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Abstract

Heegaard Floer homology, introduced by Peter Ozsváth and Zoltan Szabó, is an invariant of a

closed oriented 3-manifold. Because of the complex nature of moduli spaces used in the definition,

direct computations of this homology are difficult to achieve. In 2006, Sarkar and Wang proposed

an algorithm to compute the Heegaard Floer homology groups of a closed oriented 3-manifold in

a purely combinatorial way. Ozsváth, Stipsicz and Szabó improved on Sarkar-Wang’s approach to

show that using multi-pointed nice diagrams one can define a combinatorial stabilized hat-version of

Heegaard-Floer homology, and combinatorially prove its invariance. Stipsicz gave a description of

the stabilized hat-version of Heegaard Floer homology for a double branched cover of S3 branched

over a link based on the grid presentation of the link. Here we present an algorithm to compute this

stabilized version. We define the extended grid homology groups associated to a link L and show

combinatorially that the groups calculated by this algorithm are independent of certain choices

made in constructing the extended grid diagram.
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Chapter 1

Introduction

Heegaard Floer homology, introduced by Peter Ozsváth and Zoltan Szabó, is an invariant of a closed

oriented 3-manifold. The definition of Heegaard Floer homology is based on Heegaard decomposi-

tions and Heegaard diagrams for 3-manifolds along with concepts from Lagrangian Floer homology

[7]. Lagrangian Floer homology is defined for a symplectic manifold and a pair of Lagrangian sub-

manifolds, where the generators are the intersection points of the Lagrangian submanifolds and the

boundary maps count suitable pseudo-holomorphic disks. In the same spirit, Ozsváth and Szabó

[16] defined Heegaard Floer homology that involves the symmetric product of the splitting Hee-

gaard surface for a Heegaard decomposition of a 3-manifold as the symplectic manifold, and tori

obtained as product of the boundaries of families of compressing discs as Lagrangian submanifolds.

Because of the complex nature of moduli spaces involved, direct computations of these homology

groups are difficult to achieve.

In 2006, Sarkar and Wang [22] proposed an algorithm to compute the Heegaard Floer homology of a

closed oriented 3-manifold for specific Heegaard diagrams in a purely combinatorial way. Although

they calculated the homology groups combinatorially, the combinatorial proof for the invariance of

the homology under the “nice” moves was not done. Later Ozsváth, Stipsicz and Szabó [15] gave

a combinatorial description of the hat-version of Heegaard Floer homology using pair-of-pants de-

compositions. In [15], Ozsváth, Stipsicz and Szabó showed that the stable hat-version of Heegaard

Floer homology is a diffeomorphism invariant of the 3-manifold in a purely combinatorial way.

1



In 2009, Manolescu, Ozsváth and Sarkar [12] calculated all versions of link Floer homology of

knots and links in S3 using grid diagrams and in [13, 14], a topological invariance of this combina-

torial version of link Floer homology is shown using combinatorial methods. In [5], a combinatorial

proof for the invariance of knot floer homology over Z is shown using a Heegaard diagram for

the pullback of a knot in S3 in its cyclic branched cover. In the same spirit, Stipsicz [24] gave

a description of the hat-version of Heegaard Floer homology based on the double branched cover

construction and grid diagrams. Though not every 3-manifold admits a double branched cover

presentation along a link in S3 (e.g., 3-torus is not a 2-fold branched cover of S3 [8]), the con-

struction using double branched cover provides a wealth of interesting examples. Stipsicz gave a

description of the stabilized hat-version of Heegaard Floer homology for a double branched cover of

S3 branched over a link based on the grid presentation of the link. We call the groups defined this

way the extended grid homology EGH(G) of the link L with extended grid diagram G. A way to

combinatorially show that this algorithm defines a link invariant is to show that these groups are

independent of the choices in the construction of the extended grid diagram and of the grid moves.

We prove the following theorem:

Theorem 1.0.1. The extended grid homology groups EGH(G) based on the double branched cover

construction are independent under the choice of the “cut lines”, the choice of the “new curves”,

and under the cyclic permutation grid move.

We develop a computer code to compute the hat-version of Heegaard Floer homology of the

double branched cover of S3 along a link in S3.

We organize this dissertation as follows:

In Chapter 2, we recall the background material needed to understand this homology groups. We

recall the preliminaries on Heegaard decompositions, (one-/ multi-pointed) Heegaard diagrams, and

the Heegaard Floer homology groups based on one-pointed and multi-pointed Heegaard diagrams.

Here we discuss the nice diagrams, nice moves, and the invariance of the stable version of the

homology under those nice moves.

In Chapter 3, we discuss the grid diagrams, the three grid moves: cyclic permutation, commu-

tation and stabilization, and the extended grid diagram.
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In Chapter 4, we describe a grid diagram based link invariant EGH(G) corresponding to the

stabilized hat-version of the Heegaard Floer homology for the double branched cover.

In Chapter 5, we present our main result, Theorem 1.0.1.

In Chapter 6, we present an algorithm we use to devise a computer code to calculate EGH(G).

This code is in the developmental stage as due to memory handling issues it can at the moment

handle only extended grids of size up to n = 6.

We thank Allan Lacy for his help with the Sage code.
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Chapter 2

Preliminaries

2.1 Heegaard Decompositions and Heegaard Diagrams

Let Y be a closed, oriented, connected 3-manifold. A genus g handlebody U is the 3-manifold

with boundary obtained by attaching g handles D2
i × [0, 1], i = 1, 2, . . . g, to the 3-ball via a

homeomorphism hi : D2
i × {0, 1} −→ ∂B3 along 2g disjoint disks in the boundary of the ball.

The boundary of the handlebody U is an oriented surface of genus g. We can glue together two

handlebodies of genus g along their common boundary. D2×{1
2} is a compressing disk in Y . More

generally, we have:

Definition 2.1.1. A compressing disk is an embedded disk D ⊂ Y with D ∩ ∂Y = ∂D such that

∂D is homotopically nontrivial in ∂Y .

Any 3-manifold with boundary is a handlebody if it can be cut down to a ball by cutting along

compressing disks, i.e., if there exists compressing disks Di ⊂ Y with ∂Di ⊂ Σg = ∂Y such that

Y − ∪gi=1Di
∼= B3, then Y is a handlebody.

Definition 2.1.2. (Heegaard decomposition for Y ) If Y = U0 ∪Σg U1 is obtained by gluing together

two handlebodies U0 and U1 of genus g along their common boundary Σg = ∂U0 = −∂U1, we say

that U1, U2 is a Heegaard decomposition for Y .

Theorem 2.1.1. (Existence of Heegaard decompositions [23]) Let Y be a closed, oriented, connected

3-manifold. Then Y admits a Heegaard decomposition.
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Proof. Every 3-manifold admits a triangulation. The union of vertices and edges (the 1-skeleton)

forms a graph in Y . Let U0 be a small neighborhood of this graph. We can think of this neigh-

borhood as obtained by taking a ball around each vertex and taking solid cylinders around each

edge. Consider a maximal tree T in the 1-skeleton. A neighborhood of T , B(T ), is a 3-ball. The

neighborhood of the edges not in T are attached to B(T ) as handles and the neighborhood of

the union of the vertices and edges is a handlebody U0. The closure of the complement of U0 is

a handlebody U1 as it consists of the tubular neighborhood of the barycentres of the 3-simplices

connected to the barycentres of the corresponding 2-simplices through handles. Also, the com-

plement of U0 in the faces of the triangulation are compressing disks for U1 (Figure 2.1). Since,

∂(U0) = ∂(Y − U0) = ∂(U1), the two handlebodies have the same genus. Therefore, Y = U0 ∪ U1

is a Heegaard decomposition for Y .

Figure 2.1: Compressing disk for U1.

From the above proof, it is clear that the same 3-manifold admits a lot of different Heegaard

decompositions.

Definition 2.1.3. (Unknotted Arc) An arc γ is said to be a properly embedded unknotted arc in a

3-ball B3 if there exists an embedded arc τ in S2 = ∂B3 and an embedded disc D ⊂ B3 such that

∂D = γ ∪ τ .

Definition 2.1.4. (Stabilization) Given a Heegaard decomposition Y = U0 ∪Σg U1 of genus g, we

can construct a genus (g+1) decomposition of Y by choosing two points in Σg and connecting those

two points by an unknotted arc γ in U1. Let U ′0 be the union of U0 and a tubular neighborhood N of

5



γ. Let U ′1 = U1 −N . Then Y = U ′0 ∪Σ′ U
′
1 is called the stabilization of Y . The inverse operation

is called destabilization.

Theorem 2.1.2. ([23]) Any two Heegaard decompositions for Y are related by a sequence of sta-

bilizations (and destabilizations).

Definition 2.1.5. (Attaching Circles) A complete set of attaching circles (γ1, . . . , γg) for a han-

dlebody U is a collection of closed embedded curves in Σg = ∂U such that the curves γi are dis-

joint from each other and bound disjoint embedded disks Dγi (called compressing disks) in U and

Σg − γ1 − · · · − γg is 2g-times punctured spheres.

In other words, boundary of the compressing disks are called attaching circles. We call these

circles attaching circles because we can build the handlebody U from Σg by attaching disks Dγi

along the attaching circles γi and then filling in by a ball.

Definition 2.1.6. (Heegaard Diagram [17, 18]) Let Y = U0 ∪Σg U1 be a genus g Heegaard decom-

position for Y . A compatible Heegaard diagram (Σg,α,β) is given by Σg together with a collection

of curves α1, . . . , αg, β1, . . . , βg with α = (α1, . . . , αg) a complete set of attaching circles for U0 and

β = (β1, . . . , βg) a complete set of attaching circles for U1 such that the α- and β- curves intersect

each other transversally.

Let α = (α1, . . . , αg) and β = (β1, . . . , βg) be two sets of attaching circles on a surface Σg.

Consider Σg × [0, 1] such that α circles are on Σg × {1} and β circles are on Σg × {0}. We can

construct a 3-manifold by attaching a 2-handle D2× [0, 1] along each αi and βj and then capping off

with two 3-handles. This shows how a Heegaard diagram determines a 3-manifold with a Heegaard

decomposition.

Clearly, there exists many Heegaard diagrams for Y . To transform one Heegaard diagram to

another, we can follow a sequence of so called Heegaard moves.

Definition 2.1.7. ([18]) Let (Σ,α,β) be a Heegaard diagram. There are three different kinds of

Heegaard diagram moves (Figure 2.2).

• Isotopy: A curve β1 in a Heegaard diagram is isotopic to a curve β2 if β2 is obtained by

isotoping β1 such that β2 remains transverse to the α-curves.
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• Handleslide of α1 over α2: Replace α1 by α′1, which is a simple closed curve disjoint from

α1, . . . , αg such that α′1, α1, and α2 bound an embedded pair-of-pants in Σ− α3 − · · · − αg (A

collection of disjoint curves α in a closed surface Σ is called a pair-of-pants decomposition of

Σ if every component of Σ−α is diffeomorphic to the 2-sphere minus three disjoint disks).

• Stabilization: It is obtained by taking connected sum of (Σ,α,β) with standard toric Hee-

gaard diagram for S3. The standard toric Heegaard diagram for S3 is obtained by gluing the

opposite edges of a square in a plane with one horizontal and one vertical line.

Figure 2.2: Heegaard moves on Heegaard diagrams.

Theorem 2.1.3. ([18]) • If two Heegaard diagrams differ by isotopy, handleslide or stabilization,

then the diagrams represent diffeomorphic 3-manifolds.

• Any two Heegaard diagrams which specify the same 3-manifold are diffeomorphic after a finite

sequence of Heegaard moves.

This suggests that a 3-manifold invariant can be defined by constructing an invariant of Hee-

gaard diagrams that is preserved under the Heegaard moves.
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2.2 Heegaard Floer Homology

In this section, we will review the invariant that was defined in [16, 17, 18]. The idea of the

definition of the Heegaard Floer homology comes from the Lagrangian Floer homology theory [7].

We briefly discuss symplectic manifolds and Lagrangian submanifolds.

Definition 2.2.1. Let X2n be a smooth, oriented, even-dimensional manifold and w ∈ Ω2(X) be

a smooth 2-form such that w is closed and non-degenerate, i.e. dw= 0 and wn>0. Then the pair

(X,w) is called a symplectic manifold and w is called a symplectic form.

Definition 2.2.2. A submanifold L ⊂ X2n of dimension n is a Lagrangian submanifold of (X,w)

if w|TL= 0.

Floer [7] defined a homology theory for a symplectic manifold and a pair of Lagrangian sub-

manifolds. The generators for this chain complex are the intersection points of the Lagrangian

submanifolds and the boundary maps count appropriate pseudo-holomorphic disks. Ozsváth and

Szabó [18] used the same idea to define Heegaard Floer homology groups.

Let (Σg,α,β) be a Heegaard diagram for a closed, oriented 3-manifold Y with |α| = |β| = g.

Consider the g-fold symmetric product Symg(Σg) = Σg × · · · × Σg/Sg, where Sg denotes the

symmetric group on g letters. In other words, Symg(Σg) consists of unordered g-tuples of points

in Σg, where the same points can appear more than one time. Note that the action of Sg on

Σg × · · · × Σg is not free along the diagonal consisting of (x1, . . . , xg), where there are repetition.

In addition, the symmetric product Symg(Σg) of a 2-dimensional surface Σg is a smooth manifold

(typically symmetric products are not manifolds) and a complex structure on Σg induces a complex

structure on Symg(Σg) [11]. We note that since αi’s are disjoint, α1 × · · · × αg is disjoint from the

diagonal, and we consider g-dimensional tori Tα = α1 × · · · × αg/Sg and Tβ = β1 × · · · × βg/Sg in

Symg(Σg), i.e, Tα consists of those g-tuples of points {x1, . . . , xg} for which xi ∈ αi for i = 1, . . . , g.

These tori are transverse to each other if all the α− and β−curves are.

Remark 2.2.1. ([11, 18]) Symg(Σg) is a symplectic manifold and the tori Tα and Tβ are La-

grangian submanifolds.
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Next, we fix a reference point z ∈ Σg−α−β so that we can introduce Spinc−structures. In [18],

it is shown that the choice of z induces a natural map from Tα ∩Tβ to the set of Spinc−structures

over Y , which induces a partition of Tα ∩ Tβ.

Consider a Morse function on Y compatible with the α and β curves. Then for each x =

{x1, x2, . . . , xg} ∈ Tα ∩ Tβ, there is a g-tuple of flow lines connecting the index 1 and index 2

critical points through xi. Also, there is a flow line connecting index 3 and index 0 critical point

via z. Taking tubular neighborhoods of these (g + 1) flowlines, we get a collection of (g + 1) balls,

outside of which the gradient vector field does not vanish. The gradient vector field can be extended

as a nowhere vanishing vector field over Y . The homology class of this nowhere vanishing vector

field, in the sense defined below, gives a Spinc structure over Y .

Definition 2.2.3. ([17]) Let v1 and v2 be two nowhere vanishing vector fields. We say that v1 is

homologous to v2 if there is a ball B in Y with the property that v1|Y −B is homotopic to v2|Y −B.

The above relation is an equivalence relation on the set of nowhere vanishing vector fields: It is

obviously reflexive and symmetric relation. Suppose v1 is homologous to v2 and v2 is homologous

to v3. Then there exists balls B1, B2 such that v1|Y −B1 is homotopic to v2|Y −B1 and v2|Y −B2

is homotopic to v3|Y − B2. If B1 and B2 are disjoint, then we can connect them by an arc and

take the tubular neighborhood N of the arc. Then we get a ball B = B1 ∪ N ∪ B2 such that v1

is homotopic to v3 outside B. If B1 intersects B2, then we can always shrink one of the balls and

make them disjoint.

Definition 2.2.4. ([17, 18]) We define the set of Spinc−structures over Y as nowhere vanishing

vector fields modulo this relation and denote this set by Spinc(Y ).

Theorem 2.2.1. ([17]) There is a one-to-one correspondence between Spinc(Y ) and H2(Y,Z).

We connect the ordinary Heegaard diagram with the above mentioned reference point z as

follows:

Definition 2.2.5. (Pointed Heegaard diagram [18]) Let (Σg,α,β) be a Heegaard diagram for Y.

We fix a reference point z ∈ Σ − α − β. The collection (Σg,α,β, z) is called a pointed Heegaard

diagram.
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Heegaard moves which are supported in a complement of z (for isotopies, the curves stay disjoint

from z, and for handleslides, the pair-of-pants does not contain z) are called pointed Heegaard moves

[18].

Proposition 2.2.1. ([18]) • Any two pointed Heegaard diagrams which describe the same 3-

manifold are diffeomorphic after a finite sequence of pointed Heegaard moves.

• For any 3-manifold (Y, s), s ∈Spinc(Y ), there exists a “strongly s−admissible” pointed Heegaard

diagram for Y .

• Any two “strongly s−admissible” pointed Heegaard diagrams for (Y, s) can be connected by a

finite sequence of pointed Heegaard moves, where all intermediate pointed Heegaard diagrams are

“strongly s−admissible”.

Now we describe briefly how a one-pointed Heegaard diagram gives the topological invariant

for the 3-manifold Y . Using certain constructions from Floer’s theory, we define a chain complex

CF∞(Y, s), where s ∈ Spinc(Y ). The chain group CF∞(Y, s) is freely generated by pairs of the

form [x, i], where x ∈ Tα ∩ Tβ representing the given Spinc−structure s, and i ∈ Z that tracks

the intersection number of the holomorphic disks with {z} × Symg−1(Σg). The boundary maps

∂∞ : CF∞(Y, s) −→ CF∞(Y, s) count suitable holomorphic disks in Symg(Σg), given by

∂∞[x, i] =
∑
y

∑
{φ∈π2(x,y)|µ(φ)=1}

#(M̂(φ))[y, i− nz(φ)],

where π2(x,y) denotes the set of homotopy classes of maps connecting x and y, µ(φ) is the

Maslov index, M̂(φ) denotes the 0-dimensional moduli space of holomorphic maps u from the unit

disk D2 to Symg(Σg) such that −i maps to x, i maps to y, u({z ∈ ∂D|Rez ≥ 0}) ⊂ Tα and

u({z ∈ ∂D|Rez ≤ 0}) ⊂ Tβ, and nz(φ) is the algebraic intersection number (nz(φ) = #φ−1({z} ×

Symg−1(Σg))). There are other versions of chain complexes CF−(Y, s), CF+(Y, s) and ĈF (Y, s)

that are obtained by a natural filtration on CF∞(Y, s) [18]. We denote the homology groups by

HF∞(Y, s), HF−(Y, s), HF+(Y, s), and ĤF (Y, s) of the chain complexes CF∞(Y, s), CF−(Y, s),

CF+(Y, s), and ĈF (Y, s) respectively.

We define a chain map U : CF∞(Y, s) −→ CF∞(Y, s) as

U [x, i] = [x, i− 1]
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and a map (H1(Y,Z)/Tors)⊗HF∞(Y, s) −→ HF∞(Y, s) that lowers the relative degree inHF∞(Y, s)

by one. These actions on HF∞(Y, s) induce actions on HF−(Y, s), HF+(Y, s), and ĤF (Y, s) and

make these homology groups as Z[U ]⊗ZΛ?(H1(Y,Z)/Tors)-modules. The seminal result of Ozsváth

and Szabó is the following theorem.

Theorem 2.2.2. (Theorem 1.1 in [18]) The homology groups HF∞(Y, s), HF−(Y, s), HF+(Y, s),

and ĤF (Y, s) are topological invariants of Y and s.

Because the groups were defined using a Heegaard diagram for Y , the proof requires showing

the invariance of the homology groups under the three pointed Heegaard moves. The proof of

the invariance uses ideas and methods from Lagrangian Floer homology, holomorphic disks and

holomorphic triangles [18].

2.3 Multi-pointed Heegaard Diagrams and Homology Groups

In this section, we present a generalization of pointed Heegaard diagram to multi-pointed Heegaard

diagram and the corresponding homology groups.

Definition 2.3.1. ([15]) A generalized Heegaard diagram for a 3-manifold Y is a triple (Σg,α,β),

where α and β are k-tuples of simple closed curves (|α| = |β| = k, k > g) such that each αi

(similarly βi) bounds a disk in the handlebody and cutting Σg along α (similarly β) gives disjoint

union of punctured spheres.

Definition 2.3.2. (Multi-pointed Heegaard diagrams [15]) Let (Σg, U0, U1) be a genus g Heegaard

decomposition for Y and let (Σg,α,β) be a corresponding generalized Heegaard diagram with |α| =

|β| = k . Choose w = {w1, w2, ..., wk−g+1} ⊂ Σ− α− β such that each component of Σ− α (and

Σ−β) contains a unique wi. Then (Σg,α,β,w) is a multi-pointed Heegaard diagram and the points

wi’s are called the basepoints of the Heegaard diagram.

Example 2.3.1. (i) Standard spherical Heegaard diagram for S3 [24]: Let α1 and β1 be two

simple closed curves in S2 intersecting each other transversely at two points. Let w1 and w2 be two

points in Σ−α1− β1 such that the components they are in do not have common boundaries. Then
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(Σ, α, β, w = {w1, w2}) is the standard two-pointed spherical Heegaard diagram for S3. Figure 2.3

shows the standard spherical Heegaard diagram for S3.

Figure 2.3: Standard spherical Heegaard diagram for S3.

(ii) Standard toric Heegaard diagram for S3 [24]: Consider a square in a plane with

n horizontal and n vertical lines. A torus is obtained by gluing together the top-bottom, left-right

sides of the square with n-α and n-β simple closed curves. Placing wi in each row and column such

that each row and column has exactly one basepoint, we obtain a multi-pointed Heegaard diagram

for S3 (Figure 2.4).

Figure 2.4: Standard toric Heegaard diagram for S3 with n = 6.

Let (Σg,α,β,w) be a multi-pointed Heegaard diagram for a closed, oriented 3-manifold Y with

|α| = |β| = k > g and |w| = k − g + 1. Consider the k-fold symmetric product Symk(Σg) =

12



Σg × · · · × Σg/Sk. Consider k-dimensional tori Tα = α1 × · · · × αk/Sk and Tβ = β1 × · · · × βk/Sk

in Symk(Σg).

Let ĈF (Σg,α,β,w) be the free Z/2-module generated by the points x = (x1, . . . , xk) in Tα∩Tβ

and the boundary maps ∂ : ĈF (Σg,α,β,w) −→ ĈF (Σg,α,β,w) are given by counting certain

holomorphic disks as follows:

∂(x) =
∑
y

∑
{φ∈π0

2(x,y)|µ(φ)=1}
#(M̂(φ))y,

where π0
2(x,y) denotes the set of homotopy classes of maps connecting x and y such that nwi(φ) =

0,∀i.

Theorem 2.3.1. ([18, 20]) The homology ĤF (Y ) of the chain complex ĈF (Σg,α,β,w) with k = g

is an invariant for the 3-manifold Y . In general, for a rational homology 3-sphere,

H∗(ĈF (Σg,α,β,w)) ∼= ĤF (Y )⊗H∗(T k−g),

where H∗(T
k−g) is the singular homology of the (k− g)-dimensional torus with coefficients in Z/2.

2.4 Nice Heegaard Diagrams and Nice Moves

Even though Heegaard Floer theory is a powerful tool in the study of 3- and 4-dimensional topol-

ogy, it is extremely difficult to compute these invariants directly as it is hard to calculate #(M̂(φ))

for a general domain φ. Calculations have been done for many families of 3-manifolds using tech-

niques like surgery triangle for the Heegaard Floer homology [18]. Sarkar and Wang [22] gave a

combinatorial algorithm to compute Heegaard Floer homology groups using certain (multi) pointed

Heegaard diagrams, which they called “nice” Heegaard diagrams. They proved that every closed,

oriented 3-manifold admits a “nice” Heegaard diagram and any (multi) pointed diagram can be

changed to a “nice” Heegaard diagram by a sequence of isotopies and handleslides (Theorem 1.2

in [22]). Using Sarkar and Wang’s idea of “nice” Heegaard diagrams, Ozsváth, Stipsicz and Szabó

[15] constructed a class of Heegaard diagrams using pair-of-pants decompositions to give a com-

binatorial proof for the invariance of the stable Heegaard Floer homology, which is free from the

theory of pseudo-holomorphic disks.
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Definition 2.4.1. ([15, 22]) Let (Σ,α,β,w) be a multi-pointed Heegaard diagram. An elementary

domain is a connected component of Σ−α−β. An elementary domain without a basepoint is called

nice if it is either a bigon or a rectangle.

We discuss the three moves, which are the modification of the pointed Heegaard moves. Before

that we present the definition for a nice embedded arc.

Definition 2.4.2. (Definition 3.3 in [15]) Suppose that D = (Σ,α,β,w) is a nice diagram. An

embedded arc γ = (γ(t))t∈[0,1] is nice if

i) γ(0) is on an α-curve and γ(1) is in the interior of a bigon or an elementary domain Df

containing a basepoint.

ii) the elementary domain D1 containing γ(0) on its boundary is either a bigon or it contains a

basepoint and it does not contain any other γ(t), for small t.

iii) γ−γ(0) is disjoint from all the α-curves, γ is transverse to α at γ(0), and γ intersects β-curves

transversally.

iv) for any elementary domain D, at most one component of D − γ is not a bigon or a rectangle,

and if there is such a component, it contains a basepoint.

v) the component of Df − γ containing γ(1) is either a bigon, or it contains a basepoint.

vi) if D1 = Df , then we assume that the component of D1 − γ containing γ(1) also contains a

basepoint.

We discuss the three nice moves [15].

• Nice isotopy: An isotopy along an embedded nice arc is called a nice isotopy (Figure 2.5).

• Nice handleslide: The result of sliding α1 over α2 along an embedded arc η is a pair of

curves (α′1, α2), where α′1 is the connected sum of α1 and α2 along η (Figure 2.6). η defines

a nice handleslide if the interior of η lies in a single rectangle and η(0) lies on the boundary

of an elementary domain containing a basepoint (Figure 2.6).
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Figure 2.5: Nice isotopy.

Figure 2.6: Nice handleslide.

• Nice stabilization: There are two types of stabilizations of the multi-pointed Heegaard

diagram: Type-b stabilization and Type-g stabilization. A type-b stabilization is the connected

sum of (Σ,α,β,w) with the standard spherical Heegaard diagram for S3 (Figure 2.7). A

type-b stabilization does not change the Heegaard surface Σ. It increases the number of α-

curves, β-curves and the number of basepoints. A type-g stabilization is the connected sum

of (Σ,α,β,w) with the standard one-pointed toric Heegaard diagram for S3 (Figure 2.8). A

type-g stabilization increases the genus of the surface Σ and the number of α- and β-curves.

It does not change the number of basepoints.

A nice move will mean any one of the above three moves. The following theorem gives the

invariance of the nice multi-pointed Heegaard diagrams under the nice moves.

Theorem 2.4.1. (Theorem 3.8 in [15]) Suppose D′ is obtained from a nice multi-pointed Heegaard

diagram D by a nice move. Then D′ is a nice multi-pointed Heegaard diagram.
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Figure 2.7: Type-b Stabilization.

The next definition names the condition on two nice diagrams of the same underlying manifold

that are connected by nice moves.

Definition 2.4.3. ([15]) Two nice diagrams D′ and D′′ of a 3-manifold are called “nicely connected”

if there is a sequence of nice diagrams (Di)ni=1 such that D1 = D′ and Dn = D′′ and the consecutive

Di’s differ by a nice move.

Definition 2.4.4. ([15]) Let Y be a 3-manifold with a Heegaard decomposition such that the two

handlebodies are given by pair-of-pants decompositions α and β of the Heegaard surface Σ. The

triple (Σ,α,β) is called a pair-of-pants generalized Heegaard diagram or a pair-of-pants diagram

for Y. If all the α and β-curves are homological nontrivial in H1(Σ,Z/2Z), then we call the pair-

of-pants diagram an essential pair-of-pants diagram for Y .

In [15], Ozsváth, Stipsicz and Szabó provided an algorithm to change any essential pair-of-pants

diagram for a 3-manifold, not containing (S1×S2)-summand, to a nice diagram. This nice Heegaard

diagram for Y is said to be derived from the essential pair-of-pants diagram. The following theorem

shows that nice diagrams for a fixed 3-manifold are connected by nice moves.
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Figure 2.8: Type-g Stabilization.

Theorem 2.4.2. ([15]) Any two multi-pointed nice Heegaard diagrams for Y , not containing (S1×

S2)-summand, are nicely connected.

Based on these diagrams, we present a quick review of the combinatorial Heegaard Floer ho-

mology that uses only combinatorial methods and is independent of the theory of holomorphic

disks.

2.5 Combinatorial Heegaard Floer Homology Groups

Let D = (Σg,α,β,w) be a nice multi-pointed Heegaard diagram for a closed, oriented 3-manifold

Y with |α| = |β| = k > g and |w| = k − g + 1. Let C̃F (D) be the Z/2-vector space generated by

the set S of intersection points x = {x1, . . . , xk} ∈ Σ, where every α- and β- curve contains exactly

one point xi.
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Let x,y ∈ C̃F (D). We define the boundary map

∂̃D : C̃F (D) −→ C̃F (D)

as follows:

∂̃D(x) =
∑
y∈S
|Mx,y|.y,

where

Mx,y =


∅ if x = y or x,y differ in at least 3 coordinates

Empty bigons if x,y differ in exactly one coordinate xi 6= yi and xk = yk, ∀k 6= i

Empty rectangles if x,y differ in exactly two coordinates xi 6= yi, xj 6= yj and xk = yk,∀k 6= i, j

and |Mx,y| is the cardinality of the set Mx,y (mod 2).

Theorem 2.5.1. ([15]) (C̃F (D), ∂̃D) is a chain complex.

The combinatorial Heegaard Floer homology is the homology group H̃F (D) = H∗(C̃F (D), ∂̃D)

of the chain complex (C̃F (D), ∂̃D).

Theorem 2.5.2. (Theorem 7.1 in [15]) Suppose a nice diagram D2 is obtained from a nice diagram

D1 either by a nice isotopy, a nice handleslide or a nice type-g stabilization, then H̃F (D1) ∼=

H̃F (D2). If D2 is obtained from D1 by a nice type-b stabilization, then H̃F (D2) ∼= H̃F (D1) ⊗

(Z/2 ⊕ Z/2).

We prepare the ground for the other main result of this section. With that purpose, we first

introduce a definition from algebra.

Definition 2.5.1. ([15]) Two pairs (V1, w1), (V2, w2) of Z/2 vector spaces V1 and V2 with w1 ≥

w2 (wi ∈ Z) are said to be equivalent if V1 = V2 ⊗ (Z/2 ⊕ Z/2)⊗(w1−w2). The equivalence class of

the pair (V,w) is denoted by [V,w].

Let Y be a closed, oriented 3-manifold. We first assume that Y contains no (S1×S2)− summand.

Let D1 and D2 be two multi-pointed nice Heegaard diagrams for Y with basepoints b(D1) and b(D2)
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respectively, and their corresponding homologies be H̃F (D1) and H̃F (D2). Then, by Theorem 2.4.2,

Theorem 2.5.2, [H̃F (D1), b(D1)] = [H̃F (D2), b(D2)]. Hence, the following definition is well-defined.

Definition 2.5.2. (Definition 8.1 in [15]) Let Y be a 3-manifold, which contains no (S1 × S2)−

summand. Let (Σ,α,β) be an essential pair-of-pants diagram for Y and let D be a multi-pointed

nice Heegaard diagram for Y with basepoints b(D) derived from (Σ,α,β). We define the stable

Heegaard Floer group ĤF st(Y ) as the equivalence class [H̃F (D), b(D)].

We consider a more general closed, oriented 3-manifold. By Kneser-Milnor theorem, Y can be

decomposed as a connected sum of another 3-manifold Y ′, which contains no (S1×S2)−summand,

with n copies of (S1 × S2). Also, by the Kneser-Milnor theorem, Y determines n and Y ′ uniquely.

Hence, ĤF st(Y ) will depend only on ĤF st(Y
′) and n. This gives the validity of the following

definition and proves the following theorem.

Definition 2.5.3. (Definition 8.1 in [15]) Let Y = Y ′#n(S1×S2), where Y ′ does not contain any

(S1 × S2)−summand. Let D be a multi-pointed nice Heegaard diagram for Y ′ with basepoints b(D)

derived from an essential pair-of-pants diagram for Y ′. Then the stable Heegaard Floer homology

ĤF st(Y ) is defined as [H̃F (D)⊗ (Z/2 ⊕ Z/2)n, b(D)].

The main result of [15] is a combinatorial proof of:

Theorem 2.5.3. ([15]) The stable Heegaard Floer homology group ĤF st(Y ) is a diffeomorphism

invariant of Y .
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Chapter 3

Grid Diagrams

In this chapter we give a brief overview of the planar grid diagrams. Planar grid diagrams are

combinatorial representations of knots and links in S3 [12, 13, 14]. In the late 19th century, Karl

Hermann Brunn used this technique to study knots and links [2]. Later grid diagrams were used

by Dynnikov to recognize unknots [6]. This chapter describes the basic construction of the grid

diagrams for a knot or link as it appears in the combinatorial knot Floer homology [12], and various

moves in the grid diagram [4]. Details can be found in [14].

3.1 Planar Grid Diagrams

Definition 3.1.1. ([12]) A planar grid diagram Γ is a n×n square grid in the plane, together with

a collection of n X’s and n O’s in the small squares in the grid satisfying the following:

• Each row contains exactly one X and exactly one O.

• Each column contains exactly one X and exactly one O.

• No square contains both an X and an O.

Here n is called the grid number of the grid diagram Γ. We can obtain a “toroidal grid diagram”

by identifying the left and right segments, top and bottom segments of the grid.

One can obtain a link L in S3 from a grid diagram by joining the X’s and O’s in each column

and row by vertical and horizontal line segments such that at every point of intersection, the vertical
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segments always cross over the horizontal segments. Figure 3.1 shows a planar grid diagram for

the Hopf link with n = 4.

Figure 3.1: Planar grid diagram for Hopf link.

Lemma 3.1.1. ([1, 3]) Every link in S3 admits a grid diagram.

Proof. We take an arbitrary projection of L. We can isotope L so that the projection has only

horizontal and vertical segments. We need to make sure that at each of the crossings the vertical

segments cross over the horizontal segments. Any horizontal over-crossing can be changed into

undercrossing by isotoping the vertical and the horizontal segments as shown in Figure 3.2. We can

move the different horizontal (and vertical) segments so that they are not collinear, then denote

the turns by X’s and O’s and, isotoping further if needed to insure that at most two corners are on

any horizontal/vertical line, we obtain a grid diagram for L.

Figure 3.2: Modifying horizontal over-crossing to under-crossing.
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3.2 Grid Moves

There are three elementary moves on grid diagrams that are enough to go between any two grid

diagrams for the same link, a result due to Cromwell [4]. They are cyclic permutation, commutation

and stabilization.

• Cyclic Permutation: One can obtain a new diagram G′ by cyclically permuting the rows

and the columns of a planar grid diagram G (Figure 3.3).

Figure 3.3: Cyclic permutation in a Hopf link by moving the top row to
the bottom row. In S3 this amounts to isotoping the top arc to the bottom
by swinging it through the upper half space.

• Commutation: Consider two consecutive columns in a grid diagram. There are two ways

an X and an O in one column can be joined by a vertical line in the associated torus. If the

segment between X and O from the adjacent column is contained in one of those two arcs,

then the commutation move allows us to switch the two columns (Figure 3.4). Commutation

can be alternatively done by the analogous move on two rows. Commutation move results in

either planar isotopy (Figure 3.5), Reidemeister second move (Figure 3.6) or a Reidemeister

third move (Figure 3.7).

• Stabilization: A stabilization of an n × n grid G is a (n + 1) × (n + 1) grid diagram G′

obtained by splitting a row and a column of G in two. A way to get G′ is to erase the points

from the row and column containing the point along which we want to stabilize. Then split

the empty row and empty column in two by adding a horizontal and a vertical line. We
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Figure 3.4: Commutation move.

Figure 3.5: Commutation move resulting in planar isotopy. Here we do
commutation of the two columns.

can stabilize at any corner point (Figure 3.8). There are four different ways to stabilize a

particular corner point and to place new points in the newly formed cells of G′. Figure 3.9

shows different stabilizations at the X corner point in the down-left position in the grid. The

different stabilizations are northwest NW, northeast NE, southwest SW and southeast SE

positions. Stabilization changes the projection of the link either by a planar isotopy or by the

first Reidemeister move (Figure 3.10). The inverse of stabilization is called destabilization.

Theorem 3.2.1. ([4, 6]) Let G1 and G2 be two grid diagrams representing two isotopic links.

Then G1 can be obtained from G2 by a finite sequence of grid moves.
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Figure 3.6: Commutation move on the two columns resulting in second
Reidemeister move in the grid diagram.

Figure 3.7: Commutation move on the two rows resulting in third Reide-
meister move in the grid diagram.

Figure 3.8: The four different positions for X at the corner.
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Figure 3.9: Stabilization Move.

Figure 3.10: First Reidemeister move in the grid diagram.
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3.3 Extended Grid Diagrams

Consider a link L in S3. Take a (n × n)-toroidal grid diagram for L in S3. We call the vertical

circles α-curves, the horizontal circles β-curves, and the O’s and X’s basepoints. Each annular

region between two α-curves contains two basepoints, O and X. In each such annular region, we

will insert a new α-circle parallel to the old α-circles such that it separates the two basepoints. We

introduce similar β-circles to obtain a new type of grid diagram, called an extended grid diagram

with a (2n×2n)− grid, where each row and each column contain exactly one basepoint (Figure 3.11).

Figure 3.11: Extended grid diagram for the unknot.

By adding the new curves in T2, the grid diagram for L is changed into a multi-pointed Heegaard

diagram for S3 as each component of T2 −α and T2 − β contains exactly one basepoint.

Remark 3.3.1. We made a choice of the new curves in the construction of the extended grid

diagram. There are, up to isotopy relative to base points, exactly two choices for each new curve.
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Chapter 4

Extended Grid Homology

In this chapter, we give an exposition of the construction of the combinatorial hat-version of Hee-

gaard Floer homology based on the double branched cover construction as introduced in [24].

4.1 Adapted Diagrams

Consider a link L in S3. We will study the double branched cover Y of S3 branched along L from

the perspective of the extended grid presentation for L.

Consider an extended toric grid diagram for L. We cut the extended toric grid diagram along

α0 and β0 to obtain a planar extended grid diagram G. Join the basepoints X and O in the annular

region between two old α-curves by arcs called cut lines such that the arcs do not intersect β0, and

they do not intersect the intersection points of α and β (Figure 4.1, Figure 4.2).

Figure 4.1: Extended grid diagram for the unknot.
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Figure 4.2: An extended grid diagram for the trefoil with cut lines con-
necting the basepoints.

We will use these cut lines to understand the lifts of the new curves in G to the double branched

cover and the construction of the chain complex of the extended grid homology EGH(G).

Theorem 4.1.1. ([24]) The pull-back of the extended grid diagram to the double branched cover Y

gives a Heegaard diagram D for Y with only octagons and rectangles as elementary domains. We

get a nice Heegaard diagram for Y with a basepoint in each octagon, and the basepoints are exactly

corresponding to O’s and X’s.

Proof. Let S3 = H0 ∪H1, where H0 and H1 are two solid tori glued along their common bound-

ary T2. Let Σg be the branched cover of T2 branched along the basepoints. Using the Euler

characteristics and facts from covering maps,

χ(Σg) = 2χ(T2)− 2n, (4.1)

which implies g = n + 1. The old α-circle (and β-circle) that bounds a disk in the solid torus H0

(and H1) lifts to two disjoint copies of circles in the 3-manifold, bounding disks in the handlebody.

A Seifert surface for a knot intersects the cut line, hence, the new α-circle intersecting the cut line
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joining the two basepoints X and O in a single point lifts to a single circle bounding a disk in the

handlebody (Figure 4.3). Hence, the double branched cover of the solid torus is a handlebody of

genus (n+ 1).

Figure 4.3: Lift of old α-circles and new α-circles. The green line represents
the cut line. The segment L′ ⊂ L joining X and O represented by the black
line lies inside the solid torus and the yellow shaded region representing
the Seifert surface for the knot lifts to two copies. Here two copies of the
α-curves are represented by + and − in the lift.

Hence, we get 3n disjoint α-curves (similarly β-curves) in the genus (n + 1) surface Σg. Each

T2 − α component in the extended grid lifts to a pair-of-pants diagram each containing a single

basepoint. Hence, the 3n α-curves (similarly 3n β-curves) give a pair-of-pants decomposition of

the surface Σg, which in turn gives a pair-of-pants diagram D for Y . Since all the α- (similarly β-)

curves are homologically essential in the torus, all are homologically essential in D. An elementary

domain in the toric diagram lifts to an elementary domain in D. An elementary domain in D either

covers a rectangle in the extended grid diagram which does not contain a basepoint or it covers a

rectangle in the extended grid diagram containing a basepoint. In the former case, the elementary

domain in D is a rectangle and in the latter case, the elementary domain in D is an octagon (Figure
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4.4). We get a nice diagram as each pair-of-pants component contains a unique octagon containing

a base-point (Figure 4.4).

Figure 4.4: Elementary domains in the toric diagram and its lift.

Definition 4.1.1. An Heegaard diagram D for Y , which is a double branched cover of S3 branched

along a link L, that is obtained by using the double branched cover as above is called an adapted

diagram.

We present a detailed pictorial description of an adapted diagram D for the double branched

cover Y of S3 branched along L ⊂ S3. Consider an extended grid diagram G for L. Take two

copies of G with cut lines, and call them G+ and G−. Then D can be thought of as union of G+

and G− glued across the cut lines (Figure 4.5) satisfying the following conditions:

• any curve which meets a cut line in G+, comes out in G− and vice versa.

• each new α curve in G lifts to a simple closed curve in G+ ∪G−.

• each new β curve in G lifts to a simple closed curve in G+ ∪G−.

• each old α curve in G lifts to two disjoint α curves, α1 and α2 in G+ ∪G−.

• each old β curve in G lifts to two disjoint β curves, β1 and β2 in G+ ∪G−.
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Figure 4.5: A pictorial representation of an adapted diagram for the double
branched cover. The thick lines represent old curves, while the thin lines
represent new curves. When a curve in G+ meets the cut line joining X
and O, it comes out from the other side of the cut line in G− and vice
versa.

4.2 The Chain Complex EGC(G)

4.2.1 The Generators of EGC(G)

We discuss the generators for the chain complex EGC(G). To each intersection point p of the α-

and β- curves in the extended grid, we associate p+ and p−, denoting the two corresponding points

in G+ and G−.

Definition 4.2.1. The set of generators S(G) for the chain complex EGC(G) is the set of unordered

3n-tuples x = {xkij} of intersection points such that

• xij is an intersection point βi ∩ αj in the extended grid and k ∈ {+,−}.

• every new α− and β−curve in the grid admits exactly one coordinate of x.

• every old α− and β−curve in the grid admits exactly two coordinates of x.

• if two coordinates of x are on the same old α−curve, then they have opposite signs.
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• if x
kij
ij and xkitit are two coordinates of x on βi, then

kit = (−1)(Nxijxit+1)kij,

where Nxijxit is the number of intersection of the cut lines with βi in between xij and xit.

We note that both x+
ij and x−ij can appear in x if both βi and αj are old curves and xij is the

only intersection point on both of those old curves in the extended grid.

All the conditions together ensure that there are 3n intersection points from 3n α and β curves

such that each α− and β−curve intersects exactly once. Each x = {xkij} ∈ Tα ∩ Tβ corresponds

to the intersection points on G+ ∪ G−, with x+
ij belonging to G+ and x−ij belonging to G−. Since

the inverse image of a new curve under the branched cover map is a single new curve, we get only

one-coordinate of x on the new curve, either in G+ or in G−. The last two conditions for the

generators guarantee that the two entries from the same old curve are on different components

of the inverse image of the old curve in the extended grid (see the two golden dots and the two

green dots in Figure 4.6). Hence, the set of intersection points Tα ∩ Tβ of the adapted diagram

D = G+ ∪G− for Y is in one-to-one correspondence with the set of generators S(G) for the chain

group EGC(G) .

Remark 4.2.1. We can give additive notation for the relations above if we put k = 0 for - and

k = 1 for + which we will use later. The last condition for the generators can then be written as:

for any two coordinates x
kij
ij and xkitit of x on βi, kit = (kij +Nxijxit + 1) mod 2.

4.2.2 The Differential

We define a differential ∂′ : EGC(G) −→ EGC(G) by

∂′(x) =
∑

y∈S(G)

#recto(x, y).y (4.2)

where x ∈ S(G), recto(x, y) denotes the set of empty rectangles (rectangles not containing any

basepoint and not containing any coordinate of x,y in the interior or in the boundary) from x to

y, and #recto(x, y) denotes the cardinality of that set mod 2.
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Figure 4.6: Figure showing generators in the lift.

We discuss possible types of rectangles in the torus. recto(x, y) is empty if x and y differ in

more than two coordinates. Suppose now that x and y differ at two coordinates, where the

coordinates are (x
kij
ij , x

kts
ts ) and (y

ktj
tj , y

kis
is ). If the four points (xij , yis, xts, ytj) are not all distinct,

then recto(x, y) = ∅. If the four points (xij , yis, xts, ytj) are all distinct, then there are four

rectangles R1, R2, R3 and R4 in the extended grid connecting them (as shown by A, B, C and D

in Figure 4.7).

We will first discuss the first type of rectangle as shown in Figure 4.7 - type A. In order for a

rectangle of type A in the grid to lift to a rectangle in the double cover, the following conditions

need to hold true:

• kis = (−1)Nxijyiskij , kis = (−1)Nyisxtskts, ktj = (−1)Nxijytj kij , ktj = (−1)Nytjxtskts

• the rectangle does not contain any basepoint.

• when a cut line connecting two basepoints partitions a rectangle, then each of the parts gets

an opposite sign.
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Figure 4.7: Different squares in the extended grid diagram.

• if there is a coordinate xmn = ymn that lies in the rectangle (including the boundary of the

rectangle), then the sign of xmn is opposite to the sign of the smaller domain it sits in.

The first condition ensures that all the corner points of a rectangle are compatible with each other,

i.e. that a rectangle in the extended grid is the projection of the rectangle in Σg ⊂ Y . The

third condition implies that if a cut line partitions a rectangle, which is in G+, then the portion

of the rectangle after meeting the cut line comes out from G− and vice versa (Figure 4.8). All

these conditions together ensure that the rectangle in the lift contains no basepoint and no other

coordinates of x and y.

We next discuss rectangles of type C and D from Figure 4.7 . The last three conditions required

for rectangles of type A remain the same for other types. In case of type C, the conditions for an

empty rectangle are the following:

• ktj = (−1)Nxijytj kij , kis = (−1)Nyisxtskts

• kis = (−1)Nyisxij kij , if xij and yis are on the old β-curve.
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Figure 4.8: Rectangle of Type A. Figure showing a rectangle from x to y,
where x is represented by black dot and y is denoted by grey dot. Here
the line joining the basepoints separates the rectangle.

• kis = (−1)(Nyisxij +1)kij , if xij and yis are on the new β-curve.

• ktj = (−1)Nytjxtskts, if xts and ytj are on the old β-curve.

• ktj = (−1)(Nytjxts+1)kts, if xts and ytj are on the new β-curve.

The last condition has this form because there are odd number of intersections of the cut lines

with the new curves. There is an odd number of intersections of the cut lines with the new curves

because a new curve in the extended grid lifts to one single curve. Hence, if there are N cut lines

between yis and xij , then there will be N + 1 (mod 2) cut lines between xij and yis. Figure 4.9

shows a rectangle of type C.

In case D, the conditions for an empty rectangle are the following:

• kis = (−1)Nxijyiskij , ktj = (−1)Nytjxtskts

• ktj = (−1)Nytjxij kij , if xij and ytj are on the old α-curve.

• ktj = (−1)(Nytjxij +1)kij , if xij and ytj are on the new α-curve.

• kis = (−1)Nxtsyiskts, if xts and yis are on the old α-curve.

• kis = (−1)(Nxtsyis+1)kts, if xts and yis are on the new α-curve.
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Figure 4.9: Rectangle of Type C. Figure showing a rectangle from x to y,
where x is represented by black dot and y is denoted by grey dot. Here
the line joining the basepoints separates the rectangle.

Figure 4.10 shows a rectangle of type D.

Figure 4.10: Rectangle of Type D. Figure showing a rectangle from x to
y, where x is represented by black dot and y is denoted by grey dot.

In case B, the conditions for an empty rectangle are the following:

• kis = (−1)Nxijyiskij , if xij and yis are on the old β-curve.

• kis = (−1)(Nxijyis+1)kij , if xij and yis are on the new β-curve.

• ktj = (−1)Nxtsytj kts, if xts and ytj are on the old β-curve.

• ktj = (−1)(Nxtsytj +1)kts, if xts and ytj are on the new β-curve.
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• ktj = (−1)Nxijytj kij , if xij and ytj are on the old α-curve.

• ktj = (−1)(Nxijytj +1)kij , if xij and ytj are on the new α-curve.

• kis = (−1)Nyisxtskts, if xts and yis are on the old α-curve.

• kis = (−1)(Nyisxts+1)kts, if xts and yis are on the new α-curve.

Figure 4.11 shows a rectangle of type B.

Figure 4.11: Rectangle of Type B. Figure showing a rectangle from x to
y, where x is represented by black dot and y is denoted by grey dot.

This gives a combinatorial way to count empty rectangles in the lift. We will describe an

algorithm that encodes the combinatorics in chapter 6.

Proposition 4.2.1. The map ∂′ : EGC(G) −→ EGC(G) satisfies ∂
′ ◦ ∂′ = 0. The extended grid

homology EGH(G) is the homology of the chain complex (EGC(G), ∂
′
).

Proof. The proof is based on analyzing how empty rectangles interact with each other (See Lemma

4.4.6 in [14]). We can write

∂
′ ◦ ∂′(x) =

∑
z∈S(G)

∑
{τ∈π(x,z)|z∩Int(τ)=∅,τ∩X=∅,τ∩O=∅}

N(τ)z (4.3)

where N(τ) is the number of ways τ can be decomposed as two empty rectangles. There can be

atmost four points where x and z could differ as a rectangle switches two points. We consider three

cases.
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Case 1: x − (x ∩ z) contains four distinct points. In this case, τ consists of two disjoint

rectangles r1 and r2. There are exactly two ways to decompose τ , first r1 and then r2 or first r2

and then r1 (Figure 4.12). Hence, N(τ) = 2.

Figure 4.12: Case 1: The domain τ as two disjoint rectangles.

Case 2: x − (x ∩ z) contains three distinct points. In this case, τ has six corners, five 90◦

and one 270◦. One can decompose τ in two different ways by decomposing τ along the 270◦ corner

(Figure 4.13). Hence, N(τ) = 2.

Figure 4.13: Case 2: Two ways of decomposing τ .

Case 3: x− (x∩ z) contains no points. This case does not exist as τ will be an annulus in the

extended grid and it will contain a basepoint.

Hence, we have ∂
′ ◦ ∂′ = 0.

Proposition 4.2.2. EGH(G) is the stabilized hat-version of Heegaard Floer homology group of

the double branched cover using the adapted diagram D, i.e., EGH(G) = ĤF st(YL), where Y is

the double branched cover of S3 branched along a link L ∈ S3.

Proof. We need to show that the map ∂′ is equal to the boundary map ∂ of the chain complex

of the stabilized hat-version of Heegaard Floer homology group of the double branched cover of

S3 along a link L. From Theorem 2.5.1 we know that ∂ can be computed by counting the empty

bigons and rectangles in a Heegaard diagram D for a 3-manifold Y . In our case, adapted diagram
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D contains only rectangles and octagons and all octagons contain a basepoint. We need to show

that every empty rectangle in the lift is a lift of an empty rectangle downstairs, i.e. it projects

injectively to an empty rectangle in the extended grid.

Let R be an empty rectangle in D with four corner points a1, a2, a3, a4. Suppose that the branched

covering map is not injective on the side of the rectangle connecting a1 and a2 along an α-curve

αi, then the rectangle in the extended grid might overlap. Hence, the whole αi is used to join a1

to a2. However, that would imply that the image of the elementary domain in the extended grid

contains a basepoint and hence would contradict the emptyness of R.

4.2.3 Relative Grading

Let (Σg,α,β,w) be a nice multi-pointed Heegaard diagram.

Definition 4.2.2. A domain D is a formal linear combination D =
∑

i niDi of the elementary

domains Di, where ni is the multiplicity of Di in D.

Given z ∈ (Σg − α − β), the local multiplicity nz(D) of D at z is the multiplicity of the

elementary domain Di containing z in D. We define nw(D) =
∑

i nwi(D).

Definition 4.2.3. Let x,y be two generators in Tα ∩Tβ. A domain connecting x to y is a formal

linear combination of elementary domains such that the boundary of D consists of an union of

sequence of α and β curves, ∂(∂D ∩α) = y − x and ∂(∂D ∩ β) = x− y.

In [9], Lipshitz gave a formula to compute the Euler measure for a domain as well as the Maslov

index. For any domain D,

e(D) = χ(D)− K

4
+
L

4
, (4.4)

where χ(D) is the Euler characteristics of the domain, K is the number of acute (convex) corners

in D, and L is the number of obtuse (concave) corners in D. We note that if Di is an elementary

domain which is a 2n-gon, this corresponds to defining e(Di) as 1− n
2

and extending linearly to all

domains (linear combinations of elementary domains) with nwi = 0, i = 1, 2, . . . , k − g + 1. Then

e(D) is the Euler measure of D.
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Definition 4.2.4. ([15]) Suppose D be a domain connecting two generators x and y. Then the

point measure p(D) of D is the sum of pxi(D) and pyj (D) for each x (and y) coordinate xi (and

yj), where pxi(D) (and pyj (D)) is the average of the multiplicities of the four domains that meet at

xi (and yj).

The Maslov index µ(D) of a domain D is the sum of the Euler measure e(D) and the point

measure p(D).

µ(D) = e(D) + p(D) (4.5)

Note that the Maslov index of the domain is additive. The Maslov index of the domain induces a

relative grading on the set of generators S(G):

µ(x,y) = µ(D) (4.6)

for a domain D connecting x to y.

Definition 4.2.5. Let x,y be two generators in S(G). If there is a rectangle D connecting x and

y, the relative grading between x and y satisfies

µ(x,y) = 1. (4.7)

We choose a generator x0, where x0 has only one intersection point of the old α and old β

curves in the extended grid and the intersection points in the new curves lifts to the positive region

in the lift.

We define µ(x0) = 0 and for any y ∈ S(G), we define the Z grading as

µx0(y) = µ(x0, y) (4.8)

Theorem 4.2.1. (EGC(G), ∂
′
) is a chain complex and the differential ∂

′
changes the Z grading

by one. EGC(G) =
⊕

µx0∈Z
EGCµx0 (G), where µx0 is the Z grading.
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Chapter 5

Main Results

5.1 Invariance of EGH under Choice of Cut Lines

We show combinatorially that the extended grid homology for a double branched cover of S3

branched along a link L ⊂ S3 is independent of the choice of the lines joining X and O. We call

these lines joining basepoints cut lines. We will choose the cut lines to be straight lines coming out

from the top basepoint in the extended grid, going straight down to the row containing the lower

basepoint in that column of the original grid, and then turning left (or right) depending on the

position of the lower basepoint (Figure 5.1). We call these cut lines Type-1 cut lines. We could

choose the cut lines differently as shown in Figure 5.2 by starting from the topmost basepoint in

the extended grid in between two old α-curves and instead of going straight down, turning left or

right, depending on the location of the lower basepoint that lies in between the two old α-curves

and then coming down straight to the second basepoint. We call these Type-2 cut lines.

Let G be an extended grid diagram for a link with Type-1 cut lines and G′ be another extended

grid diagram for the same link with Type-2 cut lines. Let G̃ and G̃′ be the Heegaard diagrams for

the 3-manifold obtained from the lifts of the extended grid diagrams G and G′ respectively.

Theorem 5.1.1. If G and G′ be extended grid diagrams of a link L in S3 branched along L,

where G and G′ have type-1 and type-2 cut lines respectively, then there is an isomorphism between

EGH(G) and EGH(G′).
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Figure 5.1: Extended grid diagram for the
unknot with Type-1 cut lines.

Figure 5.2: Extended grid diagram for the
unknot with Type-2 cut lines.

To prove Theorem 5.1.1, we define a map φ1 : EGC(G) −→ EGC(G′) by φ1(x) = φ1({xkij}) =

{xφij(k)
ij }, where

φij(k) =


k if N1 = N2,

k + 1(mod 2) if N1 6= N2,

where N1 = the number of intersection points of βi with the cut lines that lie between α0 ∩ βi and

αj ∩βi in G, N2 = the number of intersection points of βi with the cut lines that lie between α0∩βi

and αj ∩ βi in G′, and for the generators {xkij} we refer to Remark 4.2.1.

Lemma 5.1.1. The map φ1 is well-defined.

Proof. By well-defined we mean that φ1 maps generators to generators. For k = 0 and 1 both, i.e.,

xij is the intersection of two old curves in the lift, it is clear that N1 = N2.

The map φ1 keeps the position of the coordinates of the generators, the only change is in the

sign of the exponent. The change in sign occurs in between the old α−curves as the cut lines

only change between two old α−curves (Figure 5.3). From definition 4.2.1, it is clear that the first

four conditions hold true. We only need to show the last condition, i.e., on an old β-curve, the

exponents are compatible under the map φ1.

Let xmij and xnip be two entries on an old β-curve βi in G. Then, n = m+ (Np
1 −N

j
1 ) + 1 (mod

2), where Np
1 (similarly N j

1 ) is the number of intersection points of βi with the cut lines that lie
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between α0 ∩ βi and αp ∩ βi (similarly αj ∩ βi) in G. Let xm
′

ij and xn
′
ip be the images of xmij and xnip

respectively, under the map φ1.

Case 1: If Np
2 = Np

1 and N j
2 = N j

1 , where Np
2 (similarly N j

2 ) is the number of intersection points of

βi with the cut lines that lie between α0∩βi and αp∩βi (similarly αj ∩βi) in G′, the fifth condition

for generators is true by the definition of φ1.

Case 2: Assume that Np
2 6= Np

1 and N j
2 6= N j

1 . Then Np
2 = Np

1 + 1 (mod 2), N j
2 = N j

1 + 1 (mod 2),

n
′

= n+ 1 (mod 2), and m
′

= m+ 1 (mod 2).

So, m
′
+Np

2 −N
j
2 + 1 = (m+ 1) + (Np

1 + 1)− (N j
1 + 1) + 1 (mod 2)= m+ (Np

1 −N
j
1 ) + 1 + 1

(mod 2)= n + 1 (mod 2)= n
′
. This shows that the two exponents are compatible under the map

φ1.

Case 3: Either Np
2 6= Np

1 or N j
2 6= N j

1 . If Np
2 6= Np

1 . Then Np
2 = Np

1 + 1, and n
′

= n+ 1 (mod 2).

So, m
′
+Np

2 −N
j
2 + 1 = m+ (Np

1 + 1)−N j
1 + 1 (mod 2)= m+ (Np

1 −N
j
1 ) + 1 + 1 (mod 2)=

n+ 1 (mod 2)= n
′
.

Hence, φ1 maps generators to generators.

Lemma 5.1.2. The map φ1 : EGC(G) −→ EGC(G′) is a chain map.

Proof. We recall that for any x ∈ S(G),

∂x =
∑

y∈S(G)

∑
rect◦(x,y)

y

where rect◦(x, y) is the collection of empty rectangles (not containing any basepoints as defined in

chapter 4).

We want to show that φ1 commutes with the boundary map. φ1 keeps the position of the

coordinates in a generator, the only change is in the signs of the exponent. Recalling the rules

for the rectangles, it is clear that the sign of the exponents are compatible under the map φ1.

Geometrically, we can see the composite map φ1 ◦ ∂ slides the rectangles in the Heegaard diagram

for Y across the cut lines (Figure 5.3, Figure 5.4).

43



Figure 5.3: Rectangles in Type-1 and Type-2 cut lines in the extended
grid diagram.

Figure 5.4: The figure on the left shows the rectangle under the boundary
map ∂ and the picture on the right shows the rectangle under the map
φ1 ◦ ∂.

Similarly, we define a chain map φ
′
1 : EGC(G′) −→ EGC(G) by φ′1(x) = φ′1({xkij}) = {x

φ′ij(k)

ij },

where

φ′ij(k) =


k if N1 = N2,

k + 1(mod 2) if N1 6= N2,

where N1 = the number of intersection points of βi with the cut lines that lie between α0 ∩ βi and

αj ∩ βi in G′, and N2 = the number of intersection points of βi with the cut lines that lie between

α0 ∩ βi and αj ∩ βi in G.
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Proof of Theorem 5.1.1. Using lemma 5.1.2, we have two chain maps, φ1 and φ
′
1, and φ

′
1 is the

inverse of φ1. Hence, EGH(G) ∼= EGH(G′).

A similar argument holds true for any other pair of choices of cut lines joining X and O. Hence,

the extended grid homology EGH is independent under the choice of the cut lines.

5.2 Invariance of EGH under Choice of New Curves Separating X

and O

Here we show that the combinatorial extended grid homology EGH(G) of a double branched cover

of S3 branched along a link L ⊂ S3 is independent of the choice of the new curves separating X

and O.

We will show the independence for the choice of the new β-curves. The proof that same is true

for the choice of the new α-curves is similar. A new β-curve can be introduced in the grid diagram

separating X and O in two different ways as shown in Figure 5.5. We call the first picture Type

A and the second Type B in Figure 5.5. In Type A, the leftmost basepoint in the row of the new

curve appears above the new β-curve and the rightmost basepoint appears below the new β-curve.

In Type B, the leftmost basepoint appears below the new β-curve and the rightmost basepoint

above the new β-curve.

Figure 5.5: New curves separating the two basepoints X and O.
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Let H1 be an extended grid diagram for a link L ⊂ S3 where one of the new β−curves, βi0 , is

of Type A. Let H̃1 be a lift of H1 and the set of generators S(H1) be the set of unordered 3n-tuples

of intersection points between the α- and β-curves satisfying the conditions for the generators (see

definition 4.2.1).

We draw the extended grid diagram H2 by replacing the specified new β-curve of type A, βi0 ,

by a new β-curve of Type B which we will call γi0 . We will draw the two types of curves in the

same extended grid diagram, and call this diagram H1,2. Let H̃1,2 be the lift of H1,2. The lifts to

the double branched cover of the two curves βi0 and γi0 intersect each other exactly at four points

( two in each H+
1,2 and H−1,2 respectively). We call those points {a1, b1, a2, b2}, where a1, b1 are in

the positive region and a2, b2 are in the negative region in the lift (Figure 5.6). We can isotope βi0

and γi0 so that their intersections are not on any vertical α-curves and they intersect transversally

at a right angle.

Proposition 5.2.1. If H1 and H2 are the extended grid diagrams of a link L in S3 branched along

L, where H2 is obtained from H1 by replacing a Type-A β-curve with a Type-B β-curve (we denoted

γ), then there is an isomorphism between EGH(H1) and EGH(H2).

To prove this, we first need to define a chain map from EGC(H1) to EGC(H2). For that, we

will use a pentagon counting map. This is an adaptation of a pentagon counting map that appeared

in the proof for commutation invariance of the grid homology in [14]. The pentagons we will count

live in the diagram H1,2.

Definition 5.2.1. (Embedded pentagon [14]) An embedded pentagon “pent” in H1,2 is a domain

with boundary which is a union of five embedded arcs in α ∪ β ∪ γi0 such that two of the edges

and a vertex they meet at are in βi0 ∪ γi0, and at any of the five corner points p, where two of

the arcs intersect, the intersection of “pent” with a neighborhood of p is one of the four quadrants

determined by the two intersecting curves at p (Figure 5.6).

A pentagon “pent” is an embedded pentagon connecting x to y′ if

• x,y′ have exactly (3n-2) coordinates in common,

• ∂((∂pent) ∩α) = y′ − x.
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The collection of pentagons from x to y′ is denoted pent(x,y′). A pentagon in pent(x,y′) is

empty if it does not contain any point of x or y′ in its interior or in the boundary and it does not

contain any basepoint X or O in its interior. The set of empty pentagons from x to y′ is denoted

by pent◦(x,y′).

Figure 5.6: Pentagons changing x to y′.

Any pentagon from some x ∈ S(H1) to some y′ ∈ S(H2) must have an edge in the type A

βi0-curve and an adjacent one in the type B γi0-curve, intersecting at one of the intersection points

b1 or b2 in βi0∩γi0 . One of the other intersection points, either a1 or a2 ∈ βi0∩γi0 , is a vertex of any

pentagon from any generator for H̃2 to H̃1. Here we define the from-to relationship in the same way

as we did for the boundary map, the “from” vertex being in the top left and bottom right corners.

Suppose now that x and y′ are connected by a pentagon. Then they differ at two coordinates,

where the coordinates are (x
kij
ij , x

kts
ts ) and (y

′ktj
tj , y

′kis
is ). There are four types of pentagons in the

extended grid diagram (Figure 5.7).

If the two generators do not differ at exactly two coordinates, then pent◦(x,y′) = ∅. If they

differ at exactly two coordinates, and the four corresponding points (xij , y
′
is, xts, y

′
tj) are all distinct,

then there are four possible types of pentagons in the extended grid connecting them (as shown by

A, B, C and D in Figure 5.7). We discuss the type A pentagons first. In order for a pentagon in

the grid to lift to a pentagon in the double cover, the following conditions need to hold true:

• kis = (−1)
Nxijy

′
iskij , kis = (−1)

Ny′
is

xtskts, ktj = (−1)
Nxijy

′
tj kij

• the pentagon does not contain any basepoint.
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Figure 5.7: Different types of pentagons sending x to y′.

• when a cut line connecting two basepoints partitions a pentagon, then each of the adjoining

parts gets an opposite sign.

• if there is a coordinate xmn = y′mn in the pentagon (including the boundary of the pentagon),

then the sign of xmn is opposite to the sign of the smaller domain it sits in.

The first two conditions ensure that all the corner points of a pentagon are compatible with each

other, so that there is a pentagon in the lift connecting the generators. The third condition implies

that if a cut line partitions a pentagon, which is in the positive region, then the portion of the

pentagon after meeting the cut line comes out from the negative region and vice versa. These

conditions ensure that the pentagon in the grid is the projection of the pentagon in Σ ⊂ Y and

contains no basepoint and no other coordinates of x and y′.

We discuss Figure 5.7 C and D. The last three conditions in A remain the same for other types of

pentagons (B,C,D). In C, the conditions for an empty pentagon are the following:

• ktj = (−1)
Nxijy

′
tj kij , kis = (−1)

Ny′
is

xtskts,
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• kis = (−1)
Ny′

is
xij kij , if xij and y′is are on the old β-curve.

• kis = (−1)
(Ny′

is
xij

+1)
kij , if xij and y′is are on the new β-curve.

The last condition holds because there are odd number of intersections of the cut lines with the

new curves. Hence, if there are N cut lines between y′is and xij , then there will be N + 1 cut lines

between xij and y′is.

In case D, the conditions for an empty pentagon are the following:

• kis = (−1)
Nxijy

′
iskij

• ktj = (−1)
Ny′

tj
xij kij , if xij and y′tj are on the old α-curve.

• ktj = (−1)
(Ny′

tj
xij

+1)
kij , if xij and y′tj are on the new α-curve.

• kis = (−1)
Nxtsy

′
iskts, if xts and y′is are on the old α-curve.

• kis = (−1)
(Nxtsy

′
is

+1)
kts, if xts and y′is are on the new α-curve.

In case B, the conditions for an empty pentagon are the following:

• ktj = (−1)
Nxtsy

′
tj kts, if xts and y′tj are on the old β-curve.

• ktj = (−1)
(Nxtsy

′
tj

+1)
kts, if xts and y′tj are on the new β-curve.

• ktj = (−1)
Nxijy

′
tj kij , if xij and y′tj are on the old α-curve.

• ktj = (−1)
(Nxijy

′
tj

+1)
kij , if xij and y′tj are on the new α-curve.

• kis = (−1)
Ny′

is
xtskts, if xts and y′is are on the old α-curve.

• kis = (−1)
(Ny′

is
xts

+1)
kts, if xts and y′is are on the new α-curve.

We define a map φ2 : EGC(H1) −→ EGC(H2) by counting pentagons:

φ2(x) =
∑

y′∈S(H2)

∑
p∈pent◦b (x,y′)

y′
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Analogously, we define an “inverse map”

φ′2 : EGC(H2) −→ EGC(H1)

by counting pentagons from generators in H̃2 to generators in H̃1 with a vertex at “a”. In other

words,

φ′2(x′) =
∑

y∈S(H1)

∑
p∈pent◦a(x′,y)

y

Lemma 5.2.1. The maps φ2 and φ′2 are chain maps.

Proof. The proof is similar to Lemma 5.1.4 in [14]. We prove the lemma for φ2. The proof is similar

for φ′2. The map φ2 is well-defined, i.e., φ2 maps generators to generators because if there exists

a pentagon which connects x to y′, then the conditions for the pentagon make it compatible with

the conditions for the generators. We need to show φ2 commutes with the boundary map i.e., we

need to verify the identity

∂ ◦ φ2 = φ2 ◦ ∂

We have

∂ ◦ φ2(x) = ∂(
∑

y′∈S(H2)

∑
p∈pent◦b (x,y′)

y′) =
∑

y′∈S(H2)

∑
p∈pent◦b (x,y′)

∑
z
′∈S(H2)

∑
recto(y

′
,z

′
)

z′

and

φ2 ◦ ∂(x) = φ2(
∑

y∈S(H1)

∑
recto(x,y)

y) =
∑

y∈S(H1)

∑
recto(x,y)

∑
z
′∈S(H2)

∑
p∈pent◦b (y,z′)

z′.

Hence, combining both, we get

(∂ ◦ φ2 + φ2 ◦ ∂)x =
∑

z′∈S(H2)

∑
{τ∈π(x,z′)|z′∩Int(τ)=∅=x∩Int(τ),X∩τ=∅=O∩τ}

N(τ)z′. (5.1)

where π(x, z′) is the set of regions connecting x and z′ and N(τ) denotes the number of ways a

region τ can be decomposed as a justaposition of a rectangle and a pentagon in any order. τ can be

decomposed either to an empty rectangle first and then to an empty pentagon or first decompose

into an empty pentagon and then to a rectangle. Figure 5.8 shows some of the possible choices

for the domain τ . If a pentagon or a rectangle crosses cut lines, the cut lines cross the top and
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the bottom the same number of times as pentagons and rectangles do not contain any basepoints.

Except for the case 3 in Figure 5.8, there is no wrapping around and overlap of any region as the

regions are free from basepoints. In addition, there is no overlap of the rectangles or the pentagons

as they are free from interior points. There can be at most four points where x and z′ could differ

Figure 5.8: Some of the possible choices for the domain τ .

since a rectangle switches two points and a pentagon switches two points. x− (x∩ z′) can contain

either four, three or one points. We note that x− (x ∩ z′) cannot contain two points. The reason

for this is that the pentagon and the rectangle would have exactly one edge in common, hence, two

coordinates of x would come from the same β curve in the lift.

One can decompose the domain τ in three different ways:

Case 1: x − (x ∩ z′) contains exactly four distinct points. In this case, the region consists

of a disjoint rectangle and a pentagon (Figure 5.9). A schematic diagram is shown in case 1 in

Figure 5.8, with vertices belonging to x marked in red. In this case, there are exactly two ways to

decompose τ , either by decomposing into rectangle first and then to a pentagon or to a pentagon

first and then to a rectangle. Hence, we have N(τ)= 2.

Case 2: x− (x ∩ z′) contains exactly three points. There are different choices for τ , some are

shown in case 2 of Figure 5.8 and others are mirror images of those in case 2 of Figure 5.8. In all

the cases, τ has seven corners in the lift, of which six of them are right-angled corners (including

the intersection point b) and one of the corners is 270◦.
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Figure 5.9: Disjoint pentagon and a rectangle in the lift of the extended
grid diagram.

Subcase 1: Here τ as in bottom left figure in case 2 in Figure 5.8. It looks like the picture as

shown in Figure 5.10. We can decompose τ along the 270◦ corner in two different ways. We give a

schematic diagram for the decomposition of τ (Figure 5.11). The cut lines break the domain into

smaller and smaller chunks and place those chunks alternately in the adjacent copies of the lift as

the domain is free from basepoints. Using cut lines, we show the decomposition of τ : the first way

is to use the pentagon first as shown in Figure 5.12 and then use the rectangle (Figure 5.13). The

second way is to use the rectangle first (Figure 5.14) and then the pentagon (Figure 5.15). This

gives two different decomposition of τ . Hence, N(τ)= 2.

Figure 5.10: x and z′ shown in the lift, x with black dots and z′ with
hollow squares.
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Figure 5.11: Subcase 1: Decomposing the domain τ in two different ways.
The red dots represent x and the yellow dots represent z′. The green dot
represents a point y in S(H1).

Figure 5.12: Using pentagon first to go from x to y′.

Figure 5.13: Using rectangle to go from y′ to z′.
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Figure 5.14: Using rectangle to go from x to y.

Figure 5.15: Using pentagon to go from y to z′.
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Subcase 2: Here τ as in the top figure in case 2 in Figure 5.8. It looks like the picture as

shown in Figure 5.16. We cut the 270◦ corner in two different ways. We give a schematic diagram

for the decomposition of τ (Figure 5.17).

Figure 5.16: Subcase 2: x and z′ shown in the lift, x with black dots and
z′ with hollow squares.

Figure 5.17: Subcase 2: Decomposing the domain τ in two different ways.
The red dots represent x and the yellow dots represent z′. The green dot
represents a point y in S(H1).

Using cut lines, we show the decomposition of τ : both ways we use the rectangle first and then

we use the pentagon (see Figures 5.18, 5.19, 5.20, 5.21). There are exactly two different ways to

decompose τ , hence N(τ) = 2.
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Figure 5.18: Subcase 2: Using rectangle to go from x to y in the lift. Here
x is denoted by black dots and y with hollow squares.

Figure 5.19: Subcase 2: Using pentagon to go from y to z′ in the lift.
Here y is denoted with black dots and z′ with hollow squares.

Figure 5.20: Second way of decomposing: Using rectangle to go from x to
y in the lift. Here x is denoted by black dots and y with hollow squares.
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Figure 5.21: Second way of decomposing: Using pentagon to go from y
to z′ in the lift. Here y is denoted with black dots and z′ with hollow
squares.

Subcase 3: Here τ as in the bottom right figure in case 2 in Figure 5.8. It looks like the picture

as shown in Figure 5.22. We give a schematic diagram for decomposition of τ (Figure 5.23).

Figure 5.22: Subcase 3: x and z′ shown in the lift, x with black dots and
z′ with hollow squares.

Using cut lines, we show the decomposition of τ in two different ways: in the first way, we

decompose ψ into pentagon first (Figure 5.24) and then the rectangle (Figure 5.25). In the second

way, we decompose ψ into a rectangle first (Figure 5.26) and then into a pentagon (Figure 5.27).

There are exactly two different ways to decompose τ . Hence, N(τ) = 2.
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Figure 5.23: Subcase 3: Decomposing the domain τ in two different ways.
The red dots represent x and the yellow dots represent z′. The green dot
represents a point y′ in S(H2) in the first figure, and a point y in S(H1)
in the second figure.

Figure 5.24: Subcase 3: Using pentagon to go from x to y′ in the lift.
Here x is denoted by black dots and y′ with hollow squares.

Figure 5.25: Subcase 3: Using rectangle to go from y′ to z′ in the lift.
Here y′ is denoted with black dots and z′ with hollow squares.
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Figure 5.26: Subcase 3: Second way of decomposing: Using rectangle to
go from x to y in the lift. Here x is denoted by black dots and y with
hollow squares.

Figure 5.27: Subcase 3: Second way of decomposing: Using pentagon to
go from y to z′ in the lift. Here y is denoted with black dots and z with
hollow squares.
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Case 3: x− (x∩z′) contains exactly one point. Figure 5.28 shows one such domain. Schemat-

ically, the domain looks like case 3 in Figure 5.8.

Figure 5.28: Case 3: Using rectangle and pentagon to go from x to z′ in
the lift. Here x is denoted with black dots and z′ with hollow squares.

We show that for each generator x ∈ S(H1), there are exactly two domains τ1 and τ2 that

connect x to z′ such that x− (x ∩ z′) contains exactly one point.

In the lower half of the intersections of βi0 and γi0 , the domain τ1 has a unique decomposition

as a “thin” rectangle and a pentagon (Figures 5.28, 5.29, 5.30). By thin we mean that the domain

will be in between the old curves β±i0−1 and β±i0+1, where βi0 is replaced by γi0 . If there is a domain

starting in the positive region, which decomposes as a rectangle followed by a pentagon (or the

other way round) and there is no 270◦ corner, then it has to wrap around as there is already a

coordinate of x in the bottom curve β+
i0+1. Since there are basepoints in the annulus below the old

curve βi0+1, we cannot find an empty annular domain free from basepoints below βi0+1.

Figure 5.29: Case 3: Using rectangle to go from x to y in the lift. Here x
is denoted with black dots and y with hollow squares.

In addition, we have a domain τ2 in the upper half of the intersection of βi0 and γi0 , which has

a unique decomposition as a rectangle and a pentagon (Figure 5.31, Figure 5.32, Figure 5.33).
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Figure 5.30: Case 3: Using pentagon to go from y to z′ in the lift. Here
y is denoted with black dots and z′ with hollow squares.

Figure 5.31: Case 3: Another way of using rectangle to go from x to y in
the lift. Here x is denoted with black dots and y with hollow squares.

Another way to decompose the domain τ1 and τ2, is to decompose the domain first to a pentagon

and then to a rectangle (Figure 5.34, Figure 5.35, Figure 5.36, Figure 5.37). The decomposition

having pentagon or rectangle first depends on where the point of x is on the bottom βi0+1 curve

for τ1 and on the top βi0−1 curve for τ2.
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Figure 5.32: Case 3: Another way of using pentagon to go from y to z′ in
the lift. Here y is denoted with black dots and z′ with hollow squares.

Figure 5.33: Case 3: Another way of using rectangle and pentagon to go
from x to z′ in the lift. Here x is denoted with black dots and z′ with
hollow squares.

Figure 5.34: Case 3: Another way of using pentagon to go from x to y′ in
the lift. Here x is denoted with black dots and y′ with hollow squares.

Figure 5.35: Case 3: Another way of using rectangle to go from y′ to z′

in the lift. Here y′ is denoted with black dots and z′ with hollow squares.
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Figure 5.36: Case 3: Both pentagon and rectangle in the lift.

Figure 5.37: Case 3: Both pentagon and rectangle in the lift in the upper
half of the intersection.

Hence for each generator x ∈ S(H1), there are exactly two domains τ1 and τ2 that contribute

to z′ so that the mod two count for z′ in the sum is zero.

Therefore, in all the cases, (∂−X ◦ φ2 + φ2 ◦ ∂−X )x = 0.

φ2 preserves the relative grading since φ2 is a chain map. Next, we want to show that φ′2 ◦φ2 is

homotopic to the identity map on EGC(H1). For that, we introduce hexagon counting map that

appeared in [14].

Definition 5.2.2. (Embedded hexagon [14]) Let x, y ∈ S(H1). An embedded hexagon h (Fig-

ure 5.38) in H1,2 with boundary in α ∪ β ∪ γi0 is a hexagon from x to y if ∂((∂h) ∩α) = y − x.

Figure 5.38: An hexagon connecting x and y.
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An hexagon in H1,2 lifts to an hexagon from x to y in the double cover H̃1,2 such that x,y have

exactly (3n-2) coordinates in common. We denote the set of hexagons from x to y by hex(x, y).

The hexagon h ∈ hex(x, y) is empty if h does not contain any point of x and y in its inte-

rior (respectively boundary) and does not contain any basepoint in its interior. The set of empty

hexagons from x to y is denoted by hex◦(x, y).

The conditions for the hexagon in the extended grid is similar to the conditions for the pentagon.

We define a map H : EGC(H1) −→ EGC(H1) by

H(x) =
∑

y∈S(H1)

∑
h∈hex◦(x,y)

y

We define analogously a map H ′ : EGC(H2) −→ EGC(H2) by counting suitable hexagons from

H̃2 to itself,

H ′(x′) =
∑

y′∈S(H2)

∑
h′∈hex◦(x′,y′)

y′

The map H maps generators to generators as the conditions for the hexagon is compatible with

the conditions for the generator.

Lemma 5.2.2. The map H : EGC(H1) −→ EGC(H1) is a chain homotopy between the identity

map on EGC(H1) and the composite map φ′2 ◦ φ2.

Proof. The idea of the proof is similar to Lemma 5.1.7 in [14]. We will show that

∂ ◦H +H ◦ ∂ = Id+ φ′2 ◦ φ2

Now,

∂ ◦H(x) =
∑

y∈S(H1)

∑
h∈hex◦(x,y)

∑
z∈S(H1)

∑
recto(y,z)

z

H ◦ ∂(x) =
∑

y∈S(H1)

∑
recto(x,y)

∑
z∈S(H1)

∑
h∈hex◦(y,z)

z

φ′2 ◦ φ2(x) =
∑

y′∈S(H2)

∑
pent◦b (x,y′)

∑
z∈S(H1)

∑
h∈pent◦a(y′,z)

z

By combining all the terms, we can write

(∂ ◦H +H ◦ ∂ + φ′2 ◦ φ2)(x) =
∑

z∈S(H1)

∑
{ψ∈π(x,z)|z∩Int(ψ)=∅,z∩X=z∩O=∅}

N(ψ).z (5.2)
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where N(ψ) denote the number of ways to decompose domain ψ. The analysis needed here relies on

understanding how rectangles and hexagons interact with each other and also, on how pentagons

interact with each other. One can decompose ψ in three different ways: first decompose ψ in to

an empty rectangle r and then to an empty hexagon h, we denote this decomposition as r ∗ h;

first decompose ψ in to an empty hexagon h and then to an empty rectangle r, we denote this

decomposition as h ∗ r; first decompose ψ in to an empty pentagon p from H̃1 to H̃2 and then to

an empty pentagon p′ from H̃2 to H̃1, we denote this decomposition as p ∗ p′ (for H ′, we do p
′ ∗ p).

If a hexagon or a rectangle cross cut lines, the cut lines cross the top and the bottom the same

number of times as hexagons and rectangles do not contain any basepoints.

We have at most 4 points where x and z differ since a rectangle switches two points and an

hexagon switches two points. Here x − (x ∩ z) contains four, three or no points. We note that

x − (x ∩ z) cannot contain two points as it would happen only if two of the x components that

differ from the z components are on the same curve βi0 . Also, x− (x∩z) cannot contain one point

as hexagons (or rectangles) switch two points, where one of the point that is in the βi0 is replaced

by another point on βi0 . We consider 3 cases for ψ ∈ π(x,y):

Case 1: x − (x ∩ z) contains exactly 4 points. In this case, the region consists of a disjoint

union of a rectangle and a hexagon. There are exactly two decompositions for ψ, either r ∗ h or

h ∗ r (Figure 5.39). Hence N(ψ) = 2.

Case 2: x− (x ∩ z) contains exactly 3 points. In this case, ψ has eight corners. Out of eight,

seven corners are 90◦ and one is 270◦. We will consider three different cases for how the domains

ψ would look like, others are mirror images of these three (Figure 5.40).

Subcase 1: ψ looks as in Figure 5.41. The 270◦ corner can be decomposed in two different

ways. The first way is to decompose ψ into a rectangle and then to an hexagon (Figure 5.42) or to

decompose ψ into an hexagon and then to a rectangle (Figure 5.43). There are exactly two ways

to decompose ψ. Hence, N(ψ) = 2.
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Figure 5.39: Case 1: A disjoint rectangle and an hexagon in the lift. The
bottom figure shows a schematic diagram for the decomposition of φ.

Figure 5.40: Schematic diagram for the possible domains for φ.
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Figure 5.41: Subcase 1: Domain in the lift.

Figure 5.42: Subcase 1: Decomposing the domain into first a rectangle
and then a hexagon in the lift.
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Figure 5.43: Subcase 1: Decomposing the domain first into a hexagon and
then to a rectangle in the lift.

Subcase 2: ψ looks as in Figure 5.44. ψ can be decomposed in two different ways. We can

decompose ψ as a rectangle and an hexagon (Figure 5.45) or as two pentagons P1 and P ′2 in H̃1,2

(Figure 5.46). Thus, N(ψ) = 2.

Figure 5.44: Subcase 2: Domain in the lift.
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Figure 5.45: Subcase 2: Decomposing the domain first into a rectangle
and then to an hexagon in the lift.

Figure 5.46: Subcase 2: Decomposing the domain into two pentagons.

Subcase 3: ψ looks as in Figure 5.47. We can decompose ψ as a rectangle and an hexagon in

two different ways (Figure 5.48, Figure 5.49). Thus, N(ψ) = 2.
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Figure 5.47: Subcase 3: Domain in the lift.

Figure 5.48: Subcase 3: Decomposing the domain first into a rectangle
and then to an hexagon.
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Figure 5.49: Subcase 3: Decomposing the domain first into a rectangle
and then to an hexagon in the lift.

Case 3: x−(x∩z′) contains no points. Depending on the initial generator x, there is a unique

region next to βi0 and γi0 . This region has a unique decomposition as a juxtaposition of a rectangle

with a hexagon or two pentagons (Figure 5.50, Figure 5.51, Figure 5.52, Figure 5.53, Figure 5.54,

Figure 5.55). ψ could be any one of these decompositions, it depends on the position of the point

of x that is on the old curve. Hence, N(ψ) = 1 and this case contributes to the identity map. We

note here that this case is different from the case 3 of lemma 5.2.1 as there is no basepoint free

domain in the other half.

All these cases, verifies the identity ∂ ◦H +H ◦ ∂ = Id+ φ′2 ◦ φ2.

Figure 5.50: Case 3: Juxtaposition of two pentagons.
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Figure 5.51: Case 3: Juxtaposition of a rectangle and an hexagon. The
initial coordinates of the generators are marked with black dots.

Figure 5.52: Case 3: Juxtaposition of an hexagon and a rectangle. The
initial coordinates of the generators are marked with black dots.

Figure 5.53: Case 3: Juxtaposition of two pentagons. The lighter shade is
the first pentagon and the darker shade is the second pentagon.

Figure 5.54: Case 3: Juxtaposition of an hexagon and a rectangle. The
lighter shade denotes the first in the decomposition.
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Figure 5.55: Case 3: Juxtaposition of a rectangle and an hexagon. The
lighter shade denotes the first in the decomposition.

Proof of proposition 5.2.1. The map φ2 : EGC(H1) −→ EGC(H2) is a chain map and applying

the previous lemma to φ′2 ◦ φ2 and H; φ2 ◦ φ′2 and H ′, we have a chain homotopy equivalence. A

chain homotopy equivalence induces an isomorphism on homology, hence EGH(H1) ∼= EGH(H2).

Theorem 5.2.1. If H1 and H2 are the extended grid diagrams of a link L in S3 branched along L,

where H2 differs from H1 by the choice of the new β-curves, then there is an isomorphism between

EGH(H1) and EGH(H2).

Proof. We apply proposition 5.2.1 repeatedly to switch, one at a time, to all new β curves.

Similarly, we can show that EGH is independent of the choice of the new α-curves. We will

define the pentagon counting maps in the same way as before. Figure 5.56 shows the pentagons.

Figure 5.56: Possible pentagons.
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Theorem 5.2.2. If H1 and H2 are the extended grid diagrams of a link L in S3 branched along L,

where H2 differs from H1 by the choice of the new α-curves, then there is an isomorphism between

EGH(H1) and EGH(H2).

Proof. The proof is similar to the proof of Theorem 5.2.1.

5.3 Invariance of EGH under Cyclic Permutation

Let G1 be an extended grid diagram for a link L ⊂ S3 and G̃1 be a lift of G1. Let G2 be obtained

from G1 by cyclically permuting two consecutive rows of the extended grid diagram corresponding

to L, such that the i-th row becomes (i − 2) mod 2n-th row. Note that this corresponds to a

one-step cyclic pemutation of the original grid. Then we have,

Theorem 5.3.1. If G1 and G2 are extended grid diagrams of a link L in S3, where G2 is obtained

from G1 by a cyclic permutation moving two consecutive rows from top to bottom, then there is an

isomorphism between EGH(G1) and EGH(G2).

To prove Theorem 5.3.1, we define a map φ3 : EGC(G1) −→ EGC(G2) by

φ3({xkij}) = {xltj}

where t = i− 2 (mod 2n), l = k +N1
i,j −N2

t,j (mod 2) and N1
i,j= # intersection points of βi with

the cut lines that lie between α0 ∩ βi and αj ∩ βi in G1, N2
t,j = # intersection points of βt with the

cut lines that lie between α0 ∩βt and αj ∩βt in G2, and for generators xkij we refer to remark 4.2.1.

The leftmost figure in Figure 5.57 shows a generator in the extended grid diagram for the Hopf

link and the rightmost figure shows its image under the map φ3.

Lemma 5.3.1. φ3 maps generators to generators.

Proof. We need to check all the conditions for generators. It is clear from the definition of φ3 that

φ3({xkij}) has 3n-tuples of entries with each old curve (both α and β) containing two entries and

the new curves (both α and β) containing exactly one entry. Also, for the coordinates of x for

which the exponent is both 0 and 1, φ3 will retain the exponents 0 and 1 for the corresponding

entry.
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Figure 5.57: A generator in the extended grid diagram for the Hopf link
and its image under the map φ3.

We check here that the condition “if there are two entries on an old α curve in G2, then they

must have opposite signs” is satisfied for the image of φ3. Let xtj and xdj be two entries on αj

in G2 such that their corresponding preimages in G1 are xij and xpj respectively, with l1 and l2

exponents of xtj and xdj , and k1 and k2 exponents of xij and xpj respectively. We assume that k1

and k2 are different, i.e k2 = k1 +1 (mod 2). From the definition of φ3, we have l1 = k1 +N1
i,j−N2

t,j

(mod 2), l2 = k2 +N1
p,j −N2

d,j (mod 2).

Lemma 5.3.2 below gives us that N1
i,j −N1

p,j = N2
t,j −N2

d,j (mod 2). Therefore, l2 = k2 +N1
p,j −

N2
d,j = k1 + 1 +N1

p,j −N2
d,j = k1 + 1 +N1

i,j −N2
t,j (mod 2) = l1 + 1 (mod 2). This shows that any

two entries on an old α-curve in the image set of φ3 have opposite signs.

We check that if there are two entries of a generator on an old β curve in G2, then the exponents

are compatible with the condition that is required for them to be in generator. Let xp1ij and xp2is

be two points on βi in G1 and xq1tj and xq2ts respectively, be their corresponding images on βt in

G2. Then if the exponents of these grid points are l1 and l2 for xtj and xdj , and k1 and k2 for

xij and xpj respectively, the relationship between the exponents q1 = p1 + N1
i,j − N2

t,j (mod 2),

q2 = p2 +N1
i,s −N2

t,s (mod 2), and p2 = p1 +N1
i,s −N1

i,j + 1 (mod 2).
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Therefore, q2 = p2 + N1
i,s − N2

t,s (mod 2)= p1 + N1
i,s − N1

i,j + 1 + N1
i,s − N2

t,s (mod 2)= p1 −

N1
i,j + 1−N2

t,s (mod 2)= p1 +N1
i,j + 1 +N2

t,s (mod 2)= p1 +N1
i,j + 1 +N2

t,s −N2
tj −N2

tj (mod 2)=

p1 +N1
i,j−N2

tj +1+N2
t,s−N2

tj (mod 2)= q1 +1+N2
t,s−N2

tj (mod 2). This shows that the exponents

of any pair of entries on an old β-curve in the image set are compatible with the conditions of the

generators.

Hence, this shows that φ3 maps generators to generators.

Lemma 5.3.2. Let xl1tj and xl2dj be two entries on αj in G2 such that their corresponding preimages

in G1 are xk1ij and xk2pj respectively, then

N1
i,j −N1

p,j = N2
t,j −N2

d,j (mod 2)

Proof. Assume that there is only one cut line to the left of αj in G1. We consider three cases:

Case 1: If there is a cut line to the left of both xi,j and xp,j , then a cyclic permutation of the

rows either leaves the cut line unchanged or it moves the cut line to the other side of the torus. In

the former case, both xt,j and xd,j will have a cut line on the left; in the latter case, neither xt,j

nor xd,j will have a cut line on the left. Hence the differences N1
i,j −N1

p,j and N2
t,j −N2

d,j are equal

mod 2.

Case 2: If there is a cut line only to the left of xi,j and no cut line to the left of xp,j , then a

cyclic permutation of the rows either leaves the cut line unchanged or it moves the cut line to the

other side of the torus. In the former case, xt,j will have a cut line on the left; in the latter case,

xd,j will have a cut line on the left. Hence the differences N1
i,j −N1

p,j and N2
t,j −N2

d,j are equal mod

2.

Case 3: If there is no cut line to the left of both xi,j and xp,j , then a cyclic permutation of the

rows either leaves the cut line unchanged or it moves the cut line to the other side of the torus. In

the former case, neither xt,j nor xd,j will have a cut line on the left; in the latter case, both xt,j

and xd,j will have a cut line on the left. Hence the differences N1
i,j −N1

p,j and N2
t,j −N2

d,j are equal

mod 2.
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Lemma 5.3.3. The map φ3 : EGC(G1) −→ EGC(G2) is a chain map.

Proof. We need to show φ3 commutes with the boundary map ∂. Recalling the rules for the

rectangles, it is clear that the sign of the exponents are compatible under the map φ3. Geometrically,

we can see that the composite map φ3 ◦ ∂ moves rectangles two rows up within the same columns

in the extended grid diagram (Figure 5.58).

Figure 5.58: Picture showing how rectangles are moved using the map φ3.

Similarly, we define an inverse map φ
′
3 : EGC(G2) −→ EGC(G1) by

φ
′
3({xkij}) = {xltj}

where t = i− 2 (mod 2n), l = k +N1
i,j −N2

t,j (mod 2) and N1
i,j= # intersection points of βi with

the cut lines that lie between α0 ∩βi and αj ∩βi in G1, and N2
t,j = # intersection points of βt with

the cut lines that lie between α0 ∩ βt and αj ∩ βt in G2.

Proof of Theorem 5.3.1. φ
′
3 is a chain map and is the inverse of φ3. Hence, EGH(G1) ∼=

EGH(G2).

Similarly one can prove the invariance of EGH under the cyclic permutation of columns. Let

G′ be obtained from G by cyclically permuting two consecutive columns of G, such that the j-th
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column becomes (j−2) mod 2n-th column. One can define a chain map φ : EGC(G) −→ EGC(G′)

by

φ({xkij}) = {xlit}

where t = j − 2 (mod 2n), l = k +N1
i,j −N2

i,t (mod 2) and N1
i,j= # intersection points of βi with

the cut lines that lie between α0 ∩ βi and αj ∩ βi in G, and N2
i,t = # intersection points of βi with

the cut lines that lie between α0 ∩ βi and αt ∩ βi in G′. This chain map induces an isomorphism

on the homology.

5.4 Discussion

In future, we are hoping to prove the commutation and stabilization invariance.

Commutation: Let G3 be an extended grid diagram for a link L ⊂ S3. Let G̃3 be a lift of G3

and the set of generators S(G3) be the set of unordered 3n-tuples of intersection points between

the α- and β-curves satisfying the conditions for the generators.

Let G′3 be obtained from G3 by commutation of the columns (see Figure 5.59). Here the red

α-curves are replaced by the green α-curves.

Figure 5.59: The commutation move in the extended grid diagram. Three
of the red α-curves are replaced by three other green α-curves. Among the
three to be replaced, one is an old α-curve and other two are new α-curves.
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Theorem 5.4.1. If G3 and G′3 are extended grid diagrams of a link L in S3 branched along L,

where G′3 differs from G3 by a commutation move, then there is an isomorphism between EGH(G3)

and EGH(G′3).

Stabilization: We consider the stabilization as shown in Figure 5.60.

Figure 5.60: Figure showing stabilization at X2. O1 and X1 are the new
entries after the stabilization.

Figure 5.61 shows the extended grid diagram for a stabilized unknot. Here we notice that we

have introduced two new α (similarly β)-curves in the extended grid, one of them is a thickened

(old) curve, and the other one is a thin (new) curve. This means that there will be two thickened

curves and one thin curve extra in the lift.

Figure 5.61: Extended grid diagram for stabilized unknot.

Let G be an adapted diagram for Y and Gs be its stabilization as described above. We draw

the adapted diagram as a lift of the extended grid diagram which has two copies of the extended

grid such that each new curve (one that is introduced into the grid diagram to obtain an extended

grid diagram) goes over from one grid to the other, forming a single curve and each of the old
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curves (ones that are the original curves in the grid diagram) lifts to two copies of the same curve

(Figure 5.62). Hence, there are total of (3n+3) α (similarly β)-curves.

Figure 5.62: The extended grid diagram in the lift. The lines with the
orange dots are the newly introduced lines after the stabilization. Thin red
and blue lines respectively, in the extended grid are connected, representing
a single curve. Therefore, in the lift we have 3 new α-(similarly β-) curves, a
total of (3n+3) α (similarly β)-curves. The red coloredX and O represents
X1 and O1.

Theorem 5.4.2. If G and G′ are extended grid diagrams of a link L in S3 branched along L,

where G′ differs from G by a stabilization move (as described above), then there is an isomorphism

between EGH(G′) and EGH(G)⊗ (Z/2⊕ Z/2)2.
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Chapter 6

The Coding Algorithm

In this chapter we present a representation for a grid diagram in a matrix form. We use this ma-

trix interpretation of the adapted diagram to present an algorithm we use in the computer code

we developed to compute extended grid homology of double branched covers of S3 along links in S3.

Description of a grid as a matrix: For an extended grid diagram of grid size 2n × 2n, we

will use as a representative of a generator a matrix M = [mij ]0≤i,j≤(2n−1) of size 2n × 2n. The

α-curves are represented by columns and the β-curves are represented by rows in the matrix. The

intersection points of α and β-curves in the grid are represented by corresponding entry positions

in a matrix. The intersection of αi and βj corresponds to mji entry in the matrix.

Description of a knot in a matrix: A knot in a grid is represented by basepoints. A base-

point in the grid lies in a portion of the grid bounded by (βi, βi+1)× (αj , αj+1). We represent such

a point by a pair (i+ 1
2 , j + 1

2). For example, in Figure 6.1, we have the basepoints (0+ 1
2 , 2+ 1

2),

(1+ 1
2 , 6+ 1

2), (2+ 1
2 , 0+ 1

2), (3+ 1
2 , 5+ 1

2), (4+ 1
2 , 7+ 1

2), (5+ 1
2 , 3+ 1

2), (6+ 1
2 , 4+ 1

2), (7+ 1
2 ,

1+ 1
2). We will use this example to illustrate how to represent an intersection of a cut line with

a row. In Figure 6.1, there are 0 cut lines in the 0-th row, so we assign {0} to this row. There is

one cutline in the 1st row, which appears right after the 3rd column, so we assign {3 + 1
2}. There

are two cut line intersections in the 2nd row, so we assign {3 + 1
2 , 7 + 1

2}. Similarly, we assign

81



{1 + 1
2 , 3 + 1

2 , 7 + 1
2} to the 3rd, {1 + 1

2 , 3 + 1
2 , 5 + 1

2 , 7 + 1
2} to the 4-th, {1 + 1

2 , 3 + 1
2 , 5 + 1

2} to the

5-th, {1 + 1
2 , 5 + 1

2} to the 6-th, and {1 + 1
2} to the 7-th row. In general, a cut line that appeared in

the i-th row in between the j-th and (j+ 1)-th columns will be assigned a value {j+ 1
2}. Similarly,

a cut line that appeared in the j-th column in between the i-th and (i+ 1)-th rows will be assigned

a value {i+ 1
2}.

Figure 6.1: Extended grid diagram for Hopf link.

Description of generators in matrix form: We discuss generators {xkijij } for EGC(G) that

appeared in the definition 4.2.1. We will form a matrix where an entry in the corresponding i-th

row and j-th column corresponds to the assignment of a certain value to the exponent kij . The

entries will be [1, 0], [−1, 0], or [1,−1] at the positions that are present in the generator, and [0, 0]

otherwise.

• If there is exactly one point in an even row, then that point also appears in the even column

and is the only point in that even column as well. That point has position m2i,2j′ and we

assign k2i,2j′ = [1,−1]. This corresponds to the case when lifts of two old curves intersect in

such a way that their intersections project to the same point in the extended grid.

• Except in case above, each even row and column in the grid contains two points for each

generator, and we have exactly two positions in the matrix that are not [0, 0], i.e there are

two points mij assigned one of the two values k1 = [1, 0] or k2 = [−1, 0]. In the double cover

of the extended grid, [1, 0] represents an intersection point of α and β in the positive region

G+ and [-1, 0] represents an intersection point of α and β in the negative region G−.

82



• Two different non-zero positions in any even numbered column are such that adding the two

entries gives zero, i.e. if one entry in the even numbered column is [1, 0], then the other has

to be [-1, 0]. This corresponds to the fact that two entries on an old α-curve in the extended

grid lift to two distinct intersection points.

• The exponent relationship for two distinct positions in M in an even numbered row depends

on the number of intersections of the cut lines with the row between the two positions. If mij

is the first entry in the i-th row, we assign either k1 or k2. Call the value kij . As the row is

even, there exists another entry mip, with p > j, such that kip must satisfy the equation,

kij = (−1)N+1kip (6.1)

where N is the number of intersections of the cut lines with the i-th row in between mij and

mip and thus kip is uniquely determined by kij .

• For position mij , i, j odd, there are no conditions on what kij we can assign. If one coordinate

is odd and the other even, the conditions in the even coordinate are as above.

Hence, for a generator of EGH(G) we have a matrix Mk = [kij ]. Figure 6.2 shows a generator in

the matrix form.

Description of the rectangles in the boundary map: We describe the rectangles that

appeared in equation 4.2. We take two generators Mk = [kij ] and Mk′ = [k′ij ]. These generators

have 3n non-zero entries. To obtain a rectangle, the code calculates Mk−Mk′ . We require Mk−Mk′

to have precisely four non-zero positions in the matrix such that the four non-zero positions create

a rectangle. Suppose the four corners of the rectangle are cij , cip, cdj , cdp where cij := kij − k′ij .

Figure 6.3 shows two rectangles with four nonzero corner positions in the matrix obtained by

subtracting the two generators.

The algorithm in the code checks whether the rectangle is a type A, type B or type C, type

D rectangle (as discussed in section 4.2.2). For that, consider the sum sij = kij + k′ij at the four

corner points. There are five possibilities for the sum - it can be either [0, 0], [1, 0], [-1, 0], [1, -1],
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Figure 6.2: Generators in the matrix form. The left hand side diagram
shows two generators in the extended grid diagram for an unknot and the
right hand side shows their corresponding matrix form.

[2, -1] or [0, -1]. For example, in Figure 6.3, the first rectangle has four corners at c00, c01, c20 and

c21. For those four corner points, the code calculates the sum of the entries from the two generators

(Figure 6.4) and sets all the other entries in the matrix to be [0,0].

If the sum entry is [2, -1], then one of the entries at that corner point from one of the generators

had to be [1, -1] and the other [1, 0], and the corner point of the rectangle in the same column has

to have the value [-1, 0] (Figure 6.5) for the rectangle to exist. If the sum is [0, -1], then one of

the entries at that corner point from one of the generators is [1, -1] and the other is [-1, 0], and the

other corner point of the rectangle in the same column has to have the value [1, 0] for the rectangle

to exist.

If the sum is one of [1, 0], [-1, 0] or [-1, 1], then one of the entries at that position is [1, 0], [-1,

0] or [-1, 1] and the other one is [0, 0]. If the sum is [0, 0], the code discards the choice.
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Figure 6.3: Two rectangles in the matrix are shown, which are formed by
four non-zero positions, obtained by subtracting two generators.

Next the code checks from where the four corner points come. The code allows only those

rectangles whose top-left and bottom-right corners are from the first generator and the other two

from the second generator or vice versa. In the case when the sum of the entries from the two

generators at the vertex of the rectangle is [2, -1] or [0, -1], the entry [1, -1] decides the type of

the rectangle. If it is a top-left corner point in the rectangle and [1, -1] is the entry from the

first generator, then the rectangle is either a type A or type B rectangle (Figure 6.4, Figure 6.5),

otherwise it is of type C or type D.

For the rest of the code for finding appropriate rectangles, we assign a positive sign to [1, 0] and

a negative sign to [-1, 0]. If a corner point has [1, -1] assignment, then the code checks for both [1,

0] and [-1, 0].

We have two sets of rectangles that might appear depending on the upper left (UL) corner of

the rectangle. If UL is coming from Mk, then it is either a type A or type B rectangle, otherwise

it is a type C or D rectangle (refer to section 4.2.2).

In the next paragraph, we illustrate the code that checks for type A rectangles. Other types

are similarly coded in the program.
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Figure 6.4: Proper assignment at the corners of the rectangle. Since the
top-left corner point comes from the first generator, the rectangle is either
of type A or of type B.

Figure 6.5: Proper assignment at the corners of the rectangle. The rect-
angle is either of type A or of type B as the top-most corner point gets the
value from the first generator.
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Type A rectangles: Pick a basepoint (a, b) (Figure 6.6). The basepoint (a, b) has the form

(i +
1

2
, j +

1

2
), where i denotes the i-th row and j denotes the j-th column. Let U,D be the top

and bottom rows of the rectangle and L,R denote the left and the right columns of the rectangle.

Figure 6.6: A type A rectangle with rows U , D and columns L, R in the
matrix with a basepoint (a, b).

The code checks if U < a < D and L < b < R. If there is a rectangle which contains a basepoint,

then the code discards that rectangle. Next the code checks for positions in Mk and Mk′ that are in

the interior of the rectangle. For that the code checks if there are points in the rows of the matrix

between columns L and R and for rows between U and D. The following describes how the code

detects appropriate sign for the interior points. All these conditions make sure that the point lies

outside the rectangle in the lift.

We refer to Figure 6.7 for the notation.

Figure 6.7: mU refers to the number of intersections of the cut lines with
row U in between LL and RR. mm refers to the number of intersections
of the cut lines with row U in between L and RR.
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We consider the following cases:

Case 1: If mU = 0, the sign of the interior point p∗ has to be the negative of the sign of UL to

guarantee that the interior point is not in the interior of the rectangle in the lift.

Case 2: If mU 6= 0, then we have the following cases:

Subcase 2.1: If mm = mU .

Subcase 2.1.1: There is a basepoint (a, b) in the rectangle bounded by U, D, L and LL (Fig-

ure 6.8). If the row of p∗ < a, then sign of p∗ is (−1)Nm+1× (sign of UL), where Nm is the number of

intersections of the cut lines with the row, where p∗ lies in between L and column of p∗. Otherwise,

sign of p∗ is (−1)Nm× (sign of UL).

Figure 6.8: Basepoint in between the U, D rows and L, LL columns.

Subcase 2.1.2: There is no basepoint in the rectangle bounded by U, D, L and LL (Figure 6.9).

Then the sign of p∗ is (−1)Nm+1× (sign of UL).

Subcase 2.2: If mm 6= mU .

Subcase 2.2.1: There is a basepoint (a, b) in the rectangle bounded by U, D, L and LL (Fig-

ure 6.10). If the row of p∗ < a, then the sign of p∗ is (−1)Nm× (sign of UL). Otherwise, sign of p∗

is (−1)Nm+1× (sign of UL).

Subcase 2.2.2: There is no basepoint in the rectangle bounded by U, D, L and LL (Figure 6.11).

Then the sign of p∗ is (−1)Nm× (sign of UL).

88



Figure 6.9: No basepoint in between the U, D rows and L, LL columns.

Figure 6.10: Subcase 2.2.1: Basepoint in between the U, D rows and L,
LL columns.
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Figure 6.11: Subcase 2.2.2: No basepoint in between the U, D rows and
L, LL columns.

Compatible boundary points: Boundary point refers to the point on the boundary of the

rectangle. We want to make sure if there is a point on the boundary of the rectangle in the extended

grid, then it has appropriate sign so that it does not lie on the boundary of the rectangle in the

lift. In the row U, sign of a boundary point p1 is (−1)N+1× (sign of UL), where N is the number

of intersections of the cut lines with the row U in between L and column of p1. Similarly, the other

boundary points on the left and right columns and the lower row is determined in the code.

Proper signs for the four corners of the rectangle: Finally, the code checks for the proper

signs for the four corner points of the rectangle to ensure the region is a valid rectangle in the lift.

We fix the top left corner position UL. Then the sign of the top right corner UR is (−1)n1 (sign

of UL) and the sign of bottom left corner DL is (−1)n2 sign of UL, where n1 is the number of

intersections of the cut lines with the row U in between L and the column of UR, and n2 is the

number of intersections of the cut lines with the column L in between U and the row of DL. The

code requires (−1)n3 (sign of DL) to be equal to (−1)n4 (sign of UR), where n3 is the number of

intersections of the cut lines with the row D in between L and the column of DR, and n4 is the

number of intersections of the cut lines with the column R in between U and the row of the down

right corner DR. Then sign of DR is (−1)n3 (sign of DL).
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In a similar manner, the code is written for other types of rectangles. A differential matrix is

written where rows and columns are the generators and an ij−th entry in the matrix is 1, if there

exists an empty rectangle connecting one generator Mi to the other generator Mj or 0, if such

rectangle does not exist.

We have calculated the extended grid homology for the double branched cover of S3 branched

along an unknot. For an unknot the extended grid number is 4. The number of generators is 224.

At this moment, the code is in the developmental stage. Due to memory issues, the code is able to

generate the generators only for extended grid number 6. There are 57120 generators of the chain

complex EGC of the double branched cover of S3 branched along an unknot with extended grid

number 6.

The code is available upon request.
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