure 7: Event Message Timeline for Agent LPs A, C and 
IMLPj using the Peer to Peer Mechanism 
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At time 1, agent A subscribes to cell J that is managed by IMLPj and, roughly at the same 

time, Agent C enters J. C notifies IMLPj that it is a publisher. IMLPj then reflects an initial 

subscription message to C. C adds A to its neighbor list. Subsequently, C sends an update 

message directly to A without involving or relaying the message via IMLPj. Agent A receives 

update messages from C at time 2 and 3. Agent A unsubscribes to cell J and notifies IMLPj at 

time 4. The unsubscribed message of A is reflected to C. C sends an acknowledgment message to 

A. A and B clears and updates their neighbors’ lists and terminates the connection between them. 

In this approach, message traffic is reduced as only one message and is sent for each update 

action (instead of 2 in the relay approach). This may be especially beneficial when there is 

remote communication; however, if the message traffic is mainly local, the performance benefit 

may not be as significant. 

4.4 Relay Approach with Lazy Cancellation  

As discussed before, Peer-to-Peer approach can reduce communication overhead for 

update messages. However, the relay mechanism can be improved to enable IMLPs to act as a 

buffer between agents at different simulation times. As an example, consider a fast-processing 

agent, F, which passes through a region and sends UPDATE messages. Some physical time later, 

a slower-processing agent, S, subscribes to the region. This is depicted in Figure 8. The ‘region’ 

is light and agent F is in the region at the time steps 2, 3, 4 and 5 are at a wall clock time before 

S. S enters the region at simulated time 2. 
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Figure 8: Example of an Agent F Entering a Light Color Region 

and an Agent S Entering the Same Region. 
 

In a peer-to-peer communication schema, S’s SUBSCRIBE message would roll back F’s 

time and force F to re-process its movements through the region (note a rollback of F may 

include F canceling messages it sent to other subscribers). This is illustrated in the lower image 

in Figure 9; here S’s message at simulated time stamp 2 rolls back F’s messages with later time 

stamps.  

 

Figure 9: Message Progression as a Slow-Processing Agent 
Enters a Region Where Another Agent has Passed 
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On the other hand, if S subscribes to the IMLP, the IMLP should be able to replay F’s 

UPDATE messages to S without rolling back F (and, in turn, possibly canceling message updates 

to other subscribers). This scenario is illustrated in the top image of Figure 9. Here the IMLP 

forwards the buffered messages with time stamps later than S’s subscription message. Note that 

this avoids rolling back and canceling messages to other subscribers. 

Though we would like the IMLP to act as a buffer between agents of different speeds, 

recall that the middleware runs on a standard optimistic PDES kernel. Thus, a rollback of the 

IMLP could force it to transmit anti-messages, causing all agents that have previously passed 

through the region to be rolled back. In other words, a slow-processing agent could force all 

faster agents to “come back” to a region just by observing it. To achieve the desired property that 

slow agents can observe regions without affecting the rate of computation there, we implement a 

well-established optimistic technique: lazy cancellation. 

When a logical process is rolled back with lazy cancellation, its anti-messages are not 

sent out immediately (Gafni 1988). Rather, the logical process is left to coast back to the pre-

rollback time. If during the coasting phase it sends the same messages as before, there was no 

need to send the anti-messages in the first place. Anti-messages are sent out only if the LP does 

not regenerate the same messages as before. 

When an IMLP receives a SUBSCRIBE request from the past, it rolls back to that time.  

When coasting forward, it re-sends (or reflects) all UPDATE messages. However, a subscriber 

cannot modify the state of the environment, so all reflected updates would be the same as the 

ones sent before the rollback. Thus, if lazy cancellation were applied to rollbacks of IMLPs, late 

agents subscribing to a region would not cause rollbacks of other agents in the region. This can 

be a big performance boost since rolling back an IMLP is relatively inexpensive, while rolling 
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back an agent can cause it to re-compute think-sense-act cycles taking 10ms to 1000ms each 

(Balch 2008: Riley and Riley 2003; Lees et. al. 2007). 
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                                                        CHAPTER 5 

EXPERIMENTAL AGENT-BASED SIMULATOR 

 

5.1 Bouncing Ball Agent Benchmark 

The multi-agent simulation used for performance testing consists of a number of 

bouncing balls. Each ball is an independent agent with a body of a certain radius (which is 

configurable). The ball’s actuating region consists of the immediate space that its body occupies, 

because the only change that a ball can make to the environment is moving throughout it. A 

ball’s sensing region is of configurable radius, but it must be at least as large as its body. Each 

ball also has a color attribute, which it updates based on the number of other balls it detects in its 

sensing region. When two balls detect a collision, they bounce off of each other by exchanging 

their velocities. 

As described, the Ball agents are simply reactive; there is very little computation 

involved in deciding what to do at each time step. We would like to evaluate the performance of 

SASSY with deliberative agents, for instance agents running A* at every time step as in (Lees et. 

al. 2007). To simulate similar processes, every Ball agent also incorporates a random deliberative 

delay, which varies in a flat distribution between the minimum delay and the maximum delay. 

An important property of the simulation model chosen is that an agent’s behavior (color) is 

influenced by its observations in its entire sensing region; computation can be rolled back by any 

update in the sensing region. 
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Our benchmark is similar to the 'bouncing ball' benchmark reported in SPADES (Riley 

and Riley 2003), where the authors report performance of 2-26 agents/balls.  Balls in our SASSY 

environment are basically brainless bodies of more sophisticated agents such as ants and bees. 

The benchmark includes an optional graphical display and the display is depicted in 

Figure 10. Here, the simulator is running with 10*10 IMLPs and 20 ball agents. A single small 

grey square region denotes an IMLP. The ball agents are evenly distributed over the environment 

with an initial velocity sampled from a uniform distribution. As the simulation progresses, the 

balls may collide and exchange inertia. The small number in the center of the balls denote the 

number of neighbors sensed and it is also reflected in the color of the ball,  the larger the number 

of neighbors the  more intense the color. 

 

Figure 10: Bouncing Ball simulator screenshot 
(in this case the sensor region is equal to the actuating region) 
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5.2 System Parameters: 

Table 1 lists all configurable parameters in the system. 

Parameters Comments 

NUM_BALL Number of the ball agents 

NUM_IMLP Number of interest manager LPs 

NUM_PE Number of worker processor elements(machine) 

BALL_RADIUS Radius of a ball agent 

NUM_MOVE Total number of the ball movement during the simulation 

IM_TYPE IM communication type : direct/p2p 

GUI_USED Whether or not the GUI been used 

ENVIRONMENT_X The length of the environment x dimension 

ENVIRONMENT_Y The length of the environment y dimension 

VELOCITY_X The ball’s x dimension velocity(average) 

VELOCITY_Y The ball’s y dimension velocity(average) 

DELIBRATION_TIME The ball’s thinking time(average) 

LAZY_CANCELLATION Whether or not the lazy cancellation mechanism is used 

SYMMETRIC Whether or not the balls have symmetric sensing region. If this 

set to false, the odd number balls have larger sensing region 

than even number balls do. 

Table 1: Bouncing Ball simulator parameters 
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CHAPTER 6 

EXPERIMENT RESULT AND DISCUSSION 

 

6.1 Distributed Performance 

In our first set of performance tests, we evaluate the scalability of SASSY, in terms of 

number of agents and the number of machines. The simulation environment ran with dimensions 

1000x1000x1, distributed among 100 IMLPs. Each ball agent had a radius of 10, with equal 

sensing and actuating regions. The deliberation time for an agent was on average 300 msec, 

varying uniformly from 250 to 350 msec (note that this range of thinking time is typical for 

agents in ABS, see Chapter 2).  

Furthermore, we compared the performance of SASSY to the performance of a hand-coded 

time-stepped serial simulator programmed specifically for our agent setup. All tests were 

executed on Sun workstations, networked together with a gigabit Ethernet. Each workstation had 

a dual-core AMD Opteron running at 2.6 GHz with 4 GB of RAM. 
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Figure 11: Execution Time with Growing Number of Agents 

Figure 11 illustrates the performance of SASSY as the number of agents increases. We ran 

6 sets, on 1, 2, 4, 6, 8 PEs. When executing on one PE the hand-coded simulator outperforms 

SASSY due to the overhead of the SASSY middleware. Fortunately, the overhead is slight; and 

induces a small price to pay for the ability to seamlessly distribute the simulation across multiple 

machines. SASSY can be run on 2, 4, 6, and 8 machines simply by changing a configuration 

parameter and starting the specified number of clients. It offers a substantial speedup over the 

serial simulation without requiring additional effort from the multi-agent modeler.  
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Figure 12: Distributed Execution Speedup 

(100 Agents, 300 msec deliberation) 
 

Figure 12 shows the speedup of SASSY when running the simulation with 100 agents on 

up to eight machines. Communication overhead is the major factor that prevents SASSY from 

reaching a theoretical maximum speedup of 8x. One might argue that the agents’ high (300 msec) 

deliberation times and the low number of agents are masking a rather significant communication 

overhead. For this reason, we ran the same simulation described above with 3000 agents, each of 

which had a very short deliberation time. 

 

Figure 13: Distributed Execution Speedup 
(3000 Agents, 5 msec deliberation) 
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The speedup gain in Figure 13 is clearly less linear than the speedup gain in Figure 12; 

nevertheless, SASSY still achieves a 6.2x speedup when executing with 8 PEs. Increasing the 

number of agents by 30-fold did not significantly slow down the simulation executive and 

decreasing the agents’ thinking times did not reveal any unusual communication overhead. 
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Figure 14: Scalability Performance for Large Number of Agents 

 

Besides the simulation execution time, resource limitation is another issue that prevents a 

centralized simulator to scale to a large number of agents. Figure 14 shows the scalability 

performance for a large number of agents. For the Hand-coded version, since no interest 

management schema is used, state updates are broadcast to all other agents. Further, in a serial 

simulation all agents execute in the same memory space. The resource usage feature for such a 

traditional centralized agent simulator makes the communication and memory become a 

bottleneck. As shown in the figure, the hand-coded version do not scale well as the number of 

agents becomes large. When the number of agents increases to 2500, the hand-coded version is 

apparently slower than 1 PE version. When we try to simulate 3000 agents, the hand-coded 
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version exhausts physical memory and cannot complete the simulation. Thus, we can conclude 

that the maximum number of ball agents that a traditional centralized simulator can handle is less 

than 3000, and the situation will worsen when we simulate complex agents. The 1 PE version, on 

the other hand, scales better than the hand-coded version by taking the advantage of the SASSY 

interest management mechanism. Update states are multicast only to interested agents so that a 

great amount of memory space for state saving is saved. The simulation can execute on relative 

low memory usage, and thus, achieves better scalability performance. 

6.2 Performance with Agents with Varying Sensing Distances 

In our discussion of relayed versus direct communication, we noted that relayed 

communication with lazy cancellation can offer substantial performance benefits when agents 

observe a region without modifying it. This situation is quite common; for example, a robot can 

have a video camera with a wide view but rather short actuators. 

To test our hypothesis, we executed a series of simulations in which all factors were kept 

constant except for the sensing distance of the ball agents. The environment size was 

1000x1000x1, managed by 400 IMLPs each covering a 50x50x1 region. The 100 agents had an 

average thinking time of 50 msec, varying uniformly from 0 msec to 100 msec. All tests were in 

distributed mode using four machines. 

In the first simulation setup, all UPDATE messages were transferred directly from agent-

to-agent without being relayed through an IMLP. In the second setup, an IMLP was used to relay 

environment updates, but no lazy cancellation was used. In the final configuration, IMLPs were 

used to relay UPDATE messages and lazy cancellation was enabled for IMLPs. 
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Figure 15: Execution Performance with 
Increasing Agent Sensing Distance 

 

 

Figure 16: Number of Events Rolled Back with 
Increasing Agent Sensing Distance 

 

Figures 15 and 16 show the results from the same executions of the simulation while 

varying the sensor to actuator ratio. Figure 16 shows number of rollbacks and Figure 15 shows 

execution time.  When the agents have a relatively short sensing region relative to their actuating 

region, direct communication of updates between agent LPs is the fastest. The lower 
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performance of relay communication is due to communication overhead; there are roughly twice 

as many messages sent when in relay mode. Even so, relay communication with lazy 

cancellation is not significantly slower than direct communication. 

As agents’ sensing distances increase, performance of direct communication quickly 

degrades for the reasons described in section 3.2. Without lazy cancellation, agents can slow 

down computation in a region just by observing it. Note that the area that agents observe grows 

quadratically with their sensing radius; correspondingly, the performance of the communication 

methods without lazy cancellation worsens quadratically. With IMLPs and lazy cancellation, 

agents can only affect the computation in their actuating region; therefore, performance remains 

relatively good as the agents’ sensing radii are increased.  

It is interesting to point out that when the sensing/actuating ratio is 7, direct 

communication actually rolls back fewer events than relaying with lazy cancellation, but overall 

performance is worse. The discrepancy occurs since lazy cancellation prevents IMLP rollbacks 

from propagating to agent rollbacks while all direct communication rollbacks are agent 

rollbacks. Rolling back an agent’s SENSE event and re-processing it can cost 50 ms or more (the 

agent’s deliberation time), while rolling back and re-processing IMLP messages is very quick. 

6.3 Best IMLP Region Size 

While small regions can distribute memory overhead, it induces communication overhead. 

Our next set of empirically tests for IMLP size relative to ball size while minimizing 

communication overhead. The environment size was 1000x1000x1 and the ball radius was 10. 

The number of IMLP varied from 169 to 1000 and the corresponding IIMLP size was 0.5, 1, 2, 

3, 4 times the ball size. Number of agents was 100 and they had an average thinking time of 50 
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msec, thinking time varied uniformly between 0 msec to 100 msec. All experiments ran on four 

machines. 

  Figure 17 shows the number of rollbacks while varying the IMLP cell size (cell/agent 

ratio). As expected, the smaller the IMPL/agent ratio, the fewer the number rollbacks. The reason 

is that while the IMLP cell becomes smaller, the agent sensing radius becomes smaller as well, 

and agents far from each other can process ahead without rolling back the slower one. However, 

when the size of IMLP cell is smaller than the agent cell, the number of rollbacks increases. This 

is because as the number of IMLP increases, the more IMLPs roll back, and thus the overall 

number of rollbacks increases. 
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Figure 17: Number of Rollbacks for Different IMLP Region Size 
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Figure 18: Simulation Time for Different IMLP Region Size 

 

Figure 18 shows the execution time for different sizes of IMLP cells. Although the 

number of rollbacks is the least when IMLPs and agents have similar size, it is more efficient 

when IMLP is slightly larger than the agent. The reason is that communication overhead 

outweighed the cost of rollbacks. In conclusion, the tradeoff between the communication 

overhead and the cost of rollbacks is the main consideration while choosing the right size of 

IMLP. 
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              CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

       The SASSY architecture has three distinct components: the PDES kernel, the agent-

based middleware, and the agent testing application. We have demonstrated the feasibility and 

scalability of the SASSY design in several ways; however, there are a number of extensions we 

would like to examine in the future. The SASSY PDES kernel can be modified as previously 

described to apply lazy cancellation on a per message basis. The agent-based middleware should 

then attach lazy cancellation hints to message types in such a way to maximize performance. The 

SASSY PDES kernel should also continue to incorporate techniques developed by the optimistic 

PDES community to speed up the performance of agent-based simulations. One potential 

candidate is using infrequent state saving, which would lower a simulation’s memory usage by 

increasing the length of its rollbacks. 

  For efficiency, we must consider serialization of LP-to-LP messages and the way those 

messages are transported across the network. The SASSY kernel API allows LPs to send Java 

objects to each other, which must be serialized somehow for network transfer. Currently, Java’s 

built-in serialization is used, but perhaps a more restrictive custom serialization scheme will offer 

higher performance. For message transport, SASSY currently uses Java’s Remote Method 

Invocation (RMI) mechanism. In the future, we plan to replace this with our custom protocol 

implemented directly over TCP, achieving higher message throughout, lower latency, and lower 

CPU usage. The SASSY agent-based middleware can be made both more flexible and faster. As 

mentioned before, some fairness can be introduced in the simulation by rotating the order in 

which agents move. Also, in the current work, the regions assigned to IMLPs are sized 
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uniformly. However, it may be useful for the regions to vary in size, perhaps because certain 

regions may be expected to contain only a few agents (See Figure 19). The agent-based modeling 

API provided by the middleware can also be improved by accommodating additional use cases.  

 

Figure 19: Current IMLP Regions vs.More Flexible IMLP Regions 
 

 For the testing application, in future work, we plan to develop more comprehensive and 

realistic agent-based test cases. One agent-based simulation will actually contain deliberative 

agents, perhaps ones running an A* search at every step. Another direction would be to explore 

the performance of simulations with purely reactive agents, such as ones found in some social 

animal studies. 
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